W. Au and K. Chan, An eective algorithm for discovering fuzzy rules in relational databases, IEEE World Congress on Computational Intelligence, p.13141319, 1998.

J. Ayres, J. Gehrke, T. Yiu, and J. Flannick, Sequential PAttern Mining using bitmaps

R. Agrawal, T. Imielinski, and A. N. Swami, Mining Association Rules between Sets of Items in Large Databases, the ACM SIGMOD International Conference on Management of Data, p.207216, 1993.

Y. Aumann and Y. Lindell, A statisitical theory for quantitative association rules, ACM International Conference on Knowledge Discovery and Data Mining (KDD'99), p.261270, 1999.

H. Albert-lorincz and J. Boulicaut, Mining frequent sequential patterns under regular expressions: a highly adaptative strategy for pushing constraints, 3rd SIAM Int. Conf. on Data Mining (SIAM DM'03), p.316320, 2003.
DOI : 10.1137/1.9781611972733.37

R. Agrawal, H. Mannila, R. Srikant, and H. , Toivonen et A. I. Verkamo : Fast Discovery of Association Rules, Advances in Knowledge Discovery and Data Mining, p.307328, 1996.

C. Antunes and A. L. Oliveira, Constraint Relaxations for Discovering Unknown Sequential Patterns, 3rd International Workshop Knowledge Discovery in Inductive Databases Lecture Notes in Computer Science, p.1132, 2004.
DOI : 10.1007/978-3-540-31841-5_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.108.4446

R. Agrawal and R. Srikant, Fast Algorithms for Mining Association Rules, 20th International Conference on Very Large Data Bases, p.487499, 1994.

R. Agrawal and R. Srikant, Mining sequential patterns, Proceedings of the Eleventh International Conference on Data Engineering, p.314, 1995.
DOI : 10.1109/ICDE.1995.380415

R. J. Brachman and T. Anand, The process of knowledge discovery in database Advances in knowledge discovery and data mining, pp.37-57, 1996.

S. Bistarelli and F. Bonchi, Interestingness is Not a Dichotomy: Introducing Softness in Constrained Pattern Mining, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'05), volume 3721 de Lecture Notes in Computer Science, 2005.
DOI : 10.1007/11564126_8

J. C. Bezdeck, Pattern recognition with fuzzy objective function algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classication and Regression Trees, 1984.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, Adaptive Constraint Pushing in Frequent Pattern Mining, 7th European Conference on Principles and Practice of 132 BIBLIOGRAPHIE Knowledge Discovery in Databases (PKDD'03), volume 2838 de Lecture Notes in Computer Science, 2003.
DOI : 10.1007/978-3-540-39804-2_7

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, Pre-processing for constrained pattern mining, 11th Italian Symposium on Advanced Database Systems (SEBD'03), 2003.

M. R. Berthold and K. Huber, Tolerating Missing Values in a Fuzzy Environment

M. R. Berthold and K. Huber, Missing Values and Learning of Fuzzy Rules, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.06, issue.02, 1998.
DOI : 10.1142/S021848859800015X

J. C. Bezdek, R. J. Hathaway, C. Leckie, and R. Kotagiri, Approximate data mining in very large relational data, 17th Australasian Database Conference (ADC'06), p.313, 2006.

J. Boulicaut and B. Jeudy, Using constraints during set mining : Should we prune or not ?, Bases de Données Avancées (BDA'00), p.221237, 2000.

K. Chan and W. Au, Mining fuzzy association rules, Proceedings of the sixth international conference on Information and knowledge management , CIKM '97, p.209215, 1997.
DOI : 10.1145/266714.266898

M. De-cock, C. Cornelis, and E. E. , Kerre : A clear view on quality measures for fuzzy association rules, International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, p.5461, 2004.

T. Calders, B. Goethals, and M. Mampaey, Mining itemsets in the presence of missing values, Proceedings of the 2007 ACM symposium on Applied computing , SAC '07, 2007.
DOI : 10.1145/1244002.1244097

R. Chen and Y. Hu, A novel method for discovering fuzzy sequential patterns using the simple fuzzy partition method, Journal of the American Society for Information Science and Technology, vol.22, issue.7, p.660670, 2002.
DOI : 10.1002/asi.10258

Y. Chen and T. C. , Huang : A new approach for discovering fuzzy quantitative sequential patterns in sequence databases, Fuzzy Sets and System, vol.157, p.16411661, 2006.

M. Capelle, C. Masson, and J. Boulicaut, Mining Frequent Sequential Patterns under a Similarity Constraint, 3rd Int. Conf. on Intelligent Data Engineering and Automated Learning (IDEAL'02), p.16, 2002.
DOI : 10.1007/3-540-45675-9_1

R. Chen, G. Tzeng, C. Chen, and Y. Hu, Discovery of Fuzzy Sequential Patterns for Fuzzy Partitions in Quantitative Attributes, ACS/IEEE International Conference on Computer Systems and Applications (AICCSA), p.144150, 2001.

G. Chen, Q. Wei, and E. Kerre, Fuzzy Data Mining: Discovery of Fuzzy Generalized Association Rules+, Recent Research Issues on Management of Fuzziness in Databases, 2000.
DOI : 10.1007/978-3-7908-1845-1_3

H. Cheng, X. Yan, and J. Han, IncSpan, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, 2004.
DOI : 10.1145/1014052.1014114

D. Dubois and E. Hüllermeier, Prade : A note on quality measures for fuzzy association rules, 10th International Fuzzy Systems Association World Congress (IFSA'03), volume 2715 de Lecture Notes in Computer Science, p.677648, 2003.

D. Dubois and E. Hüllermeier, Prade : A systematic approach of the assessment of fuzzy association rules, Data Mining and Knowledge Discovery, vol.13, issue.2, p.167192, 2006.

A. P. Dempster, N. M. Laid, and D. B. , Rubin : Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society, vol.39, issue.1, p.138, 1977.

E. Damiani, B. Oliboni, and E. Quintarelli, Tanca : Modeling users' navigation history, Workshop on Intelligent Techniques for Web Personalisation, 7th International Joint Conference on Articial Intelligence (IJCAI'01), 2001.

D. Dubois and H. , Prade : Fuzzy Sets and Systems -Theory and Applications. Academic press, 1980.

M. Delgado, D. Sanchez, and M. Vila, Acquisition of fuzzy association rules from medical data. Fuzzy Logic in Medicine, Studies in Fuzziness and Soft Computing Series, p.286310, 2002.

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, issue.3, p.3257, 1973.
DOI : 10.1080/01969727308546046

J. H. Friedman, R. Kohavi, and Y. Yun, Lazy Decision Trees, the 13th National Conference on Articial Intelligence and the 8th Innovative Applications of Articial Intelligence Conference, p.717724, 1996.

U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, From Data Mining to Knowledge Discovery : an Overview Advances in knowledge discovery and data mining, p.134, 1996.

U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, Knowledge Discovery and Data Mining : Towards a unifying framework, Knowledge Discovery and Data Mining, p.8288, 1996.

A. Fu, M. Wong, S. Sze, W. Wong, and E. W. Yu, Finding Fuzzy Sets for the Mining of Fuzzy Association Rules for Numerical Attributes, the 1st International Symposium on Intelligent Data Engineering and Learning (IDEAL), p.263268, 1998.

Z. Ghahramani and M. I. Jordan, Learning from Incomplete Data, 1994.

F. Giannotti, M. Nanni, and D. Pedreschi, Ecient mining of temporally annotated sequences, 6th SIAM Int. Conf. on Data Mining (SDM'06), 2006.

F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli, Mining sequences with temporal annotations, Proceedings of the 2006 ACM symposium on Applied computing , SAC '06, p.593597, 2006.
DOI : 10.1145/1141277.1141413

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.6067

M. Garofalakis, R. Rastogi, and K. Shim, Mining sequential patterns with regular expression constraints, IEEE Transactions on Knowledge and Data Engineering, vol.14, issue.3, pp.530-552, 2002.
DOI : 10.1109/TKDE.2002.1000341

A. Gyenesei, A fuzzy approach for mining quantitative association rules, 2000.

A. Gyenesei, Fuzzy partitioning of quantitative attribute domains by a cluster goodness index, 2000.

J. Hartigan, Classification and Clustering, Journal of Marketing Research, vol.18, issue.4, 1975.
DOI : 10.2307/3151350

Y. Hu, R. Chen, G. Tzeng, and J. Shieh, A Fuzzy Data Mining Algorithm for Finding Sequential Patterns, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.11, issue.02, p.173193, 2003.
DOI : 10.1142/S0218488503002004

J. Han and M. Kamber, Data Mining, 2000.
DOI : 10.1007/978-1-4899-7993-3_104-2

F. Höppner and F. Klawonn, A new approach to fuzzy partitioning, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), p.14191424, 2001.
DOI : 10.1109/NAFIPS.2001.943757

T. Hong, C. Kuo, S. Chai, C. Et, and S. Wang, Mining fuzzy rules from quantitative data based on the Apriori Tid algorithm, ACM symposium on Applied computing (SAC'00), p.534536, 2000.

N. J. Horton and R. S. Lipsitz, Multiple Imputation in Practice, The American Statistician, vol.55, issue.3, p.244254, 2001.
DOI : 10.1198/000313001317098266

T. P. Hong, K. Y. Lin, and S. L. Wang, Mining Fuzzy Sequential Patterns from Multiple- Items Transactions, Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference, p.13171321, 2001.

T. Hong, K. Lin, and S. Wang, Fuzzy data mining for interesting generalized association rules. Fuzzy Sets and Systems, p.255269, 2003.

Y. Hu and G. , Tzeng : Elicitation of classication rules by fuzzy data mining, Engineering Applications of Articial Intelligence, vol.8, pp.709-716, 2003.

Y. Hu, G. Tzeng, and C. Chen, Deriving two-stage learning sequences from knowledge in fuzzy sequential pattern mining, Information Sciences, vol.159, issue.1-2, p.6986, 2004.
DOI : 10.1016/S0020-0255(03)00190-7

M. Huisman, Poststratication to correct for nonresponse : Stratication of zip code areas, Computational Statistics (COMPSTAT'00 ), p.325330, 2000.

S. P. Imberman, Domanski : Finding association rules from quantitative data using data booleanization, 7th Americas Conference on Information Systems, 2001.

S. Jami, T. Y. Jen, D. Laurent, G. Loizou, and O. Sy, Extraction de règles d'association pour la prédiction de valeurs manquantes, Revue Africaine de la Recherche en Informatique et Mathématique appliquée (Numéro spécial CARI'04), p.103124, 2005.

M. Joshi, G. Karypis, and V. Kumar, A universal formulation of sequential patterns. Rapport technique 99-021, 1999.

J. Kacprzyk, Fuzzy logic with linguistic quantiers : A tool for better modeling of human evidence aggregation processes ? Fuzzy Sets in Psychology, p.233263, 1988.

A. Kaufmann, Introduction à la théorie des sous-ensembles ous, 1973.

C. M. Kuok, A. W. Fu, and M. H. Wong, Mining fuzzy association rules in databases, ACM SIGMOD Record, vol.27, issue.1
DOI : 10.1145/273244.273257

H. Kum, J. Pei, W. Wang, and D. Duncan, ApproxMAP: Approximate Mining of Consensus Sequential Patterns, 2002.
DOI : 10.1137/1.9781611972733.36

M. Kryszkiewicz, Association Rules in Incomplete Databases, 3rd Pacic-Asia Conference on Methodologies for Knowledge Discovery and Data Mining (PAKDD'99), volume 1574 de Lecture Notes in Computer Science, p.8493, 1999.
DOI : 10.1007/3-540-48912-6_11

J. Kacprzyk and R. R. Yager, Zadrozny : A Fuzzy Logic Based Approach to Linguistic Summaries of Databases, International Journal of Applied Mathematics and Computer Science, vol.10, p.813834, 2000.

B. Lent, R. Agrawal, and R. Srikant, Discovering Trends in Text Databases, 3rd ACM International Conference on Knowledge Discovery and Data Mining (KDD'97, p.227230, 1997.

A. Laurent, Bases de données multidimensionnelles oues et leur utilisation pour la fouille de données, Thèse de doctorat, 2002.

K. J. Lynch and H. Chen, Knowledge discovery from historical data: an algorithmic approach, Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, p.7079, 1992.
DOI : 10.1109/HICSS.1992.183466

M. Levene and G. Loizou, Database design for incomplete relations, ACM Transactions on Database Systems, vol.24, issue.1, 1999.
DOI : 10.1145/310701.310712

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.153

M. Levene and G. Loizou, A Guided Tour of Relational Databases and Beyond, 1999.
DOI : 10.1007/978-0-85729-349-7

M. Lin and S. , Lee : Fast discovery of sequential patterns through memory indexing and database partitioning, Journal of Information Science and Engineering, vol.21, issue.1, p.109128, 2005.

M. Lin, S. Lee, and S. Wang, DELISP: Efficient Discovery of Generalized Sequential Patterns by Delimited Pattern-Growth Technology, 6th Pacic-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD '02), 2002.
DOI : 10.1007/3-540-47887-6_19

R. J. Little and D. B. Rubin, Statistical analysis with missing data, 1987.
DOI : 10.1002/9781119013563

M. Leleu, C. Rigotti, and J. Boulicaut, Euvrard : Constraint-Based Mining of Sequential Patterns over Datasets with Consecutive Repetitions, the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'03), p.303314, 2003.

W. Z. Liu, A. P. White, S. G. Thompson, and M. A. , Bramer : Techniques for Dealing with Missing Values in Classication, the 2nd International Symposium on Advances in Intelligent Data Analysis, Reasoning about Data, volume 1280 de Lecture Notes in Computer Science, 1997.

F. Masseglia, Algorithmes et applications pour l'extraction de motifs séquentiels dans le domaine de la fouille de données : de l'incrémental au temps réel, Thèse de doctorat, 2002.

I. Mitasiunaite and J. Boulicaut, About softness for inductive querying on sequence databases, 2006 7th International Baltic Conference on Databases and Information Systems, p.7782, 2006.
DOI : 10.1109/DBIS.2006.1678478

C. Marsala and B. Bouchon-meunier, An adaptable system to construct fuzzy decision trees, 18th International Conference of the North American Fuzzy Information Processing Society, NAFIPS (Cat. No.99TH8397), pp.223-297, 1999.
DOI : 10.1109/NAFIPS.1999.781687

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.263

F. Masseglia and F. Cathala, Poncelet : The PSP Approach for Mining Sequential Patterns, Principles of Data Mining and Knowledge Discovery, p.176184, 1998.

G. Melli, Synthetic Classication Data Set Generator

H. Mannila and T. Imielinski, A database perspective on knowledge discovery, Communications of the ACM, vol.39, issue.11, p.5864, 1996.

F. Masseglia, P. Poncelet, and R. Cicchetti, An ecient algorithm for web usage mining, Networking and Information Systems Journal, vol.2, pp.5-6, 1999.

S. Mitra, S. K. Pal, and P. Mitra, Data mining in soft computing framework: a survey, IEEE Transactions on Neural Networks, vol.13, issue.1
DOI : 10.1109/72.977258

F. Masseglia and P. Poncelet, Teisseire : Incremental Mining of Sequential Patterns in Large Databases, Data and Knowledge Engineering, vol.46, issue.1, p.97121, 2003.

F. Masseglia and P. Poncelet, Teisseire : Pre-processing time constraints for eciently mining generalized sequential patterns, 11th International Symposium on Temporal Representation and Reasoning, p.8795, 2004.
DOI : 10.1109/time.2004.1314424

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.4384

N. Meger and C. Rigotti, Constraint-Based Mining of Episode Rules and Optimal Window Sizes, the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD'04), p.313324, 2004.
DOI : 10.1007/978-3-540-30116-5_30

URL : https://hal.archives-ouvertes.fr/hal-00494637

H. Mannila and H. Toivonen, Multiple uses of frequent sets and condensed representations (extended abstract), ACM International Conference Knowledge Discovery and Data Mining (KDD'96), p.189194, 1996.

H. Mannila, H. Toivonen, and A. I. , Verkamo : Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery, vol.1, issue.3, p.259289, 1997.

J. Nayak and D. Cook, Approximate association rule mining, Florida Articial Intelligence Research Symposium, 2001.

R. Ng and J. Han, Ecient and Eective Clustering Methods for Spatial Data Mining, the 20 th Very Large Database Conference (VLDB'94), 1994.

V. Ng and J. Lee, Quantitative association rules over incomplete data, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218), p.28212826, 1998.
DOI : 10.1109/ICSMC.1998.725089

S. Orlando, R. Perego, and C. Silvestri, A new algorithm for gap constrained sequence mining, Proceedings of the 2004 ACM symposium on Applied computing , SAC '04, p.540547, 2004.
DOI : 10.1145/967900.968014

C. Olaru, Wehenkel : A complete fuzzy decision tree technique. Fuzzy Sets and Systems, p.221254, 2003.
DOI : 10.1016/s0165-0114(03)00089-7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.4051

R. Pearson, The problem of disguised missing data, ACM SIGKDD Explorations Newsletter, vol.8, issue.1, p.8392, 2006.
DOI : 10.1145/1147234.1147247

W. Pedrycz, Fuzzy set technology in knowledge discovery. Fuzzy Sets and Systems, pp.279-290, 1998.

J. Pei and J. Han, Can we push more constraints into frequent pattern mining?, Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '00, p.350354, 2000.
DOI : 10.1145/347090.347166

. Prexspan, Mining sequential patterns eciently by prex-projected pattern growth, 17th International Conference Data Engineering (ICDE'01), p.215226, 2001.

J. Pei, J. Han, and W. Wang, Mining sequential patterns with constraints in large databases, Proceedings of the eleventh international conference on Information and knowledge management , CIKM '02, p.1825, 2002.
DOI : 10.1145/584792.584799

M. Plantevit, A. Laurent, and M. Teisseire, HYPE, Proceedings of the 9th ACM international workshop on Data warehousing and OLAP , DOLAP '06, p.155172, 2006.
DOI : 10.1145/1183512.1183518

URL : https://hal.archives-ouvertes.fr/lirmm-00102862

S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, Incremental and interactive sequence mining, Proceedings of the eighth international conference on Information and knowledge management , CIKM '99, p.251258, 1999.
DOI : 10.1145/319950.320010

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.5642

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, 1986.
DOI : 10.1007/BF00116251

J. R. Quinlan, UNKNOWN ATTRIBUTE VALUES IN INDUCTION, Proc. 6th Int. Machine Learning Workshop Cornell, 1989.
DOI : 10.1016/B978-1-55860-036-2.50048-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.69

A. Ragel, Crémilleux : Treatment of Missing Values for Association Rules, Pacic-Asia Conference on Knowledge Discovery and Data Mining, p.258270, 1998.

A. Ragel, Crémilleux : MVC a Preprocessing Method to Deal with Missing Values. Knowledge-Based Systems Journal, p.285291, 1999.

F. Rioult and B. Crémilleux, Représentation condensée en présence de valeurs manquantes, XXIIème Congrès Informatique des organisations et systèmes d'information et de décision, p.301317, 2004.

C. Raissi, P. Poncelet, and M. Teisseire, Need for speed : Mining sequential patterns in data streams, 21 ème Journée Bases de Données Avancées (BDA '05), 2005.

R. Srikant and R. , Agrawal : Mining Quantitative Association Rules in Large Relational Tables, Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, p.112, 1996.

R. Srikant and R. Agrawal, Mining sequential patterns: Generalizations and performance improvements, 5th International Conference on Extending Database Technology (EDBT '96), p.317, 1996.
DOI : 10.1007/BFb0014140

URL : http://arbor.ee.ntu.edu.tw/~chyun/dmpaper/srikms96.pdf

M. Spiliopoulou and L. C. Faulstich, WUM: A Tool for Web Utilization Analysis, EDBT Workshop WebDB'98, p.184203, 1999.
DOI : 10.1007/10704656_12

R. B. Subramanyam and A. Goswami, A FUZZY DATA MINING ALGORITHM FOR INCREMENTAL MINING OF QUANTITATIVE SEQUENTIAL PATTERNS, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol.13, issue.06, p.633652, 2005.
DOI : 10.1142/S0218488505003722

A. Soulet, Un cadre générique de découverte de motifs sous contraintes fondées sur des primitives, Thèse de doctorat, 2006.

R. Srikant, Q. Vu, and R. , Agrawal : Mining association rules with item constraints

H. Timm, C. Doring, and R. Kruse, Dierent Approaches to Fuzzy Clustering of Incomplete Datasets, International Journal of Approximate Reasoning, vol.35, 2003.

H. Timm and F. Klawonn, Dierent Approaches for Fuzzy Cluster Analysis with Missing Values, 7th European Congress on Intelligent Techniques and Soft Computing, 1999.

H. Toivonen, Sampling large databases for association rules, VLDB '96 : Proceedings of the 22th International Conference on Very Large Data Bases, p.134145, 1996.

H. Verlinde, M. De-cock, and R. Boute, Fuzzy versus quantitative association rules: a fair data-driven comparison, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.36, issue.3, p.679684, 2006.
DOI : 10.1109/TSMCB.2005.860134

J. Wang and J. Han, BIDE: efficient mining of frequent closed sequences, Proceedings. 20th International Conference on Data Engineering, p.7990, 2004.
DOI : 10.1109/ICDE.2004.1319986

A. P. White, Probabilistic Induction by Dynamic Path Generation in Virtual Trees, the 6th Annnual Conference on Research and Development in Expert Systems, p.3546, 1986.

S. M. Weiss and N. , Indurkhya : Decision-Rule Solutions for Data Mining with Missing Values, the 7th International Joint Ibero-American Conference on AI : Advances in Articial Intelligence, volume 1952 de Lecture Notes In Computer Science, p.110, 2000.

M. Wojciechowski, T. Morzy, and M. Zakrzewicz, Ecient constraint-based sequential pattern mining using dataset ltering techniques, Baltic Conference on Databases and Information Systems (BalticDB-IS'02), p.213224, 2002.

M. Wojciechowski, Interactive Constraint-Based Sequential Pattern Mining, 5th ADBIS Conference, 2001.
DOI : 10.1007/3-540-44803-9_14

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.3953

M. Wojciechowski, Supporting interactive sequential pattern discovery in databases

P. Wright, The signicance of the missing data problem in knowledge discovery, 1998.

C. Wu, C. Wun, and H. Chou, Using association rules for completing missing data, 4th International Conference on Hybrid Intelligent Systems, pp.236-241, 2004.

R. R. Yager, Database discovery using fuzzy sets, International Journal of Intelligent Systems, vol.11, issue.9, pp.691-712, 1996.
DOI : 10.1002/(SICI)1098-111X(199609)11:9<691::AID-INT7>3.0.CO;2-F

G. Yan, The complexity of mining maximal frequent itemsets and maximal frequent patterns, 10th ACM International Conference on Knowledge Discovery and Data Mining, p.344353, 2004.

X. Yan, J. Han, and R. Afshar, CloSpan: Mining: Closed Sequential Patterns in Large Datasets, 3rd SIAM Int. Conf. on Data Mining (SIAM DM'03), 2003.
DOI : 10.1137/1.9781611972733.15

M. Yoshida, T. Iizuka, and H. Shiohara, Ishiguro : Mining sequential patterns including time intervals, Data Mining and Knowledge Discovery : Theory, Tools, and Technology, volume 4057 de SPIE Proceedings series, p.213220, 2000.

T. Yan, M. Jacobsen, H. Garcia-molina, and U. Dayal, From user access patterns to dynamic hypertext linking, 5th International World Wide Web Conference on Computer networks and ISDN systems, p.10071014, 1996.
DOI : 10.1016/0169-7552(96)00051-7

M. J. Zaki, Sequence mining in categorical domains, Proceedings of the ninth international conference on Information and knowledge management , CIKM '00, p.422429, 2000.
DOI : 10.1145/354756.354849

M. J. Zaki, SPADE : An ecient algorithm for mining frequent sequences, Machine Learning, p.3160, 2001.

Q. Zhao and S. S. Bhowmick, Sequential pattern mining : A survey, 2003.

M. Zhang, B. Kao, D. W. Cheung, and C. L. , Yip : Ecient algorithms for incremental update of frequent sequences, Pacic-Asia Conference on Knowledge Discovery and Data Mining, p.186197, 2002.

M. J. Zaki, S. Parthasarathy, and W. Li, Ogihara : Evaluation of sampling for data mining of association rules, 1996.

O. Zaiane, M. Xin, and J. Han, Discovering Web access patterns and trends by applying OLAP and data mining technology on Web logs, Proceedings IEEE International Forum on Research and Technology Advances in Digital Libraries -ADL'98-, 1998.
DOI : 10.1109/ADL.1998.670376

C. Articles-publiés-dans-le-cadre-de-cette-thèse-chapitre-dans-un-ouvrage-À-audience-internationale and . Fiot, Fuzzy Sequential Patterns for Quantitative Data Mining, Handbook of Research on Fuzzy Information Processing in Databases. Hershey : Information Science Reference, 2008.

C. Revues-internationales-avec-comité-de-lecture, A. Fiot, M. Laurent, and . Teisseire, From Crispness to Fuzziness : Three Algorithms for Soft Sequential Pattern Mining, IEEE Transactions on Fuzzy Systems, 2007.

C. Fiot, A. Laurent, and M. Teisseire, Softening the blow of frequent sequence analysis: soft constraints and temporal accuracy, International Journal of Web Engineering and Technology, vol.5, issue.1, 2008.
DOI : 10.1504/IJWET.2009.025012

URL : https://hal.archives-ouvertes.fr/lirmm-00196964

C. Conférences-internationales-avec-comité-de-lecture, A. Fiot, M. Laurent, and . Teisseire, SPOID : Do not Throw Meaningful Sequences Away !, 5th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT'07), 2007.

C. Fiot, A. Laurent, and M. Teisseire, Approximate Sequential Patterns for Incomplete Sequence Database Mining, 2007 IEEE International Fuzzy Systems Conference, p.7, 2007.
DOI : 10.1109/FUZZY.2007.4295445

URL : https://hal.archives-ouvertes.fr/lirmm-00173127

C. Fiot, A. Laurent, and M. Teisseire, Extended Time Constraints for Sequence Mining, 14th International Symposium on Temporal Representation and Reasoning (TIME'07), p.6, 2007.
DOI : 10.1109/TIME.2007.48

URL : https://hal.archives-ouvertes.fr/lirmm-00160536

C. Fiot, A. Laurent, and M. Teisseire, WEB ACCESS LOG MINING WITH SOFT SEQUENTIAL PATTERNS, Applied Artificial Intelligence, 2006.
DOI : 10.1142/9789812774118_0074

URL : https://hal.archives-ouvertes.fr/lirmm-00095914

C. Fiot, A. Laurent, M. Teisseire, and B. Laurent, Why Fuzzy Sequential Patterns can Help Data Summarization: An Application to the INPI Trade Mark Database, 2006 IEEE International Conference on Fuzzy Systems, 2006.
DOI : 10.1109/FUZZY.2006.1681787

URL : https://hal.archives-ouvertes.fr/lirmm-00102712

C. Conférences-nationales-avec-comité-de-lecture and . Fiot, Motifs séquentiels et approximation des valeurs manquante, 25ème Congrés Informatique des organisations et systèmes d'information et de décision, p.5, 2007.

C. Fiot, A. Laurent, and M. Teisseire, SPoID : Extraction de motifs séquentiels pour les bases de données incomplètes, 7èmes journées d'Extraction et Gestion des Connaissances (EGC'07), 2007.

C. Fiot, Motifs séquentiels pour la complétion des valeurs manquantes, 4ème Manifestation des Jeunes Chercheurs STIC (MajecSTIC'06), 2006.

C. Fiot, A. Laurent, and M. Teisseire, Des motifs séquentiels généralisés aux contraintes de temps étendues, 6èmes journées d'Extraction et Gestion des Connaissances (EGC'06), 2006.

C. Fiot, A. Laurent, and M. Teisseire, Motifs séquentiels ous : un peu, beaucoup, passionnément, 5èmes journées d'Extraction et Gestion des Connaissances (EGC'05), 2005.

C. Fiot, G. Dray, A. Laurent, and M. Teisseire, A la recherche des motifs séquentiels ous, 12èmes rencontres francophones sur la Logique Floue et ses Applications, 2004.