A. Et-poste-de-mesure and .. , 53 3.1. Description des différents éléments assemblés 53 3.2. Connexion fluidique, Poste de mesure, p.56

.. Mesures-de-scellements-des-cellules-sur-la-puce, 61 3.1. Introduction: premières constatations, p.61

.. Optimisation-des-performances-de-la-puce, 68 2.1. Vers une approche multiparamétrique, p.69

S. Bodovitz, T. Joos, and J. Bachmann, Protein biochips: the calm before the storm, Drug Discovery Today, vol.10, issue.4, pp.283-287, 2005.
DOI : 10.1016/S1359-6446(05)03373-8

R. Bashir, BioMEMS: state-of-the-art in detection, opportunities and prospects, Advanced Drug Delivery Reviews, vol.56, issue.11, pp.1565-86, 2004.
DOI : 10.1016/j.addr.2004.03.002

C. Yi, Microfluidics technology for manipulation and analysis of biological cells, Analytica Chimica Acta, vol.560, issue.1-2, pp.1-23, 2006.
DOI : 10.1016/j.aca.2005.12.037

K. C. Cheung and P. Renaud, BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes. Solid State Electronics, pp.551-557, 2006.

H. Andersson, A. Van-den, and . Berg, Microfluidic devices for cellomics: a review, Sensors and Actuators B: Chemical, vol.92, issue.3, pp.315-325, 2003.
DOI : 10.1016/S0925-4005(03)00266-1

J. El-ali, P. K. Sorger, and K. F. Jensen, Cells on chips, Nature, vol.4, issue.7101, pp.442-403, 2006.
DOI : 10.1038/nature05063

O. Geschke, H. Klank, and P. Tellemann, Microsystem engineering of lab-on-a-chip devices, 2004.
DOI : 10.1002/3527601651

M. Campas and I. Katakis, DNA biochip arraying, detection and amplification strategies, TrAC Trends in Analytical Chemistry, vol.23, issue.1, pp.49-62, 2004.
DOI : 10.1016/S0165-9936(04)00104-9

I. Wick and G. Hardiman, Biochip platforms as functional genomics tools for drug discovery, Curr Opin Drug Discov Devel, vol.8, issue.3, pp.347-54, 2005.

D. S. Chen and M. M. Davis, Molecular and functional analysis using live cell microarrays, Current Opinion in Chemical Biology, vol.10, issue.1, pp.28-34, 2006.
DOI : 10.1016/j.cbpa.2006.01.001

D. Castel, Cell microarrays in drug discovery. Drug Discovery Today, pp.616-622, 2006.

J. Voldman, B. Schaack, R. J. Combe, S. Fouqué, B. Berger et al., Engineered systems for the physical manipulation of single cells A drop-chip cell array for high throughput DNA and siRNA transfection combined with drug screening systems: applications in drug screening, Curr Opin Biotechnol Nanobiotechnology Trends in Biotechnology, vol.14, issue.202, pp.3-56, 2002.

F. O. Morin, Y. Takamura, and E. Tamiya, Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives, Journal of Bioscience and Bioengineering, vol.100, issue.2, pp.131-143, 2005.
DOI : 10.1263/jbb.100.131

P. Fromherz, Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells and Brain, Nanoelectronics and information technology

L. Pioufle and B. , Living cells captured on a bio-microsystem devoted to DNA injection, Materials Science and Engineering: C, vol.12, issue.1-2, pp.77-81, 2000.
DOI : 10.1016/S0928-4931(00)00162-4

URL : https://hal.archives-ouvertes.fr/hal-00739228

T. Muller, A 3-D microelectrode system for handling and caging single cells and particles, Biosensors and Bioelectronics, vol.14, issue.3, pp.247-256, 1999.
DOI : 10.1016/S0956-5663(99)00006-8

P. Y. Chiou, A. T. Ohta, and M. C. Wu, Massively parallel manipulation of single cells and microparticles using optical images, Nature, vol.436, issue.7049, pp.436-370, 2005.
DOI : 10.1038/nature03831

H. Lee, A. M. Purdon, and R. M. Westervelt, Manipulation of biological cells using a microelectromagnet matrix, Applied Physics Letters, vol.85, issue.6, pp.85-1063, 2004.
DOI : 10.1063/1.1776339

K. Han and A. B. Frazier, Continuous magnetophoretic separation of blood cells in microdevice format, Journal of Applied Physics, vol.96, issue.10, pp.96-5797, 2004.
DOI : 10.1063/1.1803628

M. Ozkan, Optical Manipulation of Objects and Biological Cells in Microfluidic Devices, Biomedical devices, pp.61-67, 2003.

J. Enger, Optical tweezers applied to a microfluidic system Microfluidic device for single-cell analysis, Lab Chip Anal Chem, vol.25, issue.414, pp.75-3581, 2003.

M. Taketani, M. Baudry, and B. B. , Advances in Network Electrophysiology Using Multi- Electrode Arrays 27. Schoen, I. and P. Fromherz, Activation of Na channels in cell membrane by capacitive stimulation with silicon chip Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts, Applied Physics Letters Journal of Electrocardiology, vol.38, issue.4, pp.40-44, 2005.

L. Stoppini, Sprouting and functional recovery in co-cultures between old and young hippocampal organotypic slices 30. Fromherz, P., Semiconductor chips with ion channels, nerve cells and brain, Neuroscience Physica E, vol.80, issue.161, pp.1127-1136, 1997.

M. Jenkner, B. Müller, and P. Fromherz, Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses, Biological Cybernetics, vol.84, issue.4, pp.239-249, 2001.
DOI : 10.1007/s004220000218

A. Stett, Biological application of microelectrode arrays in drug discovery and basic research, Analytical and Bioanalytical Chemistry, vol.377, issue.3, pp.486-95, 2003.
DOI : 10.1007/s00216-003-2149-x

J. Comley, patchers V screeners : divergent opinion on high throughput electrophysiology. drug discovery world fall, Rawn, J.D, vol.34, 2003.

M. Joffre, Electrophysiologie moléculaire I. Editeurs des sciences et des arts ed Paris: Hermann. 163. 36 Automated electrophysiology: high throughput of art, sciences. Dubois, J.M. Assay Drug Dev Technol, vol.1, issue.15, pp.695-708, 2001.

B. Sakmann and E. Neher, Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes, Annual Review of Physiology, vol.46, issue.1, pp.455-72, 1984.
DOI : 10.1146/annurev.ph.46.030184.002323

M. Joffre, I. J. Electrophysiologie-moléculaire, Y. Chen, and M. Li, Editeurs des sciences et des arts ed, ed. c.e.d. sciences High-throughput technologies for studying potassium channels-progresses and challenges. drug discovery today, pp.32-38, 2001.

L. Catacuzzeno, Characterization of the large-conductance Ca-activated K channel in myocytes of rat saphenous artery, Pfl???gers Archiv European Journal of Physiology, vol.441, issue.2-3, pp.208-218, 2000.
DOI : 10.1007/s004240000414

J. C. Venter, The sequence of the human genome 291(5507): p. 1304-1351. 43. Nilius, B. and G. Droogmans, Ion channels and their functional role in vascular endothelium, Science Physiol Rev, issue.4, pp.81-1415, 2001.

M. E. Curran, Potassium ion channels and human disease: phenotypes to drug targets?, Current Opinion in Biotechnology, vol.9, issue.6, pp.565-72, 1998.
DOI : 10.1016/S0958-1669(98)80133-X

M. C. Sanguinetti, A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel, Cell, vol.81, issue.2, pp.299-307, 1995.
DOI : 10.1016/0092-8674(95)90340-2

J. Xu, Ion-channel assay technologies: quo vadis? Drug Discovery Today, pp.1278-1287, 2001.
DOI : 10.1016/s1359-6446(01)02095-5

D. Owen and A. Silverthorne, Channeling drug discovery, current trends in ion channel discovery research. drug discovery world, pp.48-61, 2002.

G. C. Terstappen, Ion channel screening technologies today. Drug Discovery Today: Technologies, pp.133-140, 2005.

D. Picollet, N. Hahan, and O. P. Hamill, Chapitre 11: Canaux ioniques et patch-clamp. Dans: NanoBiotechnologies, ed. Belin. parution fin Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch, vol.50, issue.2, pp.391-85, 1981.

M. Lindau and E. Neher, Patch-clamp techniques for time-resolved capacitance measurements in single cells, Pfl???gers Archiv European Journal of Physiology, vol.411, issue.2, pp.137-146, 1988.
DOI : 10.1007/BF00582306

J. L. Rae and R. A. Levis, [3] Glass technology for patch clamp electrodes, Methods Enzymol, vol.207, pp.66-92, 1992.
DOI : 10.1016/0076-6879(92)07005-9

B. Sakmann and E. Neher, Geometric parameters of pipettes and membrane patches In: Single-Channel Recording. Second Edition, pp.637-650, 1995.

A. Penner, R. Sigworth, and F. J. , A pratical guide to patch-clamping Single-Channel Recording. Second Edition Electronic Design of the Patch-clamp. In: Single-Channel Recording. Second Edition Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels The channelopathies: novel insights into molecular and genetic mechanisms of human disease, Biophys J J Clin Invest, vol.55, issue.8148, pp.3-28, 1993.

F. Aschcroft, F. J. Sigworth, and K. G. Klemic, Ion channels and disease, IEEE Trans Nanobioscience, vol.4, issue.1, pp.121-128, 2000.
DOI : 10.1093/med/9780199204854.003.0404

D. M. Roden, Drug-induced prolongation of the QT interval, N Engl J Med, vol.350, issue.10, pp.1013-1022, 2004.

H. Tao, Cell isolation for high quality electrophysiological measurements on planar electrodes KV1.1 K(+) channels identification in human breast carcinoma cells: involvement in cell proliferation, Biochem Biophys Res Commun, vol.64, issue.2, pp.278-272, 2000.

H. Ouadid-ahidouch, Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells, Biochemical and Biophysical Research Communications, vol.316, issue.1, pp.316-244, 2004.
DOI : 10.1016/j.bbrc.2004.02.041

H. Ouadid-ahidouch, Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression, AJP: Cell Physiology, vol.287, issue.1, pp.125-134, 2004.
DOI : 10.1152/ajpcell.00488.2003

C. S. Lin, Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation, Journal of Experimental Medicine, vol.177, issue.3, pp.637-645, 1993.
DOI : 10.1084/jem.177.3.637

A. Bringmann, Role of glial K+ channels in ontogeny and gliosis: A hypothesis based upon studies on M???ller cells, Glia, vol.11, issue.1, pp.35-44, 2000.
DOI : 10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-A

N. J. Willumsen, High throughput electrophysiology: new perspectives for ion channel drug discovery. Receptors Channels, pp.3-12, 2003.

D. Picollet, N. Hahan, F. J. Sigworth, and K. G. Klemic, Chapitre 20: Puces patch-clamp. Dans: NanoBiotechnologies, ed. Belin. parution fin, Biophys J, vol.71, issue.6, pp.82-2831, 2002.

M. Asmild, Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptors Channels, pp.49-58, 2003.

A. Lepple-wienhues, Flip the tip: an automated, high quality, cost-effective patch clamp screen. Receptors Channels, pp.13-20, 2003.

J. Pihl, M. Karlsson, and D. T. Chiu, Microfluidic technologies in drug discovery, Drug Discovery Today, vol.10, issue.20, pp.1377-1383, 2005.
DOI : 10.1016/S1359-6446(05)03571-3

J. Pihl, Microfluidics for cell-based assays, Materials Today, vol.8, issue.12, pp.46-51, 2005.
DOI : 10.1016/S1369-7021(05)71224-4

J. Sinclair, Stabilization of High-Resistance Seals in Patch-Clamp Recordings by Laminar Flow, Analytical Chemistry, vol.75, issue.23, pp.75-6718, 2003.
DOI : 10.1021/ac0346611

K. G. Klemic, Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosensors and Bioelectronics, vol.17, issue.6-7, pp.6-7, 2002.
DOI : 10.1016/S0956-5663(02)00015-5

N. Fertig, R. H. Blick, and J. C. Behrends, Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip, Biophysical Journal, vol.82, issue.6, pp.3056-3062, 2002.
DOI : 10.1016/S0006-3495(02)75646-4

N. Fertig, Microstructured Apertures in Planar Glass Substrates for Ion Channel Research, Receptors and Channels, vol.9, issue.1, pp.29-40, 2003.
DOI : 10.1080/10606820308256

N. Fertig, Microstructured glass chip for ion-channel electrophysiology High throughput ion-channel pharmacology: planar-array-based voltage clamp, Phys Rev E Stat Nonlin Soft Matter Phys Assay Drug Dev Technol, vol.644, issue.11 2, pp.127-135, 2001.

K. Schroeder, IonWorksTM HT: A New High-Throughput Electrophysiology Measurement Platform, Journal of Biomolecular Screening, vol.8, issue.1, pp.50-64, 2003.
DOI : 10.1177/1087057102239667

F. Alan, Population patch clamp improves data consistency and success rates in the measurement of ionic currents Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance, J Biomol Screen Assay Drug Dev Technol, vol.11, issue.84 15, pp.488-496, 2003.

A. Brueggemann, Ion channel drug discovery and research : the automated nano-patch-clamp technology. current drug discovery, pp.91-96, 2004.
DOI : 10.2174/1570163043484833

A. Bruggemann, Technology, ASSAY and Drug Development Technologies, vol.1, issue.5, pp.665-673, 2003.
DOI : 10.1089/154065803770381020

A. Stett, CYTOCENTERING: a novel technique enabling automated cell-by-cell patch clamping with the CYTOPATCH chip. Receptors Channels, pp.59-66, 2003.

K. G. Klemic, J. F. Klemic, and F. J. Sigworth, An air-molding technique for fabricating PDMS planar patch-clamp electrodes, Pfl???gers Archiv - European Journal of Physiology, vol.1, issue.6, pp.449-564, 2005.
DOI : 10.1007/s00424-004-1360-8

X. Li, Microfluidic System for Planar Patch Clamp Electrode Arrays, Nano Letters, vol.6, issue.4, pp.815-819, 2006.
DOI : 10.1021/nl060165r

J. Seo, Integrated multiple patch-clamp array chip via lateral cell trapping junctions, Applied Physics Letters, vol.84, issue.11, pp.1973-1975, 2004.
DOI : 10.1063/1.1650035

C. Ionescu-zanetti, Mammalian electrophysiology on a microfluidic platform, Proceedings of the National Academy of Sciences, vol.102, issue.26, pp.112-117, 2005.
DOI : 10.1073/pnas.0503418102

C. Schmidt, M. Mayer, and H. Vogel, A Chip-Based Biosensor for the Functional Analysis of Single Ion Channels, Angew Chem Int Ed Engl, issue.17, pp.39-3137, 2000.

J. Q. Ly, G. Shyy, D. L. Misner, and N. , Assessing hERG Channel Inhibition Using PatchXpress Journal of the Association for Laboratory Automation A silicon-based "Multi-Patch" device for ion channel current sensing. Sensor letters, pp.225-230, 2004.

D. P. Corey and C. F. Stevens, Science and Technology of Patch-Recording Electrodes, pp.53-68, 1983.
DOI : 10.1007/978-1-4615-7858-1_3

A. Marty and E. Neher, Tight-seal whole-cell recording In: Single-Channel Recording. Second Edition, pp.31-51, 1995.

T. Sordel, A silicon-based Mutli-Patch device: application for ionic currents sensoring on single cells Proceedings in Micro Total Analysis Systems Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics, Biosens Bioelectron, issue.3, pp.20-509, 2004.

T. Sordel, Une nouvelle génération de biocapteur pour accélérer la mesure des courants ioniques cellulaires, Poster 16 èmes Rencontres Régionales de la Recherche en Rhône-Alpes, 2006.

B. Straub, E. Meyer, and P. Fromherz, Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing, Nature Biotechnology, vol.19, issue.2, pp.121-125, 2001.
DOI : 10.1038/84369

R. Busse, A. Mülsch, and I. Fleming, Mechanisms of nitric oxide release from vascular endothelium, Circulation, vol.87, pp.18-25, 1993.

B. M. Gumbiner, Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis, Cell, vol.84, issue.3, pp.345-57, 1996.
DOI : 10.1016/S0092-8674(00)81279-9

T. Sordel, Influence of glass and polymer coatings on CHO cell morphology and adhesion, Biomaterials, vol.28, issue.8, 2006.
DOI : 10.1016/j.biomaterials.2006.10.032

D. W. Tank, C. Miller, and W. W. Webb, Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax., Proceedings of the National Academy of Sciences, vol.79, issue.24
DOI : 10.1073/pnas.79.24.7749

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC347425

L. R. Opsahl and W. W. Webb, Lipid-glass adhesion in giga-sealed patch-clamped membranes, Biophysical Journal, vol.66, issue.1, pp.75-84, 1994.
DOI : 10.1016/S0006-3495(94)80752-0

M. Sondermann, High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.4, pp.545-551, 2006.
DOI : 10.1016/j.bbamem.2006.03.023

R. E. Díaz-rivera and B. Rubinsky, Electrical and thermal characterization of nanochannels between a cell and a silicon based micro-pore, Biomedical Microdevices, vol.10, issue.1, pp.25-34, 2006.
DOI : 10.1007/s10544-006-6379-5

A. Ruknudin, M. J. Song, and F. Sachs, The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy, The Journal of Cell Biology, vol.112, issue.1, pp.125-134, 1991.
DOI : 10.1083/jcb.112.1.125

M. Dowell, M. , and E. Gray, An optimal cell detection technique for automated patch clamping, NASA/TM, pp.1-8, 2004.

F. M. Fowkes, Attrative forces at interfaces. Industrial engineering chemistry, pp.40-52, 1964.
DOI : 10.1021/ie50660a008

D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science, vol.13, issue.8, pp.13-1741, 1969.
DOI : 10.1002/app.1969.070130815

A. Dupré, Théorie mécanique de la chaleur

R. J. Good and L. A. Girifalco, A THEORY FOR ESTIMATION OF SURFACE AND INTERFACIAL ENERGIES. III. ESTIMATION OF SURFACE ENERGIES OF SOLIDS FROM CONTACT ANGLE DATA, The Journal of Physical Chemistry, vol.64, issue.5, pp.561-565, 1960.
DOI : 10.1021/j100834a012

T. Sordel, Plasma O 2 treatment on SiO 2 coating improves the cell/surface interactions for patch-clamp measurements on chip, 2006.

B. Matthews and J. W. Judy, Characterization of a micromachined planar patchclamp for cellular electrophysiology, IEEE-EMBS International Conference on Neural Engineering, pp.648-651, 2003.

K. Benndorf, Low-Noise Recording, pp.129-145, 1995.
DOI : 10.1007/978-1-4419-1229-9_5

T. Sordel, Hourglass SiO2 coating increases the performance of planar patch-clamp, Journal of Biotechnology, vol.125, issue.1, pp.142-154, 2006.
DOI : 10.1016/j.jbiotec.2006.02.008

URL : https://hal.archives-ouvertes.fr/inserm-00381712

M. C. Peterman, Ion Channels and Lipid Bilayer Membranes Under High Potentials Using Microfabricated Apertures, Biomedical Microdevices, issue.43, pp.231-236, 2003.

S. J. Kim, Inwardly rectifying K + channels in the basolateral membrane of rat pancreatic acini, Pfl???gers Archiv European Journal of Physiology, vol.441, issue.2-3, pp.331-340, 2000.
DOI : 10.1007/s004240000427

M. C. Sanguinetti and M. , Tristani-Firouzi, hERG potassium channels and cardiac arrhythmia, Nature, issue.7083, pp.440-463, 2006.
DOI : 10.1038/nature04710

J. Wang, Functional and pharmacological properties of canine ERG potassium channels, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.1, pp.256-267, 2003.
DOI : 10.1152/ajpheart.00220.2002

J. G. Trapani and S. J. Korn, Control of ion channel expression for patch clamp recordings using an inducible expression system in mammalian cell lines, BMC Neuroscience, vol.4, issue.1, p.15, 2003.
DOI : 10.1186/1471-2202-4-15

B. J. Polk, Ag/AgCl microelectrodes with improved stability for microfluidics, Sensors and Actuators B: Chemical, vol.114, issue.1, pp.239-247, 2006.
DOI : 10.1016/j.snb.2005.03.121

P. Tabling, Introduction à la microfluidique, 2003.

S. D. Minteer and Y. Microfluidic-techniques-berdichevsky, Reviews and protocols UV/ozone modification of poly(dimethylsiloxane) microfluidic channels, Sensors and Actuators B: Chemical, issue.2, pp.97-402, 2004.

Y. Shik and S. , PDMS-based micro PCR chip with Parylene coating, Journal of Micromechanics and Microengineering, vol.13, issue.5, pp.768-774, 2003.

E. Palma, Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors, Proceedings of the National Academy of Sciences of the United States of America, 2003.

R. Miledi, Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes, Proceedings of the National Academy of Sciences of the United States of America, pp.13238-13242, 2002.
DOI : 10.1073/pnas.192445299

M. H. Wang, A technical consideration concerning the removal of oocyte vitelline membranes for patch clamp recording, Biochemical and Biophysical Research Communications, vol.324, issue.3, pp.971-972, 2004.
DOI : 10.1016/j.bbrc.2004.09.162

F. Mugele and J. Baret, Electrowetting: from basics to applications, Journal of Physics: Condensed Matter, vol.17, issue.28, pp.705-774, 2005.
DOI : 10.1088/0953-8984/17/28/R01

URL : http://doc.utwente.nl/54091/1/electrowetting.pdf

J. Berthier, Computer aided design of an EWOD microdevice. Sensors & Actuators: A. Physical, pp.283-294, 2006.

Y. Fouillet, Design and validation of a complex generic fluidic microprocessor based on ewod droplet for biological applications, Proceedings of µTAS 2005 conference, p.58, 2005.

L. Bacri, Ionic Channel Behavior of Modified Cyclodextrins Inserted in Lipid Membranes, Langmuir, vol.21, issue.13, pp.5842-5846, 2005.
DOI : 10.1021/la047211s

H. T. Tien and A. Ottava-leitmannova, Planar lipid bilayers (BLMs) and their application, 2003.

M. Mayer, Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Planar Lipid Bilayers, Biophysical Journal, vol.85, issue.4, pp.2684-2695, 2003.
DOI : 10.1016/S0006-3495(03)74691-8

T. Urisu, Formation of high-resistance supported lipid bilayer on the surface of a silicon substrate with microelectrodes, Nanomedicine: Nanotechnology, Biology and Medicine, vol.1, issue.4, pp.317-322, 2005.
DOI : 10.1016/j.nano.2005.10.002

R. Pantoja, Bilayer Reconstitution of Voltage-Dependent Ion Channels using a Microfabricated Silicon Chip, Biophysical Journal, vol.81, issue.4, pp.2389-2394, 2001.
DOI : 10.1016/S0006-3495(01)75885-7

A. Simon, Formation and stability of a suspended lipid bilayer on silicon submicron size pores, 2006.

W. H. Coulter, Means for counting particles suspended in a fluid, US patent No, vol.2656508, 1953.

H. E. Kubitschek, Electronic Counting and Sizing of Bacteria, Nature, vol.10, issue.4630, pp.234-235, 1958.
DOI : 10.1038/182234a0

R. W. Deblois, C. P. Bean, and R. K. Wesley, Electrokinetic measurements with submicron particles and pores by the resistive pulse technique, Journal of Colloid and Interface Science, vol.61, issue.2, pp.61-323, 1977.
DOI : 10.1016/0021-9797(77)90395-2

R. W. Deblois, C. P. Bean, L. Mery, C. Zawar, A. Suckow et al., Counting and Sizing of Submicron Particles by the Resistive Pulse Technique, Stühmer, V. Flockerzi, and M. Hoth, pp.909-916, 1970.
DOI : 10.1063/1.1684724

J. Xu, X. Wang, B. Ensign, M. Li, L. Wu et al., Ion-channel assay technologies: quo vadis?, Drug Discovery Today, vol.6, issue.24, p.1278, 2001.
DOI : 10.1016/S1359-6446(01)02095-5

F. J. Sigworth and K. G. Klemic, Patch Clamp on a Chip, Biophysical Journal, vol.82, issue.6, p.2831, 2002.
DOI : 10.1016/S0006-3495(02)75625-7

N. Fertig, R. H. Blick, and J. C. Behrends, Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip, Biophysical Journal, vol.82, issue.6, p.3056, 2002.
DOI : 10.1016/S0006-3495(02)75646-4

N. Fertig, M. Klau, M. George, R. H. Blick, and J. C. Behrends, Activity of single ion channel proteins detected with a planar microstructure, Applied Physics Letters, vol.81, issue.25, p.4865, 2002.
DOI : 10.1063/1.1531228

K. G. Klemic, J. F. Klemic, M. A. Reed, and F. J. Sigworth, Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosensors and Bioelectronics, vol.17, issue.6-7, p.597, 2002.
DOI : 10.1016/S0956-5663(02)00015-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.3017

N. Fertig, M. George, M. Klau, C. Meyer, A. Tilke et al., Microstructured Apertures in Planar Glass Substrates for Ion Channel Research, Receptors and Channels, vol.9, issue.1, p.29, 2003.
DOI : 10.1080/10606820308256

M. Asmild, N. Oswald, K. M. Krzywkowski, S. Friis, R. B. Jacobsen et al., Upscaling and Automation of Electrophysiology: Toward High Throughput Screening in Ion Channel Drug Discovery, Receptors and Channels, vol.9, issue.1, pp.49-58, 2003.
DOI : 10.1080/10606820308258

A. Bruggemann, M. George, M. Klau, M. Beckler, J. Steindl et al., Technology, ASSAY and Drug Development Technologies, vol.1, issue.5, pp.665-673, 2003.
DOI : 10.1089/154065803770381020

R. Busse, A. Mülsch, and I. Fleming, Mechanisms of nitric oxide release from vascular endothelium, Circulation, vol.87, pp.18-25, 1993.

K. C. Cheung, T. Kubow, and L. P. Lee, Individually addressable planar patch clamp array, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578), 2002.
DOI : 10.1109/MMB.2002.1002267

D. P. Corey and C. F. Stevens, Science and technology of patchrecording electrodes, Single- Channel Recording, pp.53-68, 1983.

N. Fertig, R. H. Blick, and J. C. Behrends, Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip, Biophysical Journal, vol.82, issue.6, pp.3056-3062, 2002.
DOI : 10.1016/S0006-3495(02)75646-4

N. Fertig, M. George, M. Klau, C. Meyer, A. Tilke et al., Microstructured Apertures in Planar Glass Substrates for Ion Channel Research, Receptors and Channels, vol.9, issue.1, pp.29-40, 2003.
DOI : 10.1080/10606820308256

K. G. Klemic, J. F. Klemic, and F. J. Sigworth, An air-molding technique for fabricating PDMS planar patch-clamp electrodes, Pfl???gers Archiv - European Journal of Physiology, vol.1, issue.6, pp.564-572, 2005.
DOI : 10.1007/s00424-004-1360-8

T. F. Kosar, N. L. Stucky, C. Chen, K. J. Kim, and A. Folch, Nanohole arrays for parallel patch-clamping and focal delivery of biochemical factors to cells, Proc. Micro Total Anal. Syst, pp.25-28, 2003.

J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen et al., Automated Patch-Clamp Technology: System Characteristics and Performance, ASSAY and Drug Development Technologies, vol.1, issue.5, pp.685-693, 2003.
DOI : 10.1089/154065803770381048

T. Lehnert, R. Netzer, U. Bischoff, and M. A. Gijs, SiO 2 nozzle array-based patch-clamp microsystem, Proc. Micro Total Anal. Syst, vol.1, pp.28-30, 2002.
DOI : 10.1007/978-94-010-0295-0_9

B. Matthews and J. W. Judy, Characterization of a micromachined planar patch clamp for cellular electrophysiology, First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings., pp.648-651, 2003.
DOI : 10.1109/CNE.2003.1196912

M. Dowell, M. Gray, and E. , An optimal cell detection technique for automated patch clamping, NASA/TM, pp.1-8, 2004.

B. Nilius and G. Droogmans, Ion channels and their functional role in vascular endothelium, Physiol. Rev, vol.81, pp.1415-1459, 2001.

D. Owen and A. Silverthorne, Channeling drug discovery, current trends in ion channel discovery research. Drug Discov, pp.48-61, 2002.

S. Pandey, R. Mehrotra, S. Wykosky, and M. H. White, Characterization of a MEMS BioChip for planar patch-clamp recording. Solid-State Electron, pp.2061-2066, 2004.

R. Pantoja, J. M. Nagarah, D. M. Starace, N. A. Melosh, R. Blunck et al., Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics, Biosensors and Bioelectronics, vol.20, issue.3, pp.509-517, 2004.
DOI : 10.1016/j.bios.2004.02.020

N. Picollet-d-'hahan, T. Sordel, S. Garnier-raveaud, F. Sauter, F. Ricoul et al., A Silicon-Based "Multi Patch" Device for Ion Channel Current Sensing, Sensor Letters, vol.2, issue.2, pp.91-94, 2004.
DOI : 10.1166/sl.2004.031

B. Sakmann and E. Neher, Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes, Annual Review of Physiology, vol.46, issue.1, pp.455-472, 1984.
DOI : 10.1146/annurev.ph.46.030184.002323

C. Schmidt, M. Mayer, and H. Vogel, A chip-based biosensor for the functional analysis of single ion channels, Angew. Chem. Int, 2000.

K. Schroeder, B. Neagle, D. J. Trezise, and J. Worley, IonWorksTM HT: A New High-Throughput Electrophysiology Measurement Platform, Journal of Biomolecular Screening, vol.8, issue.1, pp.50-64, 2003.
DOI : 10.1177/1087057102239667

J. Seo, C. Ionescu-zanetti, J. Diamond, R. Lal, and L. P. Lee, Integrated multiple patch-clamp array chip via lateral cell trapping junctions, Applied Physics Letters, vol.84, issue.11, 1973.
DOI : 10.1063/1.1650035

T. Sordel, Hourglass SiO2 coating increases the performance of planar patch-clamp, Journal of Biotechnology, vol.125, issue.1, pp.142-154, 2006.
DOI : 10.1016/j.jbiotec.2006.02.008

URL : https://hal.archives-ouvertes.fr/inserm-00381712

F. J. Sigworth and K. G. Klemic, Patch Clamp on a Chip, Biophysical Journal, vol.82, issue.6, pp.2831-2832, 2002.
DOI : 10.1016/S0006-3495(02)75625-7

R. Skryma, N. Prevarskaya, P. Vacher, and B. Dufy, channels in Chinese hamster ovary (CHO) cells, FEBS Letters, vol.12, issue.2, pp.289-294, 1994.
DOI : 10.1016/0014-5793(94)00690-3

A. Stett, V. Bucher, C. Burkhardt, U. Weber, and W. Nisch, Patch-clamping of primary cardiac cells with micro-openings in polyimide films, Medical & Biological Engineering & Computing, vol.6, issue.2, pp.233-240, 2003.
DOI : 10.1007/BF02344895

A. Stett, C. Burkhardt, U. Weber, P. Van-stiphout, and T. Knott, CYTOCENTERING: a novel technique enabling automated cellby-cell patch clamping with the CYTOPATCH chip, Receptors Channels, vol.9, pp.59-66, 2003.

B. Straub, E. Meyer, and P. Fromherz, Recombinant maxi-K channels on transistor, a prototype of iono-electronic interfacing, Nature Biotechnology, vol.19, issue.2, pp.121-124, 2001.
DOI : 10.1038/84369

H. Tao, S. Ana, D. Guia, A. Huang, M. Ligutti et al., Automated Tight Seal Electrophysiology for Assessing the Potential hERG Liability of Pharmaceutical Compounds, ASSAY and Drug Development Technologies, vol.2, issue.5, pp.497-506, 2004.
DOI : 10.1089/adt.2004.2.497

G. C. Terstappen, Ion channel screening technologies today, Drug Discovery Today: Technologies, vol.2, issue.2, pp.133-140, 2005.
DOI : 10.1016/j.ddtec.2005.05.011

J. G. Trapani and S. J. Korn, Control of ion channel expression for patch clamp recordings using an inducible expression system in mammalian cell lines, BMC Neuroscience, vol.4, issue.1, p.15, 2003.
DOI : 10.1186/1471-2202-4-15

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural et al., The Sequence of the Human Genome, Science, vol.291, issue.5507, pp.1304-1351, 2001.
DOI : 10.1126/science.1058040

URL : https://hal.archives-ouvertes.fr/hal-00465088

X. Wang and M. Li, Automated Electrophysiology: High Throughput of Art, ASSAY and Drug Development Technologies, vol.1, issue.5, pp.695-708, 2003.
DOI : 10.1089/154065803770381057

W. F. Wonderlin, R. J. French, and N. J. Arispe, Recording and Analysis of Currents from Single Ion Channels, Neuromethods: Neurophysiological Techniques: Basic Methods and Concepts, pp.35-142, 1990.
DOI : 10.1385/0-89603-160-8:35

C. Wood, C. Williams, and G. J. Waldron, Patch clamping by numbers, Drug Discovery Today, vol.9, issue.10, pp.434-441, 2004.
DOI : 10.1016/S1359-6446(04)03064-8

J. Xu, Y. Chen, and M. Li, High-throughput technologies for studying potassium channels ??? progresses and challenges, Drug Discovery Today: TARGETS, vol.3, issue.1, pp.32-38, 2004.
DOI : 10.1016/S1741-8372(04)02394-1

J. Xu, A. Guia, D. Rothwarf, M. Huang, K. Sithiphong et al., Planar Patch-Clamp Technology, ASSAY and Drug Development Technologies, vol.1, issue.5, pp.675-684, 2003.
DOI : 10.1089/154065803770381039

I. Jetlight, This treatment renders the surface hydrophilic instead of hydrophobic by oxidizing Si-CH 3 groups

. Si, Japan) were used as substrates (namely chips) and were modified by various treatments Three types of chips were prepared using LETI clean room facilities and were studied: (i) chips coated with a SiO 2 layer grown by thermal oxidation (thermal SiO 2 ), (ii) chips activated by an additional O 2 plasma treatment and (iii) chips coated with an additional SiO 2 layer on the upper side. For this latter SiO 2 coating, two deposition strategies were performed. On one hand, low pressure chemical vapour deposition (LPCVD) resulted into a very uniform and homogeneous deposition with excellent purity. The precursors used were either tetra ethyl ortho silicate (TEOS) or high temperature oxide dichloro silane (HTO DCS) Chemical reactions for HTO oxide and for TEOS are, 0 0) silicon wafers (MEMC or ShinEtsu respectively: SiH 2 Cl 2(g) +2N 2 O (g)

. Si, SiO 2(s) +2H 2(g) On the other hand, PECVD, was obtained by inducing plasma to the reactant gas (SiH 4 ) so as to enhance the chemical reaction on the surface of the wafers. PECVD was deposited at 300 1C with a rate of 1300 A ? /min. LPCVD and PECVD processes resulted in a 1 mm thick SiO 2 layer. Finally, before use, all silicon substrates received a final O 2 plasma treatment performed at 2.45 GHz

A. Andersson, F. Backhed, V. Euler, A. Richter-dahlfors, A. Sutherland et al., Nanoscale features influence epithelial cell morphology and cytokine production, Biomaterials, vol.24, issue.20, pp.3-427, 2003.
DOI : 10.1016/S0142-9612(03)00208-4

A. Andersson, J. Brink, U. Lidberg, and D. Sutherland, Influence of systematically varied nanoscale topography on the morphology of epithelial cells, IEEE Transactions on Nanobioscience, vol.2, issue.2, pp.49-57, 2003.
DOI : 10.1109/TNB.2003.813934

A. Curtis and C. Wilkinson, Topographical control of cells, Biomaterials, vol.18, issue.24, pp.1573-83, 1997.
DOI : 10.1016/S0142-9612(97)00144-0

A. Curtis and C. Wilkinson, Reactions of cells to topography, Journal of Biomaterials Science, Polymer Edition, vol.110, issue.2
DOI : 10.1163/156856298X00415

R. Kane, S. Takayama, E. Ostuni, D. Ingber, and G. Whitesides, Patterning proteins and cells using soft lithography, Biomaterials, vol.20, pp.23-242363, 1999.

B. Mann, A. Tsai, T. Scott-burden, and J. West, Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition, Biomaterials, vol.20, pp.23-242281, 1999.

C. David, D. Lehnert, U. Weiland, M. Bastmeyer, . Wehrle-haller et al., Cell adhesion on micro-and nanopatterned proteincoated substrates, PSI Scientific Report, 2002.

D. Braun and P. Fromherz, Imaging Neuronal Seal Resistance on Silicon Chip using Fluorescent Voltage-Sensitive Dye, Biophysical Journal, vol.87, issue.2, pp.1351-1360, 2004.
DOI : 10.1529/biophysj.104.039990

P. Fromherz, Electrical Interfacing of Nerve Cells and Semiconductor Chips, ChemPhysChem, vol.3, issue.3, pp.276-84, 2002.
DOI : 10.1002/1439-7641(20020315)3:3<276::AID-CPHC276>3.0.CO;2-A

S. Lukas and J. Ahmed, Selective protein adsorption on micro-textured P-type and N-type silicon wafers, Biomed Sci Instrum, vol.41, pp.181-187, 2005.

M. Grattarola, M. Tedesco, A. Cambiaso, G. Perlo, G. Giannetti et al., Cell adhesion to silicon substrata: characterization by means of optical and acoustic cytometric techniques, Biomaterials, vol.9, issue.1, pp.101-107, 1988.
DOI : 10.1016/0142-9612(88)90079-8

T. Sordel, S. Garnier-raveaud, F. Sauter, C. Pudda, F. Marcel et al., Hourglass SiO2 coating increases the performance of planar patch-clamp, Journal of Biotechnology, vol.125, issue.1, pp.142-54, 2006.
DOI : 10.1016/j.jbiotec.2006.02.008

URL : https://hal.archives-ouvertes.fr/inserm-00381712

J. Dewez, A. Doren, Y. Schneider, and P. Rouxhet, Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of epithelial cells, Biomaterials, vol.20, issue.6, pp.547-59, 1999.
DOI : 10.1016/S0142-9612(98)00207-5

D. Cuvelier, A. Viallat, P. Bassereau, and P. Nassoy, Mimicking cell/extracellular matrix adhesion with lipid membranes and solid substrates: requirements, pitfalls and proposals, Journal of Physics: Condensed Matter, vol.16, issue.26, pp.2427-2464, 2004.
DOI : 10.1088/0953-8984/16/26/016

D. Cuvelier, O. Rossier, P. Bassereau, and P. Nassoy, Micropatterned "adherent/repellent" glass surfaces for studying the spreading kinetics of individual red blood cells onto protein-decorated substrates, European Biophysics Journal, vol.32, issue.4, pp.342-54, 2003.
DOI : 10.1007/s00249-003-0282-2

B. Zimerman, T. Volberg, and B. Geiger, Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading, Cell Motility and the Cytoskeleton, vol.112, issue.1, pp.143-59, 2004.
DOI : 10.1002/cm.20005

B. Geiger, CELL BIOLOGY: Encounters in Space, Science, vol.294, issue.5547, pp.1661-1664, 2001.
DOI : 10.1126/science.1066919

A. Bershadsky, N. Balaban, and B. Geiger, Adhesion-Dependent Cell Mechanosensitivity, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.677-95, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.153011

M. Dembo and Y. Wang, Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophysical Journal, vol.76, issue.4, pp.2307-2323, 1999.
DOI : 10.1016/S0006-3495(99)77386-8

N. Balaban, U. Schwarz, D. Riveline, P. Goichberg, G. Tzur et al., Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates, Nature Cell Biology, vol.3, issue.5, pp.466-72, 2001.
DOI : 10.1038/35074532

H. Wang, M. Dembo, and Y. Wang, Substrate flexibility regulates growth and apoptosis of normal but not transformed cells, Am J Physiol Cell Physiol, vol.279, issue.5, pp.1345-50, 2000.

E. Decave, D. Garrivier, Y. Brechet, B. Fourcade, and F. Bruckert, Shear Flow-Induced Detachment Kinetics of Dictyostelium discoideum Cells from Solid Substrate, Biophysical Journal, vol.82, issue.5, pp.2383-95, 2002.
DOI : 10.1016/S0006-3495(02)75583-5

D. Garrivier, E. Decave, Y. Brechet, F. Bruckert, and B. Fourcade, Peeling model for cell detachment, Eur Phys J E Soft Matter, vol.8, issue.1, pp.79-97, 2002.

F. Bruckert, E. Decave, D. Garrivier, P. Cosson, Y. Brechet et al., Dictyostelium discoideum adhesion and motility under shear flow: experimental and theoretical approaches, J Muscle Res Cell Motil, vol.23, pp.7-8651, 2002.

C. Cozens-roberts, J. Quinn, and D. Lauffenburger, Receptor-mediated cell attachment and detachment kinetics. II. Experimental model studies with the radial-flow detachment assay, Biophysical Journal, vol.58, issue.4, pp.857-72, 1990.
DOI : 10.1016/S0006-3495(90)82431-0

M. Borella, M. Plissonnier, I. Chartier, and N. Glade, Process of localization of chemical or biological species on a substrate, microsystem of analysis or biochip, 2006.

C. Jie-rong and W. , Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma, Journal of Applied Polymer Science, vol.63, issue.13, pp.1733-1742, 1997.
DOI : 10.1002/(SICI)1097-4628(19970328)63:13<1733::AID-APP4>3.0.CO;2-H

T. Lehnert, A. Laine, and M. Gijs, Surface modification of SiO 2 micronozzles for patch-clamp measurements on-chip, Proceedings of the seventh international conference on miniaturized chemical and biochemical analysis systems, pp.1085-1093, 2003.

M. Lee, P. Ducheyne, L. Lynch, D. Boettiger, and R. Composto, Effect of biomaterial surface properties on fibronectin?????5??1 integrin interaction and cellular attachment, Biomaterials, vol.27, issue.9, pp.1907-1923, 2006.
DOI : 10.1016/j.biomaterials.2005.11.003

K. Klemic, M. Reed, and F. Sigworth, Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosensors and Bioelectronics, vol.17, issue.6-7, pp.6-7597, 2002.
DOI : 10.1016/S0956-5663(02)00015-5

T. Kreis and R. Vale, Guidebook to the extracellular matrix, anchors and adhesion proteins, 1999.

D. Iuliano and G. Truskey, Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion, Journal of Biomedical Materials Research, vol.26, issue.8, pp.1103-1116, 1993.
DOI : 10.1002/jbm.820270816

J. Steele, C. Mcfarland, B. Dalton, T. Gengenbach, R. Chatelier et al., Roles of serum vitronectin and fibronectin in initial attachment of human vein endothelial cells and dermal fibroblasts on oxygen- and nitrogen-containing surfaces made by radiofrequency plasmas, Journal of Biomaterials Science, Polymer Edition, vol.6, issue.6, pp.511-543, 1994.
DOI : 10.1163/156856291X00269

J. Schakenraad, H. Busscher, C. Wildevuur, and J. Arends, The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins, Journal of Biomedical Materials Research, vol.48, issue.6
DOI : 10.1002/jbm.820200609

J. Dewez, V. Berger, Y. Schneider, and P. Rouxhet, Influence of Substrate Hydrophobicity on the Adsorption of Collagen in the Presence of Pluronic F68, Albumin, or Calf Serum, Journal of Colloid and Interface Science, vol.191, issue.1, pp.1-10, 1997.
DOI : 10.1006/jcis.1997.4908

J. Lhoest, E. Detrait, J. Dewez, P. Van-den-bosch-de-aguilar, and P. Bertrand, A new plasma-based method to promote cell adhesion on micrometric tracks on polystyrene substrates, Journal of Biomaterials Science, Polymer Edition, vol.27, issue.12, pp.1039-54, 1996.
DOI : 10.1163/156856296X00534

G. Altankov, T. Groth, N. Krasteva, A. W. Paul, and D. , Morphological evidence for a different fibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobic glass substrata, Journal of Biomaterials Science, Polymer Edition, vol.28, issue.9, pp.721-761, 1997.
DOI : 10.1163/156856297X00524

C. Dupont-gillain, J. Alaerts, J. Dewez, and P. Rouxhet, Patterned layers of adsorbed extracellular matrix proteins: influence on mammalian cell adhesion, Biomed Mater Eng, vol.14, issue.3, pp.281-91, 2004.

J. Dewez, J. Lhoest, E. Detrait, V. Berger, C. Dupont-gillain et al., Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns, Biomaterials, vol.19, issue.16, pp.1441-1446, 1998.
DOI : 10.1016/S0142-9612(98)00055-6

G. Altankov, Fibronectin matrix formation by human fibroblasts on surfaces varying in wettability, Journal of Biomaterials Science, Polymer Edition, vol.134, issue.4, pp.299-310, 1996.
DOI : 10.1163/156856296X00318

C. Mirley, A Room Temperature Method for the Preparation of Ultrathin SiOx Films from Langmuir-Blodgett Layers, Langmuir, vol.11, issue.4, pp.1049-52, 1995.
DOI : 10.1021/la00004a001

H. Hillborg, N. Tomczak, A. Olah, H. Schonherr, and G. Vancso, Nanoscale Hydrophobic Recovery:?? A Chemical Force Microscopy Study of UV/Ozone-Treated Cross-Linked Poly(dimethylsiloxane), Langmuir, vol.20, issue.3, pp.785-94, 2004.
DOI : 10.1021/la035552k

N. Picollet-d-'hahan, T. Sordel, S. Garnier-raveaud, F. Sauter, F. Ricoul et al., A Silicon-Based "Multi Patch" Device for Ion Channel Current Sensing, Sensor Letters, vol.2, issue.2, pp.91-95, 2004.
DOI : 10.1166/sl.2004.031

R. Gleixner and P. Fromherz, The Extracellular Electrical Resistivity in Cell Adhesion, Biophysical Journal, vol.90, issue.7, 2006.
DOI : 10.1529/biophysj.105.072587

B. Schaack, S. Combe, . Fouque´bfouque´b, F. Berger, S. Boccard et al., A ''drop-chip'' cell array for high throughput DNA and siRNA transfection combined with drug screening, Nanobiotechnology, vol.10, 2005.

J. Fukuda, Y. Sakai, and K. Nakazawa, Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing, Biomaterials, vol.27, issue.7, pp.1061-70, 2006.
DOI : 10.1016/j.biomaterials.2005.07.031

J. Fukuda, A. Khademhosseini, J. Yeh, G. Eng, J. Cheng et al., Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components, Biomaterials, vol.27, issue.8, pp.1479-86, 2006.
DOI : 10.1016/j.biomaterials.2005.09.015

M. Madou, Fundamental in microfabrication: the science of miniaturization, Boca Raton, 2002.

D. Zeng, J. Ulmer, A. Veliigodskiy, P. Fischer, J. Spatz et al., Three-Dimensional Modeling of Mechanical Forces in the Extracellular Matrix during Epithelial Lumen Formation, Biophysical Journal, vol.90, issue.12, pp.4380-91, 2006.
DOI : 10.1529/biophysj.105.073494