A. William and . Murphy, Introduction to the history of musculoskeletal radiology, RadioGraphics, vol.10, issue.5, pp.915-943, 1990.

J. Radon, Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. berichte über die verhandlungen der königlich sächisischen gesellshaft der wissenschaften zu luipzig, Math. Phys. Klasse, vol.69, pp.262-277, 1917.

A. Elliott, Medical imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.546, issue.1-2, pp.1-13, 2005.
DOI : 10.1016/j.nima.2005.03.127

A. Rankowitz, Positron scanner for locating brain tumors, IEEE Trans. Nucl. Sci, vol.9, pp.45-49, 1962.
DOI : 10.2172/4736421

M. M. Ter-pogossian, M. E. Phelps, E. J. Hoffman, and N. A. Mullani, A Positron-Emission Transaxial Tomograph for Nuclear Imaging (PETT), Radiology, vol.114, issue.1, pp.89-98, 1975.
DOI : 10.1148/114.1.89

K. Blohm, De la caméra d'Anger à la caméra en coïncidence, pp.125-128, 1999.

K. Takagi and T. Fukazawa, single crystal scintillator, Applied Physics Letters, vol.42, issue.1, p.43, 1983.
DOI : 10.1063/1.93760

W. W. Moses, S. E. Derenzo, A. Fyodorov, M. Korzhik, A. Gektin et al., LuAlO/sub 3/:Ce-a high density, high speed scintillator for gamma detection, IEEE Transactions on Nuclear Science, vol.42, issue.4, p.275, 1995.
DOI : 10.1109/23.467837

A. Lempicki, M. H. Randles, D. Wisniewski, M. Balcerzyk, C. Brecher et al., LuAlO/sub 3/:Ce and other aluminate scintillators, IEEE Transactions on Nuclear Science, vol.42, issue.4, p.280, 1995.
DOI : 10.1109/23.467836

C. L. Melcher and J. S. Schweitzer, Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator, IEEE Transactions on Nuclear Science, vol.39, issue.4, p.502, 1992.
DOI : 10.1109/23.159655

C. L. Melcher and J. S. Schweitzer, A promising new scintillator: cerium-doped lutetium oxyorthosilicate, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.314, issue.1, p.212, 1992.
DOI : 10.1016/0168-9002(92)90517-8

C. L. Melcher, Lutetium orthosilicate single crystal scintillator detector, 1990.

D. Pauwels, B. Viana, A. Kahn-harari, P. Dorenbos, and C. W. Van-eijk, Scintillator crystals and their applications and manufacturing process, 2002.

J. Mosset, Développement d'un module détection phoswich LSO/LuYAP pour le prototype de caméra à positrons ClearPET, 2006.

G. F. Knoll, Radiation Detection and Measurement, 2000.

A. G. Chynoweth, Charge multiplication phenomena in semiconductors and semimetals, 1968.

S. M. Sze, Semiconductor Devices Physics and Technology. Bell telephone laboratories, 1985.

S. Kobayashi, K. Yamaoka, M. Amami, and M. Kobayashi, Evaluation of the avalanche photo diode (APD) as scintillation sensor, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.364, issue.1, pp.95-102, 1995.
DOI : 10.1016/0168-9002(95)00296-0

C. J. Thompson, Y. L. Yamamoto, and E. Meyer, POSITOME II, Journal of Computer Assisted Tomography, vol.3, issue.4, pp.583-589, 1979.
DOI : 10.1097/00004728-197908000-00209

M. E. Casey and R. Nutt, A Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography, IEEE Transactions on Nuclear Science, vol.33, issue.1, 1986.
DOI : 10.1109/TNS.1986.4337143

S. Surti, J. S. Karp, R. Freifelder, and F. Liu, Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide, IEEE Transactions on Nuclear Science, vol.47, issue.3, pp.1030-1036, 2000.
DOI : 10.1109/23.856543

A. Saoudi and R. Lecomte, A novel APD-based detector module for multi-modality PET/SPECT/CT scanners, IEEE Transactions on Nuclear Science, vol.46, issue.3, pp.479-484, 1999.
DOI : 10.1109/23.775566

B. Bendriem and D. W. Townsend, The Theory and Practice of 3D PET, 1998.
DOI : 10.1007/978-94-017-3475-2

L. Eriksson, K. Wienhard, and M. Dahlbom, A simple data loss model for positron camera systems, IEEE Transactions on Nuclear Science, vol.41, issue.4, pp.1566-1570, 1994.
DOI : 10.1109/23.322950

C. Moisan, J. G. Rogers, and J. L. Douglas, A count rate model for PET and its application to an LSO HR PLUS scanner, IEEE Transactions on Nuclear Science, vol.44, issue.3, pp.1219-1224, 1997.
DOI : 10.1109/23.596991

J. L. Humm, A. Rosenfeld, and A. D. Guerra, From PET detectors to PET scanners, European Journal of Nuclear Medicine and Molecular Imaging, vol.30, issue.11, pp.1574-1597, 2003.
DOI : 10.1007/s00259-003-1266-2

V. Golovin and V. Saveliev, Novel type of avalanche photodetector with Geiger mode operation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.518, issue.1-2, pp.560-564, 2004.
DOI : 10.1016/j.nima.2003.11.085

P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov et al., Silicon photomultiplier and its possible applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.504, issue.1-3, pp.48-52, 2003.
DOI : 10.1016/S0168-9002(03)00749-6

M. S. Gerber, D. W. Miller, P. A. Schlösser, J. W. Steidley, and A. H. Deutchman, Position Sensitive Gamma Ray Detectors Using Resistive Charge Division Readout, IEEE Transactions on Nuclear Science, vol.24, issue.1, pp.182-187, 1977.
DOI : 10.1109/TNS.1977.4328666

Y. Eisen, A. Shor, C. Gilath, M. Tsabarim, P. Chouraqui et al., A gamma camera based on CdTe detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.380, issue.1-2, pp.474-478, 1996.
DOI : 10.1016/S0168-9002(96)00364-6

B. Augustine, B. Apotovsky, T. Pi, S. Collins, C. Zhao et al., CdZnTe solid-state gamma camera, IEEE Trans. Nucl. Sci, vol.45, pp.359-363, 1998.

C. Scheiber, B. Eclancher, J. Chambron, V. Prat, A. Kazandjan et al., Heart imaging by cadmium telluride gamma camera, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.428, issue.1, pp.138-149, 1999.
DOI : 10.1016/S0168-9002(98)01590-3

M. Singh and E. Mumcuoglo, Design of a CZT based breast SPECT system, IEEE Transactions on Nuclear Science, vol.45, issue.3, pp.1158-1165, 1998.
DOI : 10.1109/23.681995

M. E. Casey, An analysis of counting losses in positron emission tomography, 1992.

S. C. Strother, M. E. Casey, and E. J. Hoffman, Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalents counts, IEEE Transactions on Nuclear Science, vol.37, issue.2, pp.783-788, 1990.
DOI : 10.1109/23.106715

W. W. Moses and M. Ullisch, Factors influencing timing resolution in a commercial LSO PET camera, IEEE Transactions on Nuclear Science, vol.53, issue.1, 2004.
DOI : 10.1109/TNS.2005.862980

W. W. Moses and S. E. Derenzo, Prospects for time-of-flight PET using LSO scintillator, IEEE Transactions on Nuclear Science, vol.46, issue.3, pp.474-478, 1999.
DOI : 10.1109/23.775565

R. Allemand, C. Gresset, and J. Vacher, POTENTIAL ADVANTAGES OF A CESIUM FLUORIDE SCINTILLATOR FOR A TIME-OF-FLIGHT POSITRON CAMERA, Journal of Computer Assisted Tomography, vol.4, issue.4, pp.153-155, 1980.
DOI : 10.1097/00004728-198008000-00054

M. Laval, M. Moszynski, and R. Allemand, Barium fluoride ??? Inorganic scintillator for subnanosecond timing, Nuclear Instruments and Methods in Physics Research, vol.206, issue.1-2, pp.169-176, 1983.
DOI : 10.1016/0167-5087(83)91254-1

Y. Hämisch, GEMINI TF : the first and only PET/CT scanner with TruFlight technology, Proceedings of the Euromedim 2006 conference. CERN, 2006.

S. Surti, J. S. Karp, L. M. Popescu, M. E. Daube-witherspoon, and M. Werner, Investigation of time-of-flight benefit for fully 3-DPET, IEEE Transactions on Medical Imaging, vol.25, issue.5, pp.529-538, 2006.
DOI : 10.1109/TMI.2006.871419

W. W. Moses, Time of flight in pet revisited, IEEE Transactions on Nuclear Science, vol.50, issue.5, pp.1325-1330, 2003.
DOI : 10.1109/TNS.2003.817319

B. Bendriem, F. Soussaline, R. Campagnolo, B. Verrey, P. Wajnberg et al., A Technique for the Correction of Scattered Radiation in a PET System Using Time-of-Flight Information, Journal of Computer Assisted Tomography, vol.10, issue.2, pp.287-295, 1986.
DOI : 10.1097/00004728-198603000-00021

D. G. Politte and D. L. Snyder, Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography, IEEE Transactions on Medical Imaging, vol.10, issue.1, pp.82-89, 1991.
DOI : 10.1109/42.75614

T. F. Budinger, Time-of-Flight positron emission tomography : status relative to conventional PET, J. Nucl. Med, vol.24, issue.1, pp.73-78, 1983.

W. W. Moses, SYNERGIES BETWEEN ELECTROMAGNETIC CALORIMETRY AND PET, Calorimetry in Particle Physics, 2002.
DOI : 10.1142/9789812704894_0028

R. F. Post and L. I. Schiff, Statistical Limitations on the Resolving Time of a Scintillation Counter, Physical Review, vol.80, issue.6, p.1113, 1950.
DOI : 10.1103/PhysRev.80.1113

M. Kelbert, I. Sazonov, A. G. Wright, E. Gatti, and V. Svelto, Exact expression for the variance of the photon emission process in scintillation counters, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.564, issue.1, p.248, 1966.
DOI : 10.1016/j.nima.2006.04.049

. Dans-ce-contexte, il est apparu légitime d'imaginer un nouveau synoptique d'acquisition pour TEP entièrement pixélisés

. Le-nombre-de-canaux-explose-au-passage, par rapport à ce qui existe Ceci est en partie compensé par la décision d'intégrer l'électronique au maximum. Les mesures d'énergie et de temps sont prévues sur une seule et même voie d'acquisition, avec une lecture en continue et sans temps mort des événements incidents. Le développement de l'électronique est en cours, ce manuscrit donne une description des trois premiers blocs. A terme