
HAL Id: tel-00167104
https://theses.hal.science/tel-00167104

Submitted on 14 Aug 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Data Structures for Complex Systems
Luaï Jaff

To cite this version:
Luaï Jaff. Dynamic Data Structures for Complex Systems. Other [cs.OH]. Université du Havre, 2007.
English. �NNT : �. �tel-00167104�

https://theses.hal.science/tel-00167104
https://hal.archives-ouvertes.fr

University Of Le Havre

PhD Thesis

Speciality : Computer Science

Presented by

Luai JAFF

Subject :

Dynamic Data Structures for Complex Systems

Defended on March 30, 2007
For the obtention of

PhD degree of Le Havre University - France

Jury composition

Pr. Michel COTSAFTIS Referee
Pr. Younès BENNANI Referee
A.Pr. Eric LAUGEROTTE Examiner
A.Pr. Zaid ODIBAT Examiner
Pr. Gérard DUCHAMP Advisor
Pr. Cyrille BERTELLE Co-advisor

January 31, 2007

2

Université du Havre
UFR Science et Techniques - Ecole Doctorale SPMII

Thèse de Doctorat d’Informatique

Présenté et soutenue publiquement le 30 Mars 2007
pour l’obtention du

Doctorat de l’université du Havre

Par

Luai JAFF

Sujet :

Structures de Données Dynamiques pour les Systèmes
Complexes

Composition du jury

Pr. Michel COTSAFTIS Rapporteur
Pr. Younès BENNANI Rapporteur
A.Pr. Eric LAUGEROTTE Examinateur
A.Pr. Zaid ODIBAT Examinateur
Pr. Gérard DUCHAMP Directeur de thèse
Pr. Cyrille BERTELLE Co-directeur de thèse

2

Contents

1 Complex Systems and Economy 17
1.1 A Multi-level description for Economy 18
1.2 Complex Systems . 19

1.2.1 Complex Adaptive Systems 20
1.2.2 Complex Systems Modelling 20

1.3 Self-Organizations Classification 20
1.3.1 Emergence . 21
1.3.2 Inherent Computation 21
1.3.3 Non-Linear and Non-Equilibrium Processes 22
1.3.4 Evolution . 22

1.4 Economic System . 23
1.4.1 Economic agents . 23

1.5 Complex System Economics . 24
1.5.1 Complexity in the Economy 24
1.5.2 Feedbacks in the Economy 26
1.5.3 Introduction to Computational Economics 30

1.6 Conclusion . 31

2 Some Data Structures 33
2.1 Permutations . 34
2.2 Standard Young Tableaux . 37

2.2.1 Partitions . 37
2.2.2 Conjugate Partition . 38
2.2.3 Hook Formula for Standard Tableaux 40

2.3 Robinson-Schensted Algorithm 41
2.3.1 Some Properties due to R-S Algorithm 42

2.4 Studied Connections . 44
2.5 Extension of R-S : Wilf Identity 45

2.5.1 Unbounded Case : K = ∞ 46
2.5.2 Bounded Case : K is finite 49

2.6 Dyck Words . 51

3

CONTENTS

2.7 Trees . 52
2.8 Automata Theory . 55

2.8.1 Languages, Alphabets and Words 56
2.8.2 Monoids and Semi-Ring 56
2.8.3 Series . 59
2.8.4 Finite Automata . 60
2.8.5 Automata with Multiplicities 61
2.8.6 Automata with Multiplicities : Linear Representation . . . 62

2.9 Conclusion . 63

3 Dynamic Data Structures 65
3.1 From Combinatorics to Dynamic Combinatorics 66
3.2 Some Examples of Dynamic Data Structures 67
3.3 Dynamic Permutations With Constraints 68

3.3.1 Dynamics on Permutations 69
3.3.2 π2(n) with k1 . 70
3.3.3 π2(n) with k2 . 71
3.3.4 π2(n) with k3 . 72

3.4 Dynamic Tableaux . 73
3.4.1 Dynamics on Standard Tableaux 74
3.4.2 Dynamics on Rectangular Tableaux of Height Two 76

3.5 Dynamic Dyck Words . 78
3.5.1 Dynamics on Dyck Words 78

3.6 Binary Trees . 79
3.6.1 Binary Tree and Catalan Numbers 79

3.7 A Coding Theorem . 80
3.7.1 Codes . 80
3.7.2 Statement of the Theorem 81

3.8 Conclusion . 84

4 Dynamic Data Structures for Studying Complex Systems 85
4.1 Economic Model . 86

4.1.1 Economical Rules and Dynamic Data Structures 86
4.1.2 Trajectories and Codes 87

4.2 Genetic Automata : Experiments and Spectral analysis 89
4.2.1 Genetic Algorithm Basis 91
4.2.2 MuPAD Implementation of Genetic Automata 95
4.2.3 Experiments and Spectral Analysis 100

4.3 Conclusion . 113

5 Conclusions and Perspectives 115

4

CONTENTS

6 Annexe 117
6.1 Genetic Automata under MuPAD 118
6.2 Spectral analysis programming under MuPAD 122

7 Bibliography 131

5

CONTENTS

6

List of Figures

1.1 Economic agents beliefs are individual, subjective and private 25
1.2 Self-Referential sequence predictions 26
1.3 Activities follows beliefs and expectations 26
1.4 Positive feedback in the VCRs market 29

2.1 Graph representation of (1,3)(2)(4,5) 36
2.2 Shape of (4,3,1) . 37
2.3 Shape of (4,3,1) . 37
2.4 Shape of (3,2,2,1) . 38
2.5 Standard tableaux . 38
2.6 Hook Length . 40
2.7 8 cells . 40
2.8 Studied Connections . 44
2.9 Oscillating tableaux . 49
2.10 Dyck path of length 2n (n=4) . 51
2.11 Binary tree grammar style . 53
2.12 Automata with multiplicities . 63

3.1 Permutations of size n with the parameter k1 70
3.2 Permutations of size n with the parameter k2 71
3.3 Permutations of size n with the parameter k3 72
3.4 Young Lattice . 73
3.5 Standard tableaux of size n with k rows 75
3.6 Standard Young tableaux of size 2n and height two 76
3.7 Standard Young tableau of size 6 and height 2 76
3.8 Dynamic standard Young tableaux of two lines 77
3.9 Dyck words of length 2n with k factors 78
3.10 Complete Binary trees of n nodes . 79

4.1 Accounts P and R . 86

7

LIST OF FIGURES

4.2 Maximal, minimal (dotted) and two intermediate trajectories. Their codes are
on the right. 87

4.3 GA individual and population levels 92
4.4 Genetic algorithm evolution . 94
4.5 Chromosome code . 96

8

Acknowledgements

I would like to thank many people for helping me during my PhD thesis. I also
take this opportunity to thank a number of persons who have actively facilitated
and contributed to the development of this work.

My first largest and sincere debt of gratitude goes to professor Gérard H.E.
Duchamp and professor Cyrille BERTELLE for welcoming me into their group,
and for their knowledgeable guidance throughout these years. I would also like
to express my gratitude for their close supervision and guidance of the work pre-
sented herein, along with the preparation of more work and papers. I’m proud to
be one of their students.

This work would not have been possible without my dear Dr. Fuad Hussein. I
thank him for having helped me since many years by his support and friendly ad-
vices.

I would like to thank all members of the jury; professor M. Cotsaftis, professor
Y. Bennani, A.professor Z. Odibat and A.professor E. Laugerotte for their par-
ticipation in the jury.

Many thanks to my family, for all their love and support which they have given
to me, without forgetting my sister and friend Nasren Jaff who was very close to
me during all the difficult times.

To all my friends in France, It is a pleasure to be friend with you. I would like to
thank Cécile Coursieras for all things.

Finally, I would like to thank all my colleagues in LITIS for everything.

Many thanks to all of you

9

Acknowledgements

10

Résumé

Mon travail porte sur la dynamique de certaines structures de données et sur les
systèmes complexes. Nous avons présenté une approche de la combinatoire des
tableaux et des permutations basée sur la dynamique. Cette approche, que nous
appelons Structures de Données Dynamiques nous ouvre la porte vers des ap-
plications en économie via les systèmes complexes.

Les structures de données que nous avons étudiées sont les permutations qui ne
contiennent pas de sous-suite croissante de longueur plus que deux, les tableaux
de Young standards rectangles à deux lignes, les mots de Dyck et les codes qui
lient ces structures de données.

Nous avons proposé un modèle économique qui modélise le bénéfice d’un compte
bancaire dont l’énumération des configurations possible se fait à l’aide d’un code
adapté. Une seconde application concerne l’évolution de populations d’automate
génétique . Ces populations sont étudiées par analyse spectrale et des expérimen-
tations sont données sur des automates probabilistes dont l’évolution conduit à
contrôler la dissipation par auto-régulation. L’ensemble de ce travail a pour am-
bition de donner quelques outils calculatoires liés à la dynamique de structures de
données pour analyser la complexité des systèmes.

Mots Clés : Structures de données dynamiques, Systèmes com-
plexes, Automates génétiques, Modèles économiques

Summary
My work concerns the dynamics of some data structures and complex systems.
We presented a combinatorial approach of tableaux and permutations based on
dynamics. This approach, which we call Dynamic Data Structures opens us the
door towards applications in economy via complex systems.

11

Summary

The data structures which we studied are the permutations of n letters that have no
increasing subsequences of length more than two, the rectangular standard Young
tableaux with two lines, the Dyck words and the codes which link these data struc-
tures.

We have proposed an economic model which models the benefit of a bank ac-
count whose possible enumeration of the configurations is done using an adapted
code. The second application deals with the evolution of genetic automata popu-
lations. These populations are studied by spectral analysis. Experiments are given
on probabilistic automata whose evolution results in controlling dissipation by
auto-regulation. The aim of this work is to give some computation tools related to
the dynamics of data structures to analyze the complexity of systems.

Key words : Dynamic data structures, Complex systems, Genetic
automata, economic models

12

Introduction

Our work presented here can be decomposed into three parts. The first one deals
with bibliographical studies of complex systems and more particularly the com-
plexity in economy. The second one deals with a "dynamic combinatorial" ap-
proach of evolutive systems that show emergence properties when applied in the
domain of economy. The third part covers genetic automata which are based on
biological inspired methods, mainly genetic algorithms which consist of building
a suited metaphor of life evolution. We use primitive data (Chromosomes) which
are sequences of numbers extracted from linear representations of automata. We
present some experiments about indirect control based on spectral analysis lead-
ing to adjust the dissipative behavior by an auto-regulated process.

Economic Complex systems

Complex systems, as networks of interactive entities, are studied by means of a
rapidly increasing amount of data in all domains. At the same time, these do-
mains share a lot of new and fundamental theoretical questions. This situation
is especially favorable for developing the new science of complex systems in an
interdisciplinary way. There are two kinds of interdisciplinarity within complex
systems. The first begins with a particular complex system and addresses a vari-
ety of questions coming from its particular domain and point of view. The second
kind addresses issues that are fundamental to complex systems in general. The
first kind leads to domain-specific interdisciplinary fields such as cognitive sci-
ence. The new science of complex systems belongs to the second kind of interdis-
ciplinarity. It starts from fundamental open questions relevant to many domains,
and searchers for methods to deal with them. Extract from "Towards a science of
complex systems", P. Bourgine, F. Képès and M. Schoenauer, European Confer-
ence on complex systems, Paris, November 14-18, 2005.

In our century, complex systems are considered as an innovative concept. The
theory of systems extends over a larger expanse in spectrum of application [54].

13

Introduction

Evolutive systems, agent-based representation are the new illuminating method-
ologies that are used for complex modeling.

Dynamic Data Structures
In 1962 Schensted discovered a bijective relation between the permutations on
[n] and the pairs of standard Young tableaux of the same shape known under the
name of the correspondence of Robinson-Schensted. The study of the combina-
torial structures like permutations, standard Young tableaux and Dyck words can
sometimes reveal new connections between them. In this PhD, we determinate
bijections that allow us to go from codes to permutations of symmetric groups,
rectangular Young tableaux of height two and Dyck word by a simple rule.

We can present our codes as a family of time series with a simple growth con-
straint. This family can be the basis of a model to apply to emerging computation
in business and micro-economy where global functions can be expressed from lo-
cal rules. We explicit a double statistics on these series which allows to establish
a one-to-one correspondence between three other ballot-like structures mentioned
above. We can see our codes as an economic model, this means that the codes
are the behavior of a person which earns money every month without loss in his
capital.

In this thesis, we are interested with time series with moderate growth but possibly
sudden decay. We will focus on a very simple model (a toy model as physicists
may say), the combinatorics of which is completely harnessed. This feature is
important as one may use simulations and estimates over all the possible configu-
rations, as it is the case, for example, for other combinatorial models (Cox-Ross-
Rubinstein, for instance). The model is that of sequences with integer values and
growth bounded by a unit (local rule). Surprisingly, there is one-to-one corre-
spondences between the possible configurations and planar combinatorial objects
which are endowed with a special dynamics which we describe in this work.

Genetic Automata
The origin of genetic algorithms is credited to J. Holland in the end of 1960s. The
aim of genetic algorithms is to obtain solutions to optimization problems. They
can be adapted to hard non-linear problems where local optima exist. Genetic op-
erators processes on individual data and selection operators processes on primitive
data population. Automata with multiplicities are powerful algebraic structures on

14

Introduction

which we can apply various operators such as genetic ones.

The structure of this work is as follows :

• Chapter 1 presents a bibliographic study of complex systems and economy.
We introduce the notion of complex systems modeling, self-organization
and emergence on the one hand. The different ways to look at the economy
as a dynamic complex system and feedback mechanism in economy on the
other hand.

15

Introduction

• chapter 2 presents some results about some objects of enumerative com-
binatorics and automata with multiplicities. We establish a new relation-
ship between these objects. We will study Wilf identity which is a kind
of generalization of Robinson-Schenested correspondence. We will present
the reduction condition of Robinson-Schenested algorithm, that is, for each
permutation π2(n) there is one and only one corresponding rectangular stan-
dard tableau of height two.

• In chapter 3, we define a dynamic conception of data structures like, dy-
namic permutations, dynamic standard tableaux, and dynamic Dyck words
enumerated by the famous formula of Catalan. We give bijections that relate
all these objects.

• Chapter 4 presents an original result about the application of our codes (pre-
sented in chapter 2) in economy. We will build combinatorial structures that
allow to model and to compute the global behavior of the reserve account
R by some specific functions. Another original result about the spectral
analysis will be presented in this chapter, it concerns the study of genetic
automata by means of their transition matrices to control their dissipative
behavior.

16

Chapter 1

Complex Systems and Economy

Contents
1.1 A Multi-level description for Economy 18

1.2 Complex Systems . 19

1.2.1 Complex Adaptive Systems 20

1.2.2 Complex Systems Modelling 20

1.3 Self-Organizations Classification 20

1.3.1 Emergence . 21

1.3.2 Inherent Computation 21

1.3.3 Non-Linear and Non-Equilibrium Processes 22

1.3.4 Evolution . 22

1.4 Economic System . 23

1.4.1 Economic agents . 23

1.5 Complex System Economics 24

1.5.1 Complexity in the Economy 24

1.5.2 Feedbacks in the Economy 26

1.5.3 Introduction to Computational Economics 30

1.6 Conclusion . 31

17

Complex Systems and Economy

One of the basics of science is the use of the scientific method and the ability
to establish hypothesis and make predictions which can be tested experimentally
(with observed data). Economic theories deal with many parameters and the ex-
pression of universal laws is difficult. Confronted with these problems, Economic
theorists test some hypothesis using statistical methods such as econometrics, us-
ing the data generated by the real world.

Recent advances in complex systems and computational tools are allowing us new
approaches to the study of the economic aspects. Two examples of these recent
advances are the Santa Fe approach (or Complexity approach) and the Agent-
Based Computational Economics approach, that is, the computational study of
economic processes modeled as dynamic systems of interacting agents.

Economies are complex dynamic systems covering micro behaviors, interaction
patterns and global regularities. In the study of economic systems the question is
how to handle difficult real-world aspects such as strategic interaction, imperfect
competition and the possibility of multiple solution (equilibrium points).

1.1 A Multi-level description for Economy
Economy is often described as a social science that seeks to analyze and describe
the production and distribution of goods and services. That is, economics studies
show how individuals, coalitions and societies seek to satisfy needs and wants.
However, the vast number of topics to which the methods of economic theory
have been applied has caused some to refer to economics as simply that which
economists do.

Economics has two branches :

• Microeconomics : The unit of analysis is the individual agent such as a
firm

• Macroeconomics : The unit of analysis is an economy as a whole

According to Alfred Marshall, economics is the study of mankind in the ordi-
nary business of life, it examines that part of individual and social actions which
is most closely connected with attainment and material requisite of well being,
Thus it is on one side a study of wealth and the other side a part of study of man
(see http://en.wikipedia.org/wiki/Alfred_Marshall).

18

Complex Systems and Economy

1.2 Complex Systems
A system is an assemblage of entities (or objects), real (or abstract), comprising
a whole with each every element interacting or related to another one. Any entity
which has no relationship with any other element of the system is not an element
of that system. A sub-system is a set of elements which is a system itself and a
part of the whole system [88].

we can treat as separate the term complex system and the term complicated sys-
tem:

• A complicated system can be reduced to be better understood.

• A complex system cannot be reduced without losing its intelligibility. We
need to take into account at once all its components.

A system can be in one of the two following states :

• Open systems interact with its environment by means of energy, potential
information or matter flux transfer. These fluxes are the catalysts of organi-
zation formation which emerges and structures the system.

• Closed systems are cut from the outside environment. They are not able to
generate dynamically emergent formations.

A system is defined to be complex if it exhibits the following two properties [50]:

• The system is composed of interacting elements

• The system shows emergent properties, that is, properties arising from the
interaction of the elements that are not properties of the individual elements
themselves

Complex system based on the fact that from many applicative areas, we can find
similar processes linking emergent global behavior and interaction network of
constituents. The general behavior of complex system is generally not accessible
using classical analytical methods like differential systems.

In complex system modeling, we have to model the constituents of the system
and the interaction network which link these constituents, using a decentralized
approach. So the general behavior of the system can not be understood by the
description of each constituent. In complex system modeling, the general behavior
is an emergent property of the interaction network.

19

Complex Systems and Economy

1.2.1 Complex Adaptive Systems
Leigh Tesfatsion [50], consider a complex adaptive systems (CAS) as a complex
systems whose elements are:

• Reactive : That is, capable of exhibiting systematically different attributes
in reaction to changed environmental conditions

• Goal-directed : That is, they are reactive and at least some of their internal
structural changes are directed towards the achievement of goals

• Planners : That is, they are goal-directed and they attempt to exert some
degree of control over their environment to facilitate achievement of these
goals

1.2.2 Complex Systems Modelling
Complex systems are the systems having multiple interacting components and it is
difficult to predict the systems behavior from the behavior of its components. Spe-
cial tools are required for that. The multi-agent simulation techniques are one of
them. Modern studies in complexity generated new kinds of modeling paradigms
such as multi-agent systems, Boolean networks, and cellular automata. The ap-
plications of the study of complex systems are growing with emerging interfaces
in every possible branch, from biological macromolecules to ecosystems, to eco-
nomics, to socio-economic structures. The particular examples being distributed
databases, information management systems, software systems, corporate struc-
tures and time series analysis and further prediction. Already the paradigm as
acquired an emerging vocabulary of complex systems.

1.3 Self-Organizations Classification
Self-organization is a phenomenon which from interactions between elements and
other factors tends to create and improve order inside the whole complex system.
Such phenomenon go against the increase of entropy and leads to energy dissipa-
tion. This dissipation has as effect to maintain the structure generated in that way.
So this phenomenon is a natural tendency of physical dissipative systems or social
systems to generate organization from themselves [32].

We have four broad classes for self-organization each of which include both natu-
ral and artificial processes [82]; Emergence, Inherent computation, Non-linear and
non-equilibrium processes, Evolution. And these classes account for most of cur-
rent research and progress on self-organization in complex systems.The complex

20

Complex Systems and Economy

systems paradigm uses systemic inquiry to build fuzzy, multivalent, multi-level
and multi-disciplinary representations of reality, and systems can be understood
by looking for patterns with their complexity, patterns that describe potential eval-
uations of the systems.

1.3.1 Emergence

The system diverges from its initial state and after a transient period settles into
some attractor states. These attractors may be a simple equilibrium or cycle, or
may be a strange attractor if the process is chaotic, so settling into the basin of an
attractor seems to be a general way for properties and patterns to emerge.
As concerns networks in social and life cycle systems we have to talk about the
pattern, the idea of a pattern of organization of a configuration of relationships
characteristic of a particular system become the explicit focus of systems thinking
in cybernetics and has been a crucial concept ever since.The study of pattern was
always present. It began with Pythagoras and Euclid in Greece and was contin-
ued by the alchemists, Newton and Galileo, the Romantic poets, arabic scientists,
Al-Kuwarizmi Abu Jafar and various other intellectual movements. However, for
most of the time the study of pattern was eclipsed by the study of substance until it
re-emerged forcefully in our century, when it was recognized by systems thinkers
as essential to the understanding of life [24],[23]. The key to a comprehensive the-
ory of living systems lies in the synthesis of those two very different approaches,
the study of substance (or structure) and the study of form (or pattern). In the
study of structure we measure and weight things. Patterns, however, cannot be
measured or weighted; they must be mapped. To understand a pattern, we must
map a configuration of relationships. In other words, structure involves quantities,
while pattern involves qualities. The study of pattern is crucial to the understand-
ing of living systems because systemic properties, as we have seen, arise from
a configuration of ordered relationships. Systemic properties are properties of
a pattern. The components are still there, but the configuration of relationships
between them is destroyed,and thus the organism dies.

1.3.2 Inherent Computation

We refer with this denomination to systems which evolve with fixed rules. Usu-
ally, this rules are computed using automata [40] or discrete events systems or
interacting networks of automata or cellular automata [10, 39]. It provides a dis-
crete basis for understanding condensed phase properties, this is especially the
case for systems that are discrete in structure and iterative in behavior.

21

Complex Systems and Economy

1.3.3 Non-Linear and Non-Equilibrium Processes

A description of self-organized systems consists in open systems far from equi-
librium. They are crossed by energetic and matter flux which leads to such non-
equilibrium processes. In this context, feed-back phenomena occurs and are ex-
pressed in a mathematical way with non-linear equations[31]. Based on these con-
cepts, a major representation of self-organized open systems is the theory of dissi-
pative structures. This theory has been elaborated by I. Prigogine [32]. Initially, he
studies living organisms capabilities to maintain live process in non-equilibrium
conditions. In 1960s, I. Prigogine points out the link between non-equilibrium and
non linearity. Dissipative systems are able to decrease entropy and so to increase
order. This order can be expressed by the fact that organizations emerge from such
dissipative systems. These organizations can be the cause of the reinforcement of
some irregularities that grow into large scale patterns.

In the financial market, it is possible to make face to two different situations; the
first one is known as the stock market bubble which is a type of economic bubble
taking place in stock markets, in which a wave of public enthusiasm, evolving
into herd behavior, causes an exaggerated bull market. When such a bubble takes
place, market prices of listed stocks rise dramatically, making them significantly
overvalued by any measure of stock valuation. Generally stock market bubbles
are followed by stock market crashes.
For example, Some of those bubbles are created because of intense and exces-
sive speculation on a new technology or service. The Dot-com bubble of the late
1990s is one example [92].

The second situation is known as the stock market crash which is a sudden
dramatic decline of stock prices across a significant cross-section of a market.
Crashes are driven by panic as much as by underlying economic factors. They
often follow speculative stock market bubbles such as the dot-com bubble. The
most famous crash, the Stock Market Crash of 1929, started on October 24, 1929
(known as Black Thursday) when the Dow Jones Industrial Average dropped 50
percent.

1.3.4 Evolution

The evolution is often associated which adaptive properties. In normal way, a
complex system evolves to satisfy its capability to adapt to its environment. Ge-
netic algorithms and genetic programming open new ways in computing, using
some similar processes based on biological systems metaphor.

22

Complex Systems and Economy

1.4 Economic System
An economic system is a mechanism (social institution) which deals with the
production and distribution of goods and services in a particular society. The
economic system is composed of people, institutions and their relationships to
resources, such as the convention of property. It addresses the problems of eco-
nomics, like the allocation of resources.

There are several basic questions such as: what to produce?, how to produce it?,
and who gets what is produced?. An economic system is a way of answering these
basic questions.

There is a correlation between certain ideologies, political systems and certain
economic systems. For example, consider the meanings of the term communism.
Many economic systems overlap each other in various areas, for example, the term
mixed economy can be argued to include elements from various systems.

The most basic and general economic systems are; market , mixed , planned ,
traditional and participatory economics. An economic system can be considered
a part of the social system and hierarchically equal to the law system, political
system, cultural system, etc [93].

1.4.1 Economic agents
An agent is an encapsulated piece of software programs representing physical,
individual, social and biological entities that can includes data together with be-
havioral methods that act on these data.

23

Complex Systems and Economy

1.5 Complex System Economics

1.5.1 Complexity in the Economy

Classical approach Complexity approach Physical viewPsychological view

Economy

We classify the ways to look at the economy in two spaces. The first space is
composed of two approaches :

The classical approach; based on rational choice of sets of equations represent-
ing the state of the economy. There are problems associated with this approach;
the unrealistic assumption of rational choice and perfect information; assumptions
on homogeneity and lack of distinction between the agent and the aggregate level;
inability to account for the emergence of new kinds of entities, patterns, struc-
tures, etc.

Complexity perspective approach and Agent-based Computational Economics
approach (ACE); are the more recent approaches to view economy. These ap-
proaches focus on viewing the economy as an evolving complex system (Santa
Fe approach). A similar basis is used in Agent-based computational economics
ACE which uses Holland’s complex adaptive systems paradigm, but which con-
centrates on using computer simulations designed in an object-oriented bottom-up
fashion to build a models of the economy (cf.[79],[50]).

With both the complexity and ACE approach, the aim is to understand how global
economic phenomena arise purely from the local interactions and local knowledge

24

Complex Systems and Economy

of the agents. This stems from the recognition that there is no central or global
control in an economy and that the global regularities which arise are purely due
to the local interactions of adaptive autonomous agents. The agents within an eco-
nomic network may be individuals or institutions. We can consider an institution
agent as being composed of many individual agents.

The second space(standard way) is composed of two different views :

Psychological (Cognitive) view; Is a collection of beliefs and expectations with
decision making upon these beliefs and expectations. Psychological view to the
economy is useful because it forces us to think about how beliefs create economic
behavior and how economic outcomes create beliefs.

Belifs or
Hypotheses

Economic
Agent

Make
Choices

Future rate

Prices

Competitions

Figure 1.1: Economic agents beliefs are individual, subjective and private

Suppose that we have perfect economic agents, that is, agents who are identical
and posses rationality and share beliefs about the situation they face. When these
beliefs bring actions that create a world that validates them as hypotheses, they
are in equilibrium and are called Rational beliefs. The created world may change
if some agents deviate [90].

Predictions that an economic agent forms depend on the prediction he believes
others economic agents share and so on. The following figure illustrate this fact
called also Self-Referential sequence predictions as an interacting sequence pro-
cess.

25

Complex Systems and Economy

...Prediction 1 Prediction 2 Prediction 3

Figure 1.2: Self-Referential sequence predictions

The guessing game which is a toy problem (A toy problem is a simplified version
of a more general problem), illustrates that rational beliefs can unravel easily and
lead to a self-referential sequence predictions [69].

Physical view; Is a collection of activities and technology, interacting with a mar-
ket system peopled by decision making agents such as firms, banks, consumers
and investors.
There is a relationship between the psychological view and the physical view to
the economy as we see in the following figure [90].

Beliefs and

expectations
Activities

Figure 1.3: Activities follows beliefs and expectations

1.5.2 Feedbacks in the Economy
Recently, W. Brian Arthur, professor at the Santa Fe Institute [79], and other
economic theorists have been interested to a view of the economy based on feed-
backs, more precisely, positive feedback mechanisms. We can say that the modern
economies can be divided into two interrelated branches :

• Diminishing returns

• Increasing returns

These two branches have different economies, they differ in behavior, style, cul-
ture and they call for different understandings [89].

26

Complex Systems and Economy

Diminishing Returns and Negative Feedback

Definition 1 :

Diminishing returns refers to the notion that the return that a company receives
for additional effort decreases as the number of units (outputs) increases. This is
typical of industrial goods, but is in contrast to the phenomena of network effects
and increasing returns for digital goods. Diminishing returns explains why indus-
trial companies become more inefficient once they grow over a certain size. Thus
firms do not compete as effectively when in a large monopolistic market than they
do in an oligopolistic market (car company for example) assuming the size of the
market is over the scale limit that traditional firms can operate efficiently. With
the winner takes all behavior of digital goods, markets can be more efficient when
one company supplies the entire market place, especially if the market is governed
by proprietary standards versus open standards [14].

Definition 2 :

Negative feedback (NFB) is the process of feeding back to the input a part of a
system’s output, so as to reverse the direction of change of the output. This tends
to keep the output from changing, so it is stabilizing and attempts to maintain con-
stant conditions [83].

Diminishing returns assumptions are the basis of the conventional economic the-
ory. The actions of the economy induce a negative feedback which lead to pre-
dictable equilibrium for prices and market share. Negative feedback stabilize the
economy because any major changes will be cancel out by the reaction they gen-
erate. Diminishing returns imply a unique equilibrium point for the economy.

Alfred Marshall believed that we can not applied the increasing returns every-
where in the economy. Marshall’s remark lead W. Brian Arthur [91] to observe
that the part of the economy that are resource-based (the traditional part) are still
subject to diminishing returns, on one hand. And the part of the economy that are
knowledge-based (the newer part) are still subject to increasing returns, on the
other hand as defined in the following.

27

Complex Systems and Economy

Increasing Returns and Positive Feedback

Definition 1 :

Increasing returns refers to the notion that the greater the size of the network, the
greater the advantage of each participant of the network (network effects). Each
participant of the network brings value to the overall network. This is in contrast
to diminishing returns which refers to the greater the size (number of users) the
less each participant can benefit from participation [15].
In the other word, increasing returns are the tendency for that which ahead to get
farther head. For which loses advantage to loss further advantage. Increasing re-
turns generate instability.

Definition 2 :

We call a feedback mechanism positive if the resulting action goes in the same
direction as the condition that triggers it. Positive feedback is an open system
contain many types of regulatory systems, among which are systems that involve
positive feedback and its relative negative feedback [84].

Increasing returns make for multiple solutions (multiple equilibrium points), and
it generate instability or criticality stability following Per Bak. Positive feedback
economics is parallel to modern non-linear physics [91]. The underlying mech-
anisms that determine economic behavior have shifted from diminishing returns
to increasing returns. Mechanisms of increasing returns exist alongside those of
diminishing returns in all industries [89].

Increasing returns mechanisms are important, but the economic theorists have sev-
eral points of view about the importance of these mechanisms which are some
times divergent:

• Some economic theorists found the existence of more than one equilibrium
points to the same unscientific problem.

• Economic theorists were perplexed by the question of how a market would
select one among several possible solutions.

• Economic theorists could see that increasing returns would destroy their
familiar world of unique predictable equilibria.

28

Complex Systems and Economy

Example of Positive Feedback Mechanism

Increasing returns are the tendency for that which is a head to get farther ahead.
For that which loses to loss further advantage. They are mechanisms of positive
feedback that operate. The history of video-cassette recorders (VCRs) provides a
simple example of positive feedback. When VCRs appeared on the market, two
competing formats selling at about the same price :

• VHS

• Beta

Gradually, VHS obtained a slight edge in market share. This small lead tended to
become self-reinforcing through the following events :

Consumers considering purchasing a VCRs noticed slightly more VHS format
tapes in video stores, because there was slightly more demand for them. This
observation increased the probability that consumers would purchase VHS ma-
chines, increasing their share of the installed product base, further increasing the
fraction of VHS tapes on the shelves and increasing VHS market share even fur-
ther. The self-reinforcing nature of VHS advantage in market share illustrate the
economic meaning of positive feedback, as we see in the following figure (1.4).
The obvious end result of this process was that VHS acquired an overwhelming
market share, and the Beta format became virtually extinct, a result that tended
to be self-perpetuating. The stock of VHS format tapes on retail shelves and in
consumers home libraries dramatically increased the perceived cost of switchinf
to another tape format. this kind of self-perpetuating market dominance is called
lock-in.

Increasing VHS

VCRs market share

Increasing VHS

tape market share

+ +

Figure 1.4: Positive feedback in the VCRs market

29

Complex Systems and Economy

1.5.3 Introduction to Computational Economics
Another way to look at the economy as dynamic processes is the Agent-Based
Computational Economics (ACE).

Definition 1 :

(ACE) is a computational study of economic processes as dynamic systems of
interaction agents. In the other words, is a computational study of economies
modeled as evolving systems of autonomous interacting agents. Thus ACE is a
specialization to economics of the basic complex adaptive system paradigm.

Definition 2 :

Culture-Dish approach : Is the ACE methodology to study the economic system
based on complex adaptive systems that include reactive elements, goal-directed
elements and planner elements.

The ACE modeler construct a virtual economic world composed of multiple inter-
acting agents. The modeler sets initial conditions and then he observe the evolving
of the world over time with no imposed rational expectations or beliefs and equi-
librium. The world events are driven by agent interactions.

Economic decentralized market as a complex adaptive systems, is composed of
large numbers of economic agents involved in parallel local interaction. These in-
teraction which is local give rise to macroeconomic regularities such as shared
market protocols which in turn feedback into the determination of local interac-
tions.The result is a dynamic complex systems of recurrent causal chains connect-
ing individual behaviors and interaction network.

ACE Research Areas

The topics divide into eight research areas as follows [50]:

• Learning and the embodied mind

• Evolving of behavioral norms

• bottom-up modeling of market processes

• formation of economic networks

30

Complex Systems and Economy

• modeling of organizations

• design of computational agents for automated markets

• parallel experiments with real and computational agents

• building ACE computational laboratories

1.6 Conclusion
In this chapter, we have made bibliographical studies about complex systems
and their use for economic modeling. We have described complexity of feed-
back mechanism and agent-based computation approach which are recent looks
at economy as an evolutive dynamic system.

31

Complex Systems and Economy

32

Chapter 2

Some Data Structures

Contents
2.1 Permutations . 34

2.2 Standard Young Tableaux 37

2.2.1 Partitions . 37

2.2.2 Conjugate Partition 38

2.2.3 Hook Formula for Standard Tableaux 40

2.3 Robinson-Schensted Algorithm 41

2.3.1 Some Properties due to R-S Algorithm 42

2.4 Studied Connections . 44

2.5 Extension of R-S : Wilf Identity 45

2.5.1 Unbounded Case : K = ∞ 46

2.5.2 Bounded Case : K is finite 49

2.6 Dyck Words . 51

2.7 Trees . 52

2.8 Automata Theory . 55

2.8.1 Languages, Alphabets and Words 56

2.8.2 Monoids and Semi-Ring 56

2.8.3 Series . 59

2.8.4 Finite Automata . 60

2.8.5 Automata with Multiplicities 61

2.8.6 Automata with Multiplicities : Linear Representation . 62

2.9 Conclusion . 63

33

Some Data Structures

This chapter introduces the background material of two terminologies, the first
one concerns some combinatorial objects (some Data Structures) and the sec-
ond one is the notion of automata with multiplicities which generalizes classical
Boolean automata.

The purpose of this chapter is to present studied connections diagram. That is,
the generalization and the reduction of the Robinson-Schenested algorithm con-
ditions. We can see this chapter as a background material for chapter 3.

2.1 Permutations
A bi-word π is a sequence of vertical pairs of some objects. Here we will consider
bi-words of positive integers

π =

(

i1 i2 i3 ... ik
j1 j2 j3 ... jk

)

with i1 < i2 < i3 < ... < ik. We denote respectively the top and the bottom
lines of π by π̂ = i1 i2 i3 ... ik and π̌ = j1 j2 j3 ... jk, also we designate
π(im) = jm for a pair. For instance

π =

(

1 2 3 4 5
4 2 5 3 1

)

A permutation is a rearrangement of the elements of an ordered list into a one-
to-one correspondence with itself. The number of all permutations on [n] =
{1, 2, ..., n} is given by n!. For example, there are 2! = 2.1 = 2 permutations
of n = 2, namely 12 and 21, and 3! = 3.2.1 = 6 permutations of n = 3, namely
123, 132, 213, 231, 312 and 321.

There are different ways to represent a permutation [6]:

• array notation or two-line notation : is a notation that explicitly identifies
the positions occupied by elements before and after application of a permu-
tation on elements, where the first row is (1, 2, ..., n) and the second row is
the new arrangement. For example, the above permutation π is represented
by two-line notation.

34

Some Data Structures

• Word : providing that the first line be 1 2 3 ... n, it is non-ambiguous to
represent only the second line

• cycle type : An example of a cyclic decomposition is the permutation 4213
of 1234. This is denoted (2)(143), corresponding to the disjoint cycles (2)
and (143) where 2 keeps the same position, but 4 takes the position of 1 and
1 takes the position of 3, finally 3 takes the position of 4, so we have a cycle
(143).

The inverse of the permutation π = π1 π2 π3 ... πn is the permutation π−1 such
that π−1(i) = j ⇐⇒ π(j) = i. For example

π−1 =

(

1 2 3 4 5
5 2 4 1 3

)

is the inverse permutation of the above permutation π.

The mirror permutation of the permutation π = π1 π2 π3 ... πn (in the word
representation) is the permutation π∗ = πn πn−1 πn−2 ... π1. For example

π∗ =

(

1 2 3 4 5
1 3 5 2 4

)

is the mirror permutation of the above permutation π.

35

Some Data Structures

Involutions
An involution π is a permutation which does not contain any permutation cycles
of length > 2. It consists exclusively of fixed points and transpositions. Involu-
tions are exactly self-conjugate permutations (i.e, permutations that are their own
inverse permutation, π = π−1). For example, the unique permutation involution
on 1 element is 1, the two involution permutations on 2 elements are (1, 2) and
(2, 1), and the four involution permutations on 3 elements are (1)(2)(3), (1)(2, 3),
(1, 3)(2), and (1, 2)(3). We can represent an involution by a graph. For example,
the graph representation of

π =

(

1 2 3 4 5
3 2 1 5 4

)

is showed in the following figure.

1 2 3 4 5

Figure 2.1: Graph representation of (1,3)(2)(4,5)

The generating series of the involutions is

∑

n,k≥0

I(n, k)
xn

n!
yk = ey(x+ x

2

2!
)

Where i(n, k) stands for the number of involutions on n objects with k cycles.

36

Some Data Structures

2.2 Standard Young Tableaux

2.2.1 Partitions

A partition of n, written λ ` n, is a sequence λ = (λ1, λ2, λ3, ..., λk) such that
the λi are decreasing (weakly) and

∑k
i=1 λi = n.

Let λ = (λ1, λ2, λ3, ..., λk) ` n. Then the Ferrers diagram, or shape, of λ is an
array of n-squares into k left-justified rows with row i containing λi squares for
1 ≤ i ≤ k. For example, the partition (4,3,1) is represented as follows

Figure 2.2: Shape of (4,3,1)

The idea of representing a partition by a diagram goes back to Ferrers and Sylvester,
and the diagram of a partition is called by a large number of authors the Ferrers di-
agram or shape [30]. In the literature, we find also a representation different from
that of the French notation of Ferrers diagram called anglo-saxon or English
notation. For example, the partition (4,3,1) in English notation is represented as
follows

Figure 2.3: Shape of (4,3,1)

In all chapters of this work, we will use the French notation of Ferrers diagrams.

37

Some Data Structures

2.2.2 Conjugate Partition
The conjugate of a partition λ is the partition λ′ whose diagram is the transpose
of the diagram λ, that is, the diagram obtained by reflection with respect to the
main diagonal (in all cases, x = y). Hence λ′ is the number of nodes in the i-th
column of λ, or equivalently

λ′
j = Card{j : λj ≥ i}

For example, the conjugate of the partition (4,3,1) is (3,2,2,1).

Figure 2.4: Shape of (3,2,2,1)

Let λ be as above. A standard Young tableau of shape λ, is an array obtained
by filling the squares of the shape λ by the consecutive and not repeated numbers
1,2,...,n, such that, in each row (resp. column), the numbers be increasing from
left to right (resp. from bottom to top). For example the following tableau is stan-
dard

1
2

3 6

4
5
8

7

Figure 2.5: Standard tableaux

38

Some Data Structures

Tableaux were introduced by A. Young in his series of papers on quantitative sub-
stitutional analysis [2].

It is important to note that, in each standard Young tableau of shape
λ = (λ1, λ2, ..., λk) ` n:

• λ1 is the length of the tableau

• λk is the height of the tableau

• n is the size of the tableau

39

Some Data Structures

2.2.3 Hook Formula for Standard Tableaux
Is the number of Young tableaux associated with a given Ferrers diagram. In each
cell, write the sum of one plus the number of cells horizontally to the right and
vertically below the cell (the hook length h(i,j)). Let fλ be the number of standard
Young tableaux of shape λ ` n. Then

fλ =
n!

Π(i,j)∈λhi,j

The formula above is the general formula called hook formula [6]. We don’t prove
it here, but we illustrate it by giving the following example :

Let λ = (6, 4, 1) ` 11. The following diagram gives the hook lengths

5 3 2

8 6 5 4 2 1

1

1

Figure 2.6: Hook Length

The position (1,1) contain the integer 8 which represent the number of cells behind
and upon the position (1,1)

���������������
������������������������������
������������������������������
���������������

���������������
������
���
	�	�		�	�		�	�	

�
�

�
�

�
�

���������������
������
���

�
�

�
�

�
�

���������������
���������������
������
���

Figure 2.7: 8 cells

So
fλ =

n!

1.2.4.5.6.8.1.2.3.5.1
=

11!

1.2.4.5.6.8.1.2.3.5.1
= 693

40

Some Data Structures

2.3 Robinson-Schensted Algorithm
Theorem 1 There is a bijection between permutations on [n] and the pairs of
standard Young tableaux of the same shape [6]

RS : Sn −→ STn × STn

π −→ (P (π), Q(π))

Therefore, we have

∑

λ`n

(fλ)2 = n!

R-S Algorithm
We will define the map which gives a permutation and produces a pair of standard
Young tableaux of the same shape. Let π be the following

π =

(

1 2 . . . n
x1 x2 . . . xn

)

Then we construct a sequence of tableaux (Pi, Qi) for i = 0, 1, ..., n

(P0, Q0) = (∅, ∅), (P1, Q1), ..., (Pn, Qn) = (P, Q)

By inserting the xi into the Pi−1 and placing i into the Qi−1 at the same place
(so that the shape) of Pi is identical to the shape of Qi by applying the following
operations :

Assume P is a partial tableau and xi an element we wish to insert and Q a partial
tableau into which i needs to be placed. Proceed as follows

1. Begin with the first row of P and let x = xi

2. Look for the left most element y in the given row such that x < y, substitute
x to y, i.e. x bumps y. If no such element is available then place x at the end
of the row and i at the corresponding position in Q; reset at 1 by considering
the next element xi+1

41

Some Data Structures

3. Repeat step 2 with x = y into the next row down of P until there are no
bumped elements left

This is repeated for every element of π (see [6]).

Example :
Let

π =

(

1 2 3 4 5 6 7
4 2 3 6 5 1 7

)

Then

 2

 4

2 3

4 4

2 3 6

4 6

2 3 5

4

2 6

1 3 5 1 3 5 7

2 6

4

 1

 2 2

1 3

2

1 3 4

2 5

1 3 4

6

2 5

1 3 4

6

2 5

1 3 4 7

P :

Q : 1

4

2.3.1 Some Properties due to R-S Algorithm
If we consider the P-tableau and Q-tableau associated to the inverse permutation
π−1, we have the following

P (π−1) = Q(π) and Q(π−1) = P (π)

Also, if we set π∗ to be the reverse (mirror) permutation, we will get the following

P (π∗) = P T (π) and Q(π∗) = QT
V.R(π)

Where the superscript T means the transpose of the tableau and V.R means that
Q(π∗) can be computed via the Vidage-Remplissage algorithm due to Schutzen-
berger [56].

42

Some Data Structures

Lemma 1 The number of involutions without fixed point on [2n] is 2n!! = 1.3.5....2n−
1.

Lemma 2 [46] The number of standard Young tableaux of size n is equal to the
number of involutions on [n]

∑

λ`n

fλ = Inv[n]

Proof :

Let π be an involution, so π = π−1. We have P (π−1) = Q(π) and Q(π−1) =
P (π), so we can write

P (π) = Q(π−1) = Q(π)

Hence

T ⇔ (T, T) = (P (π), Q(π)) ⇔ {π : π = π−1}

Theorem 2 Let π be a permutation and let P (π) be P-tableau. Then

• The length of the longest increasing subsequence of π is the length of the
first row of P (π)

• The length of the longest decreasing subsequence of π is the length of the
first column of P (π)

43

Some Data Structures

2.4 Studied Connections
In this section, we will study the generalization and the reduction of Robinson-
Schensted algorithm represented by the following diagram.

Robinson−Schensted Algorithm

Tableaux with two rows

Permutations with constrains

Wilf Identity

Unbounded Case Bounded Case

Extension of R−S Algorithm Reduction of R−S Algorithm

Figure 2.8: Studied Connections

44

Some Data Structures

2.5 Extension of R-S : Wilf Identity
In this section, we will introduce the extension relationship between two counting
problems in the theory of symmetric functions. Let πk(n) be the number of per-
mutations of n letters that have no increasing (ascending) subsequence of length
greater than k. And let yk(n) be the number of standard Young tableaux of size n
whose first row is of length less or equal than k.

We define an exponential generating function of πk(n) as

Πk(x) =
∑

n≥0

πk(n)
x2n

n!2

Similarly, we define the exponential generating function of yk(n) as

Yk(x) =
∑

n≥0

yk(n)
xn

n!

Theorem 3 (Proof omitted) We have [28, 29]

Πk(x) = Yk(x) Yk(−x), for k = 2, 4, 6, ... (2.1)

More explicitly, for n ≥ 0 and k even numbers. We have
(

2n
n

)

πk(n) =
∑

i

(

2n
i

)

(−1)i yk(i) yk(2n − i) (2.2)

By setting the two generating functions above in the equation

∑

n≥0

πk(n)
x2n

n!2
=
∑

n≥0

yk(n)
xn

n!

∑

n≥0

yk(n)
−xn

n!

Now, let 2n = i + j

∑

n≥0

πk(n)
x2n

n!2
=

2n=i+j
∑

i,j

yk(j)
1

j!
yk(i)

(−1)i

i!
x2n

We multiply the right hand side of the equation by 2n!
2n!

45

Some Data Structures

∑

n≥0

πk(n)
1

n!2
=

2n!

2n!

2n=i+j
∑

i,j

yk(j)
1

j!
yk(i)

(−1)i

i!

2n!

n!2
πk(n) =

∑

i

2n!

i!j!
(−1)i yk(i) yk(j)

Since 2n = i + j −→ j = 2n − i

2n!

n!2
πk(n) =

∑

i

2n!

i!j!
(−1)i yk(i) yk(2n − i)

Hence

(

2n
n

)

πk(n) =
∑

i

(

2n
i

)

(−1)i yk(i) yk(2n − i) (2.3)

No direct combinatorial proof of (2.3) is known (up to our knowledge). We will
now try to find a bijective construction of the identity above and for that we divide
the problem into two cases :

• Unbounded case : Where k is infinite

• Bounded case : Where k is finite

2.5.1 Unbounded Case : K = ∞
When we set k = ∞, we have to find a combinatorial proof of the following
identity

(

2n
n

)

π(n) =
∑

i

(

2n
i

)

(−1)i y(i) y(2n − i) (2.4)

In the left hand side of (2.4) π(n) is the number of permutations on [n]
(

2n
n

)

π(n) =

(

2n
n

)

n!

46

Some Data Structures

(

2n
n

)

is the choice of n objects among 2n. For example, let

π = 51342

and let us choose n=5 among 2n=10 like {2, 3, 5, 8, 9}

1 4 6 7 10

9 2 5 8 3

5 1 3 4 2

Then we will get an involution without fixed point on [2n]. The number of them
is equal to (2n-1)!!. Each cycle posses two possible configurations with i < j:

first cycle :

[

i
j

]

or second cycle :

[

j
i

]

Hence
(

2n
n

)

n! = (2n − 1)!!2n

The right hand side of (2.4) can therefore be interpreted couples of involution on
[i] and [2n-i] respectively (below Inv[k] stands, as in lemma 2, for the number of
involutions on k objects)

∑

i

(

2n
i

)

(−1)i y(i) y(2n − i) =
∑

i

(

2n
i

)

(−1)i Inv[i] Inv[2n − i]

47

Some Data Structures

(

2n
i

)

is the choice of i among 2n, and (−1)i is the weight on each point of

the first involution Inv[r]

w(Inv[i], Inv[2n − i]) = (−1)|Inv[i]|

Where w is the weight of the whole involution.

The Construction θ :

Now, we will consider the greatest fixed point of two involutions and we will pass
it on the other involution. That is with (Inver[i]) the set of involution on [1...i]

• If f ∈ Inv[i], then Inv[i]
′

= Inv[i]/f and Inv[2n − i]
′

= Inv[2n − i] ∪ f

• If f ∈ Inv[2n − i], Idem

Hence

∑

i

(

2n
i

)

(−1)i y(i) y(2n − i) =
∑

p

(

2n
2p

)

(2p − 1)!! (2n − 2p − 1)!!

Which means

∑

p

(

2n
2p

)

(2p − 1)!! (2n − 2p − 1)!! = (2n − 1)!!2n

The proof is complete in this case [46].

Example :
Let 2n = 4 and i = 3, then 2n − i = 1

∑

i

(

2n
i

)

(−1)i y(i) y(2n − i) =
∑

3

(

4
3

)

(−1)3 y(3) y(1)

48

Some Data Structures

1 2 4

Inv2 =

Inv1 =

3

Inv1 =
1 2 3 4

Inv2 =

Inv = Inv1 + Inv2 =
1 2 3 4

1 2

34

{ 3 , 4 }
1 2

2 1

2.5.2 Bounded Case : K is finite

Oscillating Tableaux

We define an oscillating tableau of length n and shape λ to be ∅, λ1, λ2, ..., λn of
Ferrers diagrams such that λ1 is a single square, λn is λ and for each i + 1, the
shape λi+1 is obtained from λi by adding or deleting an admissible square. For
example

Figure 2.9: Oscillating tableaux

is an oscillating tableau of length 8 and of final shape (1, 1). We remark that an
oscillating tableau is a standard tableau with insertion and deletion cell.

49

Some Data Structures

Some Results About Oscillating Tableaux
We present here some results without proofs, the reader shall see [49] for more
details.

• The number of oscillating tableaux of length n is given by

On =
n/2
∑

k=0

n!

k!(n − 2k)!

• The number of oscillating tableaux of length 2n + c and of final shape λ =
(c), where n, c ≥ 0 is given by

O2n,c =

(

2n + c
c

)

(2n)!! =
(2n + c)!

n!c!2n

• Let O=k
2n,c be the set of all oscillating tableaux of length 2n+c, of final shape

λ = (c), and of height k. And let S=k
2n,c be the set of all standard tableaux of

size 2n + c, of height k, having c odd columns. Then

O=k
2n,c = S=2k−1

2n,c + S=2k
2n,c

More generally, for at most k (≤ k)

O≤k
2n,c = S≤2k

2n,c (2.5)

50

Some Data Structures

2.6 Dyck Words
Let w be a word and let a be a letter. The length of w is denoted by |w|, and the
number of occurrences of a in w by |w|a. We denote the empty word by ε. If w =
uv , then u is a prefix of w.

A Dyck word w is a word over the alphabet
∑

= {a, b} with the following prop-
erties :

• For each prefix u of w, |u|a ≥ |u|b
• |w|a = |w|b

It is clear that the Dyck words are always of even length. The following proposi-
tion ensures the correspondence between Dyck words and locally complete binary
trees.

Proposition 1 Each non-empty Dyck word w can be factorized in a unique way
in

w = a w1 b w2

where w1 and w2 are Dyck word.

A Dyck path is a path in the first quadrant, which begins at the origin (0, 0), ends
at (2n, 0). And which consists of steps North-east (letter a) and South-east (letter
b), see the figure below.

a
a b a b

b a b

3

2

1

0

Figure 2.10: Dyck path of length 2n (n=4)

Let D be the set of all Dyck paths and Dn the set of Dyck paths whose length is

n. It is well known that |Dn| = Cn = 1
n+1

(

2n
n

)

, the n-th Catalan number.

51

Some Data Structures

Let D(n, k) be the number of Dyck words of length 2n and with k factors. The
bi-variate generating series of these numbers is

∑

n,k

D(n, k)xnyk =
1 +

√
1 − 4x

1 +
√

1 − 4x − 2xy

2.7 Trees
We will begin our background by introducing some terminology.

A

B C

D E
F G

H

Level 1

Level 0

Level 2

Level 3 I

Basic Concepts
• A is the root node.

• B is the parent of D and E

• C is the sibling of B

• D and E are the children of B

• D, E, F, G, I are external nodes, or leaves

52

Some Data Structures

• A, B, C, H are internal nodes

• The depth (level) of E is 2

• The height of the tree is 3

• The degree of node B is 2

Property
• The number of edges equal to the number of nodes minus one

Full Binary Trees
A full binary tree FBT is a tree-like structure that is rooted and in which each
vertex has zero or two children. Each child of a vertex is designated as its left or
right child. The number of binary trees with n nodes are the Catalan number Cn.

A FBT is often defined recursively as either being empty or consisting of a root
node together with left and right subtrees, both of which are binary trees.

��

T = +
T T

� �� �

Figure 2.11: Binary tree grammar style

Hence, if one counts by number of leaves (n), one has

∑

n

anzn = T = 1 + zT.T ⇒ T =
1 −

√

(1 − 4z)

2z
=
∑

n

(

2n
n

)

n + 1
zn

Binary trees are extremely useful in computer science as the addresses of the
nodes can be given by 0 − 1 words.

53

Some Data Structures

The number of extended binary trees with n internal nodes and leftmost leaf at
level k is

k(2n − k − 1)!

(n − k)!n!

The table of these numbers, shown below, is known as Catalan’s triangle if the
rows are read backwards [81].

n\ k 1 2 3 4 5 6 7

1 1
2 1 1
3 2 2 1
4 5 5 3 1
5 14 14 9 4 1
6 42 42 28 14 5 1
7 132 132 90 48 20 6 1

Notice that the catalan numbers 1, 2, 5, 14, 42, ... are the sums of the successive
rows.

54

Some Data Structures

2.8 Automata Theory
Automata theory is the theory of finite state transition systems with symbolic in-
put and scalar outputs. Beside the fact that it has an impressing number of ap-
plications, its expressive power is sufficient to allow to solve conjectures in other
sciences [26]. The primary application of automata is as symbol processors, that
is they process information presented to them as a string of symbols drawn from
a fixed alphabet. The simplest of automata is the finite-state automaton, which
consists of a set of states and a list of rules, at any point the finite state automaton
is in one state (called the current state), and responds to one symbol of its input
by a transition. Each rule specifies for each state and each possible input symbol
which new state the automaton will move to. The finite-state automaton begins in
a specified initial state. The current state and the current input symbol are exam-
ined.

One of the rules will specify which state to move to. This state becomes the current
state, and the next input symbol becomes the current symbol. The computation
ends when the last input symbol has been examined and processed. The state that
the finite-state automaton has reached when the computation ends is called the
final state.

For example, a CD player can be modeled as a finite-state automaton with three
states stopped, playing and pushed.

• In the playing state, the CD player is rotating and music is playing from it.

• In the paused state, the CD is rotating but music is not playing.

• In the stopped state, the CD is not rotating.

The CD player has input in the form of three buttons labeled stop, play and pause.
If the CD player is in the stopped state, the only button that works is the play but-
ton, which moves the CD player to the playing state. In the playing state the stop
button moves the CD player to the stopped state. The pause button moves it on
the paused state. And the play button has no effect. In the paused state the play
and paused button move it on the playing state, and the stop button moves it to the
stopped state. the CD player being in the stopped state.

In automata theory, an abstract machine that is implemented in hardware is sim-
ply called a machine. An abstract machine is a model of a computer system
constructed to allow a detailed and precise analysis of how the computer system

55

Some Data Structures

works. Such a model usually consists of input, output, and operations that can
be performed (the operation set), and so can be thought of as a processor. An
abstract machine implemented in software is termed a virtual machine, and one
implemented in hardware is called a machine.

2.8.1 Languages, Alphabets and Words
In formal language theory, a language is viewed as a set of words or strings com-
posed of letters drawn from some alphabet. An alphabet is a finite non-empty set
of letters or symbols. We will use the letter

∑
to denote a fixed alphabet. A word

on or over
∑

is a finite sequence of letters of
∑

, the collection of all words of
∑

is denoted
∑∗. The empty word is a word containing no letters and denoted by ε.

If w1 and w2 are two words then the sequence formed by writing the letters of w2

after those of w1 is called the concatenation of w1 and w2 and written as w1w2.
Note that the concatenation is non-commutative (when the alphabet are more than
two letters) but associative , and

∑∗ is closed under concatenation that is w1w2

∈ ∑∗. We can define the i-times iterated concatenation of a word w as follows
: if w is a word then wi, the i-times iterated concatenation

w0 = ε and wi+1 = wiw ∀i > 0

Example 1 Let
∑

= a, b be an alphabet. Then w1 = a b and w2 = b b a are
words over

∑
and

w1 w2 = a b b b a

w3
1 = a b a b a b

A language over
∑

is a subset L ⊆ ∑∗. For example, the English language and
the ancient Greek language.

An alphabet
∑

is a finite set of letters. For example, the set English alphabets
∑

= a, b, c, ..., z, the set of Greek alphabets
∑

= α, β, γ, ..., ζ , the binary alpha-
bet

∑
=0, 1 and the digital alphabet

∑
= 0, 1, 2, ..., 9.

2.8.2 Monoids and Semi-Ring
A Monoid consists of a set M and a function

M × M → M

The following axioms are postulated :

56

Some Data Structures

• Associativity : For any m1, m2, m3 ∈ M =⇒ (m1m2)m3 = m1(m2m3)

• Unit : ∃ 1M ∈ M such that 1Mm = m1M = m, ∀m ∈ M

If M, N are two monoids, a morphism

ϕ : M → N

is a function satisfying the following conditions

• (m1m2)ϕ = (m1ϕ)(m2ϕ), ∀m1, m2 ∈ M

• 1Mϕ = 1N

Let k be a set. A structure of semi-ring n k is the data of two internal composition
laws (+, .) with the following properties:

• SR1) (k, +) is a commutative monoid with neutral 0k

• SR2) (k, .) is a monoid with neutral 1k

• SR3) the product is (left and right) distributive with respect to the addition

• SR4) 0k is an annihilator (0k × x = x × 0k = 0k)

Remark 1 i) If the unity matrix is not required, one can withdraw the need of
neutrals.See [59, 60]

Such a semi-ring can be naturally embedded in a semi-ring in our sense.
ii) SR4 is unrelated to SR1..3 as shows the model (N, max, +).

The semi-rings form a category for which we give the morphism.

Definition 1 Let (k1, +1,×1) (resp. (k2, +2,×2)) be semiring. We say that a

mapping k1

φ

7→ k2 is a morphism of semi-rings if and only if φ is a morphism of
the additive and multiplicative monoid structure i.e.

• (∀x, y ∈ k1)(φ(x +1 y) = φ(x) +2 φ(y)); φ(0k1
) = 0k2

• (∀x, y ∈ k1)(φ(x ×1 y) = φ(x) ×2 φ(y)); φ(1k1
) = 1k2

57

Some Data Structures

As usual, if φ : k1 7→ k2 is an inclusion mapping, we say that k1 is a subsemi-ring
of k2. If φ is onto, we say that k2 is a quotient of k1.

As for the case of rings and fields, the subsemi-ring k0 of k generated by 1k is of
great importance and gives rise to the notion of characteristic which, in this case,
is two fold.

Proposition 2 Let (k, +, .) be a semiring then:
1) i) there is a unique morphism of monoids φk : N 7→ k.
ii) one has, φ(n) = 1k + 1k · · · 1k

︸ ︷︷ ︸

n times

(denoted below n1k) and then, the subset φ(N)

is the additive submonoid generated by 1k i.e.

φk(N) = {0k, 1k, 1k + 1k, · · · 1k + 1k · · · 1k
︸ ︷︷ ︸

n times

· · · } (2.6)

iii) φ(N) is a subsemi-ring of k, in fact the smallest of all the subsemi-rings of k.
2) (Structure of φ(N)) [22] Either (∀n > 0)(φ(n) 6= 0k) and φ(N) ' N or it
exists an unique couple (e, p) ∈ N × N+ such that

1. {0, · · · e + p − 1} is a section of φ (hence |φ(N)| = e + p)

2. φ(m) = m1k if m < e and φ(m) =
(

(m − e mod p) + e
)

1k if m ≥ e

Definition 2 We say that the characteristic of a semi-ring k is 0 if k(0) ' N and
(e, p) ∈ N × N+ if (as above) |φ(N)| = e + p and φ(e) = φ(e + p) = 0k and one
sets ch(k) = (e, p).

Remark 2 i) The semi-ring φ(N) is called the basic semi-ring of k and denoted
k(0) in [36]. In [36], the characteristic is also 0 if k(0) ' N. Otherwise it is
(e + p, e).
ii) We will denote by Ke,p the model of the basic semi-rings (which are all isomor-
phic) of characteristic (e, p), realized as follows.
One can endow Ke,p = {0, 1, · · · e, · · · e + p− 1} with a unique structure of semi-
ring such that the mapping r : N 7→ Ke,p defined by

r(n) =

{

n si 0 ≤ n ≤ e + p − 1
(n − e mod p) + e sinon (2.7)

be a morphism. iii) A semi-ring of characteristic (e, p) is a ring if and only if
e = 0.
iv) A semi-ring is additively idempotent (i.e. x + x = x identically, see below) if
and only if it is of characteristic (1, 1) which is equivalent to the fact that k(0) be
the boolean semi-ring.

58

Some Data Structures

Example 1 We have the following first examples

• a1) The boolean semi-ring (B, +,×).

• a2)(N ∪ {+∞}, min, +),

• a3) (R ∪ {−∞}, max, +) (known as the “Tropical semi-ring”) [78].

• b1) (Z, +,×)

• b2) (Z/nZ, +,×) with n composite (i.e. non-prime).

• c1) (Q, +,×), (R, +,×), (C, +,×) and (Z/nZ, +,×) with n prime

• c2) (H, +,×)

Comment. — "ai"s are pure semi-rings (i.e. not rings), "bi"s are rings but not
fields, "ci"s are fields and c2 (Cayley’s quaternion numbers) is not commutative.

A semi-ring k is said commutative if and only if the monoid (k,.) is commutative.
If k is a semi-ring and Q is a finite set, the set kQ×Q of the square matrices with
coefficients in k is naturally endowed with a structure of a semi-ring by (the usual
matrix operations).

Remark 3 If 1 6= 0, k2×2 is not a commutative as in fact
(

0 1
0 0

)(

0 0
1 0

)

=

(

1 0
0 0

)

whereas (

0 0
1 0

)(

0 1
0 0

)

=

(

0 0
0 1

)

2.8.3 Series
Let M be a monoid and K be a semi-ring. We define a series S as a function from
M to K

S : M → K

For any w ∈ M we have an image S(w) ∈ K called coefficient of the word w in
S. We can write a series like as follows

S = Σw∈Σ∗(S, w)w

59

Some Data Structures

The set of all formal series on Σ with coefficient in K is denoted by k << Σ >>.
The support of S is supp(S) = {w ∈ Σ∗|(S, w) 6= 0}. A polynomial is a formal
series with finite support.

We have two operations on series

• The sum of two series

R + S = Σw∈Σ∗(< R|w > + < S|w >)w

• The Cauchy product of two series

R.S = Σw∈Σ∗(Σuv=w < R|w >< S|v >)w

2.8.4 Finite Automata
A formal definition of a finite automaton is the following.

Definition 3 A finite automaton is the 5-tuple (Σ, Q, I, T, δ) where

• Σ is a set of symbols, called alphabet of the language the automaton ac-
cepts, the alphabet is usually, but not necessarily, assumed to be finite

• Q is the set of states to be finite

• I ⊂ Q is the set of initial states, that is, the states in which the automaton
is when no input has been yet processed

• T ⊂ Q is the set of the final states called accepting states

• δ is the transition function, that is δ : Q × Σ → Q which from a state S1
and the letter a go to a state S2 if it exist a transition labeled with a from
the state S1 to the state S2.

A first classification is based on the geometric aspect : DFA Deterministic Finite
Automata and NFA Nondeterministic Finite Automata

• In deterministic automata, for each state there is at most one transition for
each possible input and only one initial state

• In non-deterministic automata, there can be none or more than one transition
from a given state for a given possible input

60

Some Data Structures

Besides the classical aspect of automata as machines allowing to recognize lan-
guages, another approach consists in associate to the automata a functional goal.
In addition of accepted letter from an alphabet as condition of transition, we add
for each transition an information which can be considered as an output data of
the transition, the read letter is now called input data. We define in such way an
automata with outputs or weighted automaton.

Such automata with output give a new classification of machines ; Transducers;
they generate output based on a given input and/or a state using actions. They are
used for control applications. Here two types are distinguished :

• Moore machines : Output depends only on a state, i.e. the automaton uses
only entry actions. The advantage of the Moore model is a simplification of
the behavior

• Mealy machines: Output depends on input and state, i.e. the FSM uses only
input actions. The use of a Mealy FSM leads often to a reduction of the
number of states

Finally, we focus our attention on a special kind of automata with outputs which
are efficient in operational way. This automata with output are called automata
with multiplicities and they are defined in the following.

2.8.5 Automata with Multiplicities

An automaton with multiplicities is based on the fact that the output data of the
automata with output belong to a specific algebraic structure, a semi-ring. In that
way, we will be able to build effective operations on such automata, using the
power of the algebraic structures of the output data. And we are also able to
describe this automata in matrix representation with all the power of the linear
algebra.

Definition 4 An automaton with multiplicities over an alphabet
∑

and a semi-
ring K is the 5-uple Σ, Q, I, T, δ where

• Q = {S1, S2, ..., Sn} is the finite set of state

• I : Q → K is a function over the set of initial states, which associates to
each initial state a value of K, called entry cost, and to non-initial state a
null value

61

Some Data Structures

• T : Q → K is a function over the set of the final states, which is associated
to each final state a value of K, called final cost, and to non-final state a
null value

• δ is the transition function, that is δ : Q×Σ×Q → K which from a state S1
, a letter a and a state S2 go to a value z of K if it exist a transition labeled
with a from the state S1 to the state S2 and with the output z.

We remark that

• automata with multiplicities is a generalization of finite automata. In fact,
finite automata can be considered as automata with multiplicities with for
the semi-ring K, the boolean set B = {0, 1}. To each transition we affect 1
if it exists and 0 if not.

• We have not yet, on purpose, defined what a semi-ring is. Roughly it is the
least structure (K, +, x) that allows matrix computation with units (one can
think of a ring without the minus operation)

2.8.6 Automata with Multiplicities : Linear Representation
The previous automata with multiplicities can be expressed by a linear represen-
tation which is a triplet

p = (λ, µ, γ)

with λ ∈ K1×n is a row-vector which coefficients are λi = I(Si), γ ∈ Kn×1 is a
row-vector which coefficients are γi = T (Si), and µ : Σ → Kn×n is a morphism
of monoids such that ∀a ∈ Σ, the coefficient on the i-th row and j-th column of
all transitions labeled with a is µ(a)ij = δ(Si, A, Sj).

In the following, we describe the linear representation of the automata with mul-
tiplicities which corresponds to the the following figure.

In this figure, the input states are characterized with input arrows from nothing
and the output states are characterized with output arrow to nothing. On each
transition, we indicate before the semi-column, the input data and after the semi-
column, the output associated for each input data.

The linear representation is the following

62

Some Data Structures

1

2

3

2

13

b/3 a/−1

a/4

a/−3

Figure 2.12: Automata with multiplicities

λ =
(

3 0 0
)

γt =
(

0 2 1
)

µ(a) =






0 0 4
0 0 −1
0 0 −3






µ(b) =






0 3 0
0 0 0
0 0 0






2.9 Conclusion
We have presented Wilf identity which represents a generalization of R-S cor-
respondence. We have divided this identity into two cases : Bounded and un-
bounded with respect to the height of standard Young tableaux and the permuta-
tions of n letters that have no increasing subsequences of length greater than 2.

63

Some Data Structures

We reduce R-S algorithm condition to establish an algorithm of passage between
π2(n) and λ(l1, l2) ` n, l1 ≥ l2 > 0.

64

Chapter 3

Dynamic Data Structures

Contents
3.1 From Combinatorics to Dynamic Combinatorics 66

3.2 Some Examples of Dynamic Data Structures 67

3.3 Dynamic Permutations With Constraints 68

3.3.1 Dynamics on Permutations 69

3.3.2 π2(n) with k1 . 70

3.3.3 π2(n) with k2 . 71

3.3.4 π2(n) with k3 . 72

3.4 Dynamic Tableaux . 73

3.4.1 Dynamics on Standard Tableaux 74

3.4.2 Dynamics on Rectangular Tableaux of Height Two . . 76

3.5 Dynamic Dyck Words . 78

3.5.1 Dynamics on Dyck Words 78

3.6 Binary Trees . 79

3.6.1 Binary Tree and Catalan Numbers 79

3.7 A Coding Theorem . 80

3.7.1 Codes . 80

3.7.2 Statement of the Theorem 81

3.8 Conclusion . 84

65

Dynamic Data Structures

3.1 From Combinatorics to Dynamic Combinatorics
Young tableaux were introduced by Alfred Young a mathematician at Cambridge
university, in 1900 in order to compute some idempotents of the symmetric group
Gn, as well as to compute the matrices of the representations of irreducible of the
symmetric group. They were later applied to the study of symmetric groups by
George Frobenins in 1903. The theory was further developed by A. Young, and
by other mathematicians including Robinson, Schensted, Richard P. Stanley, ect.
The Young tableaux are useful combinatorial objects in representation theory and
in every application where permutation of states are relevant like nuclear physics.
It provides a convenient way to describe the group representations of the symmet-
ric group and to study their properties. The Young tableaux play an important role
in various scientific fields, particularly in combinatorics.

The Robinson-Schensted algorithm, first discovered by Robinson in 1937, which
established a one-to-one correspondence between permutations of symmetric group
Sn and pairs of standard Young tableaux of the same shape TS × TS. It can be
viewed as a simple, constructive proof of the combinatorial identity :

∑

λ`n

(fλ)2 = n!

We will study another approach called dynamic combinatorics (Dynamic Data
Structures) of some combinatorial (data structures) objects. The fundamental
problem of enumerative combinatorics is to determine the number of elements of
a set, that is, to enumerate the number of objects of size n inside a given class of
objects and more precisely, to enumerate the number of objects using some formal
parameters. The two principal tools of enumerative combinatorics are bijections
(construction a bijection between two or more than two families of objects) and
generating functions. The word dynamic is a physical concept which means the
forces that produce motion. In mathematics a dynamical system is a space (a con-
figuration space) on which there is an evolution operator.

Here, we give a dynamic structure to some class of permutations of symmetric
group, standard tableaux, Dyck words and codes and we prove equi-variance of
these dynamical systems.

66

Dynamic Data Structures

3.2 Some Examples of Dynamic Data Structures

The Catalan sequence was first described in the 18th century by Leonhard Euler,
who was interested in the number of different ways of dividing a polygon into
triangles. The sequence is named after Belgian mathematician Eugène Charles
Catalan (1814-1894), who discovered the connection to parenthesized expres-
sions. The Catalan number play an important role in enumerative theory. They
appear as counting a various class of combinatorial objects; parenthesis system,
dissection of n-gons into triangles etc

The Catalan number which the first numbers are (1, 2, 5, 14, 42, 132, 429, 1430,
4862, 16796, ...), arise in a number of problems in combinatorics. They can be
computed using the following formula

Cn =
1

n + 1

(

2n
n

)

Among other things, the Catalan numbers describe the following data structures :

• π2(n) : The number of permutations of n-letters without increasing subse-
quences of length greater than two

• f (n,n) : The number of standard Young tableaux of height two with rectan-
gular shape

• The number of Dyck words of length 2n

• The number of incomplete binary trees with n nodes

• The number of finite integer sequences a0, a1, ..., an such that : a0 = 1, ai+1 ≤
ai + 1

The data structures above has the same generating function :

∑

n≥0

Cn zn = 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + ...

There are several ways of explaining why the Catalan formula solves the problem
of enumeration of the data structures listed above, (see http://en.wikipedia.org/wiki/Catalan_number)
for the first four data structures and [47] for the five one.

67

Dynamic Data Structures

3.3 Dynamic Permutations With Constraints
The object of our study is the symmetric group Sn consisting of all bijections from
[n]={1, 2, ..., n} to [n]. The elements π ∈ Sn are called permutations. We will use
the composition as the multiplication, and we multiply permutations from right to
left [6].

We say that a permutation π of n letters has an increasing subsequence of length
k if there are positions 1 ≤ i1 < i2 < i3 < ... < ik ≤ n such that π(i1) < π(i2) <
π(i3) < ... < π(ik). For example

π =

(

1 2 3 4 5
5 3 4 1 2

)

has increasing subsequences of length 2, at points {2, 3} as well as at position
{4, 5}. Let π2(n) be the number of permutations of n letters that have no increas-
ing subsequences of length > 2. By direct enumeration we obtain the following
table.

n π2(n)
0 1
1 1
2 2
3 5
4 14
5 42
6 132
7 429
8 1430

Proposition 3 |π2(n)| = Cn, where π2(n) is the number of permutations of n
letters that have no increasing subsequences of length greater than 2 and Cn is
Catalan numbers.

We can show that for α, β ∈ π2(n) , α ◦ β is not closed under the composition.
If we take π2(3), then we have five permutations without subsequences of length
123. Now if we multiply α = 3 1 2 and β = 2 3 1 then the composition

α ◦ β = 1 2 3 /∈ π2(3)

is not inside π2(3).

68

Dynamic Data Structures

3.3.1 Dynamics on Permutations
The dynamic permutation population we consider will be π2(n) with a param-
eter k. Denoting by L(n,k) the number of dynamic permutations π2(n) with a
parameter k, and k can be the following :

• k1 : is the position of n in π2(n)

• k2 : is the last element of π2(n)

• k3 : is the maximal descent of π2(n)

If we set l(n, k) = |L(n, k)|, we can get the following :

l(n, 0) = l(0, n) = 0 , ∀n ≥ 1, l(0, 0) = 1

l(n, k) =
∑

j≥k+1

l(n − 1, j)

Whence the easy computed table of the first values

n\ k 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 2 1 0 0 0 0
4 0 5 5 3 1 0 0 0
5 0 14 14 9 4 1 0 0
6 0 42 42 28 14 5 1 0
7 0 132 132 90 48 20 6 1

We note the fact that, taking for k1, k2, k3 we do not obtain the same sets but the
same statistics.

69

Dynamic Data Structures

3.3.2 π2(n) with k1

We always start with the number 1. When we add (insert) in order the numbers
from [n] = {2, 3, ..., n}, we have to respect the following rule :

The obtained permutation must not contain an increasing subsequence which its
length > 2.

Therefore, when we stock the number of positions occupied by the insertion num-
ber, we get a sequence of integer numbers a0 a1 a2 ... an with a0 = 1. For example
the corresponding code for the permutation 4312 is 1211.

Let L(n, k1) be the numbers of π2(n) with the parameter k1 as a position of the
element n. Figure (3.1) show the dynamics on the permutations with k1.

1 2

2 1

213

231

2 3 1

3 2 1

312

4 3 1 2

3 4 1 2

3 1 4 2

4 1 3 2

1 4 3 2
4 3 2 1

3 4 2 1
3 2 4 1
3 2 1 4

2

1

1

2

1

3

2

1

2

3

1

2
1

2
3
4

1
4 2 3 1

2 2 4 3 1

3

4 2 1 3

2 1 4 3

.....................

.....................

.....................

..................

.................
..................

..................

..................

...................1

2 2 4 1 3

................

...............

...............

...............

11

Figure 3.1: Permutations of size n with the parameter k1

70

Dynamic Data Structures

3.3.3 π2(n) with k2

We always start with the number 1. When we add (insert) in order the numbers
from [n] = {2, 3, ..., n}, we have to respect the following rule :

The obtained permutation must not contain an increasing subsequence which its
length > 2.

Therefore, we stock the last number of permutations after inserting the number.
We get a sequence of integer numbers, for instance, if n = 4, we have four codes;
1111, 1222, 1114, 1133. Here, in contrast of (2.2.3), we can get for one code many
permutations which is not the case of first one. For example, the corresponding
code for the five following permutations 4312, 3412, 3142, 4132, 1432 is 1222.

Let L(n, k2) be the number of permutations in π2(n) with the parameter k2 (last
element of the permutation). Figure (3.2) show the dynamics on the permutations
with k2.

1

1 2

2 1

213

231

2 3 1

3 2 1

312

4 3 1 2

3 4 1 2

3 1 4 2

4 1 3 2

1 4 3 2
4 3 2 1

3 4 2 1
3 2 4 1
3 2 1 4

2

1

2

1

3

2
1

4

4 2 3 1

2 4 3 1

3

4 2 1 3

2 1 4 3

.....................

.....................

.....................

..................

.................
..................

..................

..................

...................

2 4 1 3

................

...............

...............

...............

2

1

2

2

2

1
1

3

3

1

2

1

1

Figure 3.2: Permutations of size n with the parameter k2

71

Dynamic Data Structures

3.3.4 π2(n) with k3

We always start with the number 1. When we add (insert) in order the numbers
from [n] = {2, 3, ..., n}, we have to respect the following rule :

The obtained permutation must not contain an increasing subsequence which its
length > 2.

Therefore, we stock the number of length of the initial maximal descents of the
permutation. we get a sequence of integer numbers a0 a1 a2 ... an with a0 = 1. For
example, the corresponding code for the permutation 4312 is 1123.

Let L(n, k3) be the numbers of π2(n) with the parameter k3 (length of the initial
maximal descent of the permutation). Figure (3.3) show the dynamics on the
permutations with k3.

1

2

2 1

213

231

2 3 1

3 2 1

312

4 3 1 2

3 4 1 2

3 1 4 2

4 1 3 2

1 4 3 2
4 3 2 1

3 4 2 1
3 2 4 1
3 2 1 4

4 2 3 1

2 4 3 1

4 2 1 3

2 1 4 3

.....................

.....................

.....................

..................

.................
..................

..................

..................

...................

2 4 1 3

................

...............

...............

...............

2

1

3

2

1

3

1

2

2

1
4

1
2
3

3

1

2

2

1

1

1

1

2

Figure 3.3: Permutations of size n with the parameter k3

72

Dynamic Data Structures

3.4 Dynamic Tableaux
Young’s lattice is the set of all number partitions, partially ordered by inclusion
of Young diagrams. It is classical to construct the Young lattice by starting from
empty and adding a new cell at each possible place starting from the right. The
Young lattice allows to build and to define some families of tableaux such as Stan-
dard Young Tableaux [6] and Oscillating Tableaux [49]. The Young lattice allows
also to draw trajectories, that is a chain or a path going from the empty to a cer-
tain shape.

Figure 3.4: Young Lattice

73

Dynamic Data Structures

We can interpret a standard Young tableau as a chain going from the initial
shape ∅ to a certain final shape as we see below

The same interpretation is true for an oscillating tableau, it can be interpreted as
a path going from the initial shape ∅ to a certain final shape as we see below

Clearly, we have the following inclusions :

Standard Y oung tableaux (Oscillating tablraux

3.4.1 Dynamics on Standard Tableaux
We are going to study the dynamic standard Young tableaux. In this case, a cell
can be added at each possible place starting from the right.

We start with the empty. At each cell insertion, we stock the position of the in-
serting cell, that is, stocking the row number which it take.

This is lead to get a sequence of integer number a0 a1 ... an. Let ST(n,k) be the
number of standard Young tableaux of n-cells with the parameter k, and k is the
height of the last inserted cell. Figure (3.5) show dynamics on standard tableaux.

If we take the code 0 1 0 2, we can obtain the corresponding standard Young
tableau by considering respectively, 0 as the first row, 1 as the second row and
2 as the third row of the future standard tableau. In the other words, the corre-
sponding Young tableau is of shape λ = (2, 1, 1). The codes a0 a1 ... an are called
Yamanouchi words.

74

Dynamic Data Structures

1

1
2

1 2

1
2
3

2

3

1
2

3

1

1 2
3

4

1 2
3
4

1
2

3 4

1
2

3

4

0

1
4

2 3

3
2
1 4

1 2 3

4
3
2
1

4321

0

1

2

0
1

0

0

3

0

2

0

2

1

0

Figure 3.5: Standard tableaux of size n with k rows

75

Dynamic Data Structures

3.4.2 Dynamics on Rectangular Tableaux of Height Two
A standard Young tableau of two lines is of the shape λ(l1, l2) ` n where l1 ≥
l2 > 0. Let f (l1,l2) be the number of standard tableaux of two lines. We have

f (l1,l2) =
l1 − l2 + 1

l1 + 1

(

l1 + l2
l1

)

Proposition 4 If l1 = l2 = n then

f (n,n) =
1

n + 1

(

2n
n

)

which is the n-th numbers of Catalan Cn.

In general, we can represent a standard Young tableaux of two (equal) lines as
follows :

1

2n.

.. . . .

.

m

Figure 3.6: Standard Young tableaux of size 2n and height two

Then 2n − m = k will be the second parameter of the tableau.

Example 2 A Young tableau of size six and height two

5 6

1 2

4

3

Figure 3.7: Standard Young tableau of size 6 and height 2

Then 6 − 3 = 3 we remark that 3 is the last element of π2(3) = 213

76

Dynamic Data Structures

Concerning the dynamic on standard Young tableaux of two (equal) lines. we will
always start with the shape (1,1). At each insertion, two cells added; they are su-
perimposed at the right.

Let STL(n,k) be the number of standard Young tableaux of two lines (n,n) with
the parameter k, and the parameter k is 2n-m. Figure (3.8) show dynamics on
standard Young tableaux of two (equal) lines.

1

1

1

1

1

1

1

2

3
2
4

3
42

3

2
3

6

6

6

6

6

5

5

4
1 2

2
3

4

2
3 4

5

5
4

2 4
3 5

1

1

2

3

2

1

2

1

Figure 3.8: Dynamic standard Young tableaux of two lines

77

Dynamic Data Structures

3.5 Dynamic Dyck Words

3.5.1 Dynamics on Dyck Words
We start with the word ab of length 2 and k=1.
Let L(n, k) be the number of Dyck words with the parameter k, and k is the num-
ber of factors. The following figure show the dynamics on the Dyck words with k
factors.

ab

ab ab

ab aabb

aaabbb

aabb

aababb

aabb ab

ab ab ab

1

2

1

2

1

2

3

1

2

1

2

3

1

2
1

2

3

1

2

3

4

aaaabbbb

ab aaabbb

aabb aabb

ab ab aabb

ab aababb
aaabbabb

aabaabbb

aaababbb

ab aabbab

ab aabb ab

abababab

1

aabb abab

ab ab abab

ab ab ab ab

Figure 3.9: Dyck words of length 2n with k factors

78

Dynamic Data Structures

3.6 Binary Trees

3.6.1 Binary Tree and Catalan Numbers
Let L(n,k) be the number of binary trees of n nodes with the k edges. Then we
have the Catalan numbers Cn, see the following table

n\ k 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0
3 0 0 5 0 0 0 0 0
4 0 0 0 14 0 0 0 0
5 0 0 0 0 132 0 0 0
6 0 0 0 0 0 429 0 0
7 0 0 0 0 0 0 1430 0

Binary Tree with Three Vertices
The (fig 3.10) below without external nodes illustrates all possible binary trees
that can be created with 3 vertices. If we want to consider binary trees that are
structurally different, then trees 1, 2, 4, and 5 are structurally the same. (Tree 3 is
different) Binary trees are structurally the same if combinations of mirror images
(left to right flips) can convert one version of a tree into another. For example, a
mirror image flip taken at the top vertex of Tree 5 will convert it into Tree 1. In
the same way, a mirror image flip taken at the middle vertex of Tree 2 (and only
using that portion of the tree below this vertex) will convert it into Tree 1.

Figure 3.10: Complete Binary trees of n nodes

79

Dynamic Data Structures

3.7 A Coding Theorem

In physics, a toy model consists of a less complicated collection of objects and
equations relating them. In spite of that they can be used to understand a mecha-
nism that is also useful in the full non-simplified theory.
In mathematics, a toy model is usually obtained by reducing the number of di-
mensions or variables or restricting them to a particular symmetric form.
In this section, We will focus ourselves on a toy model to give an economic model
from the dynamic combinatorial objects.

3.7.1 Codes

We define these codes as finite sequences
a1 a2 a3 ... an such that

• a1 = 1

• aj+1 ≤ aj + 1

The first codes (in lexorder) are

n codes
1 1111
2 1112
3 1121
4 1122
5 1123
6 1211
7 1212
8 1221
9 1222

10 1223
11 1231
12 1232
13 1233
14 1234

80

Dynamic Data Structures

3.7.2 Statement of the Theorem
We will describe the links between some combinatorics families and we will try
to establish certain properties that help us to understand the connection between
them.

Codes

Dyck Words

Permutations with
Constraints

Rectangular Standard
Young Tableaux

Theorem 4 Let Φ = {a} ∪ Φ+ be a data structure with a bi-variate statistics

l : Φ → N2

s → l(s) = (n, k)

such that
l(Φ+) ⊂ N+ × N

We suppose that there exist a function d : Φ+ → Φ such that

1. d : Φn → Φn−1 (Φn = (pr1 ◦ l)−1(n)), n ≥ 1

2. φ : Φn → Φn−1 × N+

s → (d(s), k) is injective

3. define π = pr2 ◦ l. For all s ∈ Φ we define his code by

χ(s) = (π(dn−1(s)), π(dn−2(s)), · · ·π(d(s)), π(s))

then χ is injective.

We will give some examples to illustrate our theorem.

81

Dynamic Data Structures

First example :
Suppose that we have a code 1 1 2 1 and we want to pass it to π2(4) = 3 4 1 2.

• 1 1 2 1 =⇒ π2(4) = 3 4 1 2 : The method consists of inserting the word w
such that for each ai, w ∈ π2(4) is the maximum descent.

1 1 2 3 1 2 3 4 1 2

The 1 corresponds to maximum descent of length 1, 12 corresponds to max-
imum descent of length 1, 312 corresponds to maximum descent of length
2 and 3412 corresponds to maximum descent of length 1. Then we have
1121.

• π2(4) = 3 4 1 2 =⇒ 1 1 2 1 : We delete each time the greatest number among
π2(4) = 3 4 1 2

3 4 1 2 3 1 2 1 2 1

Then, we read the code from right to left 1 1 2 1.

82

Dynamic Data Structures

Second example :
Suppose that we have a code 1 2 3 2 and we want to pass it to λ(l1, l2), l1 = l2 > 0,
where l1 = 1236 and l2 = 4578.

• 1 2 3 2 =⇒ λ(l1, l2), l1 = l2 > 0, where l1 = 1236 and l2 = 4578 : The
method consists of corresponding final couples of tableaux to the ai

1
2

1 2
4

1 2
4 5

1

2+1=3 3+1=4
1

4+1=5
2

6
3 3

6+1=7
6
8

232

• λ(l1, l2), l1 = l2 > 0, where l1 = 1236 and l2 = 4578 =⇒ 1 2 3 2 : The
method consists of withdrawing the final couples of tableaux from right to
left.

1 2 3 6
4 5 7 8

6<k=7<8

1 2
4 5

3<k=4 and 5<6 2<k=3<4

2 2

5−1=4
2

4−1=3
1

3−1=2
1
1

7−1=6
3
3

Then, we read the code from right to left 1 2 3 2 corresponding to the final
couples of tableaux.

83

Dynamic Data Structures

Third example :
• 1 1 2 1 =⇒ Dyck word

ab aabb ab aabb aabaabbb

• Dyck word =⇒ 1 1 2 1

aabaabbb ab aabb aabb ab

3.8 Conclusion
Our purpose is to go from some combinatorial objects to some models which are
derived or related directly from the dynamic data structures.

In this chapter, we have studied abstract objects and we have imposed on them
some parameters which have transformed these objects into a dynamical system.
In the dynamical systems, we will see some complex systems properties like emer-
gence and auto-organization.

Establish a relationship between abstract objects like permutations, standard Young
tableaux and Dyck words on one hand, and Complex systems on the other hand
has been our aim in this work.

84

Chapter 4

Dynamic Data Structures for
Studying Complex Systems

Contents
4.1 Economic Model . 86

4.1.1 Economical Rules and Dynamic Data Structures . . . 86

4.1.2 Trajectories and Codes 87

4.2 Genetic Automata : Experiments and Spectral analysis . . 89

4.2.1 Genetic Algorithm Basis 91

4.2.2 MuPAD Implementation of Genetic Automata 95

4.2.3 Experiments and Spectral Analysis 100

4.3 Conclusion . 113

85

Dynamic Data Structures for Studying Complex Systems

This chapter is structured as follows. First of all, in the section (4.1) we will con-
centrate on our economic model obtained from a simple rule due to dynamic data
structures. We will describe a toy-model of the benefit in the economical situa-
tion. Finally, we will give a trajectory model of the economical application model.

The ending part of this chapter is about the study of Genetic automata population
analysis. An implementation in MuPAD has been developed and experiments
leading to diffusion control are proposed.

4.1 Economic Model

4.1.1 Economical Rules and Dynamic Data Structures
Our aim is to describe here a toy-model of the benefit in the following situation.
A capital owner possesses two accounts, called P and R, P is the account where
the principal (untouched) capital is deposited. This capital produces a constant
return (one unit per unit of time) which is sent to a reserve R. From the account R
can be withdrawn arbitrary amounts of money and the account must stay positive.

P R

n = n+1n n+1

i = one unit

Figure 4.1: Accounts P and R

The possible configurations are described by sequences such that

• a1 = 0

• ai+1 ≤ ai + 1

Where ai is the amount of money in R at time i. The sequence ai is the time series
and several examples of these series are described in the following figure.

86

Dynamic Data Structures for Studying Complex Systems

-

6
R

t
•

•
••

•
••

•
••

•
• 012345678

• • • • • • • • • 000000000

011123012

012012343

0

1

2

3

4

5

6

7

8

Figure 4.2: Maximal, minimal (dotted) and two intermediate trajectories. Their codes are on the
right.

In this work, we will build combinatorial structures that allow to model and to
compute the global behavior of the reserve R by some specific functions. We can
consider this result as an emergent function from the basic local rules.

4.1.2 Trajectories and Codes
We can define the trajectories of our model by sequences (codes) a1a2a3...an such
that

• a1 = 1

• aj+1 ≤ aj + 1

Example : For n = 3, we have only the 5 codes who are described in the following
table.

n codes
1 111
2 112
3 121
4 122
5 123

87

Dynamic Data Structures for Studying Complex Systems

We remark that we have 2 codes which end by 1 or 2, and 1 code ending by 3.
Now if one sets l(n, k) to be the number of codes ending by k − 1, one can check
that

• l(n, 0) = l(0, n) = 0 (∀n ≥ 1)

• l(0, 0) = 1 (the void sequence)

• l(n, k) =
∑

j≥k+1 l(n − 1, j)

Whence the easy computed table of the first values

n\ k 0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 2 2 1 0 0 0 0
4 0 5 5 3 1 0 0 0
5 0 14 14 9 4 1 0 0
6 0 42 42 28 14 5 1 0
7 0 132 132 90 48 20 6 1

The values for n, k ≥ 1 can be even more easily computed with the (sub-diagonal)
local rule described by West + North = result. For instance, we remark that 9 +
5 = 14.

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 2 0 0 0 0
1 3 5 5 0 0 0
1 4 9 14 14 0 0
1 5 14 28 42 42 0

We remark that the preceding table gives the mirror images of the lines of the
previous double statistics.

88

Dynamic Data Structures for Studying Complex Systems

4.2 Genetic Automata : Experiments and Spectral
analysis

Generally, genetic computing (GC) used as a synonym for evolutionary comput-
ing (EC). Evolutionary computing is a part of computer science which is inspired
from biology. The field of EC can be separate into two component parts, i.e. the
following two sub-categories :

• genetic algorithms which propose bio-inspired algorithm for modeling liv-
ing system or for solving optimization problems using evolutionary com-
puting.

• genetic programming which applies genetic operators on the codes them-
selves allowing to have evolutionary programming.

Evolutionary computation starts from the end of 1950s. As many research do-
mains, there exists different concurrent approaches that have been developed by
several scientists independently. To sum up these different approaches, we can
simplify and consider two major classes:

• The German school which introduced with Rechenberg [33], the concept
of evolution strategies, a method used to optimize real-value parameters,
for example, and initially concerning airfoils. Fogel, Owens and Walsh
[52] developed then the evolutionary programming which consists in the
definition of evolvable machines to code parts of programs.

• The American school led by John Holland [42] and his students from the
University of Michigan. J. Holland is usually considered as the inventor of
genetic algorithms as we define them in the following. The original goal of
J. Holland is to study the phenomenon of adaptation as it occurs in nature.
From this study concerning natural phenomenon, he wants to design artifi-
cial systems that retain the important mechanisms of natural systems [19].
He proposes a original life simulation called echo [80].

Genetic algorithms plays an important role in studies of complex adaptive sys-
tems, ranging from adaptive agents in economic theory to the use of machine
learning techniques in the design of complex devices such as aircraft turbines and
integrated circuits.

John Holland, began his work on genetic algorithms at the beginning of the 60s.
Holland had a double aim [19]:

89

Dynamic Data Structures for Studying Complex Systems

• To improve the understanding of natural adaptation process,

• To design artificial systems having properties similar to natural systems.

The basic idea is as follow : the genetic pool of a given population potentially con-
tains the solution, or a better solution, to a given adaptive problem. This solution
is not active because the genetic combination on which it relies is split between
several subjects. Only the association of different genomes can lead to the solu-
tion.

Holland method is especially effective because he not only considered the role
of mutation (mutations improve very seldom the algorithms), but he also utilized
genetic recombination, (crossover) : these recombination, the crossover of partial
solutions greatly improve the capability of the algorithm to approach, and eventu-
ally find, the optimum [11].

Genetic algorithm can be presented as an universal model by applying it to eco-
nomics, physiological psychology, game theory, and artificial intelligence and
then outlines the way in which this approach modifies the traditional views of
mathematical genetics.

Initially applying his concepts to simply defined artificial systems with limited
numbers of parameters, Holland goes on to explore their use in the study of a wide
range of complex, naturally occurring processes, concentrating on systems hav-
ing multiple factors that interact in nonlinear ways. Along the way he accounts
for major effects of co-adaptation and co-evolution: the emergence of building
blocks, or schemata, that are recombined and passed on to succeeding generations
to provide, innovations and improvements.

90

Dynamic Data Structures for Studying Complex Systems

4.2.1 Genetic Algorithm Basis

Genetic Algorithms and Evolutive Systems
We present here the goal of evolutive systems and genetic algorithms. We try to
explain the generalities of the genetic operators and the classical applications to
optimization problems.

Evolutive systems take their background in evolutionist theory, synthesis of nat-
ural selection theory. We will not assume here these theories whose foundations
belong to Darwin, and heredity theory which is due to Mendel. Of course, we do
not here enter the debate about the validity of genetic theories of evolution. We
just take locally the mechanisms induced by: population genetic modification, re-
production and selection. We can sum up the basis of the principles with the three
following concepts:

• Evolution is the result of progressive alteration of living entities along gen-
erations.

• Reproduction is based on the genetic character which undergo during gen-
erations, some recomposition and some mutation.

• Natural selection consists of keeping the well adapted individuals to the
context of their living environment.

One of the characteristics of living is that individuals have not been programmed
to answer to a specific problem but they evolve inside their environment on the
impulse - among another - of adaptation. The aim of evolutive systems is to build
algorithms based on these concepts and models.

The Principle of Variation-Selection
The major aspect of genetic algorithms is the adaptation property. This property
can be considered as the search of the optimum of a specific function. Genetic
algorithms work on a population of individuals. The individuals are represented
with chromosomes which are composed with primitive information called alle-
les. In term of computable formalization, chromosomes are generally strings or

91

Dynamic Data Structures for Studying Complex Systems

sequences of information over a finite alphabet. To begin the algorithm, we gen-
erate a population of chromosomes.

Variation

Genetic operators

Selection

Adaptation Value

Individual Level

Population Level

Figure 4.3: GA individual and population levels

The algorithm is based on a variation-selection process (see the Figure above):

• The variation step concerns the basic genetic operators on the individual
level and so this step acts on the chromosomes. These basic operators are
described in the following section. The result gives another population with
a greater number of chromosomes than the initial one

• The selection step concerns the population level inside which a selection
function modifies the whole population constitution. This step leads to keep
only some of the chromosomes that have been generated during the varia-
tion step and which satisfy to specific constraints

The principle of selection is based on an evaluation function, called objective
function. This function measures the individual performance. So we can deduce
one probability for each individual as its ability to reproduce or to generate some

92

Dynamic Data Structures for Studying Complex Systems

clones. This probability is called fitness.

The variation-selection process is included in an iterative method which is stopped
after a defined number of iterations or when some specific conditions are verified.

To conclude about this principle, this process consists in the production of one
population which has better adaptive property and so allows to converge toward
an optimum.

Genetic Operations
During the variation step, we usually compute three genetic operators on the chro-
mosomes :

• Reproduction/duplication

• Crossing-over

• Mutation

We describe, in the following, each of these operations.

Reproduction/ duplication

The first operator is the reproductive one. This level consists in the copy of the
string or sequence describing chromosomes and generating an identical chromo-
somes. This process is made by each chromosome itself, in function of the value
of the selective function which is a kind of measure of efficiency.

Crossing-over

Crossing-over is a process which, from two chromosomes, is able to generate two
others ones. The crossing-over consist in the cutting of the initial chromosomes
in the same place chosen at random. We permute the two parts of the chains with
a crossing between them. Then we pass the permuted parts to the other part of
chromosomes.

Mutation

In this step, we chose a few chromosomes at random to be candidates for the mu-
tation process. Usually, the probability used for this selection is low. Then for
each candidate chromosomes, we choose at random, one allele from each chro-
mosome and we modify its value at random. The mutation step allows to go out
from a local attractor during the optimization process.

93

Dynamic Data Structures for Studying Complex Systems

Genetic Algorithm
The general genetic algorithm is described in the following. The genetic algo-
rithm evolution is represented in figure (4.4).

Initialize the population
Calculate the adaptation degree of each individual
While (not finite or not convergent) do

• Reproduction the individual

• Apply the genetic operators

• Select the survivors among the parents and the children

• Calculate the adaptation degree of each individual

Closed.

Figure 4.4: Genetic algorithm evolution

94

Dynamic Data Structures for Studying Complex Systems

4.2.2 MuPAD Implementation of Genetic Automata

The software package MuPAD is a computer algebra system that allows to solve
computational problems in pure mathematics as well as in applied areas such as
the computer science and engineering.

We focus our attention here on the implementation of genetic algorithms for au-
tomata with multiplicities. The selected package used is MuPAD-Combinat which
implements many data structures related to combinatorics.

package("Combinat"):

+---+
| T | MuPAD-Combinat 1.3.2 (devel)
+---+---+
| A | K | an open source MuPAD package for
+---+---+---+

| I | N | research in Algebraic Combinatorics
+---+---+

This package provides or extends the following libraries: combinat,
examples, Dom, Cat, output, experimental, IPC

For quick information on a particular library, please type:
info(library)

For the full html documentation, please browse through:
http://mupad-combinat.sf.net/ (project web page)
file:C:\PROGRA~1\SciFace\MUPADP~1.1\packages\Combinat\index.html
(local mirro\ r)

The first step is to construct automata with multiplicities. The domain element
DOM :: WeightedAutomaton(S)(n, A, i, t, f) represents the weighted automa-
ton with multiplicities in the semi-Ring S given by its linear representation where
n is dimension, A is alphabet, i is initial vector, t is the array of matrix transition
for each letter of A and f final vector.

95

Dynamic Data Structures for Studying Complex Systems

Automata Chromosome Coding

We define the chromosome for each automata with multiplicities as the sequence
of all the matrices associated to each letter from the (linearly ordered) alphabet.
The chromosomes are composed with alleles which are here the lines of the ma-
trices [13].

Input Vector

Output Vector

a

b

c

Chromosome Code

Figure 4.5: Chromosome code

In the following, genetic algorithms are going to generate new automata contain-
ing possibly new transitions from the ones included in the initial automata.

The genetic algorithm over the population of automata with multiplicities follows
a reproduction iteration broken up in three steps [19, 43, 58]:

96

Dynamic Data Structures for Studying Complex Systems

• Duplication: where each automaton generates a clone of itself.

The MuPAD associated function is

GenericDuplication:=proc(Chrom)
begin
return(Chrom);

end_proc;

• Crossing-over: concerns a couple of automata. Over this couple, we con-
sider a sequence of lines of each matrix for all. For each of these matrices,
a permutation on the lines of the chosen sequence is made between the ana-
logue matrices of this couple of automata.

The MuPAD associated function is

CrossingOverWa:=proc(Chr1,Chr2,seq)
local i,j,k,r,m,u,alph,letter,t1,t2;

begin
alph:=DWA::alphabet(Chr1):
m:=DWA::dimension(Chr1):
for i from 1 to nops(alph) do

letter:=op(alph,i):
t1[letter]:=DWA::transition(Chr1,letter):
t2[letter]:=DWA::transition(Chr2,letter):

end_for:
for i from 1 to nops(seq) do

if (op(seq,i) mod m) <> 0 then
k:=(op(seq,i) div m)+1:
r:=(op(seq,i) mod m):

else
k:=(op(seq,i) div m):
r:=m:

end_if:
letter:=op(alph,k):
for j from 1 to m do

u:=(t2[letter])[r,j]:
(t2[letter])[r,j]:=(t1[letter])[r,j]:

(t1[letter])[r,j]:=u:
end_for:

end_for:

97

Dynamic Data Structures for Studying Complex Systems

return(DWA(m,alph,DWA::initial(Chr1),t1,DWA::final(Chr1)),
DWA(m,alph,DWA::initial(Chr2),t2,DWA::final(Chr2)));

end_proc;

Where Chr1 and Chr2 are the chromosome codes of the above automata
with multiplicities which are involved with the Crossing-Over process and
seq is the sequence of matrix lines on which the crossing over deal.

This function return two automata with multiplicities DOM :: WeightedAutomata()
corresponding to the result of the crossing-over the two initial chromo-
somes.

• Mutation: where a line of each matrix is randomly chosen and a sequence
of new values is given for this line.

The MuPAD associated function is

MutationWa:=proc(Chr,All,seq)
local i,j,k,r,m,alph,letter,t;

begin
alph:=DWA::alphabet(Chr):
m:=DWA::dimension(Chr):
for i from 1 to nops(alph) do

letter:=op(alph,i):
t[letter]:=DWA::transition(Chr,letter):

end_for:
if (All mod m) <> 0 then

k:=(All div m)+1:
r:=(All mod m):

else
k:=(All div m):
r:=m:

end_if:
letter:=op(alph,k):
for j from 1 to nops(seq) do

(t[letter])[r,j]:=op(seq,j):
end_for:
return (DWA(m,alph,DWA::initial(Chr),t,DWA::final(Chr)));

end_proc;

98

Dynamic Data Structures for Studying Complex Systems

Where Chr is the chromosome code of the automata with multiplicities in-
volved in the mutation process, All is the chromosome allele (matrix line)
where the mutation is applied and seq is the new matrix line which will re-
place All.

This function return the automata with multiplicities DOM :: WeightedAutomata()
corresponding to the result of the mutation over the initial chromosome.

Finally the whole genetic algorithm scheduling for a full process of reproduction
over all the population of automata is the following :

1. For all couple of automata, two children are created by duplication, crossover
and mutation mechanisms;

2. The fitness for each automaton is computed;

3. For all 4-tuple composed of parents and children, the less performing au-
tomata, in term of fitness computed in previous step, are suppressed. The
two automata, still living, are the result of the evolution of the two initial
parents.

We present in the following the program trace of a basic usage of the genetic
operators over automata with multiplicities.

DWA:=Dom::WeightedAutomaton(Dom::Real);

DSM:=Dom::SparseMatrix(Dom::Real);

alphabet:=[x,y];

i1:=DSM(1,2,[0.45,0.65]); i2:=DSM(1,2,[0.672,0.328]);
i3:=DSM(1,2,[0.295,0.695]); f1:=DSM(2,1,[0.034,0.966]);
f2:=DSM(2,1,[0.87,0.13]); f3:=DSM(2,1,[0.581,0.419]);
t1[x]:=DSM(2,2,[[0.4,0.6],[0.12,0.88]]);
t1[y]:=DSM(2,2,[[0.796,0.204],[0.3333,0.6667]]);
t2[x]:=DSM(2,2,[[0.456,0.544],[0.789,0.211]]);
t2[y]:=DSM(2,2,[[0.5,0.5],[0.1,0.9]]);
t3[x]:=DSM(2,2,[[0.858,0.142],[0.277,0.723]]);
t3[y]:=DSM(2,2,[[0.011,0.989],[0.0003,0.9997]]);

SeqOfWa1:=[[DWA(2,alphabet,i1,t1,f1)],[DWA(2,alphabet,i2,t2,f2)],

99

Dynamic Data Structures for Studying Complex Systems

[DWA(2,alphabet,i3,t3,f3)]];

SeqOfWa2:=[[GenericCrossingOver(op(SeqOfWa1,1),op(SeqOfWa1,2),
[1,3,4],CrossingOverWa)],[GenericMutation(op(SeqOfWa1,3),3,
[0.7,0.3],MutationWa)]];

4.2.3 Experiments and Spectral Analysis

In this section, we will first give some preliminaries allowing to recall some defi-
nitions, properties and theorems on matrix and spectral analysis. Then we present
two series of experimentations corresponding to the evolution of a population of
genetic automata.

The first series is computed without fitness function and shows some analysis
based on spectral analysis outputs. The second series is computed with a specific
fitness function based on auto-regulation selection process which uses a fitness
function computed with the spectral of the population itself.

100

Dynamic Data Structures for Studying Complex Systems

Preliminaries

We present here a brief introduction about matrices and their calculus.
The row vector is a set of numbers (a1, a2, ..., am) written as

~a = (a1, a2, ..., am)

where ai, 1 ≤ i ≤ m is the i-th components of ~a. More simply a row vector is a
[1 × m] matrix.

Similarly, we can define the column vector as a set of numbers written as

~a =













a1

a2

.

.

.
an













when ai, 1 ≤ i ≤ n is the j-th components of the column vector ~a. More simply a
row vector is a [n × 1]matrix.

In the study of matrices we have two things to consider; numbers and arrange-
ments of these numbers. We define a matrix A as a rectangular array (arrange-
ment) of elements (e.g.,numbers) in m-rows and n-columns considered as a single
entity such as :

A =













a11 a12 ... a1n

a21 a22 ... a2n

. . .

. . .

. . .
am1 am2 ... amn













We can simply write for this expression by (aij)m×n, (1 ≤ i ≤ m and 1 ≤ j ≤ n),
when aij are numbers lies in the i-th row and j-th column. The degree of the ma-
trix is m × n where m is the numbers of rows and n is the numbers of columns of
the matrix. We have many kinds of matrices, but the most important among them
is the square matrix which has the same numbers of rows and columns [63].

101

Dynamic Data Structures for Studying Complex Systems

A square matrix in which every number over its main diagonal is zero called lower
triangular matrix, and if every number below its main diagonal is zero called up-
per triangular matrix. A square matrix in which every number not on its main
diagonal is zero called diagonal matrix. The identity matrix is an example of the
diagonal matrix.

The determinant of a matrix is defined only on square matrices and it is a mapping
from the set of all square matrices to the set of all real numbers

| | : Mn → R

There are many ways to obtain a determinant of a matrix, for example Laplace
method to obtain the determinant of those square matrices with degree 3 × 3 and
more [63].

Eigenvalue problem

Let A be a square matrix. The set of (complex) values λ such that |A−λI| = 0 is
called the set of eigenvalues (or the spectrum)of A. The eigenvalues of an upper or
lower triangular matrix are the diagonal elements. If λ1, λ2, ..., λn are eigenvalues
of a square matrix A, then

|A| = λ1λ2...λn

Eigenvalues are a set of scalars associated with a polynomial equation (whose
coefficients are functions of the entries of the original matrix). Similarly, Eigen-
vectors are a set of vectors associated with matrix equations. The determination
of the eigenvalues and eigenvectors of a system is important in physics and engi-
neering, where it is (most of times) equivalent to matrix diagonalization and arises
in such common applications as stability analysis.

The eigenvalues of a matrix A are called its spectrum λ(A). The left hand side of
the characteristic equation |A − λI| = 0 is called characteristic polynomial.

Adjacency Matrix

The adjacency matrix of a simple graph is a matrix with rows and columns labelled
by graph vertices, with 1 or 0 in position (vi, vj) according to wether vi and vj are
adjacent or not. For example

102

Dynamic Data Structures for Studying Complex Systems

A =








0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0








Permutation Matrix

A permutation matrix is a matrix obtained by permuting the rows of an n × n
identity matrix according to some permutation of the numbers 1 to n. Every row
and column therefore contains precisely a single 1 with 0 everywhere else, and
every permutation corresponds to a unique permutation matrix. Therefore, there
exists n! permutation matrices of size n. For example

A =

(

1 0
0 1

)

A =






0 1 0
0 0 1
1 0 0






Perron-Frobenius Theorem
For general knowledge about positive matrices and irreducible forms, the reader
is referred to [71].
If all elements aij of an irreducible matrix A are non-negative, then R = MinMλ

is an eigenvalue of A and all the eigenvalues of A lie on the disk |Z| ≤ R, where

Mλ = Inf{µ : µλi >
n∑

j=1

|aij|λj, 1 ≤ i ≤ n}

And λ = {λ1, λ2, ..., λn} is a set of non-negative numbers which are not all zero.

Furthermore, if A has exactly p eigenvalues (p ≤ n) on the circle |Z| = R, then
the set of all its eigenvalues is invariant under rotation by 2π

p
about the origin.

103

Dynamic Data Structures for Studying Complex Systems

Eigenvalues Calculus with MuPAD

The function call export(linalg) exports all functions of the library linalg (linear
algebra) that enable us to define matrices. They offer matrix arithmetic and sev-
eral functions for matrix manipulation.

The library linalg is based on the domains DOM :: Matrix and DOM ::
SquareMatrix. A domain created by DOM :: Matrix represents matrices of
arbitrary rows and columns over a specified ring.

To calculate the eigenvalues of a matrix A under MuPAD we use linalg :: eigenvalues(A)
which returns a list of the eigenvalues of the matrix A. For example

export(linalg);

A:= matrix([[1,4,2],[1,4,2],[2,5,3]]);

linalg::eigenvalues(A);

The result of the above calculation is {0,
√

15 + 4, 4 −
√

15}.

To calculate the eigenvectors of a matrix A under MuPAD we use

linalg::eigenvectors(A);

Which compute the eigenvalues and eigenvectors of the matrix A. Finally, to
calculate the spectral radius of a matrix A under MuPAD we use

numeric::spectralradius[A, s, i];

Where s is starting vector parameter which is a one dimensional array or a list of
length m. The parameter i is the maximal number of iterations which is a positive
integer.

104

Dynamic Data Structures for Studying Complex Systems

Experiments
Here, two series of experiments are presented. The first one, is computed with out
fitness and give histogram evolution of spectral analysis. The second one, uses
the results of this spectral analysis over the population itself to implement a fit-
ness and so an auto-regulated process.

First Series of Experiments

• Step 1 : We generate a random population of n-probabilistic automata i.e.
the function

inipop:=proc(n)
begin
alphabet:=[x];
wa1:=[];

for j from 1 to n do
i:=DSM(1,3,[r3seq()]):
f:=DSM(3,1,[r3seq()]):
t[x]:=DSM(3,3,[[r3seq()],[r3seq()],[r3seq()]]):
wa1:=append(wa1,DWA(3,alphabet,i,t,f));

end_for;
return(wa1);

end_proc;

• Step 2 : We compute an iteration which make evolve the automata popula-
tion by applying crosser-over and mutation, i.e. the functions

newpop:=proc(wa)
local j,i, nelem, waTemp, seqPermut;
begin
nelem:=nops(wa)/2;
waResult:=[];
for j from 1 to nelem do

seqPermut:=[];
for i from 1 to 3 do

if (frandom()<0.5) then seqPermut:=append(seqPermut,i)
end_if;

end_for;
waTemp:=[GenericCrossingOver(op(wa,j),op(wa,nelem+j),

105

Dynamic Data Structures for Studying Complex Systems

seqPermut, CrossingOverWa)];

waResult:=append(waResult, op(waTemp,1), op(waTemp,2));
end_for;
return(waResult);

end_proc;

newpopmut:=proc(wa)
local i,j, waResult, waTemp;

begin
nelem:=nops(wa);
waResult:=[];
for j from 1 to nelem do

waTemp:=op(wa,j);
for i from 1 to 3 do
if (frandom()<0.03) then
waTemp:=GenericMutation(waTemp, i, [r3seq()], MutationWa);

end_if;
end_for;
waResult:=append(waResult,waTemp);

end_for;
return(waResult);

end_proc;

At each step, we compute the secondary greatest eigenvalue module because for
each probabilistic automata, the greatest one is always known. Its value is 1 asso-
ciated to the vector













1
1
.
.
.
1













We represent the histogram of the distribution of this secondary eigenvalue mod-
ule of each automaton over the whole population, i.e. the function

spa1:=proc(wa,nb)

106

Dynamic Data Structures for Studying Complex Systems

local vpm, ii,s;
begin
vpm:=[]:
for ii from 1 to

nops(wa) do
s:=linalg::eigenvalues(DWA::transition(op(wa,ii),x));
vpm:=append(vpm,maxMoins1(s));
end_for:

return(plot(plot::Histogram2d(vpm, Cells=[nb],Color=RGB::Blue)));
end_proc;

In the following, present an experiment where the series of histograms computed
with these previous steps, is obtained

107

Dynamic Data Structures for Studying Complex Systems

108

Dynamic Data Structures for Studying Complex Systems

Second Series of Experiments

We generate some similar histograms series with adding a fitness function com-
putation and so a selection step

• The fitness function of each automaton corresponds to the value of the sec-
ondary greatest eigenvalue module.

• The selection process selects the automata corresponding to the greatest
secondary eigenvalue module from two populations of automata.

The algorithm is exactly the same that in the first series with the addition of the
selection process just after the creation of the new population. The selection pro-
cess deals with the parent and the new generation and give in output the selected
automata population.

In the following, we present a new experiment integrating the selected process,
the abscisse scale is adapted to the values of the secondary greatest eigenvalue
module.

109

Dynamic Data Structures for Studying Complex Systems

wa2:=newpop(wa1): wa1:=selection(wa1,wa2,100,maxvpm1):
spa1(wa1,10);

110

Dynamic Data Structures for Studying Complex Systems

111

Dynamic Data Structures for Studying Complex Systems

112

Dynamic Data Structures for Studying Complex Systems

Results Analysis and Interpretation

As expected by the fitness function, we generate successive populations which
are characterized by the convergence process which leads to obtain a population
where the greatest secondary eigenvalue module of all automata with multiplici-
ties is equals 1.

This processus is an auto-regulation processus on the population itself, managed
by a feed-back of the result control on the system itself.

By controlling the generating automata population with eigenvalues module equals
1, we constraint the system to not be dissipative. The spectral analysis and the
eigenvalues module give some indications on the dissipative aspect during the
evolution. If the eigenvalue modules are less than 1, then we can conclude that a
dissipation exists.

The non dissipative evolution process over automata with multiplicities proposed
here, is a tool based on the power of the algebraic representation of the automata
with multiplicities, using some computation on their matrix representation. So we
deal on a dynamic data structure according to the complexity of dissipative pro-
cess over some self-organized systems. Without managing each matrix coefficient
value, we give a kind of control tool according to dissipative process increasing
or decreasing.

4.3 Conclusion
This chapter covers two aspects. The first one is to adapt our results about dynamic
structures presented in chapter 3 to model a bank account which is composed of
two accounts P and R by giving the behavior of R which represent the benefit
of P . The second one is to implement genetic automata (probabilistic automata)
by applying genetic operators using MuPAD software for studying spectral anal-
ysis of the automata population. This analysis allows us to implement an auto-
regulation process as an evolution of automata population toward a dissipative
process.

113

Dynamic Data Structures for Studying Complex Systems

114

Chapter 5

Conclusions and Perspectives

We have presented a toy-model economic behavior based on local rules and we
propose some global function expression which can be also described by three
combinatorics structures. By this application, we point out a one-to-one corre-
spondence between three other ballot-like structures. The innovative aspect of
this work deals with a constructive development of the involved bijections.

The goal of this PhD thesis is to give some combinatorial tools to understand
and to model some dynamical evolution of complex systems. We present some
applications to economic models and give a genetic tool for self-regulation of
dissipative systems implemented by automata population and control by spectral
analysis.

For the future, we can continue to develop some applications on complexity

• We have started to study the phenomenology of sand pile model using
Young tableaux. The connection between standard Young tableaux and
sand pile model avalanches as a most typical example of the notion of self-
organized criticality can be treated. Due to these avalanches, it seems pos-
sible to obtain some tableaux that respect the standard Young tableaux con-
ditions, that is, tableaux with increasing number from 1 to n in each rows
and columns. In this project, We will try to obtain a standard Young tableau
with some properties by applying a new algorithm called Sand Pile One-
Dimensional Avalanche Model (SPODAM).

• The financial market today possed a very large tools to simulate some phe-
nomena which we can not control it by the classical methods. This tools has
sometimes advantages and disadvantages. For example, some model de-
scribe with precision the option prices, but we prefer Black-Scholes model

115

Conclusions and Perspectives

to calculate option prices which is not more perfect than other models. It
is simple and more near to reality. In the real financial market, we have
the agents who are homo sapiens and not the homo economicus, so we
have to make face to some difficult situations. The experimentations in
the laboratory is useful to give us some predictions and expectations about
the phenomena which we try to understand but these experimentations will
not be exactly conform to the reality, in particular, in the world of finance.
An innovative process could be to use spectral analysis as developed in the
previous chapter to control the dissipative phenomena involved in financial
market evolution.

116

Chapter 6

Annexe

Contents
6.1 Genetic Automata under MuPAD 118

6.2 Spectral analysis programming under MuPAD 122

117

Annexe

6.1 Genetic Automata under MuPAD

package("Combinat");

+---+
| T | MuPAD-Combinat 1.3.2 (devel)
+---+---+
| A | K | an open source MuPAD package for
+---+---+---+

| I | N | research in Algebraic Combinatorics
+---+---+

This package provides or extends the following libraries:
combinat,examples, Dom, Cat, output, experimental, IPC

For quick information on a particular library, please type:
info(library)

For the full html documentation, please browse through:
http://mupad-combinat.sf.net/ (project web page)
file:C:\PROGRA~1\SciFace\MUPADP~1.1\packages\Combinat\
index.html(local mirro\ r)

DWA:=Dom::WeightedAutomaton(Dom::Real);

DSM:=Dom::SparseMatrix(Dom::Real);

alphabet:=[x,y];

i1:=DSM(1,2,[0.45,0.65]); i2:=DSM(1,2,[0.672,0.328]);
i3:=DSM(1,2,[0.295,0.695]); f1:=DSM(2,1,[0.034,0.966]);
f2:=DSM(2,1,[0.87,0.13]); f3:=DSM(2,1,[0.581,0.419]);
t1[x]:=DSM(2,2,[[0.4,0.6],[0.12,0.88]]);
t1[y]:=DSM(2,2,[[0.796,0.204],[0.3333,0.6667]]);
t2[x]:=DSM(2,2,[[0.456,0.544],[0.789,0.211]]);
t2[y]:=DSM(2,2,[[0.5,0.5],[0.1,0.9]]);
t3[x]:=DSM(2,2,[[0.858,0.142],[0.277,0.723]]);

118

Annexe

t3[y]:=DSM(2,2,[[0.011,0.989],[0.0003,0.9997]]);

SeqOfWa1:=[DWA(2,alphabet,i1,t1,f1),DWA(2,alphabet,i2,t2,f2),
DWA(2,alphabet,i3,t3,f3)]:

GenericDuplication:=proc(Chrom) begin
return(Chrom);

end_proc;

GenericCrossingOver:=proc(Chrom1,Chrom2,SeqOfAll,FctCrossingOver)
begin

FctCrossingOver(Chrom1,Chrom2,SeqOfAll);
end_proc;

CrossingOverWa:=proc(Chr1,Chr2,seq)
local i,j,k,r,m,u,alph,letter,t1,t2;

begin
alph:=DWA::alphabet(Chr1):
m:=DWA::dimension(Chr1):
for i from 1 to nops(alph) do

letter:=op(alph,i):
t1[letter]:=DWA::transition(Chr1,letter):
t2[letter]:=DWA::transition(Chr2,letter):

end_for:
for i from 1 to nops(seq) do

if (op(seq,i) mod m) <> 0 then
k:=(op(seq,i) div m)+1:
r:=(op(seq,i) mod m):

else
k:=(op(seq,i) div m):
r:=m:

end_if:
letter:=op(alph,k):
for j from 1 to m do

u:=(t2[letter])[r,j]:
(t2[letter])[r,j]:=(t1[letter])[r,j]:

(t1[letter])[r,j]:=u:
end_for:

end_for:

119

Annexe

return(DWA(m,alph,DWA::initial(Chr1),t1,DWA::final(Chr1)),
DWA(m,alph,DWA::initial(Chr2),t2,DWA::final(Chr2)));

end_proc;

GenericMutation:=proc(Chrom,All,SeqOfGen,FctMutation) begin
FctMutation(Chrom,All,SeqOfGen);

end_proc;

MutationWa:=proc(Chr,All,seq)
local i,j,k,r,m,alph,letter,t;

begin
alph:=DWA::alphabet(Chr):
m:=DWA::dimension(Chr):
for i from 1 to nops(alph) do

letter:=op(alph,i):
t[letter]:=DWA::transition(Chr,letter):

end_for:
if (All mod m) <> 0 then

k:=(All div m)+1:
r:=(All mod m):

else
k:=(All div m):
r:=m:

end_if:
letter:=op(alph,k):
for j from 1 to nops(seq) do

(t[letter])[r,j]:=op(seq,j):
end_for:
return (DWA(m,alph,DWA::initial(Chr),t,DWA::final(Chr)));

end_proc;

SeqOfWa2:=[GenericCrossingOver(op(SeqOfWa1,1),op(SeqOfWa1,2),
[1,3,4],CrossingOverWa),GenericMutation(op(SeqOfWa1,3),3,
[0.7,0.3],MutationWa)]:

SeqOfWa1;

120

Annexe

SeqOfWa2;

121

Annexe

6.2 Spectral analysis programming under MuPAD

r3seq:=proc() begin
a:=frandom();b:=frandom()*(1-a);c:=1-a-b;
return (a,b,c);

end_proc;

inipop:=proc(n) begin
alphabet:=[x];
wa1:=[];

for j from 1 to n do
i:=DSM(1,3,[r3seq()]):
f:=DSM(3,1,[r3seq()]):
t[x]:=DSM(3,3,[[r3seq()],[r3seq()],[r3seq()]]):
wa1:=append(wa1,DWA(3,alphabet,i,t,f));

end_for;
return(wa1);

end_proc;

wa2:=inipop(100):

maxMoins1 := proc(s)
begin
maxs:=0.0: eps:=0.00000001:
for i from 1 to nops(s) do

value:=abs(op(s,i)):
if (abs(value-1.0)>eps) then
if value > maxs then maxs:=value end_if;

end_if;
end_for;
maxs;

end_proc;

newpop:=proc(wa)
local j,i, nelem, waTemp, seqPermut;

122

Annexe

begin
nelem:=nops(wa)/2;
waResult:=[];
for j from 1 to nelem do
seqPermut:=[];
for i from 1 to 3 do

if (frandom()<0.5) then seqPermut:=append(seqPermut,i) end_if;
end_for;

waTemp:=[GenericCrossingOver(op(wa,j),op(wa,nelem+j),
seqPermut, CrossingOverWa)];

waResult:=append(waResult, op(waTemp,1), op(waTemp,2));
end_for;
return(waResult);

end_proc;

newpopmut:=proc(wa)
local i,j, waResult, waTemp;

begin
nelem:=nops(wa);
waResult:=[];
for j from 1 to nelem do
waTemp:=op(wa,j);
for i from 1 to 3 do
if (frandom()<0.03) then

waTemp:=GenericMutation(waTemp, i, [r3seq()], MutationWa);
end_if;
end_for;
waResult:=append(waResult,waTemp);

end_for;
return(waResult);

end_proc;

spa1:=proc(wa,nb)
local vpm, ii,s;
begin vpm:=[]:
for ii from 1 to
nops(wa) do

123

Annexe

s:=linalg::eigenvalues(DWA::transition(op(wa,ii),x));
vpm:=append(vpm,maxMoins1(s));
end_for:
return(plot(plot::Histogram2d(vpm, Cells=[nb],Color=RGB::Blue)));
end_proc;

for iii from 1 to 10 do
wa2:=newpop(wa2):wa2:=newpopmut(wa2):
spa1(wa2,10);
end_for;

inside:=proc(x,l)
local i; begin
for i from 1 to nops(l) do

if (x=l[i]) then return(i) end_if;
end_for;
return(0);

124

Annexe

125

Annexe

end_proc;

maxvpm1:=proc(a)
begin
print("vp:",linalg::eigenvalues(DWA::transition(a,x)));
return(maxMoins1(linalg::eigenvalues(DWA::transition(a,x))));
end_proc;

selection:=proc(p1,p2,nb,fitness)
local i, p3, tabu1, tabu2, start,
nv, m, mpos, mpop,x, mx; begin
p3:=[];tabu1:=[];tabu2:=[];start:=TRUE; for i from 1 to nb do
start:=TRUE;
for i1 from 1 to nops(p1) do

x:=op(p1,i1);nv:=fitness(x);
if (inside(i1,tabu1)=0) then
if start then

m:=nv; mpos:=i1; mpop:=1; mx:=x; start:=FALSE;
else

if (nv>m) then m:=nv; mpos:=i1; mpop:=1; mx:=x;
end_if;

end_if;
end_if;

end_for;
for i2 from 1 to nops(p2) do

x:=op(p2,i2);nv:=fitness(x);
if (inside(i2,tabu2)=0) then
if start then

m:=nv; mpos:=i2; mpop:=2; mx:=x; start:=FALSE;
else

if (nv>m) then m:=nv; mpos:=i2; mpop:=2; mx:=x;end_if;
end_if;

end_if;
end_for;
p3:=append(p3,mx);
if (mpop=1) then tabu1:=append(tabu1,mpos)
else tabu2:=append(tabu2,mpos) end_if;

126

Annexe

end_for; return(p3);
end_proc;

wa1:=inipop(100): spa1(wa1,10);

wa2:=newpop(wa1): wa1:=selection(wa1,wa2,100,maxvpm1):
spa1(wa1,10);

127

Annexe

128

Annexe

129

Annexe

130

Chapter 7

Bibliography

131

Bibliography

132

Bibliography

[1] Aziz Alaoui and Cyrille Bertelle, Emergent Properties in Natural and Artifi-
cial Dynamical Systems, Springer, Understanding Complex Systems series,
2006.

[2] Alfred Young, Quantitative substitutional analysis, I-IX Proc. London Math.
Soc. 1901-1952.

[3] A. R. Richardson, Simultaneous Linear Equations Over a Division Ring,
Proc. Lond. Math. Soc., vol 28, 395-420, 1928.

[4] Alfred Marshall, Principales of Economics, 459, (8-th Edition, Macmillan,
London, 1920).

[5] A. Bechara, H. Damasio and A.R. Damasio, Emotion, Decision Making and
the Orbitofrontal Cortex, Cerebral Cortex, 10:295-307, march 2000.

[6] B.E. Sagan, The Symmetric Group, 1991.

[7] Bernard Pavard and Julie Dugdale, An Introduction to Complexity in Social
Science, GRIC-IRIT, Toulouse, France.

[8] C. Schensted, Longest Increasing and Decreasing Subsequences, Canad. J.
Math, 13 (1961), 179-191.

[9] C. Chauve, Half of the Nodes of Catalan Trees are Leaves,
http://www.lacim.uqam.ca/ chauve/Publications/.

[10] C. Langton, Studying Artificial Life with Cellular Automata, Physica D, 22,
1986.

[11] C. Emmeche, Garden in the Machine: The Emerging Science of Artificial
Life, Princeton University Press, 1994, pp. 114 ss.

[12] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L. Ponty Adaptive Be-
haviour for Prisoner Dilemma Strategies Based on Automata with Multi-
plicities, In ESS 2002 Conf., Dresden (Germany), October 2002.

133

Bibliography

[13] C. Bertelle, M. Flouret, V. Jay, D. Olivier, and J.-L. Ponty Genetic Algo-
rithms on Automata with Multiplicities for Adaptive Agent Behaviour in
Emergent Organizations, In SCI’2001, Orlando, Florida, USA, 22-25th July
2001.

[14] Definethat, www.definethat.com/define/296.htm

[15] Definethat, www.definethat.com/define/311.htm

[16] Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Vol
1 and 2 (1997), Vol 3 (1998).

[17] D. R. Raymond and D. Wood, Grail: A C++ Library for Automata and
Expressions, J. Symbolic Comput., vol 17, 341-350, 1994.

[18] David Kline, Positive Feedback, Lock-in and Environmental Policy, Policy
Sciences 34:95-107, 2001.

[19] D. Goldberg, Genetic Algorithms, Addison Wesley, 1989.

[20] E. Laugerotte and H. Abbad, Mupad-Automat., http://mupad-
combinat.sourceforge.net/.

[21] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence, Oxford Uni-
versity Press, 1999.

[22] F. Alarcón and D. Anderson, Commutative Semirings and Their Lattices of
Ideals, Houston J. Math., vol 20, 1994.

[23] F. Varela, Autonomie et Connaissance, Essai sur Le Vivant, Editions Du
Seuil, 1989.

[24] F. Capra, The Web of Life, Anchor books, 1996.

[25] G. Duchamp and M. Flouret and E. Laugerotte and J.-G. Luque, Direct and
Dual Laws for Automata With Multiplicites , Theoret. Comput. Sci. 105-120,
2001.

[26] G. Duchamp, C. Reutenauer, Un critère de rationalité provenant de la
géomètrique non-commutative, Invent. Math, 128, 613-622, 1997.

[27] G. Weisbuch, A. Kirman and D. Herreiner, Market Organisation and Trad-
ing Relationships, 16/02/1998.

[28] Herbert S. Wilf, Ascending Subsequences of Permutations and the Shape of
Tableaux, J. of Combina. Theory, Series A 60 (1992), 155-157.

134

Bibliography

[29] Herbert S. Wilf, The Computer-Aided Discovery of a Theorem About Young
Tableaux, J. Symbolic Computation, Series 20 (1995), 731-735.

[30] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon
Press, Oxford, 1979.

[31] I. Prigogine, La Fin Des Certitudes, Editions Odile Jacob, 1996.

[32] I. Prigogine and D. Kondepudi, Thermodynamique, des Moteurs Thermiques
aux Structures Dissipatives, Editions Odile Jacob, 1999.

[33] I. Rechenberg, Evolution Strategies, Fromman-Holzboog, 1973.

[34] J. M. Champarnaud and G. Hansel, Automate, a Computing Package for
Automata and Finite Semigroups, J. Symbolic Comput., 12, 197-220, 1991.

[35] J. Berstel and C. Reutenauer, Rational Series and Their Languages, Springer
Verlag, EATCS, Monographs on Theoretical Computer Science, 1988.

[36] J. S. Golan, Power Algebras Over Semirings With Applications in Mathe-
matics and Computer Science, Kluwer, 1999.

[37] J. S. Golan, Semirings and Affine Equations Over them: Theory and Appli-
cations, Kluwer, 2003.

[38] J. Sakarovitch, Eléments de Théorie des Automates, Vuibert, 2003.

[39] J. Crutchfield, Discovering Coherent Structures in Nonlinear Spatial Sys-
tems, Non linear dynamics of ocean waves, A. Brandt and S. Ramberg and
M. Shlesinger, 190-216, Singapore, World scientific, 1992.

[40] J.E. Hopcroft and R. Motwani and J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-Wesley, 2001.

[41] John Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

[42] John H. Holland, Hidden Order - How Adaptation Builds Coimplexity, 1995.

[43] John Koza, Genetic Programming, Encyclopedia of Computer Sciences and
Technology, 1997.

[44] K. Culik and J. Kari, Finite State Transformations of Images, Proceedings of
ICALP 95, vol 944, Lecture Notes in Comput. Sci., 51-62, Springer, 1995.

[45] K.F. Man, K.S. Tang and S. Kwong, Genetic Algorithms, Springer, 1999.

135

Bibliography

[46] Luaï Jaff, The Increasing Subsequences and the Shape of Tableaux, DEA
d’Informatique, Labri, University of Bordeaux I.

[47] Luaï Jaff, Gérard H.E.Duchamp, H. Hadj-Kacem and Cyrille Bertelle, Mod-
erate Growth Time Series for Dynamic Combinatorics Modelisation, in Pro-
ceedings of ICELM-2, pp 42-53, Tirgu-Mures, Romania, May 31- June 3,
2006.

[48] Luai Jaff, Gérard H.E. Duchamp and Cyrille Bertelle Shift Operators and
Complex Systems, Int. J. of Modeling, Identification and Control, special
issue Modelling Complex Systems, 2006.

[49] Luc Favreau, Combinatoire des Tableaux Oscillants et des Polynômes de
Bessel, Thèse d’Informatique, Labri, University of Bordeaux I, 1991.

[50] Leigh Tesfatsion, www.econ.iastate.edu/tesfatsi/

[51] Leigh Tesfatsion, Agent-Based Computational Economics, ISU Economics
Working Paper No. 1, Economics Department, Iowa State University, July
2002, www.econ.iastate.edu/tesfatsi/acewp1.pdf

[52] L.J. Fogel, A.J. Owens, M.J. Welsh, Artificial Intelligence Through Simu-
lated Evolution, John Wiley, 1966.

[53] L. Davis (Ed.), Genetic Algorithm and Simulated Annealing, Pitman, 1987.

[54] Michel Cotsaftis, Comportement et contrôle des systèmes complexes: Intro-
duction aux méthodes algébriques, qualitatives et fonctionnelles, Sciences
an actes : mathématiques pour l’ingénieur. Diderot arts et sciences, 1980.

[55] M. Lothaire, Combinatorics on Words, Cambridge University Press, jan.
2002.

[56] M-P Schutzenberger, Quelques Remarques sur une Construction de Schen-
sted, Math. Scand, 12, 117-128, 1963.

[57] M-P. Schutzenberger,On the Definitiion of a Family of Automata, Informa-
tion and Controm 4, 245-270, 1961.

[58] Memanie Mitchell, An introduction to Genetic Algorithms, The MIT Press,
1996.

[59] Mathworld, http://mathworld.wolfram.com/Semiring.html

[60] Mathworld, http://mathworld.wolfram.com/Monoid.html

136

Bibliography

[61] Mitpress, http://mitpress.mit.edu/catalog/item/default.asp

[62] N. Bourbaki, Theory of Sets, Springer 2004.

[63] N. Bourbaki, Algebra Ch. 1-3, Springer 1989.

[64] O. Matz, A. Miller, A. Potthoff, W. Thomas and E. Valkena, Report on
the Program AMore, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts Universität, 1995.

[65] O. Brandouy et P. Mathieu, Marchés Financiers, Pour la Science, juillet-
Septembre 2006.

[66] P.A. MacMahon, Combinatory Analysis, Cambridge University Press, 1916.

[67] P. Bak, How Nature Works - the Science of Self-Organized Criticaly,
Springer Verlag, 1996.

[68] R.P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol.
1, 1997.

[69] R. Nagel, Reasoning and Learning in Guessing Games, An experimental
investigation. PhD. dissertation, university of Bonn, 1994.

[70] R. Ghnemat, S. Oqeili, C. Bertelle and G.H.E. Duchamp, Automata-Based
Adaptive Behavior for Economic Modelling Using Game Theory, in Emer-
gent Properties in Natural and Artificial Dynamical Systems by M.A. Aziz-
Alaoui and C. Bertelle , pp 173-185, Springer, Understanding Complex Sys-
tems series, 2006.

[71] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press,
1990 (Chapter 8).

[72] R. Ghnemat, C. Bertelle and G.H.E. Duchamp, Self-Organization Simula-
tion over Geographical Information System Based on Multi-Agent Platform,
The European Simulation and modeling Conference, Octobre 23-25, 2006,
Toulouse-France.

[73] R. Axelrod, The Complexity of Cooperation, Princeton University Press,
1997.

[74] Rennard, http://www.rennard.org/alife/english/gavintrgb.html

[75] S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol A,
1974.

137

Bibliography

[76] S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol B,
1974.

[77] S. Eilenberg, Automata, Languages and Machines, Vol.A et B, Academic
press, 1976.

[78] S. Gaubert, A few Introductive Texts on (Max, +) Algebra and Discrete
Events Systems, http://Amadeus.inria.fr/.

[79] Santa Fe Institute, www.santafe.edu/

[80] Santa Fe, http://www.santafe.edu/projects/echo/

[81] The Combinatorial Object Server, http://theory.cs.uvic.ca/inf/tree/BinaryTrees.html

[82] T.R.J. Bossolaier and D.G. Green, Complex Systems, Camberdge University
Press, 2000.

[83] Wikipedia, http://en.wikipedia.org/wiki/Negative_feedback

[84] Wikipedia, http://en.wikipedia.org/wiki/Positive_feedback

[85] W. Kuich and A. Salomaa, Semirings, Automata, Languages, EATCS,
Monographs on Theoretical Computer Science, Springer Verlag, vol 5, 1986.

[86] W.Brian Arthur, Increasing Returns and Path-Dependence in the Economy,
University of Michigan Press, Ann Arbor, Mich., 1994.

[87] W.Brian Arthur, Complexity and the Economy, Science, 2 April 1999, 284,
107-109.

[88] Wikipedia, http://en.wikipedia.org/wiki/Sub-system

[89] W.Brian Arthur, Increasing Returns and the New World of Business, Harvard
Business Review, July-Aug 1996.

[90] W.Brian Arthur, Complexity in Economic and Financial Markets, Complex-
ity, 1, 20-25, 1995

[91] W.Brian Arthur, Positive Feedbacks in the Economy, Scientific American,
262, 92-99, Feb. 1990

[92] Wikipedia, http://en.wikipedia.org/wiki/Financial_market

[93] Wikipedia, http://en.wikipedia.org/wiki/Economic_system

138

