S. Ahmad, M. Ohtomo, and R. Whitworth, Observation of a dislocation source in ice by synchrotron radiation topography, Nature, vol.21, issue.6055, pp.319-659660, 1986.
DOI : 10.1038/319659a0

S. Ahmad and R. Withworth, Dislocation motion in ice: A study by synchrotron X-ray topography, Philosophical Magazine A, vol.51, issue.5, p.749766, 1988.
DOI : 10.1080/14786437608221110

S. Ahmad, C. Shearwood, and R. Whitworth, Dislocation multiplication mechanisms in ice, Physics and chemistry of ice, Proc. Int. Symp. on the Physics and Chemistry of Ice, pp.1-6, 1991.

Y. Ando and N. Kato, X-ray diraction topographs of an elastically distorded crystal, Acta Crystallogr, vol.21, p.284285, 1965.

S. Ando, T. Gotoh, and H. Tonda, Molecular dynamics simulation of ???c+a??? dislocation core structure in hexagonal-close-packed metals, Metallurgical and Materials Transactions A, vol.53, issue.3, p.823829, 2002.
DOI : 10.1007/s11661-002-0151-0

M. F. Ashby, The deformation of plastically non-homogeneous materials, Philosophical Magazine, vol.245, issue.170, p.399424, 1970.
DOI : 10.1016/0001-6160(64)90034-3

A. Authier, S. Lagomarsino, and B. Tanner, X-ray and Neutron Dynamical Diffraction, p.419, 1996.
DOI : 10.1007/978-1-4615-5879-8

I. Baker, Observation of Dislocations in Ice, The Journal of Physical Chemistry B, vol.101, issue.32, pp.61586162-7082, 1997.
DOI : 10.1021/jp963211s

J. Baruchel and J. Härtwig, X-Ray Topography, Encyclopaedia of Condensed Matter Physics, 2005.
DOI : 10.1016/B0-12-369401-9/00639-2

P. Bastie, B. Et, and . Hamelin, La m??thode de Laue refocalis??e ?? haute ??nergie : une technique d'??tude en volume des monocristaux, Le Journal de Physique IV, vol.06, issue.C4, p.1321, 1996.
DOI : 10.1051/jp4:1996402

J. D. Bernal and R. H. Fowler, A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, The Journal of Chemical Physics, vol.1, issue.8, p.515548, 1933.
DOI : 10.1063/1.1749327

J. Chevy, Mécanismes de déformation de la glace monocristalline en torsion : approche expérimentale et modélisation, 2005.

P. Duval, M. F. Ashby, and I. Andermann, Rate-controlling processes in the creep of polycrystalline ice, The Journal of Physical Chemistry, vol.87, issue.21, p.40664074, 1983.
DOI : 10.1021/j100244a014

P. Duval, P. Kalifa, and J. Meyssonnier, Creep constitutive equations for polycristalline ice and eect of microcracking, Ice-structure Interaction. IUTAM-IAHR symposium St. John's, 1989.

J. P. Eberhart, Analyse structurale et chimique des matériaux, p.614, 1989.

B. S. El-dasher, B. L. Adams, and A. D. Rollett, Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals, Scripta Materialia, vol.48, issue.2, p.141145, 2003.
DOI : 10.1016/S1359-6462(02)00340-8

C. Epica and . Members, Eight glacial cycles from an Antarctic ice core, Nature, pp.429-623628, 2004.

A. H. Falls, S. T. Wellingho, Y. Talmon, and E. L. Thomas, A transmission electron microscopy study of hexagonal ice, Journal of Materials Science, vol.2, issue.9, p.27522764, 1983.
DOI : 10.1007/BF00547592

M. Fivel, Etudes numériques à diérentes échelles de la déformation plastique des monocristaux de structure CFC, Thèse INP Grenoble, 1993.

M. Fivel and S. Forest, Plasticité cristalline et transition d'échelle : cas du polycristal, Tech. ing., Matér. mét, issue.M4017, pp.1-111, 2004.

N. H. Fletcher, The chemical physics of ice, p.271, 1970.

A. Fukuda, T. Hondoh, and A. Higashi, Dislocation mechanisms of plastic deformation of ice The growth and deformation of ice crystals, J. de Phys. J. Glaciol, vol.48, issue.210, p.397403, 1954.

M. Guillope and J. P. Poirier, Dynamic recrystallization during creep of singlecrystalline halite : an experimental study, J. Geophys. Res, vol.84, issue.B10, p.55575567, 1979.

A. Guillotin, Etude de la déformation viscoplastique de multicristaux de glace, 2005.

M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, vol.50, issue.1, pp.5-32, 2002.
DOI : 10.1016/S0022-5096(01)00104-1

T. Hahn, International tables for crystallography, Volume A, Space-group symmetry, 1989.

B. Hamelin and P. Bastie, M??thode de Laue refocalis??e ?? haute ??nergie : d??veloppements r??cents, Le Journal de Physique IV, vol.08, issue.PR5, pp.5-38, 1998.
DOI : 10.1051/jp4:1998501

B. Hamelin, P. Bastie, P. Duval, J. Chevy, and M. Montagnat, Lattice distorsion and basal slips bands in deformed ice crystals revealed by hard x-ray diraction, J. Phys. IV, vol.118, p.2733, 2004.

C. S. Hartley and Y. Mishin, Characterization and visualization of the lattice mist associated with dislocation cores, Acta Mater, vol.53, issue.5, p.13131321, 2005.

A. Higashi, Structure and behaviour of grain boundaries in polycristalline ice, J. Glaciol, vol.21, issue.85, p.589605, 1978.

A. Higashi, Lattice defects in ice crystals, X-Ray topographic observations. Hokkaido university press, p.156, 1988.

T. Hondoh, Glide and climb processes of dislocations in ice In Physics and chemistry of ice, Proc. Int. Symp. on the Physics and Chemistry of Ice, pp.1-6, 1991.

T. Hondoh, Nature and behavior of dislocations in ice. in Physics of ice core records, 2000.

T. Hondoh and A. Higashi, Generation and absorption of dislocations at large-angle grain boundaries in deformed ice crystals, The Journal of Physical Chemistry, vol.87, issue.21, p.40444050, 1983.
DOI : 10.1021/j100244a009

T. Hondoh, T. Itoh, and S. Mae, Dislocation mobility for non basal glide in ice measured by in-situ X ray topography, Phil. Mag. A, vol.62, issue.1, p.89102, 1990.

B. K. Horn, Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical Society of America A, vol.4, issue.4, 1987.
DOI : 10.1364/JOSAA.4.000629

W. F. Hosford, Material science : an intermediate text, p.252, 2007.
DOI : 10.1017/CBO9780511618345

D. Hull, Introduction to dislocations, 1975.
DOI : 10.1119/1.1974472

URL : http://dx.doi.org/10.1016/s1369-7021(11)70217-6

M. Ignat and H. J. Frost, GRAIN BOUNDARY SLIDING IN ICE, Le Journal de Physique Colloques, vol.48, issue.C1, pp.48-189195, 1987.
DOI : 10.1051/jphyscol:1987127

URL : https://hal.archives-ouvertes.fr/jpa-00226272

K. Jia, I. Baker, F. Liu, and M. Dudley, Observation of slip transmission through a grain boundary in ice, Journal of Materials Science, vol.126, issue.128, pp.31-23732378, 1996.
DOI : 10.1007/BF01152949

S. J. Jones, X???Ray Topographic Evidence for Prismatic Dislocations in Ice, Journal of Applied Physics, vol.41, issue.6, p.27382739, 1970.
DOI : 10.1063/1.1659296

S. J. Jones and J. W. Glen, Abstract, Journal of Glaciology, vol.8, issue.54, 1969.
DOI : 10.1017/S0022143000027040

W. B. Kamb, Abstract, Journal of Glaciology, vol.56, issue.30, p.3948, 1961.
DOI : 10.1098/rspa.1953.0161

N. Kato and E. R. Lang, A study of Pendellösung fringes in X-ray diraction, Acta. Crystallogr, vol.12, p.787794, 1959.

N. Kato and Y. Ando, Contraction of Pendellösung fringes in distorded crystals, 1966.

A. R. Lang and A. P. Makepeace, Reticulography: a simple and sensitive technique for mapping misorientations in single crystals, Journal of Synchrotron Radiation, vol.3, issue.6, p.313315, 1996.
DOI : 10.1107/S0909049596010515

A. R. Lang and A. P. Makepeace, Synchrotron x-ray reticulography: principles and applications, Journal of Physics D: Applied Physics, vol.32, issue.10A, pp.97-103, 1999.
DOI : 10.1088/0022-3727/32/10A/321

L. Levi, A. M. Achaval, and E. Suraski, Abstract, Journal of Glaciology, vol.6, issue.41, p.691699, 1964.
DOI : 10.1143/JPSJ.18.1261

F. Liu, I. Baker, G. Yao, and M. Dudley, Dislocations and grain boundaries in polycrystalline ice: a preliminary study by synchrotron X-ray topography, Journal of Materials Science, vol.51, issue.10, p.27192725, 1992.
DOI : 10.1007/BF00540695

F. Liu, I. Baker, G. Yao, and M. Dudley, Synchrotron X-ray topography of polycrystalline ice, Proc. IAHR Ice Symposium, p.11151125, 1992.

F. Liu, I. Baker, and M. Dudley, Dynamic observations of dislocation generation at grain boundaries in ice, Philosophical Magazine A, vol.29, issue.5, p.12611276, 1993.
DOI : 10.1080/01418619108221186

F. Liu, I. Baker, and M. Dudley, Dislocation-grain boundary interactions in ice crystals, Philosophical Magazine A, vol.21, issue.1, p.1542, 1995.
DOI : 10.1080/01418619408242205

L. Lliboutry, Traité de Glaciologie Glace-neige-hydrologie nivale. Tome 1, 1964.

P. Mansuy, Contribution à l'étude du comportement viscoplastique d'un multicristal de glace : hétérogénéité de la déformation et localisation expériences et modèles, Thèse Université Joseph Fourier, 2001.

P. Mansuy, J. Meyssonnier, and A. Philip, Localization of deformation in polycrystalline ice: experiments and numerical simulations with a simple grain model, Computational Materials Science, vol.25, issue.1-2, p.142150, 2002.
DOI : 10.1016/S0927-0256(02)00258-6

J. Meyssonnier, Ice ow over a bump : experiment and numerical simulation, J. Glaciol, vol.35, issue.119, p.8597, 1989.

B. Michel and R. O. Ramseier, Classication of river and lake ice, Can. Geotech. J, vol.8, p.3645, 1971.

G. Monnet, B. Devincre, and L. P. Kubin, Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium, Acta Materialia, vol.52, issue.14, 2004.
DOI : 10.1016/j.actamat.2004.05.048

M. Montagnat-rentier, Contribution à l'étude du comportement viscoplastique des glaces des calottes polaires : modes de déformation et simulation du développement des textures, Thèse Université Joseph Fourier, 2001.

J. Muguruma, Eects of surface condition on the mechanical properties of ice crystals, J. Phys. D : Appl. Phys, vol.2, issue.11, p.15171525, 1969.

E. Nadgorny, Dislocation dynamics and mechanical properties of crystals, Progress in Materials Science, vol.31, p.31, 1988.
DOI : 10.1016/0079-6425(88)90005-9

E. Nadgorny, Dislocation dynamics and mechanical properties of crystals, Progress in Materials Science, vol.31, issue.536, 1988.
DOI : 10.1016/0079-6425(88)90005-9

J. F. Nye, Some geometrical relations in dislocated crystals, Acta Metallurgica, vol.1, issue.2, p.153162, 1953.
DOI : 10.1016/0001-6160(53)90054-6

R. Obbard, I. Baker, and D. Iliescu, Grain boundary growing in ice in a scanning electron microscope, J. Glaciol, vol.52, p.169172, 2006.

Y. Okada, T. Hondoh, and S. Mae, Glide motion of dislocations in ice close to the melting temperature, Abstract presented at Int. Symp. on the Physics and Chemistry of Ice, 1996.

Y. Okada, T. Hondoh, and S. Mae, Basal glide of dislocations in ice observed by synchrotron radiation topography, Philosophical Magazine A, vol.21, issue.11, pp.79-28532868, 1999.
DOI : 10.1080/14786437608221110

L. Pauling, The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement, Journal of the American Chemical Society, vol.57, issue.12, p.26802684, 1935.
DOI : 10.1021/ja01315a102

V. F. Petrenko and R. W. Whitworth, Structure of Ordinary Ice Ih, part II : Defects in ice, Dislocations and Plane Defects, 1994.

V. F. Petrenko and R. W. Whitworth, Physics of ice, 1999.
DOI : 10.1093/acprof:oso/9780198518945.001.0001

J. P. Poirier and A. Nicolas, Deformation-induced recrystallization due to progressive misorientation of subgrains, with special reference to mantl peridotites, J. Geol, vol.83, issue.6, p.707720, 1975.

L. Priester, Les joints de grains : de la théorie à l'ingénierie, EDP sciences, vol.500, 2006.

T. Richeton, Dynamique et complexité de la déformation plastique : étude par émission acoustique, Thèse Institut National Polytechnique de Grenoble, 2006.

K. Röttger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs, Lattice constant and thermal expansion of H 2 O and D 2 O ice Ih between 10 and 265 K, Acta Crystallogr. B, vol.50, p.644648, 1994.

C. Shearwood and R. W. Whitworth, X-ray topographic observations of edge dislocation glide on non-basal planes in ice, J. Glaciol, issue.120, pp.35-281283, 1989.

C. Shearwood and R. W. Whitworth, The velocity of dislocations in ice, Philosophical Magazine A, vol.63, issue.2, p.289302, 1991.
DOI : 10.1080/01418619108221186

C. Shearwood and R. W. Whitworth, Novel processes of dislocation multiplication observed in ice, Acta Metallurgica et Materialia, vol.41, issue.1, 1993.
DOI : 10.1016/0956-7151(93)90352-S

N. K. Sinha, Abstract, Journal of Glaciology, vol.21, issue.85, p.385395, 1978.
DOI : 10.1017/S0022143000033554

N. K. Sinha, Experiments on Anisotropic and Rate-Sensitive Strain Ratio and Modulus of Columnar-Grained Ice, Journal of Offshore Mechanics and Arctic Engineering, vol.111, issue.4, p.354360, 1989.
DOI : 10.1115/1.3257107

M. Staker and D. Holt, The dislocation cell size and dislocation density in copper deformed at temperatures beetwen 25 and 700, 1972.

J. W. Steeds, Dislocation Arrangement in Copper Single Crystals as a Function of Strain, Proc. Roy. Soc. A, 292, p.343345, 1966.
DOI : 10.1098/rspa.1966.0139

S. Sun, B. L. Adams, and W. E. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philosophical Magazine A, vol.68, issue.1, p.925, 2000.
DOI : 10.1080/01418619608244382

B. K. Tanner, X-ray diraction topography, 1976.

B. K. Tanner, D. Midgley, and M. Safa, Dislocation contrast in X-ray synchrotron topographs, Journal of Applied Crystallography, vol.10, issue.4, p.281286, 1977.
DOI : 10.1107/S0021889877013491

E. Thibert and F. Dominé, Thermodynamics and Kinetics of the Solid Solution of HCl in Ice, The Journal of Physical Chemistry B, vol.101, issue.18, p.35543565, 1997.
DOI : 10.1021/jp962115o

J. Weertman and J. R. Weertman, Théorie élémentaire des dislocations, 1970.

Y. Wei and J. P. Dempsey, The motion of non-basal dislocations in ice crystals, Philosophical Magazine A, vol.11, issue.1, 1994.
DOI : 10.1080/01418619408242205

R. W. Whitworth, Velocity of dislocations in ice on 0001 and 10 ¯ 10, J. Phys. Chem, vol.87, p.40744078, 1982.

R. Whitworth, J. G. Paren, and J. W. Glen, The velocity of dislocations in ice???a theory based on proton disorder, Philosophical Magazine, vol.4, issue.3, p.409426, 1976.
DOI : 10.1080/00018737500101401

C. Willaime, Initiation à la microscopie électronique par transmission. Minéralogie, sciences des matériaux. Société Française de Minéralogie et Cristallographie, p.437, 1987.

. Fig and . Iv, 4 Figure de pôle pour M75-2(?) Les symboles ronds creux indiquent les plans qui ne diractent pas

. Fig and . Iv, 12 Figure de pôle pour T7(?) grain A. Les symboles ronds creux indiquent les plans qui ne diractent pas. Pr1, Pr2, Pr3 sont les axes de la presse (cf. Fig. IV.1). (Les grains B et C n

. Fig and C. Ivb, 15 Figure de pôle pour T75-1(?) Les symboles ronds creux indiquent les plans qui ne diractent pas. Pr1, Pr2, Pr3 sont les axes de la presse (cf. Fig

. Fig and . Iv, 18 Evolution microstructurale du grain A du tricristal T75-1(?) observée en X-durs refocalisés. Cliché de diraction à 5 taches permettant l'observation des plans d'axe de zone [11 ¯ 20]. L'observation avec fentes pour cette conguration est présentée sur la Figure IV

. Fig and . Iv, 27 Composantes du tenseur de courbure ? pour T75-1(?), grain A

. Fig and . Iv, 29 Composantes du tenseur de courbure ? pour T75-1(?), grain A, à t=39min et sous ?=0.24MPa. Tracé du logarithme des valeurs absolues des composantes ? ij avec couleur selon le signe de ? ij ; l'échelle donne la courbure en m ?1

. Fig and . Iv, 32 Simulation de la déformation du tricristal T75-1(?) par éléments nis (cf. Annexe VIII). a) maillage, contraintes normales calculées au contact plateaux/glace et contraintes principales de traction ; b) déformée du maillage pour un ?t arbitraire (champ des vitesses) ; c)

. Fig and C. Ivb, 34 Figure de pôle pour T75-2(?) Les symboles ronds creux indiquent les plans qui ne diractent pas. Pr1, Pr2, Pr3 sont les axes de la presse (cf. Fig

. Fig and . Iv, 43 Composantes du tenseur de courbure ? pour T75-2(?), grain A

. Fig and . Iv, 45 Composantes du tenseur de courbure ? pour T75-2(?), grain A, à t=19min et sous ?=0.3MPa. Tracé du logarithme des valeurs absolues des composantes ? ij avec couleur selon le signe de ? ij ; l'échelle donne la courbure en m ?1

. Fig and . Iv, 48 Simulation de la déformation du tricristal T75-2(?) par éléments nis (cf. Annexe VIII). a) maillage, contraintes normales calculées au contact plateaux/glace et contraintes principales de traction ; b) déformée du maillage pour un ?t arbitraire (champ des vitesses) ; c)

. Fig and C. Ivb, 50 Figure de pôle pour T18(?) Les symboles ronds creux indiquent les plans qui ne diractent pas. Pr1, Pr2, Pr3 sont les axes de la presse (cf. Fig

. Fig and . Iv, 52 Topogrammes des plans cristallins des grains du tricristal T15-1(?) avant et après déformation (grains B et C : nature des plans non déterminée)

. Fig and . Iv, 54 Topogrammes des plans cristallins des grains du tricristal T15-2(?) avant et en cours de déformation (grains B et C : nature des plans non déterminée). L'encart montre la déformation de T15-2(?) (clone) observé en lumière polarisée

. Fig and . Vii, Comparaison de diérents topogrammes du tricristal T7(?) avant compression Les topogrammes a) et b) ont pour axe de zone [10 ¯ 10], les topogrammes c) et d) ont pour axe de zone