]. W. Références1, W. A. Tyson, and . Miller, Surface free energies of solid metals : Estimation from liquid surface tension measurements, Surf. Sci, vol.267, p.62, 1977.

M. Hansen and K. Anderko, Constitution of Binary Alloys, Journal of The Electrochemical Society, vol.105, issue.12, p.119, 1985.
DOI : 10.1149/1.2428700

A. J. Bradley and A. Taylor, An X-Ray Analysis of the Nickel-Aluminium System, Proc. Roy. Soc. (London), p.159, 1937.
DOI : 10.1098/rspa.1937.0056

F. Z. Chrifi-alaoui, M. Nassik, K. Mahdouk, and J. C. Gachon, Enthalpies of formation of the Al-Ni intermetallic compounds, J. of Alloys and Compounds, vol.364, issue.121, 2004.

K. Rzyman, Z. Moser, R. Watson, and M. Weinert, Enthalpies of formation of Ni 3 Al : experiment versus theory, J. Phase Equilib, vol.17, issue.173, 1996.

K. Rzyman, Z. Moser, R. Watson, and M. Weinert, Enthalpies of formation of AlNi: Experiment versus theory, Journal of Phase Equilibria, vol.77, issue.3, 1998.
DOI : 10.1361/105497198770342562

L. Kauffman and H. Nesor, Calculation of superalloy phase diagrams: Part II, Metallurgical Transactions, vol.54, issue.7, p.1623, 1974.
DOI : 10.1007/BF02646334

Y. Wang, Z. Liu, and L. Chen, Thermodynamic properties of Al, Ni, NiAl and Ni 3 Al from first-principles calculations, Acta Materialia, pp.52-2665, 2004.

C. Colinet, A. Bessoud, and A. , A tight-binding analysis of cohesive properties in the Ni-Al system, Journal of Physics: Condensed Matter, vol.1, issue.34, 1989.
DOI : 10.1088/0953-8984/1/34/002

P. D. Desai, Thermodynamic Properties of Selected Binary Aluminum Alloy Systems, Journal of Physical and Chemical Reference Data, vol.16, issue.1, 1987.
DOI : 10.1063/1.555788

A. Pasturel, M. Colinet, A. Paxton, and M. Van-schilfraarde, First-principles determination of the Ni-Al phase diagram, Journal of Physics: Condensed Matter, vol.4, issue.4, p.945, 1992.
DOI : 10.1088/0953-8984/4/4/005

P. Nash and O. Kleppa, Composition dependence of the enthalpies of formation of NiAl, Journal of Alloys and Compounds, vol.321, issue.2, 2001.
DOI : 10.1016/S0925-8388(01)00952-5

J. Wang and H. J. , Investigation of the thermodynamic properties of Ni-Al intermetallic compounds by an EMF method, Steel Res, vol.63, issue.320, 1992.

D. Sondericker, F. Jona, and P. M. Marcus, Atomic structure of alloy surfaces. II. Ni 3 Al(111), Phys. Rev. B, vol.34, issue.6770, 1986.

D. R. Mullins and S. H. Overbury, The structure and composition of the NiAl(110) and NiAl(100) surfaces, Surface Science, vol.199, issue.1-2, pp.199-141, 1988.
DOI : 10.1016/0039-6028(88)90403-7

H. L. Davis and J. R. Noonan, Ripled relaxation in the (110) surface of the ordered metallic alloy NiAl, Phys. Rev. Lett, vol.566, p.54, 1985.

R. P. Blum, D. Ahlbehrendt, and H. Niehus, Preparation-dependent surface composition and structure of NiAl(001): SPA-LEED and NICISS study, Surface Science, vol.366, issue.1, p.366, 1996.
DOI : 10.1016/0039-6028(96)00782-0

H. Niehus, W. Raunau, K. Besocke, R. Spitzl, and G. Comsa, Surface structure of NiAl(111) determined by ion scattering and scanning tunneling microscopy, Surface Science, vol.225, issue.1-2, p.225, 1990.
DOI : 10.1016/0039-6028(90)90411-Z

K. Badura-gergen and H. E. Schaefer, Thermal formation of atomic vacancies in Ni 3 Al, Phys. Rev. B, vol.56, issue.3032, 1997.

A. Taylor and N. J. Doyle, Further studies on the nickel-aluminium system. I. ?-NiAl and ?-Ni 2 Al 3 phase fields, J. Appl. Crystallogr, vol.5, issue.201, 1972.

M. J. Cooper, An investigation of the ordering of the phases CoAl and NiAl, Philosophical Magazine, vol.77, issue.89, 1963.
DOI : 10.1098/rspa.1939.0141

C. L. Fu, Y. Ye, M. H. Yoo, and K. M. Ho, Equilibrium point defects in intermetallics with the B2 structure : NiAl and FeAl, Phys. Rev B, vol.6712, p.48, 1993.

B. Meyer and M. Fähnle, Atomic defects in the ordered compound B2-NiAl : A combination of ab initio electron theory and statistical mechanics, Phys. Rev B, vol.6072, p.59, 1999.

P. A. Korzhavyi, A. V. Ruban, A. Y. Lozovoi, Y. Kh, I. A. Velikov et al., Constitutional and thermal point defects in B2 NiAl, Phys. Rev B, vol.6003, p.61, 2000.

A. Alavi, A. Y. Lozovoi, and M. W. Finnis, Pressure-Induced Isostructural Phase Transition in Al-Rich NiAl Alloys, Physical Review Letters, vol.83, issue.5, 1999.
DOI : 10.1103/PhysRevLett.83.979

X. Ren, K. Otsuka, and M. Kogachi, Do ???constitutional vacancies??? in intermetallic compounds exist?, Scripta Materialia, vol.41, issue.9, p.41, 1999.
DOI : 10.1016/S1359-6462(99)00235-3

X. Ren and K. Otsuka, A unified model for point-defect formation in B2 intermetallic compounds, Phil. Mag. A, vol.80, issue.467, 2000.

H. Schaefer, K. Frenner, and R. Würschrum, Time-Differential Length Change Measurements for Thermal Defect Investigations: Intermetallic B2-FeAl and B2-NiAl Compounds, a Case Study, Physical Review Letters, vol.82, issue.5, 1999.
DOI : 10.1103/PhysRevLett.82.948

K. F. Mccarty, J. A. Nobel, and N. C. Bartelt, Vacancies in solids and the stability of surface morphology, Nature, vol.412, issue.622, 2001.

R. Pretorius, R. De-reus, A. M. Vredenberg, and F. W. Saris, Use of the effective heat of formation rule for predicting phase formation sequence in Al???Ni systems, Materials Letters, vol.9, issue.12, pp.9-494, 1990.
DOI : 10.1016/0167-577X(90)90094-3

R. Pretorius, A. M. Vredenberg, and F. M. Saris, Prediction of phase formation sequence and phase stability in binary metal???aluminum thin???film systems using the effective heat of formation rule, Journal of Applied Physics, vol.70, issue.7, p.70, 1991.
DOI : 10.1063/1.349211

Y. Adda and J. Philibert, La diffusion dans les solides ? Tome 1, Bibliothèque des sciences et techniques nucléaires ? Presses universitaires de France, 1966.

L. N. Larikov, V. V. Geichenko, and V. M. Falchenko, Diffusion processes in ordered alloys, p.118, 1975.

H. Yasuda, H. Nakajima, and M. Koiwa, Diffusion in L1 2 -type intermetallic compounds", Defect Diffusion Forum, pp.95-98, 1993.

K. Hoshino, S. J. Rothman, and R. S. Averback, Tracer diffusion in pure and boron-doped Ni3Al, Acta Metallurgica, vol.36, issue.5, p.1271, 1988.
DOI : 10.1016/0001-6160(88)90279-9

G. F. Hancock, Diffusion of nickel in alloys based on the intermetallic compound Ni 3 Al, Physica Status Solidi (a), vol.7, issue.535, 1971.

H. B. Huntington, N. C. Miller, and V. Nerses, Self-diffusion in 50-50 Gold-Cadmium, Acta Metallurgica, vol.9, issue.8, p.749, 1961.
DOI : 10.1016/0001-6160(61)90105-5

I. V. Belova and G. E. Murch, A THEORY OF DIFFUSION IN THE L12 STRUCTURE II: TRACER AND CHEMICAL DIFFUSION, Journal of Physics and Chemistry of Solids, vol.58, issue.2, p.311, 1997.
DOI : 10.1016/S0022-3697(96)00130-8

M. Watanabe, Z. Horita, T. Sano, and M. Nemoto, Electron Microscopy study of Ni/Ni 3 Al diffusion-couple interface ? II : diffusivity measurement, Acta Metall. Mater, vol.3389, p.42, 1994.

S. Divinski, . Chr, and . Herzig, On the six-jump cycle mechanism of self-diffusion in NiAl, Intermetallics, vol.8, issue.12, p.1357, 2000.
DOI : 10.1016/S0966-9795(00)00062-5

Y. Mishin, A. Y. Lozovoi, and A. Alavi, Evaluation of diffusion mechanisms in NiAl by embedded-atom and first-principles calculations, Physical Review B, vol.67, issue.1, p.14201, 2003.
DOI : 10.1103/PhysRevB.67.014201

S. Frank, S. V. Divinski, U. Södervall, . Chr, and . Herzig, Ni tracer diffusion in the B2-compound NiAl: influence of temperature and composition, Acta Materialia, vol.49, issue.8, p.49, 1399.
DOI : 10.1016/S1359-6454(01)00037-4

A. Paul, A. A. Kodentsov, and F. J. Van-loo, On diffusion in the ??-NiAl phase, Journal of Alloys and Compounds, vol.403, issue.1-2, p.403, 2005.
DOI : 10.1016/j.jallcom.2005.04.194

H. Wei, X. Sun, Q. Zheng, H. Guan, and Z. Hu, Estimation of interdiffusivity of the NiAl Phase in Ni???Al binary system, Acta Materialia, vol.52, issue.9, pp.52-2645, 2004.
DOI : 10.1016/j.actamat.2004.02.012

S. H. Lu, D. Tian, Z. Q. Wang, Y. S. Li, F. Jona et al., Epitaxial ordered-alloy formation through surface reactions: Al on Ni{0 0 1}, Solid State Communications, vol.67, issue.3, pp.67-325, 1988.
DOI : 10.1016/0038-1098(88)90626-6

D. J. O-'connor, M. Draeger, A. M. Molenbroek, and Y. G. Shen, Formation of Ni(100)-Al surface alloy, Surf. Sci, vol.202, pp.357-358, 1996.

A. Wehner, Y. Jeliazova, and R. Franchy, Growth and oxidation of a Ni 3 Al alloy on Ni(100), Surf. Sci, vol.287, p.531, 2003.

P. Hahn, M. F. Bertino, J. P. Toennies, M. Ritter, and W. Weiss, Structure and reaction properties of thin Al films deposited on Ni(110), Surface Science, vol.412, issue.413, pp.412-413, 1998.
DOI : 10.1016/S0039-6028(98)00371-9

R. J. Tarento and G. Blaise, Studies of the first steps of thin film interdiffusion in the Al-Ni system, Acta Metallurgica, vol.37, issue.9, p.2305, 1989.
DOI : 10.1016/0001-6160(89)90027-8

O. L. Warren and P. A. Thiel, Structural determination of a NiO(111) film on Ni(100) by dynamical low???energy electron???diffraction analysis, The Journal of Chemical Physics, vol.100, issue.1, p.659, 1994.
DOI : 10.1063/1.466930

F. Rohr, K. Wirth, J. Libuda, D. Cappus, M. Baümer et al., Hydroxyl driven reconstruction of the polar NiO(111) surface, Surf. Sci, pp.315-977, 1994.

D. Cappus, C. Xu, D. Ehrlich, B. Dillmann, C. A. Ventrice et al., Hydroxyl groups on oxide surfaces : NiO(100, NiO(111) and Cr 2 O 3, 1993.

N. Kitakatsu, V. Maurice, C. Hinnen, and P. Marcus, Surface hydroxylation and local structure of NiO thin films formed on Ni(111), Surface Science, vol.407, issue.1-3, p.407, 1998.
DOI : 10.1016/S0039-6028(98)00089-2

N. Kitakatsu, V. Maurice, and P. Marcus, Local decomposition of NiO ultra-thin films formed on Ni(111), Surface Science, vol.411, issue.1-2, p.411, 1998.
DOI : 10.1016/S0039-6028(98)00372-0

T. J. Godin and J. P. Lafemina, Atomic and electronic structure of the corundum (??-alumina) (0001) surface, Physical Review B, vol.49, issue.11, p.7691, 1994.
DOI : 10.1103/PhysRevB.49.7691

C. Noguera, Polar oxide surfaces, Journal of Physics: Condensed Matter, vol.12, issue.31, p.367, 2000.
DOI : 10.1088/0953-8984/12/31/201

URL : https://hal.archives-ouvertes.fr/hal-01243115

M. Gautier, L. Pham, M. J. Van, J. P. Guittet, and . Duraud, Modifications of ?-Al 2 O 3 (0001) surfaces induced by thermal treatments or ion bombardment, Surf. Sci, pp.250-71, 1991.

M. Gautier, G. Renaud, L. Pham, B. Van, M. Villette et al., ) surfaces : atomic and electronic structure, J. Am. Ceram. Soc, vol.323, p.77, 1994.

P. Guenard, G. Renaud, A. Barbier, and M. Gautier-soyer, Determination of the ?-Al 2 O 3 (0001) surface relaxation and termination by measurements of Crystal Truncation Rods, Surf. Rev. Lett, vol.5, issue.321, 1998.

G. Renaud, B. Villette, I. Vilfan, and A. Bourret, Atomic structure of the ?-Al 2 O 3 (0001) ( ? 31 × ? 31)R±9° reconstruction, Phys. Rev. Lett, pp.73-1825, 1994.

J. E. Crowell, F. G. Chen, and J. T. Yates-jr, Surface sensitive spectroscopic study of the interaction of oxygen with Al(111) ? Low temperature chemisorption and oxidation, Surf. Sci, vol.37, p.165, 1986.

R. Franchy, Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces, Surface Science Reports, vol.38, issue.6-8, pp.195-294, 2000.
DOI : 10.1016/S0167-5729(99)00013-8

R. M. Jaeger, H. Kuhlenbeck, H. Freund, M. Wuttig, W. Hoffmann et al., Formation of a well-ordered aluminium oxide overlayer by oxidation of NiAl(110), Surface Science Letters, vol.259, issue.1-2, 1991.
DOI : 10.1016/0167-2584(91)90287-2

J. Libuda, F. Winkelmann, M. Baümer, H. Freund, . Th et al., Structure and defects of an ordered alumina film on NiAl(110), Surface Science, vol.318, issue.1-2, pp.318-61, 1994.
DOI : 10.1016/0039-6028(94)90341-7

J. Jacobs, S. Reijne, R. J. Elfrink, S. N. Mikhailov, H. H. Brongersma et al., Quantification of the composition of alloy and oxide surfaces using low???energy ion scattering, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.12, issue.4, p.2308, 1994.
DOI : 10.1116/1.579204

M. Kulawik, N. Nilius, H. Rust, and H. Freund, Atomic structure of antiphase domain boundaries of a thin Al 2 O 3 film on NiAl(110), Phys. Rev. Lett, p.91, 2003.

A. Stierle, F. Renner, R. Streitel, H. Dosch, W. Drube et al., X-ray Diffraction Study of the Ultrathin Al2O3 Layer on NiAl(110), Ray diffraction study of the ultrathin Al 2 O 3 layer on NiAl(110), p.1652, 2004.
DOI : 10.1126/science.1094060

U. Ruppi and . Rolander, Theoretical structure determination of a complex material : ?-Al 2 O 3, J. Am. Ceram. Soc, pp.82-1365, 1999.

G. Kresse, M. Schmid, E. Napetschnig, M. Shihkin, L. Köhler et al., Structure of the Ultrathin Aluminum Oxide Film on NiAl(110), Structure of the ultrathin aluminum oxide film on NiAl(110), p.1440, 2005.
DOI : 10.1126/science.1107783

M. Schmid, M. Shihkin, G. Kresse, E. Napetschnig, P. Varga et al., Oxygen-Deficient Line Defects in an Ultrathin Aluminum Oxide Film, Physical Review Letters, vol.97, issue.4, pp.97-046101, 2006.
DOI : 10.1103/PhysRevLett.97.046101

R. Blum and H. Niehus, Initial growth of Al 2 O 3 on NiAl(001), Applied Physics A: Materials Science & Processing, vol.66, issue.7, p.529, 1998.
DOI : 10.1007/s003390051196

N. Frémy, V. Maurice, and P. Marcus, Initial Stages of Growth of Alumina on NiAl(001) at 1025 K, Journal of the American Ceramic Society, vol.359, issue.4, pp.86-669, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03356.x

P. Gassmann, R. Franchy, and H. Ibach, Investigations on phase transitions within thin Al 2 O 3 layers on NiAl(001) ? HREELS on aluminium oxide films, Surf. Sci, pp.319-95, 1994.

A. Stierle, V. Formoso, F. Comin, and R. Franchy, Surface X-ray diffraction study on the initial oxidation of NiAl(100), Surface Science, vol.467, issue.1-3, 2000.
DOI : 10.1016/S0039-6028(00)00719-6

R. Franchy, J. Masuch, and P. Gassmann, The oxidation of the NiAl(111) surface, Applied Surface Science, vol.93, issue.4, pp.93-317, 1996.
DOI : 10.1016/0169-4332(95)00333-9

G. F. Cotterill, H. Niehus, and D. J. Connor, (110), Surface Review and Letters, vol.03, issue.03, p.1355, 1996.
DOI : 10.1142/S0218625X96002369

F. Qin, N. P. Magato, J. A. Kelber, and D. R. Jennison, Theory and experiments on the structure of 7Åalumina films grown on Ni 3 Al, J. Mol. Catal A, vol.83, p.228, 2005.

U. Bardi, A. Atrei, and G. Rovida, Initial stages of oxidation of the Ni 3 Al alloy : structure and composition of the aluminium oxide overlayer studied by XPS, LEIS and LEED, Surf. Sci, vol.87, p.286, 1992.

V. Podgursky, I. Costina, and R. Franchy, Ultrathin Al 2 O 3 films grown on Ni 3 Al(100), Appl. Surf. Sci, vol.206, issue.29, 2003.

C. Becker, J. Kandler, H. Raaf, R. Linke, T. Pesler et al., Oxygen adsorption and oxide formation on Ni3Al (111), Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.16, issue.3, p.1000, 1998.
DOI : 10.1116/1.581221

A. Rosenhahn, J. Schneider, J. Kandler, C. Becker, and K. Wandelt, Interaction of oxygen with Ni 3 Al(111) at 300 K and 1000 K, Surf. Sci, pp.433-435, 1999.

A. Rosenhahn, J. Schneider, C. Becker, and K. Wandelt, The formation of Al 2 O 3 -layers on Ni 3 Al(111), Appl. Surf. Sci, vol.169, p.142, 1999.

A. Rosenhahn, J. Schneider, C. Becker, and K. Wandelt, Oxidation of a Ni 3 Al(111) at 600, 800, and 1050 K investigated by scanning tunneling microscopy, J. Vac. Sci. Technol. A, vol.18, issue.4, 1923.

T. Maroutian, S. Degen, C. Becker, K. Wandelt, and R. Berndt, Superstructures and coincidences of a thin oxide film on a metallic substrate: A STM study, Physical Review B, vol.68, issue.15, p.155414, 2003.
DOI : 10.1103/PhysRevB.68.155414

S. Degen, C. Becker, and K. Wandelt, Thin alumina films on Ni 3 Al(111) : a template for nanostructured Pd cluster growth, Faraday Discuss, vol.125, issue.343, 2004.

S. Degen, A. Krupski, M. Kralj, A. Langner, C. Becker et al., Determination of the coincidence lattice of an ultra thin Al2O3 film on Ni3Al(111), Surface Science, vol.576, issue.1-3, p.57, 2005.
DOI : 10.1016/j.susc.2004.12.020

G. Hamm, C. Barth, C. Becker, and C. R. Henry, The surface structure of an ultrathin alumina film on Ni 3 Al(111) : a dynamic scanning force microscopy study, Phys. Rev. Lett, pp.97-126106, 2006.

G. Somerjai, Chemistry in two dimensions : Surfaces, 1981.

W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, 1978.

L. C. Feldman, J. W. Mayer, and S. T. Picraux, Material Analysis by Ion Channeling, 1982.

L. C. Feldman and J. W. Mayer, Fundamentals of surface and thin film analysis, 1986.

D. Schmaus and I. C. Vickridge, Analytical Methods for Corrosion Science and Engineering, Boca Raton, 2006.

J. F. Ziegler, Stopping powers and ranges of ions in all elements

G. Amsel, E. Artemare, and E. Girard, A simple, digitally controlled, automatic, hysteresis free, high precision energy scanning system for Van de Graaff type accelerators. I. Principle, results and applications, Nucl. Instrum. Methods Res, vol.5, p.205, 1983.

J. C. Bouillard, C. Cohen, J. L. Domange, A. V. Drigo, A. L. 'hoir et al., Atomic displacements on stepped (16,1,1) copper structures: A channeling study, Physical Review B, vol.30, issue.5, p.2470, 1984.
DOI : 10.1103/PhysRevB.30.2470

B. Bellamy and C. Colomer, A UHV compatible and miniaturized evaporator used as a controlled source of high melting point metal vapor, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.2, issue.4, p.1604, 1984.
DOI : 10.1116/1.572480

J. H. Barrett, Monte Carlo Channeling Calculations, Physical Review B, vol.3, issue.5, p.1527, 1971.
DOI : 10.1103/PhysRevB.3.1527

I. Stensgaard, L. C. Feldman, and P. J. Silverman, Calculation of the backscattering-channeling surface peak, Surface Science, vol.77, issue.3, p.77, 1978.
DOI : 10.1016/0039-6028(78)90137-1

J. F. Van-der-veen, Ion beam crystallography of surfaces and interfaces, Surface Science Reports, vol.5, issue.5-6, 0199.
DOI : 10.1016/0167-5729(85)90001-9

C. Cohen, A. L. 'hoir, J. Moulin, D. Schmaus, M. Sotto et al., Study of atomic relaxations on clean and oxygen covered (100), (410) and (510) copper surfaces by channeling, Surface Science, vol.339, issue.1-2, p.41, 1995.
DOI : 10.1016/0039-6028(95)00675-3

E. P. Gusev, H. C. Lu, E. Garfunkel, and T. Gustafsson, THERMAL BEHAVIOR OF THE CLEAN Ni(111) SURFACE, Surface Review and Letters, vol.03, issue.03, p.1349, 1996.
DOI : 10.1142/S0218625X96002357

I. C. Vickridge and G. , SPACES: A PC implementation of the stochastic theory of energy loss for narrow-resonance depth profiling, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.45, issue.1-4, p.45, 1990.
DOI : 10.1016/0168-583X(90)90772-M

L. R. Doolittle, A semi-automatic algorithm for Rutherford backscattering analysis, Nucl. Instr. Meth. B, vol.15, issue.227, 1986.

J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, Kgl. Danske Videnskab Selskab, Mat.-Fys. Medd, vol.34, p.14, 1965.

C. Gallis, Couplage entre ordre de volume et ségrégation de surface : des surfaces d'alliage aux alliages de surface, Thèse de doctorat, 1997.

E. G. Colgan and J. W. Mayer, Diffusion markers in Al/metal thin-film reactions, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.17, issue.3, 1986.
DOI : 10.1016/0168-583X(86)90063-7

E. Ma, M. Nicolet, and M. Nathan, NiAl 3 formation in Al/Ni thin film bilayers with and without contamination, J. Appl. Phys, pp.65-2703, 1989.

S. Image and .. De-la-surface-de-nial, (a) après une exposition de 1 L d'O 2 à température ambiante suivie d'un recuit à 1000 K. Courant tunnel I T = 2 nA ; Tension seuil : U B = -1,24 V. (b) après 20 cycles de 10 L d'exposition à l'oxygène suivie d'un recuit à 1000 K. Courant tunnel I T = 23 nA ; Tension seuil, p.30

L. Diagramme, 72 eV) de la surface Ni 3 Al(110) après recuit à 970 K suivi d'une oxydation à 970 K (exposition : 8 L d, pp.79-112

L. Diagramme, 60 eV) d'un film ultramince d'Al 2 O 3 formé sur Ni 3 Al(111) après recuit à 1100 K pendant 15-20 minutes, p.35

. Bi, (b)Spectres RBS ( 4 He + 1,5 MeV, p.47

=. Mev, T. Sur-ni-du, and C. , (a) en géométrie random ; (b) en canalisation, avec alignement suivant l'axe [111], Spectres RBS ( 4 He + 1, p.61

. Géométrie-de-double-alignement.........., La figure est dessinée dans le plan (110), normal à la surface, p.63

T. K. Balayage, D. , and .. , Le faisceau incident ( 4 He + à 500 keV) est aligné selon, Rendement de rétrodiffusion associé au volume du monocristal de Ni(111) nu ; ? Rendement de rétrodiffusion associé à la surface du monocristal de Ni, p.63

L. Diagrammes, 82 eV) : (a) de la surface Ni(111) avant dépôt (enregistré à 300 K) ; (b) de 3 MC Al, p.66

L. Diagrammes, Ni(111) nu ; (b) dépôt de 3 MC Al/Ni(111) après recuit à 750, p.71

R. Spectres, He + à 1,5 MeV, ? = 101,8°, T = 300 K) en géométrie de canalisation suivant l'axe [110] du cristal de Ni pour un dépôt de 3 MC Al. Trait noir : après recuit à 300 K ; trait rouge : après recuit à 750 K, p.75

A. Spectres, 12 MC Al/Ni(111) après dépôt à 130 K ; (c) de 12 MC Al/Ni(111) après recuit à 750 K (caractéristique de NiAl) ; (d) de 4 MC Al/Ni(111) après recuit à 750 K (caractéristique de Ni 3 Al), p.81

L. Diagrammes, ) après recuit à 750 K (caractéristique d'un plan de Ni 3 Al(111)) ; (c) de 20 MC Al/Ni(111) après recuit à 750 K (caractéristique d'un plan de NiAl(110)). (d) Schématisation du diagramme (c), p.82

.. Représentation-schématique-de-la-superposition,-sur-le-substrat-de-ni, des deux couches constituants la couche alliée : la couche interfaciale épitaxiée de Ni 3 Al(111) et un des trois variants de la couche de NiAl(110) (NiAl, Le plan de la figure est parallèle au plan (-110) du substrat de Ni(111) (et donc au plan (-110) de la couche de Ni 3 Al(111)) et coïncide avec le plan, p.91

.. Spectre-?-(-?-=-45°-)-obtenu,-ex-situ, pour le dépôt de 108 MC Al/Ni(111) après recuit à 730 K pendant 15 minutes, p.94

L. Diagrammes, (a) dépôt de 3 MC Al/Ni(111) après recuit à 750 K ; (b) dépôt de 3, p.98

R. Spectres, 8°) enregistrés à 300 K sur un dépôt de 3 MC Al Le faisceau incident ( 4 He + à 1,5 MeV) est parallèle à l'axe [110] du cristal de Ni. Trait noir : après recuit 300 K ; trait rouge : après recuit à 750 K ; trait vert : après recuit à 850, p.99

L. Diagrammes, 82 eV) : (a) 3 MC Al/Ni(111) déposées à 130 K puis recuites à 750 K ; (b) 3 MC Al

A. Spectres and .. Le-ni, 111) nu ; (b) pour une couche ultramince de Ni 3 Al(111) formée sur Ni(111) (à partir d'un dépôt de 2 MC d'Al à 130 K suivi d'un recuit à 750 K pendant 15 minutes) ; (c) après oxydation à 300 K (P(O 2 ) = 10 ?6 torr, exposition 1000 L) suivie d'un recuit à 1000 K pendant 15 minutes, p.120

N. Spectres, E d = 850 keV, ? = 150°) : (a) Ta 2 O 5 /Si (référence NRA) contenant 970×10 15 O, 3×10 15 O/cm 2 . . . . . . . . . . 123, p.17

L. Diagrammes, (formée à partir d'un dépôt de 2 MC d'Al) ; (b) après oxydation à 300 K (P(O 2 ) = 10 ?6 torr, exposition 1000 L) suivie d'un recuit à 1000 K de la couche ultramince de Ni 3 Al(111) : obtention d'une couche ultramince d'alumine épitaxiée sur Ni(111). (c) Représentation de la maille associée au film d'oxyde (en rouge) sur un plan (111) de Ni. La maille associée au substrat de Ni(111) est représentée en trait blanc ; la relation entre la maille du substrat et la maille, Al, issue.111111, p.125

R. Spectres, He + à 1,5 MeV, ? = 101,8°) enregistrés à température ambiante en géométrie de canalisation suivant la direction Spectre vert : pour un dépôt de 13, p.40

R. Spectres, He + à 1,5 MeV, ? = 101,8°) enregistrés à température ambiante en géométrie de canalisation suivant la direction Spectre vert : pour un dépôt de 13, p.40

L. Diagramme and .. Mc-d-'al, 98 eV) d'une couche ultramince d'alumine sur Ni(111) Cette couche a été obtenue après oxydation à température ambiante (P(O 2 ) = 10 ?6 torr, exposition 1000 L) suivie d'un recuit à 1000 K d'une couche ultramince de NiAl(110) formée sur Ni(111) à partir d'un dépôt de 13, p.128

L. Diagramme, 98 eV) d'une couche ultramince d'alumine sur Ni(111) Cette couche a été obtenue après oxydation vers 250 K (P(O 2 ) = 10 ?6 torr, exposition 1000 L) suivie d'un recuit à 1000 K de 7,5 MC d'Al déposé sur Ni(111), p.130