*. *. Subroutine-funnycv_min, . V_max, . V_minf, C. V_maxf, *. *. Tblytauf et al., :3) COMMON/itime/in,io DIMENSION xI_fun(1:nx*ny) DIMENSION Vmf(1:nx*ny,1:2) DIMENSION gatef(1:3,1:nx*ny) DIMENSION g_inf(1:3,1:nx*ny) do k=1,nx*ny xI_fun(k) = 0.6363*gatef(2,k)*( Vmf(k,in)+40.d0 ) enddo end, ) IMPLICIT REAL*8 (A-H, O-Z) COMMON/isize/nx:300), 1 dxI_k1(1:300) COMMON/itime/in,io COMMON/Iions/xI_X1, xI_Na, xxI_k1 DIMENSION Vm(1:nx*nynx*ny) do k=1,nx*ny iv = int((Vm(k,in) -V_min)*dv_inv) div = (Vm(k,in) -V_min)*dv_inv -dble, pp.30303030-30303031

. X_i, xX_i(iv) + div*dxX_i(iv) xI_X1 = gate(1,k)*X_i(k) xI_Na = (4.0d0*gate(2,k)*gate, p.*gate

=. , +. , +. Enddo, *. *. , O. et al., :nx*ny) DIMENSION Vm(1:nx*ny,2) DIMENSION Vmf(1:nx*ny,2) c1 = dt*0.5d0/cap c2 = dt*0.5d0/cap do k=1,nx*ny Vmf(k,in)=Vmf(k,io)-2.d0*funch*0.001*xI_fun(k)*c1!k,io)-Vm(k,in)-(3.d0*Vmf(k,io)-Vmf(k,in)))) enddo end) DIMENSION Vm(1:nx*ny,2) DIMENSION Vmf(1:nx*ny,2) enddo end *, ) IMPLICIT REAL*8 (A-H, O-Z) COMMON/isize/nxgatef,g_inf,taug) IMPLICIT REAL*, p.3030

*. *. Enddo-enddo-end, O. Subroutine-funnyca-h, . V_minf, . V_maxf, and . Tblytauf, tauf(1:30,1:3) COMMON/TBLdytauf:3) COMMON/itime/in,io DIMENSION xI_fun(1:n_x*n_y) DIMENSION Vmf(1:n_x*n_y,1:2) DIMENSION gatef(1:3,1:n_x*n_y) DIMENSION g_inf(1:3,1:n_x*n_y) do k=1,n_x*n_y xI_fun(k) = 0.6363*gatef(2,k)*( Vmf(k,in)+40.d0 ) enddo COMMON, 10e14.4)')t,Vmf(k,in) enddo end Bibliography [1] Brown HF, DiFrancesco D, Noble SJ. How does adrenaline accelerate the heart, pp.30235-236, 1979.

M. Rosen and G. K. Lecture, Biological pacemaking: in our lifetime? Heart Rhythm, pp.418-446, 2005.

A. Plotnikov, E. Sosunov, J. Qu, I. Shlapakova, E. Anyukhovsky et al., Biological Pacemaker Implanted in Canine Left Bundle Branch Provides Ventricular Escape Rhythms That Have Physiologically Acceptable Rates, Circulation, vol.109, issue.4, pp.506-512, 2004.
DOI : 10.1161/01.CIR.0000114527.10764.CC

M. Rosen, P. Brink, I. Cohen, and R. Robinson, Genes, stem cells and biological pacemakers, Cardiovascular Research, vol.64, issue.1, p.23, 2004.
DOI : 10.1016/j.cardiores.2004.05.012

I. Potapova, A. Plotnikov, Z. Lu, D. P. Jr, V. Valiunas et al., Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers, Human Mesenchymal Stem Cells as a Gene Delivery System to Create Cardiac Pacemakers, pp.952-959, 2004.
DOI : 10.1161/01.RES.0000123827.60210.72

V. Valiunas, S. Doronin, L. Valiuniene, I. Potapova, J. Zuckerman et al., Human mesenchymal stem cells make cardiac connexins and form functional gap junctions, The Journal of Physiology, vol.279, issue.suppl, pp.617-626, 2004.
DOI : 10.1113/jphysiol.2003.058719

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1664864

C. Ulens and J. Tytgat, Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels, Journal of Biological Chemistry, vol.276, issue.9, p.60696072, 2001.
DOI : 10.1074/jbc.C000738200

C. Ulens and J. Tytgat, G i and G s -coupled receptors up-regulate the cAMP cascade to modulate HCN2, but not HCN1 pacemaker channels, Eur J Physiol, vol.442, p.928942, 2001.

C. Ulens and S. Siegelbaum, Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry. Neuron, pp.959-70, 2003.

J. Stieber, A. Thomer, B. Much, A. Schneider, M. Biel et al., Molecular Basis for the Different Activation Kinetics of the Pacemaker Channels HCN2 and HCN4, Journal of Biological Chemistry, vol.278, issue.36, pp.33672-33680, 2003.
DOI : 10.1074/jbc.M305318200

J. Stieber, S. Herrmann, S. Feil, J. Lster, R. Feil et al., The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart, Proceedings of the National Academy of Sciences, vol.100, issue.25, p.1523515240, 2003.
DOI : 10.1073/pnas.2434235100

J. Stieber, F. Hofmann, and A. Ludwig, Pacemaker channels and sinus node arrhythmia. Trends Cardiovasc Med, pp.23-31
DOI : 10.1016/j.tcm.2004.02.004

J. Qu, C. Altomare, A. Bucchi, D. Difrancesco, and R. Robinson, Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells. Pflugers Arch, pp.597-601, 2002.

J. Qu, Y. Kryukova, I. Potapova, S. Doronin, M. Larsen et al., MiRP1 Modulates HCN2 Channel Expression and Gating in Cardiac Myocytes, Journal of Biological Chemistry, vol.279, issue.42, pp.43497-502, 2004.
DOI : 10.1074/jbc.M405018200

J. Qu, A. Barbuti, L. Protas, B. Santoro, I. Cohen et al., HCN2 Overexpression in Newborn and Adult Ventricular Myocytes : Distinct Effects on Gating and Excitability, Circulation Research, vol.89, issue.1, pp.8-14, 2001.
DOI : 10.1161/hh1301.094395

J. Miake, E. Marban, and H. Nuss, Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression, Journal of Clinical Investigation, vol.111, issue.10, p.15291536, 2003.
DOI : 10.1172/JCI200317959

J. Miake, E. Marban, and H. B. Nuss, Gene therapy: Biological pacemaker created by gene transfer, Nature, vol.222, issue.6903, pp.132-133, 2002.
DOI : 10.1113/jphysiol.2001.013312

E. Azene, T. Xue, E. Marban, G. Tomaselli, and R. Li, Non-equilibrium behavior of HCN channels: Insights into the role of HCN channels in native and engineered pacemakers, Cardiovascular Research, vol.67, issue.2, pp.263-273, 2005.
DOI : 10.1016/j.cardiores.2005.03.006

T. Xue, E. Marban, and R. Li, Dominant-negative suppression of HCN1-and HCN2-encoded pacemaker currents by an engineered HCN1 construct -Insights into structure-function relationships and multimerization Circ Res, pp.1267-1273, 2002.

T. Xue, H. Cho, F. Akar, S. Tsang, S. Jones et al., Functional Integration of Electrically Active Cardiac Derivatives From Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes: Insights Into the Development of Cell-Based Pacemakers, Circulation, vol.111, issue.1, pp.11-20, 2005.
DOI : 10.1161/01.CIR.0000151313.18547.A2

C. Henrikson, T. Xue, P. Dong, D. Sang, and E. Marban, Identification of a Surface Charged Residue in the S3-S4 Linker of the Pacemaker (HCN) Channel That Influences Activation Gating, Journal of Biological Chemistry, vol.278, issue.16, pp.278-13647, 2003.
DOI : 10.1074/jbc.M211025200

J. Silva and R. Y. , Mechanism of Pacemaking in IK1-Downregulated Myocytes, Circulation Research, vol.92, issue.3, pp.261-263, 2003.
DOI : 10.1161/01.RES.0000057996.20414.C6

H. Yu, J. Wu, I. Potapova, R. Wymore, B. Holmes et al., MinK-Related Peptide 1 : A ?? Subunit for the HCN Ion Channel Subunit Family Enhances Expression and Speeds Activation, Circulation Research, vol.88, issue.12, p.84, 2001.
DOI : 10.1161/hh1201.093511

H. Yu, Z. Lu, Z. Pan, and I. Cohen, Tyrosine kinase inhibition differentially regulates heterologously expressed HCN channels. Pflugers Arch, pp.392-400, 2004.
DOI : 10.1007/s00424-003-1204-y

I. Kehat, L. Khimovich, O. Caspi, A. Gepstein, R. Shofti et al., Electromechanical integration of cardiomyocytes derived from human embryonic stem cells, Nature Biotechnology, vol.101, issue.10, p.10, 1014.
DOI : 10.1006/dbio.2000.9912

B. Santoro and G. Tibbs, The HCN Gene Family: Molecular Basis of the Hyperpolarization-Activated Pacemaker Channels, Annals of the New York Academy of Sciences, vol.18, issue.1 MOLECULAR AND, pp.741-64, 1999.
DOI : 10.1016/0896-6273(92)90182-D

G. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

L. Gepstein, Derivation and Potential Applications of Human Embryonic Stem Cells, Circulation Research, vol.91, issue.10, p.866876, 2002.
DOI : 10.1161/01.RES.0000041435.95082.84

A. Hodgkin and F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

V. Valiunas, R. Weingart, and P. Brink, Formation of Heterotypic Gap Junction Channels by Connexins 40 and 43, Circulation Research, vol.86, issue.2, pp.42-49, 2000.
DOI : 10.1161/01.RES.86.2.e42

S. Moosmang, J. Stieber, X. Zong, M. Biel, F. Hofmann et al., Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues, Eur J Biochem, vol.268, p.16461652, 2001.

D. Difrancesco, A study of the ionic nature of the pacemaker current in calf Purkinje fibres, J Physiol, vol.314, p.377393, 1981.

L. Moore and J. Burt, Gap junction function in vascular smooth muscle: influence of serotonin, Am J Physiol, vol.269, issue.4 2, pp.1481-1490, 1995.

K. Liechty, T. Mackenzie, A. Shaaban, A. Radu, A. Moseley et al., Human mesenchymal stem cells engraft and demonstrate site specific differentiation after in utero implantation in sheep, Nat Med, vol.6, p.12821286, 2002.

S. Kanani, A. Pumir, I. Cohen, and V. Krinski, Incorporating stem cells into cardiac tissue. Hints from mathematical modeling, 2005.

J. Muller-ehmsen, K. Peterson, L. Kedes, P. Whittaker, J. Dow et al., Rebuilding a Damaged Heart: Long-Term Survival of Transplanted Neonatal Rat Cardiomyocytes After Myocardial Infarction and Effect on Cardiac Function, Circulation, vol.105, issue.14, pp.1720-1726, 2002.
DOI : 10.1161/01.CIR.0000013782.76324.92

C. Bender and S. Orszag, Advanced mathematical methods for scientists and engineers, 1984.
DOI : 10.1007/978-1-4757-3069-2

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1972.
DOI : 10.1119/1.1972842