.. Manipulation-de-cellules-vivantes-en-milieu-confiné, 85 4.3.1 Considérations sur la géométrie des chambres de culture 86 4.3.2 Notion de flux idéal pour chaque configuration, p.88

.. Techniques-de-détection-de-l-'exocytose, 117 6.2.1 Ampérométrie : détection du relargage des molécules dans le milieu extracellulaire, p.117

L. 'intégration-d-'un-réseau-de-microélectrodes and .. , 134 7.2.1 Description desélectrodesdesélectrodes choisies, p.140

C. Annexe, Protocoles pour la Biologie Cellulaire en microsystèmes C.5 Analyse d'image Les programmes suivants sont les programmes utilisés pour l'analyse d'image avec le logiciel MATLAB

. Bw2-=-bwareaopen, ); imshow(BW2) BW2 = bwareaopen(BW1,10000); imshow(BW2) seD = strel, 2000.

E. J. Stewart, R. Madden, G. Paul, and F. Taddei, Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division, PLoS Biology, vol.297, issue.2, p.295, 2005.
DOI : 10.1371/journal.pbio.0030045.sv001

URL : https://hal.archives-ouvertes.fr/inserm-00080154

M. Bornens and M. Piel, Centrosome inheritance : birthright or the priviledge of maturity ? Current biology, p.71, 2002.

M. B. Elowitz, A. J. Levine, and E. D. Siggia, Stochastic Gene Expression in a Single Cell, Science, vol.297, issue.5584, p.1183, 2002.
DOI : 10.1126/science.1070919

N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler, Bacterial Persistence as a Phenotypic Switch, Science, vol.305, issue.5690, p.1622, 2004.
DOI : 10.1126/science.1099390

G. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, p.368, 2006.
DOI : 10.1038/nature05058

A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems, Journal of Chromatography A, vol.593, issue.1-2, p.253, 1992.
DOI : 10.1016/0021-9673(92)80293-4

D. N. Breslauer, P. J. Lee, and L. P. Lee, Microfluidics-based systems biology, Molecular BioSystems, vol.306, issue.2, p.97, 2006.
DOI : 10.1039/b515632g

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.518

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.4, issue.7101, p.403, 2006.
DOI : 10.1038/nature05063

E. Théry, A. Jiménez-dalmaroni, V. Racine, M. Bornens, and F. Jülicher, Experimental and theoretical study of mitotic spindle orientation, Nature, vol.149, issue.7143, p.493, 2007.
DOI : 10.1038/nature05786

S. Takayama, E. Ostuni, P. Leduc, and K. Naruse, Laminar flows -Subcellular positioning of small molecules, Nature, vol.411, issue.6841, p.1016, 2001.
DOI : 10.1038/35082637

R. D. Burgoyne and A. Morgan, Secretory Granule Exocytosis, Physiological Reviews, vol.83, issue.2, p.581, 2003.
DOI : 10.1152/physrev.00031.2002

URL : https://hal.archives-ouvertes.fr/hal-00478869

D. Zenisek, J. A. Steyer, and W. Almers, Transport, capture and exocytosis of single. synaptic vesicles at active zones, Nature, vol.406, p.849, 2000.

T. K. Chen, G. Luo, and A. G. Ewing, Amperometric Monitoring of Stimulated Catecholamine Release from Rat Pheochromocytoma (PC12) Cells at the Zeptomole Level, Analytical Chemistry, vol.66, issue.19, p.3031, 1994.
DOI : 10.1021/ac00091a007

P. E. Marszalek, B. Farrell, P. Verdugo, and J. M. Fernandez, Kinetics of release of serotonin from isolated secretory granules. I. Amperometric detection of serotonin from electroporated granules, Biophysical Journal, vol.73, issue.3, p.1160, 1997.
DOI : 10.1016/S0006-3495(97)78148-7

S. E. Hochstetler, M. Puopolo, S. Gustincich, E. Raviola-et-wightman, and R. M. , Real-Time Amperometric Measurements of Zeptomole Quantities of Dopamine Released from Neurons, Analytical Chemistry, vol.72, issue.3, p.489, 2000.
DOI : 10.1021/ac991119x

C. Amatore, Y. Bouret, and L. Midrier, Time-Resolved Dynamics of the Vesicle Membrane During Individual Exocytotic Secretion Events, as Extracted from Amperometric Monitoring of Adrenaline Exocytosis from Chromaffin Cells, Chemistry - A European Journal, vol.5, issue.7, p.2151, 1999.
DOI : 10.1002/(SICI)1521-3765(19990702)5:7<2151::AID-CHEM2151>3.0.CO;2-R

C. Amatore, Y. Bouret, E. R. Travis, and R. M. Wightman, Adrenaline Release by Chromaffin Cells: Constrained Swelling of the Vesicle Matrix Leads to Full Fusion, Angewandte Chemie International Edition, vol.39, issue.11, p.1952, 2000.
DOI : 10.1002/1521-3773(20000602)39:11<1952::AID-ANIE1952>3.0.CO;2-3

Y. Bouret, Diffusion en milieu nanométrique confiné : applicationàapplicationà l'exocytose de neurotransmetteurs etàetà la communication moléculaire dans les dendriméres redox, Thèse de doctorat, 2002.

M. Guille, Détection par microélectrodes de flus atto-` a femtomolaires de neuromédiateurs sur cellule unique et dans un tissu vivant, Thèse de doctorat, 1997.

C. Amatore, S. Arbault, I. Bonifas, Y. Bouret, M. Erard et al., Dynamics of Full Fusion During Vesicular Exocytotic Events: Release of Adrenaline by Chromaffin Cells, ChemPhysChem, vol.88, issue.2, p.147, 2003.
DOI : 10.1002/cphc.200390024

C. Amatore, S. Arbault, Y. Bouret, M. Guille, F. Lema??trelema??tre et al., Regulation of Exocytosis in Chromaffin Cells by Trans-Insertion of Lysophosphatidylcholine and Arachidonic Acid into the Outer Leaflet of the Cell Membrane, ChemBioChem, vol.513, issue.12, 1998.
DOI : 10.1002/cbic.200600194

A. Favier, Le stress oxydant. L'actualité chimique, p.573, 1999.

C. Amatore, S. Arbault, D. Bruce, P. De-oliveira, and E. M. Vuillaume, Analysis of individual biochemical events based on artificial synapses using ultramicroelectrodes: cellular oxidative burst, Faraday Discussions, vol.116, p.319, 2000.
DOI : 10.1039/b001448f

C. Amatore, S. Arbault, C. Bouton, K. Coffi, J. C. Drapier et al., Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization, ChemBioChem, vol.11, issue.4, p.653, 2006.
DOI : 10.1002/cbic.200500359

URL : https://hal.archives-ouvertes.fr/hal-00023221

R. Duggirala, S. Il-seok, A. Et, and . Lal, A pyroelectric-piezoelectric valve for integrated microfluidics Paru dans TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, p.1554, 2003.

T. P. Burg and S. R. Manalis, Suspended microchannel resonators for biomolecular detection, Applied Physics Letters, vol.83, issue.13, p.2698, 2003.
DOI : 10.1063/1.1611625

URL : http://hdl.handle.net/11858/00-001M-0000-0014-9CE1-8

Y. Xia and G. M. Whitesides, Soft Lithography, Angewandte Chemie-International Edition, vol.37, p.551, 1998.
DOI : 10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.3.co;2-7

M. Esashi, S. Shoji, and A. Nakano, Normally closed microvalve and mircopump fabricated on a silicon wafer, Sensors and Actuators, vol.20, issue.1-2, p.163, 1989.
DOI : 10.1016/0250-6874(89)87114-8

J. L. Yang, T. Ono, and M. Esashi, Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers, Applied Physics Letters, vol.77, issue.23, p.3860, 2000.
DOI : 10.1063/1.1330225

N. Fertig, R. H. Blick, and J. C. Behrends, Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip, Biophysical Journal, vol.82, issue.6, p.3056, 2002.
DOI : 10.1016/S0006-3495(02)75646-4

L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen et al., Fabrication of Plastic Microfluid Channels by Imprinting Methods, Analytical Chemistry, vol.69, issue.23, p.4783, 1997.
DOI : 10.1021/ac970558y

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Analytical Chemistry, vol.70, issue.23, p.4974, 1998.
DOI : 10.1021/ac980656z

M. Chaudury and G. Whitesides, Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives, Langmuir, vol.7, issue.5, p.1013, 1991.
DOI : 10.1021/la00053a033

B. Kim, E. K. Peterson, and I. Papautsky, Long-term stability of plasma oxidized PDMS surfaces, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.1554, 2004.
DOI : 10.1109/IEMBS.2004.1404385

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography, Applied Physics Letters, vol.76, issue.6, p.673, 2000.
DOI : 10.1063/1.125896

M. A. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, p.113, 2000.
DOI : 10.1126/science.288.5463.113

D. T. Chiu, N. L. Jeon, S. Huang, R. S. Kane, C. J. Wargo et al., Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems, Proceedings of the National Academy of Sciences, p.2408, 2000.
DOI : 10.1073/pnas.040562297

K. Ikuta, K. Hirowatari, and T. Ogata, Long-term stability of plasma oxidized PDMS surfaces, Paru dans Proceedings of the International Conference on IEEE Micro Electro- Mechanical Systems, p.1, 1994.

P. M. Mcintyre, Microfabrication technology for DNA sequencing, Trends in Biotechnology, vol.14, issue.3, p.69, 1996.
DOI : 10.1016/0167-7799(96)80925-5

J. Voldman, M. L. Gray, and M. A. Schmidt, Microfabrication in Biology and Medicine, Annual Review of Biomedical Engineering, vol.1, issue.1, p.401, 1999.
DOI : 10.1146/annurev.bioeng.1.1.401

M. Mehrvar and M. Abdi, Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors, Analytical Sciences, vol.20, issue.8, p.1113, 2004.
DOI : 10.2116/analsci.20.1113

G. Hanrahan, D. G. Patil, and J. Wang, Electrochemical sensors for environmental monitoring: design, development and applications, Journal of Environmental Monitoring, vol.6, issue.8, p.657, 2004.
DOI : 10.1039/b403975k

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1000.1700

J. Cheng, P. Fortina, S. Surrey, L. J. Kricka, and P. Wilding, Microchip-based devices for molecular diagnosis of genetic diseases, Molecular Diagnosis, vol.1, issue.3, p.183, 1996.
DOI : 10.1016/S1084-8592(96)70004-8

P. Marsh and D. L. Cardy, Molecular Diagnostics, Methods in Molecular Biology, vol.266, p.167, 2004.
DOI : 10.1385/1-59259-763-7:167

K. Huikko, R. Kostiainen, and T. Kotiaho, Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications, European Journal of Pharmaceutical Sciences, vol.20, issue.2, p.149, 2003.
DOI : 10.1016/S0928-0987(03)00147-7

K. Bhadriraju and C. S. Chen, Engineering cellular microenvironments to improve cell-based drug testing, Drug Discovery Today, vol.7, issue.11, p.612, 2002.
DOI : 10.1016/S1359-6446(02)02273-0

J. J. Pancrazio, S. A. Gray, Y. S. Shubin, N. Kulagina, D. S. Cuttino et al., A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection, Biosensors and Bioelectronics, vol.18, issue.11, p.1339, 2003.
DOI : 10.1016/S0956-5663(03)00092-7

K. Irimia, S. Liu, W. G. Tharp, A. Samadani, M. Toner et al., Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients, Lab Chip, vol.16, issue.2, p.191, 2006.
DOI : 10.1189/jlb.0905516

W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays, Proceedings of the National Academy of Sciences, vol.101, issue.45, p.269, 2004.
DOI : 10.1073/pnas.0404353101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC528755

J. S. Marcus, W. F. Anderson, and S. R. Quake, Parallel Picoliter RT-PCR Assays Using Microfluidics, Analytical Chemistry, vol.78, issue.3, p.956, 2006.
DOI : 10.1021/ac0513865

URL : http://authors.library.caltech.edu/69384/2/ac0513865si20051111_090452.pdf

A. Y. Fu, H. Chou, C. Spence, F. H. Arnold, and S. R. Quake, An Integrated Microfabricated Cell Sorter, Analytical Chemistry, vol.74, issue.11, p.2451, 2002.
DOI : 10.1021/ac0255330

C. L. Hansen, E. Skorkalakes, J. M. Berger, and S. R. Quake, A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion, Proceedings of the National Academy of Sciences, p.16531, 2002.
DOI : 10.1073/pnas.262485199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139178

J. P. Gleeson, P. M. Roche, J. West, and A. Gelb, Modelling annular micromixers, Siam Journal on Applied Mathematics, vol.64, p.1294, 2004.

J. W. Hong, V. Studer, G. Hang, F. W. Anderson, and S. R. Quake, A nanoliter-scale nucleic acid processor with parallel architecture, Nature Biotechnology, vol.22, issue.4, p.435, 2004.
DOI : 10.1038/nbt951

T. Thorsen, S. J. Maerkl, and S. R. Quake, Microfluidic Large-Scale Integration, Science, vol.298, issue.5593, p.580, 2002.
DOI : 10.1126/science.1076996

Z. S. Hua, Y. M. Xia, O. Srivannavit, J. M. Rouillard, X. Zhou et al., A versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays, Journal of Micromechanics and Microengineering, vol.16, issue.8, p.1433, 2006.
DOI : 10.1088/0960-1317/16/8/001

W. H. Grover, R. H. Ivester, E. C. Jensen, and R. A. Mathies, Development and multiplexed control of latching pneumatic valves using microfluidic logical structures, Lab on a Chip, vol.40, issue.5, p.623, 2006.
DOI : 10.1039/b518362f

J. S. Marcus, W. F. Anderson, and S. R. Quake, Microfluidic Single-Cell mRNA Isolation and Analysis, Analytical Chemistry, vol.78, issue.9, p.3084, 2006.
DOI : 10.1021/ac0519460

J. Melin and S. R. Quake, Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, Annual Review of Biophysics and Biomolecular Structure, vol.36, issue.1, p.213, 2007.
DOI : 10.1146/annurev.biophys.36.040306.132646

P. S. Dittrich and A. Manz, Single-molecule fluorescence detection in microfluidic channels???the Holy Grail in????TAS?, Analytical and Bioanalytical Chemistry, vol.99, issue.68, p.1771, 2005.
DOI : 10.1007/s00216-005-3335-9

T. Kitamori, M. Tokeshi, A. Hibara, and K. Sato, Thermal lens microscopy and microchip chemistry, Analytical Chemistry, vol.76, p.52, 2004.
DOI : 10.1021/ac041508d

M. Duggan, T. Mccreedy, and J. W. Aylott, A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture, The Analyst, vol.128, issue.11, p.1336, 2003.
DOI : 10.1039/b309869a

M. Liu, B. Ozaki, Y. Utsumi, T. Hattori, and S. Terabe, Chemiluminescence Detection for a Microchip Capillary Electrophoresis System Fabricated in Poly(dimethylsiloxane), Analytical Chemistry, vol.75, issue.1, p.36, 2003.
DOI : 10.1021/ac026096s

J. C. Sanders, Z. L. Huang, and J. P. Landers, Acousto-optical deflection-based whole channel scanning for microchip isoelectric focusing with laser-induced fluorescence detection, Lab on a Chip, vol.1, issue.2, p.167, 2001.
DOI : 10.1039/b107835f

C. D. Costin and R. E. Synovec, A Microscale-Molecular Weight Sensor:?? Probing Molecular Diffusion between Adjacent Laminar Flows by Refractive Index Gradient Detection, Analytical Chemistry, vol.74, issue.17, p.4558, 2002.
DOI : 10.1021/ac020143z

P. D. Fletcher, S. J. Haswell, and X. Zhang, Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer, ELECTROPHORESIS, vol.24, issue.18, p.3239, 2003.
DOI : 10.1002/elps.200305532

M. Palumbo, C. Pearson, J. Nagel, and M. C. Petty, A single chip multi-channel surface plasmon resonance imaging system, Sensors and Actuators B: Chemical, vol.90, issue.1-3, p.264, 2003.
DOI : 10.1016/S0925-4005(03)00041-8

E. Tamaki, K. Sato, M. Tokeshi, M. Aihara, and T. Kitamori, Distribution during Apoptosis Process, Analytical Chemistry, vol.74, issue.7, p.1560, 2002.
DOI : 10.1021/ac011092t

S. Balslev and A. Kristensen, Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments, Optics Express, vol.13, issue.1, p.344, 2005.
DOI : 10.1364/OPEX.13.000344

X. Zhao, A. Stoddart, S. P. Smith, Y. Kim, G. M. Xia et al., Fabrication of single-mode polymeric waveguides using micromolding in capillaries, Advanced Materials, vol.8, issue.5, p.420, 1996.
DOI : 10.1002/adma.19960080511

P. Yang, G. Wirnsberger, H. C. Huang, S. R. Cordero, M. D. Mcgehee et al., Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography, Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography, p.465, 2000.
DOI : 10.1126/science.287.5452.465

D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee et al., A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser, Journal of the American Chemical Society, vol.127, issue.25, p.8952, 2005.
DOI : 10.1021/ja0517421

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.646.4290

Y. Gambin, O. Legrand, and S. R. Quake, Microfabricated rubber microscope using soft solid immersion lenses, Applied Physics Letters, vol.88, issue.17, p.174102, 2006.
DOI : 10.1063/1.2194477

URL : http://authors.library.caltech.edu/4884/1/GAMapl06.pdf

D. Psaltis, S. R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, vol.34, issue.7101, p.381, 2006.
DOI : 10.1038/nature05060

H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, Integrated cell manipulation system???CMOS/microfluidic hybrid, Lab Chip, vol.39, issue.3, p.331, 2007.
DOI : 10.1039/B700373K

N. Pamme, Magnetism and microfluidics, Lab Chip, vol.20, issue.8, p.24, 2006.
DOI : 10.1039/B513005K

J. S. Rossier, M. A. Roberts, R. Ferrigno, and H. H. Girault, Electrochemical Detection in Polymer Microchannels, Analytical Chemistry, vol.71, issue.19, p.4294, 1999.
DOI : 10.1021/ac981382i

E. Bakker, Electrochemical Sensors, Analytical Chemistry, vol.76, issue.12, p.3285, 2004.
DOI : 10.1021/ac049580z

D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu et al., Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol.404, issue.6778, p.588, 2000.
DOI : 10.1038/35007047

F. Arai, C. Ng, H. Maruyama, A. Ichikawa, H. El-shimy et al., On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel, Lab on a Chip, vol.42, issue.3, p.1399, 2005.
DOI : 10.1039/b502546j

D. Kim and D. J. Beebe, Hydrogel-based reconfigurable components for microfluidic devices, Lab Chip, vol.4, issue.6, p.193, 2007.
DOI : 10.1016/j.sna.2006.11.004

S. K. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Generation of Gradients Having Complex Shapes Using Microfluidic Networks, Analytical Chemistry, vol.73, issue.6, p.1240, 2001.
DOI : 10.1021/ac001132d

J. De-jong, R. G. Lammertink, and M. Wessling, Membranes and microfluidics: a review, Lab on a Chip, vol.61, issue.8, p.1125, 2006.
DOI : 10.1039/b603275c

D. Armani and C. Liu, Re-configurable fluid circuits by PDMS elastomer micromachining, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291), p.222, 1998.
DOI : 10.1109/MEMSYS.1999.746817

S. K. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, Gradients of substrate-bound laminin orient axonal specification of neurons, Proceedings of the National Academy of Sciences, p.12542, 2002.
DOI : 10.1073/pnas.192457199

A. Bernard, J. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, Microcontact Printing of Proteins, Advanced Materials, vol.12, issue.14, p.1067, 2000.
DOI : 10.1002/1521-4095(200007)12:14<1067::AID-ADMA1067>3.0.CO;2-M

A. Bernard, B. Michel, and E. Delamarche, Micromosaic Immunoassays, Analytical Chemistry, vol.73, issue.1, p.8, 2001.
DOI : 10.1021/ac0008845

E. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., The Orientation of the Division Axis can be Controlled in Cultured Cells, Nature Cell Biology, vol.10, p.947, 2005.

A. Kumar and G. M. Whitesides, Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ??????ink?????? followed by chemical etching, Applied Physics Letters, vol.63, issue.14, p.2002, 1993.
DOI : 10.1063/1.110628

P. M. St, R. John, N. Davis, J. Cady, C. A. Czajka et al., Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating, Analytical Chemistry, vol.70, p.1108, 1998.

B. C. Wheeler, J. M. Corey, G. J. Brewer, and D. W. Branch, Microcontact Printing for Precise Control of Nerve Cell Growth in Culture, Journal of Biomechanical Engineering, vol.121, issue.1, p.73, 1999.
DOI : 10.1115/1.2798045

]. C. Crozatier, M. L. Berre, and Y. Chen, Multi-colour micro-contact printing based on microfluidic network inking, Microelectronic Engineering, vol.83, issue.4-9, p.910, 2006.
DOI : 10.1016/j.mee.2006.01.015

URL : https://hal.archives-ouvertes.fr/hal-00145351

U. Seger, R. Gawad, A. Johann, P. Bertsch, and . Renaud, Cell immersion and cell dipping in microfluidic devicesElectronic supplementary information (ESI) available: cell dipping video sequence from which Fig. 7 was extracted and cell dipping video sequence with close-ups. See http://www.rsc.org/suppdata/lc/b3/b311210a/, Lab on a Chip, vol.4, issue.2, p.148, 2004.
DOI : 10.1039/b311210a

X. Y. Peng and P. C. Li, A Three-Dimensional Flow Control Concept for Single-Cell Experiments on a Microchip. 1. Cell Selection, Cell Retention, Cell Culture, Cell Balancing, and Cell Scanning. Analytical Chemistry, vol.76, p.5273, 2004.

W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, and D. Anselmetti, Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology, ELECTROPHORESIS, vol.21, issue.19, p.3689, 2005.
DOI : 10.1002/elps.200500185

T. Braschler, R. Johann, M. Heule, L. Metref, and P. Renaud, Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation, Lab on a Chip, vol.37, issue.5, p.553, 2005.
DOI : 10.1039/b417604a

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong et al., Using Polarization-Shaped Optical Vortex Traps for Single-Cell Nanosurgery, Nano Letters, vol.7, issue.2, p.415, 2007.
DOI : 10.1021/nl0626784

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519128

J. H. Koschwanez, R. H. Carlson, and D. R. Meldrum, Easily fabricated magnetic traps for single-cell applications, Review of Scientific Instruments, vol.78, issue.4, p.44301, 2007.
DOI : 10.1063/1.2722400

A. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc et al., Electronic sorting and recovery of single live cells from microlitre sized samples, Lab Chip, vol.87, issue.1, p.121, 2006.
DOI : 10.1039/B505884H

URL : https://hal.archives-ouvertes.fr/inserm-00089360

V. Kohli, A. Y. Elezzabi, and J. P. Acker, Cell nanosurgery using ultrashort (femtosecond) laser pulses: Applications to membrane surgery and cell isolation, Lasers in Surgery and Medicine, p.227, 2005.
DOI : 10.1002/lsm.20220

G. To, Y. Salazar, G. Wang, M. Young, C. E. Bachman et al., Micropallet Arrays for the Separation of Single, Adherent Cells, Analytical Chemistry, vol.79, p.682, 2007.

H. Kim, J. Doh, D. J. Irvine, R. E. Cohen, and P. T. Hammond, Large Area Two-Dimensional B Cell Arrays for Sensing and Cell-Sorting Applications, Biomacromolecules, vol.5, issue.3, p.822, 2004.
DOI : 10.1021/bm034341r

M. Tanase, E. J. Felton, D. S. Gray, A. Hultgren, C. S. Chen et al., Assembly of multicellular constructs and microarrays of cells using magnetic nanowires, Lab on a chip, vol.5, p.598, 2005.

N. M. Toriello, E. S. Douglas, and R. A. Mathies, Microfluidic Device for Electric Field-Driven Single-Cell Capture and Activation, Analytical Chemistry, vol.77, issue.21, p.6935, 2005.
DOI : 10.1021/ac051032d

M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall et al., Noninvasive Acoustic Cell Trapping in a Microfluidic Perfusion System for Online Bioassays, Analytical Chemistry, vol.79, issue.7, p.2984, 2007.
DOI : 10.1021/ac061576v

I. Biran and D. R. Walt, Optical Imaging Fiber-Based Single Live Cell Arrays:?? A High-Density Cell Assay Platform, Analytical Chemistry, vol.74, issue.13, p.3046, 2002.
DOI : 10.1021/ac020009e

A. Valero, F. Merino, F. , R. Luttge, I. Vermes et al., Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device, Lab on a Chip, vol.5, issue.1, p.49, 2005.
DOI : 10.1039/b415813j

A. R. Wheeler, R. J. Throndset, W. R. Whelan, A. M. Leach, R. N. Zare et al., Microfluidic Device for Single-Cell Analysis, Analytical Chemistry, vol.75, issue.14, p.3581, 2003.
DOI : 10.1021/ac0340758

Z. Wang, M. Kim, M. Marquez, and T. Thorsen, High-density microfluidic arrays for cell cytotoxicity analysis, Lab on a Chip, vol.20, issue.88, p.740, 2007.
DOI : 10.1182/blood-2006-08-043570

K. , D. Carlo, L. Y. Wu, and L. P. Lee, Dynamic single cell culture array, Lab on a Chip, vol.6, p.1445, 2006.

W. Tan and S. Takeuchi, A trap-and-release integrated microfluidic system for dynamic microarray applications, Proceedings of the National Academy of Sciences, vol.104, issue.4, p.1146, 2007.
DOI : 10.1073/pnas.0606625104

F. White, Viscous Fluid Flow, 1991.

D. J. Beebe, G. A. Mensing, and G. M. Walker, Physics and Applications of Microfluidics in Biology, Annual Review of Biomedical Engineering, vol.4, issue.1, p.261, 2002.
DOI : 10.1146/annurev.bioeng.4.112601.125916

A. Ajdari, Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits, Comptes Rendus Physique, vol.5, issue.5, p.539, 2004.
DOI : 10.1016/j.crhy.2004.02.012

A. Folch and M. Toner, Microengineering of Cellular Interactions, Annual Review of Biomedical Engineering, vol.2, issue.1, p.227, 2000.
DOI : 10.1146/annurev.bioeng.2.1.227

V. L. Tsang and S. N. Bhatia, Three-dimensional tissue fabrication. Advanced drug delivery reviews, p.1635, 2004.

S. Britland, P. Clark, P. Connolly, and G. Moores, Micropatterned substratum adhesiveness: A model for morphogenetic cues controlling cell behavior, Experimental Cell Research, vol.198, issue.1, p.124, 1992.
DOI : 10.1016/0014-4827(92)90157-4

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, p.1425, 1997.
DOI : 10.1126/science.276.5317.1425

J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju et al., Cells lying on a bed of microneedles: An approach to isolate mechanical force, Proceedings of the National Academy of Sciences, p.1484, 2003.
DOI : 10.1073/pnas.0235407100

A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao et al., The Design and Fabrication of Three-Chamber Microscale Cell Culture Analog Devices with Integrated Dissolved Oxygen Sensors, Biotechnology Progress, vol.106, issue.3, p.338, 2003.
DOI : 10.1021/bp034077d

E. Leclerc, Y. Sakai, and T. Fujii, Microfluidic PDMS (Polydimethylsiloxane) Bioreactor for Large-Scale Culture of Hepatocytes, Biotechnology Progress, vol.20, issue.3, p.750, 2004.
DOI : 10.1021/bp0300568

G. Mehta, K. Mehta, D. Sud, J. Song, T. Bersano-begey et al., Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture, Biomedical Microdevices, vol.36, issue.2, p.123, 2007.
DOI : 10.1007/s10544-006-9005-7

M. J. Powers, K. Domansky, M. R. Kaazempur-mofrad, A. Kalezi, A. Capitano et al., A microfabricated array bioreactor for perfused 3D liver culture, Biotechnology and Bioengineering, vol.156, issue.3, p.257, 2002.
DOI : 10.1002/bit.10143

]. A. Sivaraman, J. K. Leach, S. Townsend, T. Iida, B. J. Hogan et al., A Microscale In Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction, Current Drug Metabolism, vol.6, issue.6, p.569, 2005.
DOI : 10.2174/138920005774832632

S. N. Bhatia, M. L. Yarmush, and M. Toner, Controlling cell interactions by micropatterning in co-cultures: Hepatocytes and 3T3 fibroblasts, Journal of Biomedical Materials Research, vol.53, issue.14, p.189, 1997.
DOI : 10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M

Y. Li, B. Yuan, H. Ji, D. Han, S. Chen et al., A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels, Angewandte Chemie International Edition, vol.127, issue.7, p.1094, 2007.
DOI : 10.1002/anie.200603844

E. Leclerc, B. David, L. Griscom, B. Le-pioufle, T. Fujii et al., Study of osteoblastic cells in a microfluidic environment, Biomaterials, vol.27, issue.4, p.586, 2006.
DOI : 10.1016/j.biomaterials.2005.06.002

URL : https://hal.archives-ouvertes.fr/inserm-00166082

J. El-ali, S. Gaudet, A. Gunther, P. K. Sorger, and K. F. Jensen, Cell Stimulus and Lysis in a Microfluidic Device with Segmented Gas???Liquid Flow, Analytical Chemistry, vol.77, issue.11, p.3629, 2005.
DOI : 10.1021/ac050008x

S. P. Faure, M. Frenea, B. Le-pioufle, P. Coquet, and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol.23, p.597, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00739225

M. S. Yang, C. W. Li, and J. Yang, Cell Docking and On-Chip Monitoring of Cellular Reactions with a Controlled Concentration Gradient on a Microfluidic Device, Analytical Chemistry, vol.74, issue.16, p.3991, 2002.
DOI : 10.1021/ac025536c

P. J. Lee, P. J. Hung, R. Shaw, L. Jan, and L. P. Lee, Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs, Applied Physics Letters, vol.86, issue.22, p.223902, 2005.
DOI : 10.1063/1.1938253

N. L. Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van-de-water et al., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nature Biotechnology, vol.20, issue.8, p.826, 2002.
DOI : 10.1038/nbt712

V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, Characterization of a membrane-based gradient generator for use in cell-signaling studies, Lab on a Chip, vol.437, issue.3, p.389, 2006.
DOI : 10.1039/b514133h

E. M. Lucchetta, J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov, Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics, Nature, vol.6, issue.7037, p.1134, 2005.
DOI : 10.1038/32170

L. Bousse, Whole cell biosensors, Sensors and Actuators B: Chemical, vol.34, issue.1-3, p.270, 1996.
DOI : 10.1016/S0925-4005(96)01906-5

M. B. Gu, R. J. Mitchell, and B. C. Kim, Whole-Cell-Based Biosensors for Environmental Biomonitoring and Application, Proceedings of the National Academy of Sciences, p.1586, 2004.
DOI : 10.1007/b13533

H. K. Wu, A. Wheeler, and R. N. Zare, Chemical cytometry on a picoliter-scale integrated microfluidic chip, Proceedings of the National Academy of Sciences, p.12809, 2004.
DOI : 10.1073/pnas.0405299101

J. Gao, X. F. Yin, and Z. L. Fang, Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chipElectronic supplementary information (ESI) available: Video showing a single erythrocyte transported through the microchannel, docking (adhering) at a particular point and then being lysed. See http://www.rsc.org/suppdata/lc/b3/b310552k/, Lab on a Chip, vol.4, issue.1, p.47, 2004.
DOI : 10.1039/b310552k

V. V. Abhyankar and D. J. Beebe, Lab-on-Chips for Cellomics, p.257, 2004.

B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device, Lab on a Chip, vol.307, issue.16, p.401, 2005.
DOI : 10.1039/b417651k

L. Kim, M. D. Vahey, H. Y. Lee, and J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture, Lab on a Chip, vol.295, issue.3, p.394, 2006.
DOI : 10.1039/b511718f

S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, Dielectrophoretic Sorting of Particles and Cells in a Microsystem, Analytical Chemistry, vol.70, issue.9, p.1909, 1998.
DOI : 10.1021/ac971063b

X. Hu, W. M. Arnold, and U. Zimmermann, Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation. Activation monitored by electro-rotation of single cells, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1021, issue.2, p.191, 1990.
DOI : 10.1016/0005-2736(90)90033-K

F. F. Becker, X. Wang, Y. Huang, R. Pethig, J. Vykoukal et al., Separation of human breast cancer cells from blood by differential dielectric affinity., Proceedings of the National Academy of Sciences, p.860, 1995.
DOI : 10.1073/pnas.92.3.860

X. Hu, P. H. Bessette, J. Qian, C. D. Meinhart, P. S. Daugherty et al., Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences, vol.102, issue.44, p.15757, 2005.
DOI : 10.1073/pnas.0507719102

P. C. Li and D. J. Harrison, Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects, Analytical Chemistry, vol.69, issue.8, p.1564, 1997.
DOI : 10.1021/ac9606564

S. W. Lee and Y. C. Tai, A micro cell lysis device. Sensors and Actuators A-Physical, p.74, 1999.

H. Lu, M. A. Schmidt, and K. F. Jensen, A microfluidic electroporation device for cell lysis, Lab on a Chip, vol.5, issue.1, p.23, 2005.
DOI : 10.1039/b406205a

D. , D. Carlo, K. H. Jeong, and L. P. Lee, Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation, Lab on a Chip, vol.3, p.287, 2003.

N. Chiem and D. J. Harrison, Microchip-Based Capillary Electrophoresis for Immunoassays:?? Analysis of Monoclonal Antibodies and Theophylline, Analytical Chemistry, vol.69, issue.3, p.373, 1997.
DOI : 10.1021/ac9606620

S. Yao, D. S. Anex, W. B. Caldwell, D. W. Arnold, K. B. Smith et al., SDS capillary gel electrophoresis of proteins in microfabricated channels, Proceedings of the National Academy of Sciences, vol.96, issue.10, p.5372, 1999.
DOI : 10.1073/pnas.96.10.5372

J. P. Kutter, S. C. Jacobson, N. Matsubara, and J. M. Ramsey, Solvent-Programmed Microchip Open-Channel Electrochromatography, Analytical Chemistry, vol.70, issue.15, p.3291, 1998.
DOI : 10.1021/ac971367y

B. Herbert and P. G. Righetti, A turning point in proteome analysis: Sample prefractionationvia multicompartment electrolyzers with isoelectric membranes, Electrophoresis, vol.21, issue.17, p.3639, 2000.
DOI : 10.1002/1522-2683(200011)21:17<3639::AID-ELPS3639>3.0.CO;2-V

M. A. Northrup, M. T. Ching, R. M. White, and R. T. Watson, DNA amplification with a microfabricated reaction chamber, Paru dans Proceedings Transducers 93 : 7th International Conference on Solid State Sensors and Actuators, p.924, 1993.

P. Wilding, M. A. Shoffner, and L. J. Kricka, PCR in a silicon microstructure, Clinical Chemistry, vol.40, p.1815, 1994.

J. Kameoka, R. Orth, B. Ilic, D. Czaplewski, T. Wachs et al., An Electrospray Ionization Source for Integration with Microfluidics, Analytical Chemistry, vol.74, issue.22, p.5897, 2002.
DOI : 10.1021/ac020396s

H. Yin, K. Killeen, R. Brennen, D. Sobek, M. Werlich et al., Microfluidic Chip for Peptide Analysis with an Integrated HPLC Column, Sample Enrichment Column, and Nanoelectrospray Tip, Analytical Chemistry, vol.77, issue.2, p.527, 2005.
DOI : 10.1021/ac049068d

K. Sato, M. Yamanaka, M. Takahashi, H. Tokeshi, H. Kimura et al., Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-??, ELECTROPHORESIS, vol.73, issue.5, p.734, 2002.
DOI : 10.1002/1522-2683(200203)23:5<734::AID-ELPS734>3.0.CO;2-W

G. Gruner, Carbon nanotube transistors for biosensing applications, Analytical and Bioanalytical Chemistry, vol.3, issue.2, p.322, 2006.
DOI : 10.1007/s00216-005-3400-4

G. F. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, p.1294, 2005.
DOI : 10.1021/ac049479u

C. Ziegler, Cantilever-based biosensors, Analytical and Bioanalytical Chemistry, vol.379, issue.7-8, p.946, 2004.
DOI : 10.1007/s00216-004-2694-y

A. Curtis and C. Wilkinson, Topographical control of cells, Biomaterials, vol.18, issue.24, p.1573, 1997.
DOI : 10.1016/S0142-9612(97)00144-0

R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, Effects of synthetic micro- and nano-structured surfaces on cell behavior, Biomaterials, vol.20, issue.6, p.573, 1999.
DOI : 10.1016/S0142-9612(98)00209-9

X. Jiang, S. Takayama, X. Qian, E. Ostuni, H. Wu et al., Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane), Langmuir, vol.18, issue.8, p.3273, 2002.
DOI : 10.1021/la011668+

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, vol.393, p.146, 1998.

N. Bowden, W. Huck, K. Paul, and G. M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Applied Physics Letters, vol.75, issue.17, p.17, 1999.
DOI : 10.1063/1.125076

Z. L. Zhang, C. Crozatier, M. L. Berre, and Y. Chen, In situ bio-functionalization and cell adhesion in microfluidic devices, Microelectronic Engineering, vol.78, issue.79, pp.78-79, 2005.
DOI : 10.1016/j.mee.2004.12.071

J. W. Lussi, D. Falconnet, J. A. Hubbell, M. Textor, and G. Csucs, Pattern stability under cell culture conditions???A comparative study of patterning methods based on PLL-g-PEG background passivation, Biomaterials, vol.27, issue.12, p.2534, 2006.
DOI : 10.1016/j.biomaterials.2005.11.027

A. Tourovskaia, X. Figueroa-masot, and A. Folch, Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies, Lab on a Chip, vol.5, issue.1, p.14, 2005.
DOI : 10.1039/b405719h

P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays, Biotechnology and Bioengineering, vol.4, issue.1, p.1, 2005.
DOI : 10.1002/bit.20289

L. Kim, Y. Toh, J. Voldman, and H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells, Lab on a Chip, vol.6, issue.6, p.681, 2007.
DOI : 10.1039/b704602b

P. Bourin, L. Sensebé, and P. Charbord, Les cellules souches mésenchymateuses (CSM) : données, controverses, perspectives. Hématologie, p.434, 2004.

A. Hermann, R. Gastl, S. Liebau, M. Oana-popa, J. Fielder et al., Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells, Journal of Cell Science, vol.117, issue.19, p.4411, 2004.
DOI : 10.1242/jcs.01307

C. Crozatier, I. Tapsoba, M. Le-berre, S. Arbault, C. Amatore et al., A reversibly assembled microfluidic chip for culture and analysis of single cell array. Paru dans Micro Total Analysis Systems, Japan Academic Association, vol.1, p.981, 2006.

R. M. Wightman, Voltammetry with Microscopic Electrodes in New Domains, Science, vol.240, issue.4851, p.415, 1988.
DOI : 10.1126/science.240.4851.415

A. M. Bond, Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review, The Analyst, vol.119, issue.11, p.1, 2002.
DOI : 10.1039/an994190001r

K. P. Troyer and R. M. Wightman, Dopamine Transport into a Single Cell in a Picoliter Vial, Analytical Chemistry, vol.74, issue.20, p.5370, 2002.
DOI : 10.1021/ac0203903

C. Amatore and B. Fosset, Equivalence between Microelectrodes of Different Shapes:?? Between Myth and Reality, Analytical Chemistry, vol.68, issue.24, p.4377, 1996.
DOI : 10.1021/ac960421s

R. T. Kennedy, L. Huang, M. A. Atkinson, and P. Dush, Amperometric monitoring of chemical secretions from individual pancreatic .beta.-cells, Analytical Chemistry, vol.65, issue.14, p.1882, 1993.
DOI : 10.1021/ac00062a012

J. Wang, Analytical Electrochemistry, 2000.
DOI : 10.1002/0471790303

. Lunte, Recent developments in electrochemical detection for microchip capillary electrophoresis, Electrophoresis, vol.25, p.3528, 2004.

A. J. Demello, Control and detection of chemical reactions in microfluidic systems, Nature, vol.8, issue.7101, p.394, 2006.
DOI : 10.1038/nature05062

H. Craighead, Future lab-on-a-chip technologies for interrogating individual molecules, Nature, vol.6, issue.7101, p.387, 2006.
DOI : 10.1038/nature05061

D. Daniel and I. G. Gutz, Microfluidic cells with interdigitated array gold electrodes: Fabrication and electrochemical characterization, Talanta, vol.68, issue.2, p.429, 2005.
DOI : 10.1016/j.talanta.2005.09.003

Y. Chen and A. Pépin, Nanofabrication: Conventional and nonconventional methods, ELECTROPHORESIS, vol.101, issue.110, p.187, 2001.
DOI : 10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0

]. V. Goral, N. V. Zaytseva, and A. J. Baeumner, Electrochemical microfluidic biosensor for the detection of nucleic acid sequences, Lab on a Chip, vol.77, issue.3, p.414, 2006.
DOI : 10.1039/b513239h

E. Nebling, T. Grunwald, J. Albers, P. Schäfer, and R. Hintsche, Electrical Detection of Viral DNA Using Ultramicroelectrode Arrays, Analytical Chemistry, vol.76, issue.3, p.689, 2004.
DOI : 10.1021/ac0348773

S. A. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle et al., Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes, Analytical Chemistry, vol.74, issue.6, p.1322, 2002.
DOI : 10.1021/ac011052p

J. Huller, M. T. Pham, and S. Howitz, Thin layer copper ISE for fluidic microsystem, Sensors and Actuators B: Chemical, vol.91, issue.1-3, p.1, 2005.
DOI : 10.1016/S0925-4005(03)00060-1

M. Galloway, W. Stryjewski, A. Henry, S. M. Ford, S. Llopis et al., Contact Conductivity Detection in Poly(methyl methacylate)-Based Microfluidic Devices for Analysis of Mono- and Polyanionic Molecules, Analytical Chemistry, vol.74, issue.10, p.2407, 2002.
DOI : 10.1021/ac011058e

X. Cai, N. Klauke, A. Glidle, P. Cobbold, G. L. Smith et al., Ultra-Low-Volume, Real-Time Measurements of Lactate from the Single Heart Cell Using Microsystems Technology, Analytical Chemistry, vol.74, issue.4, p.908, 2002.
DOI : 10.1021/ac010941+

A. A. Oliva, C. D. James, C. E. Kingman, H. G. Craighead, and G. A. Banker, Patterning axonal guidance molecules using a novel strategy for microcontact printing, Neurochemical Research, vol.28, issue.11, p.1639, 2003.
DOI : 10.1023/A:1026052820129

C. D. James, A. J. Spence, N. M. Dowell-mesfin, R. J. Hussain, K. L. Smith et al., Extracellular Recordings From Patterned Neuronal Networks Using Planar Microelectrode Arrays, Extracellular Recordings From Patterned Neuronal Networks Using Planar Microelectrode Arrays, p.1640, 2004.
DOI : 10.1109/TBME.2004.827252

I. Suzuki, Y. Sugio, Y. Jimbo, and K. Yasuda, Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement, Lab on a Chip, vol.3, issue.3, p.241, 2005.
DOI : 10.1039/b406885h

S. K. Ravula, M. A. Mcclain, M. S. Wang, J. D. Glass, and B. Frazier, A multielectrode microcompartment culture platform for studying signal transduction in the nervous system, Lab on a Chip, vol.12, issue.2, p.1530, 2006.
DOI : 10.1016/j.jneumeth.2006.06.022

F. Morin, N. Nishimura, L. Grisom, B. Lepioufle, H. Fujita et al., Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: A step towards neuron-based functional chips, Biosensors and Bioelectronics, vol.21, issue.7, p.1093, 2006.
DOI : 10.1016/j.bios.2005.04.020

A. F. Dias, G. Dernick, V. Valero, M. G. Yong, C. D. James et al., An electrochemical detector array to study cell biology on the nanoscale, Nanotechnology, vol.13, issue.3, p.285, 2002.
DOI : 10.1088/0957-4484/13/3/309

I. Hafez, K. Kisler, K. Berberian, G. Dernick, V. Valero et al., Electrochemical imaging of fusion pore openings by electrochemical detector arrays, Proceedings of the National Academy of Sciences, p.13879, 2005.
DOI : 10.1073/pnas.0504098102

T. M. Pearce, J. A. Wilson, S. G. Oakes, S. Chiu, and J. C. Williams, Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture, Lab on a Chip, vol.5, issue.1, p.97, 2005.
DOI : 10.1039/b407871c

G. Zech and P. Fromhertz, Noninvasive neuroelectronic interfacing wth synaptically connected snail neurons immobilized on a semiconductor chip, Proceedings of the National Academy of Sciences, p.10457, 2001.

R. M. Wightman, J. A. Jankowski, R. T. Kennedy, K. T. Kawagoe, T. J. Schroeder et al., Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells., Proceedings of the National Academy of Sciences, p.10754, 1991.
DOI : 10.1073/pnas.88.23.10754

T. J. Schroeder, J. A. Jankowski, K. T. Kawagoe, R. M. Wightman, C. Lefrou et al., Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis, Analytical Chemistry, vol.64, issue.24, p.3077, 1992.
DOI : 10.1021/ac00048a003

G. Alvarez-de-toledo, R. Fernández-chacón, and J. M. Fernández, Release of secretory products during transient vesicle fusion, Trends in Cell Biology, vol.3, issue.8, p.554, 1993.
DOI : 10.1016/0962-8924(93)90049-7

A. Chanturiya, L. V. Chernomordik, and J. Zimmerberg, Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers, Proceedings of the National Academy of Sciences, p.14423, 1997.
DOI : 10.1073/pnas.94.26.14423

E. V. Mosharov, L. Gong, B. Khanna, D. Sulzer, and M. Lindau, Intracellular Patch Electrochemistry : Regulation of Cytosolic Catecholamines in Chromaffin Cells, Journal of Neuroscience, vol.23, p.5835, 2003.

J. A. Steyer, H. Horstmann, and W. Almers, Transport, docking and exocytosis of single secretory granules in live chromaffin cells, Public Library of Science Biology, vol.388, p.474, 1997.

A. G. García, L. Von-rüden, and M. G. López, The mechanism of Ba2+ -induced exocytosis from single chromaffin cells, FEBS Letters, vol.336, p.48, 1999.

C. Amatore, S. Arbault, F. Lema??trelema??tre, and Y. Verchier, Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry, Biophysical Chemistry, vol.127, issue.3, p.165, 2007.
DOI : 10.1016/j.bpc.2007.01.007

URL : https://hal.archives-ouvertes.fr/hal-00501635

D. Perrais, I. C. Kleppe, J. W. Taraska, and W. Almers, Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells, The Journal of Physiology, vol.70, issue.Suppl., p.413, 2004.
DOI : 10.1113/jphysiol.2004.064410

S. Arbault, P. Pantano, J. A. Jankowski, M. Vuillaume, and C. Amatore, Monitoring an oxidative stress mechanism at a single human fibroblast, Analytical Chemistry, vol.67, issue.19, p.3382, 1995.
DOI : 10.1021/ac00115a004

C. Amatore, S. Arbault, Y. Chen, C. Crozatier, and I. Tapsoba, Electrochemical detection in a microfluidic device of oxidative stress generated by macrophage cells, Lab Chip, vol.75, issue.2, p.233, 2007.
DOI : 10.1039/B611569A

A. Takahashi, P. Camacho, J. D. Lechleiter, and B. Herman, Measurement of Intracellular Calciums, Physiological Reviews, vol.79, p.1089, 1999.

]. S. Arbault, N. Sojic, D. Bruce, C. Amatore, A. Sarasin et al., Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes, Carcinogenesis, vol.25, issue.4, p.509, 2004.
DOI : 10.1093/carcin/bgh046

E. A. Lima, A. A. Werdich, I. Ivanov, M. E. Ges, J. P. Anderson et al., A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings, p.357, 2004.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von-recum, J. M. Anderson et al., Biocompatibility and biofouling of MEMS drug delivery devices, Biomaterials, vol.24, issue.11, p.1959, 2003.
DOI : 10.1016/S0142-9612(02)00565-3

J. Gustavsson, G. Atlankov, A. Errachid, J. Samitier, J. A. Planell et al., Modulation of Biological Properties of Silicon Nitride for Biosensor Applications by Self- Assembled Monolayers Advances in Science and Technology, p.122, 2006.

J. Xue, X. Ying, J. Chen, L. Xian, and . Jin, Amperometric Ultramicrosensors for Peroxynitrite Detection and Its Application toward Single Myocardial Cells, Analytical Chemistry, vol.72, issue.21, p.5313, 2000.
DOI : 10.1021/ac000701e

M. E. Sandison, N. Anicet, A. Glidle, and J. M. Cooper, Optimization of the Geometry and Porosity of Microelectrode Arrays for Sensor Design, Analytical Chemistry, vol.74, issue.22, p.5717, 2002.
DOI : 10.1021/ac025649w

N. Sojic, Ultramicroélectrodes et détection de flux chimiques impliquant des femtomoles, Thèse de doctorat, 1997.

J. C. Hoogvliet, J. M. Reijn, and W. P. Van-bennekom, Multichannel amperometric detection system for liquid chromatography and flow injection analysis, Analytical Chemistry, vol.63, issue.21, p.2418, 1991.
DOI : 10.1021/ac00021a007

D. Roston and P. T. Kissinger, Series dual-electrode detector for liquid chromatography/electrochemistry, Analytical Chemistry, vol.54, issue.3, p.429, 1982.
DOI : 10.1021/ac00240a019

R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips, Analytical Chemistry, vol.72, issue.14, p.3196, 2000.
DOI : 10.1021/ac000160t

D. Juncker, H. Schmid, A. Bernard, I. Caelen, B. Michel et al., Soft and rigid two-level microfluidic networks for patterning surfaces, Journal of Micromechanics and Microengineering, vol.11, issue.5, p.532, 2001.
DOI : 10.1088/0960-1317/11/5/314

M. Le-berre, J. Shi, C. Crozatier, and G. , Micro-aspiration assisted lithography, Microelectronic Engineering, vol.84, issue.5-8, p.864, 2007.
DOI : 10.1016/j.mee.2007.01.130