B. D. Mcnicol, D. A. Rand, and K. R. Williams, Fuel cells for road transportation purposes ?????? yes or no?, Journal of Power Sources, vol.100, issue.1-2, p.47, 2001.
DOI : 10.1016/S0378-7753(01)00882-5

P. K. Cheekatamarla and C. M. Finnerty, Reforming catalysts for hydrogen generation in fuel cell applications, Journal of Power Sources, vol.160, issue.1, p.490, 2006.
DOI : 10.1016/j.jpowsour.2006.04.078

D. L. Trimm and Z. I. Onsan, ONBOARD FUEL CONVERSION FOR HYDROGEN-FUEL-CELL-DRIVEN VEHICLES, Catalysis Reviews, vol.52, issue.1-2, p.31, 2001.
DOI : 10.1081/CR-100104386

V. A. Sobyanin, S. Cavallaro, and S. Freni, Dimethyl Ether Steam Reforming to Feed Molten Carbonate Fuel Cells (MCFCs), Energy & Fuels, vol.14, issue.6, p.1139, 2000.
DOI : 10.1021/ef990201s

C. J. Jiang, D. L. Trimm, M. S. Wainwright, and N. W. Cant, Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst, Applied Catalysis A: General, vol.97, issue.2, pp.145-170, 1993.
DOI : 10.1016/0926-860X(93)80081-Z

B. A. Peppley, J. C. Amphlett, L. M. Kearns, and R. F. Mann, Methanol???steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model, Applied Catalysis A: General, vol.179, issue.1-2, p.31, 1999.
DOI : 10.1016/S0926-860X(98)00299-3

M. Ziolek, Niobium-containing catalysts???the state of the art, Catalysis Today, vol.78, issue.1-4, p.47, 2003.
DOI : 10.1016/S0920-5861(02)00340-1

K. Tanabe, Catalytic application of niobium compounds, Catalysis Today, vol.78, issue.1-4, p.65, 2003.
DOI : 10.1016/S0920-5861(02)00343-7

P. Carniti, A. Gervasini, S. Biella, and A. Auroux, Intrinsic and Effective Acidity Study of Niobic Acid and Niobium Phosphate by a Multitechnique Approach, Chemistry of Materials, vol.17, issue.24, p.6128, 2005.
DOI : 10.1021/cm0512070

T. Ushikubo, T. Iizuka, H. Hattori, and K. Tanabe, Preparation of highly acidic hydrated niobium oxide, Catalysis Today, vol.16, issue.3-4, p.291, 1993.
DOI : 10.1016/0920-5861(93)80068-C

P. Batamack, R. Vincent, and J. Fraissard, Niobium oxide acidity studied by proton broad-line NMR at 4 K and MAS NMR at room temperature, Catalysis Letters, vol.2, issue.1-2, p.81, 1996.
DOI : 10.1007/BF00807209

H. C. Liu and E. Iglesia, Keggin Structures, The Journal of Physical Chemistry B, vol.107, issue.39, p.10840, 2003.
DOI : 10.1021/jp0301554

T. Shikada, K. Fujimoto, M. Miyauchi, and H. Tominaga, Vapor phase carbonylation of dimethyl ether and methyl acetate with nickel-active carbon catalysts, Applied Catalysis, vol.7, issue.3, p.361, 1983.
DOI : 10.1016/0166-9834(83)80035-9

P. G. Gray, M. I. Petch, S. R. Ellis, J. C. Frost, S. E. Golunski et al., [2] S. Golunski, Platinum Metals Rev, Platinum Metals Rev.J. van Keulen, N.G. Lindewald, J.G. Reinkingh, J. Power Sources, vol.44, issue.123, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00487256

V. A. Sobyanin, S. Cavallaro, and S. Freni, Dimethyl Ether Steam Reforming to Feed Molten Carbonate Fuel Cells (MCFCs), Energy & Fuels, vol.14, issue.6, p.1139, 2000.
DOI : 10.1021/ef990201s

Y. C. Fu, Studies of Some Catalytic Reactions for the Synthesis and Conversion of Methanol-Derived Chemicals, 2005.

M. Ziolek, Niobium-containing catalysts???the state of the art, Catalysis Today, vol.78, issue.1-4, p.47, 2003.
DOI : 10.1016/S0920-5861(02)00340-1

K. Tanabe, Catalytic application of niobium compounds, Catalysis Today, vol.78, issue.1-4, p.65, 2003.
DOI : 10.1016/S0920-5861(02)00343-7

P. Carniti, A. Gervasini, S. Biella, and A. Auroux, Intrinsic and Effective Acidity Study of Niobic Acid and Niobium Phosphate by a Multitechnique Approach, Chemistry of Materials, vol.17, issue.24, p.6128, 2005.
DOI : 10.1021/cm0512070

T. Ushikubo, T. Iizuka, H. Hattori, and K. Tanabe, Preparation of highly acidic hydrated niobium oxide, Catalysis Today, vol.16, issue.3-4, p.291, 1993.
DOI : 10.1016/0920-5861(93)80068-C

P. Batamack, R. Vincent, and J. Fraissard, Niobium oxide acidity studied by proton broad-line NMR at 4 K and MAS NMR at room temperature, Catalysis Letters, vol.2, issue.1-2, p.81, 1996.
DOI : 10.1007/BF00807209

D. M. Antonelli and J. Y. Ying, Synthesis of a Stable Hexagonally Packed Mesoporous Niobium Oxide Molecular Sieve Through a Novel Ligand-Assisted Templating Mechanism, Angewandte Chemie International Edition in English, vol.35, issue.4, p.426, 1996.
DOI : 10.1002/anie.199604261

B. Lee, D. L. Lu, J. N. Kondo, and K. Domen, Three-Dimensionally Ordered Mesoporous Niobium Oxide, Journal of the American Chemical Society, vol.124, issue.38, p.11256, 2002.
DOI : 10.1021/ja026838z

S. Murray, M. Trudeau, and D. M. Antonelli, Synthesis and Magnetic Tuning in Superparamagnetic Cobaltocene-Mesoporous Niobium Oxide Composites, Advanced Materials, vol.12, issue.18, p.1339, 2000.
DOI : 10.1002/1521-4095(200009)12:18<1339::AID-ADMA1339>3.0.CO;2-T

P. Cavalli, F. Cavani, I. Manenti, and F. Trifiro, Ammoxidation of alkylaromatics over V2O5/TiO2 catalysts, Catalysis Today, vol.1, issue.1-2, p.245, 1987.
DOI : 10.1016/0920-5861(87)80043-3

C. N. Satterfield, Heterogeneous Catalysis in Practice, 1980.

I. E. Wachs, Molecular engineering of supported metal oxide catalysts, Chemical Engineering Science, vol.45, issue.8, p.2561, 1990.
DOI : 10.1016/0009-2509(90)80142-2

K. Tanabe, Catalytic application of niobium compounds, Catalysis Today, vol.78, issue.1-4, p.65, 2003.
DOI : 10.1016/S0920-5861(02)00343-7

M. Ziolek, Niobium-containing catalysts???the state of the art, Catalysis Today, vol.78, issue.1-4, p.47, 2003.
DOI : 10.1016/S0920-5861(02)00340-1

C. Martin, D. Klissurski, J. Rocha, and V. Rives, Vanadia???niobia and vanadia???zirconia catalysts: preparation and characterization, Physical Chemistry Chemical Physics, vol.2, issue.7, p.1543, 2000.
DOI : 10.1039/a909606j

D. E. Keller, D. C. Koningsberger, and B. M. Weckhuysen, Support, The Journal of Physical Chemistry B, vol.110, issue.29, p.14313, 2006.
DOI : 10.1021/jp060749h

URL : https://hal.archives-ouvertes.fr/hal-00200143

B. M. Reddy, B. Manohar, and E. P. Reddy, Oxygen chemisorption on titania-zirconia mixed oxide supported vanadium oxide catalysts, Langmuir, vol.9, issue.7, p.1781, 1993.
DOI : 10.1021/la00031a028

P. Carniti, A. Gervasini, S. Biella, and A. Auroux, Intrinsic and Effective Acidity Study of Niobic Acid and Niobium Phosphate by a Multitechnique Approach, Chemistry of Materials, vol.17, issue.24, p.6128, 2005.
DOI : 10.1021/cm0512070

J. Le-bars, J. C. Védrine, A. Auroux, S. Trautmann, and M. Baerns, Microcalorimetric and infrared studies of the acid-base properties of V2O5/??-Al2O3 catalysts, Applied Catalysis A: General, vol.119, issue.2, p.341, 1994.
DOI : 10.1016/0926-860X(94)85201-4

URL : https://hal.archives-ouvertes.fr/hal-00005977

M. T. Xu, J. H. Lunsford, D. W. Goodman, A. Bhattacharyya, J. H. Kim et al., 434, 22. 10 US Pat 12 US Pat 13 US Pat 14 US Pat 1. 19 I. Nowak and M. Ziolek, 014 408 99, 3603. 20 M. Ziolek Bandiera and C. Naccache, pp.423-155, 1179.

P. Cavalli, F. Cavani, I. Manenti, and F. Trifiro, Ammoxidation of alkylaromatics over V2O5/TiO2 catalysts, Catalysis Today, vol.1, issue.1-2, p.245, 1987.
DOI : 10.1016/0920-5861(87)80043-3

M. Wainwright and N. Foster, Catalysts, Kinetics and Reactor Design in Phthalic Anhydride Synthesis, Catalysis Reviews, vol.56, issue.2, p.211, 1979.
DOI : 10.1007/BF02216882

V. Nikolov, D. Klissurski, and A. Anastasov, -Xylene Catalysis: Science and Engineering, Catalysis Reviews, vol.52, issue.5, p.319, 1991.
DOI : 10.1021/j100355a043

URL : https://hal.archives-ouvertes.fr/hal-00190358

B. Grzybowska, The vanadia???titania system in oxidation reactions, Catalysis Today, vol.1, issue.3, p.341, 1987.
DOI : 10.1016/0920-5861(87)80015-9

J. Masamoto, T. Iwaisako, M. Chohno, M. Kawamura, J. Ohtake et al., Development of a new advanced process for manufacturing polyacetal resins. Part I. Development of a new process for manufacturing highly concentrated aqueous formaldehyde solution by methylal oxidation, Journal of Applied Polymer Science, vol.50, issue.8, p.1299, 1993.
DOI : 10.1002/app.1993.070500801

H. C. Liu and E. Iglesia, Keggin Structures, The Journal of Physical Chemistry B, vol.107, issue.39, p.10840, 2003.
DOI : 10.1021/jp0301554

G. Oliveri, G. Ramis, G. Busca, and V. S. Escribano, Thermal stability of vanadia???titania catalysts, J. Mater. Chem., vol.151, issue.12, p.1239, 1993.
DOI : 10.1039/JM9930301239

S. Besselmann, C. Freitag, O. Hinrichsen, and M. Muhler, Temperature-programmed reduction and oxidation experiments with V2O5/TiO2 catalysts, Physical Chemistry Chemical Physics, vol.3, issue.21, p.4633, 2001.
DOI : 10.1039/b105466j

A. P. Kulkarni and D. S. Muggli, Submitted to Catalysis Communications High surface area carbons as acidic components with Cu-ZnO, Appl. Catal. A, vol.302, issue.274, 2006.

Y. Hao-shen-a and . Fu, China a Institut de Recherches sur la Catalyse et l'Environnement de Lyon, CNRS-Université Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France b * Corresponding author E-mail: jyshen@nju.edu.cn Phone and Fax: (+86) the National Science Foundation of China (20373023) and the High Tech. Program of Jiangsu Province of China, pp.25-83594305, 210093.

P. G. Gray, M. I. Petch, S. R. Ellis, J. C. Frost, S. E. Golunski et al., References [2] S. Golunski, Platinum Metals Rev, Platinum Metals Rev.J. van Keulen, N.G. Lindewald, J.G. Reinkingh, J. Power Sources, vol.44, issue.123, 1998.

R. D. Cortright, R. R. Davda, and J. A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature, vol.3, issue.6901, p.964, 2002.
DOI : 10.1016/0009-2509(92)87075-2

Y. C. Fu, Studies of Some Catalytic Reactions for the Synthesis and Conversion of Methanol-derived Chemicals, 2005.

B. A. Peppley, J. C. Amphlett, L. M. Kearns, and R. F. Mann, Methanol???steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model, Applied Catalysis A: General, vol.179, issue.1-2, p.31, 1999.
DOI : 10.1016/S0926-860X(98)00299-3

S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. M. Qiao et al., KOH activation of carbon nanofibers, Carbon, vol.42, issue.8-9, p.1723, 2004.
DOI : 10.1016/j.carbon.2004.03.006

A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, vol.34, issue.4, p.471, 1996.
DOI : 10.1016/0008-6223(95)00204-9

M. J. Illan-gomez, C. S. De-lecea, A. Linares-solano, and L. R. Radovic, Reduction in the Presence of Oxygen, Energy & Fuels, vol.12, issue.6, p.1256, 1998.
DOI : 10.1021/ef980067w

S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, vol.35, issue.12, p.1799, 1997.
DOI : 10.1016/S0008-6223(97)00096-1

T. Otowa, Y. Nojima, and T. Miyazaki, Development of KOH activated high surface area carbon and its application to drinking water purification, Carbon, vol.35, issue.9, p.1315, 1997.
DOI : 10.1016/S0008-6223(97)00076-6