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1.1 Context

This work is situated in the global context of computational composite ma-
terials research.

Nanocomposites are materials that are created by introducing nanopar-
ticles into a macroscopic sample material. This is part of the growing field of
nano technology. Particulate composites reinforced with micron-sized par-
ticles of various materials are perhaps the most widely used composites in
everyday materials. By scaling the particle size down to the nanometer scale,
it has been shown that novel material properties can be obtained.

In general, the nano substances used are nanoscopic filler particles of
different nature (metallic, silica, carbon black) or nanotubes and they are
dispersed into the other composite materials during processing. The nano-
materials tend to drastically add to the electrical and thermal conductivity
as well as to the mechanical strength properties of the original material.

In this section we will give a brief overview of the basic properties of inter-
est of nanocomposite polymer based materials and nanoparticle suspensions
(nanofluids).
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1.1.1 Polymer Nanocomposites and Thin Films

Polymer composites are important commercial materials with applications
that include filled elastomers for damping, electrical insulators, thermal con-
ductors, and high-performance composites for use in aircraft. Materials with
synergistic properties are chosen to create composites with tailored prop-
erties; for example, high-modulus but brittle carbon fibers are added to
low-modulus polymers to create a stiff, lightweight composite with some de-
gree of toughness. In recent years, however, we have reached the limits of
optimizing composite properties of traditional micrometer-scale composite
fillers, because the properties achieved usually involve compromises. Stiff-
ness is traded for toughness, or toughness is obtained at the cost of optical
clarity. In addition, macroscopic defects due to regions of high or low vol-
ume fraction of filler often lead to breakdown or failure. In the last decade
a large window of opportunity has opened to overcome the limitations of
traditional micrometer-scale polymer composites - nanoscale filled polymer
composites - in which the filler is smaller than 100 nm in at least one di-
mension. Some nanofilled composites (carbon black [1] and fumed silica [2]
filled polymers) have been used for more than a century, but research and
development of nanofilled polymers has greatly increased in recent years, for
several reasons. First, unprecedented combinations of properties have been
observed in some polymer nanocomposites [3]. For example, the inclusion of
roughly spherical nanoparticles in thermoplastics, and particularly in semi
crystalline thermoplastics, increases the yield stress, the tensile strength, and
Young’s modulus compared to pure polymer. A volume fraction of only 0.04
mica-type silicates in epoxy increases the modulus below the glass transition
temperature by 58% and the modulus in the rubbery region by 450 % [4]. A
second reason for the large increase in research and development efforts was
the “discovery” of carbon nanotubes in the early 1990s and their subsequent
usage in composite materials [5]. The properties of these carbon nanotubes,
strength and electrical properties in particular, offer exciting possibilities for
new composite materials. Third, significant development in the chemical
processing of nanoparticles and in the in situ processing of nanocomposites
has led to unprecedented control over the morphology of such composites,
it has also created an almost unlimited ability to control in principle the
interface between the matrix and the filler.

Thus, this is an exciting time to study nanocomposites, because of the
unique combinations of properties that are achievable and also because of
the high potential for successful commercial development. Scientists now
have the ability to change the size, shape, volume fraction, interface, and
degree of dispersion or aggregation of fillers. Thus, the opportunities may
well become limitless when theory and experiment have assembled enough
information to guide further development.

A relevant question to ask is: What is unique to nano-fillers compared to
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micrometer-scale traditional fillers, and how do the nanocomposites compare
to their macroscopic counterparts? The most obvious difference is the small
size of the fillers. For example, very small nanoparticles do not scatter light
significantly, and thus it is possible to make composites with altered electrical
or mechanical properties that retain their optical clarity. In addition, the
small size means that the particles do not create large stress concentrations
and thus do not compromise the ductility of the polymer. A similar concept
applies for electrical breakdown strength.

A substantial difference compared to bigger particles and a main moti-
vation for the present work is the fact that the small size of the fillers leads
to an exceptionally large interfacial area in the composites.
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Figure 1.1: Surface area per unit volume and particle particle distance as a
function of particle size and volume fraction for spherical particles that are
ideally dispersed

Figure 1.1, top shows the surface area per unit volume as a function of
particle size for spherical particles that are ideally dispersed. The increase in
surface area below 100 nm is dramatic. The interface controls the degree of
interaction between the filler and the polymer and thus controls the proper-
ties. Therefore the greatest challenge in developing polymer nanocomposites
may be learning to control the interlace. Thus, it seems relevant to define
the interfacial region and discuss its properties. As defined in traditional
composites, the interfacial region is the region beginning at the point in the
filler at which the properties differ from those of the bulk filler and ending at
the point in the matrix at which the properties become equal to those of the
bulk matrix. It can be a region of altered chemistry, altered polymer chain
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mobility, altered degree of cure, and altered crystallinity. Interface size has
been reported to be as small as 2 nm and as large as about 50 nm. Figure
1.1, bottom shows inter particle spacing as a function of particle size for an
ideally dispersed nanoparticle composite: at low volume fractions the entire
matrix is essentially part of the interfacial region. For example, for 15 nm
particles at a filler loading of 10 vol %, the inter particle spacing is only 10
nm. Even if the interfacial region is only a few nanometers, very quickly
the entire polymer matrix has a different behavior than the bulk. If the
interfacial region is more extended, then the polymer matrix behavior can
be altered at much smaller loadings. Therefore, by controlling the degree
of interaction between the polymer and the nanofiller, the properties of the
entire matrix can be controlled.

In order to understand the properties of confined polymers, much ex-
perimental and computational effort has been devoted to the study of thin
polymer films. This interest originates in part from the many technological
applications of these systems, and in part from some fundamental questions
associated with the influence of confinement on physical processes. Some
of the numerous applications of polymer films are protective coatings, scaf-
fold structure in microelectronic devices and membranes in vesicles used
for drug delivery. Moreover, as in polymer based nanocomposite materials,
most of the “polymer” component is actually confined in the form of thin
layers squeezed between the fillers, the study of thin films provides clues for
explaining the complex physics in these heterogeneous materials. On the
fundamental side, much of the interest has focused on the influence of con-
finement on the glass transition temperature. In spite of many difficulties
in the interpretation of early results, a clear consensus seems now to have
emerged, that the glass transition temperature is reduced, and the dynamics
accelerated, in the vicinity of a free interface. This observation has been
confirmed by several different experimental techniques and molecular simu-
lations. In the case of supported films, strong interaction with the substrate
may counterbalance the effect of the free surface.

Many unique properties of the polymer matrix are related to the chain-
like nature of polymer molecules and the fact that they form entanglements.
Entanglements of polymer chains are topological constraints to motion that
have a profound effect on the mobility of the molecules [6]. Qualitatively,
they can be viewed as crossings of polymer chains that remain intact when
the material is subject to strain and so are mechanically active. They there-
fore strongly influence dynamic properties of polymer melts such as viscos-
ity and diffusion. The main glassy state properties that are influenced by
entanglements are the high strain properties, such as natural draw ratio,
craze extension ratio, and toughness. In molten polymeric systems, above
the glass transition, dynamics is dominated by chain connectivity and en-
tanglement effects. The density of entanglements, often described by the
molecular weight of a chain between entanglements M., can be obtained
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from the plateau modulus of a high molecular weight melt. The mean dis-
tance between entanglements serves as the tube diameter within the dom-
inant reptation model of polymer dynamics. Entanglement in the polymer
bulk is reasonably well understood in broad terms [7], but the situation at
an interface, surface or in a thin film is much less clear. Some theoretical
assumptions have been put forward [8] suggesting that the entanglement
density should vary near an interface, but experimental results exist only
for a limited number of cases [9]. Experimental verification of such effects
is difficult, as entanglements are not directly observable. Conflicting con-
clusions have been reached from several different mechanical determinations
[9, 10, 11] and spectroscopic methods [12]. While the spectroscopic methods
probe mostly the overlap between different chains, the mechanical approach
is more directly linked to the entanglement concept used in rheology. Some
of these studies imply that the rubber modulus is decreased, or the entangle-
ment distance (as measured from the extension before rupture) decreased, in
confined films [9]. Using a bubble inflation method for the determination of
viscoelastic properties, O’Connell and McKenna [10] conclude that the com-
pliance is drastically reduced in thin films, which would rather correspond to
an increase in entanglement density. Finally, experiments on the spreading
of thin films on a liquid substrate [11] conclude that this modulus is not
affected, while the terminal relaxation time is. Some distinctions between
interchain and intra-chain entanglements have been proposed in order to rec-
oncile these different results. The behavior of the entanglement network in
a filled polymer melt is unclear. Some experimental results suggest that it
can remain to a large extent unaffected for a certain filler type [13], or be
subject to variation in the case of strong filler polymer interaction [14].

In summary, the interfacial region is complex, and when the interfacial
area is very large, the whole polymer matrix may essentially be interfacial
region. This presents one of the essential challenges in polymer nanocompos-
ites: to develop technology to control the interface, to describe the interface
mathematically, and to be able to predict properties taking into account the
interfacial region. Traditional composite theory, although very far advanced
in describing properties that are relatively independent of the interface, is
still in its infancy in taking into account the role of the interfacial region.
A number of open questions remain concerning the understanding of the in-
teraction of polymers with flat surfaces. The interaction of polymers with
highly curved surfaces and at scales similar to that of the radius of gyration
is also not well understood.

1.1.2 Nanofluids

Nanofluids are solid-liquid composite materials consisting of solid nanopar-
ticles or nano fibers with sizes typically of 1-100 nm suspended in liquid.
Nanofluids have been proposed as a route for surpassing the performance
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of heat transfer liquids currently available. Cooling is one of the most im-
portant technical challenges facing many diverse industries. Technological
developments such as microelectronic devices with smaller (sub-100 nm) fea-
tures and faster (multi-gigahertz) operating speeds, higher-power engines,
and brighter optical devices are driving increased thermal loads, requiring
advances in cooling. The conventional method for increasing heat dissipa-
tion is to increase the area available for exchanging heat with a heat transfer
fluid. However, this approach requires an undesirable increase in the ther-
mal management system’s size. There is therefore an urgent need for new
and innovative coolants with improved performance. The novel concept of
nanofluids has been proposed as a means of meeting these challenges. Re-
cent experiments on nanofluids have indicated significant increases in thermal
conductivity compared to liquids without nanoparticles or larger particles.
Some of the experimental results are controversial, the extent of thermal
conductivity enhancement sometimes greatly exceeds the predictions of well-
established theories (fig. 1.2).
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Figure 1.2: Relative increase in the thermal conductivity as a function of the
volume fraction of nanoparticles. The lower dashed line is the prediction from
effective medium theory for well-dispersed suspensions of highly thermally
conductive nanoparticles; the upper dashed line is the prediction for random-
close-packed aggregates of nanoparticles. Most of the data is reasonably well
described by effective medium theory. The most anomalous results (furthest
left and above the dashed lines) for Cu and Au nanoparticle suspensions are
[15] and [16].

For example, a small amount (about 1% volume fraction) of Cu nanopar-
ticles or carbon nanotubes dispersed in ethylene glycol or oil is reported to
increase the inherently poor thermal conductivity of the liquid by 40% and
150%, respectively [15, 17]. Conventional particle-liquid suspensions require
high concentrations (higher than 10%) of particles to achieve such enhance-
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ment. There are problems of rheology and stability at high concentrations,
making the possibility to use nanofluids even more attractive. In contrast
with the highly optimistic results many researchers report “normal” thermal
behavior of nanoparticle suspensions [18] (fig. 1.2). If these exciting results
on nanofluids can be confirmed in future systematic experiments, new the-
oretical descriptions may be needed to account properly for the unique fea-
tures of these materials. These enhanced thermal properties are not merely
of academic interest. If confirmed and found consistent, they would make
nanofluids promising for applications in thermal management.

The rather controversial findings have stimulated computational and the-
oretical studies trying to explain the microscopic mechanisms behind the in-
crease in thermal properties. Among the possibilities that were suggested,
the Brownian motion [19] of a single sphere in a liquid leads to an increase in
thermal conductivity on the order of 4 — 5%, and appears to be an attractive
and generic explanation. The essential idea is that the Brownian velocity
of the suspended particle induces a fluctuating hydrodynamic flow [20, 21],
which on average influences (increases) thermal transport. This mechanism
is different from transport of heat through center of mass diffusion, which
was previously shown to be negligible [22]. However, some experimental high
precision studies question the validity of this assumption [18]. Recent sim-
ulations also showed that normal conductivity is expected for low volume
fractions (around 3.3%) and the physical parameter determining thermal
properties should be the particle interfacial thermal resistance [23|. However
a method providing quantitative data on the particles interfacial resistance
and its dependence on physical properties is still missing. Such data should
allow direct quantitative prediction of the thermal properties. Also, study-
ing the fluid conductivity when precisely controlling the diffusion of particles
can further elucidate the heat transfer mechanisms in nanofluids and clarify
the role of Brownian motion. Another possible explanation of the peculiar
thermal behavior of nanofluids lies in collective effects. This field is generally
rather complex but some insights in the possible mechanisms involved can
be achieved in a study of systems with a small number of particles.

1.2 Methods

The characterization and study of nanocomposites involves many different
fields of materials science. Among them computer simulations have a notice-
able place with growing importance. Computation is now an integral part
of contemporary science, and is having a profound effect on the way we do
physics, on the nature of the important questions, and on the physical sys-
tems we choose to study. Developments in computer technology are leading
to new ways of thinking about physical systems.

We carry out computer simulations in the hope of understanding the
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properties of assemblies of molecules in terms of their structure and the
microscopic interactions between them. This serves as a complement to
conventional experiments, enabling us to learn something new, something
that cannot be found out in other ways.

Phases

Experimental
S
P /I Results
Intermolecular g Complex Fluid
potential T (real system)

Simulation
Results

Structure
v(r) aer)
- e
r
Complex Fluid
\ (model system) @
c(t)|\ Dynamics
Theoretical

7 Predictions

Figure 1.3: Simulations as a bridge between microscopic and macroscopic on
one hand and theory and experiment on the other.

Computer simulations act as a bridge (see fig. 1.3) between microscopic
length and time scales and the macroscopic world of the laboratory: we
provide a guess at the interactions between molecules, and obtain “exact”
predictions of bulk properties. The predictions are “exact” in the sense that
they can be made as accurate as we like, subject to the limitations imposed
by our computer budget. At the same time, the hidden detail behind bulk
measurements can be revealed. An example is the link between the diffusion
coefficient and velocity autocorrelation function (the former easy to mea-
sure experimentally, the latter much harder). Simulations act as a bridge in
another sense: between theory and experiment. We may test a theory by
conducting a simulation using the same model. We may test the model by
comparing with experimental results. We may also carry out simulations on
the computer that are difficult or impossible in the laboratory. Examples
for this are measurements under extreme conditions that are experimentally
prohibitive. Simulations can also provide details of molecular motion and
structure concerning events that are too fast or too slow to study experi-
mentally.

Ultimately we may want to make direct comparisons with experimental
measurements made on specific materials, in which case a good model of
molecular interactions is essential. On the other hand, we may be interested
in phenomena of a rather generic nature, or we may simply want to discrim-
inate between good and bad theories. When it comes to aims of this kind,
it is not necessary to have a perfectly realistic molecular model; one that
contains the essential physics may be quite suitable.

The two main families of simulation technique are molecular dynamics
(MD) and Monte Carlo (MC); additionally, there is a whole range of hybrid
techniques which combine features from both. In this work we mainly use
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MD. The obvious advantage of MD over MC is that it gives a route to dy-

namical properties of the system: transport coefficients, time-dependent re-

sponses to perturbations, rheological properties and easily allows non equilib-

rium simulations. All simulations were performed with the LAMMPS (Large-

scale Atomic/Molecular Massively Parallel Simulator) code (http://lammps.sandia.gov/)
[24]. Tt is an open source, rich, flexible and fast simulation software package,

that met (modified whenever needed) all the needs of the present work.

1.3 Overview

The present work is organized as follows: at first a description of the basic
problems and theoretical concepts widely used later will be given. In the
second chapter we will discuss in microscopic detail the viscoelastic behav-
ior of a pure bulk polymer material. While exposing comprehensively the
molecular mechanisms involved, we will also concentrate on the development
and calibration of computational and mathematical tools to be used later.
In the third and fourth chapter we will turn to the detailed local study of
polymer interfaces and polymer based nanocomposites. We explain the local
static and dynamical behavior of the chains in the interfacial region, very
important for the macroscopic properties of a nanocomposite. We also study
the properties of the entanglement network at an interface as a function of
its chemical nature. We discuss model systems of polymer nanocomposites
and provide insights about the microscopic basis of reinforcement. In the
last chapter we turn to the study of heat transfer in nanofluids, revealing
the role of the interface in the enhancement of thermal properties in these
materials.


http://lammps.sandia.gov/
http://lammps.sandia.gov/
http://lammps.sandia.gov/
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Theoretical background
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Payneeffect . . . . ... ... ... ... ... 22

In the present section some basic concepts of polymer physics will be
described. Also some experimental results and ideas for explaining the com-
posite materials properties will be enumerated. Those concepts are essential
for the understanding of the interpretations given in the following chapters,
as well as to motivate the particular numerical measurements in the studied
systems.

2.1 Coarse grained models

Often the simulations of physical systems cannot and do not need to take into
account all possible detail and all the degrees of freedom of the real system.
Simulating the electrons in the molecules would be irrelevant for determining
a liquid’s viscosity. Furthermore simulation can become virtually impossible
if one takes into account all the chemical details of the system.

This situation is particularly unfavorable in the case of polymers since
these long molecules span very different length (and in consequence time)
scales (see fig. 2.1). Simulation of specific polymer systems has been greatly
advanced by employing systematically derived coarse-grained molecular mod-
els. These models vary in the details of their development and implemen-
tation, yet all seek to construct particle- or lattice- based chain-like objects

11
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Figure 2.1: Schematic representation of a polymer molecule (polyethylene)

whose constituents represent at most a few chemical repeating units of any
specific polymer (see fig. 2.2 and fig. 2.3).

¢ CH;y~

H.C —
\"_cn,
b\ HCN
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Figure 2.2: From a chemically realistic model to a coarse-grained bead-spring
type model. Local properties of the realistic model are determined by its
microscopic degrees of freedom: [, 8 and ¢. On the global level of the chain,
however, the influence of the microscopic degrees of freedom can be lumped
into one parameter, the effective bond length.

This is meant to circumvent the great difficulty in producing equilibrated
samples of atomically-resolved polymers due to the up to ten orders of mag-
nitude spread between the resolution required in time for standard atomistic
molecular dynamics (MD) simulation (1071°s) and the slow molecular relax-
ation times (~ 107°s) which must be achieved. Monte Carlo simulation fares
no better as an alternative approach, especially in dense multi-molecular sys-
tems, because local moves are constrained to impractically small values by
steep bonded potentials, and enormous numbers of successful moves have
to accumulate in order to move chain sections larger than a repeat unit or
so. Integrating out these fast motions, or put another way, averaging over
their underlying steep potentials, allows us in principle to construct models
that can produce equilibrated configurations with relatively much less com-
putational effort. Coarse-graining aims to guarantee that the chain confor-
mations in a simulation sample represent true equilibrium conformations of
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Figure 2.3: Representation of a polymer molecule and a corresponding coarse
grained model

the specific polymer considered. A central feature of coarse-graining is that
the models retain only as much unique and relevant information as needed
about the specific polymer(s) under investigation, using significantly fewer
degrees of freedom (i.e., particles) than required for full atomistic detail.
The coarsened degrees of freedom must be constrained within ensembles of
configurations which represent an appropriate average over the microscopic
atomic-scale potential energy surface of the fully resolved system.

2.2 Static properties of a polymer

As polymers have a great number of equilibrium conformations, characteris-
tic quantities are defined as statistical mean values.

If we consider a chain as a sequence of non correlated randomly oriented
vectors of length by - an ideal (or Gaussian) chain, the mean end-to-end
square distance is simply given by (R2) = ((Ry — R1)?) = NbZ. If the
chain is subject to additional constraints (like fixing the angle between two
consecutive segments) the previous relation becomes:

(R?) = Nb? (2.1)

where b is the effective segment length. This length is the distance over which
correlation is lost in the chain. If we consider for example a freely rotating
chain model with an angle 6 between segments the end to end vector becomes
(R%*) = Nb3(1+4cos8)/(1—cosf) and the effective bond length in this case is
given by b = bo((1+cosf)/(1—cosf))'/2. The effective bond length depends
on one hand on the microscopic structure of the chain, on its stiffness and
on the monomer concentration on the other hand. For melt densities close
to 1, due to mutual screening of interactions polymers behave like Gaussian
chains with their effective bond length function of the microscopic structure
alone. The microscopic stiffness of the chain is represented by the ratio

Coo = b/} (2.2)
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This coefficient can be calculated from the local structure of the chain. The
stiffness can also be represented by another parameter, the Kuhn statistical
segment length defined by:

b = (R?)/Rypae = b /by (2.3)

where R4 is the maximum length of the end to end vector. The typical
spatial extension of a polymer chain is given by its radius of gyration:

N
R? iz —TCM (2 4)
g N .

where r¢ps is the position of the center of mass of the chain. The radius of
gyration is also the mean square distance between all pairs of the segments

of the chain:
1 N
R; - 2N?2 Z <(Fn - 7:’m)2> (2'5)
n,m=1
This relation can easily be obtained by replacing the expression for the center

of mass in equation 2.4 and developing. For a linear polymer, if we assume
Gaussian behavior on all length scales, 74 can easily be calculated:

1 N
2 _ 2
Ry = R E |n —m|b

n,m=1

1 N N )
= — dn/ dm|n —m|b
sz o [ dmln =i
1 N N )
= — dn/ dm(n —m)b
v,
2

6

Thus the typical dimension of the linear polymer is given by R/v/6.

2.3 The Rouse model

The motion of a single monomer is governed by the connectivity of the chain
and the interaction of the monomer with its surroundings. In a simple model,
called the Rouse model [25], one can think that for such a situation all the
complicated non-bond interactions are adsorbed into a monomeric friction
and a coupling to a heat bath. In this entropy governed model the motion
of the bead is described by a Langevin equation:

or;

S = =VU{R) + fi(t) (2.7)
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where r; denotes the position of monomer 4, ¢ is the friction coefficient with
the viscous background, U is the bond potential that keeps the chain con-
nected and f_‘; (t) is a random Langevin force related to ¢ via a fluctuation-
dissipation relation. If we consider the case of a harmonic bond potential:
Uu(r) = —k%f where k = 3kpT/b? is the spring stiffness (b is the bond
length) the model can be solved exactly. The choice of this potential comes
from the idea that interactions in the coarse grained chain backbone are
due to entropic springs. Taking free boundary conditions and rewriting the
equation (2.7) in terms of vibration modes one has:

0X,
INCZEY — 2.
Cap =9 (2.8)
0X, -
2N<87tp = —kpXp+gp, p>0 (2.9)

where k, = k6 Np?m?/(Nb)?, g, is a random force and the proper modes Xp
are related to positions by:

- 1 N
X, =~ /0 ann(t)cos(np%) (2.10)

From equations (2.9) the time correlation functions of the modes can be

calculated: T
B
(Xp,i(t)Xq,3(0)) = Tp‘sijépq exp(—t/7p) (2.11)

Finally, 2.11 yields the diffusion constant of the center of mass of the chain
D =kgT/N(¢ (2.12)
and the relaxation time of the mode p:

O N
P 3n2kpTp?  3m2kpTp?

(2.13)

The largest relaxation time 71 = 7p is called Rouse time. The times 7, can
be viewed as the relaxation times of a chain of length N/p monomers.
The evolution of the mean square displacement of a single monomer g (t)
N
- =) 2
qi(t) = Nz«ri(t) —73(0))7) (2.14)
i=1
with time is governed by the fact that as time increases an increasing number
of monomers have to be carried along. As the chain structure is that of a
random walk, one can show that:

th t < 70,91(t) < a?

g1(t) x 2 p<t< TR, g1(t) < (R?) (2.15)
tlv t> TR?.ql(t) > <R2>
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It turns out experimentally that this simple model provides an excellent
description of polymer dynamics in the case of a melt and provided that
the chains are short enough. The calculation above made in the continuous
limit has to be slightly modified to be used in simulations. For the discrete
polymer models we will be considering the Rouse modes can be written as
[26]:

N
X,(t) = ian(lf,)cos (W) p=0,...,N—1 (2.16)

with N the chain length, p the monomer number density and 7,(t) - the
position of the n-th monomer in the chain at the time ¢. In this case the
mean square value of a mode p is:

X2 - Al 1)
= — _ .
P/ T 8N(sinpr/2N)2  PINSL 9722
and the relaxation time of the mode is given by:
b? N2p?
Tp ¢ ¢ (2.18)

= 12kpT(sinpr/2N)2 PN 3025 ,Tp2

The modes calculated in a simulated melt remain orthogonal to each other.
This was tested in the present study by measuring cross correlations between
modes p and ¢ # p. The value of the resulting function is about two to three
orders of magnitude smaller than the autocorrelation of the modes.

Microscopic expression for the stress tensor

An essential quantity for the study of the viscoelastic properties of a material
is the stress tensor. We will briefly present here a rather general definition of
the stress and see how it can be related to the Rouse modes. We consider a
small portion of fluid, small enough for all macroscopic gradients to be zero,
and large enough to represent a homogeneous phase. Now let us consider
the quantity (virial):

Aap = <V@ Z mﬂ“a”ﬁ>

where the average is an ensemble average, or a time average over a time span
long enough to smooth out fluctuations, and short enough to assume that the
macroscopic flow is stationary. The sum is over all particles in our control
volume, i.e. particles leaving the control volume are from that moment on
left out of the sum, and particles entering the control volume will from that
moment on contribute to the sum. Since in this case ) | mirgv% is a bounded
quantity, with a well defined average, the average of its time variation must
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be zero, i. e. Ayg = 0 for a, B = x, y, z. Evaluating the derivative we

obtain: d
1 i i oy
= <V Z Vo V) + Z mre, dtﬁ (2.19)

We can quite generally divide the forces actlng on a particle ¢ in two parts:
internal and external to the considered volume F’l = mudv;/dt = F’f”t +
F’fﬂ. The stress tensor component o, is defined as the o component of the
force (per unit area) that the material above a plane perpendicular to the
0 direction exerts on the material below this plane. In this case, assuming
that the net flow is zero (zero average macroscopic velocity), the stress is

ea:t
OaB = § Ti, oF,

Reintroducing this term in equation 2.19 we obtain the microscopic expres-
sion for the stress:

Oap = _<V Z'Ua'l}/g> — <V ZTaFﬂ> (220)

At melt densities the first term in equation 2.20 associated with convective
motion is usually negligible. The second term can be rewritten as

L Z arn (2.21)

where IV is the chain length and 7, is the position of the nth monomer of
the chain. The prefactor accounts for the number of polymer molecules per
unit volume. Assuming that the interaction potential is the same coarse
grained entropic spring potential in the previous section, this expression is
transformed into:

given by:

N
P 3kBT . . .
Oag = N R Z(—(rm_l + Tt — 2rn)5rn7a>
1
p BkBT . .
N 2 Z«rn-f—l =)ot — Tm)ﬂ) (2.22)

1

or in the continuous limit

_ p3kgT [N [ Orne O
Cas = 10 /an e (2.23)

Strictly speaking, one has to add an excluded volume interaction to the
potential U. Let us model the excluded volume by the potential:

v - -
Vv = QkBng(Tn — ) (2.24)
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the stress arising from this potential can be neglected because:

e (L
- —kBTZ < <8rn —0(7 Fm)> (rnp — rmﬁ)>
- Z1<:BTZ < 0 [0(7 = 7o) (g — rm,ﬁ)1>

Orn.a

——kBTZ m)0as) (2.25)

the first term in equation 2.25 is zero and the second term can be omitted
because it is isotropic. Therefore the expression 2.23 holds even for the
chain with the excluded volume effect. This of course does not mean that
the excluded volume does not have any effect on the stress tensor, it does
play a role via the distribution function over which the average in equation
2.23 is taken. Finally we can rewrite 2.23 in normal coordinates, using the

modes:
p 3kgT pw QT
Taf = N2 N v Kpal)Xg5(1)
P,q
. qmn
d g
/ nsm s1n N

= % Zp: pﬂ(t»

PhBT S~ (Xpa () X,5(0)
N2 xR

(2.26)

2.4 The reptation concept

If longer chains are considered, other important effects change the dynamics
and they are no longer predicted by the Rouse model. Entanglement effects
become important when chains exceed significantly an entanglement length
N.. The motion is slowed down drastically, experimentally one finds D
N=2 and n oc N34 (see fig. 2.4). The reptation concept [28] gives a nice
physical picture for this slowing down. The idea is that the chain moves
mainly along its own contour. The reason for this is that the topology of
the surroundings, due to entangled chains, suppresses the motion transverse
to its contour (see fig. 2.5). This contour is called primitive path and its
characteristics are crucial for the rheological properties of the material. The
quantity characterizing the microscopic topology of an entangled melt is the
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Figure 2.4: Evolution of the diffusion coefficient and the viscosity with the
chain length (data from [27])

neighbor chains \

tube = t end-to-end distance

chain topology

Figure 2.5: Representation of the chain primitive path.

entanglement length - the number of monomer units between entanglements
N, (and also its related quantities such as the tube diameter). Here we
present a calculation of these quantities inspired by ref. [29] and ref. [6, 30].
The following model is based on the idea that there is a relation between the
sizes of the polymer coils and the degree to which they are entangled with
each other. Basically, the idea is that the larger the dimensions of a chain,
the greater the volume it sweeps out, so the greater the number of other
chains it will encounter and with which it might entangle. This requires a
knowledge of the volume the chain occupies (just given by 1/pcp, with pep
the number of chains per unit volume) and also the volume “pervaded” by
the chain, that is, the volume spanned by the chain, which is quite difficult
to calculate. Here we will approximate this volume by Vj,, the volume of
the smallest sphere which completely contains the chain. We assume this is
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proportional to the cube of the radius of gyration:
Vip = A x R}, (2.27)

where A is a constant of order unity. Let n., be the number of chains of
length N that would completely fill a volume V. Then we have

Neh = Vsppch (2.28)

Now n., — 1 can also be considered as the number of chains with which a
particular chain is entangled, since that is the number of other chains that
are in the volume it pervades. In a highly entangled melt, n., will be a large
number. For shorter chains, there is less entanglement and n., becomes
smaller. We may now ask, what is the number of chains n., in Vs, when
N = N_.?7 Let us define N, as the length of a chain at which n., = 2, that
is, when there is just one other chain in the spanned volume. For N < N,
there is thus no full chain in that volume, so there is no entanglement. Using
equation 2.6 this leads to the following expression:

Vep(Ne)p/Ne = :/4653\/]76,0 =2 (2.29)

and thus the entanglement length is

24 1

. = EW (2.30)

We see that this parameter depends only on the microscopic structure of
the polymer. To quantify the bulkiness of the polymer we can define a
microscopic characteristic length called the packing length:
V0 1 1
=2 =___ =_ - 2.31
P20 7 02 ™ palR) (231
where vg is the volume of a monomer and b is the effective bond length
(equation 2.1). So the universal relation between the microscopic structure
and the entanglement length is

N, o p°p (2.32)

and the tube diameter or equivalently the Kuhn length of the primitive path
is given by

di =al, = Nb
(R?)

Lpp
= N.bobx (2.33)
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where Ly, is the length of the primitive path.

From a dynamical point of view for short time scales the motion of the
chain cannot be distinguished from that of a Rouse chain. The typical time
for the onset of entanglement constraint motion is 7, o N2. As a result one
has Rouse like behavior for short times, then a Rouse random walk relaxation
along a coarse grained structure of displacements of length dr so that the
power law for g1 (t) becomes a t'/* power law. On this time scale the chain
is going back and forth in the reptation tube - the so called “local reptation”.
After the chain along this coarse grained path is relaxed (t > 7 o« N?), it
has only moved a distance on the order of the square root of the contour
length of the tube. Then an overall diffusion along the tube yields a second
t1/2 regime for the motion in space. Finally, after a time 74 o N3 /N, called
the disentanglement time, an overall diffusion in space takes place - on this
time scale the chain “reptates out” of the initial tube it was constraint in.
Thus the following general power law is expected:

th t <19
tY2, t<7,~ N2
g(t) o< tY4 t < TR~ N? (2.34)
t2 t <1y~ N3/N,
tl, t> Ty

The presence of entanglements is experimentally well seen in the stress au-
tocorrelation function:

4
~ kgT
This function displays a plateau for 7, < t < 74 called the plateau modulus
GY; that is related to the presence of entanglements (see fig. 2.6).

G(1) (0ap(t)0ap(0)), a7 3 (2.35)

109 G § tax M”
' Ty=M?

R

Figure 2.6: A log-log plot of the stress correlation function as a function of
time as predicted by the reptation theory

Its value is given by: [31]

4 kT 4 b?
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However, the reptation idea leaves some unanswered questions. The mea-
sured viscosity scales as N34, contradicting the fact that the largest relax-
ation time 74 oc N3. It is essentially a single chain scenario and the idea
of rigid topological obstacles forming the entanglements is still under dis-
cussion. It is clear that the background moves as well and this leads to
release and reconstruction of constraints. Still the reptation idea remains
the simplest physical frame partially e