D. Bscan and R. , Ascan de la gure 1.7 est représenté par le trait vertical, p.17

.. Donnée-synthétique-de-la-gure-2, 17 après ltrage. L'amplitude a été normalisée, p.57

. Bscan-de-la-gure-2......., 23 après ltrage (N = 5, M = 51), p.60

. Bscan-de-la-gure-2....., 25 après ltrage (N = 5, M = 51), p.61

. Bscan-de-la-gure-2....., 27 après ltrage (N = 5, M = 51), p.61

L. Découpe-de, Cscan en 5 rectangles à l'intérieur desquels le clutter est quasiment homogène, p.66

D. Cscan-de-la-gure-2 and .. , 49 après réduction de clutter par un ltre ACRC (N w = 5), p.81

D. Cscan-de-la-gure-2 and .. , 49 après réduction de clutter par un ltre ACRC (N w = 10), p.81

. Sous-bscan, prétraité par ltrage numérique, contenant la réponse de l'objet détecté aux positions horizontales l = {0, 58}, vol.38, issue.108

2. .. Sous-bscan, prétraité par ltrage numérique, contenant la réponse de l'objet détecté aux positions horizontales l = {1.75, p.109

.. Du-cscan, Donnée Cscan résultant de la somme des Cscans après ltrage et seuillage pour le scénario 11 Une échelle logarithmique est appliquée sur l'amplitude des échantillons, p.124

.. Du-cscan, Donnée Cscan résultant de la somme des Cscans après ltrage et seuillage pour le scénario 4 Une échelle logarithmique est appliquée sur l'amplitude des échantillons, p.126

C. Table-des-gures, 11 Superposition de l'image de détection et du Cscan résultant de l'étape 1, pour les données Cscan du scénario 13. Les cercles noirs indiquent les positions réelles des mines. Les cercles roses les positions détectées, p.172

G. [. Bitri and . Grandjean, Frequency-wavenumber modeling and migration of 2d gpr data in moderately heterogenous dispersive media, Geophysics, vol.46, issue.3, p.287301, 1998.

I. [. Basseville and . Nikiforov, Detection of Abrupt Changes -Theory and Application, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

S. [. Bourgeois and . Smith, A fully three dimensionnal simulation of a ground penetrating radar : Fdtd theroy compared with experiment, IEEE Transactions on Geoscience and remote sensing, vol.403644, issue.4, 1996.

]. D. Car99 and . Carevic, Kalman lter-based approach to target detection and target background separation in ground prenetrating radar data, SPIE conference on Detection Remediation Technologies, Minelike targets IV, pp.1284-1288, 1999.

]. J. Cla96 and . Claerbout, Imaging the Earth's Interior, 1996.

[. Chen and L. Peters-jr, Buried Unexploded Ordnance Identication Via Complex Natural Resonances, IEEE Transactions on Antennas and Propagation, issue.11, p.4516451654, 1997.

. [. Bibliographie, T. J. Cagnoly, and . Ulrych, Singular value decomposition and wavy reections in ground-penetrating radar images of base surge deposits, Journal of Applied Geophysics, vol.48, p.175182, 2001.

A. [. Davis and . Annan, Ground -Penetrating Radar for High- Resolution Mapping of Soil and Rock Stratigraphy, Geophysical Prospecting, vol.37, p.531551, 1989.

D. J. Daniels, Ground-Penetrating Radar, 2004.

F. Desobry and M. Davy, Dissimilarity measures in feature space, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004.
DOI : 10.1109/ICASSP.2004.1327150

M. [. Desobry, C. Davy, and . Doncarli, An online kernel change detection algorithm, IEEE Transactions on Signal Processing, vol.53, issue.8, p.29612974, 2005.
DOI : 10.1109/TSP.2005.851098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.1469

M. Davy, F. Desobry, A. Gretton, and C. Doncarli, An online support vector machine for abnormal events detection, Signal Processing, vol.86, issue.8, 2006.
DOI : 10.1016/j.sigpro.2005.09.027

URL : https://hal.archives-ouvertes.fr/inria-00120256

]. J. Dea01b and . Dean, Project mimeva, study of generic mine-like objects for research and development in systems for humanitarian demining, European Commission, DG Joint Research Centre Institute for the Protection and Security of the Citizen, Humanitarian Security Unit, 2001.

]. M. Dem97 and . Demangeon, Lutte contre les mines antipersonnel : Comment éradiquer ce éau mondial ?, 1997.

F. Desobry, Méthodes à noyau pour la détection de rupture, 2004.

]. J. Des05 and . Desclaux, Landmine monitor report 2005 : Toward a mine-free world, 2005.

Z. [. Demarest, R. Huang, and . Plumb, An fdtd near to far zone transformation for scatterers buried in stratied ground, IEEE Transactions on antenna and propagation, vol.44, p.11501157, 1996.

]. A. Van-der-merwe and I. J. Gutpa, A Novel Signal Processing Technique for Clutter Reduction in GPR Measurements of Small

D. Declercq and A. Quinquis, Le ltrage des signaux, Hermés, 1996.

O. [. Fritzsche and . Löhlein, DREAM Program -Multisensor Fusion, 1999.

A. [. Farina and . Protopa, New results on linear prediction for clutter cancellation, IEEE Transactions on Aerospace and Electronic Systems, vol.24, issue.3, p.275285, 1998.
DOI : 10.1109/7.192095

G. , A. Gunatilaka, and B. A. Baertlein, A subspace decomposition technique to improve gpr imaging of anti-personnel mines Aerosense 2000 : Detection and Remediation technologies for mines and minelike targets, Proceedings of SPIE, p.403810081018, 2000.

F. [. Gretton and . Desobry, Online one-class nu-svm, an application to signal segmentation, IEEE ICASSP, 2003.
DOI : 10.1109/icassp.2003.1202465

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.8788

J. [. Gader, B. N. Keller, and . Nelson, Recognition technology for the detection of buried landmines, IEEE Trans. on Fuzzy Systems, vol.9, issue.1, p.3143, 2001.

]. I. Gvdmc98, A. Gupta, C. C. Van-der-merwe, and . Chen, Extraction of complex resonances associated with buried targets, SPIE, vol.3392, p.10221032, 1998.

S. Haykin, Adaptive lter theory -Third edition, 1996.

P. [. Ho and . Garder, A linear prediction land mine detection algorithm for hand held ground penetrating radar, IEEE Transactions on Geoscience and Remote Sensing, vol.40, issue.6, p.13741384, 2002.
DOI : 10.1109/TGRS.2002.800276

S. M. Kay, Fundamentals of statistical signal processing : Estimation theory

S. M. Kay, Fundamentals of statistical signal processing : Detection theory

A. Klapuri and M. Davy, Signal processing methods for music transcription
DOI : 10.1007/0-387-32845-9

URL : https://hal.archives-ouvertes.fr/inria-00120226

S. Lambot, E. Slob, I. Van-den-bosch, B. Stockbroeckx, and M. Vanclooster, Modeling of ground penetrating radar for accurate characterizatoin of subsurface electric properties, IEEE Transactions on Geoscience and Remote Sensing, issue.11, p.4225552567, 2004.

]. S. Mas04 and . Maslen, Guide de la lutte antimines, 2004.

I. [. Milisavljevic and . Bloch, Sensor fusion in anti-personnel mine detection using a two-level belief function model, IEEE Transactions on systems, man, and cybernetics-PART C : applocations and reviews, p.269283, 2003.
DOI : 10.1109/TSMCC.2003.814034

L. [. Munshi and . Collins, Physics model-based signal processing of gpr for subsurface object detection and discrimination, 2003.

N. Milisavljevic, Analyse et Fusion par la Théorie des Fonctions de Croyances de Données Multi-sensorielles pour la Détection de Mines Antipersonnelles, 2001.

. [. Bibliographie, Q. Millard, and . Liu, A fast volume integral equation solver for electromagnetic scattering from large inhomogeneous objects in planarly layered media, IEEE Transactions on Antennas and Propagation, vol.51, issue.9, p.23932401, 2003.

S. Mika, K. S. Müller, G. Rätsch, K. Tsuda, and B. Schölkopf, An introduction to kernel-based learning algorithms, Oppenheim and D. W. Shafer. Digital Signal Processing, 1975.

E. [. Potin, P. Duos, S. Vanheeghe, E. Perrin, P. Duos et al., Landmines ground penetrating radar signal enhancement by digital ltering Multisensor fusion in the frame of evidence theory for landmines detection, and cybernetics, Part C : Applications and Review, p.23932406485498, 2004.

J. [. Peters, J. D. Daniels, and . Young, Ground penetrating radar as a subsurface environmental sensing tool, Proceedings of the IEEE, p.18021822, 1994.
DOI : 10.1109/5.338072

]. S. Per01 and . Perrin, Contribution à l'Algorithmique Multicapteur Pour la Détection de Mines Antipersonnel, 2001.

]. F. Per04 and . Pereira, Analyse spatio-temporelle du champ géomagnétique et des processus d'accélération solaires observés en émission radio, 2004.

P. [. Potin, E. Vanheeghe, and . Duos, Detection of buried landmines by an abrupt change detection algorithm, IMACS world congress, 2005.

P. [. Potin, E. Vanheeghe, M. Duos, and . Davy, An abrupt change detection algorithm for buried landmines localization Modélisation de la propagation des ondes électromagnétiques en milieux hétérogènes : application au radar sol, IEEE Trans. on Geoscience and Remote Sensing, vol.44, issue.2, p.260272, 2002.

K. [. Rahman, . B. Yu, J. Schölkopf, J. Platt, A. Shawe-taylor et al., Total Least Squares Approach for Frequency Estimation Using Linear Prediction Estimating the support of a high dimensional distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.35, issue.137, p.1440145414431471, 1987.

B. [. Smola and . Schölkopf, Learning with kernels, 2002.

S. Tjora, E. Eide, and L. Lundheim, Evaluation of methods for ground bounce removal in gpr utility mapping. Tenth international conference on Ground Penetrating Radar, Vra03] V. Vrabie. Statistiques d'ordre supérieur : applications en géophysique et électrotechnique, pp.21-24, 2003.

E. [. Xu, C. Miller, A. Rappaport, V. Yarovoy, A. Kovalenko et al., Statistical method to detect subsurface objects using array ground penetrating radar data Impact of ground clutter on buried object detection by ground penetrating radar, Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International Zhu and L. M. Collins. Application of feature extraction methods for landmine detection using the wichmann/niitek ground penetrating radar, pp.963976755-757, 2002.

A. M. Zoubir, I. J. Chant, C. L. Brown, B. Barkat, and C. Abeynayake, Signal processing techniques for landmine detection using impulse ground penetrating radar, IEEE Sensors Journal, vol.2, issue.1, p.81854151, 2002.
DOI : 10.1109/7361.987060