M. B. Bibliographie1-]-elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, and L. Kish, Stochastique gene expression in a single cell End of Moore's law: thermal (noise) death of integration in micro and nanoelectronics Control, exploitation and tolerance of intracellular noise The molecular basis of periodic and chaotic behaviour, 305 305 305, pp.297-2971183, 1996.

G. Foster, L. Kreitzman, I. H. Segel, D. Bell-pederson, V. M. Cassone et al., Enzyme kinetics. behaviour and analysis of rapid equilibrium and steadystate enzyme systems Circadien rhythms from multiple oscillators:lessons from diverse organisms Circadian communication between unicells? Effects on period by cell-conditioning of medium Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora Resilient circadian oscillator revealed in individual cyanobacteria, Profile, pp.931-934544, 1985.

D. K. Welsh, D. E. Logithetis, M. Meister, and S. M. Reppert, Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942 Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms, J. Biol. Chem. Neuron, vol.278, issue.14, pp.14697-706, 1995.

D. C. Klein, R. Y. Moore, and S. M. Reppert, Suprachiasmatic nucleus: the mind's clock, 1991.

R. J. Konopka, S. T. Benzer, J. Vilaplana, and A. Campuzano, Clock Mutants of Drosophila melanogaster, Proc. Natl Acad. Sci, pp.68-682112, 1971.
DOI : 10.1073/pnas.68.9.2112

A. Diez-noguera, Entrainment of the rat motor activity rhythm under T cycles shorter than 24 h, Physiol. Behav, vol.7016, issue.70, pp.70227-232, 2000.

F. W. Turek, M. R. Ralph, R. G. Foster, F. C. Davis, and M. Maenaker, Circadian Rhythms in mammals Transplanted suprachiasmatic nucleus determines circadian period, Annu. Rev. Physiol. Science, vol.47, issue.247, pp.47-4749, 1985.

R. F. Johnson, R. Y. Moore, L. P. Morin, M. H. Hastings, E. D. Herzog et al., Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei Evidence for genetic transformation in blue-green alga Anacystis nidulans R2, Brain Res. J. Biol. Rhythms Molec. Gen. Genet, vol.460, issue.107, pp.460-460297, 1919.

C. H. Johnson, H. Iwasaki, T. Kondo, C. H. Johnson, S. S. Golden et al., Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria Circadian timing mechanism in the prokaryot clock system of cyanobacteria Circadian closcks in prokaryotes, Cyanobacterial circadian rhythms, pp.905672-5676436, 1993.

C. H. Johnson and S. S. Golden, Circadian Programs in Cyanobacteria: Adaptiveness and Mechanism, Annual Review of Microbiology, vol.53, issue.1, pp.53-53, 1999.
DOI : 10.1146/annurev.micro.53.1.389

Y. Liu, S. S. Golden, M. Ischiura, and C. H. Johnson, Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria., Journal of Bacteriology, vol.177, issue.8, pp.177-1772080, 1995.
DOI : 10.1128/jb.177.8.2080-2086.1995

T. Kondo, Circadian orchestration of gene expression in cyanobacteria, Genes Dev, vol.9, 1995.

C. H. Johnson, Global orchestration of gene expression by the biological clock of cyanobacteria, Genome Biol, 2004.

T. Mori, B. Binder, and C. H. Johnson, Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours., 93 93 93:10183?10188, 1996.
DOI : 10.1073/pnas.93.19.10183

T. Mori and C. H. Johnson, Independence of Circadian Timing from Cell Division in Cyanobacteria, Journal of Bacteriology, vol.183, issue.8, pp.183-183, 2001.
DOI : 10.1128/JB.183.8.2439-2444.2001

T. Mori, C. H. Johnson, Y. Ouyang, C. R. Andersson, T. Kondo et al., Circadian programming in cyanobacteria Resonating circadian clocks enhance fitness in cyanobacteria, Proc. Natl Acad. Sci, pp.12-12271, 1998.

D. Gonze, M. R. Roussel, A. Goldbeter, M. Ishiura, S. Kutsuna et al., A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light dark cycle Expression of a gene cluster KaiABC, as a circadian feedback process in cyanobacteria Two kaiA-binding domains of cyanobacterial circadian clock protein KaiC KaiB and kaiC in cyanobacteria, Physical intercations among circadian clock proteins KaiA, pp.214-214577, 1998.

J. Wang, K. Kageyama, H. Kondo, T. Iwasaki, H. Xu et al., Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteria A bioluminescence resonance energy transfer (BRET) system application to interacting circadian clock protein, Proc. Natl Acad. Sci, pp.13-13735, 1999.

H. Nishimura, Y. Nakahira, K. Imai, A. Tsuruhara, H. Kondo et al., Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942, Global gene repression by KaiC as a master process of prokaryotic circadian system, pp.266-266, 1994.
DOI : 10.1099/00221287-148-9-2903

Y. B. Kiyohara, M. Katayama, and T. Kondo, A Novel Mutation in kaiC Affects Resetting of the Cyanobacterial Circadian Clock, Journal of Bacteriology, vol.187, issue.8, pp.187-1872559, 2005.
DOI : 10.1128/JB.187.8.2559-2564.2005

A. Kaic-interacting-sensory-histidine-kinase-takai, N. Nakajima, M. Oyama, T. Kito, R. Sugita et al., necessary to sustain robust robust circadian oscillation in cyanobacteria A KaiC-associating SasA-RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria, Proc. Natl Acad. Sci 103 103 103:12109-11211'. [48] Smith, R. M. and Williams, S. B. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc. Natl Acad, pp.223-233, 2000.

C. H. Johnson, T. Nishiwaki, Y. Satomi, M. Nakajima, C. Lee et al., Circadian clock protein KaiC forms ATP-dependant hexameric rings and binds DNA Role of KaiC phosphorylation in the circadian clock system of Synechococcus eongatus PCC 7942, Proc. Natl Acad. Sci. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria, pp.99-9917203, 2002.

J. Tomita, M. Nakajima, T. Kondo, H. Iwasaki, M. Nakajima et al., No transcription-translation feedback in circadian rhythm of KaiC phosphorylation Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro, Proc. Natl. Acad. Sci. USA, pp.308-308414, 2000.

P. L. Johnson, C. H. Emberly, E. Wingreen, N. S. Kollman, and M. , Elucidating the ticking of an in vitro circadian clockwork Hourglass model for a protein based circadian oscillator, Plos biology Phys. Rev. Lett, vol.556, issue.96, pp.96-96038303, 2006.

J. M. Raser, O. Shea, E. K. Elowitz, M. B. Leibler, and S. , Noise in gene expression: origins, consequences, and control A synthetic oscillatory network of transcriptional regulators, EMBO J. Science Nature, vol.359, issue.403, pp.309-3092010, 2000.

D. Gonze, J. Halloy, A. Goldbeter, J. M. Vilar, H. Y. Kueh et al., Robustness of circadian rhythms with respect to molecular noise Mechanisms of noise-resistance in genetic oscillators, Proc. Natl Acad. Sci. USA Proc. Natl Acad. Sci, pp.995988-5992, 2002.

M. Springer, J. Paulsson, E. Nagoshi, C. Saini, C. Bauer et al., Harmonies from noise Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells Imaging of single light-responsive clock cells reveals fluctuating free-running periods Emerging coherence in a population if chemical oscillator Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in escherichia coli, Synchronization A universal concept in nonlinear sciences, pp.439-43927, 2000.

L. Mandel and E. Wolf, Optical coherence and quantum optics, 1995.
DOI : 10.1063/1.2807623

K. V. Mardia and P. Jupp, Wiley series in probability and statistics) 1999, E. Directional Statistics, vol.73

V. Mises, G. B. Über-die-ermentrout, and J. Rinzel, Ganzzahligkeité der Atomgewichte und verwandte Fragen Beyond a pacemaker's entrainment limit:phase walkthrough, Phys. Z. Am. J. Physiol, vol.1975, issue.246, pp.490-500, 1918.

M. Amdaoud, M. Vallade, C. Weiss-schaber, and I. S. Mihalcescu, Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling From Kuramoto to Crawforf: exploring the onset of synchronization in populations of coupled oscillators, Proc. Natl Acad. Sci. USA Physica D 143, pp.1-20, 2000.

M. Katayama, N. F. Tsinoremas, T. Kondo, S. S. Golden, and G. , Involved in an Output Pathway of the Cyanobacterial Circadian System, J. Bacteriol, vol.181, issue.181, pp.181-1813516, 1999.

N. F. Tsinoremas, M. R. Schaefer, and S. S. Golden, Blue and red light reversibly control psbA expression in the cyanobacterium Synechococcus sp. strain PCC 7942 The gshb gene in the cyanobacterium, 269 269 269:16143?16147. [79] Okurama Masamoto, K. and Wada, 1994.

O. Schmitz, M. Katayama, S. B. Williams, T. Kondo, S. S. Golden et al., CikA, a bacteriophytochrome that resets the cyanobacerial circadian clock lpdA encodes an iron-sulfur protein involved in light-dependant modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942 A period-extender gene,pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942 Circadian clock-protein expression in cyanobacteria:rhythms and phase setting, Synechococcus sp. PCC 7942 encodes a functional glutathione synthetase, pp.143-1432883, 1997.

R. Jammalamadaka, S. Sengupta, A. Kitayama, Y. Kondo, T. Nakahira et al., Topics in Circular Statistics An In vivo Dual-Reporter System of Cyanobacteria Using Two Rail-Worm Luciferases with Different Color Emissions, Sequence Analysis, and Expression of Active Phrixothrix Railroad-Worms Luciferase: Relatioship between Bioluminescence Spectra and Primary Structures, pp.45-45109, 1999.

C. Chatfiled, N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik et al., The analysis of time series: An introduction Bacterial persistance as a phenotypic switch, Science, vol.305, issue.305, pp.305-3051622, 2003.