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Salvador ORTIZ

Modélisation physique des effetsélectromagnetiques pour les
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Abstract

In this Thesis, we study three problems related to the modeling of interconnects in Integrated

Circuits. The common denominator among them is the use of physical arguments in order to

produce efficient models that simplify the mathematical complexity of each problem.

The first problem deals with a fast and accurate calculation of mutual inductance. We adopt

a loop inductance formalism, wherein the circuit elements represent current loops. Within this

formalism, we develop the dipole approximation, which keeps the leading-order terms for the

inverse separations, and leads to significant reductions in the cost of computing mutual induc-

tance. We show representative examples for parasitics extraction, as well as for the estimation

of noise figures between intentional inductors. Ranges of validity are for separations larger than

a threshold comparable the typical sizes of loops.

The second problem is related to the modeling of non-uniform currents, along the con-

ductors’ cross-sectional dimensions, due to skin and proximity effects. We represent this non-

uniformity by expanding the current distribution with a reduced set of basis functions, called

conduction modes, which are eigenfunctions to the differential equation satisfied by the current

density inside the conductors. Our contributions fall in two main categories: on one side, we

have expanded the existing one-dimensional current formulation into a three dimensional one,

including currents and charges; on the other, we have systematically optimized the computation

of non-trivial integrals appearing in the conduction modes formulation, translating the previ-

ously reported gains in size into savings in runtimes, of two orders of magnitude compared to

the standard references.

The third problem concerns the representation of the frequency behavior of loop impedance

using simple circuits. In order to capture the expected transitions, we use Foster pairs. These

circuits are particularly useful in conjunction with realizable circuit approaches to model order

reduction. We reproduce the salient features related to proximity effects and skin effects in IC’s,

and suggest enhancements to represent the frequency variation of mutual inductance between

circuit elements.
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Résuḿe

Dans cette th̀ese, nouśetudions trois problèmes líesà la mod́elisation des interconnexions de

circuits int́egŕes. Leur d́enominateur commun est l’utilisation d’arguments physiques afin de

produire des mod̀eles efficaces qui simplifient la complexité math́ematique de chaque problème.

Le premier probl̀eme abord́e est le calcul rapide et précis de l’inductance mutuelle. Nous

adoptons un formalisme d’inductance de boucle, où nous d́eveloppons l’approximation dipo-

laire, qui garde les contributions principales pour les inverses des séparations, et reduit significa-

tivement le côut du calcul de l’inductance mutuelle. Nous montrons des exemples représentatifs

pour l’extraction des parasitiques, aussi bien que pour l’évaluation des chiffres de bruit entre

inducteurs intentionnels. Les domaines de validité de l’approximation sont́etablis pour des

séparations plus grandes qu’un seuil comparable aux tailles typiques des boucles.

Le deuxìeme probl̀eme est líe à la mod́elisation des courants non-uniformes, le long des di-

mensions transversales des conducteurs, dus aux effets de peau et proximité. Nous d́eveloppons

la distribution de courant avec un ensemble réduit de fonctions de base, appelées les “modes

de conduction”, qui sont des fonctions propresà l’équation satisfaite par la densité de courant

à l’intérieur des conducteurs. Nos contributions dans ce domaine sont: d’un coté, nous avons

étendu la formulation existante, e valide pour des courants unidimensionnels,à une formulation

tridimensionnelle, comprenant des courants et des charges; de l’autre, nous avons systématiquement

optimiśe le calcul des int́egrales non triviales apparaissant dans la formulation des modes de con-

duction, traduisant les gains rapportés dans la litterature pour la taille en gains pour les temps

d’exécution, de deux ordres de magnitude comparés aux ŕeférences standard.

Le troisìeme probl̀eme concerne la représentation du comportement de l’impédance de

boucle en fonction de la fréquence avec des circuits simples. Afin de capturer les transitions

attendues, nous employons des pairs Foster. Ces circuits sont particulièrement utiles en con-

jonction avec des approchesà la ŕeduction d’ordre baśes sur des circuits réalisables. Nous

reproduisons les caractéristiques saillantes, liées aux effets de proximit́e et aux effets de peau en

IC, et sugǵerons le perfectionnement pour représenter la variation de fréquence de l’inductance

mutuelle.
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Introduction G énérale

(version française)

Les circuits int́egŕes (IC) se composent de transistors et de fils; les premiers réalisent la fonction-

nalité du circuit; les secondes fournissent les interconnexions nécessaires parmi les transistors.

Dès le d́ebut de l’industrie d’IC, une croissance exponentielle dans le nombre maximum des

transistors par pouce áet́e vérifiée. Elle aét́e accomplie gr̂aceà une ŕeduction des tailles typ-

iques des surfaces des dispositifsà imprimer, d’un facteur 2 tous les deux ans. Connue comme la

loi de Moore [1], elle s’appliquéegalement̀a la vitesse maximale d’échange dans les transistors,

qui décroit comme l’inverse du facteur d’échelle; autrement dit, les vitesses maximales dans les

IC sont doubĺees tous les deux ans. Des transistors plus rapides se traduisent en régimes plus

larges de fŕequence pour la propagation sur les fils. Pendant les premiers temps des IC, avec des

fréquences maximales de 10MHz, la longueur d’ondeλ correspondante surS iO2 était de 15m,

beaucoup plus grande que les dimensions d’un pouce, qui sont demeurées fixes autour de 1cm.

Après l’augmentation graduelle de la vitesse (par exemple: pour la géńeration de 250nm, des

fréquences maximales de 1GHzsont associéesà la longueur d’onde de 15cm), nous arrivons̀a

la géńeration actuelle de 65nmavec des fŕequences de dizaines deGHz, qui correspondent̀a des

longueurs d’onde de l’ordre dumm, sensiblement inférieures aux longueurs de fil de certaines

interconnexions.

Les fils sont le sujet de cette dissertation; ils mènent aux systèmes lińeaires qui repŕesentent

la loi d’Ohm et leséquations de Maxwell. Historiquement, le traitement des interconnexions a

subi plusieurśetapes différentes. Au d́ebut, leurs effets pouvaient̂etre ńegligés sans risque par

rapportà ceux dus aux transistors. Le premier vrai traitement des fils les représentait simple-

ment comme une résistance (R) et une capacitance (C) par interconnexion [2]. De meilleures

approximations deRsont obtenues en incluant une version distribuée des morceaux deRC; dans

la limite d’un nombre infini de morceaux, un circuit distribué deRCestéquivalent̀a l’équation

de diffusion [3].

Plus ŕecemment, lorsque les fréquences atteignent la gamme desGHz, l’effet de l’inductance

(L) est devenu important; c’est une conséquence directe de la forme dans laquelleL apparâıt

1
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dans leśequations du système,à savoir comme produitωL, où ω est la fŕequence angulaire.

Des circuits comprenant l’inductance peuventêtre modeĺes avec des morceaux distribuésRLC,

qui, dans le cas limite, m̀enentà un mod̀ele de ligne de transmission représent́e par l’́equation

du t́elégraphiste [4]. La gamme des dimensions dans lesquelles les effets d’inductance sont

importants ont́et́e discut́ees en d́etail dans [2,5].

Dans cette th̀ese, nous considérons différents probl̀emes líesà la manìere dont les param̀etres

de circuit pour les fils sont calculés, partant d’une description de leur géoḿetrie, de leurs pro-

priét́esélectriques et de leurs interconnexions. Les domaines d’application sont la vérification

des circuits nuḿeriques̀a grande vitesse, la radiofréquence (RF) et les circuits analogues d’ondes

millimétriques, ainsi que certains circuits de signaux mixtes qui incorporent les dispositifs pas-

sifs, comme par exemple les circuitsà phase-verrouillés pour la ǵeńeration de l’horloge (PLL).

Afin de situer les contributions de notre travail, il convient de décrire brìevement les proćed́es

principaux impliqúes dans la mod́elisation des effetsélectromagńetiques des fils pour ces appli-

cations.

Modélisation électromagńetique

Modeler les interconnexions exige le calcul des courants et des charges, ou des champsélectro-

magńetiques, pour le tr̀es grand nombre de fils dans un dessin IC. Pour ceci, il est nécessaire

de ŕesoudre, d’une façon approximative, l’ensemble de quatreéquations partielles (PDE) de

Maxwell. Cette t̂ache est́evidemment tr̀es difficile.

Dans l’industrie du dessin assisté par ordinateur (CAD, selon les sigles en anglais), des

outils assocíesà cette t̂ache sont connus comme ceux d’extraction et de simulation. En un mot,

les premiers calculent des paramètres de circuit, qui sont transmis aux deuxièmes afin d’obtenir

les courants, charges, tensions,énergies, retards, etc. Six composants principaux peuventêtre

identifiés:

1. Identification géométrique: L’entrée du processus d’extraction est une description géo-

métrique des fils, ainsi que des constantesélectriques de ce type de fils, des constantes

diélectriques et des perméabilit́es des ḿedias, etc. Les formats typiques pour cette de-

scription sont GDSII, Oasis, etc.̀A cette premìere étape, les dispositifs sont sépaŕes

des fils, et leurs connectivités doivent̂etre stocḱees afin de ŕecuṕerer une repŕesentation

ultérieure du circuit.

2. Segmentation: La taille des configurations des IC rend impossible un traitement direct

de l’ensemble des interconnexions dans le circuit. En conséquence, l’information pro-

duite dans la première étape doit̂etre partitionńee afin de produire des sous-problèmes

maniables.
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y=f(x)

Y=F(x)

[A].(x) = (b)

t

V,I, etc

Input

2. Segmentation

3. Solve

1. Recognition
5. Reduction

6. Simulation

4. Format

Figure 1: Composants principaux impliqués dans la mod́elisation des effetsélectromagńetiques
des interconnexions dans les IC.

3. Résolution: RésistanceR, capacitanceC et inductanceL sont calcuĺes pour chaque con-

figuration maniable crée à l’étape pŕećedente. Ǵeńeralement, ces paramètres ŕesultent

des solutions aux systèmes lińeaires deśequations de Maxwell. Etant le processus le

plus lourd, du point de vue des coûts de calcul, l’approche choisie vis-à-vis du probl̀eme

d’extraction est dict́ee par le type du systèmeà ŕesoudre, ainsi que par la méthode de

résolution; ces approches seront exposées dans la prochaine section.

4. Format du circuit RLC : Les param̀etres extraits sont transformés en circuits afin de

produire des mod̀eles significatifs. La connectivité du circuit est ŕecuṕeŕee, des dispositifs

sont inclus afin de créer une entŕee valide pour le simulateur.

5. Réduction de l’ordre du modèle (MOR) : Dans les cas réalistes, les tailles des circuits

produits par le formateur sont insurmontables pour les simulateurs de circuit. Les outils

MOR les convertissent en modèleséquivalents et maniables. Cetteéquivalence peut̂etre

atteinte soit en produisant un circuit plus petit, soità travers d’une expression numérique

plus simple.

6. Simulation : Magnitudes d’int́er̂et (courants, tensions, retard, bruit, etc.) sont obtenues

apr̀es une simulation de circuit;à cetteétape la mod́elisation des interconnexions de l’IC

est effectivement couplée au reste des composants du dessin,à savoir les transistors ou
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dispositifs.

Sommaire des approches

La décomposition montŕee dans 1.1 n’est pas unique; certaines de cesétapes ne sont pas toujours

réaliśees, ou sont groupées autrement, selon l’approche particulière au probl̀eme d’extraction.

Nous d́etaillerons maintenant certaines des différences principales entre ces approches.

Domaine temporel/ fr équentiel

Des outils de mod́elisationélectromagńetique peuvent̂etre appliqúes directement aux́equations

de Maxwell (domaine des temps); ou ils peuvent se concentrer au problème associé à une

fréquence unique (domaine des fréquence).

L’avantage de travailler dans le domaine temporel est donné par le caractère compact de

la description: en pratique, ils fusionnent une partie des processus décrits ci-dessus. Dans le

domaine des temps, la résolution leśequations de Maxwell est un problème de valeur initiale

et de condition de frontière ouverte, avec une PDE hyperbolique pour les variables spatiales et

temporelles.

Dans le domaine fréquentiel, le m̂eme probl̀eme est d́ecompośe en un probl̀eme de frontìere

pour chaque fŕequence. Chacun de ces derniers est une PDE elliptique pour les variables spa-

tiales seulement,̀a savoir l’́equation de Helmholtz; la fréquence demeure un paramètre pour

les solutions. L’́equivalence avec des méthodes du domaine temporel est récuṕeŕee apr̀es qu’un

ensemble complet des solutionsà fréquence unique subisse une anti-transformation de Fourier.

Pour chaque fŕequence, le problème est comparativement plus simple; la complexité dans le do-

maine fŕequentiel est associée au nombre des différents fŕequences qui doiventêtre consid́eŕees

(c.-à-d. : la signification de “complet” dans l’expression préćedente depend de chaque problème

en particulier). Dans beaucoup de situations pratiques, il existe deséchelles de temps d’intér̂et

typiques, ce qui permet de définir un ensemble réduite de fŕequences associées (par exemple,

dans des applications numériques, le spectre va de zéro aux fŕequences de l’ordre 1/trise, où trise

est le temps de montée pour une rampe numérique). Par contre, pour le domaine temporel, toutes

les échelles de temps significatives doiventêtre comprises dans la même simulation, menantà

un compromis entre les petiteséchelles de temps qui garantissent une meilleure précision, et le

coût d’avoir un grand nombre de petits pas du temps.

L’exemple typique pour des ḿethodes de domaine temporel est le FDTD [6]; pour le do-

maine fŕequentiel, c’est la ḿethode de moments (MoM) [7]. Il y a aussi des méthodes qui peu-

vent êtreégalement d́evelopṕees dans le domaine temporel et fréquentiel, tels que la ḿethode

deséléments finis (FEM) [8] et le circuit́equivalent deśeléments partiels (PEEC) [9].

Dans cette th̀ese, nous travaillons toujours dans le domaine fréquentiel.
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Régimes quasistatiques/ d’onde compl̀ete

Dans le domaine fréquentiel, il y a fondamentalement deux approches au problème de frontìere:

soit une solution de l’ensemble complet deséquations de Maxwell (onde complète), soit la

séparation du problème en deux, résolvant le chamṕelectrique (́electro-quasi-statique, EQS)

d’un côté, et le champ magnétique (magńeto-quasi-statique, MQS) de l’autre. Ce découplage

simplifie énorḿement chacun des deux sous-problèmes par rapport au problème complet. Les

charges et la capacitance sont modelés śepaŕement des courants et ces résistance et inductance.

Les ŕesultats obtenus avec l’hypothèse QS ne sont valides que si leséchelles de temps impliquées

dans les sous-problèmes sont beaucoup plus petites que l’échelle de temps pour une perturbation

électromagńetique, qui est donńee par l’inverse de la fréquence. En ce sens, QS est une limite

de basse fŕequence; aussi, il peut-ilêtre regard́e comme une limite de large longueur d’onde,

lorsque f ∝ λ−1. En tant que tels, pour des hautes fréquences, les solutionneurs QS ont besoin

de d́ecomposer les conducteurs dans un grand nombre des petites sections.

Des exemples typiques des solutionneurs d’onde complet incluent FastImp [10], HFSS [11],

LargeCom [12], et plus récemment FastMaxwell [13]; pour des problèmes QS, il y a deux

références standard, toutes les deux rapportées du m̂eme groupe de recherche au MIT : FastCap

[14] pour EQS, FastHenry [15] pour MQS.

Une des contributions principales dans cette thèse est justement l’adaptation d’une approche

très efficace pour un problème MQSà sonéquivalent pour le problème d’onde complet, ce qui

est le sujet du chapitre 4. Dans ce dernier, nous donnerons plus de détails au sujet des liens entre

QS et les solutionneurs d’onde complet.

Méthodes int́egrales/ différentielles

Leséquations de Maxwell peuventêtre traduites et expriḿees avec différentes formulations, tant

sous la forme deśequations différentielles quee sous celle deséquations int́egrales.

Les solutions nuḿeriques directes̀a la PDE impliquent la discrétisation du domaine en-

tier, afin de propager les conditionsà la frontìere en tant qu’approximations numériques aux

opérateurs différentiels contenus dans leséquations de Maxwell. Par conséquent, les tailles

des syst̀emesà ŕesoudre sont ǵeńeralement tr̀es grandes; en tant que tels, ces solutions sont

habituellement commodes pour des problèmes de petite taille avec beaucoup de couplage. Cepen-

dant, les composants de la description sont des cellules qui interagissent seulement avec les

voisins les plus proches, afin d’exprimer les dérivés. Ceci signifie que les systèmes lińeaires pour

ces ḿethodes sont, dans le cas géńeral, creux [16]. Autrement dit, l’inconvénient mentionńe

ci-dessus n’est pas de caractère fondamental, puisqu’il existe des techniques spécifiques pour

manipuler de grands systèmes creux [17]. Les exemples typiques des méthodes différentiel-les

sont ceux mentionńes ci-dessus de FDTD et de FEM ; du côté des applications, HFSS est un
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exemple bieńetabli dans le domaine des circuit imprimés (PCB).

En utilisant deśequations int́egrales, il est possible de représenter le système en termes

d’inconnues (les champs ou les sources) décrivant seulement les régions actives, c.-à-d. les

volumes et les surfaces où les sources sont localisées. Les tailles des systèmes sont ǵeńeralement

plus petites que pour leśequations int́egrales; cependant, ces systèmes sont denses, puisqu’ils

repŕesentent l’interaction entre les sources, qui ont un caractère de longue distance (par exemple,

1/r pour la fonction de Green de Coulomb). Un inconvénient commun des ḿethodes int́egrales

est líe au traitement des inhomogéńeités du milieu, qui jouent le rôle des sources effectives; ceci

a meńe à l’introduction ŕecente des ḿethodes de fonction de Greenéquivalentes [18,19] afin de

réproduire ces effets (du ĉoté des applications, FastMaxwell a incorporé un tel arrangement pour

traiter le substrat). Des ḿethodes baśees sur deśequations int́egrales sont habituellement basées

sur un sch́ema partant de la ḿethode-de-moments (MoM) afin de produire un système lińeaire

pour les sources [7]. Les exemples sont tous les outils du MIT mentionné ci-dessus (FastImp,

FastHenry, FastCap, FastMaxwell), aussi bien que de LargeCom.

Dans cette th̀ese, nous utilisons des méthodes int́egrales,à l’instar De la ḿethode MoM

décrite au d́ebut du chapitre 4.

Inductance partielle / de boucle

Une classification plus spécifique parmi les approches s’appliqueà la façon dont les champs

magńetiques et les sources sont traitées dans le problème MQS, pour les outils d’extraction qui

adoptent la stratégie QS. Les courants pour des systèmes de plusieurs conducteurs peuventêtre

mod́elisés sur la base des boucles ou sur celle des segments de fil; des représentations de circuit

équivalentes peuventêtre d́erivées pour les deux types de description [20].

Deséléments partiels ont́et́e introduits afin d’́eviter l’identificationà priori des boucles de

courant dans un circuit, c.-à-d. le chemin de retour suivi par le courant sur chaque fil. Par contre,

dans les approches d’inductance de boucle, cette détermination est la première t̂acheà ŕealiser.

Les magnitudes calculées avec le traitement partiel ne représentent une réalit́e physique qu’au

moment òu les boucles sont ferḿees dans unéetape ult́erieure (par exemple par un simulateur

de circuit).

En terme de calcul, cette ḿethode m̀eneà des matrices denses, contenant de grandséléments

hors de la diagonale. Ceux-ci représentent l’interaction non réaliste des monopoles magnétiques.

Par comparaison, leśeléments hors de la diagonale pour la matrice d’inductance de boucle sont

beaucoup plus petits puisqu’ils représentent l’annulation nuḿerique inh́erentèa une structure de

boucle: le courant sur un fil est de la même magnitude, et de signe opposé,à celui de l’ensemble

de ses chemins de retour. Cette différence entre les deux méthodes m̀ene aux complications liées

à la violation de passivité en essayant de rendre creuse la matrice partielle d’inductance [21].

Des exemples de traitements de boucle sont l’extracteur Calibre xL chez Mentor [22, 23],
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Table 1: Outils de Mentor Graphics pour la modélisationélectromagńetique

Proćed́e Produit

1. Reconnaissance Calibre LVS (layout-vs-schematics)
2-4. Segmentation, Ŕesolution et Format Calibre xRC/xL
5. Réduction de l’Ordre du Mod̀ele TICER/BMR
6. Simulation Eldo/ ADMS

ainsi que celui de Cadence, appelé Assura, [24, 25]. Les ḿethodes partielles proviennent du

travail original de PEEC [20,21]. Une exécution efficace, dans le domaine temporel, en utilisant

des ḿethodes de précorrection baśees sur la transformation rapide de Fourier (FFT) afin de

surmonter la difficulté assocíee au grand nombre de produits matrice-vecteur dans la formulation

partielle, aét́e rapport́ee dans [26].

Dans ce travail, nous adhérons aux traitements d’inductance de boucle; en fait, nous con-

sacrons une partie importante du chapitre 2à d́etailler les points mentionnés ci-dessus, ainsi

qu’une discussion sur la façon dont les chemins de retour sont choisis dans un traitement de

boucle.

Mentor Graphics

Le travail menant̀a la pŕesente th̀ese aét́e effectúe aux bureaux de Mentor Graphics, situésà

Montbonnot en France. Mentor est une sociét́e importante dans l’industrie du CAD, avec plus

de 4000 emploýes dans le monde entier, répartie dans plus de 50 pays.

Ayant son síege en Oŕegon, aux Etats-Unis, Mentor possède 28 centres de génie, consacrant

plus de 20 % de son revenu brut, qui est de l’ordre de 800 millions de dollars, aux activités de

recherche et d́eveloppement.

Mentor a d́evelopṕe des produits commerciaux pour tous les procéd́es discut́es auparavant,

et inclus dans le schéma 1. Ces produits sonténuḿeŕes dans le Tableau 1

L’ équipe de travail dans laquelle ce projet aét́e d́evelopṕe est le noyau de recherche pour

les outils d’extraction. Nous produisons le coeur des algorithmes inséŕes dans le moteur et

le formateur de Calibre xL. Le rapport avec des développeurs sitúes au QG de Mentor mis

à part, nous partageons l’espace de bureau avec le groupe principal de R&D pour les outils

de simulation Eldo et ADMS. Cette proximité a meńe à beaucoup de discussions fructueuses.

En outre, nous coopérons avec des groupes de recherche de l’Université de Californièa Santa

Barbara (UCSB), ainsi que de l’Université de l’Illinois à Urbana- Champaign (UIUC). Des
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étudiants d’́et́e provenant de ces deuxétablissements ont réaliśe des stages durant plusieurs

mois toutes les années, ce qui a stimulé énorḿement le cours de ce travail.

Plan de la thèse

Pendant ce travail, nous avons touché du doigt une grande variét́e de probl̀emes líes aux proćed́es

du sch́ema 1, avec une considération sṕeciale sur les points 3 et 4. Trois de ces problèmes con-

stituent le contenu de la thèse, qui est en conséquence organisée en trois parties. Concernant les

outils Mentor Graphics, nous nous sommes consacrés aux perfectionnements et additions pour

les outils d’extraction Calibre. Dans les pages qui suivent, nous donnons une description suc-

cinte de chacun de ces problèmes, laissant des détails pour les introductions de chaque chapitre.

Tous les chapitres incluent des conclusions et discussions sur des sujets de travail présents et̀a

venir, qui seront́egalement ŕecapituĺes en fin de th̀ese.

Calcul efficace de l’inductance mutuelle

Le traitement de boucle de l’inductance implique l’identification de chaque fil ainsi que de tous

les chemins de retour possibles pour chaque signal; ces boucles constituent leséléments de

description pour l’extractionRL. En calculant les distributions des courants parmi les chemins

de retour, nous obtenions l’inductance propre de la boucle.

Ensuite, des interactions entre toutes les paires de boucles différentes doivent̂etre estiḿees.

Géńeralement, cela exige un coût de calcul qui croit au carré du nombre de fils interagissant.

Nous pŕesentons une ḿethode qui ŕeduit nettement la complexité de ce probl̀eme. En ce qui

concerne la recette géńerale mentionńee ci-dessus, l’avantage principal réside dans le fait que

le côut devient lińeaire avec le nombre de fils. La clé de cette ḿethode est la simplification de

l’interaction entre deux boucles, en traitant chacune comme un dipole magnétique id́eal sitúe

au centre efficace de la boucle. Nous avons dénomḿe ceci l’approximation dipolaire, et avons

montŕe son efficacit́e pour des calculs rapides des interactionsà longue distance.

Sṕecifiquement, les chapitres concernant cette méthode sont :

• Chapitre 2: Nous pŕesentons l’approximation dipolaire pour le problème de l’extraction

des parasitiques; ce travail est une versionétendue de l’article présent́e à [27] et édit́e

dans [28] en version journal; les routines expliquées dans le texte sont incluses dans le

moteur Calibre xL, et ont́et́e clasśees pour une demande de brevet [29].

• Chapitre 3: L’approximation dipolaire est́etendue afin d’inclure l’inductance mutuelle

entre deux inducteurs intentionnels; ce travail aét́e pŕesent́eà [30] et clasśe pour une autre

demande de brevet [31].
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Modélisation des sources aux tr̀es hautes fŕequences

Aux fréquences suffisamment hautes, les courants et les champsà l’intérieur d’un conducteur

ne peuvent paŝetre consid́eŕes uniformes. Il est bien connu que les courants se distribuent près

de la surface des conducteurs, selon une chute exponentielle décrite par unéechelle typique

δ, la profondeur de peau pour le conducteur. Ce paramètre diminue lorsque la fréquence croit

(δ ∝ f −1/2): pour le cuivre, il va de 6.6µ à 100MHz jusqu’̀a 0.21µ à 100GHz.

Afin de d́ecrire ce manque d’uniformité pour les distributions du courant, l’approche la

plus directe est celle consistantà discŕetiser le conducteur dans de petitséléments, tels que

le courant peut̂etre consid́eŕe uniforme pour chacun d’eux. Il estévident que cette stratégie

impose un grand surcoût à l’extraction aux hautes fréquences par rapportà celles aux basses

fréquences. Par exemple, un solutionneur MQS comme FastHenry doit décomposer chaque fil

le long de sa section transversale. Le coût accru d̂u à cette ŕealit́e a d́eclench́e une grande quantité

de recherches dans le développement des techniques rapides de résolution, comme par exem-

ple des expansions multipolaires rapides (dans FastHenry, FastCap. FastImp et LargeCom), la

précorrection pFFT (dans FastImp et FastMaxwell), entre autre.

Nous avons choisi une stratégie compl̀etement différente: celle qui áet́e pŕesent́ee dans [32],

où les distributions des courants sont décrites en termes d’un type spécial de fonctions,̀a savoir

les fonctions propres de l’équation satisfaite par des courantsà l’intérieur des conducteurs. Mod-

eler en termes de ces fonctions spécifiques, d́esormais appelés ” modes de conduction ”, fournit

une repŕesentation plus compacte, bien que du même niveau d’exactitude, que les modèles de

fonctions constants par morceaux.

Nos contributions dans ce domaine sont organisées comme suit :

• Chapitre 4 : Nous pŕesentons le cadre formel pour ce problème, aussi bien que la

méthode existante de modes de conduction, qui est limitée aux probl̀emesRL dans la

limite QS; ensuite, nous introduisons une versionRLC des modes de conduction, valide

pour des structures semblables aux lignes de transmission, et montrons sa validité sur

des configurations exemplaires. Ce chapitre est une version allongée du travail pŕesent́e

à [33].

• Chapitre 5: Nous analysons, proposons, et mettons en pratique, une stratégie nuḿerique

abordant la complication principale du formalisme de modes de conductionRL/MQS, à

savoir le calcul de seśeléments de matrice. Avec ces méthodes, nous arrivons̀a traduire

uneéconomie d’un facteur 20 pour la taille du système, comme áet́e rapport́e dans [32]

en unéeconomie, de deux ordres de magnitude pour le temps d’exécution, par rapport au

même niveau de précision avec des approches des fonctions constants par morceaux. Une

version courte de ce chapitre aét́e pŕesent́eeà [34].
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• Chapitre 6: Ce chapitre est consacré aux questions qui doiventêtre pośees au moment

de transformer le formalisme des modes de conduction dans un solutionneur d’onde

compl̀ete efficace. Ces questions sont: adapter les méthodes nuḿeriques du domaine

RL à celuiRLC; ainsi qu’agrandir les ensembles de fonctions et de geometries de base

consid́eŕes dans la version actuelle.

Représentation large bande avec des circuits simples

Finalement, nous nous concentrons sur un problème líe aux composants du formateur dans le

sch́ema d’extraction 1). En particulier, nous nous intéressons̀a la capture des variations pour la

résistance et de l’inductance avec la fréquence. Plus spécifiquement, nous voulons faire ceci en

utilisant seulement des composants de circuit constants.

Dans le domaine fréquentiel, des param̀etres deR, L,C sont extraits fŕequence par fréquence.

Dans certains cas particuliers, une extractionà une fŕequence unique peut suffire afin d’obtenir

des limites sur le bruit ou le retard. Pour le cas géńeral, il faut construire des circuits montrant

le comportement correct sur une grande gamme des fréquences.

Puisque ce processus est réaliśe à l’étape du formatage, le choix particulier de la représenta-

tion est líe au processus suivant dans le schéma, qui est la ŕeduction de l’ordre du mod̀ele

(MOR). Dans le cas des interconnexions, il s’agit de la réduction de circuits lińeaires et passifs.

Il existe fondamentalement deux lignes d’approche pour ce type de MOR: celles qui calcu-

lent une versiońequivalente, tandis que simplifiée math́ematiquement, de la réponse du circuit;

et celles qui produisent un circuit physiquement réalisable d’une plus petite dimension.

Pour le premier type de réducteurs, le point de départ est la ḿethode asymptotique d’évalua-

tion de la forme d’onde (AWE) [35] en 1990, où les moments de la réponse sont ajustés aux

fonctions rationnelles. Ce travail a ouvert la voieà une śerie d’aḿeliorations, telles que les

méthodes Pad́e via Lanczos [36] et PRIMA [37]. Toutes ces méthodes font partie de la catégorie

des ḿethodes de projection de Krylov, qui constituent aujourd’hui encore un grand domaine de

recherche. Le d́efi principal est celui d’́eviter la possible perte de passivité contenue dans la

formulation originale de AWE.

Calibre, l’outil d’extraction chez Mentor, a incorporé une technique qui appartient au second

type de ŕeducteurs. TICER/BMR [38, 39] se fonde sur l’élimination des noeuds du circuit. La

détermination des noeudsà éliminer est baśee sur des considérations locales des constantes de

temps. Sans entrer dans les détails, lesquels ne relèvent pas du champ d’étude de cette th̀ese,

nous renvoyons̀a [40] pour une analyse comparative et complète de ce type de ḿethode par

rapportà celles mentionńees dans le paragraphe préćedent.

Pour la repŕesentatioǹa large bande, TICER/BMR permet la ŕeduction de plusieurs types de

circuits comprenant des pairs Foster. Ceux-ci sont des blocs simples, dont chacun se compose

d’un résisteur en parallèle avec un inducteur. Un de ces blocs peut reproduire une transition
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L-décroissant/R-croissant en fonction de la fréquence croissante. D’un point de vue physique,

ces transitions ont deux origines: le choix des chemins de retour pour le courant sur un fil

de signal (effet de proximit́e); et la distribution non uniforme des courants sur les dimensions

transversales du fil (effet de peau).

Nous organisons notre travail dans ce domaine de la façon suivante:

• Chapitre 7: Nous caract́erisons des pairs Foster et mettons en pratique une solution pour

le cas d’une transition simple; cette méthode est incorporée au sch́ema de Calibre depuis

2005 et est protéǵee par une demande de brevet [41].

• Chapitre 8: Nous consid́erons le cas des pairs Foster pour représenter des transitions

multiples ; d’abord nous d́eveloppons et analysons une stratégie pour les circuits Fosterà

deux pairs; nous concluons en discutant brièvement des situations plus géńerales.





Chapter 1

General Introduction

Integrated Circuits (IC’s) are composed of transistors and wires; the former implement the func-

tionality of the circuit, the latter provide the necessary interconnections among the transistors.

From the start of the IC industry, an exponential growth in the maximum number of transistors

per chip has been verified. It has been accomplished by a reduction in the area occupied by the

features to be printed, by a factor of 2 every two years. Known as Moore’s law [1], it also applies

to the maximum switching speed of transistors, that goes as the inverse of the scale factor; in

other words, maximum speeds in IC’s are doubled every two years. Faster switching transistors

translates into wider frequency regimes for wire propagation. In the early days of IC logic, with

maximum frequencies of 10MHz, the corresponding wavelengthλ on S iO2 was of 15m, much

larger than the chip dimensions, which remain fixed at∼ 1cm. Following the speed increase

with scaling, (e.g. for the 250nm generation, maximum frequencies of 1GHz correspond to

minimum wavelength of 15cm), we arrive at the current 65nmgeneration, with frequencies in

the tens ofGHz associated to 10ps rise-times, i.e. minimum wavelengths of the order of the

millimeter, significantly smaller than some interconnect wire lengths.

Wires are the subject of this dissertation; they lead to linear systems that represent Ohm’s

law and Maxwell’s equations. Historically, the treatment of interconnects has undergone several

different phases. At the beginning, their effects could be safely neglected with respect to the ones

due to transistors. The first treatment of wires were simple resistance (R) - capacitance (C) lumps

representing for each interconnect [2]. BetterRC approximations are obtained by including a

distributed version ofRC lumps; in the limit of an infinite number of lumps, a distributedRC

circuit is equivalent to the diffusion equation [3].

More recently, as frequencies reach theGHz range, inductance (L) effect have become im-

portant; this is a direct consequence of the form in whichL enters the system equations, namely

as the productωL, whereω is the angular frequency. Circuits including inductance can be mod-

eled as distributedRLC lumps, which in the limiting case lead to a transmission-line model in

13
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the form of the telegraphist’s equation [4]. Ranges of dimensions in which inductance effects

are important have been discussed in [2,5].

In this thesis, we consider different problems related to the way in which circuit parameters

for wires are computed, starting from a geometrical description of wires, their electrical prop-

erties and their interconnections. The domain of application is the verification of high speed

digital circuits, radio frequency (RF) and millimeter wave analog circuits, and some mixed sig-

nal circuits that incorporate passive devices as in phase-locked loop (PLL) clock generation

circuits. In order to situate the contributions of our work, it is convenient to briefly describe the

main processes involved in modeling electromagnetic effects in wires for these applications.

1.1 Electromagnetic modeling

Modeling interconnects demands computing currents and charges, or equivalently electromag-

netic fields, for the enormous number of wires in an IC design. In order to do so, it is necessary

to model electromagnetic effects, expressed in the form of Maxwell’s set of four partial differ-

ential equations (PDE’s). Needless to say, this is a very difficult task.

In the CAD industry, associated tools are known as extraction and simulation tools. In a

nutshell, the first ones compute circuit parameters, which are passed on to the second ones, in

order to obtain currents, charges, voltages, energies, delays etc. Six main components can be

identified:

1. Geometric recognition: The input for extraction is a geometrical description of wires,

together with electrical constants such as conductivities of wires, permittivities and per-

meabilities of media. Typical formats for this description are GDSII, Oasis, etc. At the

first stage, devices are separated from wires, and connectivity among these must be stored

in order to allow for a downstream circuit representation.

2. Segmentation:The size of IC configurations renders impossible a direct treatment of all

the interconnects in the circuit. Therefore, the information produced in step 1 must be

spanned and partitioned in order to produce manageable subproblems.

3. Solution: ResistanceR, capacitanceC and inductanceL are computed for the manage-

able configurations created in the first step. In general, these result from solutions to linear

systems representing Maxwell’s equations. Usually the approach to extraction is dictated

by the type of system and solution method; these approaches will be expanded in the next

section.

4. RLC circuit format: ExtractedR, L,C parameters are transformed into circuits in order

to produce meaningful models. The connectivity of the circuit is recovered, components
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Figure 1.1: Main components involved in the modeling of electromagnetic effects in IC inter-
connects.

are rejoined in order to create valid input for the simulators.

5. Model order reduction (MOR): In realistic cases, the sizes of circuits produced by the

formatter are intractable for circuit simulators. MOR tools convert them into equivalent,

manageable ones; this can be done either by producing a smaller circuit, or a simpler

numerical expression.

6. Simulation: Relevant magnitudes (currents, voltages, delays, noise, etc.) are obtained

after a circuit simulation; at this stage the modeling of IC interconnects can be coupled

with the rest of the components in a design, namely the transistors or devices.

1.2 Overview of approaches

The decomposition shown in Fig. 1.1 is not unique; some of these tasks are not always done, or

are grouped differently, according to the approach of any particular method. We will now detail

some of the main differences among methods.
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1.2.1 Time/ Frequency domain

EM tools can be applied directly to Maxwell’s equations (time domain); or they can solve prob-

lems associated to a single frequency (frequency domain).

The advantages of working in the time domain are given by the compactness of the descrip-

tion: in practice, they merge some of the points in the flow described above, into one single

process. In the time domain, solving Maxwell’s equations is an initial-value, open boundary-

condition problem, with a hyperbolic PDE for the time and spatial variables.

In the frequency domain, the same problem is decomposed into one boundary-value prob-

lem per frequency. Each of these is an elliptic PDE for the spacial variables only, namely the

Helmholtz equation; the frequency is a parameter for the solutions. The equivalence with time

domain methods is recovered after a complete set single-frequency solutions undergo a Fourier

anti-transformation. For each frequency, the problem is comparatively simpler; complexity in

the frequency domain is associated to the (problem-dependent) number of different frequencies

that must be considered (i.e.: the meaning of “complete” in the previous phrase). In many practi-

cal situations, there exist typical time scales of interest, which define a reduced set of associated

frequencies (e.g., in digital applications, the spectrum goes from zero to frequencies of order

1/trise, with trise the rise time for a digital ramp). In the time domain, all significant time scales

must be accounted for in the same simulation, leading to a trade-off between small time steps

that guarantee better precision, and the cost involved in having a large number of these small.

An example for time domain methods is the Finite Difference Time Domain (FDTD) algo-

rithm [6]; for the frequency domain, there is the Method of Moments (MOM) [7]. There are

also methods which can be equally developed in the time and frequency domains, such as the

Finite Element Method (FEM) [8] and the Partial Element Equivalent Circuit (PEEC) [9].

In this work, we always work in the frequency domain.

1.2.2 Quasistatic/ Fullwave regimes

Within the frequency domain, there are basically two types of approaches to the boundary-value

problem: either to approach a solution involving the full set of Maxwell’s equations (fullwave),

or to split the problem in two, solving the electric field on one side (electroquasistatic, EQS),

and the magnetic field (magnetoquasistatic, MQS) on the other. This decoupling simplifies

enormously each of the two subproblems. Charges and capacitance are modeled separately

from currents and resistance/inductance.

The results obtained within the QS assumption are valid as long as the time scales involved

in the subproblems are much smaller than the time scale for an EM perturbation, given by the

inverse of the frequency. In this sense, QS is a low-frequency limit; also, it can be viewed as

long-wavelength limit, sinceλ ∝ f −1. As such, for very high frequencies, QS solvers require a
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decomposition of conductors into electromagnetically small portions.

Typical examples of fullwave solvers include FastImp [10], HFSS [11], LargeCom [12], and

recently FastMaxwell [13]; for QS problems, there are two standard references, both coming

from the same research group at MIT: FastCap [14] for EQS, FastHenry [15] for MQS. One

of the main contributions in this work is precisely the adaptation of a purely MQS scheme to a

fullwave problem, which is the subject of Chapter 4. Therein, we elaborate on details concerning

the links between QS and fullwave solvers.

1.2.3 Integral / Differential methods

Maxwell’s equations can be translated into many different formulations, both as differential or

as integral equations.

Direct numerical solutions to PDE’s involve discretizing the entire domain, in order to prop-

agate the boundary conditions as numerical approximations to the differential operators in Max-

well’s equations. The size of the systems to be solved are generally very large; as such, these

solutions are usually convenient for small bounded problems. However, the components of the

description are cells that only interact with nearest neighbors, as local approximations to deriva-

tives. This means that the linear systems for these methods are, in the general case, sparse [16].

Thus the aforementioned drawback is not of a fundamental nature, since there exist a specific

techniques for handling large, sparse systems [17]. Typical examples of differential methods

are the aforementioned FDTD and FEM methods; in terms of applications, HFSS is a well-

established example within the domain of printed circuit boards (PCB).

For integral equations, it is possible to represent the system in terms of unknowns (fields or

sources) describing solely active regions, i.e. the volumes and surfaces where the sources are lo-

cated. System sizes are generally smaller than for integral equations; however, these systems are

in general dense, since they represent interaction between sources, which are a long-range inter-

action (e.g., 1/r for the Coulomb Green function). One common drawback of integral methods

is related to the treatment of inhomogeneities in the medium, which play the role of effective

sources; this has led to the recent introduction of equivalent Green function methods [18,19] in

order to account for these effects (in terms of applications, FastMaxwell has incorporated such

a scheme for treating substrate). Methods based on integral equations are usually based on a

method-of-moments (MOM) scheme in order to produce a linear system [7]. Examples are all

the tools from MIT mentioned above (FastImp, FastHenry, FastCap, FastMaxwell), as well as

LargeCom.

In this Thesis, we apply integral methods; such is the general method described at the be-

ginning of Chapter 4.
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1.2.4 Loop/ Partial inductance

A more specific type of classification among approaches applies to the way magnetic fields and

sources are treated in the MQS problem, for extraction tools that adopt the QS strategy. Cur-

rents in multiconductor systems can be calculated either on loops or on partial wire segments;

equivalent circuit representations can be derived through either description [20].

Partial elements were introduced in order to avoid having to predetermine the current loops

in a circuit, i.e. the return path followed by a current on any given wire. On the other hand,

for loop inductance methods, this is the first, and most delicate, task to be carried out. The

magnitudes computed within the partial treatment do not represent a physical reality, until the

loops are closed further down the modeling flow (for example by a circuit simulator).

In terms of computation, this observation leads to dense matrices for partial inductance, in

the sense that they contain large off-diagonal elements. These represent unrealistic monopole

interaction between currents. By comparison, the off-diagonal elements in the loop inductance

matrix are smaller, since they represent effectively the numerical cancellation inherent in a loop

structure: the current on one wire is equal in magnitude to the ones in the return paths. This

difference leads to problems of passivity violation in attempting to sparsify the partial inductance

matrix [21].

Examples of loop treatments are Mentor’s Calibre xL extractor [22,23], as well as Cadence’s

Assura tools [24, 25]. Partial methods all spring from the original PEEC work [20, 21]. An ef-

ficient time-domain implementation, using precorrected-FFT (Fast Fourier Transform) methods

in order to overcome the difficulty associated to the large number of matrix-vector products in

the partial formulation, was reported in [26].

In this work, we adhere to loop inductance treatments; in fact, we devote an important part

of Chapter 2 to detailing the points mentioned above, as well as a discussion on how the return

paths are selected within a loop treatment.

1.3 Mentor Graphics

The work leading to the present dissertation was carried out at the offices of Mentor Graphics

in Montbonnot, France. Mentor is a major company in the CAD industry, with more that 4000

employees worldwide, distributed in over 50 countries. Headquartered in Oregon, USA, Mentor

has 28 engineering centers and spends more that 20% of its raw income, which is in the order

of 800 million US dollars, in research and development activities.

Mentor has developed commercial products for all the items described in Section 1.1. Re-

lating to the flow in Fig. 1.1, Mentor’s products are listed in Table 1.1

The workgroup in which this project was developed is the core of research for the extraction

tools. We produce the kernel of the algorithms inserted into the Calibre xL engine and formatter.
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Table 1.1: Mentor Graphics’ tools for EM modeling

Process Product

1. Recognition Calibre LVS (layout-vs-schematics)
2-4. Segmentation, Solve, Format Calibre xRC/xL
5. Model Order Reduction TICER/BMR
6. Simulation Eldo/ ADMS

Apart from the relationship with developers at Mentor HQ, we share office space with the main

R&D group for the simulation tools Eldo and ADMS. This vicinity has led to many fruitful

discussions.

Also, we cooperate with research groups at the University of California in Santa Barbara, as

well as the University of Illinois in Urbana Champaign. Summer visiting students from both of

these institutions have been very stimulating for the course of this work.

1.4 Outline of this Thesis

During the course of this work, we have addressed a very large scope of problems related to the

implementation of the flow described above, with special emphasis on points 3 and 4. Three

of these problems constitute the contents of the present Thesis, that is accordingly organized

into three parts. This work has been incorporated into an industrial tool set at Mentor Graphics,

and our approaches have been used in order to enhance the Calibre extraction engine. We will

now give a succinct description of each of these, leaving details for the introductions of each

Chapter. All chapters include conclusions and discussions concerning present and future work,

which will also be summarized at the end of the thesis.

1.4.1 Efficient mutual inductance calculation

Loop treatment of inductance involves recognizing each signal wire and all its possible return

paths; these effective current loops constitute the building blocks of theRL extraction scheme.

By computing the distributions of currents among the return paths, we obtain the loop self

inductance.

Next, interactions between all pairs of two different loops must be accounted for. In general,

this task requires a cost which is quadratic with the total number of interacting wires.

Our contribution in this domain is a method that significantly reduces the complexity of

this problem. With respect to the general recipe mentioned above, the main advantage is that
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the cost becomes linear. The key aspect is to simplify the interaction between two loops, by

treating each one as an ideal magnetic dipole located at the effective center of the loop. We have

denominated this thedipole approximation, and shown its efficiency for rapid computations of

long distance interactions.

Specifically, the chapters relating to this method are:

• Chapter 2: We introduce the dipole approximation for the problem of parasitics extrac-

tion; this work is an extended version of the paper presented in [27] and published in [28]

as a journal version; the routines explained in the text are included in the Calibre xL

engine, and have been filed for a patent application [29].

• Chapter 3: The dipole approximation is extended in order to include mutual inductance

between two intentional inductors; this work has been published in [30] and filed for

another patent application [31].

1.4.2 High frequency modeling of sources

For very high frequencies, currents and fields inside a conductor are not uniform. It is well-

known that currents distribute themselves near the surface of the conductors, according to an

exponential decay within a typical scaleδ, the skin depth for the conductor. This parameter

decreases with growing frequency (δ ∝ f −1/2): for copper, it is varies from 6.6µ at 100MHz to

0.21µ at 100GHz.

In order to describe this non-uniformity of current distributions, the straightforward ap-

proach is to discretize the conductor into small elements, such that current can be considered

uniform for each one of them. The increased cost of this procedure is self-evident, and makes

high-frequency extraction a gruesome task. For example, an MQS solver like FastHenry must

decompose each wire along its cross-section, including a number of piecewise-constant fila-

ments. The increased cost due to this reality has triggered a large amount of research into

developing fast solver techniques, like fast multipole expansions (in FastHenry, FastCap and

FastImp, LargeCom), pFFT precorrection (in FastImp and FastMaxwell), among others.

We adhere to a completely different strategy: the one presented in [32], with current distri-

butions described in terms of a special type of functions, namedconduction modes, which are

eigenfunctions of the differential equation satisfied by currents inside the conductors. Model-

ing in terms of these specific functions provides a compact representation at the same level of

accuracy of piecewise constant models.

Our contributions in this domain are organized as follows:

• Chapter 4: We present the formal framework for this problem, as well as the existing

conduction modes method, which is restricted to extraction ofRL parameters in the QS
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limit; then we introduce anRLC version of conduction modes, valid for structures sim-

ilar to transmission lines, and validate with exemplary configurations; this chapter is an

extended version of the work presented at [33].

• Chapter 5: We analyze, propose, and implement a numerical strategy for handling the

major complication for theRL/MQS conduction modes formalism, which resides in the

computation of its matrix elements; we are able to translate savings of a factor 20 in size,

as reported in [32], into savings of two orders of magnitude in runtime with respect to

similar-accuracy filament based solutions; a short version of this chapter has been pub-

lished at [34].

• Chapter 6: This chapter is devoted to some of the issues that must be addressed in order

to convert the conduction modes formalism into a complete and efficient fullwave field

solver; these tasks include: adapting the numerical methods from theRL to the RLC

domain; enlarging the sets of basis functions and geometries accepted.

1.4.3 Broadband representation with simple circuits

Finally, we concentrate on a problem related to the formatter part of the extraction flow (Fig.1.1):

representing extracted circuits valid over a wide frequency range. In particular, we are concerned

with capturing the variations of resistance and inductance with frequency. More specifically, we

want to do so using only constant circuit components, namelyFoster pairs.

Within the frequency domain,RLC parameters are extracted on a frequency-by-frequency

basis. In some particular cases, an extraction at a single frequency is sufficient for obtaining

bounds on noise or delay. In general, however, it is necessary to construct circuits exhibiting the

correct behavior of parameters over a wide frequency range.

Since this task is done at the formatting stage, the particular choice of representation is

linked to the subsequent process in the flow, which is Model Order Reduction (MOR). In the

case of interconnects, we are dealing with reduction of passive linear circuits.

There exist basically two lines of approach for this type of MOR: those that compute a math-

ematically simplified equivalent version of the response of the circuit; and those that produce

physically realizable circuit of smaller dimension.

For the first type of reducers, the starting point work is the Asymptotic Waveform Evaluation

(AWE) method [35] in 1990, in which moments of the response are fitted to rational functions.

This set the pace for a series of refinements, such as the Padé via Lanczos [36] and PRIMA [37].

These methods all fall within the category of Krylov projection methods, which constitute a

large area of ongoing research. The main challenge lies in avoiding possible loss of passivity

present in the original AWE formulation.
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Calibre has incorporated a technique that belongs to the second type of reducers. The

TICER/BMR [38, 39] method relies on elimination of circuit nodes based on local consider-

ations of time-constants. Without going into details, which is not in the scope of this Thesis, we

refer to [40] for a thorough comparative analysis of this type of method with respect to the ones

mentioned in the previous paragraph.

For broadband representation, TICER/BMR permits the reduction of several types of circuits

including Foster pairs. These are simple blocks consisting of one resistance in parallel with

one inductance. Each of these blocks is able to reproduce one relevant frequency decreasing-

L/increasing-R transition. From a physical point of view, these transitions have two origins: the

choice of return paths for the current flowing on any given signal wire (proximity effect); and the

non-uniform current crowding of currents on the cross-sectional dimensions of any wire (skin

effect).

We organize our work in this area as follows:

• Chapter 7: We characterize Foster pairs and implement a solution to the case with one

single transition; this method is incorporated into the Calibre flow as of 2005 and is pro-

tected by a patent application [41].

• Chapter 8: We consider the case of Foster pairs for representing multiple transitions;

first we develop and analyze a strategy for two-pair serial Foster circuits; we conclude by

briefly discussing more general situations.
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Un traitement amelioré pour

l’inductance mutuelle aux longues

distances

Résuḿe en français

Dans ce chapitre nous développons l’approximation dipolaire pour l’extraction de l’inductance

mutuelle. Lorsqu’elle est appliquée dans des approches d’inductance de boucle, nous com-

mençons le chapitre par une discussion étendue sur les avantages de ceux-ci par rapport aux

approches d’inductance partielle (section 2.1). Cette discussion mène directement au sujet le

plus délicat pour notre approche, qui est la sélection des chemins de retour pour chaque signal ;

autrement dit, la détermination des boucles dans le système (section 2.2). En estimant les induc-

tances propres de ces boucles, nous obtenons aussi des coefficients permettant le développement

des formules de notre approximation dipolaire (section 2.3). Nous exposons des exemples

d’application pour des configurations typiques dans le domaine de l’extraction des parasitiques,

montrant une précision acceptable pour des distances supérieures à un seuil qui est du même

ordre que les tailles des boucles (section 2.4). Finalement, nous concluons par une discussion

sur les applications et les futures extensions (section 2.5). Le travail discuté en ce chapitre a été

présenté à l’“International Symposium on Physical Design” (ISPD’04) [27], et développé dans

un article pour les “Transactions on CAD” de l’IEEE (TCAD) [28]; c’est également le contenu

d’une demande de brevet [29]. Ici, nous présentons une version légèrement modifiée du papier

de TCAD.
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Chapter 2

An Improved Long Distance

Treatment for Mutual Inductance

Extraction of electromagnetic parameters has two components: self and mutual terms. The

former correspond to effects of sources upon the same component on which they are located;

the latter describe effects of sources on other circuit components. Self terms must always deal

with zero and short distances; the difficulty in computing them is generally associated with

this observation. On the other hand, mutual terms are comparatively simpler to estimate. The

complexity of their calculation lies in the large number of terms, which is quadratic with the

number of wires.

The first problem we will tackle is precisely that of developing a fast yet accurate method for

computing mutual inductance. A fundamental decision must be taken from the starting point:

what are the components mentioned in the first phrase above? Answering this question leads to

the discussion between partial and loop inductance methods.

Partial inductance, or PEEC (Partial Element Equivalent Circuit), is a term that was intro-

duced in the world of printed circuit boards in the early 70’s [20], after being widely used in

applications to power line transmission from the beginning of the 20th century [42]. The main

feature of this method is that it decomposes the wires in the circuit into straight segments. In

other words: “inductance” is computed for pieces of wires, instead of wire loops.

It is well understood that inductance is a magnitude whose definition is valid only for closed

current loops; hence the quotation marks indicating this abuse of nomenclature in partial treat-

ments. As a matter of fact, the main result in [20] is the equivalence between PEEC and the

physically correct description of currents in terms of loops. The reason PEEC was introduced

in the first place is that it simplifies one part of the task on computing inductance, namely the

identification of the return paths for any given wire segment.

Loop inductance methods, on the other hand, do not enjoy this benefit. The most critical step

27
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in a loop inductance scheme is precisely that of determining which are the loops. Nevertheless,

this task is tractable, and has been already implemented in various applications [22,24,43]. By

contrast, the drawbacks of the PEEC approach are of a fundamental nature. We summarize them

in Table 2.1; a thorough explanation of all these points is contained in Section 2.1.

Table 2.1: Summary of comparative advantages and disadvantages of Loop inductance methods
with respect to Partial inductance ones.

Partial inductance Loop inductance

Correct physical description;
Advantages Straightforward implementation; Sparsifiable matrix;

Reduced circuit size;

Unphysical behavior;
Disadvantages Dense matrix; Predetermination of return paths;

Workload pushed downstream;

Once the adoption of a loop treatment has been decided upon, extraction consists in com-

puting first the self inductance for the circuit loops, and then the mutual inductance between all

pairs of elements. A general strategy has been exposed in [23], implemented inside Mentor’s

Calibre tools [22] and and filed for a patent application [41].

Although the use of the loop formalism introduces important savings while preserving a

correct physical description, the loop inductance matrix still requires a large (quadratic) number

of mutual inductance couplings. Therefore, it is desirable to have a technique that can speed up

the computation of a large number of these terms.

Our contribution in this domain is the derivation of the dipole approximation, whereby we

keep only the most important contributions when computing mutual inductances at large dis-

tances.

Ranges of validity of the dipole approximation are determined by the length scales of the

problem. We show that, for distances that are a factor 6 or greater than the internal separation of

loops, the errors of the dipole approximation are low. Thus a mixed strategy is feasible, in which

the dipole approximation for far-field interactions, while retaining the (already implemented,

more expensive) exact expressions for near-field interaction.

Computational gains are an order of magnitude improvement as compared to standard tech-

niques. Apart from these gains, for parasitic extraction, the dipole approximation allows to

visualize certain rules regarding the magnitude of inductance. These rules dictate when it is safe

to neglect altogether some types of interactions, thus resulting in memory, as well as perfor-

mance, savings.
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The work discussed in this chapter was presented at ISPD’04 [27], and extended into a

journal version for the IEEE Transactions on Computer Aided Design (TCAD) [28]; it is also

the content of a patent application [29]. Here, we present a slightly modified version of the

TCAD paper, organized as follows:

• Section 2.1 is dedicated to the detailed analysis of the entries in Table 2.1 concerning the

relative advantages of loop treatments over partial ones.

• In Section 2.2, we show how to overcome the main difficulty in loop treatments, namely

the determination of return paths; an important by-product is Esq.(2.12), defining coeffi-

cients to be used downstream.

• These coefficients are used in developing the Dipole Approximation, for quick evaluation

of mutual inductance at long distance, in Section 2.3.

• Results and comparisons, as well as the aforementioned rules are found in Section 2.4;

here, we also include an analysis of the performance of our approximations.

• Finally, in Section 2.5 we conclude with a discussion on the opportunities and possible

future developments in this area.

2.1 Partial vs Loop Inductance treatments

To estimate the electromagnetic effects on a multi-conductor system of currentsI i running along

loopsCi we consider the energy associated with a set of currents

W =
1
2

∑
i

∑
j

Wi j

Wi j = I i I j Mi j (2.1)

whereMi j is thei, j element of the inductance matrix. It can be computed from first principles,

in the Magneto-Quasi-Static (MQS) domain using:

Mi j =
Ψi→ j

I i

=
1
I i

∫
S j

B(i) · dSj

=
µ0

4π

〈∮
Ci

∮
C j

d`i · d`j

|r i − r j |

〉
Conductors’

cross-sections

(2.2)
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whereΨi→ j is the magnetic flux due to the magnetic induction fieldB(i), S j is the surface

bounded byCi , generated by the time varying currentI i acting onI j . In (2.2) we are invoking the

MQS regime, whereby the currentsI i are uniform over the transverse cross-sections permitting

us to equalize the last two expressions. The sum in (2.1) contains as diagonal elementsLi = Mii

the self inductance of loopi.

The integrals are evaluated over closed loops, in physical systems, and we then speak about

loop inductance. The previous equations can be extended to segments [42], giving rise to the

PEEC formalism, and we then speak about partial inductance. On this last formalism, conductor

segments are considered to form part of loops closing at infinity.

2.1.1 Long distance behavior

The long distance behavior of the partial inductance matrixM elements is non-physical. In fact,

for large wire separationr, its per unit length matrix elementsmi, j behave as

mi j (r) ≡
Mi j (r)

L
∼ − log(r) (2.3)

whereL is their common length.

The logarithmic decrease with distance manifests itself in two dimensional 2D as well as in

three dimensional 3D problems. The only difference between the two cases is the appearance

of a constant coefficient log(2L) in 3D, which is absent in 2D. Using Grover’s expressions, the

ratio of Mi j for a filamenti and its neighborj to the corresponding diagonal termLi has the

following limit at large distances (larger, while r < L):

M
L
∼ 1−

log(r/w)
log(2L)

→ 1 (2.4)

with w, the wire cross-section.

As a result of (2.3) and (2.4)M is dense, and not diagonally dominant. A strictly diagonally

dominant real matrix is one in which the sum of the absolute value of off-diagonal elements

for each row is strictly smaller than the absolute value of the diagonal counterparts. For a

symmetric matrix with diagonal elements strictly positive, diagonal dominance is a sufficient

condition for having real and strictly positive eigenvalues. Moreover, neglecting small off-

diagonal terms in a matrix of this type does not change the sign of its eigenvalues. Matrices of

this kind can be sparsified by neglecting small off-diagonal terms, without resulting in possible

passivity violation. Positive definite matrices that do not satisfy the requirement of being strictly

diagonally dominant, on the other hand, can display unwanted instabilities of the following

kind: setting to zero seemingly negligible off-diagonal contributions can alter the sign of the

eigenvalues ofM, a violation of passivity for linear systems [44, 45]. The system designer can

be left with unwanted choices when working withM particularly in the PEEC method: either
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sparsify and live with passivity violations or live with very large matrices and rapidly increase

the complexity of downstream circuit simulation.

To investigate the primary source of the denseness, the following statement is useful:

Proposition 1 The asymptotic behavior(2.3)results from the following large distance behavior

of B :

B(r) ∼ 1/r2 In three dimensions

B(r) ∼ 1/r In two dimensions (2.5)

The above proposition is verified by directly substituting (2.5) into (2.2), counting powers

in the integrand to estimate the asymptotic behavior, and (2.3) results.

Proposition 1 is derived from :

Proposition 2 The asymptotic behavior(2.5) results from the presence of unbounded current

distributions.

Consider first the 2D case of an infinitely long filament; applying Ampere’s law∮
B · dl = µ0I (2.6)

and extractingB

B(r) =
µ0I
2πr

m(r) =
1
I

∫
B dr =

µ0

2π
log(

r
w

) (2.7)

which gives precisely (2.3).

In 3D, consider the vector potentialA

A(r ) =
µ0

4π

∫
V

J(r ′)
|r − r ′|

d3r ′ (2.8)

and carry out, as in [46], a multi-pole expansion of Green’s function 1/|r − r ′| = 1/|r | + r ·

r ′/|r |3 + ...., giving :

Ai(r ) =
µ0

4π

 1
|r |

∫
V

Ji(r ′)d3r ′ +
r
|r |3
·

∫
V

r ′Ji(r ′)d3r ′ + . . .

 (2.9)
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For B(r) ≈ 1/r2 as demanded by (2.3), the first term in (2.9) must be different from zero.

It is on the other hand well known that for any bounded current distribution in the quasi-static

regime∂ρ/∂ t = 0, with ρ the charge density, the integral in the first term of (2.9) vanishes

(the volumeV of integration includes the entire current distribution). Thus, under quasi-static

conditions and for bounded current distributions,A must decrease for large distances at least as

rapidly as 1/r2. UsingB = ∇ × A we conclude that for bounded physical systems:

B ∼ 1/r3, (2.10)

Equations (2.3) and (2.5) are invalid andmdecays with distance as a power law. The PEEC

method violates the asymptotic behavior of Maxwell’s equations in the quasistatic regime.

Dropping the assumption of bounded current distributions is tantamount to the presence of

monopoles in the theory, whereas dropping the quasi static assumption requires a completely

new approach. The correct physical behavior of electromagnetic theory, when used in conjunc-

tion with PEEC is recovered downstream during the circuit simulation phase of the flow. During

this phase circuits are necessarily closed by virtue of the Kirchoff Voltage Laws (KVL). Large

cancellations involving different length scales occur, mixing short distance with long distance,

an inherent result of the method. The correct theory is recovered, but the price is the size of the

mutual inductance matrix needed for timing simulation. Issues related to capacity and numerical

accuracy are unavoidable.

The previous are rigorous results in Electromagnetism. A loop treatment of MQS must

necessarily give rise to a significantly more localized magnetic influence than what would be

resulting from the PEEC approach.

2.1.2 Sparsification of the partial inductance matrix

There has been widespread work to improve on the PEEC formalism ( [21,47–49] and references

therein). The underlying goal is to sparsify the denseM matrix while preserving its positive

definiteness.

One line of approach consists of including artificial currents that compensate the current of

any wire segment. The goal is to cancel the monopole behavior of partial inductance for the

given segment, at distances beyond the location of the compensating “current shells” [21,50].

The models generated with these techniques are shown to give accurate simulation param-

eters as long as the shells contain all the return paths for the original wire. This observation

simply states that, if the wire loops are known to be included within the shells, then placing the

compensating current, thus isolating the wire and its returns from the rest of the configuration,

gives a correct value for the loop inductance. In this sense, these approaches require the that

all the return paths be included within these shells, a task that can be comparable to the iden-
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tification of the return paths in the loop formalism. This argument would eliminate the major

advantage when compared to using directly loop inductance methods.

A second strategy for sparsification of the PEEC matrix springs from the observation that the

behavior (2.5) of magnetic fields within a partial inductance treatment (magnetic field produced

by a magnetic monopole) is formally equivalent to that of the electrical field produced by a point

charge in electrostatics. This similarity has inspired some researchers to explore the notion of

double-inverse methods [51, 52]. In few words, these consist of first inverting locally theM

matrix, and then sparsifying theK ≡ M−1 matrix. The analogy clearly extends toC and K

which play similar roles in the electrostatic and magneto-static problems, respectively (Q =

C∆V, jωI = K∆V). This procedure introduces a new circuit element,K, whose behavior is

included within simulators [51,53].

However, there is an important difference between the two cases: for the electrostatic case,

theC matrix, in the Maxwell sense, is strictly diagonal dominant by construction, and thus any

truncation preserves positive definiteness; on the other hand the jury is still out regarding the

diagonal dominance ofK [48]. In [54], theK matrix is shown to be sparse, positive definite and

symmetric, within a circuit-aware inverse extraction method that separates wires having strong

inductive effects from those do not.

At variance withC, the matrixK is not physical, and it is not obvious how to extend the

concept of shielding, present in the electrostatic case. Shielding of electrical fields by conductors

cause theE field to be localized in a dense wire environment, making theC matrix sparse. For

MQS there is no physically equivalent shielding, currents and theB field may penetrate the

conductors. Nonetheless, it is empirically verified thatK is sparse, yielding a considerable

amount of strength to partial inductance followed by inverse methods [47,55].

Another observation about the double-inverse method is that it contains an adjustable pa-

rameter, namely the size of the window for the first local inversion. The accuracy of the method

depends on this parameter: as with the compensating shells, the method is accurate as long as

the main contributors to the return path are contained within the window. Again, this means

identification of these return paths, thus eliminating the main advantage of partial methods with

respect to loop ones.

Loop inductance methods, on the other hand, have inherent localization properties deriving

from (2.10), as we shall derive from (2.28), while preserving the correct physical theory.

2.1.3 On positive definiteness of the loop inductance matrix

In the previous section, we have discussed the denseness of partial inductance methods, and the

related efforts in trying to deal with it. We claim that this is not necessary in loop inductance

methods, relying on the hypothesis that the loop inductance matrix is definite positive, and

therefore there is no risk of passivity violation when it is truncated.
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Figure 2.1: Representative worst case scenarios for diagonal-dominance of the loop inductance
matrix: (a):no shared grounds; (b): with shared grounds.

The following arguments do not constitute a proof, but clearly support the above hypothesis

that the loop inductance matrixM is diagonal dominant, for configurations where there are no

shared return paths. Let us start by treating a seemingly worst case scenario, configurations with

values of the diagonal elements that are as small as possible while the corresponding values of

the off-diagonal elements are as large as possible. We take as representative example of this

hypothetical worst case scenario, the configuration of Fig.2.1a.

We take the return of signals1 to beg1, while for signals2, it is g2. To minimize loop

self inductance of one signal wire, the corresponding ground return paths need to be as close

as possible to the signal wire. Furthermore, to maximize mutual loop inductance between two

signals is necessary to minimize the distance between the two circuits. We take values from

typical 90 nm technology1. The minimum value of inter-wire separation issmin = 0.2 µm, for

representative wires of low resistance the wire width is aboutw = 1 µm. Havingd = s = smin

and equal wire widthsw in Fig. 2.1a results in the following inductance per unit length matrix:

M =

 2.96 0.07

0.07 2.96

 nH/cm.

The ratioδ of self to mutual inductance isδ = 42. The above matrix is diagonal dominant.

To violate the condition of diagonal dominance, we need at leastδ worst case circuits separated

by smin, an unfeasible configuration. Consider now a small increase in the separation between

the two initial circuits by 1µm. Thenδ increases to 132. This fast increase reflects the power

law nature of the loop inductance variation with distance, a result we shall derive in (2.28).

For feasible wire densities, the self inductance will be larger than the sum of the magnitudes

of the mutual inductances with the other circuits, i.e. the matrixM will be strictly diagonal

dominant.

When different signal wires share return grounds, the above argument does not hold. Take

for instance a configuration where 4 signal wires share one ground wire as return path (Fig.2.1b).

1The scaling properties of the examples in the present chapter are discussed at the beginning of Sec.2.4).
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Using the samesmin andw as in the previous example results in a 4× 4 matrix

M =


7.8 3.9 1.6 2.5

3.9 4.9 1. 1.6

1.6 1. 4.9 3.9

2.5 1.6 3.9 7.8

 nH/cm.

This matrixM, calculated from Grover’s expressions, is positive definite but not diagonally

dominant. We thus conclude that, in the absence of shared ground return paths, the inductance

matrix will be diagonal dominant in the loop formalism. This is not the case in the partial

inductance formalism, as can be immediately concluded from (2.4).

Our concern is the treatment of the long distance behavior of the inductance matrix, that is to

say the contributions to the inductance matrix arising from signal wire segments which are sep-

arated by long distances. These wire configurations do not lead to shared ground configurations.

Since the matrix is diagonal dominant, then truncation cannot lead to loss of passivity.

The general solution to the mutual inductance problem, one that incorporates short and long

distance behavior, demands attention to this problem, since the presence of shared ground con-

figurations is unavoidable albeit restricted in scope. We refer to [23] (Chapter 3) for a treatment

of the general case. Therein, it is shown that the mutual inductance in the presence of shared

grounds involves a term that is proportional to the partial self inductance of the shared wires.

These are terms much larger than mutual ones, explaining the the lack of diagonal dominance

in the matrix above.

2.1.4 Size of loop and partial inductance matrices

In order to compare the sizes associated to loop and partial inductance treatments, we consider

a representative IC example shown2 in Fig. 2.2a. It consists of two signal lines surrounded by 4

ground lines. We construct two different netlists: the first one, extracting theL matrix with our

loop inductance engine [22], and the second one with PEEC, using FastHenry [15]. Capacitance

is extracted with FastCap [14]. For both cases, the presence of devices is represented by a

resistor ofRtr = 50Ω at nodes S1 and S2, and a capacitor to groundCload = 1 f F at S1out and

S2 out. The sizes of these netlists are as follows:

In this table, we have also included, on the last column, the runtime for the simulation of

each netlist with Eldo [53], Mentor’s circuit simulator. The simulations represent a step 1 Volt

excitation on S1 at timet = 0, while leaving line S2 grounded at both extremes. The comparative

results of the two simulations, for the far-end voltages, are shown in Fig. 2.2b.

Without any appreciable difference in the output, the gain is a factor of 5 in computation

2We acknowledge our colleague Rafael Escovar for this example, included in his Phd. Thesis [23].
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resistors inductors capacitors impedance Total Average
couplings run time (s)

PEEC 70 70 118 2415 2673 10.2
Loop 26 26 34 128 214 1.9

Table 2.2: Number of RLC elements in the PEEC and loop netlists.
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Figure 2.2: (a): Example of an IC configuration for comparison of loop and partial methods:
the width of the signals S1 and S2 is 1µ, and width of grounds GND1-4 is 5µ; wires in black are
in a layer of thickness 1µ, and gray are 0.75µ, total length is 1mm. (b): Comparative results of
simulation for the far-end voltages for configuration in (a).

time, and more than 10-fold in terms of space. The difference between the two factors is due

to the fact that the cost of simulation is governed by both the number of nodes as well as the

number of elements. While the PEEC netlist has more than 10 times the number of elements of

the loop one, the nodes (70 vs. 26) are multiplied only by a factor lower than 3.

2.2 Return path in the loop inductance formulation

Partial inductance methods do not requirea priori identification of which are return paths for the

currents along any given signal wires. The contrary happens in the loop inductance formulation.

We proceed to argue that large uncertainties related to the problem of return path selection do

exist, but are limited to low frequencies, where in fact inductance effects are unimportant.

For this purpose, we introduce the concept ofbundle[28], as the set of parallel wires of

equal length consisting of one signal plus all its possible return paths. We consider a bundle as a

set of closed loops with one common segment (namely the signal wire), neglecting the absence

of the small segments in the orthogonal direction needed to close the loops.
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Figure 2.3: Circuit equivalence of a bundle withn return paths (for simplicity, mutual induc-
tances between wires are depicted as dashed lines without label).

Extraction in terms of bundles is composed of the following tasks:

1. for each signal wire, we decompose its path into the union of a set of non-overlapping seg-

ments whose ends are identified by discontinuities (changes of layer or direction) either

in the signal path or in the path of any of its return wire candidate neighbors;

2. for each segment, there is a set ofn nearest parallel ground wire segments of the same

length, that form part of the bundle;

3. a bundle’s loop self impedanceZloop = Vin/Isignal is computed by solving the elementary

circuit in Fig.2.3, formed by the signal segment and itsn return paths,

∆V = ZI (2.11)

where

∆V =


1− Vout

−Vout
...

−Vout


, I =


Isignal

I1
...

In


, such that

n∑
i=0

I i = 0

andZ is the (n+ 1)× (n+ 1) matrixR+ jωL of the elements shown at the left of Fig.2.3;

4. as a by-product of this calculation, the currentsI i give the (complex) weight of each

return path within each bundle: normalized by the currentIsignal, their sum is unity, and

we define the valuesαi ,

αi ≡
I i

Isignal
(2.12)
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which will play an important role in the future sections;

5. a complete description in terms of bundles is the result of joining all the individual bundles

into a single circuit representation.

Our group at Mentor has implemented this computation of self impedance in terms of bun-

dles, empirically adjusting the parametern to the value 9. See [23] for a thorough analysis

of extraction in terms of bundles. In the following paragraphs, we will summarize the main

physical characteristics related to the selection of return paths.

For this description to be accurate, we must always include the wires that the return paths

are the ones that minimize the self impedance of the bundles,

Zloop(ω) = Rloop+ jωLloop (2.13)

At low ω, this corresponds to resistanceR minimization, while for largeω it is inductance

L minimization. We can classify four distinct frequency regimes, according to the comparative

contributions of resistance-per-unit-lengthr and inductance-per-unit-lengthl, see Table 2.3. The

boundaries between regimes is determined by technology. In an order-of-magnitude estimation,

r is dictated by the typical cross-section areawhas well as the material properties:r ∼ (σwh)−1;

whereas inductance-per-unit-length is typicallyl ∼ µ0. Therefore, these conditions can be stated

in terms of the parameterδ =
√

2/ωµ0σ.

Table 2.3: Classification of frequency regimes and related physical phenomena

Regime r, l Technology Physical characteristics
condition condition

1. Low frequencies r � ωl wh� δ2 Many, wide return paths
2. Intermediate frequencies r > ωl wh < δ2 R-L trade-off
3. High frequencies r ≤ ωl wh ' δ2 Only 2 or 3 nearest wires
4. Very high frequencies r � ωl wh > δ2 Skin-effect current crowding

A large number of return paths are only needed in Regime 1, in which non-negligible cur-

rents may be present on far away, low resistive return paths. By keeping only then closest

wires, there is the risk of committing significant errors in the loop inductance of the bundle.3.

However, we point out that in this regime, the inductive part of impedance is negligible with

respect to the resistive one (see Table 2.3), rendering these errors unimportant.

3On the other hand, resistance in this regime corresponds to that of the signal segment, since the contribution of
all the return paths, at low frequency, is essentially their parallel equivalent resistance (

∑
i≥1 r−1

gi
)−1, which forn = 9

is typically a very small value compared to the resistance of the signal segmentrsignal
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Using the valuen = 9 mentioned above, we observe a monotonic decrease in inductance

and increase in resistance, throughout regimes 2,3 and 4. More important, we observe no signif-

icant deviations from the values obtained with larger values ofn [23]. As frequency increases,

currents on far-away wires tend to zero, in order to minimize the inductive part of impedance.

In fact, for frequencies in regimes 3 and 4, values of impedance are unchanged by keeping only

the two or three closest return wires.

This observation plays a very important role for regime 4, where accuracy demands to ac-

count for non-uniform current distributions along the wires’ cross-sections by decomposing

into filamentsà la FastHenry [15], or into conduction modes [32] (see Part B of this thesis). In

practice, this entails an multiplicative increase in the size of the system in eq.(2.11), which is

compensated by keeping only the closest wires.

From this discussion we conclude, that except for signals in region 1, where inductance

does not matter, it is relatively simple to select return path configurations from a layout. The use

of the physically rigorous method of loop inductance becomes for these cases reasonable and

expedient.

2.3 Mutual inductance and the Dipole Approximation

We now develop a method to compute themutual inductance between bundles Mab, i.e. the

off-diagonal terms in theZ matrix. The aim is to arrive at an expression analogous to (2.1), but

for bundles,

Mab =
Wab

IaIb

with currentsIa (resp. Ib), running along the signal wires of bundlea(b). For this purpose we

begin precisely from (2.1), with subindexi( j) sweeping all wires in bundlea(b).

Following the steps laid out in the previous section, the currentIb is divided among the

return paths according to the coefficientsα,

I j = αb, j Ib with αb,0 = 1,
∑
j≥1

αb, j = −1 (2.14)

Consequently,Wab in (2.1) can be factored as

Wab =
Ib

2

∑
j≥1

αb, jΨa→ j (2.15)
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Figure 2.4: Schematic view of the dipole approximation for calculating the interaction between
two bundles.

HereΨa→ j is the magnetic flux of all wires in bundlea through the elementary surfaceS j

of bundleb (see Fig.2.4), which is bounded by the circuit loop∂S j formed by the signal wire

plus thej-th return wire.

These fluxes are computed using Stokes’ theorem,

Ψa→ j =

"
S j

(∇ × A(a)) · dSj =

∮
∂S j

A(a) · d`j (2.16)

with A(a) the vector potential due to all wires in bundlea.

To split the closed curvilinear integral in (2.16) into two rectilinear integrals, one over the

signal, the second over the return wirej, the contribution from this last one must be multiplied

by -1 (since the closed integral is circulated in one definite sense). Thus, summing up all the

terms, expression (2.15) becomes

Wab =
Ib

2

∑
j≥0

α′b, j

∫
C j

A(a) · d`j (2.17)

whereC j is the conductorj ≥ 0, andα′b, j = −αb, j ∀ j ≥ 1.

Next we take into account the magnetic dipole approximation, whereby we consider the

field due to all the circuits in bundlea as the one generated by a representative dipole moment

pa [46].

To compute the value ofpa, we first consider the dipole of a configuration of two parallel

wires lying on thex − y plane, one being the return path of the other (Fig.2.5a). In this simple

case,
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Figure 2.5: Calculation of dipole moment for a bundle: (a) simple case with one unique return
path; (b) bundle with several return paths; the resultingp is a weighted average of all thepi .

pa =
µ0

8π

∫
r × J(r )d3r

=
µ0

8π
ILsẑ (2.18)

whereL is the common length of the two wires ands is the separation between them (pa is

proportional to the area spanned by the circuit and points in the direction ˆz perpendicular to the

plane containing them.)

For bundles having multiple return paths (all oriented along they axis, see Fig.2.5b), the

integral in the first line of (2.18) is decomposed into several terms like the one in the second

line. Since each of those terms is proportional to the current it carries, they are weighed again

by geometrical coefficientsαa,i , i ∈ a as in (2.15).

Therefore the expression for the magnetic dipole moment becomes,

pa =
µ0

8π
LIa

∑
i≥0

αa,i(ŷ× r i) (2.19)

wherer i is the position of return pathi with respect to the signal wire.

Since the total current in a bundle adds up to zero, the value obtained by (2.19) is indepen-

dent of where the origin of coordinates is located. We choose this origin as the position of the
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“center of mass” of bundlea,

r cm,a =
1
2

∑
i≥1

αa,ir i (2.20)

i.e., as the weighted average of the position of all the constituent moments of the form (2.18).

The expression for the vector potentialA at positionr due to a dipolepa at the origin is

A(a) =
pa × r

r3
(2.21)

The 1/r2 behavior ofA corresponds to the 1/r3 behavior forB as demanded by (2.10).

Replacing expression (2.21) into (2.17), we arrive at a closed expression of the mutual in-

ductance between bundlesMab, within the dipole approximation,

Mab =
1
Ia

∑
j≥0

α′b, j

∫
C j

(pa × r j )

r3
j

· d` j (2.22)

In general, the resultingM is complex, with the real part of (2.22) contributing to the mutual

inductance. The imaginary part ofM modifies the resistance, is effectively negligible in all the

numerical examples we encountered.

Inspection of (2.19) and (2.22) shows thatpa is proportional toIa; hence,Mab does not

depend on the currents, but is solely a geometric coefficient, as should be expected. For the sake

of notation, from here on, we usep̃a to stand forpa/Ia.

As mentioned before, all conductors in a bundle run along the same direction, say ˆy. Thus

pa is perpendicular to all the wires. We have the freedom to choose the ˆz axis parallel to the

dipole momentpa, and (2.22) becomes

Mab = p̃a

∑
j≥0

α′b, j x j

y1, j∫
y0, j

dy

(x2
j + y2

j + z2
j )

3/2
(2.23)

wherey0, j andy1, j are the extremes of conductorj, in a coordinate system with origin at

r cm,a. Expression (2.23) is effortlessly integrated,

Mab = p̃a

∑
j≥0

α′b, j x jy j

(x2
j + z2

j )(x
2
j + y2

j + z2
j )

1/2

∣∣∣∣∣∣∣
y j=y1, j

y j=y0, j

(2.24)

Thus mutual inductance between two bundles is reduced to calculating the dipole moment

and the position of the first bundle via (2.19) and (2.20), and then evaluating the simple expres-

sion (2.24) for each of the wires of the second bundle.

An important remark concerning (2.24) is that it does not strictly comply with the expected

symmetryMab = Mba. This is due to the fact that our treatment considers the aggressor as an
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Figure 2.6: Simple configuration for the sake of comparison of (2.24) with Grover’s expressions:
(a) transverse coupling; (b) forward coupling.

ideal point-like dipole, whereas this is not assumed for the victim. In the next section we will

show with numerical examples that in practice this asymmetry is seldom significant. In practice

we enforce the expected physical symmetry by identifyingM with

M̃ab =
Mab+ Mba

2
(2.25)

Similarly, we can construct the expression for the interaction between wires lying along the

x-axis.

In order to compare with classical Grover expressions, (2.24) would replace the one arising

from the algebraic sum of filament-to-filament interactions [56],

Mgrover
ab =

µ0L
4π

∑
i≥0

∑
j≥0

αa,iαb, j Mi j (2.26)

where Mi j = log

 L
r i j
+

√
1+

L2

r2
i j

 + r i j

L
−

√
1+

r2
i j

L2

For example, in a very simple configuration like the one shown in Fig. 2.6a it is straight-

forward to see that both expressions (2.24) and (2.26), forx, L � s1, s2, give exactly the same

limit, namely

Mab '
µ0

4π
s1s2L1L2

2x2 + L2
2/4

x2(x2 + L2
2)3/2

(2.27)

As anticipated in section 2.1, once all terms are accounted for, in the loop inductance treat-

ment, the asymptotic behavior ofM is quite unlike that of (2.3). In fact, (2.27) shows two types

of regimes for transverse coupling (we takes1 = s2 ≡ s andL1 = L2 ≡ L for simplicity),
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Mab '

 µ0
2π

s2L2

x3 ∼ 1
r3 for x� L (3d case)

µ0
16π

s2L
x2 ∼ 1

r2 for x� L (2d case)
(2.28)

In a case of forward coupling, like the one shown in Fig.2.6b, the comparison with the

Grover expressions, now in the limitL1, L2,∆y � s1 = s2 ≡ s, gives4

Mdipoles
ab '

µ0

π

s2L2(∆y + L)

2(∆y + L/2)2(∆y + 3L/2)2

Mgrover
ab '

µ0

π

s2L2

2∆y(∆y + 2L)(∆y + L)
(2.29)

where we have simplified the expressions by settings1 = s2 ≡ s and L1 = L2 ≡ L. Both

expressions above have the same long distance asymptotic behavior,

Mdipoles
ab '

µ0s2L2

2π∆3
y

(
1− 3ε −

14
2
ε2

)
Mgrover

ab '
µ0s2L2

2π∆3
y

(
1− 3ε −

13
2
ε2

)
(2.30)

for ε ≡ L/∆y.

Although both expressions show essentially the same behavior, they have been obtained

through significantly different processes:Mdipoles
ab are two direct evaluations of (2.24), whereas

Mgrover
ab result from a subtle cancellation of eight expressions like (2.26) [56].

2.4 Results

In this section, we display some numerical results that verify the validity of the dipole approxi-

mation, its applicability, and its limitations.

In the first subsection, we analyze some simple extraction rules that can be established by

virtue of the dipole approximation. These rules allow for quick and very practical determination

of which geometrical configurations can be automatically neglected when computing mutual

inductance.

Next, we consider the question of the numerical accuracy of the dipole method. We do this

by comparison of (2.24) with the results obtained with the field solver FastHenry [15].

4In the expressions that follow, we correct an errata which is present in [28].
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It is self evident that calculating the mutual inductance using the dipole approximation is

considerably less expensive than FastHenry. The simulations with FastHenry were carried out

at the single frequency of 10 GHz. To assure good convergence with FastHenry, we empirically

found that 5×5 filament partitioning suffices. In most cases, 3×3 was accurate enough.

The dipole approximation is often computationally more efficient than the direct use of

Grover’s expressions (2.26). An analysis of the performance is included at the end of the present

section.

A good criterion to be used in considering the errors introduced in a mutual inductance

extraction method is the comparison to the self inductances of the two bundles,La, Lb. To this

effect, we choose to plot the dimensionless magnitudeζ ≡ Mab/
√

LaLb, whose absolute value

is smaller than 1.

Observe thatζ is scale invariant, in the following sense: if all dimensions in a given con-

figuration are multiplied by a factorλ, thenζ remains unchanged, except for minor logarithmic

corrections to the self inductances5. This statement allows us to generalize the results in this

section to scaled-down configurations.

2.4.1 Dipole selection rules

There is a number of situation-dependent rules that are exact in the dipole approximation and

constitute reasonable approximations in general. They are of importance in the action of pruning

geometrical configurations.

1. For perfectly symmetric bundles, the mutual inductance is negligible. An example of this

kind of configuration is given by a sandwich configuration. (i.e., a perfectly symmetric

coplanar ground-signal-ground bundle, see Fig.2.7). It has zero dipole moment, meaning

that in the dipole approximation its signal voltage is insensitive to external noise. Veri-

fication of this rule with FastHenry, calculating the mutual inductance between two such

structures, gives values ofζ below 10−5 for distances between bundles as small as the in-

ternal separations of the bundles. Sandwich configurations are good candidates for clock

routing. This result impacts favorably on the stability of clock routing using symmetrical

ground signal ground configurations [57].

2. Given two bundles with parallel dipole moments (e.g. Fig.2.8), the mutual inductance

between them is minimized when their relative position forms a certain angle with the

common direction of their dipole moments; the value of this angle goes from 45◦ when

the bundles are much longer than the transverse dimensions, to∼ 35◦ when this is not the

5In mathematical terms,ζ is homogeneous of degree 0, whileMab is homogeneous of degree 1, andLa andLb

are “nearly” homogeneous of degree 1.
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Figure 2.7: Dipole Selection Rule 1: Completely symmetric configuration, in which the return
currents are balanced with respect to the signal line, having a zero net dipole moment.

case. This result derives from the following reason: since the two bundles have aligned

dipole moments, then the flux of magnetic field through the second bundle due to the first

one is, in first approximation, proportional to the perpendicular field of the first one (it is

helpful to imagine a bundle as a coil perpendicular to its dipole moment). Thus we should

analyze where the perpendicular component for the field of a dipole vanishes. For the case

of long bundles, in which a 2D description is adequate, the dipole moment vanishes6 at

45◦. In the case of short bundles, this rule comes from the expression for the perpendicular

componentB⊥ for the field of a dipole (2.31), which is null forθ = 0.5 cos−1(1/3) ≈ 35◦.

Numerical examples for this situation are shown in Fig.2.8.

B(r ) =
3(p · r̂ )r̂ − p

r3

B⊥ =
1
2

(3 cos 2θ + 1)
p

r3

B‖ =
3
2

sin 2θ
p

r3
(2.31)

3. Given two bundles with perpendicular dipole moments as in Fig.2.9, mutual inductance

is negligible for configurations where one bundle is near the vertical axis passing through

the center of the other. The reasoning is similar to the previous case, except that now

we should analyze when does the parallel componentB‖ vanish. This occurs atθ = 0

and θ = 90◦. In one of the examples that will be shown in the next section (Fig.2.9)

this situation manifests itself in two ways: (a) the mutual inductance drops to zero asDz

6this can be deduced from Taylor expansion of (2.24) and (2.18) under the conditionss � x, z � L wheres
represent generically distances within each bundle. The result is thatMab exactly vanishes whenx = z, i.e. when
θ = 45◦
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Figure 2.8: Dipole Selection Rule 2, showing the angular dependence of mutual inductance for
different separation between bundles: dipole approximation (solid lines) and FastHenry (dotted
lines with symbols)

does; (b) forDz large,ζ increases with increasingDx. This rule is also helpful in pruning

geometries.

2.4.2 Validation

In Fig.2.9, we display the simplest case, two bundles consisting of one signal wire with a single

return path each. Notice that the relative position between signal and return is perpendicular

in one bundle with respect to the other. From the results displayed in this figure, we notice

that the dipole approximation shows relative discrepancies with FastHenry which are upper

bounded by 10%. Considering that mutual inductance, in this case, is two or three orders of

magnitude smaller than the self inductances, this means that the error introduced by the dipole

approximation affects at worst, the third significant digit.

We stress that noise figures forζ are scale independent. For the sake of verification we

reproduced all the examples that follow, scaling up and down two order of magnitudes, obtaining

the same figures. This allows us to generalize the results as follows: if these typical bundle sizes

of order 5µ, and we can assure small errors for distances larger than∼ 30µ, then these small

errors are maintained as long as the ratio of bundle size to separations is larger than 6. For this

reason, we always plot distances as functions of the ratiosΛx ≡ Dx/s andΛy ≡ Dy/s, where

Dx,y are separations alongx, y, ands is the typical size scale for the bundles.

Next, consider two bundles with one return path each, with their dipole moments being

parallel (see Fig.2.10). Again, the resulting comparison with FastHenry also show discrepancies

upper bounded by 10%. The dipole approximation holds quite accurately for mutual inductances
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Figure 2.9: Comparison of between the dipole approximation (solid lines) and FastHenry (dot-
ted lines with symbols) for perpendicular bundles, geometries like the one shown at left:ζ

is plotted for different values ofΛz = Dz/sa as a function ofΛx = Dx/sa. Parameters are:
L = 500µm, sa = sb = 5 µm andh = 0.5 µm, w = 0.5 µm for all conductors.

between two simple loops, irrespective of the orientation of their dipole moments.

Finally, we show a slightly more complicated geometry, consisting of two bundles with

multiple return paths each. Both are asymmetric, in the widths of the return paths as well as in

their positions with respect to the signal wire (see Fig.2.11).

In this example, we find that for the case of the closest configurations (Λx ≤ 6) there is a

considerable difference between the two results. It should be noted, however, that even in those

cases, the value ofζ is very small, thus rendering the aforementioned errors insignificant when

compared to the self inductancesLa, Lb.

In few words, the previous cases are examples that manifest the behavior that holds for arbi-

trary configurations: as long as distance between bundles is not too narrow (Λ ∼ 6 a seemingly

worst case,Λ = 2 being more representative), the leading dipole representation gives a good

approximation to the mutual inductance.

2.4.3 Performance analysis

In order to analyze the efficiency of the present dipole approximation, we compare its runtimes

with respect to the direct use of Grover’s expressions (2.26). We mention briefly that these last

expressions give basically the same results as FastHenry, meaning that the errors between the

dipole approximation and Grover’s expressions are as small as the ones presented in the previous

sections.
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Figure 2.11: Comparison between the dipole approximation (solid lines) and FastHenry (dotted
lines with symbols) for the two bundles shown at left, each of typical size∼ 5µ: ζ is plotted for
different values ofΛz = Dz/5µ as a function ofΛx/5µ. The coordinates and widths of the wires
are shown as (x, y; w) triplets, the thickness ish = 0.54 µm, and length isL = 1000µm for all
wires.
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If we consider a general case, withN wires broken up intonb bundles, Grover’s expressions

requireN2/2 computations of terms as in the second line of (2.26). On the other hand, the dipole

approximation requires a total ofnbN calculations. Thus, if there are on average considerably

more than one return path per bundle (i.e., ifnb � N/2), then the dipole approximation demands

a much smaller number of evaluations. Moreover, each of the evaluations of Grover’s expression

involves a transcendental function, whereas for the dipole approximation there areN evaluations

arising from the calculation of dipole moment, which are only sums and multiplications (see

eq.(2.19)), plus (nb − 1)N evaluations as in the argument in the sum of (2.24), where the most

expensive operation is a half-power.

Table 2.4: Comparative runtimes for Dipole approximation (DA) and Grover’s expressions (GE)
as a function of the number of return pathsN; times expressed in microseconds per evaluation

N DA GE Ratio GE/DA

1 0.412 1.586 3.85
2 0.544 3.343 6.14
3 0.697 5.817 8.34
4 0.784 9.052 11.54
5 1.000 13.002 13.00
6 1.092 17.902 16.39

In Table 2.4 we present a comparison between the two methods for concrete examples in-

volving two bundles with the same number of return paths in each one. Runtimes are expressed

in microseconds per mutual inductance computation (∼ 108 similar computations are averaged

for each entry of the table). All runs were carried out on a desktop PC running at 2.0 GHz,

under identical situations. The approximately linear increase of the runtime ratios with bundle

size (last column of Table 2.4) shows that, at least in this case, the dipole approximation is one

order of magnitude faster than the use of Grover’s expressions.

2.5 Discussion

We claim to have contributed to the understanding and simplification on the problem of mutual

inductance computations relevant to IC design, in terms of simple dipole structures. For reason-

able distance bounds, the dipole representation computes with good precision the behavior of

the mutual inductance matrix. When the physical loops are seen in terms of dipoles, it is easier

to separate what is important from what is negligible. The resulting selection rules emerge quite

naturally, and further contribute to the sparsification. Considering an inductance matrix that falls



2.5. Discussion 51

as 1/r2 or 1/r3 makes the problem of bounding the size of the extraction matrix manageable.

This feature simplifies enormously the effort during downstream circuit simulation.

Previous work [58] have attributed to small current loops the term dipoles, without further

ado. FastHenry and FastCap use effectively the multipole expansion of the Green Function in

order to speed up matrix vector multiplications in their field solver [14, 15]. In fact, we have

verified empirically that using FastHenry, with this expansion truncated at order 2, gives the

same results as the dipole approximation [59].

Our analysis goes beyond in providing a framework for the proper extraction of the mutual

inductance matrix for a wide range of distances. At very small distances, where the dipole

approximation is no longer applicable, we simply need to compute the loop mutual inductances

in terms of the algebraic sum of Grover-like expressions. Similarly, for interactions involving

shared grounds bundles, Grover like expressions need to be used.

We stress that we are mainly interested in mutual inductance extraction at high frequencies,

where the reactance part of the serial impedance is important. In this case, as discussed in

Section 2.2, proximity plays a crucial role in the choice of return paths. Thus the bundles will

have small spacial extensions, and the requirement that there are no shared return wires between

intervening signals in the dipole approximation is fulfilled for all feasible layouts for bundles

separated by distances between bundles in which the dipole approximation holds (i.e. typically

6 times the typical size of bundles).

As stated in the Introduction to this chapter, this work was carried out, published, and im-

plemented into Mentor’s Calibre tools at the early stages of this project. More recently, a collab-

oration with a group from University of California at Santa Barbara has re-opened the subject,

in two main aspects [60,61]:

• extending the dipole treatment to cope with short distances; this involves representing a

bundle by an optimally chosen set of dipoles;

• incorporating substrate effects into the dipole treatment, based on so-called equivalent

Green function methods [18,19].





Formules closes pour l’inductance

mutuelle entre inducteurs intentionnels

Résuḿe en français

Dans ce chapitre, l’approximation dipolaire développée au chapitre antérieur est appliquée au

problème du calcul de l’inductance mutuelle entre deux inducteurs intentionnels. En première

instance, nous décrivons les formules standard qui seront utilisées comme référence (section

3.1), ainsi que les modifications aux formules du chapitre précèdent pour le problème actuel

(section 3.2). La suite du chapitre inclut un traitement pour des hautes fréquences (section 3.3),

où les courants ne seront plus uniformes le long des sections transversales des segments de

l’inducteur. Des exemples typiques sont exposés et analysés (sections 3.4 et 3.5), montrant le

même degré de précision que dans le cas d’extraction de parasitiques, à savoir : cette approxi-

mation est valide pour des distances qui sont supérieures à un seuil comparable aux tailles des

inducteurs. Nous finissons par une brève discussion sur des défis pour les futures recherches

(section 3.6). Le travail décrit dans le présent chapitre a été présenté et publié dans les actes

du “International Symposium on Circuits and Systems” (ISCAS) de l’IEEE [30], et son contenu

est inclus dans une demande de brevet [31] en Mai 2006 en Kos, Grèce.
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Chapter 3

Mutual Inductance between

Intentional Inductors: Closed Form

Expressions

Intentional inductors are used as components in RF (radio frequency) analog designs, partic-

ularly in telecommunication applications [62]. Designers frequently use multiple intentional

inductors. Each one of these devices occupies an amount of real estate on the chip in the order

of 104µ2, at 130nm technology. Design and manufacturing considerations favor placing induc-

tors close to each other to minimize the occupied area, thereby improving the manufacturing

yield. To be able to do it safely, a quantitative measure of the electromagnetic noise that one

inductor generates on another one is essential. The noise figures can be evaluated in terms of

the device’s electrical parameters: resistance, inductance and capacitance matrices (R, L,C).

The purpose of this chapter is to provide a quick while reasonable estimate to the values of the

mutual inductance as a function of separation among the inductors. Mutual inductance for mod-

erate RF frequencies can be accurately represented with Grover like expressions integrated over

the transverse dimensions. We assume low doping profiles, domain where substrate effects on

inductance can be neglected [62]. Effects due to the onset of non uniform current distributions

are not included in the treatment, except to verify that the correction they provide to the long

distance behavior of the magnetic noise parameter is negligible.

The main results on this chapter are the derived analytical formulae, which are an exten-

sion of the dipole approximation presented in the previous chapter, and whose simplicity and

linear complexity allow for quick estimates of the magnetic noise parameter. We provide de-

tailed calculations for a number of configurations, the extensibility to other configurations being

straightforward. We compare our results against Grover expressions [56] and FastHenry [15].

The computation of the mutual inductance using Grover expressions grows quadratically

55
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with the number of segments per inductor. Using the dipole approximation we improve to linear

complexity. This property makes it suitable for design explorations, whereby mutual inductance

must be computed for a large number of configurations; the self inductance remains unchanged,

and thus needs to be computed only once. Essentially, this method is an extension, into the

domain of intentional inductors, of the one presented in the previous chapter for the problem of

parasitics extraction.

Prior work within the PEEC formalism [55,63–65] anticipated similar complexity reduction

when applying the multipole expansion. We compare the two methods, ours based on the loop

formalism and the other based on the PEEC formalism. In fact, we use FastHenry to obtain the

PEEC results. As mentioned at the end of the previous chapter, this tool includes a multipole

expansion in order to accelerate linear algebra operations. The results obtained using order

2 in these expansions are the same as the ones obtained using the dipole approximation; the

difference is that FastHenry is a description based on segments (and as such, a partial treatment),

whereas the dipole approximation is applied to current loops.

Neither the PEEC formalism nor the inverse method [47, 51] lead to simplified analytical

results. This we take as a clear advantage of the loop formalism. The resulting expressions

are given in terms of easily computable functions significantly simpler to compute than the

corresponding Grover expressions for filaments.

The work described in the present chapter was published at proceedings of the IEEE Inter-

national Symposium on Circuits and Systems (ISCAS) [30], and its contents were included for

a patent application [31] in 2006. We organize it as follows:

• Section 3.1 describes the classical way for carrying out these calculations, that will be

used as a reference to our methods;

• Section 3.2 revisits the dipole approximation presented in the previous chapter, concen-

trating on the application to intentional inductors;

• Section 3.3 discusses the high-frequency extensions of the method; it is also shown that

these modifications are small enough to be negligible for realistic cases;

• Section 3.4 presents some basic examples, as well as estimation of errors against the

classical reference;

• Section 3.5 analyzes the gains in terms of performance in the aforementioned comparison;

• Section 3.6 is a brief conclusion, as well as matters of concern for future development.
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3.1 Classical Approach

An inductor can be considered as a circuit consisting of a concatenation ofN straight segments,

connecting at least two ports, laid out in one or multiple metal planes. In general, the layouts are

non-Manhattan, since these provide a better figure of inductance-per-unit-area, and thus allow

for better yield.

The loop self inductance of an inductor can be decomposed into:

Lloop =

N∑
i=1

Li,i + 2
N∑

i=1

N∑
j=i+1

Mi, j (3.1)

whereMi, j is the partial mutual inductance between segmenti and j andLi,i corresponds to the

partial self inductance of segmenti and the sum extends over all1
2N(N + 1) terms.

The mutual inductanceM between two inductors can be similarly computed in terms of a

list of partial mutual inductance among the respective constituent segments:

Mab =

Na∑
i=1

Nb∑
j=1

M j
i (3.2)

with Na andNb the number of wire segments in each inductor. The valueM j
i corresponds to the

partial mutual inductance between segmenti in the first inductor and segmentj of the second

inductor.

Under uniform current distribution, the classical approach makes use of the filament based

Grover expressions [56] (equations (52)-(55)) for arbitrarily oriented filaments. For finite cross

sections, the four dimensional integral required to compute the average over transverse dimen-

sions is done numerically. For the sake of reference, we denominate this method “Classical

Grover” (CG)

3.2 Dipole Approximation for inductors

The dipole approximation applied to quasi-magnetostatic problems is a general method for com-

puting the magnetic field for an arbitrary current distribution as a function of distance, keeping

only the leading term in 1/r [46]. In the loop treatment, we deal exclusively with closed current

loops; the leading term of the generated magnetic field is that of a dipole [28]. This is different

from the PEEC approach to the dipole approximation, which contains monopole contributions.

The monopole contribution vanishes for quasistatic closed loop current distributions, in a finite

domain. In the loop inductance approach, we replace the field produced by each of the ele-

mentary current filaments within an inductor with one of a representative point-like dipole at
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the center. The computation then proceeds following first principles in Electromagnetic Theory.

The mutual inductance between two inductorsa andb is given by:

Mab =
Ψa→b

Ia
=

∑
S j∈b

∫
S j

B(a) · dSj =
1
Ia

∮
C

A(a) · d` (3.3)

with Ψa→b the magnetic flux resulting from the field generated by inductora over the area

sustained by inductorb. In addition,S j are the surfaces subtended by the turns of inductorb,

C is the union of all segments of inductorb, B(a) is the magnetic induction field generated by

inductora andA(a) is its vector potential that satisfiesB(a) = ∇ × A(a). We now introduce the

dipole approximation:

• computation of the vector potentialA(a) for a magnetic dipole, in terms of the magnetic

dipole momentp(a);

A(a) =
p(a) × r

r3
(3.4)

• computation of the dipole moment of inductora, divided by its current;

p̃(a) ≡
p(a)

I
=

µ

8πI

∫
r × J(r )d3r (3.5)

• computation of the magnetic fluxΨa→b of the field produced by the magnetic dipole of

inductora on the area sustained by inductorb;

• replacinga with b in the above steps to compute the resulting mutual inductance as the

averageM = (Mab+ Mba)/2 to ensure that the inductance matrix is symmetric.

For a single planar current distribution, representative of single metal layer intentional in-

ductors, the dipole moment (3.5) reduces to:

p̃(a) =
µ

8π
Sẑ (3.6)

whereS is the total area bounded by the wire loop, and ˆz is an unitary vector perpendicular to

the plane containing the loop. The calculation of the dipole moment of the whole inductorp(a),

i.e. the vector sum of the dipole moments of each filament loop, reduces to computing the sum

of the areas “trapped” inside each turn of the inductora. In what follows we define:t ≡ number

of turns;n ≡ number of sides per turn;N ≡ total number of segments (n × t); d ≡ separation

between vertices on successive turns;s = dcos
(

2π
n

)
≡ separation between sides on successive

turns.
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Figure 3.1: Polygonal inductors: (a) symmetric; (b) spiral.

We exemplify the calculation of area (magnetic dipole) for some common single layer

polygonal inductors.

1. Symmetric inductors, built as concentric rings of regular polygons joined at every half

turn, as shown in Fig. 3.1(a).

2. Spiral inductors, constructed such that the vertices of the inductor are situated along

a linear spiral (i.e. a curve defined byr(θ) = R0 − θd/2π, whereR0 is the distance

from the center to the farthermost vertex of the inductor, andd is the separation between

corresponding vertices on two successive turns of the inductor, see Fig. 3.1(b).

3. Arbitrary planar inductors , general single layer inductor.

For a symmetric inductor,S is the sum of the areas of all the concentric polygons (e.g., the

hexagons in Fig.3.1a), which is

S(sym) =
n
2

sin

(
2π
n

) t∑
polygoni

R2
i (3.7)

For a spiral inductor, we split its area into triangles as shown in Fig. 3.1(b). The resulting

total area is

S(spiral) =
1
2

sin

(
2π
n

) N∑
trianglei

Ri

(
Ri −

d
n

)
(3.8)

Expressions (3.7) and (3.8) have been obtained for inductors whose segments can be treated

as filaments. The extension to finite cross section, for uniform current distribution within each
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segment, is done by averaging over its transverse dimensions. Note that, given the simple com-

bination of algebraic expressions and trigonometrical functions in (3.7) and (3.8), direct inte-

gration is easily obtainable leading to:

S̃ =
1

wh

R∫
R−w

h∫
0

S(R′,h′)dR′ dh′ (3.9)

The resulting expressions for finite cross section are

S̃(sym) =
N
2

sin

(
2π
n

) [
R2

0 +

(
R0 +

s
6

)
s−

(
R0 −

w
3
+

s
2

)
(st+ w) +

1
3

(st)2
]

(3.10)

S̃(spiral) =
N
2

sin

(
2π
n

) [
R2

0 −
s2

3n2
−

(
R0 −

w
3

)
w−

(
R0 −

w
2

)
st−

1
3

(st)2
]

(3.11)

For an arbitrary planar inductor, the dipole moment can be computed as a sum of the areas of

the triangles bounded by each inductor segment and the segments joining its extremes with the

origin r = 0, where we locate the dipole moment. Each area is averaged over its finite transverse

dimensions. The cost increase of performing this decomposition is small compared to the total

cost (see analysis in Section 3.5).

Our next step is to compute the magnetic flux, through the surfaces bounded by the wiring

of inductorb, for the field generated by the collection of dipoles representing inductora. This

part of the computation is common to all three types of inductors analyzed before. Combining

expressions (3.3) and (3.4) we obtain, for the dipole located atr = 0:

Mab = p̃(a)
Nb∑
j=1

∫
segment j

−y jdxj + x jdyj

(x2
j + y2

j + z2
j )

3/2
(3.12)

This last expression is trivially integrable giving:

Mab = p̃(a)
Nb−1∑
j=1

c j

b2
j − a2

j

 L j + a j(
b2

j + a jL j + L2
j

)1/2
−

a j

b j

 (3.13)
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where we introduced for each segmentj starting at (x0, y0) and ending at (x1, y1), the coeffi-

cients:

L j ≡

√
(x1 − x0)2 + (y1 − y0)2;

a j ≡ 2(x0(x1 − x0) + y0(y1 − y0)) /L j ;

b j ≡

√
x2

0 + y2
0 + z2

b;

c j ≡ (x0y1 − x1y0) /L j

Equations (3.10) to (3.13), properly symmetrized by replacinga with b and averaging, con-

stitute our basic results for the evaluation of the mutual inductance between two intentional

inductors.

3.3 High frequency extensions

The derivation of the previous results demands that the currents be uniform across the wires’

cross-section. This approximation ceases to be valid at higher frequencies (above 5-7 GHz),

wherein skin and proximity effects sensibly modify the current distribution inside the wires.

At higher frequencies we compute the distribution of currents across the cross section of

each wire segment. The natural way to do so is to discretize the wire segments intomfilaments,

each one carrying uniform current. In Fig.3.2 we show schematically a discretized inductor,

represented in terms of filaments. Solving for the filament currents, from the Kirchoff equations

for one inductor we obtain the following coefficients:

α j,k ≡
I j,k

I
, 1 ≤ j ≤ m,1 ≤ k ≤ N (3.14)

where

I =
m∑

i=1

I i,k (3.15)

is the total inductor current common to all segments. Notice that the values in (3.14) are fre-

quency dependent complex numbers. The dependence ofαi,k on the second subindexk simply

expresses the fact that we allow for current redistribution in going from segment to segment.

The above discretization procedure is carried out only once per frequency and per inductor.

It provides the high frequency self impedance of the inductor, which is defined as∆V/I , with

∆V the difference of potential between the input and output nodes andI given by (3.15).

The implicit approximation is that the current distribution in one inductor is unaffected by

the presence of the other inductor. This assumption still holds for small distances, even for

separations between inductors much smaller than the inductors’ sizes, as we have verified with
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Figure 3.2: Circuit equivalent of a filament discretization of an inductor; for the sake of clarity,
the inductive interaction between filaments of different segments are not drawn, but they are
included in the calculation.

FastHenry which does not incorporate this assumption. Two different results can be derived from

this approximation. The first one applies to the classical approach. Within the classical approach

we obtain the following expression for the mutual inductance in the filament decomposition,

under the above mentioned approximation:

Mab = <e

 Na∑
ka=1

Nb∑
kb=1

ma∑
ia=1

mb∑
ib=1

αia,kaαib,kb Miaka,ibkb

 (3.16)

The imaginary part of the above expression is in fact the mutual resistance between the

inductors divided by 2π f , with f the frequency. We have verified with simulations that the

mutual resistance is in general negligible.

In other words, in the filament decomposition, (3.2) is replaced by (3.16). We have verified

with FastHenry that the results obtained in this fashion are accurate and computationally less

expensive than FastHenry for non negligible separations.

Similarly, in the dipole method, the extension of the dipole moment in (3.5) consists of a

weighted sum over filaments:

p̃(a) =

Na∑
k=1

ma∑
i=1

αi,kp̃i,k (3.17)

with Iαi,kp̃i,k the contribution of filamenti in thek-th segment to the total dipole moment and

p̃i,k proportional to the area spanned by the filament.

The total magnetic flux through the victim inductor is the weighted sum over the fluxes

through the surfaces spanned by each filament, giving

M(HF)
ab = <e

 Nb∑
k=1

mb∑
j=1

α j,kMa, jk

 (3.18)

with Ma, jk calculated as in (3.13) for segments.
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Figure 3.3: Frequency variation of resistance (left), self inductance, and mutual inductance
(right) for a configuration of: square inductora (R0 = 100µm, s= 1µm,w = 1µm, t = 0.65µm);
spiral inductorb (R0 = 100µm, s = 1µm,w = 10µm, t = 0.65µm); with a border-to-border
separation of 50µm between them. We plot the ratio of the frequency dependent values to the
low frequency ones.

Concerning the necessity of implementing this discretized version of the dipole approxima-

tion, we study a typical configuration in Fig. 3.3. These graphs show that frequency-dependent

variations for mutual inductance are negligible, at least up to a frequency of 30GHz.

3.4 Validation

We compare our simple analytical results to those obtained using standard references. The key

parameter for magnetic noise analysis is the ratioζ defined as:

ζ ≡
Mab
√

LaLb
(3.19)

with La, Lb the self inductances of inductorsa andb, respectively. The geometric mean between

La and Lb is a normalization factor for noise estimates, which needs to be computed once.

This calculation is unrelated to the Dipole Approximation: we use either Grover’s formulas or

FastHenry to calculate it, with no significant difference between the two methods.

While using FastHenry, we apply it in its default mode, i.e. with multipole expansions up

to order 2. In Fig. 3.4 we plotζ as a function of the horizontal border-to-border separationdx

for different values of the center to center separation∆y. The calculations with FastHenry are

made at 5GHz, its results are insensitive to the number of filaments, uniform current distribution

being valid at this frequency for these geometries. Except for very large separations, the results

from FastHenry and CG sit on top of each other as expected. The minor differences at very large
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Figure 3.4: Mutual inductance coupling for Dipole approximation (solid lines), Classical Grover
(dashed lines), FastHenry (symbols). Configuration consisting of a 6-turn hexagonal symmetric
inductor (R0 = 50µm, s = 1µm) and a 5-turn octagonal symmetric inductor (R0 = 80µm,
s = 0.5µm); ∆y and dx are defined in the inset, and errors for DA with respect to CG are
presented at right

separations are interpreted as possible numerical instabilities for very small values ofζ within

FastHenry, totally harmless for relevant calculations. The dipole approximation (DA) and CG

agree with each other and, for completeness, also agree with ASITIC [66] at large distances.

Concerning the short distance behavior of DA, region where the approximation breaks down, it

turns out to provide order of magnitude approximation, useful for first order estimates of noise

figures at short distance.

The value ofζ in the DA is scale invariant, with small logarithmic deviations arising from the

self inductances in the Grover approximation. This result can be immediately concluded from a

cursory examination of the above formulae in Sec.3.2. This permits us to express our estimates

in terms of the ratio of separation to mean radius, rather than minimum separation. In this and

other examples we verify that when this ratio is larger than 1/10 reasonable agreement between

is obtained. It also allows us to predict noise estimates after scaling. In Fig.3.4 we display the

relative error using the DA method for the example shown in Figure 2 as a function of horizontal

separation. Different configurations have given similar results to the ones presented above.

Our approach is naturally extensible to a filament decomposition to study modifications

due to non uniformity in the current distribution. Nevertheless, we verified with FastHenry

computing self and mutual inductance for the examples presented above, among others, using

extensive filament decomposition, and noticed that in going up to 30GHz the variations inζ
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amount to less than 3%. Therefore, the predictive power of the method presented here is not

substantially affected by skin effect considerations, up to 30GHz.

3.5 Performance analysis

A basic property emerging from the dipole approximation introduced for computing the mutual

inductance among two intentional devices is its linear growth with the number of segments. It

results in general as a consequence of the multipole expansion and is valid to any order in this

expansion. Algorithms that grow asymptotically as fast asN logN, and even linear algorithms

are properly discussed by Beatson and Greengard [67]. The classical Grover expression in (3.2)

is quadratic in the number of segments.

Given two inductors withNa andNb number of segments, the linear behavior for the dipole

approximation emerges in a natural way from: one evaluation of (3.5) using (3.10) or (3.11), or

a worst case ofNa evaluations of the areas of triangles if no specific formula for the total area

can be obtained; plusNb evaluations of (3.13). Given two inductors withNt = Na + Nb total

segments, the dipole approximation in the loop formalism, requires a maximum 2Nt operations

(the factor of 2 is due to symmetrization), as opposed to1
2N2

t operations in the classical approach

(see eq.(3.2)).

Furthermore, all the terms appearing in the computation ofMab in the dipole approximation

involve simple functions, i.e. there is a single transcendental function to evaluate, the sin(2π/n)

in the expressions for the area which is evaluated once per inductor, irrespectively of the sepa-

ration. There are no further integrals to be computed for finite cross sections.

To evaluate the results of a PEEC analysis to the same order in powers of 1/r we must

include contributions toA(r ) that behave as 1/r at large distances [55, 63–65], in addition to

the dipole behavior 1/r2 in the vector potentialA(r ). Both approaches being fundamentally

equivalent, once we include all contributions, the 1/r contributions of partial methods cancel

out, leaving the dipole term as the dominant one. This equivalence has been verified using

FastHenry with its multipole expansion for filament interactions, retaining up to the dipole level.

In Table 3.5 and Fig. 3.5 compare the total average runtimes for the three methods, for two

symmetrical octagonal inductors as a function of the number of turns of one of them, for a fixed

separation. These were performed according to the following criteria:

For the CG and the loop dipole method, we break the computation into a setup step (reading

input files, memory allocation, etc.), common to both, and a computation part. For FastHenry,

we only display the total runtimes, with a single filament per segment, and the default dipole

approximation for the long distance computation. For each datapoint we run 1000 samples, all

of them on a Sun workstation with an Opteron processor clocked at 2.39 GHz and 2 GB of

physical memory. To avoid the influence of outliers, the highest and lowest 1% of runtimes for
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Figure 3.5: Comparative runtimes for the methods described in the text, as a function of the
number of turnsNturns, for two identical octagonal symmetric inductors.

each configuration are discarded.

The Dipole Approximation in the loop treatment is two and one half orders of magnitude

faster than the Classical Grover approach. The common set-up time in DA and CG is roughly

one order of magnitude larger than the time for the DA calculation. The total runtime using the

DA method is dominated by the set up time. The opposite holds when using CG. The overall

effect, is to render the DA total runtime to be two orders of magnitude faster than the runtime

using CG. These estimates were presented for a single separation distances. For noise driven

synthesis applications, we are interested in the computational cost for a number of separations.

Thus in general we anticipate further gains while using the DA method to computeζ(s) since

the dipole moment and the self inductance of each device are computed only once.

3.6 Conclusions

We introduced a method for calculating mutual inductance between intentional devices based on

first principles on closed loop configurations, resulting from a multipole expansion starting with

a dipole termA(r) ≈ 1/r2. This is conceptually different from the PEEC method, that contains

A ≈ 1/r behavior. Reasonable levels of accuracy are obtained in the computation of the noise

parameterζ for a wide spectrum of geometries, separations and frequencies up to 30GHz. The

resulting analytical expression with linear complexity inN and moderate accuracy, can be useful

for a number of applications.

The computed magnitudes are essentially frequency-independent, as shown in Sec.3.3 and

thus can be used to estimate the inductive part of interactions between intentional devices. Self
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Nturns CG|DA(setup) CG(calc) DA(calc) FH

102× 103× 105×

1 4.68± 0.52 3.8± 0.2 13.5± 2.6 5.1± 0.1
2 4.82± 0.54 9.1± 0.5 18.9± 1.8 12.4± 0.3
3 5.09± 0.43 18.2± 0.5 25.2± 2.9 20.2± 0.2
4 5.29± 0.50 31.1± 0.6 31.6± 4.1 26.9± 0.3
5 5.54± 0.55 46.3± 0.7 38.9± 4.4 34.9± 2.2
6 5.68± 0.47 59.6± 0.8 42.8± 4.4 43.3± 0.5
7 5.93± 0.59 69.6± 0.8 51.1± 4.9 52.9± 0.9
8 5.98± 0.49 78.1± 0.9 56.8± 6.6 59.8± 0.5

Table 3.1: Comparative runtimes for Loop Dipole approximation (DA), Classical Grover ex-
pressions (CG), and FastHenry (FH) as a function of the number of turnsNturns for two identical
octagonal symmetric inductors; times expressed in microseconds per calculation

parameters, which determine the presence of resonant peaks, must be computed with a method

that couples resistance, inductance and capacitance of all the elements in the inductor; an exam-

ple of this type of modeling is carried out in our group, as reported in [23].

The resonances in the self impedance of an inductor are the result of cancellations between

the capacitive and inductive effects. Between different inductors, electric effects play a minor

role when compared to magnetic ones, due to shielding. In other words, mutual capacitive cou-

pling between inductors can be roughly estimated, or neglected altogether, since this coupling

is mainly of inductive nature.

Exploration of a design consisting of several intentional inductors requires testing and com-

paring a large number of different configurations. Among these, self inductance remains essen-

tially unchanged, meaning that self parameters need to be computed only once. On the other

hand, noise (mutual) parameters, which are the output of our calculation, must be recomputed

for each configuration. This task can be done significantly less expensive by using the dipole

approximation, as shown in this chapter.

Concerning present and future work, we state that the same comments found at the end of

the previous chapter, concerning the dipole approximation, apply to this one.
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High-frequency modeling of currents

and charges using conduction modes
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ModélisationRLCavec des modes de

conduction

Résuḿe en français

Ce chapitre est consacré aux modélisations des courants et charges sur la base de modes de

conductions. Nous présentons d’abord le cadre général selon lequel l’ensemble original des

équations de Maxwell est converti à un système linéaire pour les sources (sections 4.1), tant

pour une description quasistatique et découplée RL+C (section 4.2.1), que pour une descrip-

tion d’onde complète RLC (section 4.2.2). Ensuite, nous introduisons les modes de conduction

comme une base qui permet une caractérisation efficace des courants pour le cas RL dejá ex-

istant dans la littérature (sections4.3.1) et des courant et charges pour l’extension au domaine

RLC, ce qui constitue une innovation originale (sections 4.3.2). Nous continuons en discu-

tant le choix des modes et son rapport avec une classe particulière des problèmes, à savoir

la propagation des ondes quasi-TEM (transverse électromagnétique) en présence des conduc-

teurs non parfaits (section 4.4). Un schéma des algorithmes liés à l’implémentation de cette

méthode est inclus et brièvement discuté en section 4.6. En section 4.7, se trouvent des ex-

emples d’application, montrant des résultats très précis par rapport aux références standard,

avec une réduction significative pour la taille des systèmes linéaires. Les conclusions en section

4.8 sont succinctes, car la discussion approfondie sur ce sujet fait l’objet d’un traitement plus

systématique au chapitre 6. Le présent chapitre est une prolongation du papier présenté lors de

la dernière réunion de l’“ International Conference on Computer-Aided Design” (ICCAD) en

Novembre 2006 [33].
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Chapter 4

RLCconduction modes formalism and

examples

Obtaining electromagnetic parameters for IC interconnects implies solving, in an approximate

manner, Maxwell’s equations for the circuit components in a layout. For configurations with a

very large number of conductors, this task is difficult. In order to cope with this complexity, long

distance interactions among wires must be neglected (at the first level of approximation), so as

to produce smaller coupled problems, for which a solution is possible. The task of performing

this separation, computing the EM parameters for the smaller problems, and later including the

long-distance interactions neglected above, is the function of an extractor.

In the market of commercial extractors, there are four major competitors: Assura (Cadence)

[25], Raphael (Synopsys) [68], Columbus (Sequence) [43], and Calibre (Mentor Graphics) [22].

All of them perform a full-chip sweep, isolating a large number of manageable configurations

that must be solved individually.

Fast solvers are a necessity for each one of these subproblems. We distinguish between

fullwave and decoupled solvers. The first ones treat the complete set of four Maxwell equations,

producingRLC parameters. The second type of solvers split the problem in two, solving for

charges and producingC parameters on one side; for currents and producingR andL on the

other. Each of these two subproblems are comparatively simpler than the fullwave ones. For

validity of this decomposition, dimensions of the components must be small compared to the

EM wavelength in the medium.

In Table 4.1, we include a (non-exhaustive) list of tools for solving these problems. We in-

clude academic as well as commercial programs1. For most of these solvers, sources and/or

fields are treated as piecewise constant functions. For example, charge distribution can be

1Concerning these last ones, we point out that we ignore the details of each implementation; we know broadly
what type of solution is proposed.
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represented by a set of surface panels (FastCap, FastMaxwell), currents by a set of filaments

(FastHenry, FastMaxwell), theE,H field on conductors’ surfaces by piecewise-constant panels

(FastImp, LargeCom).

The number of such piecewise-constant elements depends on two main factors: geometry

and fields’ variations. The impact of geometry, for any given configuration, is independent of

the method to be used. Geometry is an unavoidable constraint, in the following sense: if many

relevant small wires are present, many small elements are required.

Instead, the second factor depends on frequency. It is well known that, for high enough

frequencies, currents cease to be uniform along the conductors’ cross-sections. The shape of

this non-uniformity of currents on the conductor is not arbitrary; they have exponential decays

of orderδ, the skin depth for a conductor. This establishes a length scale, that decreases as the

inverse square root of frequency, determining the minimum size in which currents can safely be

considered uniform along the transverse dimensions.

Table 4.1: List of well-known electromagnetic solvers and their characteristics

Name Origin Type Volume Surface Description
elements elements

FastHenry MIT [69] RL X Filament decomposition for skin effects
FastCap MIT [69] C X Panel discretization of Laplace’s equation
FastImp MIT [69] Fullwave orRL X Fullwave surface using Green’s identities
FastMaxwell MIT [69] Fullwave X X Integrated panel+filament mesh model
LargeCom U.of Illinois [70] Fullwave orRL X Surface formulation in Fourierk−space
HFSS Ansoft [11] Fullwave X Volume differential finite element method (FEM)
Sonnet Suites Sonnet [71] Fullwave X FFT-based planar wave decomposition
IE3D Zeland [72] Fullwave X Surface-mesh fullwave solver

Knowledge of how currents decay inside the conductor is used by tools like FastHenry [15]

and Calibre [22,23], in order to discretize the conductors’ cross-section in an efficient way, with

fine filaments near the borders and wider ones toward the center. But this knowledge also sug-

gests an idea that avoids altogether the need of fine discretization: describing currents in terms

of distribution functions with the appropriate behavior. These functions, named “conduction

modes”, are non other than the eigenfunctions to the differential equation for the system, which

is the Helmholtz equation. If the set of expansion functions is well chosen, the conduction

modes produces an important reduction in the system size.

Choosing these type of functions is reminiscent of the separation-of-variables techniques

used in electrostatics for solving Laplace’s equation, given boundary conditions on a closed

surface [46]. The same problem can be solved by discretizing the boundary and applying any

finite element method for solving this elliptic PDE. However, this would neglect the gains to be

made in using the more adequate eigenfunctions to the Laplace equation.

This analogy with electrostatics ends here, since we are concerned with a different type of
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problem and therefore a different kind of approach. Instead of solving Laplace’s equation within

a closed surface, we construct and solve a linear system based on a chosen set of functions that

describe the current distribution. The success of this technique depends on the quality of this

choice.

Conduction modes were first introduced in 60’s [73], and resurfaced in 2001 [32], forRL

problems involving only longitudinal currents, and short wires compared to the wavelengths.

As such, this formulation was presented as a reduced-size replacement for a piecewise-constant

approaches, like FastHenry. Size reductions of factor 20 were reported for several examples

[16]. Another application of conduction modes was put forward by the same group in 2003 [74],

in which these functions are used as boundary conditions in order to reduce the size of FastImp

(see Table 4.1), a surface mesh fullwave solver.

There are two main disadvantages of the conduction modes method. The first one is that

the conduction modes are defined only for simple geometries, namely rectangular or cylindrical

cross-sections [73]. This restriction does not play an important role in the IC domain, where

most structures fall into this category [75].

The second disadvantage is that, although there is an important reduction in size, this is

not immediately reflected in the overall runtime. The reason is that the computation of the

matrix elements, for the conduction modes method, is computationally more expensive than

their piecewise constant counterparts. We will show that this limitation is not fundamental; in

fact, we have developed a comprehensive study on these matrix elements, demonstrating that

significant runtime savings are attainable.

Our contribution to the conduction modes method has two main components:

1. We have generalized the original formulation, which was valid only forRL extraction

under the Magneto-Quasi-Static (MQS) assumption, into a fullwaveRLC methodology;

we have shown its validity for transmission-line type of structures.

2. We have systematically tackled the problem of calculating nontrivialn-dimensional in-

tegrals inherent to the conduction modes method, thus rendering it not only efficient in

terms of size, as well as in terms of performance.

The present chapter deals with point 1 above, restricted to a special type of subproblem

which will be described in the text. Next chapter is devoted exclusively to point 2 above, re-

stricted to theRL formulation. Chapter 6 deals with the generalizations of these two aspects,

namely the formulation to a more ample set of problems, as well as the speed-up for the calcu-

lation of matrix elements for theRLCmethod.

In detail, in this chapter we cover the following aspects:

• general framework, by which we pass from the original set of Maxwell’s equations to a
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linear system (Sections 4.1), first for a separateRL+ C description (Section 4.2.1), and

then for a mixedRLCone (Section 4.2.2 );

• introduction of conduction modes as a basis for expanding and solving these linear sys-

tems, for theRL andRLCcases (Sections 4.3.1 and 4.3.2, respectively);

• choice of conduction modes and relationship to a particular class of problems, namely the

quasi-TEM wave propagation in the presence of non-perfect conductors (Section 4.4);

• different solution schemes for the conduction modes method (Section 4.6) and outline of

the implementation of algorithms (Section 4.6);

• examples of application, showing very precise results when compared to some of the tools

described above, with a considerable reduction in size (Section 4.7);

We mention that the present chapter is an extension, as well as an upgrade, of the paper

presented at the last meeting of ICCAD in November 2006 [33]; the following chapter is the

analogous for a paper accepted to ISVLSI 2007 [34]; and chapter 6 is a description of ongoing

work, as well as proposals for the future.

4.1 From Maxwell’s equations to a MPIE

Electromagnetic fields, currents and charges are governed by Maxwell’s equations:

∇ · εE = ρ (4.1a)

∇ × E = −
∂B
∂t

(4.1b)

∇ · B = 0 (4.1c)

∇ ×
B
µ
= J +

∂εE
∂t

(4.1d)

whereE is the electric field,B is the magnetic induction vector field,J andρ are the current and

charge distribution functions respectively,ε is the dielectric permittivity of the medium andµ

its magnetic permeability, withεµ = c−2, andc the velocity of light in the medium.

It is standard practice to define the scalar and vector potentials, by observing that: from

(4.1c),B is divergence-free, and can be derived as the curl of some vector potentialA; then this

expression forB is inserted into (4.1b), obtaining a curl-free magnitude,E + ∂A/∂t, which can

be derived as the gradient of some scalar potentialφ,
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B = ∇ × A

E +
∂A
∂t

= −∇φ (4.2)

Replacing these two expressions in (4.1a) and (4.1d), the equations for the potentials be-

come,

∇2A −
∂2A
∂t2
− ∇

(
∇ · A +

1
c2

∂φ

∂t

)
= −µJ (4.3a)

∇2φ +
∂∇ · A
∂t

= −
ρ

ε
(4.3b)

Vector potentialA has been defined only by its curl; this contemplates a freedom in the

choice of its divergence. This property of EM potentials is called the gauge invariance; in this

work we adopt the Lorentz gauge, whereby∇·A = − 1
c2
∂φ
∂t , so as to cancel the second term in

(4.3a),

∇2A −
1
c2

∂2A
∂t2

= −µJ (4.4a)

∇2φ −
1
c2

∂2φ

∂t2
= −

ρ

ε
(4.4b)

These second-order differential equations are in fact wave equations, having the retarded-

potential solutions,

A(r , t) =
µ

4π

∫
V

J(r ′, tret)
|r − r ′|

d3r ′ (4.5a)

φ(r , t) =
1

4πε

∫
V

ρ(r ′, tret)
|r − r ′|

d3r ′ (4.5b)

wheretret = t − |r − r ′|/c is the retarded time, such that an EM perturbation at positionr ′ and

time tret reaches positionr at time t; andV is the entire space containing the sourcesJ andρ

(in this last statement, we consider that sources are bounded, so that we have open boundary

conditions:A, φ ∼ 1/r → 0 asr → ∞).

We work in the frequency domain, whereby all sources and fields have a time harmonic

behaviorX = X0e− jωt, with ω the common angular frequency2. Within this framework, time

2We neglect the sub-index ”0” , in favor of a clearer notation; this is valid because we assume the same behavior
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derivatives in (4.1) are replaced by− jω, and the effect of evaluating attret translates into multi-

plication by a phase factor exp(− jk0|r − r ′|) with k0 =
√
εµ0ω = 2π/λ the wave number andλ

the wavelength.

Another important relationship among fields and sources is Ohm’s law which states that, in

the interior of conductors,J is proportional toE. The constant of proportionalityσ is called the

conductivity of the medium,

J = σE (4.6)

With this last expression, the Mixed Potential Integral Equation (MPIE) is reached:

J(r )
σ
+

jωµ0

4π

∫
V

J(r ′)
e− jk0|r−r ′ |

|r − r ′|
dr ′ = −∇φ(r ) (4.7a)

1
4πε

∫
V

ρ(r ′)
e− jk0|r−r ′ |

|r − r ′|
dr ′ = φ(r ) (4.7b)

The common kernel exp(− jk0|r − r ′|)/|r − r ′| is the Green function for this problem in the

Lorentz gauge.

4.2 From the MPIE to a linear system

In addition to the MPIE (4.7), the sourcesJ andρ are related by the continuity equation:

∇ · J +
∂ρ

∂t
= 0 (4.8)

Charges inside the conductors’ volume, in the absence of time-varying external fields, have a

time dependence exp(−t/τ), whereτ = ε/(4πσ) is the relaxation time [76]. For good conductors,

this is of order 10−18s; consequently, it is safe to assume that, for frequencies in the range 10-

1000 GHz, with typical times periods of 10−11 − 10−13s, charge inside the conductors’ volume

is null. However, the same cannot be said for surface charges on the conductors, where there is

a discontinuity in the constituent relationships of the materials [77]. Therefore, we impose the

absence of volume charge distribution,

∇ · J = 0 inside the conductors (4.9)

This condition implies a distinction must be made between surfaces of conductors that are

properly frontiers and those that are not (see Fig.4.1):

for all magnitudes.
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Figure 4.1: Conductors’ surfaceS(V) with its normal vectorŝn, decomposed into two contact
surfacesStop andSbot, and one non-contact surfaceSside composed of four faces (right); these
surfaces are determined by the role their electrical placement in the circuit (left).

• Contact surfaces, which represent the terminations of the conductors, and are surrounded

by conducting material, so that they are effectively in the interior of the conductor; they

do not support charge distribution, and they allow for normal current distribution on both

sides; in a circuit representation, these surfaces correspond to the ports, where external

conditions are imposed, either in the form of voltage or current sources, or as continuity

from other conductors;

φ(r ) = φSi on conductors′ contact surfaces (4.10)

• Non-contact surfaces, on the other hand, are those that face non-conducting material,

or materials with very low conductivity; these surfaces contain non-zero charge distribu-

tions; the value of this surface charge is not arbitrary: due to the conditionρ = 0 inside

the conductor, it is related to the normal component of the current; thus the charge distri-

butions in (4.7b) are in fact surface distributions given by,

J · n̂ = jωρ on conductors′ non− contact surfaces (4.11)

In order to approximate a solution to (4.7a) and (4.7b), we adopt the Galerkin method of

moments. This is a standard procedure whereby an integral equation is transformed into a linear

system [78].

The first step consists in expanding the vector current densityJ and surface charge density

ρ, in terms of two sets of functionswi(r ), i = 1...nv defined on the conductors volumes, and
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v j(r ), j = 1...ns defined on the conductors’ surfaces,

J(r ) ≈
nv∑
j=1

I jwj (r ) r ∈ V (4.12a)

ρ(r ) ≈
ns∑
j=1

q jv j(r ) r ∈ Snon−contact (4.12b)

To determine the coefficientsI i andq j for these expansions, (4.12) is replaced into (4.7a)

and (4.7b). Orthogonality between the residual of this replacement and the basis functions

is imposed. These constraints on the inner products withwi(r ), 1 ≤ i ≤ nv for (4.7a), and

v j(r ), 1 ≤ j ≤ ns for (4.7b), are represented by aN2 linear system, withN ≡ nv + ns: R+ jωL 0

0 P

  I

q

 =  − < w,∇φ >

< v, φ >

 }

}

nv

ns
(4.13)

with the matrix elements given by:

Ri j =
1
σ

∫
V

w∗i (r ) · w j(r ) d3r (4.14a)

Li j =
µ0

4π

∫
V

∫
V

wi
∗(r ′)wj (r )

e− jk0|r−r ′ |

|r − r ′|
d3r d3r ′ (4.14b)

Pi j =
1

4πε

∫
S

∫
S

v∗i (r
′)v j(r )

e− jk0|r−r ′ |

|r − r ′|
d2r d2r ′ (4.14c)

and the subindicesi, j ranging from 1 tonv, in the first two lines, and fromnv+1 to N in the last

one. The volumeV is the union of all the conductors’ volumes, whereasS is the set of all the

conductors’ non-contact surfaces. The inner products appearing on the right hand side (rhs) of

(4.13) are given by:

< wi ,∇φ > =

∫
V

∇φ · w∗i d3r i = 1...nv (4.15a)

< vi , φ > =

∫
S

φv∗i d2r i = nv + 1..N (4.15b)

The effectiveness of the method will be assessed by the level of precision obtained in using

a relatively small number of functions for each conductor, as well as the difficulty associated
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with computing (4.14).

4.2.1 Quasi-static approximation

The linear system in (4.13) is coupled through its right-hand-side (rhs). In computational elec-

tromagnetics, there is a standard framework known as the quasistatic (QS) limit [79], whose

main characteristic is the decoupling of charges and currents in the description of the system.

In terms of the unknownsqi , I i for the expansion (4.12), this means splitting the two blocks in

(4.13), and solving two different subproblems: the electroquasistatic (EQS) and magnetoqua-

sistatic (MQS). In Table 4.2, we list the main ingredients of each of these type of problems, as

well as their relationship to the solution of (4.13).

Table 4.2: Electroquasistatic (EQS) and Magneto-quasi-static (MQS) approximations and rela-
tionship to linear system in (4.13)

EQS MQS

Principal quantities E, ρ H, J
Approximation ∇ × E ' 0 ∇ × H ' J
Typical time scale τe ≡ ε/σ τm ≡ µσd2

Example tool FastCap FastHenry
Unknowns qi in (4.12b) I i in (4.12a)
System matrix Second block in (4.13) First block in (4.13)
Boundary conditions φ = const ∆φ = Vtop − Vbot

Output CapacitanceC ResistanceR, inductanceL

Once these two incomplete problems have been solved, meaningful quantities (e.g., volt-

ages, currents, noise, delay, etc.) are obtained through a circuit representation involvingR, L

andC elements. Thus in the QS approach, the coupling betweenRL effects on one side, andC

on the other, is carried out at a later phase, by a tool that is independent of the solvers3. This

means that theRL parameters on one side, and theC parameters on the other, are computed

independently of each other. Full physical meaning of these parameters is recovered after the

generation of the complete circuit, combining both magnetic and electric effects and accounting

for displacement currents.

Under which conditions is this decomposition valid? The answer to this question is problem

dependent; there is no general rule that can be applied to every problem.

Physically, we must analyze the different time scales involved in the problem. For EQS

fields, these are given by the charge relaxation timeτe ≡ ε/σ; for MQS, the characteristic times

3Relating to the general flow in Fig. 1.1 described in the Introduction, this task is done either by a circuit simulator
or a model order reduction tool.
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result from solutions to diffusion equation for currents in a conductor,τm ≡ µσd2, whered is a

typical dimension of the system [79]. The two problems can be treated independently as long as

both of these time scales are small compared to the time scales for full electromagnetic fields,

τem ≡ 1/ω. In other words, as long as it is valid to consider the sources of the “other” problem

as stationary, we may neglect their time derivatives (see second line in Table 4.2). Thus, the

quasi-static assumption is a high-τem / low frequency regime.

Conditions of validity for the QS decomposition can also be analyzed in terms of length

scales, related to the essential difference between the two boundary conditions in the MQS and

EQS problems (see Table 4.2). As long as the dimensions of these two problems are electrically

small, these differences are not relevant in the results of the simulation. Quantitatively, electri-

cally small refers to the typical spacial variations for electromagnetic fields in the surrounding

medium4, of orderλ. Here, the quasistatic assumption is a short-conductor, or long-wavelength,

limit.

Within this nearly infinite wavelength approximationλ � ` (with ` the conductor’s length)

it is admissible to replace the phase factors by 1 inside the integrals in (4.14), an assumption

that is very practical in terms of computational cost (see following Chapter).

4.2.2 RLCmixed representation

If the quasistatic approximation is not used, then it is possible to derive a system of equations

that retains the coupling between (4.7a) for currents and (4.7b) for charges. Our goal in this

section is to reduce the linear system on (4.13) expressing the unknowns solely in terms of

currents. The corresponding charge unknowns will be related to the previous ones through the

continuity condition. To this effect, we start from Green’s theorem:	
S(Vi )

F · n̂ d2r = −
∫
Vi

∇ · F d3r (4.16)

with S(Vi) a closed surface that encloses volumeVi (a single conductor) and we use it onF =

φw∗i . We then use the identity∇ · (φu) = u · ∇φ + (∇ · u)φ to obtain,	
S(Vi )

(w∗i · n̂)φ d2r +
∫
Vi

w∗i · ∇φ d3r +
∫
Vi

(∇ · w∗i )φ d3r = 0 (4.17)

We use divergence-free functionswi , as demanded by the continuity equation inside the vol-

ume, thus the last term in (4.17) vanishes. The first integral in the last expression is decomposed

4Inside the conductors, the length scales are given by the decay of fields/currents in the interior, and the distribu-
tion of charges on the surface; the first one is given by the skin depthδ (see (4.21)) and the second one depends on
the shape of the surface. The capacity to capture these scales depends on the precision level for the solution of each
of the decomposed problems (RL andC), and not on the QS decomposition itself.
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into integrals over the two contact surfacesStop,Sbot plus the integral over the side wallsSside

(non-contact surfaces, see Fig.4.1). On the side walls, we adopt the following choice forvi to

describe the surface charge distribution functions:

vi = wi · n̂ On side faceSside (4.18)

resulting innv = ns and

∫
Vi

w∗i · ∇φ d3r +
∑
sides

∫
Sside,i

v∗i φ d2r =

∫
Stop,i

(w∗i · n̂)φ d2r +
∫

Sbot,i

(w∗i · n̂)φ d2r (4.19)

The left hand side on this last expression is the sum of the two right hand sides of (4.13),

which we replace by the respective left hand sides.

Consistency between the continuity conditions (4.9)-(4.11) and this choice of functionsvi

in (4.18) implies that the valuesqi in the solution must be such thatjωqi = I i .

As to the rhs of (4.19), the factorswi · n̂ act as weights for the average potential on each

contact surface. On each of these, we identify the average potential with the excitation voltage

on that end of the conductor. Between the two terms in the rhs of (4.19), there is a difference of

sign given by the orientation of the normal vectors (see Fig.4.1); there also is a factor identical to

thez−dependencefi(z) of thezcomponent for the functionwi(r ). Thus we obtain the following

equation for the system:

[
R+ jωL +

P
jω

]  I

 =  ∆̃V


with (∆̃V)i = fi(`i)Vf ,i − fi(0)V0,i (4.20)

with the size of the system beingn × n. This equation, with the matrix elements defined in

(4.14), is the basis of theRLC formulation for extraction.

4.3 Definition of conduction mode functions

The conduction modes are eigenfunctions of the homogeneous vector Helmholtz equation that

the current densityJ satisfies inside the conductors.
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(∇2 + κ2)J(r ) = 0 (4.21)

with κ2 = −k2
0 +

j

δ2
, δ =

√
2

ωµσ

where we have introduced the skin depthδ, which is the fundamental length scale for penetration

currents and fields inside a conductor [46, 76]. We emphasize its frequency dependence,δ ∼

f −1/2: fields penetrate less as frequency is increases.

Equation (4.21) is the differential form of (4.7). We will now introduce solutions to this

equation, and the conditions that must be imposed on them, that constitute the expansion func-

tions for the conduction modes formalism. We distinguish between theRL special case, pre-

sented in [32], and theRLCgeneral one, which we have presented in [33].

4.3.1 RL functions

In theRL version of conduction modes, as published in [32], currents are assumed to be unidi-

mensional, with their spacial variation independent of the current direction. In other words:

J(r ) = Jz(x, y)ẑ (4.22)

Furthermore, this method is developed under theMQS hypothesis, in which it is valid to

decouple theRL andC problems; for its validity,λmin � ` ⇐⇒ k0d � 1 must hold for

all dimensionsd in the problem. This last condition allows for settingk0 = 0 in the integrals

(4.14b), thus simplifying enormously their computation (details of this procedure are the subject

of the following chapter).

TheRL conduction mode eigenfunctions of (4.21) are:

wi(r ) =

ẑAie−[αi (x−xi )+βi (y−yi )] if r ∈ Vni

0 else
(4.23)

with

α2
i + β

2
i = −

(
2π
λ

)2

+

(
1+ j
δ

)2

(4.24)

and xi , yi indicate the corner, on the cross section, from which the conduction mode decays.

Sinceδ � λ, one can neglect5 the first term in the rhs of (4.24). For the rhs of (4.13), the above

assumptions lead to:

5For the 10-100 GHz range, and typical materials,λ is in themmto cmscale, andδ is of order 1µm.
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Figure 4.2: Distribution of currents for a cornerRL conduction mode, for a wire of dimensions
1µ × 1µ × 50µ and the frequencies such that the skin depth is larger, comparable and smaller
than the cross-sectional dimensions (color scale is normalized so that the maximum of current
is 1 for each frequency).

< wi ,∇φ >=

∫
Vi

∂φ(z)
∂z

w∗i (x, y)dr =
∫
Vi

∂φ

∂z
dz= φ(L) − φ(0) = ∆V (4.25)

with the normalization
∫

wi(x, y)dxdy = 1 over the cross section of the conductor. Eitherαi

or βi can be zero, in which case we speak of a side mode. In Fig. 4.2 we show the current

distributions for a corner conduction mode.

Although (4.24) allows for an infinite number of solutions, the purpose of this method is

to show that using only a few is sufficient to accurately represent current redistributions. The

author in [16] obtains the same accuracy, forRL effects in the regime of small penetrationδ,

using 3 modes per conductor, as the one obtained with 252 filaments. In this sense, theRL

conduction modes is an efficient replacement for filament-based methods like FastHenry, which

adopt the same conditions (4.22).

4.3.2 RLC functions

For the coupledRLC mixed representation shown in section 4.2.2, we introduce a broader set

of eigenfunctions to the vector Helmholtz equation, as compared to theRL case of the previous

section. Given that the equation separates in cartesian coordinates the extension is straightfor-
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ward:

wi(r ) =

(axix̂ + ayiŷ + aziẑ)e−[αi (x−xi )+βi (y−yi )]+ηi (z−zi ) if r ∈ Vni

0 else
(4.26)

with

α2
i + β

2
i + η

2
i = −

(
2π
λ

)2

+

(
1+ j
δ

)2

(4.27)

Enforcing the continuity condition (4.9) leads to,

axiαi + ayiβi + aziηi = 0 (4.28)

This last condition restricts the spatial direction for basis functionswi

(axi,ayi,azi) = Ai

(
1
αi
,

1
βi
,−

2
ηi

)
+ Bi

(
1
αi
,−

1
βi
,0

)
(4.29)

for arbitraryAi , Bi complex numbers.

The direction of the second vector in the rhs of (4.29) represents solutions with no current

flow along thezaxis, direction of the applied gradient of the potential. These solutions carry no

net charge, and represent redistribution of currents along the cross section of a conductor. We

neglect their contribution, and keep only a vector that is perpendicular to it6.

We thus determine theRLCconduction modes, up to an arbitrary normalization constantAi .

In order to normalize the basis functions, we impose that the total current entering the conductor

at the bottom face be represented as the sum of all the coefficients in (4.12) corresponding to

that conductorIconductor k=
∑

i∈k I i .

This choice fixes the arbitrary constant remaining in (4.29) :

(axi,ayi,azi) =
(

αi

eαiwi − 1

) (
βi

eβihi − 1

) ( jδ2ηiαi

2
,

jδ2ηiβi

2
,1

)
(4.30)

with wi andhi , the width and thickness of the conductor, respectively. In general, a conduction

mode will have bothαi , βi , 0, and we will refer to it as a corner mode. If one of these

parameters is zero, we will call it a side mode, as in theRL case. If, for example,αi = 0,

then the first fraction in the expression above should be replaced byw−1
i . Likewise, the second

fraction is replaced byh−1
i (αi andβi cannot both be zero due to (4.24)).

For every current conduction modewi , there is a corresponding surface charge functionvi

computed using (4.18). The link between the charge and current distribution functions arises

6An analysis of the significance of this assumption is left for Section 6.4, in which we discuss limitations and
possible extensions of our present formulation.
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solely from the continuity conditions and the properties of good conductors. This link represents

numerically the coupling betweenRL and C effects within the fullRLC representation. In

the present work, we have used a particular set of theseRLC modes, which we denominate

quasi-TEM. Physical details concerning this choice is the subject of the following section. In

few words, these modes are appropriate for a certain type of geometry. A discussion on the

limitations of this choice of modes, as well as the effects of using a larger set of modes, is

included in Section 6.4.

4.4 RLCconduction modes and TEM waves

In many applications, we are concerned with the problem of extractingRLC parameters for

configurations that are long wires with electrically small cross-sectional dimensions. These

type of structures are found, for example, in clock-tree designs [5, 80]. The parameters we

extract will often be used in transmission line (TL) models, or else in a distributed lumped

model approximation to TL. We refer to these long (comparable to a wavelength) and thin (of

the order of the skin depth) structures as TL-like structures. In this section, we discuss which

values of conduction mode parameters are compatible with this description.

4.4.1 TEM fields and transmission line behavior

Transverse Electromagnetic (TEM) waves are the dominant propagation mode of fields, for

transmission line structures [81]. The main characteristic of these waves is that the electric and

magnetic components of the field lie in the plane orthogonal to the direction of propagation, and

are orthogonal to each other [46]. TEM propagation relies on the following assumptions [4]:

1. wires are perfect conductors;

2. very long wires, with symmetry along the corresponding axis;

3. homogeneous medium surrounding the conductors;

4. small transverse dimensions;

Variations from these conditions induce non-TEM modes; analytical studies of these high-

order terms are found in [82–85]. For the TL-like structures defined above, conditions 1 and 2

are met approximately, whereas we assume 3 and 4 to be valid. Therefore we expect to have

quasi-TEM behavior for the waves in the medium. In chapter 6, we will discuss the necessary

amendments to our formulation in order to capture non-quasi-TEM responses.

In the TEM treatment of transmission lines, the conditions above simplify the relationship

between the capacitance and inductance matrix, settingLC = (µε)−1 = c2. In fact, the perfect-

conductor assumption must be dropped, in order to allow for bounded currents to flow along
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Figure 4.3: Geometry for the analysis of fields at the boundary between conducting and non-
conducting media (non-contact surfaces).

the z-axis. Physical contradictions are avoided by including anad-hoc(small) resistance-per-

unit length to describe ohmic losses, but neglecting the effect that these voltage drops have in

“bending” the fields. Refer to the discussion on pp 28-9 and 46 of [4], and references therein,

for a detailed discussion of the assumptions of transmission line analysis.

4.4.2 Boundary conditions for conduction modes

In any integral method-of-moments approach, EM waves in the medium are not explicitly mod-

eled. Instead, these are determined by the boundary conditions on the non-contact surfaces. To

compute the normal component of the fields at the boundaries of the medium surrounding the

conductors, consider an infinitesimally small cylinder on the frontier, use Maxwell’s divergence

laws and Gauss’s theorem, in order to relate the flux of the fields through the cylinder’s lids with

the charge inside the cylinder 4.3a; for the tangential components, a similar procedure is carried

out for a small rectangle, using Maxwell’s curl laws and Stokes’ theorem 4.3b.

(
D(out) − D(in)

)
· n̂ =ρ

(
E(out) − E(in)

)
× n̂ = 0(

B(out) − B(in)
)
· n̂ =0

(
H(out) − H(in)

)
× n̂ = K (4.31)

wheren̂ is the unit normal vector pointing from the conductor into the medium, andρ andK is

the superficial charge and current at the discontinuity, respectively.

The tangential component of the electric field is continuous,

E(out)
‖
= E(in)

‖
=

w‖
σ

(4.32)

On the other hand, the normal component ofE has a discontinuity due to the surface charge
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Figure 4.4: Distribution of currents for a cornerRLCconduction mode, for a wire of dimensions
1µ × 1µ × 1500µ and at frequencies such that the skin depth is larger, comparable and smaller
than the cross-sectional dimensions (color scale is normalized so that the maximum of current
is 1 for each frequency).

distribution. Assuming there is no change inε across the surface,

E(in)
⊥ = σ−1w⊥

E(out)
⊥ =

ρ

ε
− σ−1w⊥ (4.33)

As to the magnetic inductionB, all components are continuous across the non-contact sur-

face, since the modeswi in our model are volume currents, and not superficial7.

4.4.3 Conduction mode parameters and quasi-TEM fields

In [33], we presented an implementation of theRLC conduction mode formalism. Therein, we

adopted a particular choice of modes:

7Surface currents exist for the limiting caseσ → ∞ (or ω → ∞), in whichδ → 0; for real situations, there is a
sharp exponential attenuation of the volumetric currents inside the conductor, over a length scale ofδ. If δ is small
enough, this can be viewed as an equivalent surface currentKe f f =

∫
J dn, leading to a discontinuity in the tangential

magnetic field [46]. These deviations from perfect conductivity are precisely the object of the CM model.
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ηi = ± j
2π
λ

α2
i + β

2
i =

(
1+ j
δ

)2

(4.34)

From a practical point of view, when selectingα, β, η in (4.27) we no longer neglect the

(2π/λ)2 term in the rhs, as was done in (4.24) forRL/MQS, since we are modeling dimen-

sions comparable with the wavelengthλ. We associate theλ scale in (4.34) with thez depen-

dence. This particular choice stems from the observation that for realistic configurations, the

wire length is the only length scale that can be comparable to the wavelength, while the wire

cross sections are much smaller thanλ, makingλ-sensitivity inx or y unnoticeable.

The resulting picture is: we represent theδ-order exponential current crowding, common

to the RL conduction modes, along the current cross-sectional dimensions; and a sinusoidal

λ-order wave traveling on thez-axis (the different signs in (4.34) correspond to forward- and

backward-traveling waves). A schematic of these functions is shown in Fig. 4.4.

We will now show that, for this particular choice of (α, β, η), the fields at the boundaries

of the conductors are quasi-TEM. In other words, we want to analyze the ratios of the electric

E(out) and magneticH(out) fields on the non-conducting side of the surface in Fig. 4.3

Consider, without loss of generality, the non-contact surface along perpendicular to thex-

direction,n̂ = x̂, so that in the medium neighboring the conductors:

Ez|
(out)
x=0 =

wz

σ

Ey

∣∣∣(out)
x=0 =

wy

σ
=

jδ2ηβwz

2σ
= O

(
δ

λ

) wz

σ

Ex|
(out)
x=0 =

ρ

ε
−

wx

σ
= −

(
2
ωε
−

1
σ

)
δ2ηαwz =

(
O

(
δ

λ

)
+O

(
λ

δ

)) wz

σ
(4.35)

where we have used our choice of modes (4.34) in order to express the order-of-magnitude of

theEy andEx fields. Given thatλ � δ, we can say that∣∣∣∣∣∣∣∣
E(out)

long

E(out)
trans

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

Ez√
E2

x + E2
y

∣∣∣∣∣∣∣∣∣ = O
(
δ

λ

)
� 1 (4.36)

i.e., the TEM conditions are nearly satisfied.

The longitudinal magnetic fieldHz vanishes inside the conductor, independently of the

choice (4.34). This can be seen by taking the curl of the electric field, which is proportional

to the currentw in (4.30),
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B(in) =
jµ
ω

(
∇ ×

w
σ

)
=

(2 j + δ2η2)wz

2ωσ
(β,−α,0) (4.37)

Given the continuity of the magnetic field at the non-contact surface,B(out)
z must also van-

ish. This states that the small non-TEM effects modeled with the present formalism are in fact

transverse electric (TE) modes. For perfect conductors, theδ-thick current distribution reduces

to a superficial currentK (see footnote page 89 and inset Fig.4.3). Then there is a jump in the

tangential magnetic field which is mainly oriented ony, because theK runs mainly on thezaxis

(wz� wy).

Variations from (4.34) for the choice of conduction mode parameters are discussed in Sec-

tion 6.4. Basically, more modes introduce degrees of freedom which are expected to be negligi-

ble for transmission line type of configurations.

Another important issue is the choice ofα andβ for any given geometry. It is evident that

the second line in (4.34) has an infinite number of solutions. For every conductor, there are four

side modes, as well as a continuum of corner modes. Our aim is to choose a subset of these

solutions such that they capture the behavior of currents and charges in the conductors. The

number of modes in this subset is a trade-off between precision and performance. We will show

that four side modes, and eventually four corner modes at 45o, are sufficient for a variety of

configurations.

4.5 Solvers

We now consider the rhs of equation (4.20). In Section 4.2.2 this array is defined as the dif-

ference between the average potential, multiplied by a factor representing thez-dependence, on

each contact surface. For the quasi-TEM modes of (4.34), this factor is a phase exp(± jk0`).

For a given geometry, the rhs of this equation contains the information on how the wires are

connected. As such, we could say that the ”circuit analysis” is contained in the rhs. We will

discuss, in the first subsection, how to obtain the most general information available, which is

the admittance matrix among the wires. In most cases, the interest is to obtain a reduced amount

of information. The other subsections will focus on two such cases. Similar approaches to the

ones exposed therein, can be adopted for any particular circuit topology. A general treatment

demands implementation of nodal or mesh analysis, as in FastHenry or FastMaxwell..

For matrix solvers, we use standard LU Decomposition adapting the algorithm in [86] to

complex algebra. We recall that the main feature of the conduction modes method is that of

producing representations significantly smaller, and with the same modeling capacity, than the

piecewise-constant counterparts. In this sense, the choice of matrix solver is not a critical one:

savings result from having smaller systems for the same problem.
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Figure 4.5: Different solution schemes for different types of problems: (a) admittance matrix
calculation; (b) shorted transmission line; (c) serial circuit.

In the examples analyzed, solving the linear system entails a cost no larger than 1% of the

total. The main component of computation cost is always in the filling of the matrix, a subject

that will be thoroughly analyzed in the next two chapters.

4.5.1 Admittance matrix

In the most general case, we are interested in obtaining the admittance matrixY, i.e. ann × n

array withn the number of conductors, representing the electromagnetic interaction between

conductors. The elementsYik are defined as the current on conductori when conductork is

subject to a unitary voltage drop and all others are grounded at both ends:

Yik =
∑

p ∈ condi

I (k)
p ; I (k) = Z−1B(k); B(k)

i =

1 if i ∈ condk

0 else
(4.38)

whereZ is the conduction modes matrix, given by the first block of (4.13) forRL/MQS, and

by (4.20) forRLC.

From the admittance matrix, all relevant magnitudes (impedance, S-parameters, etc.) can be

computed through elementary circuit theory. For example, in theRL/MQS implementation, the

currents at both ends of a conductor are identical, and we can refer unequivocally to the current

along a conductor. In this case, the impedance matrix is,

Z(MQS) =
(
Y(MQS)

)−1
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In words, the elementYik is the total current on conductork when conductori is excited by

a voltage source between its contact surfaces, and all the others are grounded at both ends (see

Fig. 4.5a). For theRLC problem, currents at opposite ends do not coincide, so that both input

and output admittance/impedance matrices can be defined, according to whether the currents are

excitations are considered at the near or the far end. The currents at the far end are multiplied

by the fi(`), representing thez− dependence of the conductions modes (see eq.(4.20)).

4.5.2 Shorted transmission line

Now we study a commonly encountered situation in extraction, namely a configuration as in

a bundle (see Section 2.2)8, in which then wires are composed of one signal wire plusn − 1

return paths, such that all wires are shorted at the far end, the return paths are shorted at the

near end, and the source is placed between this node and the near end of the signal. For quasi-

TEM conduction modes, this kind of configuration represents a shorted transmission line, as in

Fig.4.5b.

The impedance of this shorted circuit is defined asVo/I in, with I in the total current at the

shorted (far) end of the signal andVo is the amplitude of the voltage source at the open (near)

end. We point out that there exist a plethora of different magnitudes to be computed, according

to how the conductors and source(s) are connected, as well as the location of the ports (i.e.,

where are the currents to be extracted). We show the example of the shorted T-line, as it is a

common case in the literature, but a scheme similar to the one exposed in this section can be

effortlessly devised for any arbitrary circuit.

In this case, we haveN + 1 unknowns, given by theN conduction mode currents, plus the

unknown potentialVf at the far end. The extra equation is Kirchoff’s law at the far end,

N∑
i=1

I ( f ar)
i = 0 (4.39)

Although this solution can be computed from the impedance matrices in the previous sec-

tion, it is more efficient to write a specific system for this circuit,

ZI = Vf B( f ar) − VoB(near); B( f ar)
i = eηi`i ; B(near)

i =

1 if i ∈ cond1

0 else
(4.40)

Thus, we can solve two systems (as opposed ton, if we were to generate the whole impedance

matrix) with the same matrixZ, and then impose the Kirchoff condition:

8In Sec. 2.2, we considered theRL version of bundles; the only difference forRLC is that the currents are not
constant along thez axis.
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
I ( f ar) = Z−1B( f ar)

I (near) = Z−1B(near)

I = Vf I ( f ar) − VoI (near)

⇒ Vf =

∑N
i=1 I ( f ar)

i∑N
i=1 I (near)

i

Vo (4.41)

OnceVf is determined, we obtain the currentsI i , enabling us to determine the total current

for any conductor.

This kind of solution scheme, translated to theRL/MQS domain, is precisely what is re-

ferred to in Section 2.2 for solving the self inductance of a bundle, (2.11), and obtaining the

coefficients in (2.12) proportional to the participation of each return wire in the total current.

4.5.3 Serial circuit / inductors

Another particular case of interest is that where all conductors form a serial circuit, as in an

intentional inductor. Again, this example can be computed from the admittance matrices in

Section 4.5.1, but this would imply the solution and storage of unwanted quantities.

As in the previous case, we concentrate on the input impedance, i.e. the ratioVo/I in, where

now I in represents the current at the open end of the first segment of the inductor.

For an inductor, we have to impose a Kirchoff law (4.39) at each node of the inductor. The

voltages of all the intermediate nodes are the added unknowns (see Fig.4.5c). In each node with

voltageVi , we must cancel the right currentI (right)
i of the previous segment with the left current

I (le f t)
i+1 of the following segment. Each of these currents is the sum of the contributions of all the

modes for that segment. For segmenti, the chargeqi on its non-contact surfaces results from

the displacement currentI (disp)
i , which is the difference between the longitudinal currents at the

two extremes:jωqi = I (disp)
i = I (right)

i − I (le f t)
i .

We avoid the tedious algebra and give a recipe to solve this problem:

1. Solve, for eachk = 0,1, ..,n

H(k) = Z−1B(k); B(k)
i ≡


eηi`i if i ∈ condk

−1 if i ∈ condk+1

0 else

(4.42)

2. Construct the matricesA,C ∈ Cn×n,

Aik ≡
∑

m∈ condi

H(k)
m ; Cik ≡

∑
m∈ condi

H(k)
m eηm`m (4.43)
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for i, k = 1, ..,n, as well as the vectorsJ andK which correspond to settingk = 0 in the

above definitions,

Ji ≡ Ai0; Ki ≡ Ci0 (4.44)

3. Define the incidence matrixM ∈ Rn−1×n, whose elements are given byMik = δi−1,k
9, and

use this matrix to construct,

Y ≡ [E1|C −MA ] ∈ Cn×n (4.45)

with E1 the first column of the identity matrix.

4. Solve the matrix equation,

YṼ = −(C −MA ) (4.46)

whereṼ ∈ Cn is a vector whose first element isyin, the left current entering segment 1,

and the rest of the elements are the voltages of the intermediate nodes,Ṽi = Vi+1, i = 2, ..n.

5. Obtain the closed-end input impedance of the inductor:

Z =
1

yin
=

1

Ṽ1
(4.47)

The above procedure can be trivially modified if we wish to compute other magnitudes, e.g.

open-ended impedance, or output instead of input impedance. With this recipe, we are able to

account forRLC effects for inductors, with a cost of solvingn systems with the same matrix

of sizeN (i.e., we need only repeat the back-substitution, and not the decomposition), plus one

more solve of sizen.

4.6 Code organization: global structure

Development of the algorithm for the methods exposed in this chapter has been the major effort

of the present work. Although this code has undergone several different iterations, it has always

maintained the structure shown in the flowchart in Fig.4.6.

The components of this code are:

• Input: we can either run the tool as a stand-alone or integrated into the Calibre xRC/xL

family; in either case, we receive information on the geometry of the wires (widths,

9δik here represents the Kronecker symbol, equal to 1 ifi = k, and 0 if they are different.
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Figure 4.6: Conduction modes flow.
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lengths, thicknesses, and relative positions); and the electrical parameters (frequency,

conductivitiesσ, electrical permittivitiesε, magnetic permeabilitiesµ).

• Setup: the method begins by determining which conduction modes are to be created; and

allocating space, establishing magnitudes which will be used throughout (e.g. reading or

calculating the Gaussian quadratures).

• Matrix calculation: this is the most intensive part of the calculation, in which we construct

theZ matrix for the conduction modes; in this flow we only sketch the loops involved,

and refer to next chapter for details on this calculation (see Figs.5.7,5.8).

• Solve: the final step is solving the system, as shown in Section 4.5, in order to determine

the conduction mode current and thus the electrical parameters; for this step, we need fur-

ther information concerning the interconnections among wires (i.e. how is the underlying

circuit), as well as which are the ports (i.e. where are the currents to be modeled).

All the code was developed in C++, using complex arithmetic. For the numerical integra-

tions we have developed fast and efficient methods specific for the conduction modes applica-

tions (see Section 5.6); these coexist, and can be used alternatively, with adapted algorithms

contained in [86] and [87].

4.7 Examples

In this section, we will show different situations in which theRLCconduction modes formalism

is capable of rendering accurate magnitudes, showing a significant reduction in size. These

examples evidence the capacity of the method to capture resonances: in the first case we study a

shorted transmission line composed of two copper wires; then we switch to a more complicated

example, consisting of a square three-turn intentional inductor.

• FastImp used in the fullwave mode [10]

• Numerical solution of circuits with parameters obtained via separateRL andC computa-

tions under quasistatic conditions.

The examples in the section were included in the presentation of this work at [33]. We do

not discuss in this section the runtimes involved, because at this stage, some features of theRLC

method are at a development phase. One such feature is the optimal calculation of the matrix

elements for theZ matrix in (4.20). This kind of optimization strategy has been developed in

full detail for theRL case, and is the subject of the following chapter. Extensions to theRLC

case, though straightforward, are lengthy. Some aspects of this generalization are discussed in
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h = 40 µ s = 10 µ

w = 10 µ

Vo

I in

L =
 5 

mm

I (far)

Figure 4.7: Shorted Transmission Lines example configuration.

Chapter 6. For the interest of the present section, it suffices to say that the runtime involved in

the following examples are unrealistically of the same order as the other methods.

4.7.1 Shorted transmission line

Our first example is drawn from [74], consisting of twoCu wires 5mm long, of cross sections

10µ × 40µ, separated by a distance of 10µ, shorted at the far end, and with an input excitation

Vo at the near end (Fig.4.7). The solution of this system in terms ofRLC conduction modes is

explained in Section 4.5.2. We employ 16 modes per conductor: 4 side plus 4 corner for each

possiblez− propagation.

Comparison against the mentioned references is standard: FastImp contemplates a trans-

mission line option; concerning the number of panels, we varied the discretization until stable

values were reached, at 3×5×100 panels along width, thickness, and length, respectively. The

total number of panels is 3260.

For theRL+C representation, we resort to a W-model [53] for transmission line simulation

with per-unit-lengthRLvalues tabulated at different frequencies. Extraction of these parameters

was carried out with FastHenry at a fine 9× 9 discretization on the cross-section10. Per-unit-

lengthC values stabilize with FastCap using 272 panels. Issuing from an electrostatics solution,

these capacitance parameters are frequency-independent.

In Figs. 4.8 and 4.8 we compare the admittance (Vo/I in), as well as the shorted currentI ( f ar),

defined in Fig. 4.7.

10Note: we use FastHenry without the multipole acceleration, computing direct matrix products, and therefore
avoiding a subdivision of filaments along their lengths; for these size of problem, this is the optimal use for this tool,
both in terms of size and performance. This point will be expanded upon in the following chapter.
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Figure 4.8: Admittance for the shorted transmission line in Fig.4.7: modulus (top) and argument
(bottom), comparing Conduction Modes against the other methods described in text.
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Figure 4.9: Shorted current for the transmission line in Fig.4.7: modulus (top) and argument
(bottom), comparing Conduction Modes against the other methods described in text.
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We observe the expected resonance peaks at frequencies multiples of quarter wave lengths.

Qualitatively, the mergedRLC conduction modes model shows the correct physical behavior.

The location of the minima for the admittance is significantly different on FastImp compared

to ours as well as the transmission line model11. To determine this discrepancy, we turned to

LargeCom [12] from Univ.of Illinois, which confirmed our results [88]. We ignore the origin of

these discrepancies.

4.7.2 RLC inductor

Next we consider a square 3-turn inductor, with the parameters shown in Fig.4.10a. All the

wires are Cu, and we neglect substrate effects.

For conduction modes, we use 8 modes per segment: 4 side modes for each sense of prop-

agation along its length. Thus the total current and charge distributions has a dimensionality of

96. These conduction modes are the entries for matrixZ in (4.20), whose elements are defined

in (4.14). The underlying circuit is shown in Fig. 4.10c, where eachZ element represents the

collection of conduction modes for that segment. Solution of this model follows the recipe in

Section 4.5.3.

On the other hand, we compute a decoupledRL+C extraction; the corresponding circuit is

shown in Fig. 4.10b. The resistor and inductor on each segment represent in fact a collection

of piece-wise constant filaments. Since the total lengths of wires is much smaller that the wave-

length, it is sufficient to represent each segment as one branch of lumpedR, L,C elements. The

RLextraction is carried out with Calibre xL using a 5×3 discretization along the cross-sections,

and capacitance is computed with FastCap. Stability was reached for 11904 panels. Solution to

this circuit is similar to the one for theRLC circuit described in Section 4.5.3, with two differ-

ences: currents are the same at both ends of each segment; the total currents at a node do not

cancel out, the difference representing the time-derivative of the charge (jωq) transferred to the

capacitors at that node. A routine for this solution is integrated into the Calibre engine [22,23].

Impedance computation for this example is shown in Fig. 4.11. Accuracy near the resonance

is remarkable. In Table 4.3 we compare the sizes of the problems solved by the two different

approaches12.

Attempts to obtain stable output from FastImp, for this example, have been unfruitful. We

have raised the number of panels along the length of each up to 400 (with a total of panels above

105, total system size 8× 105) without obtaining stable results. Again, we ignore the source of

11This is not the case for the shorted currentI f ar, where the discrepancies in the jumps of the argument (bottom
graph in Fig. 4.9) are due to insignificant differences for a smooth change of sign in the real part; we are using a
definition of the argument function arg(z) ∈ [−π, π].

12We separate theRLandC contributions, since the complexity associated to each problem is of a different nature;
for example, the system with more than 11000 panels in FastCap was solved very fast, as compared to comparable
sizes for FastHenry.
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Figure 4.10: (a): Example 3-turn square inductor; (b):RL+C circuit representation for decou-
pled extraction; (c):RLC circuit representation for fullwave extraction with conduction modes
(for the sake of clarity, we omit the coupling elements, and we reduce one turn).

this difficulty.

As in the previous example, the capacitive effects are coupled to the inductive-resistive ones

through the nature of the conduction modes, which model charges and currents within the same

mathematical function. The only assumption we are making is that these functions apply to the

whole extent of each wire segment. In practice, this neglects border effects (mainly capacitive)

near each corner of the inductor. Taking these into account is tantamount to enlarging the set of

conduction modes, a subject which will be discussed in Section 6.4.

Table 4.3: Comparative sizes for the different methods

Method Transmission Line Inductor

RLC Conduction Modes 32 96
FastImp 3260 N/A

RL+C+Simulator 162+272 300+ 11904
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Figure 4.11: Comparison betweenRLC conduction modes and mixedRL+ C results for the
square inductor example in the vicinity of its first resonant frequency.

4.8 Conclusions

We have presented the essence of a new simulation approach to studyRLC fullwave modeling of

conductors in terms of a small set of conduction basis functions. We have been able to capture

the interplay between the electric and magnetic energy content that gives rise to resonances,

while keeping a very concise description of the geometry.

This formulation consists of using a generalized version of the conduction modes basis

functions presented originally in [32], which only account for current distribution functions, and

therefore solves the quasi-staticRL problem. Our functions include also charge distributions,

with built-in continuity, which are proper for the fullRLC statement. The resulting model

resembles a transverse electromagnetic (TEM) model with frequency dependent parameters.

The main feature of this approach is that capacitive and inductive couplings are coupled

together by these functions. Solution of the full equation (4.20) gives the same results, for the

total impedance of the system, as those produced with theRL+C decomposition. By compari-

son, this involves solving two different quasi-static problems, broken up such that all dimensions

are small compared to the wavelength, and then joining them through a circuit simulator or anal-

ogous model. The gains in size are considerable, as shown in Table 4.3.

The usefulness of this type of approach depends on two main factors: performance and the
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extensibility to more general types of configurations. The first point is the subject of the next

chapter, where we address the main performance issue related to conduction modes formalism,

i.e. the extensive algebra associated with the matrix elements in (4.14). The generalization of

the method presented here is addressed in Chapter 6, where we outline and discuss the main

tasks involved in developing a fullwave field solver based on the concept of conduction modes.





Élements de matrice pour les modes de

conduction : casRL

Résuḿe en français

Dans ce chapitre, nous proposons une solution au problème principal de la formulation RL/MQS

des modes de conductions, qui est celui du calcul des intégrales multidimensionnelles pour les

éléments Li j définis par eq.(4.14). La première partie du chapitre décrit des considérations

générales qui sont valables pour toutes les intégrales 5.2. Ici, nous réduisons la dimensionnalité

de 6 à 2.À la section 5.3, nous considérons les intégrales pour la situation où l’élément Li j de

matrice correspond à deux modes du même conducteur; les difficultés trouvées sont principale-

ment liées à une singularité intégrable présente dans le domaine d’intégration. Les intégrales

associées aux modes de conducteurs différents sont analysées dans la section 5.4 ; les compli-

cations, dans ce cas, sont plutôt liées à la grande quantité d’éléments, ainsi qu’au manque de

symétrie permettant des simplifications pour les fonctions à intégrer. Néanmoins, l’absence de

la singularité mentionnée ci-dessus permet un calcul très efficace sur la base des approxima-

tions de Taylor. Nous montrons un schéma de l’organisation des algorithmes pour ce calcul

dans la section 5.5, ce qui complète le diagramme global présenté dans le chapitre précédent.

Dans la section 5.6, nous étudions en profondeur la précision et l’efficacité de nos méthodes en

fonction de ces paramètres de contrôle. En conclusion, nous analysons des exemples compara-

tifs (sections 5.7 et 5.8), montrant une économie de deux ordres de magnitude pour le temps de

calcul, par rapport à FastHenry d’un côté, et à l’application des modes de conduction avec des

méthodes d’intégration standard de l’autre. Une version succincte de ce chapitre a été publiée

à l’ ” International Symposium on Very Large Scale Integration ”(ISVLSI), tenue en mai 2007 à

Porto Alegre en Brésil. Aussi, les algorithmes de ce chapitre sont en train d’être fusionnés dans

l’outil d’extraction Calibre xL chez Mentor Graphics.
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Chapter 5

Calculation of Matrix Elements for RL

Conduction Modes

In the previous chapter, we have shown how to expand sources in terms of conduction modes

basis functions, in a way that renders this method very efficient in terms of size savings. How-

ever, we have purposefully avoided to comment on the runtimes. Discussion of computational

costs are also absent in the literature on conduction modes [16,32,33,74].

The reason for this omission is simply that, in adopting this strategy, the burden of the calcu-

lation is transfered, from the cost of having a large linear system of easily computed elements,

to that of having a much smaller system whose elements are difficult to obtain.

Matrix elements for conduction modes are the 6- and 4-dimensional integrals in (4.14). They

extend over the whole volume and surface of the conductors, and are composed of two very

distinct components: on one side, the Green function exp(− jk0r)/r; on the other, exponential

decays of orderδ for the conduction modesw∗i andwj . This duality renders difficult a standard

numerical integration of these matrix elements.

In this chapter, we immerse ourselves precisely in these complications. We restrict ourselves

to theRLcase, so that onlyLi j integrals are studied. Furthermore, we work within the Magneto-

Quasi-Static (MQS) approximation, whereby we are safe to setk0 = 0 thus neglecting the phase

factor in Green’s function. The generalizations to the fullRLC case are treated in the next

chapter.

Chronologically, the work displayed in this chapter was developed in order to replace the

standard numerical integration methods that were incorporated into the early versions of our

general conduction modes formulation.

The first of these methods was the Monte Carlo (MC) implementation given by [89]. This

algorithm was designed for use in quantum field theory calculations, and is targeted for dimen-

sions of the order of 10 or larger, as well as situations in which little detailed information about

107
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the integrand is known. For our purposes, it gives a very reliable estimate of the integral values,

but its performance is far from optimal. Concerning the accuracy/performance payoff, it has a

single control parameter corresponding to the maximum number of function calls. On output,

we obtain an estimate of the error committed.

At a later stage, this component of the calculation was replaced by the so-called Adaptive

Quadrature (AQ) algorithms [87], which target integrands of lower dimensionality. The ac-

curacy/performance is controlled by either of two parameters, the maximum number of calls

and/or the desired precision, which is estimated at each refinement. The drawback of AQ, with

respect to MC, is that some particular integrals have a very slow convergence rate. The number

of such occurrences is very low, and it is possible to implement the method in such a way as to

avoid a standstill in the computation, by incrementally modifying the number of calls for those

particular cases.

Both methods above belong to the class of importance sampling methods, meaning that they

must develop a heuristic in order to evaluate the integrand at the regions where it, and/or its

gradient, is peaked. The difference between them relies in the way they sample the space: MC

does a stochastic sampling, whereas AQ is deterministic.

Importance sampling is the only option when we do not possess a detailed information on

the integrand. For conduction modes, this information is hidden within complicated forms for

the integrands. In a nutshell, this chapter is about how to capture and use this information for

evaluating the conduction mode integrals. We organize this chapter as follows:

• Sections 5.1 and the first part of 5.2 are devoted to exposing the general setup and consi-

derations valid for all integrals; here, we reduce the dimensionality from 6 to 2.

• Section 5.3 considers the integrals for the situation in which the matrix elementLi j corre-

sponds to two modes for the same conductor; the difficulties in this case are mainly due

to an integrable singularity in the integration domain.

• The integrals for different conductors are analyzed in Section 5.4; the complications, in

this case, are related to the more general geometry, but the task is enormously simplified

by the absence of the singularity mentioned above.

• We show a flow for the organization of the algorithms in Section 5.5, thus completing the

global diagram presented in the previous chapter.

• A thorough study of the precision and performance of these methods is carried out in Sec-

tion 5.6, including comparisons against the aforementioned methods for multidimensional

integration [86,87,89].

• Finally, in 5.7 we conduct examples ofRL extraction, and compare the results with the
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well-established standard FastHenry [15], observing up to two order of magnitude in per-

formance gains without loss of accuracy.

A distilled version of this chapter has been published at the IEEE International Symposium

on Very Large Scale Integration (ISVLSI), held in May 2007 in Porto Alegre, Brazil. The

algorithms in this chapter are in the process of being merged into Mentor’s Calibre xL extraction

tool.

5.1 Statement of the problem

In this chapter, we concentrate on the matrix elementsLi j represented in (4.14b), forRLcurrent

modes under Magneto-Quasi-Static (MQS) conditions. This means that currents are treated

as one-dimensional, along thez-axis (which is defined as that of the voltage drop along the

conductor), and that the modes are independent ofz. Thus the integrals are written as1,

Li j =
µA∗i A j

4π

∫
V

∫
V′

eα
∗
i x+α j x′+β∗i y+β jy′

|r − r ′|
d3r d3r ′ (5.1)

whereV,V′ refer to the volumes of two conductors whilei and j, refer to CM modes, andAi, j

are the normalization constant for the conduction modes, defined in Section 4.3.1.

This matrixL is clearly hermitian, hence onlyN(N + 1)/2 of the totalN2 integrals need to

be computed, withN the total number of degrees of freedomN = mn, n andm the number of

conductors and the number of modes per conductor, respectively.

A natural classification of these integrals corresponds to whether the two conduction modes

belong to the same or different conductors. Either case has particular characteristics that favor

distinct integration techniques; on broad terms, these are:

• When both volumes cover the same conductor, there is a higher degree of symmetry, so

that fewer terms need to be computed; for these integrals, the integration domain contains

an integrable singularity at zero separation which demands special attention.

• When bothV,V′ refer to different conductors, the integrand is non-singular and smooth

within the full integration domain, thus permitting the use of Taylor expansions, which

reduce significantly the cost of evaluating the integral.

In a typical multi-conductor configuration, the numberNsameof same-conductor matrix el-

ements is much smaller than the one for different conductors,Ndi f f : for n conductors withm

the number of conduction modes per conductor, there aren.m2 same-conductor elements while

1For the expressions in this chapter we shorten the notation by omitting the border factors e−α∗i xb−β j yb, which are
simply a factor common to the whole integral.
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(n2 − n).m2 different-conductor ones. Due to hermiticity, the number of integrals that must be

computed reduces to:

Nsame =
1
2

(m2 +m).n

Ndi f f =
1
2

(n2 − n).m2 (5.2)

It has been shown empirically [16] thatm values can reasonably be assumed to be indepen-

dent ofn, and small; thusNdi f f is significantly larger thanNsame. The quadratic growth ofNdi f f

with n is the dominant contributions for configurations containing three or more conductors.

Furthermore, symmetries further reduce the number of independent contributions toNsame

(see Fig.5.1):

• For a conductor containing four side modes, only 5 integrals (out of 10) need to be com-

puted, namely: (E,E) (E,W) (N,N) (N,S) (E,N)

• For a conductor containing four corner modes of equal angles, only 4 integrals (out of 10)

need to be computed, namely: (NE,NE) (NE,NW) (NE,SE) (NE,SW)

• For a conductor containing four side modes and four corner modes, only 4 mixed integrals

(out of 16) need to be computed, namely: (E,NE) (E,NW) (N,NE) (N,SE)

We will first discuss some general aspects of our integration strategy applicable to both

domains, to be followed by a detailed analysis that relies on the above mentioned classification.

5.2 General considerations

The first and obvious simplification results from the observation that, except for the exponentials

representing each conduction mode, the variables enter in the combinationx − x′, y− y′, z− z′

contained in the Green function for this system. Therefore, we apply the change of variables

shown in Fig.5.2: r+ = r + r ′

r− = r − r ′
(5.3)

with r = (x, y, z); the Jacobian for each dimension is 1/2, giving a total factor of 1/8.

In the new variables, the integrals overx+, y+, z+ are performed analytically:

Li j = Ni j

w∫
−w′

h∫
−h′

∫̀
−`′

ξx(x−)ξy(y−)ξz(z−)

r
dx− dy− dz− (5.4)
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Figure 5.1: Examples of Mode equivalence for same-conductor integrals.
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Figure 5.2: Change of variables in eq.(5.3), exemplified for the x-integration.
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with r =
√

(x− + x0)2 + (y− + y0)2 + (z− + z0)2 and the functionsξx,y,z are the result of the ana-

lytical integrals inx+, y+, z+; x0 is the separation between the two left extremes of each conduc-

tor (without loss of generality, we assume the conductor wit primed variables to be located at

the origin, see Fig.5.2), andy0, z0 are the corresponding values for the other axes. In (5.4), we

have also defined the proportionality constantNi j ≡
µA∗i A j

32π .

Functionsξx,y,z act as weight functions for the integration of ther−1 Coulomb kernel over

the relative (“-”) variables. In order to illustrate the variety of weight functions, according to

each possible pair of conduction modes, we illustrate on the thex variable:

ξx(x) =

w+ w′ − |x| − |x− x1| if α∗i + α j = 0

(α∗i + α j)−1
(
γ1eα

∗
i x + γ2e−α j x

)
if α∗i + α j , 0

(5.5)

with x1 ≡ w− w′, and the piecewise-constant functions2

γ1 ≡ e(α∗i +α j )w′Θ(x1 − x) − Θ(x)

γ2 ≡ e(α∗i +α j )wΘ(x− x1) − Θ(−x) (5.6)

For theξy(y) weight function,α is replaced byβ andx0, x1 by y0, y1 = h− h′. Since we are

within theMQS regime, thez−integral can be done analytically leading to:

Li j = Ni j

+w∫
−w′

+h∫
−h′

ξx(x)ξy(y) F (ρ(x+ x0, y+ y0)) dx dy (5.7)

whereρ(x, y) =
√

x2 + y2 and F(ρ) is a cumbersome expression, which in the case of both

conductors sharing thez−extension (i.e:z0 = 0;` = `′), is

F` = `

sinh−1
(
`

ρ

)
−

√
1+

ρ2

`2
+
ρ

`

 (5.8)

with ` the common length of the conductors.

The general case is a combination of four same-length expressions (5.8) evaluated at four

different values [56]:

F =
1
2

[
F|z0+`| + F|z0−`′ | − F|z0| − F|z0+`−`′ |

]
(5.9)

with the same notation as the one forx, Fig. 5.2, replacingx0↔ z0,w↔ `,w′ ↔ `′.

2We useΘ(x) ≡

1 if x ≥ 0

0 if x < 0
, the Heaviside step function.
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We are left with two dimensional integrals, which we classify according to the different

weight functions. Each conduction mode can either be a “corner” (bothα, β , 0: e.g. theS W,

S E, NE or NW in Fig. 5.1) or a “side” mode (only one non-zero exponential component:E,

N, S or W). Therefore, any integral can contain 0,1 or 2 exponential decays along each of the

cross-sectional dimensions. The integrals belong to the following types (see Fig. 5.3):

[H,V] (or [V,H] ): One horizontal side mode and one vertical side mode, the corresponding inte-

gral has one exponentially decaying contribution along each integration axis.

[H,H] (or [V,V] ): Two horizontal (or vertical), the integral has two exponentially decaying con-

tributions along one axis, and none along the other.

[H,C] (or [C,H] [V,C] [C,V] ): One corner mode and one side mode (in any combination), the

integral has two exponentially decaying contributions along one axis, and one along the

other.

[C,C] : Two corner modes, the integral has two exponentially decaying contributions along each

axis.

For any of the two integration variables,x or y, the number of exponentially decaying func-

tions on that variable classifies the contribution of this integration variable to the total integral.

Rearranging expressions in (5.5), we can decompose each integral into terms that have a def-

inite behavior (exponential or linear) along each axis. In Table 5.1, we show a representative

set identifying the dimensions of the different sub- domains for each type of integral described

above.

Table 5.1: Decomposition of the total integration domain into exponential (E) and linear (L)
contributions along the x and y integration coordinates (e.g.:E − L is exponential in x, linear in
y), for different types of integrals.

Type E − E L− E E− L L − L

[H,V] X X X X
[H,H] - - X -
[V,V] - X - -
[H,C] X - X -
[V,C] X X - -
[C,C] X - - -

This decomposition permits us to apply appropriate methods of integration according to the

functional behavior of the integrand, as well as the integration domain.
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Figure 5.3: Examples of total weight functionsξxξy(x, y) (3-d plots); and the corresponding
separateξx(x) andξy(y) (2-d plots) for different types of integrals.
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5.3 Same-conductor integrals

For matrix elements between two modes belonging to the same conductor, we havex0 = y0 = 0

andw = w′,h = h′. Therefore, the integration domain simplifies tox ∈ [0,w]; y ∈ [0,h].

The expression for thex−weight function in this interval is,

ξx =

2et
(
sinh(α j x− t) + sinh(α∗i x− t)

)
if α∗i + α j , 0

2(w− x) if α∗i + α j = 0
(5.10)

wheret ≡ (α∗i + α j)w/2; analogous expressions hold forξy.

5.3.1 Exponential decays:E-type contributions

When bothα∗i , α j , 0, the expression on the first line of (5.10) is a sum of two or four decaying

exponentials. In particular, for[H,H] type integrals, we have

ξx =

2 cos
(

x
δ

) (
e−

x
δ − e−

2w−x
δ

)
if αi = αj

2 j sin
(

w−x
δ

) (
e−

w−x
δ + e−

w+x
δ

)
if αi = −αj

(5.11)

Here the first line corresponds to two modes decaying from the same side, i.e. (E,E) or

(W,W); while the second one is for modes decaying from opposite sides, (E,W) or (W,E). Simi-

lar expressions as the ones in (5.11) exist for the other integrals with double exponential contri-

butions, namely the types[H,C] and[C,C] in Table 5.1.

Once the exponential decays are written explicitly as in (5.11), we proceed to estimate the

x− integral by using a Gauss-Laguerre quadrature rule [86]. This is a tabulated set ofGlag points

and weights{xlag
i ,wlag

i } that best approximate the integral,

∞∫
0

e−x f (x) dx '
Glag∑
i=1

wlag
i f (xlag

i ) (5.12)

We point out that these tabulated values exist for the integrals in the [0,∞] range, whereas

we have finite integrals in the [0,w] interval. Therefore, we must transform each exponential as:

w∫
0

e−
x
δ f (x) dx = δ


∞∫
0

e−x f (δx) dx− e−
w
δ

∞∫
0

e−x f ((x+ w)δ) dx

 (5.13)

Each exponential term over a finite range is replaced by two infinite-range integrals, that can

each be approximated by (5.12)3. Taking into account all the contributions for the exponentials,

3The inclusion of this extra term can be avoided according to the relative importance of the second integral in
(5.13) with respect to the first one: as frequency increases, the skin depthδ decreases, and for frequencies such that
δ is an order of magnitude smaller thanw, the factor exp(−w/δ) makes the second integral negligible.
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thex−contribution to[H,H] integrals in (5.11) is approximated as

w∫
0

ξx(x)F(x, y) dx ' δ
Glag∑
i=1

wc
i

(
F(ui) − Kc

(
F(u′i ) + F(u′′i ) − (Kc + Ks)F(ui)

))
+ ws

i Ks

(
F(u′i ) − F(u′′i ) − (Kc − Ks)F(ui)

)
(5.14)

for αi = α j , and

w∫
0

ξx(x)F(ρ(x, y)) dx ' δ
Glag∑
i=1

ws
i

(
F(u′i ) − 2KcF(ui) + (K2

c + K2
s)F(u′′i )

)
for αi = −α j , where we have defined

ui =

√(
xlag

i /δ
)2
+ y2, wc

i = wlag
i cos(xlag

i ), Kc = e−w/δ cos(w/δ)

u′i =

√(
(w− xlag

i )/δ
)2
+ y2, ws

i = wlag
i sin(xlag

i ), Ks = e−w/δ sin(w/δ)

u′′i =

√(
(w+ xlag

i )/δ
)2
+ y2

In Section 5.6 we will analyze in detail the convergence and cost of this techniques, as a

function of the parameterGlag.

5.3.2 Linear decays:L−type contributions

When bothα∗i = α j = 0, there is no exponential contribution onx, andξx is lineal. Its contribu-

tion is best approximated by a Gauss-Jacobi quadrature rule [86]. As in the previous case, this

consists of another set ofG jac tabulated points and weightsx jac
i ,w jac

i such that

1∫
−1

(1− x)a(1+ x)b f (x) dx '
GJac∑
i=1

w jac
i f (x jac

i ) (5.15)

By settinga = 1,b = 0 and performing a linear shift inx for xi in (5.11), we obtain the rule:

w∫
0

(w− x)F(x, y) dx '
w2

4

G jac∑
i=1

w jac
i F

(w
2

(x jac
i + 1, y)

)
(5.16)

The exponential decay dominates the behavior of the whole integrand. Therefore, as long
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as there is one exponential decay along any axis, the integral is well approximated if the expo-

nentials are. In other words, the overall quality of the fit is not greatly affected by the accuracy

with which the linear part is approximates, i.e. the numberG jac. In practice, we have observed

that usingG jac ' 10 suffices for the desired precision; we study in depth this cost/accuracy

relationship in Section 5.6. These arguments apply to thex−component of the[V,V] integrals,

as well as one term of the[V,C] integrals (see Table 5.1).

5.3.3 Flat terms: L − L integral types

For the[H,V] integrals, the weight functions are,

ξx = eα
∗
i (w−x) − eα

∗
i x − κx

ξy = eβ j (h−y) − eβ jy − κy (5.17)

whereκx ≡ 1− exp(α∗i w), κy ≡ 1− exp(β jh).

The productξxξy can be split up three ways:

• anE − E term due to the product of the two exponentials of these weight functions;

• anE − L and anL − E terms coming from the cross-products of the two exponentials of

one function and the constant of the other;

• anL − L term springing from the product of the two constants in each function (in fact, it

is ”flat-flat”).

Note that theL − L term is the most significant one among the three contributions above.

This is because for this term, the weight function is a constant close to 1, whereas the other

terms have exponential decays which confine the integrand to a region of orderδ (for E − L) or

δ2 (for E − E). These two terms are handled with the techniques described in the two previous

sections. ForL − L, using a double Gauss-Jacobi rule would result in large errors due to the

integrable singularity at the origin (in the previous section, these errors were mitigated by the

presence of exponential decays).

In order to circumvent this complication, we switch to a polar coordinate system (Fig.5.4)ρ ≡
√

x2 + y2

φ ≡ arctan(y/x)
⇔

x = ρ cos(φ)

y = ρ sin(φ)
(5.18)

with the Jacobian given byρ. Therefore, the integrand goes to zero nearρ = 0, thus explicitly

removing the integrable singularity at the origin. The price for this change of variables is the
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ρ
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π/2
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φ

Figure 5.4: Integration domains forL − L same-conductor in cartesian (left) and polar variables
(right); the shaded regions are the excess that must be deduced from the total value (see text).

irregular shape of the new integration domain, represented by the unshaded region of Fig.5.4

(right).

To deal with this domain, we first integrate over the squareρ ∈ [0 , ρmax ≡
√

w2 + h2],

φ ∈ [0, π/2] domain, i.e. the quarter-circle in the original variables. Next, we need to estimate

the value of the contributions of the excess regions (shaded sections of Fig.5.4)

L(L−L)
i j = Ni jκxκy(C1 −C2) (5.19)

with

C1 ≡ 3t2 sinh−1
(
1
t

)
+ (t2 − 2)

√
1+ t2 + 2t3 + 2; (t ≡ `/ρmax)

C2 ≡

ρmax∫
h

cos−1
(
h
ρ

)
ρF(ρ) dρ +

ρmax∫
w

cos−1
(
w
ρ

)
ρF(ρ) dρ (5.20)

Each of the integrals inC2 is dealt with in the following manner (see Fig.5.5):

• ρF(ρ) is replaced by its Taylor approximation atρ = w and atρ = h, and the product of

these polynomials with the inverse trigonometric functions is analytically integrable;

• ρ cos−1(w/ρ) andρ cos−1(h/ρ) are replaced by their Taylor expansions atρ = ρmax and

the product of these polynomials withF(ρ) is analytically integrable;

• the cutting pointρc is determined, for each branch, as the intersection of the two polyno-
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Figure 5.5: Taylor approximation for the polar-variable integration of same-conductorL − L
terms (a); the resulting integrals (b, with inset showing detail); and error committed (c).

mials above4.

We exemplify point 1 above applied to the second integral in (5.20), being all the other

integrals (tedious but) similar in nature. In this case, we write

ρF(ρ) '
Ts∑

n=0

pn(ρ − w)n (5.21)

where the coefficientspn are combinations of sinh−1(`/w),
√

1+ w2/`2 and powers ofw/`. In

other words, this Taylor expansion demands only one transcendental function call. This expan-

sion is replaced in the example integral,

ρmax∫
ρc

cos−1
(
w
ρ

)
ρF(ρ) dρ '

K∑
n=0

pnIn (5.22)

where we have defined

4In practice,ρc is a function of the ratiosw/h andρmax/` which can be effortlessly tabulated and interpolated for
any arbitrary geometry; we will show this dependence in detail in Section 5.6.3.
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In ≡

ρmax∫
ρc

cos−1
(
w
ρ

)
(ρ − w)n dρ

= hn+1
n∑

i=0

 n

k

 (−1)n−i

1∫
uc

u−(i+2) cos−1(u) du (5.23)

anduc ≡ w/ρc.

The integrals inside the sum have analytical solutions which involve combinations of
√

1− u2
c,

tanh−1(
√

1− u2
c) and powers ofuc. Again, only one transcendental function call is necessary.

Hence, this recipe enables us to compute theL − L term in (5.17) with as few as 9 tran-

scendental function evaluations, 9 square roots, plus a limited number of elementary arithmetic

(additions and multiplications).

The key to the success of this scheme is that the Taylor expansions are carried out at a dis-

tance far away from the singularity, which itself is ”softened” by the Jacobian of the transforma-

tion ρ, forcing the whole integrand to go to zero at the origin; also important is the observation

that extending the order of these polynomials,Ts does not represent an important computational

burden, since only additional elementary arithmetic is added. Presently, we are working on ex-

tensions of this method in order to cover integrals with exponential decays (i.e.: to replace the

Gauss-Laguere and Gauss-Jacobi techniques of the previous section).

5.4 Different-conductor integrals

Compared to the same-conductor case, the integration domain for different conductors does not

share the symmetries that allow for the simple expressions as the ones shown in (5.10), except

for some limited situations5.

For example, thex−integral on the interval [x0 − w′, x0 + w] is divided into four terms: two

terms, ranging [x0−w′, x0+w−w′] and [x0, x0+w] of lengthw whose behavior (exponential or

linear) is given byα j ; plus two other terms, [x0 − w′, x0] and [x0 + w− w′, x0 + w] of lengthw′

whose behavior is given byα∗i . Thus the cost associated with each different-conductor integral

will be multiplied by a factor of 16 (worst-case, no symmetry on any axis) compared to the

same-conductor case.

Integrals for different conductors, however, permit more efficient approximations, as com-

pared due to same-conductor integrals, due to the absence of the singularity. Each of the poten-

tially 16 terms are significantly less expensive to compute. In practice, we apply the following

5For example, when both conductors belong to the same metal layer, theny0 = 0 andh = h′, thus simplifying the
integration domains for they−integration as if it were same-conductor.
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Figure 5.6: Taylor approximations for exponential terms in different-conductor integrals.

strategy:

5.4.1 Exponential contributions

Exponential contributions are integrated by carrying out a Taylor expansion of everything but

the exponential term. This a reasonable strategy, if we observe that, in the presence of an

exponential decay, the integrand will be very peaked at the maximum value of the exponential.

In this section, we analyze integrands with a double exponential contribution along an axis,

such as thex−integral for[H,H] and[H,C] types, they−integral for[V,V] and[H,V] types, and

both integrals for[C,C] types. The case of a single exponential contribution is described briefly

in Section 5.4.3

For example, consider anx-integral with a double exponential (see Fig.5.6): we expand

F(x, y) '
∑

pn(x − xp)n around theρp = ρ(xp, y); the location of the peaksxp depend on the

side from which the two modes decay6:

6The value ofy in the definition forρp depends on whether they-integration has an exponential decay or not:
in the first case, we are actually dealing with a 2-d Taylor expansion; in the second case,y-dependence is linear (or
flat), and the integral is evaluated at certain discrete points (see Sec.5.4.2).
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(E,E) ↔ xp = x0

(W,W) ↔ xp = x0 + w− w′

(E,W) ↔ xp = x0 + w− ε

(W,E) ↔ xp = x0 − w′ + ε (5.24)

In other words, the peak is located atx0 if both modes decay from the left, and is shifted by

w if the α∗i decays from the opposite side, and by−w′ if α j does so. The displacementsε for

the ”mixed” cases occur because the integration domain is of area zero at the location of these

peaks: the change of coordinates forcesξx to vanish at the extremesx0 −w′ andx0 +w. Hence,

the peaks cannot be located exactly at the extremes. Instead, they correspond to the maxima of

ξx in the vicinity of the corresponding extreme, given by the solution to the equation,

e±(α∗i +α j )ε =
α∗i
α j

(5.25)

where the “-” is for (E,W) and the “+” is for (W,E) integrals.

Thex-integral along this axis reduces to:

w∫
−w′

ξx(x)F (ρ̂(x+ x0, y+ y0)) dx '
Td∑

n=0

pnJn (5.26)

where the expansion coefficients are,

pn ≡
1
n!

∂nF(x, y)
∂xn

∣∣∣∣∣
x=xp

p0 = `

(
log(t +

√
1+ t2) −

t

1+
√

1+ t2

)
p1 = −

cpt2

1+
√

1+ t2

p2 =
t

2`

 (1− c2
p)t2

1+
√

1+ t2
+

c2
pt2

√
1+ t2

 ; etc. (5.27)

with t ≡ `/ρp andcp ≡ xp/ρp; in (5.26) we have also defined:

Jn ≡

w∫
−w′

(x− xp)n
(
γ1(x)eα

∗
i x + γ2(x)e−α j x

)
dx (5.28)

The functionsγ1, γ2 are defined in (5.6), and are responsible for the “peaked” behavior.
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Concerning the integrals in (5.26), they are computed analytically using the following recursion:

Jn = Cn +C′n

Cn ≡

w∫
−w′

(x− xp)nγ1eα
∗
i x dx =

1
α

(Kn − nCn−1)

C′n ≡

w∫
−w′

(x− xp)nγ2e−α j x dx =
1
α′

(Kn − nC′n−1) (5.29)

with

Kn = δn0 − wneα
∗
i w − (−w′)neα

∗
i w + (w− w′)neα

∗
i w+α∗i w

This simple expansion permits the computation of these integrals with very few transcen-

dental function evaluations (notice that the coefficientspn in (5.27) contain only one logarithm

and one square root, and evaluation of all theJn demand only two exponentials). A detailed

analysis of the cost and performance of this method is contained in Sections 5.6 and 5.7.

5.4.2 Linear or Flat contributions

Weight functionsξx corresponding to integrals of type[V,V] are trapezoidal, composed of two

linear intervals of lengthw< plus one flat one of lengthw>, wherew>(<) is the larger (smaller)

of w,w′, eq. (5.5).

In contrast to the case of exponential decays, these integrals do not contain peaked weight

functions. Therefore the arguments leading to a Taylor approximation do not hold.

Nevertheless, since we are in the case of different conductors, the functionF is very regular,

and thus we are safe to adopt quadrature rules in order to estimate these integrals. Linear inter-

vals are integrated with aG− point Gauss-Jacobi quadrature rule, as in Section 5.3.2, whereas

flat contributions are integrated with aGd− point Gauss-Legendre quadrature rule [86], which

is a simplified version of Gauss-Jacobi witha = b = 0 in (5.15).

Due to the smooth behavior ofF, we found that the required numberGd is generally very

small (Gd = 3 turned out to be sufficient for all of the examples we studied). In Section 5.6, we

support this claim rigorously.

5.4.3 Mixed Flat/Exponential

Special care must be taken for integrals that contain both flat and exponential terms, such as the

x−integral for[H,V] or [V,C] types.
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Here, we must separate the different kinds of terms in order to capture the correct behavior

for each, and apply the corresponding method. The complication is in discriminating expo-

nential terms from and the linear/flat ones, in order to isolate them and apply the appropriate

techniques: Taylor approximations as in Section 5.4.1 for the first ones, Gaussian quadratures

as in Section 5.4.2 for the second. For example, consider the (E,S) integral, belonging to type

[H,V], i.e. α∗i = 0, β j = 0. We can write the whole integrand as,

L = Ni j

{ 0∫
−w′

h∫
0

[
F(ρ) − F(ρw) − F(ρ−h′) + F(ρw,−h′)

]
e−α j x+β∗i y dx dy

+

w∫
0

h∫
0

[
F(ρ) − F(ρ−h′) +

(
F(ρ−w′,−h′) − F(ρ−w′)

)
eα jw]

eβ
∗
i y dx dy

+

0∫
−w′

0∫
−h′

[
F(ρ) − F(ρw) +

(
F(ρw,h) − F(ρh)

)
eβ
∗
i h
]
eα j x dx dy (5.30)

+

w∫
0

0∫
−h′

[
F(ρ) − F(ρh)eβ

∗
i h +

(
F(ρ−w′,−h′)e

β∗i h − F(ρ−w′)
)
eα jw

]
eβ
∗
i y dx dy

}

where we have introduced a notation with subindices for displaced distances: for example

ρ−w′ =
√

(x+ x0 − w′)2 + (y+ y0)2, ρw,−h′ =
√

(x+ x0 + w)2 + (y+ y0 − h′)2, etc.

In this last expression, we are showing explicitly the different contributions: the first term is

a double-exponentialE − E, the second isL − E, the thirdE − L and the fourthL − L. Thus,

the whole integral is decomposed into 16 terms: 4 Taylor-Taylor, 8 mixed Taylor-Gaussian,

and 4 Gaussian-Gaussian types of integrals. In terms of performance, this decomposition is not

expensive compared to the global runtime, since the Taylor expansions are evaluated extremely

fast, and it is sufficient to take as low as 3 evaluation points for different-conductor Gaussian

quadratures; a thorough analysis of these costs is included in Section 5.6.

5.5 Code organization: Integral calculation blocks

We are now able to complete the description of the flow of the conduction modes method, by

expanding in detail the two integration blocks contained in the flow in Fig.4.6.

These details are contained in the flows in Figs.5.7 and 5.8. They reflect the calculations

that have been detailed, for theRL/MQS case, in this chapter. Extensions to theRLC case will

be discussed in the following chapter.
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Figure 5.7: Flow for the computation of a matrix block for the same conductor.
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Figure 5.8: Flow for the computation of a matrix block for the different conductors.
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5.6 Performance/accuracy analysis

Throughout the previous section, we have introduced several techniques for dealing with spe-

cific integrals. All of these techniques involve some parameter that determines the perfor-

mance/accuracy trade-off for that particular calculation.

These parameters are:

• Glag: number of points in the Gauss-Laguerre quadrature rule for same-conductor inte-

grals with exponential decays; we will discriminate betweenG(s)
lag for the case when there

is exponential decays in only one dimension, andG(d)
lag when the decay is on both dimen-

sions.

• G jac: number of points in the Gauss-Jacobi quadrature rule for linear/flat contributions.

• Ts: order of Taylor polynomials for theL−L term in the same-conductor integrals of type

[H,V].

• Td: order of Taylor polynomials for the different-conductor integrals.

• Gd: number of points in the Gauss-Jacobi and Gauss-Legendre quadrature rules for linear

and flat terms in different-conductor integrals.

• ρcut: the cut-off value where the two polar expansions are joined for same-integral flat

terms.

The impact of these parameters must also be wieghted by the number of times they appear

in evaluation of integrals. For example, we have seen that using the methods in Section 5.4 we

can account for all the contributions for each type of integral in table (5.1). The number of calls

to transcendental functionsNcalls is given by,

Ncalls = 4
(
G jacNL +G2

jacNLL + NEE

)
=



4+ 8G jac + 4G2
jac [H,V]

16G jac [H,H]

4+ 8G jac [H,C]

16 [C,C]

(5.31)

whereNE is the number of terms with a single linear (L − F, F − L) contribution,NLL is the

number ofL − L terms, andNEE is the number ofE − E terms. (Taylor contributions cost

only one call, since the exponentials for each modej can be evaluated once per mode at setup

time, stored and reused for every matrix elementL ji ). Similar decompositions hold for same-

conductor integrals.
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In this section, we will analyze in detail the convergence of integrals with respect to these

parameters. In carrying out these analyses, we will compare against the two different references

mentioned in the introduction to this chapter: Monte Carlo (MC) [89] and Adaptive Quadrature

(AQ) [87].

In order to avoid bias associated with different integration method, as well as the overheads

they incur, we will use, for comparison of performance, the number of CPU cycles. This num-

ber is obtained using standard tools; we adopt thequantifypackage from IBM/Rational [90].

Although this cycle count is both machine- and compiler-dependent, it provides an easily im-

plementable way of avoiding an expensive comprehensive search through all the instructions

and sub-instructions of each of the methods.

Concerning the source of improvements in runtimes with respect to these standard methods,

they have two distinct components:

1. the main source of savings derives from the approximation of the integrals for different

conductors, which is controlled by the parametersGd andTd (see Section 5.4);

2. the reduced runtime is then dominated by the same-conductor integrals, and further gains

are obtained by applying the approximations for same-conductor integrals, withGlag as

the critical parameter (see Section 5.3).

In the rest of this section, we will analyze, separately and in detail, the impact of the integrals

and parameters enumerated above. Overall runtimes are found in next section.

5.6.1 Td and Gd sensitivity

Approximation of integrals for different conductors involves two parameters that determine the

performance/accuracy trade-off (see Section 5.4):Td, the order of the Taylor expansions for the

functionF(ρ) for exponential contributions; andGd, the number of values taken for each linear

interval. In this section, we show that for our purposes, it suffices to setGd = 3 andTd = 2.

Computing this integral demands the evaluation of an order-Td Taylor polynomial at 3Gd

points on thex-axis, according to the Gauss-LegendreGd-point rules:Gd within [x0 − w′, x0],

plusGd in [x0, x0 + w− w′], andGd in [x0, x0 + w].

In terms of cost, parameterTd has no incidence on the total cost of integration, for the range

0 ≤ Td ≤ 3. This was verified by obtaining exactly the same number of cycles inquantify[90]

for all values ofTd in this range. The reason is that, forn > 0, the Taylor coefficients pn,

eq.(5.27), and the analytic integralsJn, eq.(5.29), only require transcendental function evalua-

tions already included inp0 and J0. They only add more elementary arithmetic that does not

affect the total CPU cycle count7.

7This is an empirical observation, tested on several different processors, as well as compilers.



5.6. Performance/accuracy analysis 129

0 1 2
% error

102

103

104

105

106

107

C
PU

 c
yc

le
s

100 Ghz

0 0.5 1
% error

102

103

104

105

106

107

C
PU

 c
yc

le
s

Monte Carlo
Adaptive quadrature
Taylor/Jacobi

10 Ghz

1µ0.2µ

2µ

1µ

1µ

0.1µ
50µ

Figure 5.9: Accuracy/cost trade-off of Taylor-Jacobi integration for different-conductor inte-
grals, varying the parameterGd ∈ [1,7] and fixingTd = 3, compared to adaptive quadrature
and Monte Carlo methods: at 10GHz(left) and 100GHz(right), for the configuration shown at
right.

On the other hand, the CPU cycle count depends linearly onGd, which is evident from

observing that each point in the Gauss-Jacobi rule demands one Taylor expansion.

Fig. 5.9 displays an extreme situation, whereby the two modes participating in the integral

show exponential decays from borders separated by 0.1µ. The integrals are computed at 10GHz

and 100GHzand the material of both wires is copper, i.e.δ ' 0.66µ andδ ' 0.21µ respectively.

For this configuration, we compare the cost and accuracy of our approximations against the

standard references: fixingTd = 3, we varyGd in the range 1≤ Gd ≤ 7, and plot the error,

defined as the variation from a reference obtained with AQ in high precision mode. For AQ, we

modify the maximum number of calls to the integrand within the allowed ranges8 and compute

the error in the same manner.

Both of these methods are deterministic, and therefore the error for a value at a certain

precision level is the difference between this value and the asymptotic exact value. On the other

hand, MC is stochastic; for any level of precision (i.e number of function calls, which we vary

from 104 to 2×105), we compute the same integral a large number of times9 and define the error

as the standard deviation for the distribution of values.

The plots in Fig. 5.9 show more than 2 orders of magnitude improvement, with respect to

AQ, by applying the Taylor/Jacobi method, and more than 3 orders of magnitude with respect

to MC. The detailed behavior of errors with respect to the parametersGd,Td is shown in Fig.

5.10. We observe the following:

8For 2-dimensional integrals, the minimum number of calls in BDCUHRE [87] is hard-wired at 195, which
correspond to the minimum precision/lowest CPU cycles of the AQ data in Figs. 5.9 and 5.12.

9Nearly normal distributions are always obtained, with as few as 1000 values.
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• errors become insensitive toGd for Gd ≥ 3 at 10GHz; the same holds withTd=0,1,2 at

100GHz;

• order-2 and order-1 Taylor expansions show insignificant differences at 100 GHz (where

δ � w,h for both conductors);

• at 100 GHz, and for low values ofGd, order-3 Taylor deviated further than order-2 and

order-1;

• for practical purposes, we are satisfied with errors smaller than 1%, so that settingGd = 3

andTd = 2 is appropriate for all cases.

The apparent contradiction of the second and third points above are explained by analyzing

in detail the origin of errors for the Taylor approximation. As mentioned in Section 5.4, the

weight functionξy, is peaked atyp = y0+h−ε (see eq.(5.25) and Fig.5.6b). For the configuration

we are presently considering,yp ' 0.53µ at 10 GHz andyp ' 0.26µ at 100 GHz. Taylor

coefficients are evaluated at this value.

In Fig.5.11, we investigate in detail the behavior of these approximations for different re-

gions of the integration domain. First we choose three values of thex-variable (i.e. the “linear”

dimension, in the sense that there is no exponential decay onx). These three values correspond

to x0−w′,0, x0+w (the two extremes of the interval, and the minimum value). For each of these

values, we plot - on the top graphs of Fig.5.11 - the different orders of Taylor approximations

centered atyp, ranging from the constant (Td = 0) to the cubic function (Td = 3). We point out

that, in the vicinity ofyp, the approximation always improves with increasing order, as expected.

However, for largey-separations from the peak, and particularly for the smallest value of

x, the higher-order Taylor approximations deviate more than the lower-order ones. This is

expected, sinceF(ρ) becomes steeper asx decreases, thereby raising the contributions of the

higher-order derivatives, and thus the errors in the Taylor approximations. Strictly speaking, the

radius of convergence for this expansion atx = 0 is yp: the Taylor series does not converge to

the original function for|y− yp| > yp.

Since we are concerned with approximating the whole integrand, which includes the peaked

weight functionξy, we also plot - on the lower graphs of Fig.5.11- the incidence of the errors

discussed above10. The values of the original integrand are included as dashed lines, in order

to compare magnitude of the errors with the value being estimated. We can observe that all

errors vanish atyp and the zeroes ofξy (these occur at intervals ofπδ ' 0.657µ). For thex = 0

plots, there is a second peak contributing to the error for the higher-order approximations. These

errors, associated to the higher-order approximations, can be reduced by carrying out another

10The relationship between the errors in these graphs and the ones at the bottom graph of Fig.5.10 is that the latter
are a numerical integration of the former, using a 3×Gd Gauss-Legendre rule.
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at 10 GHz, modes decaying from opposite side, aspect ratio of 2.

Taylor expansion at these secondary peaks, and joining the two expansions at the intermediate

zero ofξy. The cost increase is a factor 2. The main conclusion from this discussion is that

higher-order Taylor terms do not necessarily improve the convergence, and can actually deteri-

orate it, if they are included “blindly”. Although we have not encountered such situations, the

necessity of the second-peak expansion depends on the relationship between the abscissas at the

first and second peaks. We have repeated the exercise in this figures for separations as low as

10−3µ, (i.e. less than 1/100th of a skin depth at 100 GHz), and errors remain bounded by 1%.

5.6.2 Glag sensitivity

For same-conductor integrals, we concentrate on the sensitivity toGlag (the number of points in

the Gauss-Laguerre rules, eq. (5.12)). By increasing this number, we increase also the number

of calls to the function, as well as the precision.

In Fig.5.12 we compare, against the standard AQ and MC methods, the convergence of the

Gauss-Laguerre integration method for values ofGlag ranging from 3 to 28, for the (W,W) inte-

gral of a conductor of dimensions 1µ× 5µ× 50µ, at a 10GHzand 100GHz. The determination

of the errors in these graphs is the same as in the previous section.

From the results in Fig.5.12a, we conclude that the Gauss-Laguerre approximation of Sec-

tion 5.3 improves one order of magnitude with respect to the better of the two standard integra-

tion methods.

As mentioned in Section 5.3.2, the efficiency of the Gauss-Laguerre strategy relies on the

dominance of the order-δ exponential decay inside the conductors. Therefore, we expect the
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Figure 5.13: Errors for polar variables method applied to the flat integrals for [H,V] types, as a
function ofρc and aspect ratiow/h, and for two different lengths:L = 10µ(a) andL = 1000µ(b).

savings shown in the previous graphs to increase with frequency. This is in fact the case: in

Fig.5.12b we show that the savings are inferior when we decrease one decade. Also, we point

out that the aspect ratio for this second example is 2 (instead of 5 for the previous case); we have

observed that the standard integration methods improve as the aspect ratio decreases.

Other parameters that affect same-conductor integrals are:G jac, number of points for Gauss-

Jacobi in the case of same conductors, which plays the same role asGd above, so we omit a

special treatment (in practiceG jac ' 7 is sufficient for any desired level of accuracy); andTs,

the order of Taylor approximations for the polar-variable integrals, which does not affect the

cost (same argument as forTd above), and we keep fixed at 4; andρc, which is analyzed next.

5.6.3 ρc sensitivity

In computing the flatL − L term for [H,V] same-conductor integrals, we carry out two Taylor

expansions in the polar variableρ, and joined these expansions at a valueρc (see Sec. 5.3.3).

As in the previous Taylor expansions for different conductors, the cost of the expansions

does not vary significantly with the order of the polynomials. Again, this is because higher

orders only add elementary arithmetic, but do not require new transcendental function evalua-

tions. For all our calculations, we set the order of these expansion to 4, incurring in 13 such

evaluations, 7 square roots, plus sums and multiplications in a number that does not exceed 100.

By comparison, the AQ method needs, on average several thousand integrand evaluations,

with one transcendental function call for each of these. In terms of CPU cycles, we observe three

orders of magnitude improvement, fromO(105) to O(102). We do not plot these comparisons,

since there are no control parameters to regulate the number of calls in our approximation.

Concerning the errors for this calculation, we point out that they are sensitive to the choice
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of ρc. There are basically two variables that determine the optimal choice ofρc: lengthL and

the aspect ratiow/h.

In Fig. 5.13 we plot these errors for two different values ofL, as a function ofρc andw/h.

Reference data is obtained with AQ integration. We observe that errors are minimized along

a curveρc(w/h) (in fact, they vanish, due to a change of sign). Minimization of errors defines

a functional dependence forρcut(w, L), which we plot in Fig. 5.14. The smoothness of these

functions suggest that they can be tabulated for interpolation at arbitrary geometries, or also

fitted to a model11. Using linear interpolation, we are able to obtain errors below 0.1 % for a

wide spectrum of aspect ratios and lengths.

5.7 Examples

For RL/MQS extraction, we will always compare our results and runtimes against FastHenry

[15]. It is a filament-based approach that decomposes conductors into a user-specified number

of filaments whose dimensions can be tuned so as to capture greater detail near the conductors’

surfaces. Concerning the use of FastHenry, we clarify that there are two options for tuning its

performance:

• Solver type: can be either GMRES iterative, or LU decomposition; the advantage of the

first ones is that for very large sizes, the cost grows, as a function of sizeN, like kN2,

11No satisfactory fit has been found yet; on the other hand, tabulation of the curves in Fig. 5.14 is straightforward.
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wherek is the average number of iterations; this is to be compared to theN3 growth of

direct methods [86].

• Multipole acceleration: FastHenry can avoid direct matrix product by carrying out a mul-

tipole expansion; for very large system size, this can lead to significant space and per-

formance improvements; this expansion conserves accuracy as long as wires are short; in

practice, this condition demands a refinement which increases the total number of fila-

ments12.

Optimal choice of these options depends on the size and structure of the underlying linear

system. For small number of closely-packed filaments, it is advantageous to use LU decompo-

sition, and to avoid the size increase due to the multipole refinement. With growing number of

filaments, the comparative cost of solving the system becomes dominant, and it is convenient

to switch to iterative methods. Since these carry out a large number of matrix-vector multi-

plications, it may be also be convenient to perform the multipole acceleration, despite the size

increase demanded by the refinement. Another important feature of the multipole refinement is

that it also produces, as a by-product, a preconditioner for the system matrix, which decreases

the numberk of iterations.

The first example is a large exploration of simple configurations, in order to validate the

use of 4 side conduction modes per conductor; we use FastHenry in its default mode so as to

assure accurate values; the other two examples are of two different sizes: first we show a small

example of one signal wire with three parallel return paths; then we show a large power-and-

ground grid example consisting of 215 wires. For the first one, the multipole acceleration is

counterproductive, due to the increase in size. For the second one, this decision depends on the

level of discretization. Choice of solvers depends, in both cases, on the number of filaments.

5.7.1 Configuration space exploration

First, we concentrate on the validity of the conductions modes method, by randomly exploring

a large configuration space and computing the error of our method. As such, this verification

does not concentrate on the specific numerical expressions developed in the previous sections,

but is rather a “proof of concept” for the method. We obtain the same figures whether we

use our approximation or a numerical integrator, such as the Adaptive Quadrature method [87]

described above; FastHenry is used in its default mode. The following two examples focus on

the gains accomplished by the recipes in this chapter.

We consider, as a “building block” for this exploration, loops of two wire, since any arbitrary

configuration can be described in terms of these blocks. The guidelines are as follows:

12In FastHenry, the total size of the systemN is the number of meshes, which is related to the number of filaments
throughN = nf +ns+nc−1, wherenf ,ns andnc are the numbers of filaments, sources, and conductors, respectively.
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Figure 5.15: Distribution of errors for the random parameter space exploration: we show the
normalized error histograms for 10000 two-wire configurations, at 10 GHz (top left), 50 GHz
(top middle), 100 GHz (top right); as well as a detail of low-and high-error tails of the cumulative
histograms, showing that, for all three frequencies, more that 95% of the configurations have
errors lower than 5%(Note the logarithmic scale on the y-axis of the histograms).
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1. We restrict to two-wire configurations, and establish|Zloop| = |Rloop+ jωLloop|, the modu-

lus of the impedance of the loop formed by these two wires, as the magnitude of reference

(Zloop is the impedance computed for a bundle in eq.(2.11), section 2.2).

2. We fix the thickness of the two conductors at 1µ, material copper, and three frequencies:

10, 50 and 100 GHz (i.e.:h is approximately 1.5δ, 3δ, and 5δ, respectively).

3. We construct 10000 configurations at random, by choosing random values for the widths,

lengths, and separations, within the ranges to13:

w1,2 ∈ [1,10]µ; xsep, ysep ∈ [0,25]µ; `1,2 ∈ [10,50]µ

4. For each configuration, we compute the relative error inZloop, using the conduction modes

method, with respect to FastHenry at high precision.

5. We plot the histogram of these errors, as well as the percentile errors.

6. We investigate in depth the origin of the outliers.

In Fig.5.15 we show the distribution of errors for these parameter sweeps. We carry out the

exploration for 10, 50 and 100 GHz, and observe that for all three cases, very few configurations

show significant errors. Quantitatively, we can say that less than 5% of the configurations have

significant errors, at 100 GHz; this number improves for lower frequencies: about 3% for 50

GHz and less than 2% for 10 GHz.

We have found that the outliers of these histograms correspond to configurations in which

there is a large difference between the widths of the two wires, as well as a non-negligible

overlap in thex-extensions. This situation, which further deteriorates with increasing frequency,

is related to the major drawback within the conduction modes method: since they are functions

defined for the whole conductor, they cannot capture effects due to the localization of currents

at intermediate positions along a cross-sectional dimension. Typical example for this picture are

the ground planes. The solution to this problem requires splitting the wide conductors in order

to capture these details. This is a necessary task that is not yet developed; we discuss in Section

6.5 the issues concerning such an implementation.

We also observe that, on the low-error region of the distributions, the values for 100 GHz

are slightly better than the ones for the lower frequencies. This is compatible with the funda-

mental concept behind conduction modes, which is to efficiently capture high frequency current

crowding.

13Apart from these restrictions, we also impose the physical constraint that the volumes of the conductors do not
overlap
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Figure 5.17: Loop inductance and resistance behavior for the example 5.16, comparing 4 con-
duction modes against FastHenry at high precision.

5.7.2 Bundle example

Consider the test example shown in Fig.5.16. It corresponds to a typical bundle example, con-

sisting of one signal wire (darker shading in the figure) and three return paths.

We compute the loop impedance and use FastHenry, with each wire decomposed into 81

filaments as reference for accuracy; this comparison is shown in Fig.5.17. The total size of

the linear system contains 324 unknowns in FastHenry vs 16 for CM. The graphs on Fig.5.18

contain the percentage error for this curve, compared against data issuing from FastHenry with

increasing precision levels.

Note that errors for the CM method are small for inductance at high frequencies and for

resistance at low. This corresponds to the relative importance of each magnitude: for this exam-

ple,ωL/R ' 1 at 10GHzandωL/R ' 0.1 and at 100GHz. The precision of CM, using only

4 modes per conductor, is comparable to that of 7×7 for high frequency inductance, where it is

important.
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Figure 5.18: Relative errors against reference, for different levels of FastHenry precision and 4
conduction modes per conductor.

Run times for the above example, comparing against different levels of accuracy for Fas-

tHenry, are displayed in the first column of Table 5.2. They were all computed on a Xeon

3.0GHz processor, averaging over 100 identical calls for each method, for the configuration

at 100GHz (runtime values are insensitive to frequency). The runtimes show less than 0.5%

dispersion. Concerning the FastHenry computations, they were all performed without the mul-

tipole refinement, owing to the observation that, for this configuration, refinement involves a

multiplication in size by a factor 8. For the solver, the first three entries in the table were done

with LU decomposition, whereas the last one was done with GMRES.

For the conduction modes runtimes, we observe that one order of magnitude is gained, with

respect to the AQ numerical integration, in applying the Taylor approximations for different

conductors; with respect to this reduced runtime, a further order of magnitude is obtained by

applying the same-conductor methods. Compared to the same-precision level of FastHenry,

there is an improvement of two orders of magnitude in total runtime.

5.7.3 Power and ground grid

We next consider a larger example, consisting of a configuration representing a power and

ground grid, Fig. 5.19. Total dimensions are 1mm× 1mm, with 5 wires in each grid. The

orientation of the wires in the top grid is perpendicular to the orientation of wires for the lower

grid. The cross sectional dimensions are 5µ × 2µ for the top grid, and 10µ × 2µ for the lower

one. Separation between the two grids is 10µ.

In order to model a power glitch for this structure, we place an AC current source between

one node of the grid, e.g, the one located on the second wire of the top grid and the third wire

of the lower one (x = 500µ, y = 250µ). This excitation is the input for a circuit simulation
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Figure 5.19: Configuration for the power and ground grid example ofRL extraction.
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Figure 5.20: Input impedance for the power and ground grid example in Fig. 5.19, showing
the first resonant peaks. Data forRL Conduction Modes is compared against FastHenry for
different filament discretizations; insets at right show details near the peaks. Capacitance is
extracted with FastCap.
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using Eldo [53], consisting of 214 segments joining 208 nodes, resulting from the discretization

shown in Fig. 5.19, with long wires split up into 15 segments and short ones into 4. This

discretization assures that all segments are electrically small up to frequencies of order 100

GHz(i.e. λ ' 3mm). We compute the impedance of the grid as the ratio between the voltage at

the excited node and the input current.

Capacitance among these segments is extracted with a discrete ES solver, FastCap [14] with

a total number of 67584 panels. We compare for different methods ofRandL extraction. In Fig.

5.20, we observe that CM precision for this case is better that of FastHenry at 7×7 filaments per

conductor (as in the previous example, we consider the 9×9 discretization as reference).

Runtimes for this example are shown in the last two columns of Table 5.2. FastHenry com-

putations, for this case, were done with multipole acceleration and GMRES, for the three more

accurate cases; for the 3×3 discretization, LU decomposition without multipole acceleration

was optimal.

As in the previous case, we obtain two orders of magnitude improvement in runtimes, with

respect to numerical integrations as well as compared to similar-accuracy FastHenry results.

Contrary to the previous example, the gains for performing only the different-conductor approx-

imations are very close to the ones for the full approximations. This is due to the fact that the

savings for same-conductor integrals grow linearly with the number of conductors, whereas the

ones for different-conductor integrals grow quadratically; a detailed cost estimation is included

at the end of next section.

Table 5.2: Sizes and Runtimes for the different methods considered: ”CM Taylor” refers to the
savings obtained with the different-conductor approximations (Section 5.4); ”CM Taylor/Gauss”
refers to the complete approximations in this chapter; ”CM - AQ” is using AQ algorithm for all
integrals.

Method Size Runtime (ms) Size Runtime (s)
Bundle Bundle Grid Grid

FastHenry 9x9 324 1185.3 21,834 4199
FastHenry 7x7 196 500.1 12,936 1718
FastHenry 5x5 100 150.9 6,600 633
FastHenry 3x3 36 25.6 1944 62
CM - AQ 16 949.0 860 2925.11
CM Taylor 16 130.1 860 31.65
CM Taylor/Gauss 16 6.5 860 23.19
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5.8 Discussion

In the previous section, we have verified empirically that conduction modes introduces two or-

ders of magnitude improvement with respect to similar-accuracy filament-based methods; sim-

ilar comparison is established against the use of conduction modes with standard numerical

integration methods.

An important difference between the two examples lies in the impact of solve runtimetsolve

with respect to the total runtimes expressed in Table 5.2. For the bundle example,tsolve is

completely negligible (less than 1% and therefore difficult to measure); whereas for the grid, it

is 6.67 sec, i.e. 30% of total runtime. This is expected, since this contribution grow cubically

with increasing number of conduction modes. For 860 modes, this contribution is still not

critical, but for much larger configurations, an iterative solver should be considered.

On the other hand, for a filament-based approach, and for equivalent levels of accuracy, the

size of the system is such that cost is dominated bytsolve.

The most relevant feature of the conduction modes method is the savings in size, which

are a factor 15 for the conduction modes with respect to FastHenry. This is similar to the ones

reported in [32]. These savings are of a fundamental nature, as they respond to the fact that the

conduction modes functions represent a more compact model, compared to piecewise-constant

filaments, of the physical phenomenon related to skin effect.

Here, we have effectively translated these gains in system size into gains in runtime. For

larger systems, with runtimes dominated bytsolve, these gains will depend on the solver method:

if a factor 15 is maintained in size savings, then a factor 15k is expected for runtimes, with

k the order of complexity for the solve method. This explains the two orders of magnitude

improvement, for runtimes, with respect to FastHenry.

For very large problems, accelerated solvers are necessary even when using conductions

modes. As mentioned above, these to linear cost intsolve, i.e. k ' 1. The arguments of the previ-

ous paragraphs indicate that we would expect, when using conduction modes for these cases, to

obtain a linear relationship between the savings in size and in runtime. However, these savings

should in fact be larger, owing to the fact that accelerated solvers must always treat a certain

number of closely-interacting wires in the direct manner, withk = 3 for that part of the calcula-

tion [91]. Modeling with conduction modes reduces the size of all the components of the model,

whether they interact closely or not. Assuming a factor 15 in size savings, the total runtime sav-

ings will result from a a (geometry-dependent) average between a factor 15 for the cost of the

accelerated interactions, and 153 for the non-accelerated ones. Thus, conduction modes obtains

better-than-linear improvements in performance, even in the presence of accelerated solvers.

With respect to standard numerical integration methods, the origin of the runtime savings

shown in Table 5.2 can be illustrated in the following manner: consider, for the sake of simplic-
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ity, that each element computed with the numerical AQ integration has a costQ, and that the

savings for each different-conductor approximation reduces this cost by a factorKd, whereas

this factor isKs for the case of same-conductor integrals (we have shown representative exam-

ples in Section 5.6, whereKd ≥ O(102) andKs = O(10)). Then the costs associated with each

of the conduction modes implementations are:

C(AQ) =
Q
2

(
N2 + N

)
C(D) =

Q
2Kd

(
N2 + KdN(m+ 1)

)
(5.32)

C(S/D) =
Q

2Kd

(
N2 +

Kd

Ks
N(m+ 1)

)
where the supraindices indicate the different approximation methods presented in this chapter:

“D” is for only different-conductor, and ”S/D” is for both the full acceleration scheme;N is

the total number of modes, andm is the number of modes per conductor, as in (5.2). Thus the

savings, are

S(D) =

(
1+ N−1

1+ Kd(m+ 1)N−1

)
Kd

S(S/D) =

(
1+ N−1

1+ Kd(m+ 1)(KsN)−1

)
Kd (5.33)

For very largeN, both of these values go asymptotically toKd with a N−1 behavior; the rate

of this tendency is a factorKs larger forS(S/D) than forS(S). This is precisely the situation for

the power and ground grid example.

Instead, for relatively small values ofN (compared toKd), the savings are of orderN/(m+1)

for S(S) and KsN/(m + 1) for S(S/D). This represents the figures for the bundle example14.

The two order of magnitude savings for this example have a great impact in the cost of high-

frequency extraction, where a large number of configurations with few wires must be considered.

Concerning future work, further savings can be obtained, specifically for the same-conductor

integrals, in precomputing them and applying an interpolation or parametrization techniques.

We briefly discuss this subject in Section 6.3. Also, a systematic treatment of the outliers in Fig.

5.15 is necessary; this will be briefly discussed in Section 6.5.

14In fact, these values are enhanced by the application of the symmetries discussed in Section 5.1, having the
effect of eliminating the factors (m+ 1) in the second and third lines in eq.(5.32).





Généralisation des modes de

conduction

Résuḿe en français

Ce chapitre est consacré au sujet de l’implémentation de la méthode RLC des modes de con-

duction, avec l’objectif de voir si celle-ci peut être étendue pour atteindre un solutionneur

électromagnétique d’onde complet très efficace. Les modifications et/ou additions nécessaires

pour cette tâche se situent à trois niveaux : en première instance, l’adaptation des méthodes

efficaces d’intégration développées au chapitre 5 dans le domaine RL/MQS à celui RLC−onde

complete (sections 6.1-6.3) ; deuxièmement, la description d’une gamme plus étendue des

phénomènes que ceux présentés au chapitre 4, ce qui demande l’extension des bases des modes

de conductions (section 6.4); finalement, la compréhension des géométries arbitraires (section

6.5). Une quatrième source de modifications, qui n’est pas discutée dans cette thèse est celle

associée aux médias multicouches tels que le substrat ou les configurations à diélectriques mul-

tiples. Nous renvoyons, pour cette tâche, à la littérature portant sur des méthodes de fonction

de Green équivalente. Le contenu de ce chapitre est la traduction d’un travail en cours, aussi

bien que des propositions de travail pour l’avenir. En tant que tels, nous utiliserons souvent des

arguments intuitifs résultant du raisonnement physique d’un côté, et de notre expérience avec

les modes de conduction de l’autre. En ce sens, ce chapitre peut être considéré comme une

discussion générale sur les méthodes présentées dans les deux chapitres précédents.
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Chapter 6

Generalization of conduction modes

This chapter is dedicated to issues concerning implementation ofRLC conduction modes. The

objective is to address the question of whether this methodology can be expanded into an ef-

ficient fullwave Electromagnetic solver. So far, we have developed a method for modeling

currents inside the conductors’ volume and charges on its surfaces, and presented examples of

significant savings for a certain type of structure, namely the TL-type of configuration. Fur-

thermore, we have shown in the previous chapter that, forRL/MQS extraction, this can be

implemented in an extremely efficient manner. The aim is to be able to obtain savings, in size

and computation, for more general type of problems.

The modifications and/or additions necessary for upgrading this tool into an EM solver come

in three general categories:

• RLC efficiency: going from theRL/MQS to RLC demands inclusion ofP elements, as

well as an increase in the complexity in computing theL matrix elements; in Sections 6.1,

6.2 and 6.3, we immerse into this complexity, and devise an efficient strategy to carry out

these calculations.

• Generalized waves:in Chapter 4 we constructed theRLCconduction mode basis retain-

ing only quasi-TEM-type modes with net current entering the conductors; we consider,

in Section 6.4, what kind of modes must be included in order to obtain a more general

description.

• Arbitrary geometry: only Manhattan-type geometry has been developed so far; the gen-

eral case is more complex. Another complication arises from configuration in which the

dimensions of the conductors differ dramatically (typical example: ground planes). In

Section 6.5 we briefly discuss the solutions needed for these types of problems.

Another issue which deserves special attention, and will not be discussed in this Thesis, is

the incorporation of effects of inhomogeneous media. Examples in the IC domain include multi-
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layered dielectrics and substrate. At present, our team is cooperating with researchers from

he University of California in Santa Barbara [61], investigating on Green-function methods

for this task [18, 19, 92]. In a nutshell, they consist in considering the effect of the multiple

media by an equivalent Green function, that replaces the kernele− jk0r

r for our homogeneous

space formulation. Applications of this type of technique are found in FastMaxwell [13]. For the

adaptation of these methods to the conduction modes method, we expect similar complications

to the ones outlined in [93].

The contents of this chapter constitute ongoing work, as well as propositions for future

lines of work. As such, we will often be indulging in intuitive arguments arising from physical

reasoning on one side, and our experience with the conduction modes on the other. In this sense,

this chapter can be considered as a general discussion on the methods presented in the previous

two chapters; therefore, we omit conclusions at the end of the present one.

6.1 L- and P-matrix elements for RLCextraction

While computing matrix elements for conduction modes, we noticed the following property:

the capacitive (P) contribution nearly cancels out with the inductive (L) one for the case where

the two modesi, j correspond to waves traveling in the same sense on thez-direction (in other

words, whenηi = η j), and are practically the same when the modes are opposing waves inz

(ηi = −η j).

This is strictly a high frequency phenomenon. In fact, in the (infinite-frequency) limitδ→ 0,

the Li j andPi j contributions withηi = η j exactly cancel each other out. This limit can also be

seen as the perfect conductor condition, leading to the familiar relationshipLC = c−2I (I is the

identity matrix) [4,80].

The origin of this near cancellation and doubling stems from the observation that theL

contribution for these modes may be written as

L =
"

y,z


d∫
0

e−x/δ f (x, y, z) dx

 dy dz, (6.1)

whereas theP contribution becomes:

P/ω2 = ±

"
y,z

f (0, y, z) dy dz, (6.2)

both with the same integrand functionf (x, y, z); the± corresponds to same- or different-orientation

on thez axis.

In other words: theP matrix elements, divided byω2, are a zero-th order version of the
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Figure 6.1: Structure of the matrix in (4.20) according to the propagation inz (arrows). The
darker boxes represent larger elements in that part of the matrix (multiplied by a phase factor
e± jk0`); the diagonal elements contain the contribution of theRelements.

L ones. This collapse is carried out by the peaked form of the weight functionsξx, ξy. These

weight functions can be seen as quasi-Dirac1 δD for theLi j integral, whereas thePi j is the same

integrand multiplied by an exact DiracδD.

Given this state of affairs, we always pair up the combinationjω(Li j − Pi j/ω
2) (see (4.20)).

Otherwise, we would be incurring in large numerical errors by computing them separately and

canceling out two similar magnitudes, each with a certain numerical error.

Apart from being larger, the↑↓ and↓↑ elements are also dominated by a phase factor e± jk0`,

which result from thez-weight functions,

ξz(z) =

(` − z) cos(k0z) (↑↑), (↓↓)

e± jk0`

k0
sin((̀ − z)k0) (↑↓), (↓↑)

z ∈ [0, `] (6.3)

(the weight functions, defined in eq.(5.5) are the result of reducing from two variables to one;

here, we have exemplified with a same-conductor integral onz, the general case being similar

in nature.)

Therefore, decomposing into forward- and backward-traveling waves results in a matrix

Z = R+ jω(L − P/ω2) in (4.20), that has a checker-board structure as shown in Fig.6.1.

1The DiracδD is a generalized function defined as:
∫ b

a
δD(x) dx =

1 if 0 ∈ [a,b]

0 else
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Figure 6.2: Schematic of geometry for calculation ofP elements using Stokes’ theorem.

6.1.1 P integrals for different conductors using Stokes’ Theorem

When computing aPi j matrix element of the form (4.14c), it is convenient to transform the

surface integrals into volume ones. This is done by successively applying Stokes’ theorem

twice. The reasons for the convenience mentioned above will be evident at the end of this

calculation. The calculation that follows in valid only for the case of different conductors.

TheP integrals for surface charge functions that are given by (4.18), are written as

Pi j =
1

4πε

∫
S′

∫
S

e− jk0d

d
(w · dSlateral)

(
w′ · dS′lateral

)

=
1

4πε

L∫
0

∮
C

L′∫
0

∮
C′

e− jk0d

d
(w · (dz× d`))

(
w′ · (dz′ × d`′)

)

=
1

4πε

L∫
0

∮
C

L′∫
0

∮
C′

e− jk0d

d
(d` · (w × dz))

(
d`′ · (w′ × dz′)

)
(6.4)

whered = |r − r ′| and the elements of areadSlateral and lengthd` are shown in Fig6.2 With

respect to the original expression (4.14c) we have adopted here the more compact notation

w ≡ w∗i (r ),w′ ≡ wj (r ′).

In the final expression in (6.4), we have expressed the integrals on the lateral faces of the

conductors as a decomposition of one along thez− axes plus one along a closed loop that

contours the conductors’ cross-section.

Stokes’ Theorem states, ∮
C

d` × f =
"
S(C)

dS · (∇ × f ) (6.5)

for S(C) a surface subtended by pathC andf : <3→<3 non-singular onS(C).
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This theorem can readily be applied to the non-primed variables for the last expression in

(6.4)2 with f = w(r ) exp (− jk0d)/d,

Pi j =
1

4πε

L∫
0

"
S

L′∫
0

∮
C′

(dS · (∇ × (f × dz)))
(
d`′ · (w′ × dz′)

)
(6.6)

The first vector product in this integrand gives (− fy, fx,0), whose curl is,

−
∂ fx
∂z

x̂ −
∂ fy
∂z

ŷ +
(
∂ fx
∂x
+
∂ fy
∂y

)
ẑ (6.7)

Since the area elementdS = dx dyẑ is parallel to thez−axis (see Fig. 6.2), we retain only

the last component of this curl; moreover, the un-primed integration is simply a 3-d integral over

the volume of this conductor,

Pi j =
1

4πε

∫
V

L′∫
0

∮
C′

d3r

(
∂ fx
∂x
+
∂ fy
∂y

) (
d`′ · (w′ × dz′)

)
(6.8)

Next, we perform the same procedure for the primed variables, with the difference that the

functionf will be replaced by

f̃ =
(
∂ fx
∂x
+
∂ fy
∂y

)
w′ (6.9)

After some lengthy algebra, and using the divergence-free condition3 for bothw andw′ we

obtain the final expression,

Pi j =
1

4πε

"
V,V′

[
∂wz

∂z

∂w′z
∂z′

+

(
wxw

′
x + wyw

′
y −

(
wx
∂w′z
∂z′
+ w′x

∂wz

∂z

)
x̃−

(
wy
∂w′z
∂z′
+ w′y

∂wz

∂z

)
ỹ

)
1+ jk0d

d2

−
(
x̃wx + ỹwy

) (
x̃w′x + ỹw′y

) 3+ 3 jk0d − k2
0d2

d4

]
e− jk0d

d
d3r d3r ′ (6.10)

where we have defined ˜x ≡ x− x′, ỹ ≡ y− y′, i.e. the same relative variablesx−, y− that were

used in the transformation (5.3).

We observe that all the terms in expression (6.10) contain a product of a component ofw′

with a component ofw (or, in the original notation,w∗i andwj ). Hence, all terms contain the

2We are dealing with different conductors, therefored , 0 and the integrand is well-behaved.
3For example:∂ fx

∂x +
∂ fy
∂y =

e− jk0d

d

(
∂wz
∂z +

(
(x− x′)wx + (y− y′)wy

)
1+ jk0d

d2

)



152 Chapter 6. Generalization of conduction modes

same exponential dependence e(α∗i x+β∗i y+η∗i z+α j x′+β jy′+η jz′), that is common to theLi j integral. This

enables us to perform, at this stage, the same transformation as in Sec.5.2: adopt the variables

r− = r − r ′, r+ = r + r ′ and obtain,

Pi j =
1

4πε

∫
V

[
η∗i η j +

(
(t∗i η j + t jη

∗
i )x+ (s∗i η j + sjη

∗
i )y− (t∗i t j + s∗i sj)

) 1+ jk0r

r2

−
(
t∗i x+ s∗i y

) (
t j x+ sjy

) 3+ 3 jk0r − k2
0r2

r4

]
ξxξyξz

e− jk0r

r
d3r (6.11)

for the r− variables, whereξx,y,z are as in (5.5),ti, j are thex-components andsi, j are the

y−components for modesi, j respectively (eq.(4.30)):

(ti , si) =
(

αi

eαiwi − 1

) (
βi

eβihi − 1

) jδ2ηi

2
(αi , βi)

Though this expression seems cumbersome, there are important advantages gained in using

it instead of the usual surface integrals (4.14c):

1. We have observed that, when using the Adaptive Quadrature [87] method for numerical

integration, the convergence of integrals that mix 2-d and 3-d terms is very poor. If we

decompose the surfaceP integral into all its components, there are 2-d as well as 3-d

contributions4. In that case, it is necessary to calculate them separately. Using expression

(6.11) avoids this extra partitioning.

2. Expression (6.11) exhibits, at least for the case of different conductors, the property dis-

cussed in the previous section:L ' |P|/ω2. Effectively, if we form the combination

jω(L − P/ω2), then the constant factor in theP term is 1
4πεω2 =

µ

4πk2
0
. Considering the first

term in (6.11), plus the definition for theη = ± jk0 in (4.34), we see that, in the case where

the productη∗i η j > 0 (i.e., whenηi = η j) then this first term cancels out with theL con-

tribution. The following terms in (6.11) all contain at least one order ofs or t, rendering

them of order (k0δ) or higher. This explains the cancellation mentioned above.

3. Moreover, the argument in the previous paragraph can be extended to group all terms in

(6.11) by the ordern in which (k0δ)n appears. This permits anRLC integration scheme

for the z− component in terms of a series expansion in terms of powers ofk0r andk0z

(see Section 6.2.2). Coupled with the integration methods forx, y, shown in the previous

chapter, we can use this result to efficiently compute all different-conductor integrals in

theRLC formulation.
4This is precisely what is shown in the next section, for same-conductor elements, where Stokes’ theorem does

not hold.
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Figure 6.3: Diagram for same-conductorP integrals; the table at right shows the decomposition
of the 16 surface terms for the two surface charge distributions.

6.1.2 P integrals for same conductors

When two conduction modes belong to the same conductor, then the integrand contains an

integrable singularity, and Stokes’ theorem does not apply.

Therefore, a different approach is needed. In fact, for same conductors, we adopt the

straightforward decomposition of all terms having chargev∗i on one face andv j on another.

There are 16 such terms, which we group into the types of surface integrals,P(xx), P(xy), P(yx),

P(yy), shown in Fig.6.3. For example,P(xx) contains the four terms coming fromv∗i andv j on

sides ”a” and ”c”.

Both P(xx) andP(yy) reduce to 2d integrals, performing ther− = r − r ′, r+ = r + r ′ transfor-

mation as in (5.3), for variablesx andz in the first case, and fory andz in the second:

P(xx)
i j =

s∗i sj

4πε

w∫
−w

L∫
0

[(
1+ e(β∗i +β j )h

) e− jk0ra

ra
−

(
eβ
∗
i h + eβ jh

) e− jk0rc

rc

]
ξxξz dx dz

P(yy)
i j =

t∗i t j

4πε

h∫
−h

L∫
0

[(
1+ e(α∗i +α j )w

) e− jk0rb

rb
−

(
eα
∗
i w + eα jw

) e− jk0rd

rd

]
ξyξz dy dz (6.12)

wherera ≡
√

x2 + z2, rb ≡
√

y2 + z2, rc ≡
√

x2 + h2 + z2, rd ≡
√

w2 + y2 + z2 andξx, ξy are the

same weight functions defined in the previous chapter, eq.(5.5).

On the other hand,P(xy) andP(yx) cannot be reduced in the same manner; only thezvariable

is reducible with thez+, z− transformation, and we obtain 3d integrals:
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P(xy)
i j =

s∗i t j

4πε

w∫
−w

h∫
−h

L∫
0

e− jk0r

r
eα
∗
i x+β jyγxγyξz dx dy dz

P(yx)
i j =

t∗i sj

4πε

w∫
−w

h∫
−h

L∫
0

e− jk0r

r
eα j x+β∗i yγxγyξz dx dy dz (6.13)

where we have used the piecewise constant functions of (5.6) which, for the same-conductor

case have the propertyγx(x) ≡ γ2(x) = γ1(−x):

γx = Θ(x) − e(α∗i +α j )wΘ(−x)

γy = Θ(y) − e(β∗i +β j )hΘ(−y) (6.14)

If one of the modes is a side mode, then the transverse current has only one component, and

two of the integrals above vanish. For example, ifwi is a horizontal mode, thenP(xy)
i j = P(xx)

i j = 0

becauses∗i = 0.

Unlike the different-conductor case, these terms cannot be grouped together into one single

integral. The comparison with theL integral, showing the basic property thatL ' |P|/ω2 must

be proved on a case-by-case basis. This involves a large number of lengthy expressions, which

we omit for the sake of brevity. Basically, this compensation results from5:

• For an[H,H] type of integral, onlyP(yy) , 0; the 2-d integrals in (6.12) are exactly the

subtraction between the evaluations ofL integrals atx = 0 and atx = w (resp.y = 0 and

y = h for [V,V] type, onlyP(yy) , 0).

• For an[H,V] type of integral, onlyP(yx) , 0; the 3-d integrals in (6.13) cancel exactly

with “flat” term exposed in (5.17), leaving only terms multiplied by factors e−w/δ and/or

e−h/δ,

• For a[C,C] type of integral, we have not been able to isolate the origin of the cancellation;

this involves all four integrals in (6.12) and (6.13), and therefore a combination of the

two mechanisms described above; we have verified, with the numerical integration tools

described in the previous chapter, that this property holds in all our calculations (similarly

for [H,C], [V,C] , with contributions from three of the integrals).

5Refer to classification in Section 5.2 for the definition of integral types based on the exponential decays along
the cross-sections.
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6.2 AcceleratedRLC integral calculations

The expressions shown in the two previous sections form the basis that allow us to calculate, in

an accurate and efficient way, theRLCconduction mode matrix elements. In Chapter 5, we dis-

cussed the computation ofL matrix elements in theRL/MQS domain. The techniques differ for

two distinct cases, depending on whether the two modes correspond to the same or to different

conductors. This distinction persists in theRLC integrals, and is further amplified by the obser-

vation in the previous section: for different conductors, theP integrals can be transformed ”as

a block” into 3d integrals that resemble theL integrals; on the other hand, for same-conductor

integrals, this transformation is not possible.

Compared to theRL/MQS situation, the first observation is that the integrals are 3-d, be-

cause thez−integration cannot be done analytically. This is for two reasons: thez−dependence

exp(ηz); and because we cannot setk0 = 0 in the Green functione
− jk0r

r .

We perform the{z, z′} ↔ {z−, z+} transformation, as in (5.3); after integration over thez+
variable, the result is a weight functionξz for the interval [z0 − `

′, z0 + `] that multiplies the

Green function. The algebra is exactly the same as in eqs.(5.4)-(5.6). For the quasi-TEM imple-

mentation ofRLC conduction modes, we have chosenη = ± jk0, so that these weight function

are combinations of cos(k0z), sin(k0z) and linear functions inz. For example, if we consider the

simplified casez0 = 0 and` = `′ (i.e., wires with the samez-extension), the weight functions

become:

ξz(z) =

 (` − z) cos(k0z) if ηi = η j (↑↑) or (↓↓)
∓ j
k0

sin(k0(` − z)) if ηi = −η j (↑↓) or (↓↑)
(6.15)

where the± distinguishes between↑↓ and↓↑. The general case is represented by similar ex-

pressions for each of the four subintervals: [−`′,0], [−`′, ` − `′], [0, `], [` − `′, `] (setting

r =
√

(x− + x0)2 + (y− + y0)2 + (z− + z0)2 in the Green function). This form ofz-dependence

induces the following strategy for the 3d integrals:

1. Replace exp(− jk0r) andξz(z) by their Taylor series in powers ofk0r andk0z respectively.

2. Integrate along thez−axis, separately for each power of the expansions.

3. Perform, for the integration along the cross-sectional variablesx andy, the same recipes

as for theRL/MQS case:

• Taylor for different conductors (as in Sec.5.4);

• Gaussian quadratures/Polar variables for same conductors (as in Sec.5.3).

For the first step above, the expansions are,
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e− jk0r

r
=

1
r
− jk0 −

k2
0r

2
+

jk3
0r2

6
+ .....

cos(k0z) = 1−
k2

0z2

2
+

k4
0z4

24
− ....

sin(k0z) = k0z−
k3

0z3

6
+

k5
0z5

120
.... (6.16)

Therefore each appearance of exp(− jk0r) cos(k0z)r−1 is replaced by several terms, combin-

ing all the products up to a given power ofk0. In this manner, we reduce these expressions to a

sum of products of whole powers ofr andz:

e− jk0r

r
ξ↑↑z =(` − z)

[
1
r
− jk0 −

k2
0

2

(
r +

z2

r

)
+

jk3
0

6

(
r2 + 3z2

)
(6.17)

+
k4

0

24

(
r3 +

z4

r
+ 12rz2

)
−

jk5
0

120

(
r4 + 5z4 + 10r2z2

)
− ...

]
e− jk0r

r
ξ↑↓z =(` − z)

[
1
r
− jk0 −

k2
0

2

(
r +

(` − z)2

3r

)
+

jk3
0

6

(
r2 + (` − z)2

)
+

k4
0

24

(
r3 + +

(` − z)4

5r

)
−

jk5
0

120

(
r4 + (` − z)4 +

10
3

r2(` − z)2
)
− ...

]
Note that all these terms can be integrated analytically inz. For carrying out this integration,

we separate same-conductor from different-conductor matrix elements.

6.2.1 Same-conductor integrals

When both modes correspond to the same conductor, all thez-dependence is given by expres-

sions (6.17). We exemplify for the↑↑ weight functions, the other one being essentially the same

type of calculations.

Replacingz2 = r2 − ρ2 for all but the` − z factor in (6.17), and defining,

Hn ≡

∫̀
0

(` − z)rn dz (6.18)

we can write the result of thez-integration as

Φ(ρ) =
M−1∑
n=−1

Gn(ρ)Hn(ρ) (6.19)
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with ρ =
√

x2 + y2, andM is the maximum order ofk0 retained in the Taylor expansion; for

example, settingM = 5 we obtain:

i Gi Hi

−1 1+ 1
2ρ̃

2 + + 1
24ρ̃

4 `
(
sinh−1 u− u

1+
√

1+u2

)
0 − jk0

(
1+ 1

2ρ̃
2 + + 1

24ρ̃
4
)

`2

2

1 −k2
0

(
1+ 1

3ρ̃
2
)

`3

3

(
(1+ u2)3/2 − 1

)
u−3

2 jk3
0

(
2
3 +

1
6ρ̃

2
)

`4

4 (1+ 2u−2)

3 1
3k4

0
`5

5

(
(1+ u2)5/2 − 1

)
u−5

4 −
j

15k5
0

`6

6 (1+ 3u−2 + 3u−4)

(6.20)

where we have used ˜ρ ≡ k0ρ andu ≡ `/ρ. Keeping higher order terms results in similar expres-

sions, slightly more lengthy, without adding in any new transcendental function evaluation.

FunctionΦ(ρ) in (6.19) plays the same role, forRLC integration, as the functionF(ρ) in

(5.8) for theRL/MQS counterpart: it reduces by one the dimensionality of the integrals, and

defines the kernel of the integrand in (x, y)-plane, to be multiplied by functions ofx, y. These

functions are the combination of theP integrals presented in Section 6.1.2, and the weight

functionsξx,y for L, which are the same as for theRL/MQS case studied in the previous chapter.

The techniques of Section 5.3 are valid for performing thex, y integration:L contributions are

replaced by a Gauss-Jacobi expansion, whose principal values are canceled by theP terms ( for

↑↑ integrals), or doubled (for↑↓).

For these same-conductor integrals, we are presently developing an interpolation approach

that will replace the one shown herein; this new technique is the subject of Section 6.3.

6.2.2 Different-conductor integrals

For different-conductor integrals, the fullz-dependence is composed of (6.17) multiplied by the

sum of theL andP contributions,

Li j−
1
ω2

Pi j =
µ

4π

w∫
−w′

h∫
−h′

ξx(x)ξy(y) (6.21)


∫̀
0

e− jk0r

r
ξz

1∓  f0 + f1
1+ jk0r

r2
+ f2

3+ 3 jk0r − 3k2
0r2

r4

 dz

 dx dy

where thex, y polynomials f0 = η∗i η j , f1 = (t∗i η j + t jη
∗
i )x + (s∗i η j + sjη

∗
i )y − (t∗i t j + s∗i sj), and

f2 = (t∗i x+ s∗i y)(t j x+ sjy) are the expression inside the brackets of (6.11).

Again, we consider the↑↑ example, with the other possibilities being similar. Keeping terms
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up to order-M in k0 we obtain, afterz-integration, an expression similar to the same-conductor

case,

Φ(x, y) =
M−3∑
n=−5

Gn(x, y)Hn(ρ) (6.22)

with ρ =
√

(x+ x0)2 + (y+ y0)2, and setting for exampleM = 5:

i Gi Hi

−5 (3+ 3
2ρ̃

2 + 1
8ρ̃

4) f2 1
3ρ
−3

(
1+2u2
√

1+u2
− 1

)
−4 − 1

2`ρ
−3 tan−1 u

−3 (1+ 1
2ρ̃

2 + 1
24ρ̃

4) f1 − k2
0 f2 ρ−1(

√
1+ u2 − 1)

−2 − `ρ−1 tan−1 u− 1
2 log(1+ u2)

−1 1
6k2

0ρ̃
2 f1 `

(
sinh−1 u− u

1+
√

1+u2

)
0 −

jk3
0

3 ((1+ 1
2ρ̃

2) f1 + 1
5k2

0 f2) 1
2`

2

1 −
k4

0
3 f1 `3

3

(
(1+ u2)3/2 − 1

)
u−3

2
jk5

0
5 f1 `4

4 (1+ 2u−2)

(6.23)

with the same notation as in (6.20).

As in the same-conductor caseΦ(x, y) reduces the dimensionality of the integrals, so that

(6.21) becomes:

Li j −
1
ω2

Pi j =

w∫
−w′

h∫
−h′

Φ(x, y)ξx(x)ξy(y) dx dy (6.24)

Having performed thez integration, we are now in a position to apply the methods of Section

5.4 in order to calculate this 2-d integral. Basically, this consists in Taylor expansions for every

exponentially decaying interval and Gauss-Legendre rules for every flat/linear interval.

Although the expressions in (6.23) contain more terms than the ones forRL, they do not

entail an important increase in computational cost. Both cases consist of one-time evaluations

of transcendental functions, plus a certain number of elementary arithmetic. Both the number

of transcendental functions and elementary arithmetic is greater for theRLCcase; however, this

difference is slight when compared against the savings obtained therein.

6.2.3 Preliminary examples

As mentioned at the beginning of the present chapter, this strategy is presently under develop-

ment, hence we cannot show global results for the methods in this section. Instead, we present,

in Fig. 6.4 a brief analysis of thek0-approximation: we consider integrals for different conduc-
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Figure 6.4: Approximation errors for Taylor onk0; dimensions of wires are 1µ × 1µ × L, 2µ ×
3µ × L, and the separation is 2µ on x and 1µ ony; material is copper, and frequency is 100GHz.
The wavelengthλ = 3000µ is indicated by the dashed vertical line.

tors, replace thez-dependence by the order-2 Taylor approximation in (6.22), and compare the

results for this 2d integral (6.24) against the original 3d integrals (6.21). We use the Adaptive

Quadrature (AQ) [87] method for both the 2d and 3d integrals6.

Errors for this Taylor approximation remain below 1% for values of length significantly

larger than the wavelength. The reason for this behavior is given by the1
r factor, which dampens

the value of the integrand for values ofz where the approximation errors are large. For largeL,

errors grow with the expectedL3 dependence (the remainderR2 ∝ z3
m for somezm ∈ [0, L]).

In terms of cost, we mention that, in approximating thez integral in this manner, the number

of function calls is reduced, on average, by a factor 20: for these 3d integrals, the number of

calls is of order 8× 105, whereas the 2d ones, for the same AQ accuracy parameters, demand an

order 4× 104.

Nevertheless, we expect the savings mentioned above to be increased by two additional

orders of magnitude when the Taylor expansions onx, y are implemented. This is a consequence

of applying the methods shown in Section 5.4, with the runtimes of Section 5.6 and errors of

Section 5.7. Runtimes are expected to be slightly longer than the ones in Fig. 5.11, since the

RLCTaylor expansions contain more transcendental functions than theRL/MQS ones.

6The full strategy includes the Taylor and Gauss-Legendre expansions onx, y for (6.23); this part of the code is
currently under development (although it is computationally inexpensive, it is ”developmentally” very expensive).
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6.3 Interpolation/Parametrization of self matrix elements

In the previous chapter, we presented a systematic approach to the problem of computing matrix

elements in theRL conduction modes matrix. Therein, we showed that by performing certain

approximations, we could reduce one order of magnitude in calculation of the elements for

different conductors. For theRLC problem, the analogous savings are obtained by combining

the methods in Sections 6.1 and 6.2 above.

For RL, we also obtained a further order of magnitude savings by approximating the same-

conductor elements, by using Gaussian and polar variables integrations on the cross-sectional

dimensions. Comparatively, the savings for each same-conductor integral are less significant

than the ones for different-conductor integrals. ForRLC, we expect the same-conductor savings

to compare worse, because the Taylor expansion ink0 breaks down when the origin is contained

in the integration domain.

A far more interesting alternative is that of avoiding these calculations altogether, by pre-

computing them offline; at runtime we can obtain the value of the matrix elements by either of

the following methods:

• Creating a large library (or several distributed small ones) of precomputed values at cer-

tain specified nodes, spreading out over all the possible configurations, and interpolating

among the nodes of this lookup library for any arbitrary configuration. The choice of in-

terpolation method must be done carefully, according to the distribution of node; a survey

on multidimensional interpolation is found in [94].

• Parametrizing the function dependence of the matrix elements, thus creating a numerical

model for each. In this case, the difficulty of the problem lies in capturing the correct

model for each of the dimensions of the problem.

In [95], an interpolation approach was presented forRL extraction of inductance among

interconnects. The nodes of the library consist of a predetermined set of current distribution

functions for two-wire configurations, denominated “proximity templates”. More recently, this

technique was refined by requiring orthogonality among these functions, as well as inclusion of

these within a multilayered complex image formulation [96]. The main advantage is that the

matrix elements for the templates are computed “offline”, avoiding the burden of computing

non-trivial integrals.

The efficiency of creating such library is dominated byΠ, the number of degrees of free-

dom for the interpolation. For two-wire configurations,Π = 10: the three dimensions of each

conductor, the three separations, and the frequency. In the most general case, the proximity

templates method implies constructing, bookkeeping, and scanning (online), a number of 10-

dimensional lookup libraries. The complexity of this method is exponential inΠ, with the basis
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of the exponential determined by the number of nodes along each of the dimensions. Further-

more, the number of such libraries is given by the product between the number of templates for

each of the participating conductors.

For these reasons, we do not consider an interpolation scheme in computing matrix elements

for different conductors.

However, for elements for the same conductor, this number reduces drastically, toΠ = 4 (the

three dimensions plus the frequency), which is manageable. Moreover, the number of libraries

required is much smaller, because symmetries reduce the effective number of different matrix

elements (see Section 5.3). This scheme is also appropriate for different-conductor matrix ele-

ments, in configurations where there is a large degree of symmetry among wires (e.g.: planar

inductors, where it is common for all long segments to be on the same layer and have the same

width, or ground planes that have been partitioned into several subregions, with a large degree

of symmetry among them).

Furthermore, in ICs some of these 4 dimensions do not necessarily have a continuous vari-

ation. For example, the thickness of wires is related to the thickness of the metal layers. These

thicknesses are restricted to a small number of discrete values [75, 97]. For our interpolation

scheme, this reduces the dimensionality by one, settingΠ = 3, with the proviso that we must

construct one set of libraries for each value of the thickness.

For the three remaining parameters (l,w, f ), we show in Fig.6.5, the dependence of some

matrix elements. These are the functions to be either interpolated or parametrized. A first glance

at these graphs shows that thel−dependence is linear. This means that, along thel− dimension

of Π−space, two values suffice for parametrization/interpolation. In practice, the dimensionality

is reduced to 2.

The dependences onw and f require a more delicate inspection. The fact thatΠ is reduced to

2 allows for a large amount of nodes in an interpolation scheme, which leads to the possibility of

adopting simple algorithms (e.g. a bi-cubic splines [86] for equally-spaced nodes; [94] and [98]

give recipes for arbitrarily spaces nodes). If a parametrization scheme is adopted, the lower

dimensionality permits an efficient isolation the behavior of each dimension as in Fig.6.5, in

order to fit these curves with analytical expressions. At present, we are analyzing the advantages

and disadvantages of either one of the two methods (or a combination or them), applied to these

integrals.

6.4 Enlarging the conduction modes basis

The conduction modes method is based on a particular choice of modes for the expansion basis.

Obviously, the goal is to capture as much of the physics as possible, with as few functions as

possible.
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In this section, we discuss the implications of enlarging the conduction modes basis, i.e. the

set of functionswi in (4.12) (the surface charge functions are always defined by (4.18)). For the

RLCexamples shown in Chapter 4, we made certain assumptions in order to reduce the number

of modes. In particular:

• in Section 4.4, only quasi-TEM modes were considered, leading to a reduction in the size

of the parameter space for the conduction modes;

• in Section 4.3.2, we neglected one of the possible directions for the quasi-TEM conduc-

tion modes.

Dropping each of these two assumptions leads to the inclusion of new sets of conduction

modes, which we denominate “dissipation” and “reaccomodation” modes, respectively. They

constitute the subject of the two subsections that follow.

Although these ideas have not been implemented, we can combine our experience in con-

duction modes with physical intuition, to predict the effects that these future inclusions may lead

to. This intuition is a useful guide in determining if and when to implement these additions. In

the following two subsections, we detail each of the assumptions above.

Another type of concern is related to the difficulty, reported in [74] within theRL case, for

conduction modes to describe low-frequency behavior. This drawback is related to the fact that,

as frequency decreases, the skin-depth increases, and therefore all the modes corresponding to

the same conductor are nearly degenerate, leading to ill-conditioned matrices. A way out of this

problem was proposed and implemented, in the same article, by defining localized conduction

modes, which are defined over a subregion of the entire cross-section. The analogous solution

for RLC modes would imply a further enlargement of the modes basis (localization also along

thez−axis).

For RL examples, we have always observed a smooth transition between the low frequency

model, e.g. FastHenry with one filament per wire, and the high frequency model based on

conduction modes, when matrix elements are computed with a high level of accuracy7. Deter-

mination of the cut-off frequency, below which conduction modes must be ”switched off”, is a

crucial issue for a secure implementation of this method for wide frequency spectra. This cut-off

frequency is configuration-dependent, and is a function of the comparison between the smallest

cross-sectional dimensions and separations on one side, and the skin-depth on the other.

6.4.1 Dissipative modes

The particular choice of parametersα, β, η for RLC conduction modes of Section 4.4 corre-

sponds to quasi-TEM modes of propagation for the waves in the medium surrounding the con-

7This was not the case in earlier versions of the method, with integrals computed stochastically using Monte
Carlo (see Chapter 5), obtaining significant statistical noise at low frequencies.
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ductors (see discussion in Section 4.4). As a consequence, we have set a sinusoidal dependence

along thez-axis, withλ = 2πk−1
0 , i.e. the natural wavelength for EM waves in the medium.

In terms of the conduction mode parameters, relation (4.27) states that, ifη ceases to be± jk0,

then it must contain someδ−1-order component. Given that, for the frequencies and materials

of interest,δ ' 10−3λ, this means that we can safely neglect the−k2
0 in (4.27), and concentrate

only on the first term in the rhs8:

α2
i + β

2
i + η

2
i =

(
1+ j
δ

)2

(6.25)

Thus, inclusion of non-TEM modes involves includingη in the redistribution of the rhs in

(6.25). We recall that, both forRL/MQS andRLC conduction modes, this redistribution was

limited to α andβ. We thus obtain a description with exponential terms along all three spatial

directions.

Computationally, the evaluation of matrix elements for these new modes is not expected

to add a significant amount of cost. This is due the fact that thez-exponentials localize the

integrands for these elements (in contrast to the sinusoidals for the quasi-TEM modes), so that

we may set exp(− jk0r) = exp(− jk0r0) in the Green function for the corresponding integrals

(with r0 defined as the distance between the maxima of the exponential decays). Then, the

familiar Taylor expansion and Gaussian quadrature techniques for exponential decays, which

were previously used only for cross-sectional dimensions, can be applied to the longitudinal

one. The difficulty in the implementation relies mainly in the mixing of these new modes with

old ones. Before embarking on this course, it is instructive to attempt to forecast when these

modes can be important.

Physically, these “dissipation” modes are such that capacitive effects are much larger than

the inductive ones. This observation results from estimating the magnitudes of longitudinal

and transverse currents; from the continuity equation imposed on the definition of conduction

modes, which was shown in eq. (4.30),

wx
wz
=

j
2(δ2ηα)

wy

wz
=

j
2(δ2ηβ)

⇒ wtrans

wlong
= O(1) (6.26)

where we have imposedη to be orderδ. We recall that the cancellation betweenL andP

in Section 6.1, for quasi-TEM modes, relies on the ratio at the right of eq.(6.26) being of order

O(δ/λ). Not having this relationship is tantamount to having|ω2P/L| = O(λ2/δ2) for dissipative

modes.

Furthermore, these modes have a typical length scale ofδ, whereas the quasi-TEM modes

extend all over the conductor. As such, we expect their effects to be negligible if̀ � δ.

8For the validity of this statement, we also needw,h� λ, an assumption which is most generally the case.
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Conversely, these modes should be appropriate for representing border effects for geometries

with small scales, i.e. vias and small connecting wire. Unfortunately, these statements can only

be verified in practice: including these modes and observing that the solution is not affected;

this task involves implementing the difficulties mentioned above.

6.4.2 Charge reaccomodation modes

The second type of modes neglected in theRLC formulation of Chapter 4 are those that carry

no net current along thez-axis. They represent a redistribution of charge along the transverse

dimensions of the conductor.

These neglected modes are quasi-TEM with no transverse divergence,

α2
i + β

2
i + η

2
i = −

(
2π
λ

)2
+

(
1+ j
δ

)2

ηi = ± jk0

∇ · w(reac) = 0

∇trans · w(reac) = 0


⇒ w(reac)

i = Bi

(
1
αi
,−

1
βi
,0

)
(6.27)

where∇trans = x̂∂x + ŷ∂y.

The main distinction, between these modes and the ones we have been using, is thatw(reac)
z =

0: currents only flow on the transverse direction. We cannot normalize these modes in the same

manner as the usual ones, because there is no current entering the conductor. Also, for any value

of z, the total charge for these modes is zero, so we cannot normalize according to the value of

charge. For the sake of having comparable elements in the description, we borrow the same

normalization as for the modes in (4.30), defining the proportionality constant as,

Bi =

(
αi

eαiwi − 1

) (
βi

eβihi − 1

)
δηi (6.28)

with the same comment as in (4.30), namely that, if it is a side mode with, say,αi = 0, then the

first fraction above is replaced by its limitw. In this manner, the currentsI i and corresponding

chargesqi = ( jω)−1I i to these modes have the same scale factor as the ones for the usual

conduction modes in Chapter 4.

There are two important consequences related to the absence ofz-currents:

1. the rhs of the system equations for these modes vanishes (see eq.(4.19));

2. theL contribution is negligible with respect to the one coming fromP elements, thus

avoiding the cancellation discussed in Section 6.1; all the elements corresponding to

w(reac)
i (including those on the diagonal) are much larger then the ones for “normal”

modes.
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The combination of the two statements above suggests that contribution from these modes

is negligible. As in the previous case, these statements can only be verified through trial and

error.

6.5 Arbitrary 3-d geometries

Concerning the geometry of the wires that can be treated by our conduction modes method,

there exist certain associated limitations. We now examine two of them.

6.5.1 Non-Manhattan configurations

For two currents running on wires at 90o, inductance effects are negligible. In this case, only

capacitance needs to be computed. At 90o, the application of Stokes’ theorem runs very similar

to the calculation for parallel wires, Section 6.1.1. The resulting expression is the same as

(6.11) with appropriate exchanges ofx, y parameters and the corresponding ones forz. Taylor

expansions as is Section 6.2.2 can be applied in a straightforward manner.

Collectively termed Manhattan geometry, parallel and perpendicular configurations cover a

large set of IC interconnect applications; typical exceptions are given by multi-sided inductors.

Concern for non-Manhattan geometries is more important in PCB and package applications.

When the angle between the two conductors is not 90o, the calculation in Section 6.1.1

becomes very cumbersome. Even for the case of inductance of infinitesimal filaments, this

computation involves the non-trivial combination of no less than 15 transcendental functions

(page 56, [56]). For non-negligible cross-sections, these complicated expression must be inte-

grated over the two cross-sections [23]. In practice, though, it is appropriate to approximate

wires as filaments located at the centers of the cross-sections [59].

In our case, the conduction modes are helpful, as they concentrate the value of the integrand

within a narrow region, allowing for Taylor expansions as in 5.4. Obtaining the expressions

ready to be used for these Taylor expansion is not an easy task. An analysis of the necessity for

inclusion of this case must be done before embarking on this road.

6.5.2 “Fat” wires

Any description in terms of localized current distribution method encounters difficulties when

dealing with wires that have significant difference in their dimensions, e.g., when we have one

wire on top of another with a larger width, as in a ground plane; or when two wires have very

different lengths. The reason for this difficulty is due to a well-known phenomenon: the current

returning on the wide wire tends to concentrate on the “shadow” of the thinner one.
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In filament-type approaches toRL/MQS inductance extraction, the problem is solved by

applying a specific discretization for ground planes [15, 23], with many narrow filaments, for

the wide wire, at the shadow of the thin one. These kind of solutions, when applied to a large

system of wires, can be a double-edged blade: if thisad hocdiscretization is carried out for all

wires above the ground plane, then the size of the system will grow accordingly. Clearly, some

heuristic is needed in order to contain this growth; pondering the importance of each particular

discretization.

For conduction modes, the analogous solution is to decompose the wide conductor into a

collection of sub-conductors, occupying the same total volume and being able to reproduce the

“shadow” currents mentioned above. As in the filament approach, we must avoid an explosion

in system size, by determining when and how to make this decomposition, and which modes to

use in the process.

For theRLC formulation, this situation can also occur along the length: if two wires have

significantly different lengths, then the strategy of decomposing into same-length wires can lead

to an explosion in the size of the system.

Such a strategy is in the process of being implemented forRL/MQS extraction, within the

Calibre engine. Basically, two main tasks are involved in this development [99]:

• Optimal automatization and tuning of schemes for decomposing wide wires into narrower

sub-conductors, where the local conduction modes are defined. This task is quite straight-

forward for individual cases, but leads to cumbersome issues when developing a full-proof

method for the general case.

• The difficulties springing from the fact that integrals for two adjacent sub-conductors,

corresponding to a decomposition of a single wide wire, contain the origin within the

integration domain. This breaks down the Taylor schemes developed in Chapter 5 for dif-

ferent conductors. Dealing with these difficulties implies modifications to the numerical

integration methods. The new integration schemes are based on partial interpolation of

the integrands.
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Broadband representation ofRL

behavior
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Pairs Foster pour des transitions

simples

Résuḿe en français

Ici, nous nous intéressons au problème lié à la représentation des effets RL en fonction de la

fréquence. Suite au choix de méthode de réduction de l’ordre du modèle effectué chez Men-

tor, méthodologie cf. Introduction Générale, nous utilisons des pairs Foster. Dans la section

7.1, nous analysons en détail la réponse d’un pair Foster, définissant son paramètre princi-

pal, c.-à-d. la fréquence caractéristique. Dans la section 7.2 nous montrons comment calculer

les paramètres d’un circuit avec un seul pair Foster, en garantissant la passivité du circuit.

L’équivalence entre un pair Foster et un élément d’un circuit échelle est exposée dans la section

7.3. La section 7.4 contient une description de l’implémentation de cette stratégie dans les outils

d’extraction chez Mentor. Finalement, nous montrons et analysons des exemples des transitions

simples qui sont modelés avec des circuits d’un pair Foster (section 7.5). Les méthodes de ce

chapitre sont contenues dans le formateur Calibre, et font partie du contenu de la demande de

brevet correspondant [41].
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Chapter 7

Single-transition Foster pairs

We now address the question of how to represent broadband frequency dependent resistance

and inductance effects for IC interconnects. As discussed in the Introduction, we wish to do so

using realizable circuit elements, compatible with the node-elimination, model order reduction

(MOR) scheme. The main goal in this type of modeling is to capture the relevant variations of

resistance and inductance, with only very few data input values (and hence few circuit elements).

Resistance always increases, and inductance always decreases, as frequency grows. To un-

derstand this in physical terms, we must consider that currents always reaccommodate them-

selves so as to minimize the total impedance,Z = R+ jωL. The weight of the frequency for the

imaginary part ofZ causes the importance ofL to grow with respect to that ofR.

Empirically, we have already seen two cases in which this phenomenon presents itself: the

selection and distribution of return paths for a signal wire (Sec. 2.2); and the current crowding

within conductors due to skin effects (Chapters 4-6). For any given configuration, there is a

frequency threshold that determines the onset where inductive effects become important. Below

this frequency, impedance can be considered frequency-independent. For very high frequencies,

currents are nearly superficial, constrained within a widthδ ∝ f −1/2, so that inductance stabi-

lizes at a fixed value, and resistance grows asf 1/2. In general, we are interested in modeling the

response of a system at intermediate frequencies, where these transitions appear.

A Foster pair is a simple circuit, with constant parameter values, whose response as a func-

tion of frequency resembles the one described above. It consists of one resistance in parallel

with one inductance, as in Fig.7.1. At very low frequencies, the impedancejωL of the inductive

branch is negligible, so the current will flow mainly through it; as frequency increases, this con-

tribution becomes more important, while the impedance of the resistance remains unchanged.

For high enough frequencies, current flows mainly through the resistive branch. The value of

frequency at which this transition takes place is called the characteristic frequency of the Foster

pair.
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=~

Lp

Rp

R L   (ω)   (ω) R Ls s

Figure 7.1: Basic circuit: a resistance and inductance in series with one Foster pair, as a repre-
sentation of a frequency-dependentRL circuit.

Circuits with Foster pairs for representing frequency-dependent effects were used already

in the sixties. At the beginning, these studies were of a theoretical nature: [100] is a thorough

comparative analysis of differentRL structures with respect to Foster and Cauer ones; [101]

shows applications to network synthesis; and [102] treats equivalence transformations between

Cauer and Foster networks. More recently, applications appear in the literature: in [103] Foster

pairs are used for a finite-pole approximation within a full 2-d modeling approach, and [104]

include Foster pairs for a transmission line model; Model Order Reduction (MOR) applications

of Foster pairs are found in [105] and [40]. Alternatives to Foster pairs, namely the ladder

networks, are reported in [106] and [107].

We follow [40]: therein several recipes for including Foster pairs into the Mentor’s MOR

scheme TICER/BMR [38,39] are presented. We will construct Foster pairs for a specific case of

the Arbitrary Frequencies Branch Merge method (page 235 of [40]), which allows the freedom

to choose the characteristic frequencies for the Foster pair circuit. Reduction of these computed

circuits is described in the same reference.

The two typical frequency-dependent transitions found in IC’s can occur either at distinct

frequency ranges, or at overlapping ones. In practice, the response can be modeled well with

one or two Foster pairs, depending on how many types of phenomena are contained in the

original data (current crowding and/or skin effect). In this chapter we show how to determine the

parameters of one-pair Foster circuits, leaving the more general case for the following chapter.

We organize the contents of the present chapter as follows:

• in Section 7.1, we analyze in detail the response of a Foster pair, defining its main param-

eter, i.e. the characteristic frequency;

• in Section 7.2 we show how to compute a one-pair Foster circuit for a set of 4 input data

points, coming from two different frequencies;

• we prove in Section 7.3 that a one-pair Foster circuit is identical to a corresponding ladder

circuit;

• Section 7.4 deals with issues regarding the implementation of Foster pairs within Mentor’s
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extraction tool, Calibre xL;

• Section 7.5 analyzes basic examples of one-pair Foster modeling.

The contents of these two chapters constitute a working example of the difficulties encoun-

tered in an industrial application. The issues herein discussed are mainly related to assuring

a simple yet robust solution to the problem of representing broadbandRL effects, in a manner

compatible with a decision made at a higher level (i.e., the adoption of the TICER/Branch Merge

Reduction (BMR) scheme, discussed in Chapter 1). Compared to the previous chapters, they

do not contain highly innovative concepts, from a scientific point of view1xcept for the future

issues described at the final discussion in Chapter 8. Nevertheless, they exhibit a systematic and

scientific approach to the implementation and extension of an existing method, based on simple

physical concepts, for modeling and synthesizing data in order to comply with these constraints.

7.1 Characterization of Foster pairs

The frequency dependent impedance for the Foster pair in Fig.7.1 is:

Z(FP)(ω) =

(
1

Rp
+

1
jωLp

)−1

=

 ω2L2
p

R2
p + ω2L2

p

 Rp +

 R2
p

R2
p + ω2L2

p

 jωLp (7.1)

This can be written in terms of the characteristic frequency of the Foster pair,

Ω ≡
Rp

Lp
(7.2)

Z(FP)(ω) =

1− 1

1+
(
ω
Ω

)2

 Rp +

 1

1+
(
ω
Ω

)2

 jωLp (7.3)

Separating real and imaginary parts, we see that the equivalent resistance and inductance for

the Foster pair are given by,

Z(FP) = R(FP) + jωL(FP),

R(FP)(ω) = (1− ψ(ω)) Rp

L(FP)(ω) = ψ(ω)Lp

(7.4)

In Fig. 7.2 we plot the general form for the characteristic functionψ(ω) ≡ (1+ (ω/Ω)2)−1,

having the following properties:

• limω→0ψ(ω) = 1;

1e
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Figure 7.2: Characteristic functionψ(ω) and its derivativedψ/dω for a Foster pair, in linear
(left) and logarithmic (right) scales.

• limω→∞ ψ(ω) = 0;

• ψ(Ω) = 1
2;

• ψ(3Ω) = 0.9 andψ(Ω/3) = 0.1.

• the derivativeψ′(ω) < 0 ∀ω with a peak atωp = Ω/
√

3, andΨ′(ωp) = 3
√

3
8Ω '

0.65
Ω

.

In other words,ψ(ω) is a soft decreasing unit step function, occurring in the vicinity ofΩ.

The typical “width” of the transition in the frequency domain is approximately one decade. In

fact,ψ(ω) has a symmetric shape to the right and left ofΩ, if we use a logarithmic scale for the

frequency (as is common practice when analyzing broadband behavior).

For a Foster pair, the equivalent resistance and inductance are both subject to this type of

transition, the first one being multiplied by a factor−Rp and the second one by a factorLp, so

that the desired increasing-R/decreasing-L characteristic is modeled.

7.2 One-pair Foster circuit parameters

The simplest realization of a circuit with these characteristics is the one shown in Fig.7.1, com-

posed of only one Foster pair in series with a resistor and an inductor.

Such a circuit contains four parameters to be determined. Namely, the two series values

Rs, Ls plus the Foster pairRp, Lp. These four parameters are determined by giving extraction
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values at two different frequenciesω` = 2π f` andωh = 2π fh, satisfying the consistency condi-

tions:

ω` < ωh ⇐⇒

 R(ω`) < R(ωh)

L(ω`) > L(ωh)
(7.5)

The equations to solve in this case are :

Rs+
Rpω

2
`L

2
p

R2
p + ω

2
`
L2

p
= R̀ ≡ R(ω`) Rs+

Rpω
2
hL2

p

R2
p + ω

2
hL2

p
= Rh ≡ R(ωh)

Ls+
R2

pLp

R2
p + ω

2
`
L2

p
= L` ≡ R(ω`) Ls+

R2
pLp

R2
p + ω

2
hL2

p
= Lh ≡ L(ωh) (7.6)

This system has an analytic solution, given by:

Rp = (Rh − R̀ )K; Rs = R̀ −
β2
`

1+ β2
`

Rp

Lp = (L` − Lh)K; Ls = L` −
1

1+ β2
`

Lp (7.7)

with

K =

(
1+ β2

`

) (
1+ β2

h

)
β2

h − β
2
`

=
1

ψ(ω`) − ψ(ωh)

β`,h =
ω`,h

Ω

Here, we have set,

Ω =
Rh − R̀
L` − Lh

(7.8)

Equation (7.8) expresses the essence of this solution: it is the result of equating the charac-

teristic frequency of the Foster pair to the characteristic frequency implied by the data, given by

the ratio between the variations ofRandL.
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Figure 7.3: Equivalence between a ladder circuit and a corresponding Foster pair circuit.

7.3 Equivalence between ladder and Foster pairs

As mentioned in the introduction to the present chapter, several authors have used ladder circuits,

instead of Foster pairs, in order to represent frequency-dependentRL behavior [106, 107]. A

ladder element is a “cousin” of a Foster pair: it also has two parallel branches, with a resistance

in one branch and an inductanceplus an inductance on the other, as in the circuit at lhs of

the equivalence in Fig.7.3. In this section, we will prove that this ladder circuit has identical

behavior as the Foster pair shown as the rhs of this equivalence.

The impedance for the ladder element is:

Z(L)(ω) =

(
1

Rl1
+

1
Rl2 + jωLl

)−1

(7.9)

(parameters defined in Fig.7.3) Performing the same procedure as done for Foster pairs, the

response for the ladder circuit is:

Z(ω) = R(ω) + jωL(ω),

R(ω) = (1− αψ(ω)) Rl1

L(ω) = Ls+ α
2ψ(ω)Ll

(7.10)

whereψ is the same function as before, with the characteristic frequency given by,

Ω(L) ≡
Rl1 + Rl2

Lp
(7.11)

and we have an additional parameter,

α ≡
Rl1

Rl1 + Rl2
; 0 ≤ α ≤ 1 (7.12)

Like in the Foster circuit, the system with two pairs of input data atω` andωh has an
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immediate solution given by,

Ω =
Rh − R̀
L` − Lh

; α =
Rh − R̀

ψ`Rh − ψhR̀
(7.13)

(obtaining the original parameters (Rl1,2, Ll , Ls) is trivial from here on).

For the sake of comparison, we rewrite (7.10) in the following way:

R(L)(ω) = (1− α)Rl1 + (1− ψ(ω))αRl1

L(L)(ω) = L0 + ψ(ω)
αRl1
Ω

(7.14)

Compared to a Foster pair, (7.4) says that the magnitude of the step inR(FP)(ω) is Rp, and the

one inL(FP)(ω) is −Lp, which can be written as−Rp/Ω. In other words: the step for the ladder

is exactly the same as the one for a Foster pair, multiplied by a factorα. Thus the response of a

ladder circuit with solution given by (7.7) is identical to that of a Foster pair with parameters,

Ls = L0 Lp = αLl

Rs = (1− α)Rl1 Rp = αRl1 (7.15)

(Note: R−1
s = R−1

l1
+ R−1

l2
, stating that the series resistance of the equivalent Foster pair is simply

the parallel between the resistances of the two ladder branches.)

The difference between the two systems relies in how the sensibility is tuned. For the ladder,

parameterα controls the low-frequency resistance by establishing the relative weight of the

purely resistive branch with respect to the mixed; in Foster pairs this role is carried out by the

series resistanceRs.

Two limiting situations exist:

• α→ 1: gives a Foster pair with (Rl1, Ll) and no series resistance; this is coherent with the

fact thatα = 1↔ Rl2 = 0.

• α→ 0: corresponds toRl1 = 0, which is tantamount to shorting the ladder structure; only

inductanceLs survives, and there is no corresponding Foster pair.

As a conclusion: for a single-transition picture, there is no difference between using one type

of representation or the other. We anticipate that, for systems with more than one transition, the

situation is quite different, because the ladder circuits can be cascaded to produce non-trivial

behavior (this will be analyzed in the following Chapter).
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7.4 Implementation

Determining the characteristic frequency in (7.8) is the main difference between our method

and the ones discussed in [40], whereby all the characteristic frequencies are pre-established.

From the MOR point of view, this predetermination of all possibleΩ’s in a circuit is a desired

property. Instead, from the extraction side of the flow, it is computationally convenient to letΩ

be determined by the data, as in (7.8). This choice determines the Arbitrary Frequencies Branch

Merge variant of MOR mentioned earlier [40].

However, before accepting this solution, we must be certain that it is a representative model

of the original data. In other words, we must verify that the transition of the produced Foster

pair takes place in the vicinity of the frequencies corresponding to the data we possess. Failing

to do so, solution (7.7) is unstable and may lead to unphysical parameters2.

Graphically, we want to avoid the situation in which the two data points are on the same

branch of the functionψ(ω) in Fig. 7.2, meaning that they are not both to the left of the 10%-

transition mark, nor both to the right of the one for 90%. This condition reads:

[ω`, ωh] ∩ [Ω/3,3Ω] , ∅ (7.16)

i.e.:

ω`
3
≤ ωc ≤ 3ωh (7.17)

In arithmetic terms, this statement is equivalent to requiring the denominator in (7.7) not to

be small. This denominator is factored as (β` + βh)(βh − β`),

βh − β` � 1 ⇐⇒ ωh − ω` � Ω (7.18)

If the input data does not comply to these conditions, it is because no significant transition

occurs in the given frequency range. Thus, fixed average values of resistance and inductance are

appropriate for the whole range.

Returning to the discussion between fixed-Ω and free-Ω methods, we point out that the for-

mer must imposead hocthe non-negativity of circuit parameters at computation time (generally,

a Gauss-Seidel triangulation), whereas condition (7.17) is sufficient for the latter.

In Fig.7.4 we show the implementation of the Foster pair synthesis method included in

the actual version Mentor’s Calibre tools [22, 41, 108]. Only those aspects that are relevant to

broadband extraction are pointed out. The major blocks of the calculation are the one-frequency

extraction call to Calibre xL and the call to the TICER/BMR MOR tool, which are documented

in the references. With respect to the flow in Fig.7.4, we make the following comments:

2Namely, the series parametersRs and/or Ls may take negative values.



7.4. Implementation 181

RLC Database (PDB)

Compute RL at frequencies 
(solve ZI=V, eq 2.12)

Double Foster-pair method
(eq 2.6)

Single Foster-pair method 
(eq 1.7)

0

1

How many pairs? 2

{frequencies}

Ravg, Lavg Rs,Ls, Rp,Lp Rs,Ls, Rp1,Lp1, Rp2,Lp2

Model Order Reduction (call TICER/BRM)

Capacitance 
extraction

RLC netlist

Figure 7.4: Foster pair flow diagram inserted into the Calibre xL extraction tool.

1. Input to Calibre xL is through a geometrical description of wires, that is converted at an

earlier stage of the extraction flow into the Parasitics Database (PDB), containing, apart

from the geometry, a placeholder for theR, L,C parameters; the only addition for doing

broadband extraction is the set of frequencies.

2. For digital signal nets, in Calibre’s low-frequency mode, which does not contemplate

skin-effects, fh is determined as

fh = min

(
1
tr
, fmax

)
wheretr is the minimum rise time for the net, andfmax is the technology-dependent max-

imum frequency where skin effect current crowding may be safely neglected, including

one piecewise-constant filament per wire.

3. Determination of the number of transitions springs from (7.17), when 2 data points are

extracted; for more data points these conditions are discussed in Section 8.4.
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Figure 7.5: Configuration for capturing return-path selection effects; one signal (blue, circled in
red) with 17 returns (in green); all lengths are 1000µ and material is copper.

7.5 Examples

In this section, we will analyze two numerical examples of one-pair Foster circuits, one corre-

sponding to the each of the two types of transitions we have been discussing.

7.5.1 Example with return-path selection

We concentrate on the example shown in Fig. 7.5: a configuration of one signal and 17 wires

identified as grounds. Therefore, the current has 17 degrees of freedom to “choose” the return

paths. Original data is produced with FastHenry using one filament per conductor, in order to

avoid current-crowding effects on each wire3, and computing loop resistance and inductance.

These are the symbols with dashed lines in Fig. 7.6. Next, we compute the Foster pair circuit

parameters as in Section 7.2 using the data atf` = 1GHzand fh = 10GHz, and plot the result of

the fit for a broadband spectrum that covers one decade above and one below the fitted region.

Fig.7.7 plots the errors of these fits, compared to the original data. Worst-case 2.5% error is

comitted for inductance in the interpolation region, and less than 0.5% for resistance.

The importance of each component of the errors depends on the impact of that magnitude

on the total impedance. In order to pinpoint the relevance of these errors, it is perhaps more

instructive to decompose the impedance into its absolute value and argument (Fig.7.8, and errors

in Fig. 7.7(right)). In this manner, we are able to observe that the aforementioned 2.5% error in

3These curves are indistinguishable from the one obtained with the Calibre xLRL extraction tool [22].
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Figure 7.6: Result of fitting with one Foster pair for test case in Fig.7.5.
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Figure 7.7: Errors for Figs.7.6 and 7.8.
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Figure 7.8: Same results as Fig. 7.6, plotting modulus and argument of impedance.
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  4µ  4µ

  2µ

  2µ   4µ  4µ 100  µ

Figure 7.9: Balanced sandwich configuration for the study of skin-effect current crowding.

L is not dominant in the interpolation region: the absolute value of impedance is well fitted with

an error below 0.5%. The 2.5% errors in inductance are translated to errors in the argument,

when this magnitude is very close to zero.

Finally, we emphasize that errors remain quite low (below 3%) well beyond the interpolated

region. Thus, the Foster pair not only fits this interval, but also allows for a fair level of ex-

trapolation. Identical figures were obtained for all the 42 signals (blue cross-sections) in Fig.

7.5.

7.5.2 Example with skin-effect current crowding

At very high frequencies, return paths are reduced to the nearest neighbors: the frequency is

such that we are well inside the plateau observed at the right extremes of Fig.7.6. Frequency

effects for this situation are given by current crowding within the conductors; i.e. the skin effects

that are the subject of Part B (Chapters 4-6) of this thesis.

Consider the configuration in Fig.7.9, composed of one signal with two symmetric return

paths; the material of all wires is copper. We are interested in a range of frequencies up to

100GHz, in which the skin depth is smaller or comparable to the dimensions of the wires. By

studying a perfectly symmetrical configuration with only two closest return paths, as in Fig. 7.9,

we are able to isolate current-crowding effects from the return-path selection effects studied in

the previous example.

In order to represent these effects with a one-pair Foster, we fit original data produced with

FastHenry at a high precision level (9× 9 filaments on the cross section), for frequenciesf` =

1GHzand at fh = 100GHz. The characteristic frequencyfchar = Ω/2π for the fit is 52.9GHz,

so that condition (7.17) is comfortably satisfied.

We plot the inductance and resistance of the resulting Foster pair fit, compared to the original

data, in Fig.7.10. On the right graphs of this figure, we observe that errors remain below 3%.

Plotting modulus and argument for this example (Fig.7.11), we see that this time the maximum

level of errors are translated to the absolute value of impedance.

Similar examples render the same error figures, with errors always bounded by 5% for rep-

resentation of skin-effects by one Foster pair.
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Figure 7.10: Resistance and inductance figures for the configuration on Fig.7.9, comparing
Foster pair fit to original data produced with FastHenry at high precision 9× 9 discretization.
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Figure 7.11: Same results as Fig. 7.10, plotting modulus and argument of total impedance.





Pairs Foster pour des transitions

multiples

Résuḿe en français

Pour certaines configurations et gammes de fréquences, les deux transitions décrites dans le

chapitre précédent sont présents, et une modélisation à un pair Foster est insuffisante. Dans

ce chapitre, nous considérons un cas plus général. Dans la section 8.1, nous transformerons

les équations pour un circuit composé de deux pair Foster en une forme simple et maniable.

Une solution graphique et simple pour ces équations est proposée dans la section 8.2. Des con-

figurations exemplaires sont exposées et analysées dans la section 8.3. En conclusion (section

8.4.1), nous discutons les conditions de convergence de cette méthode, ainsi que des importants

extensions, concernant : le problème d’un nombre arbitraire de pairs ou d’éléments d’echelle

d’une parte, et la représentation de la dépendance fréquentielle l’inductance mutuelle avec des

Foster pairs de l’autre.
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Chapter 8

Multiple-transition Foster pairs

At high enough frequencies, both return-path proximity and skin effect crowding are present

in the extracted data. For these cases, one Foster pair may not render an acceptable fit. If the

characteristic frequencies for these two transitions are substantially different, then it is advisable

to include one Foster pair for each of these. Similarly, we may wish to include several Foster

pairs in order to model more detailed data.

For a system of Foster pairs, the equations for fitting the circuit parameters become more

complicated, due to the non-linearity of the characteristic response responseψ for a Foster pair.

For the case of two Foster pairs, they are tractable if we bare in mind which are the important

variables. Namely, these are the characteristic frequencies.

The contents of the present chapter are as follows:

• in Section 8.1, we will transform the equations into a simple, tractable form;

• these equations have a graphical solution, which is the subject of 8.2;

• numerical examples are exposed in 8.3;

• we conclude with a discussion on the concerns regarding implementation (Sec.8.4); this

discussion is extended to three questions which are presently at the development phase:

the generalization to several pairs (8.4.1);n−ladder circuits as an alternative to Foster

pairs (8.4.2); a brief summary of the problem of broadband mutual inductance modeling

(8.4.3).

8.1 Two-pair system

Consider a circuit composed of two Foster pairs, as in Fig.8.1. Being connected in series, the

response of this circuit is simply the addition of two Foster pairs,

189
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=~
R L   (ω)   (ω)

R´ L´    (ω)   (ω) L1 L2

R1 R2

Rs Ls}
Figure 8.1: Circuit for representing frequency dependence in the presence of two transitions: a
resistance and inductance in series with two Foster pair.
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(
Ω2
ω

)2
Lp2 (8.1)

whereΩi ≡ Rpi/Lpi , 1 ≤ i ≤ 2.

There are 6 circuit parameters to be determined. Thus, we need 6 input data, i.e. 3 pairs of

values (R, L). Evaluating at 3 frequency points (ω` < ωm < ωh) we obtain the system of six

nonlinear equations,

1

1+ x2
1

Rp1 +
1

1+ x2
2
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−
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+
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ω` = −ω`Lh (8.2)

where we have redefined two of the unknowns as,

x1,2 ≡
Ω1,2

ω`
(8.3)

as well as the parameters
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km,h ≡
ωm,h

ω`

In order to solve these equations, we first eliminateRs andLs by forming the relative values

(Rm− R̀ ), (Rh− R̀ ), (Lm−L`)ω`, and (Lh−L`)ω`. Then we further eliminateRp2 by combining

as follows,

(Rm− R̀ ) + x2ω`(Lm− L`) =

 k2
m

k2
m+ x2

1

−
1

1+ x2
1

 (x1 − x2)Rp1

(Rh − R̀ ) + x2ω`(Lh − L`) =

 k2
h

k2
h + x2

1

−
1

1+ x2
1

 (x1 − x2)Rp1 (8.4)

Dividing left- and right-hand sides above eliminatesRp1, so that we have effectively reduced

the system to two unknowns, namelyx1 andx2:

x2 = C −
D

x2
1 − B

(8.5)

where we have used the auxiliary parameters

D =
A(k2

m+ k2
h)(gh − gm)

1− A

C =
gm− Agh

1− A

B =
Ak2

h − k2
m

1− A

A =
(k2

m− 1)(L` − Lh)

(k2
h − 1)(L` − Lm)

gm,h =
1
ω`

Rm,h − R̀

L` − Lm,h

We remark that in passing from (8.2) to (8.4), we have eliminatedRp2 by multiplying the

“L” equations byx1 and adding the corresponding ”R” equation; likewise, we could eliminate

Rp1 by doing the same process withx2. This produces exactly the same final equation (8.5) with

x1 andx2 interchanged.

8.2 Solving the equations

In the previous section, we have reduced the two-Foster pair system of 6 nonlinear equations to

one with 2:
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Figure 8.2: Graphical view of the solution of the 2-pair Foster system (8.6) forx1, x2, given by
the intersection of the green and red curves (dotted lines correspond to asymptotes).

x1 = F(x2)

x2 = F(x1)
with F(x) = C −

D

x2 − B
(8.6)

with the definitions as in (8.5).

Graphically, solving this equation is tantamount to intersecting the two curves in Fig.8.2. In

the next two subsections, we will first show that a simple fixed-point iteration can be applied for

solving this equation; we will later analyze the conditions for the convergence of this solution.

8.2.1 Fixed-point iteration

Solving (8.6) can be done very efficiently by performing the fixed-point iteration:

x(n+1)
1 = F

(
x(n)

2

)
x(n+1)

2 = F
(
x(n+1)

1

)
(8.7)

Assuming convergence is guaranteed (see conditions (8.10) in the following section), a safe
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Figure 8.3: Convergence of the fixed point for a typical-case two Foster pair circuits; values are:
C = 33.21,D = 1.25 106, B = 7477, emanating from the test case presented in Figs.8.4 and 8.5;
10−8 tolerance convergence is reached in 10 iterations.
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and efficient starting point isx(1)
2 = 1

2(C +
√

B), i.e. the mid-point between the two vertical

asymptotes in Fig.8.2.

In Figs.8.3, we show an example of this convergence for a typical test case, reaching 10−8

accuracy in the solution within 10 iterations. Similar convergence is obtained for a large variety

of examples, never exceeding 15 iterations, for the same tolerance.

Once the characteristic frequencies are obtained by undoing (8.3), the circuit parameters of

the circuit follow immediately:
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)
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) (
km
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1
− 1
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1
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(
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x2

) (
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2
− 1

1+x2
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Lp1 = ω`x1Rp1

Lp2 = ω`x2Rp2
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Rp1

1+ x2
1

−
Rp2

1+ x2
2

Ls = L` −
x2

1Lp1

1+ x2
1

−
x2

2Lp2

1+ x2
2

(8.8)

Concerning the efficiency of the fixed-point iteration, we remark that (8.6) can be trans-

formed into a single equation:

x = F (F(x)) (8.9)

This is a 5-th degree equation, that can be solved with standard techniques. If we can assure

that (8.7) converges, then so will (8.9). For example, we have implemented an elementary

Newton-Raphson method that converges in 5 iterations, for the same example as the one shown

in Fig.8.3 (which requires 10 iterations for the same accuracy).

However, the cost of calculating the order-5 polynomial coefficients, plus evaluating it and

its order-4 derivative at each iteration, exceeds the total cost required for the immediate evalu-

ations ofF in (8.7). This was verified by counting the number of CPU cycles, using the same

tool quantify [90] as in Section 5.6: for this example, the 10 fixed point iterations cost a total

of 41 CPU cycles, whereas the computation of coefficients plus the 4 iterations of the Newton-

Raphson require 125 cycles1.

1Given that these runtimes are negligible with respect to the ones for extraction, we do not emphasize this point,
as any solution method is a valid one; we prefer the fixed-point method not only because it is slightly faster, but
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8.2.2 Convergence conditions

Inspection of the graphs in Fig. 8.2 shows that a solution in the (x1 > 0, x2 > 0) quarter is

guaranteed under the conditions2:

B,C,D > 0 ∧


√

B > C ∧ ∆ > 0

∨
√

B < C ∧ ∆ < 0

(8.10)

where we have defined∆ ≡ C + D
B −

√
B− D

C , the difference between the values atx = 0 for F

andF−1 (i.e., the intersections between the vertical axis and the red and green curves in Fig.8.2,

respectively).

ParametersB,C,D, defined for eq. (8.5), are dimensionless ratios for the input data. As

such, the conditions above depend on the quality of input data. We cannot have a mathematical

proof for all possible sets of input, but we can analyze in detail the inequalities’ implications.

In a broad sense, these are generalizations of the condition (7.17): input data must represent a

significant transition at the extracted frequencies.

In first place, let us consider an auxiliary condition, namelyA < 1. ParameterA in (8.5) is

the result of dividing the two steps in the input data for inductance, and multiplying this number

with the division of the squares of the two steps in frequency. From all the examples we have

seen, it is clear that inductance makes a shift within the same order of magnitude, even for

frequencies that are separated by several decades. If the frequency values are chosen far enough

apart, the ratio of squares of frequencies will be much much larger than the ration between

inductance variations:

A < 1⇐⇒ SL ≡
L` − Lh

L` − Lm
<

k2
h − 1

k2
m− 1

'

(
ωh

ωm

)2

Next we consider conditionB > 0. AssumingA < 1, then

B > 0⇐⇒ SL >
1− k−2

m

1− k−2
h

' 1+

(
ωm

ωh

)2

(8.11)

Using the same argument as before, since frequencies span orders of magnitude, the right-

most values of this expression is expected to be very close to 1. If data is “good”, in the sense

that it represents a non-trivial difference between theL values atω` and those atωh, then this

condition should hold comfortably.

Next, we take into accountgh andg`: they represent ratios between the characteristic fre-

because of its inherent graphical beauty.
2These are sufficient conditions, we make no claim concerning necessary conditions.
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18µ

14µ

Figure 8.4: Configuration of wires for 2-pairRL extraction (signal wire shaded).

quency, implied at each extraction, and the lowest angular frequencyω`. Again, if data is well

chosen, these frequencies should respectgh > gm, thus satisfying conditionD > 0.

ConsideringC > 0, it translates into a similar condition as the one forB, but for resistance

instead of inductance:

C > 0⇐⇒ SR ≡
Rh − R̀
Rm− R̀

<
k2

h − 1

k2
m− 1

'

(
ωh

ωm

)2

(8.12)

We have found no strong correlation to physical conditions in order to support the inequal-

ities inside the brackets of eq.(8.10). Nevertheless, we emphasize an empirical argument that

is most convincing: no realistic test cases has violated these conditions yet. In the following

section, we will present a representative example, and see that these conditions are comfortably

satisfied for all types of input data.

8.3 Examples

In Fig. 8.5 we exemplify the fit resulting from this methodology. The configuration is shown in

Fig.8.4, consisting of one signal and 7 return wires. The extractions correspond to frequencies:

f` = 0.1GHz, fm = 10GHz, fh = 54GHz. Original data is produced with FastHenry at a high-

precision level, in order to capture skin-effect current crowding3. As in the previous chapter,

we compute loop resistance and inductance.

3To be contrasted with data in Fig.7.6, in which one filament per wire is used, so that data only represents return-
path selection effects; or the one in Fig.7.9, in which return-path selection effects are absent.
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Figure 8.5: Two-pair Foster fit for the configuration of Fig. 8.4, and original data produced with
FastHenry at 9× 9 discretization.
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Figure 8.6: Same data as Fig. 8.5, plotting modulus and argument of impedance.
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Figure 8.7: Verification of conditions in (8.10) for the 2-pair Foster solution of Fig. 8.4, varying
fm in the range [f`, fh] - indicated by the vertical dotted lines - at left: settingf` = 0.1GHzand
fh = 54GHz; at right: f` = 1GHzand fh = 10GHz.

Convergence to 8-digit precision occurs within 10 iterations of (8.7), obtaining the charac-

teristic frequencies:f1 = 2.42GHz, f2 = 49.4GHz. Inside the interpolated region, the com-

parison between real data and the one from the two-pair Foster circuit shows an acceptable

representation of frequency effects up to frequencies of the order of 100GHz.

Note that the discrepancies occur mainly for inductance at low frequencies (where its effect

is negligible) and for resistance at high frequencies (idem). This is better expressed in the

graphs for absolute value and argument, Fig. 8.6: the error in the magnitude of impedance is

always below 2% in the interpolation region, the 6% errors inL being insignificant in the region

where they occur. As in the previous chapter, the large (6%) relative errors in the argument of

impedance are for values where it is close to zero.

Regarding the conditions for convergence to the solution, we now analyze this method’s

sensibility to the choice of data inputs. Suppose we fix, as in the example in Fig. 8.5, the

maximum and minimum frequencies, at their valuesf` = 0.1GHzand fh = 54GHz. Then, we

vary fm in the broad range that separates these two extremes. For each of these intermediate

frequencies, we calculate the four parametersA,
√

B,C,D and∆ (see eq. (8.10)). These results

are plotted in Fig. 8.7a.

We observe that all the conditions are comfortably satisfied (note the logarithmicy-scale),

even for values offm very close tof` or fh. Similar figure is obtained for values off` and

fh separated by only one decade, shown in of Fig.8.7b. The number of iterations needed for

convergence at 10−8 precision remains between 9 and 13 for all the different values off`, fm and
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Figure 8.8: Average errors for the 2-pair Foster fits as function of the intermediate frequency
fm: at left, for range [0.1GHz, 54GHz]; at right, for range [1GHz, 10GHz].

fh shown in the figures.

Errors for the fits, as a function of the choice of the intermediate frequencyfm, have a

minimum near the middle4 of the range [f`, fh]. In Fig.8.8, we plot these average errors: for

each value offm we compute the Foster pair parameters and the global average error of the fit

as,

ε[X] =
1

Nf

Nf∑
i=1

∣∣∣∣X( f it)
i − X(orig)

i

∣∣∣∣
X(orig)

i

(8.13)

for X = R, L, |Z|, the “(f it)” supra-index indicates the magnitudes produced by the 2-pair Foster

circuit, and “(orig)” is the original data produced by FastHenry;Nf covers the whole interpo-

lated region.

8.4 Discussion and further work

One-pair Foster circuits are implemented and tested within the Calibre xL formatter according

to the specifications in Section 7.4. Concerning the 2-pair method, certain questions are of

concern, mainly:

4Note: “middle” refers to the logarithmic-scale separation of frequencies; when doing broadband we assign the
same weight to all frequency points chosen equally spaced according to this scale. This also applies to the estimation
of average errors (i.e., we do not weigh the error with the frequency interval between points, as this would bias the
figure on the side of high frequencies.)
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1. When can we guarantee a solution for the input data?

2. Are the circuit parameters always real and positive?

The first point is easily implementable, since conditions (8.10) can be immediately verified,

avoiding unnecessary iterations when they are not. Non-compliance to these conditions leads to

the one-pair solution, by dropping one of the data input points (thefm extraction is the natural

candidate in this regard, as the user is generally interested in the range [f`, fh]).

The second point is more delicate. We recall the discussion in Section 7.4 concerning when

a significant transition is implied by the input data. Generalizing to the 2-pair situation, the

analogous question is whether the data represents two significant transitions. In practice, this

translates to: how much do the two characteristic frequencies differ? We will establish that the

two transitions are well “resolved”5 when the second one’s peak occurs at a frequency where

the first one has completed 90% of the transition. Relating to Fig.7.2 this means that there are

two distinct transitions at charactristic frequenciesΩ1 andΩ2 if and only if:

3Ω1 <
Ω2
√

3
⇔
Ω2

Ω1
> 3
√

3 ' 5.2 (8.14)

Apart from the condition above, we must also enforce that these two characteristic frequen-

cies comply to the single-pair condition (7.17), namely that the input data is not completely

to left or to the right of the characteristic transitions of each Foster pair. When any of these

conditions are not satisfied, then a 1-pair, or eventually no pair, representation is the appropriate

one.

At present time, the method described in this chapter is implemented within the Calibre

formatter, and is in the process of being tested for a large variety of test cases. There has been no

situation in which any of the two questions above have lead to inconsistencies. In other words, if

conditions (7.17) and (8.14) hold, then the method has always converged to a physically correct

solution.

We finish this discussion by exposing three issues that are presently under study. The first

two issues deal with the generalization of these methods to a larger number of pairs, or input

data. The third issue deals with the representation of frequency dependent mutual coupling.

8.4.1 Generalization ton-pairs

As we have mentioned over these two chapters, there are typically two types of frequency-

dependent behaviors: return-path selection, for frequencies up to about 10GHzfor 90nmtech-

nology (the frequency value scales upward with technology); and skin-depth current crowding,

for higher frequencies. Within this picture, three well chosen data sets (Ri , Li) should be enough

5We borrow this term from optics, applied to the peaks in the derivatives of the two characteristic functions.
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Figure 8.9: Two-ladder circuit and its reduction to a 1-ladder circuit.

to fit two Foster pairs and capture both transitions. In terms of computing cost, we empha-

size that extraction is the expensive task of the whole flow, so that we are usually interested in

keeping down the number of extracted data.

However, in certain cases, a user may wish to obtain more information, or assure a better

fit, by extracting at more frequencies. The question is how to treat this larger data set. The first

decision is whether to augment the number of Foster pairs or not:

• Extending the number of Foster pairs in order to fit more data, in a similar fashion as

the one presented in this chapter, is not advisable. The functional relationship between

characteristic frequencies will be a very intricate version of (8.5), and a graphical solution

as the one presented in Section 8.2 is not available. Nevertheless, numerical solvers for

this type of fit exist (or can be developedad hoc), although the cost and capacity of

avoiding unnecessary iteration is difficult to control.

• If the number of Foster pairs stays fixed at two, it is clear that the behavior can not be fitted

to an exact solution, since the system is overdetermined. Instead, this becomes a problem

of least-squares fit. For low-dimensional problems like this case, there are very efficient

out-of-the-box implementations [109]. These kind of techniques are easily extended to

more than two Foster pairs, if desired (and enough data is available, although we insist

that, on physical grounds, two Foster pairs should be sufficient).

8.4.2 Higher-order ladder networks

Another interesting alternative is that of considering the higher-order ladder circuits. We re-

call that for a single ladder element, there is no difference between a ladder and a Foster pair

representation (see Section 7.3). However, for more complicated structures, this is not the case.
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Consider the circuit in Fig. 8.9, with two cascaded ladder elements. Having 6 total pa-

rameters, we are able to fit the same data as with two Foster pairs (circuit 8.1). The system

equations for Fig. 8.9 can be reduced to an equivalent circuit with one frequency-dependent

ladder element:

R̃1(ω) = (1− α1ψ1(ω)) R1

L̃1(ω) = L0 + α
2
1ψ1(ω)L2 = L0 + α1ψ1(ω)

R1

Ω1
(8.15)

with,

ψ1 =
1

1+ (ω/Ω1)2
, Ω1 =

R1 + R2

L2
, α1 =

R1

R1 + R2

as in Section 7.3. Then the total impedance of the circuit can be written as,

R(ω) = (1− α̃0ψ0(ω)) R0

L(ω) = Ls+ α̃
2
0ψ0(ω)L̃1 = Ls+ α̃0ψ0(ω)

R0

Ω̃0
(8.16)

where we have introduced the notation:

ψ0 =
1

1+ (ω/Ω̃0)2
, Ω̃0(ω) =

R̃1(ω) + R0

L1
, α̃0(ω) =

R0

R̃1(ω) + R0

Magnitudes ˜α0, Ω̃0 for the reduced circuit, play the same role as the corresponding ones in

a one-ladder network, but are frequency-dependent. Here resides the main difference between

this problem and the 2-pair Foster one: characteristic frequencies are “cascaded” for ladder

networks, whereas they are added for Foster pairs. Basically, this corresponds to the comparison

between the arithmetic result of placing circuits in parallel or in series. Foster pairs placed in

parallel do not acquire any extra degree of freedom, since they can be reduced to just one pair

with theRp andLp corresponding to the parallel of all resistances and inductances. This is why

only series Foster networks are analyzed.

Parallel ladder networks, on the other hand, respond to a more complex structure of compo-

sition, with characteristic transitions occurring within characteristic transitions. At the heart of

the distinction between the two types of models, lies the main limitation for the Foster systems:

each Foster transition occurs over a range of roughly one decade aroundΩ; for ladder networks,

this is not the case.

Before implementing this type of model, which implies solving the intertwined equations

(8.15) and (8.16) for a given set of input data, it is necessary to analyze the capacity of the output

n-ladder system to be reduced. Merging parallel ladders in TICER/BMR is not as straightfor-
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Figure 8.10: Two-bundle example configuration for study of mutual broadbandRL (left), and
magnitudes obtained with FastHenry: self resistance and inductance (center) and mutual cou-
pling coefficients (right).

ward as doing so with series ladders (which are equivalent to Foster pairs) [110].

8.4.3 Broadband mutual impedance

Foster pairs replace the single-frequency (R, L) values in the netlist for self inductance calcula-

tions at a fixed frequency. We now turn to the corresponding changes needed in the representa-

tion of mutual inductance.

First of all, we point out that mutual inductance calculations are generally carried out in

order to obtain upper bounds for noise. In this sense, it is generally sufficient to give an estimate

of the maximum coupling over a whole frequency band. This solution is currently employed for

Calibre tools.

Having said this, we consider the example shown in Fig.8.10a, with two coupled bundles.

We can extract the values for self and mutual impedance using, say, FastHenry. This gives a

2× 2 matrix:

Z(ω) =

 Z1(ω) Z12(ω)

Z12(ω) Z2(ω)

 (8.17)

For this matrix, we plot in Fig.8.10c the coupling coefficients6:

ζL =
L12
√

L1L2
; ζR =

R12
√

R1R2
(8.18)

Immediately, we observe that these couplings are described by a Foster-pair type of transi-

6The term ”coupling resistance” is the counterpart of the more familiar coupling inductance; it acts on the real part
in the same manner as the latter works on the imaginary one, and has a circuit representation as current-controlled
voltage source, treated by most circuit simulators. In physical terms, it is important for loop inductance when two
bundles are very close, and is specially important for configurations with shared grounds.



204 Chapter 8. Multiple-transition Foster pairs

  pM

pR
1

  sM   rM

pL
2

pL
1

pR
2

sR
2 sL

2

sR
1

sL
1

mV
  10V

 1

p I
 1

1 I

p I
 1

−
1 I

mV
  20V

 2

2 I
p I
 2

p I
 2

−
2 I

Figure 8.11: Model and circuit representation containing the notation for frequency-dependent
mutual impedance.

tion: ζL undergoes a monotonically decreasing step, andζR a monotonically increasing step

(with zero couplingR at low frequencies). Moreover, the ”characteristic frequency” corre-

sponding to these steps is approximately the same as the ones shown for the self transitions

(Fig.8.10b). Since our intention is to model the whole circuit with fixed parameters, we can

picture this as two Foster circuits, with fixed coupling between the two inductive branches, and

fixed coupling between the two resistive branches. In this manner, the magnitude of the to-

tal coupling is “tuned” by the current along the branches of each Foster pair. This leads us to

attempt to model the this system with the circuit in Fig.8.11, adding the following elements:

Ms :inductance coupling between the two series inductances;

Mp :inductance coupling between the two pair inductances;

Mr :resistance coupling between the two series inductances; (8.19)

The equations for this circuit are given by:
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(Rs1 + jωLs1)I1 + jωMsI2 = Vo1 − Vm1

jωMsI1 + (Rs2 + jωLs2)I2 = Vo2 − Vm1

Rp1 Ip1 + Mr Ip2 = Vm1

Mr Ip1 + Rp1 Ip2 = Vm2

jωLp1

(
I1 − Ip1

)
+ jωMp

(
I2 − Ip2

)
= Vm1

jωMp

(
I1 − Ip1

)
+ jωLp2

(
I2 − Ip2

)
= Vm2 (8.20)

where all the symbols are defined in Fig. 8.11.

The system for the six unknowns (I1, I2, Ip1, Ip2,Vm1,Vm2) can be reduced to a 2×2 system

for the two total currents, although the expressions are quite cumbersome.

Another important observation is that the self parameters (central graph of Fig.8.10) are

largely unaffected by the coupling, i.e.: if we compute them individually, we obtain identical

curves with at least three digits accuracy. This leads us to introduce the main assumption for

estimating the parameters in our model. Namely, that the Foster-pair parameters in Fig.8.11

and eq.(8.20) are the same as the ones for the uncoupled configuration. We have encountered

this situation several times throughout the present work: for example, when computing the

distributions coefficientsαi among return paths for a bundle in Section 2.2, we neglect the

presence of other bundles. Here, we are dealing with the frequency-dependent version of the

same statement.

Using this information, and the data extracted at two frequency points, we obtain a system

of 3 (non-linear) equations for unknown parametersMr ,Ms,Mp. The recipe is the following:

1. extract atω` andωh;

2. compute the two Foster pairs separately, using:

(Z1(ω`),Z1(ωh))→ (Rs1, Ls1,Rp1, Lp1)

(Z2(ω`),Z2(ωh))→ (Rs2, Ls2,Rp2, Lp2);

3. obtain the currentsI1 and I2 atω`, by inverting (8.17) for an arbitrary assignment ofV1

andV2;

4. replaceω`, currents, voltage assignments, and Foster-pair parameters into (8.20);

5. eliminateIp1, Ip2,Vm1,Vm2, thus obtaining two non-linear complex equations forMr ,Ms,Mp.

6. repeat steps 3,4,5 forfh, obtaining a new set of two non-linear equations forMr ,Ms,Mp.
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If the approximations are valid, then the two equations obtained in step 5 should be linearly

dependent, and the same holds for the ones in step 6. Moreover, in view of the fact that theZ12

is purely imaginary at low frequencies, then the independent equation in step 5 should be one

real equation. In this manner, the number of independent equations is 3, and we able to solve

for Mr ,Ms,Mp.

The method described above is a cumbersome one, and its implementation is not straightfor-

ward. A relevant analysis of the necessity for this implementation is required, before embarking

on this route. Furthermore, TICER/BMR reduction of the elementsMr and Mp is not direct,

as opposed to the case ofMs [110]. Our intention is to propose a solution, for the sake of

completeness of the Foster pair model, and notwithstanding the question of its utility.

8.5 Conclusions

In these two Chapters, we have outlined a methodology for representingRLfrequency-dependent

behavior using frequency-independent circuit parameters. First, we have shown the single-

transition case, capturing effects due to either return-path selection, or skin-effect current crowd-

ing. Representative examples show that the interpolation errors are small. Next, we have ex-

tended the analysis to the case where data is originated from models containing both type of

transitions. Analysis of errors and convergence conditions are included. Future applications are

discussed in detail, along two lines of development: including more transitions or pairs (and

eventually replacing Foster pairs by ladder networks); and representing, in an accurate form,

frequency-dependent mutual inductance with Foster pairs.
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In this Thesis, we have exhibited, analyzed and proposed solutions to three different problems

related to interconnects in ICs. Apart from the fact that they have been developed within the

same framework, namely Mentor Graphics’s extraction tools Calibre xRC/xL, the common fea-

ture to these three problems is the search for compact models based on simple physical reason-

ing. We will now summarize the main contributions for each of these problems, including the

implementations into Mentor’s commercial tools, as well the ongoing and future work.

Mutual inductance

Within the physically appropriate loop inductance formalism, we have developed and imple-

mented the dipole approximation, whose main characteristic lies in capturing the leading con-

tribution for interaction between circuit loops; more specifically, we have:

• obtained closed-form formulas for calculating mutual inductance between circuit ele-

ments in an extraction flow;

• reduced the cost of these computations, from quadratic to linear in the number of ele-

ments;

• shown that accuracy is acceptable for distances comparable to the typical dimensions of

circuit loops;

• obtained simple rules that permit discarding certain types of interactions between loops;

• extended the dipole approximation for the calculation mutual inductance between inten-

tional inductors, showing similar gains as the ones mentioned above.

The methods described above are all included within Mentor’s extraction tools, and have

been filed for patent awards. Concerning present and future developments, we are collabo-

rating with researchers from UCSB along two lines: higher precision approximations at short

distances; and inclusion of substrate effects via equivalent Green function methods.
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High frequency modeling of sources

For modeling non-uniform current crowding due to skin and proximity effects at high frequency,

we have implemented the method of conduction modes, which consists of expanding the current

distributions in terms of functions which are appropriate for this task; in particular we have:

• extended the existingRL, quasistatic (MQS), version of conduction modes, into anRLC

version;

• shown representativeRLC examples with two orders of magnitudes savings in size with

respect to standard references;

• developed a systematic approach for the computation of integrals for theRL/MQSmethod,

in order to render the conduction modes method efficient in terms of computational cost;

• displayed typicalRL/MQS examples with two orders of magnitudes in runtime savings

with respect to similar-accuracy, methods based on piecewise constant current functions.

TheRL/MQS implementation is in the process of being included in Calibre xL, replacing

the current high-frequency mode. We have discussed extensively, in Chapter 6, the current and

future challenges related to conduction modes methods, which are grouped into three groups:

renderingRLC extraction efficient; capturing more general effects by enlarging the basis of

conduction modes functions; and applications to arbitrary type of geometry. Although we do not

discuss the subject explicitly, another important issue for future development is the inclusion of

multi-layered media; as in the previous problem, we expect that this can be done with equivalent

Green function methods. Solving these issues will lead to a fullwave Maxwell solver with a

different, possibly more efficient, approach as the ones found today in the market.

Broadband circuit representation

RL effects in ICs have a characteristic increasing-R/decreasing-L behavior over wide frequency

ranges; we have represented this behavior using constant-parameter circuits with Foster pairs,

appropriate for the model order reduction (MOR) tool implemented in Mentor’s tools; in this

domain, we have:

• implemented a strategy allowing to capture simple transitions, while guaranteeing physi-

cally correct parameters;

• displayed examples that conserve a high accuracy level for cases arising from two phys-

ically distinct type of transitions: proximity return-path selection, and skin effect current

crowding.
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• presented and validated methods for a combination of these two types of transitions.

These strategies are presently included in the formatter for Calibre xRC/xL, and included

in the corresponding patent requests. Future work in this area, discussed at the end of Chapter

8, include the extension of Foster pairs, or alternatively ladder circuits, to an arbitrary num-

ber of transitions/pairs; another prospect is the representation of frequency-dependent mutual

inductance using Foster pairs.
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(version française )

Dans cette th̀ese, nous avons exposé, analyśe et propośe des solutions̀a trois probl̀emes différents

li ésà la mod́elisation des interconnexions dans les ICs. Outre le fait qu’ils sont dévelopṕes dans

le même cadre,̀a savoir les outils d’extraction Calibre xRC/xL chez Mentor Graphics, le point

commun entre les trois sujets peut se situer dans la recherche des modèles compacts basés sur

de simples raisonnements physiques. Nous récapitulerons dans les pages suivantes les contri-

butions pour chacun de ces problèmes, en incluant les applications dans les outils commerciaux

Mentor, ainsi qu’une mention des possibilités pour de futures recherches.

Inductance mutuelle

Dans le formalisme physiquement approprié d’inductance de boucle, nous avons dévelopṕe et

mis en pratique l’approximation dipolaire, dont l’interaction entre les boucles du circuit est

simplifiée en ne gardant que sa contribution principale; plus spécifiquement, nous avons:

• obtenu des formules de forme close pour l’inductance mutuelle entre leséléments de

circuit, valides pour un schéma d’extraction de parasitiques;

• réduit le côut de ces calculs, d’une quantité qui est quadratique dans le nombre d’éléments

à une qui est lińeaire;

• montŕe que l’exactitude est acceptable pour des distances comparables aux dimensions

typiques des boucles de circuit;

• obtenu des r̀egles simples qui permettent de négliger certains types d’interactions entre

les boucles;

• étendu l’approximation dipolaire au calcul de l’inductance mutuelle entre deux inducteurs

intentionnels, montrant des gains semblablesà ceux qui ont́et́e mentionńes ci-dessus.
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Toutes les ḿethodes d́ecrites ci-dessus sont incluses dans les outils d’extraction Calibre, et

ont ét́e clasśees pour des récompenses de brevet. Par rapport aux développements présents et fu-

turs, nous collaborons avec des chercheurs d’UCSB sur deux lignes : la formulation d’approxi-

mations de pŕecision pluśelev́ee aux courtes distances, ainsi que l’inclusion des effets de substrat

en utilisant des ḿethodes de fonction de Greenéquivalentes.

Modélisation des sources̀a haute fréquence

Afin de modeler la distribution non uniforme de courant dû à l’effet de peau, nous avons appliqué

la méthode des modes de conduction, dont les distributions sont dévelopṕees comme une somme

de fonctions appropriéesà cet effet, à savoir les fonctions propres de l’équation de Helmholtz.

En particulier nous avons :

• étendu la ḿethode des modes de conduction existante, valide pour des problèmesRLdans

le régime quasistatique (MQS), dans une versionRLCapplicablèa un ensemble plus large

de probl̀emes;

• montŕe des exemples représentatifs de l’applicationRLC, obtenant deux ordres de mag-

nitude d’́economie pour la taille du système, par rapport aux références standard ;

• dévelopṕe un approche systématique pour le calcul des intégrales impliqúees dans la

méthode deRL/MQS des modes de conduction ;

• reproduit des exemples typiques dans leRL/MQS avec deux ordres de magnitudes de

gains pour les temps d’exécution, pour un m̂eme niveau de précision avec des ḿethodes

de fonctions constantes par morceaux.

L’impl émentation de la ḿethodeRL/MQSest en cours d’inclusion dans Calibre xL, rempla-

çant le mode actuelà haute fŕequence, qui est une formulation basée sur des filaments de courant

constant. Nous avons discuté en d́etail, au chapitre 6, les défis d́ecouverts eńetendant la version

actuelle des modes de conductionà une situation plus ǵeńerale. Ces d́efis sont grouṕes en

trois groupes : rendre efficace l’extractionRLC, capturer une gamme plus ample d’effets en

agrandissant la base des fonctions de modes de conduction, et considérer un type arbitraire de

géoḿetrie. Une autre question importante pour les futurs développements est l’inclusion des

médias multicouche ; comme dans le problème pŕećedent, nous pensons que ceci peutêtre fait

avec des ḿethodes de fonction de Greenéquivalentes. La solution de ces questions mènera

à un solutionneur d’onde complet deséquations de Maxwell, avec une approche différente, et

probablement plus efficace, que ceux qui se trouvent aujourd’hui sur le marché.



Conclusions Ǵenérales (version française) 213

Représentation large-bande des circuitRL

Les effetsRL dans les IC ont un comportement caractéristique avec la fŕequence, consistant de

l’augmentation de la résistanceRplus la d́ecroissance de l’inductanceL. Nous avons représent́e

ce comportement̀a l’aide des circuits̀a param̀etres constants en utilisant des pairs de Foster.

Ceux-ci conviennent pour l’outil de réduction de l’ordre du mod̀ele (MOR) mis en application

dans les outils chez Mentor. Dans ce domaine, nous avons :

• mis en marche une stratégie permettant la capture des transitions simples, tout en garan-

tissant des param̀etres physiquement corrects ;

• montŕe des exemples qui conservent un niveau de précision acceptable pour des transi-

tions appartenant̀a deux types physiquement distinct : choix de chemin de retour (effet

de proximit́e), et distribution des courant dueà l’effet de peau.

• introduit et valid́e une strat́egie permettant de capturer la combinaison de ces deux types

de transitions.

Ces ḿethodes sont actuellement incluses dans le formateur pour Calibre xRC/xL, et con-

tenues dans les demandes correspondantes de brevet. Des développements futurs dans ce secteur

discut́eà la fin du chapitre 8 incluent : la prolongation des pairs Foster, ou autrement des circuits

enéchelle, vers un nombre arbitraire des transitions et/ou pairs ; ainsi que la représentation des

variations de l’imṕedance mutuelle avec des paires Foster.
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