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durant mes longs moments de solitude outre atlantique.





Table des matières

Partie 1 - Présentation des résultats (version française) 1
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3. Interactions hôtes-pathogènes et hôtes-mutualistes . . . . . . . . . . . . . . . . . . . 5
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Présentation des résultats

Les processus dont il est question dans cette thèse, appelés systèmes de particules multicolores,
sont des processus de Markov ξt : Z

d −→ F où Z
d désigne l’espace d-dimensionnel à coordonnées

entières, et F un ensemble fini appelé ensemble des couleurs. Pour décrire l’évolution de nos
processus, nous commençons par introduire un voisinage d’interaction

N = {z0, z1, . . . , zN} ⊂ Z
d avec z0 = 0.

Le système étant dans une configuration ξ ∈ F Z
d

, la couleur de x ∈ Z
d passe de i à j au taux

cij (x, ξ) = hij (x, ξ(x + z0), ξ(x + z1), . . . , ξ(x+ zN )).

En d’autres termes, les interactions ont une portée finie, i.e. le taux de transition en x dépend
uniquement de la position du site x et de la couleur d’un nombre fini de ses voisins. Dans la plupart
de nos exemples, les processus seront supposés invariants par translation, autrement dit les règles
appliquées en x ne sont qu’une translation de celles appliquées en 0, ce qui signifie encore que
la fonction hij ne dépend plus de la position de x. Pour tenter de comprendre le comportement
d’un système de particules, notre principal objectif sera d’exhiber ses mesures stationnaires, i.e.
les mesures µ telles que Pµ(ξt ∈ A) = µ(A) pour tous t ≥ 0 et A ∈ F , où Pµ désigne la loi du
processus issu de µ, et F la tribu usuelle sur l’ensemble des fonctions ξ : Z

d −→ F .

1. Le modèle successionnel

Notre premier modèle spatial, appelé modèle successionnel, est un processus de Markov en
temps continu dont l’état à l’instant t est une fonction ξt : Z

d −→ {0, 1, 2}. Un site x ∈ Z
d est dit

vide si ξ(x) = 0, et occupé par une particule de type 1 (resp. 2) si ξ(x) = 1 (resp. 2). L’évolution
au site x est décrite par les taux de transition

c01 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c12 (x, ξ) = 1

c02 (x, ξ) = λ2

∑

0<||x−z||≤R

1{ξ(z)=2} c20 (x, ξ) = 1.

Nous avons baptisé notre processus modèle successionnel en référence aux phénomènes de succes-
sions écologiques dont il décrit l’évolution. Dans notre contexte écologique, les 1 sont les individus
d’une epèce dite pionnière capable d’envahir un milieu hostile. L’apparition de cette première
espèce favorise ensuite le developpement d’une seconde espèce, ici représentée par les particules
de type 2, la transition spontanée 1 → 2 s’expliquant, dans le cadre des communautés de plantes,
par la présence dans le sol d’une banque de graines.

Tout d’abord, si seuls les 2 sont présents, le système est réduit à un processus de contact de
paramètre λ2. Dans ce cas, il existe une valeur critique λc ∈ (0,∞) telle que les assertions suivantes
soient satisfaites. Si λ2 ≤ λc alors le processus converge en distribution vers δ0, la configuration ne
contenant que des 0. Sinon, il existe une mesure stationnaire µ2 concentrée sur les configurations
contenant une infinité de 2 (Liggett, 1999). Dans le cas λ1 ≤ λc et λ2 ≤ λc, il est en particulier
facile de voir qu’il y a extinction, i.e. ξt converge vers δ0.

Afin d’éviter les trivialités, nous supposons désormais que ξ0 contient une infinité de particules
de type 1 et 2. Dans le cas λ1 ≥ λ2 > λc un argument de couplage standard (Harris, 1972) mettant
en jeu notre modèle et le processus de contact implique que les 2 survivent. Si λ2 > λ1 > λc un
nouveau couplage assorti des résultats de Durrett et Neuhauser (1997), Section 3, nous permet
de montrer que les particules de type 2 l’emportent. En conclusion, nous obtenons le théorème
suivant, où ⇒ fait référence à la convergence faible.
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2 Systèmes de particules multicolores

Théorème 1 Fixons λ2 > λc. Si λ1 ≥ λ2 alors les 2 survivent, i.e. P (∀ t ≥ 0, ∃ x : ξt(x) = 2) = 1.
Si λ1 < λ2 alors les 2 l’emportent, i.e. ξt ⇒ µ2.

Examinons maintenant le cas λ2 > 0 proche de 0. En supprimant la transition 0 → 2, c’est-
à-dire en fixant λ2 = 0, le processus devient un modèle d’incendie de forêt avec 0 = vivant, 1 =
en feu, et 2 = brûlé. En utilisant un argument de renormalisation, Durrett et Neuhauser (1991)
ont prouvé que, dans le cas d’une dynamique à plus proches voisins en dimension 2, il existe une
valeur critique αc ∈ (0,∞) telle que si λ1 > αc alors le processus admet une mesure stationnaire
non triviale ν concentrée sur les configurations contenant une infinité de 1 et de 2. Le théorème
2 nous dit que les 1 et les 2 coexistent également si λ2 > 0 est suffisamment proche de 0, i.e. le
processus admet une mesure stationnaire ν = νλ1,λ2 telle que ν(ξ(x) = 1) 6= 0.

Théorème 2 Posons d = 2 et λ1 > αc. Il existe β
T h2

c ∈ (0,∞) tel que si λ2 ≤ β
T h2

c alors les
particules de type 1 et 2 coexistent, i.e. ξt ⇒ ν avec ν(ξ(x) = 1) 6= 0.

Nous arrivons maintenant à notre principal résultat, à savoir que les particules de type 2
l’emportent également si λ1 = λ2. Bien que le résultat ne semble pas surprenant, la preuve repose
sur une propriété quelque peu intéressante du processus dual.

Théorème 3 Si λ1 = λ2 > λc et ξ0 est invariant par translation alors ξt ⇒ µ2.

Pour décrire le processus dual, nous commençons par construire le système de particules à partir
d’une collection de processus de Poisson indépendants. Pour x, z ∈ Z

d avec ||x − z|| ≤ R, nous
désignons par {T x,z

n : n ≥ 1} les temps d’arrivée de processus de Poisson indépendants d’intensité
λ1. Aux instants T

x,z

n , nous traçons une flèche du site x au site z pour indiquer que, si x est
occupé et z est vide, alors la particule en x donne naissance à une particule du même type en
z. Pour prendre en compte les transitions 1 → 2 et 2 → 0, nous introduisons deux collections
supplémentaires de processus de Poisson indépendants {U x

n : n ≥ 1} et {V x

n : n ≥ 1}, x ∈ Z
d,

d’intensité 1. Enfin, nous plaçons une × en (x, U
x

n ) pour indiquer qu’une particule de type 2 est
tuée, et un • en (x, V

x

n ) pour indiquer qu’une particule de type 1 change de couleur.
Le lecteur pourra observer que, comme les × ne tuent qu’un type de particule, la construction

d’un processus dual à partir de la représentation graphique décrite ci-dessus produira un objet
quelque peu complexe. Le principal ingrédient pour simplifier le processus dual consiste à observer
que, comme les 1 (resp. 2) ne voient pas les × (resp. •), nous pouvons superposer les deux symboles.
En d’autres termes, nous retirons les • de notre représentation graphique, et prétendons que l’effet
des × est maintenant de tuer les 2, et de changer la couleur des 1.

Nous dirons que (z, s) et (x, t), 0 ≤ s ≤ t, sont fortement connectés s’il existe une suite d’instants
s0 = s < s1 < · · · < sn+1 = t et une suite de sites x0 = z, x1, . . . , xn = x tels que

1. Pour i = 1, 2, . . . , n, il existe une flèche de xi−1 à xi au temps si et

2. Pour i = 0, 1, . . . , n, le segment vertical {xi} × (si, si+1) ne contient aucune ×.

Si au lieu de la condition 2 ci-dessus

3. L’ensemble

n
⋃

i=0

{xi} × (si, si+1) contient exactement une ×,

nous dirons que (z, s) et (x, t) sont faiblement connectés. Nous dirons enfin qu’il existe un chemin

de (z, s) à (x, t) si les deux points sont soit fortement soit faiblement connectés. Compte tenu
de l’effet des ×, s’il existe un chemin de (z, s) à (x, t), une particule de type 1 en (z, s) peut
certainement être l’ancêtre d’une particule de type 2 en (x, t) si elle traverse une × lors de son
ascension vers (x, t). En conclusion, le processus dual issu de (x, t) sera défini en posant

ξ̂
(x,t)

s = {z ∈ Z
d : il existe un chemin dual de (x, t) à (z, t− s)}

où un chemin dual de (x, t) à (z, t−s) indique l’existence d’un chemin de (z, t−s) à (x, t). Notons

maintenant que {(ξ̂ (x,t)

s , s) : 0 ≤ s ≤ t} exhibe une structure d’arbre divisée en deux couches
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selon le nombre de × (0 ou 1) qu’un ancêtre traverse pour atteindre (x, t). Un site z ∈ Z
d sera

appelé sur-ancêtre (resp. sous-ancêtre) au temps s s’il existe un chemin de (z, s) à (x, t) contenant
exactement 0 (resp. 1) ×. De même que pour le processus de contact multitype (Neuhauser, 1992),
la structure d’arbre du processus dual induit une hiérarchie, les ancêtres pouvant être rangés selon
l’ordre dans lequel ils déterminent la couleur de (x, t). Le premier ancêtre au sens de cette relation
d’ordre sera appelé particule déterminante, et le premier sur-ancêtre particule distinguée.

Maintenant le processus dual construit, nous pouvons donner l’idée de la preuve. La première
étape consiste à prouver que P (Θ1 <∞) = 1, où Θ1 désigne le dernier instant auquel la particule
déterminante est un sur-ancêtre. La suite de la preuve repose sur le fait qu’une fois que le premier
ancêtre est un sous-ancêtre (après l’instant Θ1), il ne peut peindre (x, t) qu’avec la couleur 2
puisque l’effet des × est de changer la couleur des 1. En dimension d ≤ 2, nous attendons jusqu’au
temps Θ1 et prouvons que la particule distinguée et la particule déterminante fusionnent presque
sûrement de sorte qu’elles atterrissent, pour t suffisamment grand, sur le même site. Si ce site est
initialement occupé par un 1, la particule déterminante peindra (x, t) avec la couleur 2, tandis que
s’il est occupé par un 2, la particule distinguée peindra (x, t) avec la couleur 2 à moins qu’un sous-
ancêtre ne le fasse avant. En dimension d ≥ 3, nous exploitons la finitude de Θ1 pour construire une
suite ζs(n) de sous-ancêtres prioritaires sur la particule distinguée dans la hiérarchie des ancêtres,
et extrayons une sous-suite de candidats ζs(nk) ne fusionnant pas entre-eux pour conclure qu’au
moins l’un d’eux atterrit sur un 1 au temps 0 et peint (x, t) avec la couleur 2.

2. Le processus de contact multitype avec blocage dynamique

Notre second système de particules est un processus de Markov dont l’état à l’instant t est une
fonction ξt : Z

d −→ {0, 1, 2, 3}. Comme précédemment, un site x ∈ Z
d est dit occupé par une

particule de type 1 (resp. 2) si ξ(x) = 1 (resp. 2), et vide sinon. Nous distinguons maintenant deux
types de sites vides. Plus précisément, un site x ∈ Z

d est appelé site libre si ξ(x) = 0, et appelé
site gelé si ξ(x) = 3. L’évolution au site x est décrite par les taux de transition

c01 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c13 (x, ξ) = 1

c31 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c30 (x, ξ) = γ

c02 (x, ξ) = λ2

∑

0<||x−z||≤R

1{ξ(z)=2} c20 (x, ξ) = 1.

En particulier, notre processus est une généralisation du processus de contact multitype (Neuhauser,
1992) où les 1 inhibent la propagation des 2 en gelant les sites qu’ils viennent d’occuper. Récipro-
quement, le processus de contact multitype n’est autre que le cas limite γ = ∞. L’interprétation
que nous avons à l’esprit est celle d’un modèle spatial d’allélopathie. Dans la littérature biologique,
l’allélopathie est définie comme un processus impliquant des métabolites secondaires produites par
des plantes, des micro-organismes, des virus ou des champignons ayant une influence sur la crois-
sance et le développement d’un système biologique. Dans notre cas, les 1 sont les individus d’une
espèce inhibitrice et les 2 ceux d’une espèce sensible.

Pour étudier notre modèle, nous commençons par observer que, si seuls les 2 sont présents,
le processus est réduit comme précédemment à un processus de contact de paramètre λ2. En
particulier, si λ2 ≤ λc alors ξt ⇒ δ0, tandis que si λ2 > λc alors ξt ⇒ µ2 (voir Section 1). Si
seuls les 1 sont présents, nous obtenons un résultat similaire. Plus précisément, si λ1 ≤ λc alors le
processus converge en distribution vers δ0, tandis que si λ1 > λc il existe une mesure stationnaire
non triviale ν1 concentrée sur les configurations contenant une infinité de 1 et de 3. En particulier,
dans le cas λ1 ≤ λc et λ2 ≤ λc, il y a extinction des deux espèces.

Pour éviter les trivialités, nous supposons maintenant que λ1 > λc, λ2 > λc et ξ0 contient une
infinité de 1 et de 2. Tout d’abord, un argument de couplage standard implique que la probabilité
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de survie des 1 est croissante en λ1 et décroissante en λ2 et γ. Le résultat analogue pour les 2 est
également vérifié. En conclusion, nous obtenons le

Théorème 4 Soit Θ
i

t = {x ∈ Z
d : ξt(x) = i} l’ensemble des sites occupés à l’instant t par une

particule de type i. Alors les probabilités de survie P (Θ
i

t 6= ∅ pour tout t ≥ 0), i = 1, 2, sont
monotones par rapport à chacun des paramètres λ1, λ2 et γ.

En observant en particulier que le modèle de paramètre γ = ∞ correspond au processus de contact
multitype, le théorème 4 ci-dessus ainsi que le théorème 1 de Neuhauser (1992) impliquent que

Théorème 5 Si λ1 > λ2 > λc et γ ∈ (0,∞) alors ξt ⇒ ν1.

Examinons maintenant le cas λ1 = λ2. Comme les lois d’évolution favorisent les 1, nous nous
attendons à ce que les processus avec et sans blocage dynamique exhibent des comportements
différents. D’après le théorème 6 ci-dessous, les 1 l’emportent en d ≥ 3 si γ < ∞, tandis que
les deux types de particules coexistent si γ = ∞. Voir le théorème 3 de Neuhauser (1992). Nous
conjecturons que les 1 l’emportent en toute dimension mais notre preuve repose de façon essentielle
sur la transience des marches aléatoires symétriques en dimension d ≥ 3.

Théorème 6 Si ξ0 est invariant par translation, λ1 = λ2 > λc et d ≥ 3 alors ξt ⇒ ν1.

La preuve du théorème 6 repose en partie sur les techniques de dualité introduites à la
Section 1. Pour tenter de comprendre les propriétés du processus dual, nous commençons par
construire le système de particules dans le cas λ1 = λ2. Pour x, z ∈ Z

d avec ||x−z|| ≤ R, désignons
par {T x,z

n : n ≥ 1}, {U x

n : n ≥ 1} et {V x

n : n ≥ 1} les temps d’arrivée de processus de Poisson
indépendants d’intensité λ1, 1 et γ respectivement. Aux temps T

x,z

n , nous traçons une flèche de x
à z pour indiquer que si x est occupé par un 1 et z vide alors z devient occupé par un 1, tandis
que si x est occupé par un 2 et z libre alors z devient occupé par un 2. Enfin, nous plaçons une
× en (x, U

x

n ) pour indiquer qu’une mort survient, et un • en (x, V
x

n ) pour signaler qu’un site gelé
devient libre.

Nous dirons qu’il existe un chemin de (z, s) à (x, t), 0 ≤ s ≤ t, si (z, s) et (x, t) sont fortement
connectés (voir 1 et 2 page 2), et qu’il existe un chemin dual de (x, t) à (z, t − s) s’il existe un
chemin de (z, t−s) à (x, t). Le processus dual issu de (x, t) est alors défini comme pour le processus
de contact multitype classique, c’est-à-dire en posant

ξ̂
(x,t)

s = {z ∈ Z
d : il existe un chemin dual de (x, t) à (z, t− s)}.

Comme précédemment, l’ensemble {(ξ̂ (x,t)

s , s) : 0 ≤ s ≤ t} exhibe une structure d’arbre induisant
une hiérarchie, les ancêtres pouvant être rangés selon l’ordre dans lequel ils déterminent la couleur
de (x, t). Les éléments de ξ̂

(x,t)

s sont appelés les sur-ancêtres, et le premier sur-ancêtre au sens de
la relation d’ordre définie ci-dessus la particule distinguée.

La principale différence avec le processus de contact multitype est que les 1 produisent main-
tenant des 3 qui bloquent les 2. En particulier, la couleur de (x, t) ne dépend plus seulement de
la couleur des sur-ancêtres au temps 0. L’idée est de prouver que le nombre de sites gelés visités
par la particule distinguée lors de son ascension vers (x, t) tend vers l’infini quand t → ∞, ce
qui a pour effet de bloquer les 2 pour la détermination de la couleur de (x, t). Plus précisément,
nous nous inspirons de la construction introduite à la Section 1. Nous dirons que z ∈ Z

d est un
sous-ancêtre au temps s si (z, s) et (x, t) sont faiblement connectés. Au vu de l’effet des ×, si
les points (z, s) et (x, t) sont faiblement connectés, une particule de type 1 en (z, s) pourra geler

la trajectoire de la particule distinguée en certains points. L’objectif est de construire une collec-
tion de sous-ancêtres ζs(n) qui soient de bons candidats pour réaliser cet évènement. Si tous ces
ancêtres fusionnent, ce qui se réalise presque sûrement en d ≤ 2, et atterrissent au temps 0 sur
un 2, nous ne pouvons conclure. Si, au contraire, d ≥ 3, ce qu’il faut de transience nous permet
de construire une sous-suite infinie ζs(nk) de sous-ancêtres atterrissant sur un 1 au temps 0, et
réalisant notre bon évènement.
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En supposant enfin que λ1 < λ2, les résultats de Durrett et Neuhauser (1997), Section 3,
impliquent que les 2 l’emportent en d = 2 pourvu que γ = ∞. En se basant sur un argument
de perturbation (voir Section 5), nous pouvons montrer que le résultat est également satisfait
pour γ suffisamment grand. Plus précisément,

Théorème 7 Supposons que d = 2 et λ2 > λ1 > λc. Il existe une valeur critique γc ∈ (0,∞) telle
que ξt ⇒ µ2 pour tout γ > γc.

Pour synthétiser nos résultats, posons βc (γ, λ1) = inf {λ2 ≥ 0 : les 1 meurent} pour des
paramètres γ > 0 et λ1 > λc donnés, avec la convention habituelle inf ∅ = ∞. Une applica-
tion directe des théorèmes 4-7 implique que βc (γ, λ1) ↓ λ1 quand γ ↑ ∞. En particulier, notre
processus avec blocage dynamique exhibe un comportement proche de celui du processus de con-
tact multitype quand γ est grand, ce qui peut être vu comme un résultat de continuité.

3. Interactions hôtes-pathogènes et hôtes-mutualistes

Notre troisième processus est destiné à modéliser les interactions locales au sein d’une popu-
lation d’hôtes et de symbiotes dans le but de comprendre le rôle des symbiotes dans la diversité
et la structure des communautés de plantes. De façon générale, un symbiote est un organisme
vivant en association avec un hôte. Il peut avoir un effet néfaste, auquel cas nous l’appellerons
pathogène, ou un effet bénéfique, auquel cas nous l’appellerons mutualiste. Une composante essen-
tielle des modèles multi-hôtes, multi-symbiotes est le degré avec lequel différents hôtes et symbiotes
sont capables de s’associer entre-eux, ce que l’on nommera spécificité. Un symbiote spécialiste ne
s’associe qu’à un petit nombre d’hôtes tandis qu’un symbiote généraliste s’associe à un grand
nombre d’hôtes. La facilité avec laquelle un symbiote s’associe à un hôte, appelée transmissibilité,
est un autre facteur important des interactions hôtes-symbiotes.

Pour décrire la dynamique des hôtes, nous employons le plus simple des modèles interspécifiques,
à savoir le modèle des votants (Holley et Liggett, 1975, Clifford et Sudbury, 1973). Au sein de cette
population, nous introduisons des symbiotes avec différents degrés de spécificité et de transmissi-
bilité. Plus précisément, notre modèle est un processus de Markov dont l’état au temps t est une
fonction ξt : Z

d −→ {1, 2, . . . , κ} × {0, 1, . . . , κ}, l’entier κ désignant à la fois le nombre d’hôtes
et de symbiotes en interaction. Un site x ∈ Z

d est dit occupé par un hôte non associé de type i
si ξ(x) = (i, 0), et par un hôte de type i associé à un symbiote de type j si ξ(x) = (i, j). Dans la
suite, nous noterons ξt(x) = (ξ

1

t (x), ξ
2

t (x)), où ξ
1

t (x) et ξ
2

t (x) désignent respectivement les types
de l’hôte et du symbiote présents au site x au temps t, la condition ξ

2

t (x) = 0 traduisant l’absence
de symbiote. L’évolution au site x est décrite par les taux de transition

c(i,j)(k,0) (x, ξ) = λ
∑

0<||x−z||≤R1

{

1{ξ(z)=(k,0)} + g

κ
∑

ℓ=1

1{ξ(z)=(k,ℓ)}

}

c(i,0)(i,j) (x, ξ) = cij
∑

0<||x−z||≤R2

κ
∑

ℓ=1

1{ξ(z)=(ℓ,j)}.

Le taux de naissance des hôtes non associés est égal à λ. Le paramètre g indique la variation du
taux de naissance des hôtes associés à un symbiote. En particulier, si 0 ≤ g < 1, le symbiote
est un pathogène, si g = 1, le symbiote n’a aucun effet sur le taux de naissance des hôtes, et
si g > 1, le symbiote est un mutualiste. Le paramètre cij désigne le taux auquel le symbiote j
s’associe à l’hôte i, permettant ainsi de modéliser le degré de spécificité des symbiotes. Enfin,
les naissances et infections surviennent à l’intérieur d’un voisinage d’interaction, R1 désignant la
portée des naissances pour les hôtes, et R2 la portée des infections pour les symbiotes. Le cardinal
de chacun de ces voisinages sera noté νR1 et νR2 respectivement.

Avant de décrire le comportement du modèle spatial, nous examinons le modèle du champ moyen
(Durrett et Levin, 1994). En d’autres termes, nous supposons que tous les sites sont indépendants
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et que le système est homogène. Il en résulte un système d’équations différentielles ordinaires pour
les densités d’hôtes associés et non associés. Notons ui la densité d’hôtes non associés de type i,
et vij la densité d’hôtes de type i associés à un symbiote de type j. Nous supposons en outre que
cii = β et cij = α pour i 6= j, avec 0 ≤ α ≤ β. Posons

u· =

κ
∑

i=1

ui, v·j =

κ
∑

i=1

vij , vi· =

κ
∑

j=1

vij et v·· =

κ
∑

i=1

κ
∑

j=1

vij .

Une façon d’obtenir le modèle du champ moyen est de fixer les portées R1 et R2 égales à R et de
faire tendre R vers l’infini. Pour obtenir une limite cohérente, nous renormalisons les paramètres
λ, α et β par la taille de leur voisinage respectif νR en posant λ = 1

νR
(ce qui fixe également

l’échelle temporelle),

α =
a

νR
et β =

b

νR
.

Quand R tend vers l’infini, les sites deviennent indépendants. Si de plus la configuration initiale
est invariante par translation, l’évolution des densités pour i 6= j est alors décrite par le système
d’équations suivant.

u′i = (1 − ui) (ui + g vi·) − ui

∑

j 6=i

(uj + g vj·) − b ui v·i − a
∑

j 6=i

ui v·j

v′ii = b ui v·i − vii (u· + g v··)

v′ij = a ui v·j − vij (u· + g v··).

Quand a = 0, les symbiotes sont spécialistes. Quand a crôıt vers b, les symbiotes deviennent
généralistes. Si g = 1, le système admet des quantités conservatives, à savoir les densités initiales
d’hôtes hi = ui + vi·, i = 1, 2, . . . , κ. Si (κ − 1) a + b > κ, alors pour g 6= 1, il existe un équilibre
non trivial avec u1 = u2 = · · · = uκ ≥ 0 et v1· = v2· = · · · = vκ· > 0. Les simulations indiquent que
cet équilibre est localement stable pour a < b quand g < 1, mais pas quand g > 1. Si initialement
seuls deux hôtes et un symbiote, disons le symbiote 1, sont présents alors, pour 0 < g < 1, le
pathogène 1 disparâıt et les deux hôtes peuvent coexister. Nous conjecturons un comportement
similaire pour le modèle spatial, excepté dans le cas d’une dynamique unidimensionnelle à plus
proches voisins (voir le théorème 11 et la discussion qui suit le théorème). Quand g > 1, l’hôte
2 disparâıt pourvu que la densité initiale de mutualistes de type 1 soit suffisamment grande. Le
résultat analogue pour le modèle spatial est donné par le théorème 10.

Revenons maintenant au modèle spatial de paramètres λ, α et β. Pour fixer l’échelle temporelle,
posons λ = 1. Nous discutons les cas généraliste α = β et spécialiste α = 0, et donnons des com-
paraisons avec le modèle du champ moyen.

Interactions généralisées

Nous considérons le cas généraliste α = β pour le modèle spatial. Pour le modèle du champ
moyen correspondant, la coexistence des hôtes et symbiotes est possible quand b > 1. En revanche,
pour b ≤ 1, les symbiotes sont incapables de survivre. Il est facile de voir que pour b > 1 l’équilibre
non trivial (u·, v··) est localement stable et le point frontière v·· = 0 instable. Le comportement
du modèle spatial est plus complexe et peut dépendre, comme nous le verrons par la suite, de la
dimension de l’espace.

Si g = 1, les symbiotes n’ont aucun effet sur les hôtes, de sorte que ξ
1

t et ξ
2

t sont stochastique-
ment indépendants. Par ailleurs, il est facile de voir que ξ

1

t est un modèle des votants, et ξ
2

t un
processus de contact multitype de taux de naissance β νR2 et de taux de mort νR1 . Voir respec-
tivement Holley et Liggett (1975) et Neuhauser (1992) pour une étude de ces deux processus. Il
en résulte l’existence d’une valeur critique βc(R1, R2) ∈ (0,∞) dépendant de νR1 et νR2 telle que
les symbiotes peuvent survivre si et seulement si β > βc(R1, R2). Si l’on ignore le type des hôtes
et symbiotes en examinant de préférence les interactions entre hôtes associés et non associés, alors
pour β > βc(R1, R2) et quelque soit la dimension, il existe une mesure stationnaire pour laquelle
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les hôtes associés et non associés coexistent. Si de plus d ≥ 3, il existe une mesure stationnaire
pour laquelle tous les hôtes et symbiotes coexistent.

Pour analyser le cas g 6= 1, nous définissons le processus daltonien pour lequel un site est dans
l’état 0 s’il est occupé par un hôte non associé, et dans l’état 1 sinon. Nous obtenons ainsi un
système de particules ζt : Z

d −→ {0, 1} de taux de transition

c01 (x, ζ) = β
∑

0<||x−z||≤R2

1{ζ(z)=1}

c10 (x, ζ) =
∑

0<||x−z||≤R1

{

1{ζ(z)=0} + g 1{ζ(z)=1}
}

.

Quand g = 1, le processus est réduit à un processus de contact de taux de naissance β νR2 et
de taux de mort νR1 . Désignons comme précédemment par βc(R1, R2) la valeur critique de ce
processus de contact. Un argument de couplage standard nous permet de comparer les processus
de paramètres g 6= 1 et g = 1, et d’en déduire que si g ≤ 1 et β > βc(R1, R2) alors ζt admet
une mesure stationnaire non triviale, tandis que si g ≥ 1 et β ≤ βc(R1, R2) alors ζt ⇒ δ0. Pour
couvrir les cas restants, nous introduisons le processus de contact ηt de taux de naissance β νR2 et
de taux de mort g νR1 . Le processus ηt admet une mesure stationnaire non triviale si et seulement
si β > g βc(R1, R2) ce qui, avec un nouveau couplage, implique que si g ≤ 1 et β ≤ g βc(R1, R2),
alors les pathogènes disparaissent, tandis que si g ≥ 1 et β > g βc(R1, R2), alors ζt admet une
mesure stationnaire non triviale. Tous ces résultats sont résumés dans le théorème suivant.

Théorème 8 Posons α = β et supposons que P (ζ0(x) = 1) > 0.

1. Si g ≤ 1, alors ζt ⇒ δ0 si β ≤ g βc et il existe un équilibre non trivial si β > βc.

2. Si g ≥ 1, alors ζt ⇒ δ0 si β ≤ βc et il existe un équilibre non trivial si β > g βc.

Examinons maintenant le cas β > 1 et g > 0 proche de 0. Notons tout d’abord que si g = 0
et R1 = R2 le processus ζt n’est autre que le modèle des votants biaisé de paramètres β et 1.
En particulier, P (ζt(x) = 0) → 1 si β < 1 alors que P (ζt(x) = 1) → 1 si β > 1. De plus, dans
le dernier cas, le processus ξt exhibe une fixation puisque les hôtes associés à un pathogène sont
maintenant stériles. En se basant sur un argument de perturbation (voir Section 5), nous pouvons
montrer que les pathogènes survivent également si β > 1 et g > 0 est suffisamment proche de 0.

Théorème 9 Posons α = β et R1 = R2. Si β > 1 alors il existe une valeur critique gc > 0 telle
que si g ≤ gc alors ζt ⇒ µ avec µ (ζ(x) = 1) 6= 0.

Interactions spécialisées

Dans le cas d’interactions spécialisées α = 0 et β > 0, l’étude est plus délicate, l’évolution
de chaque symbiote dépendant fortement de la structure de la population d’hôtes. En d’autres
termes, il n’existe pas de système de particules ζt : Z

d −→ {0, 1} décrivant l’évolution globale
des symbiotes ne se souciant pas de leur type. Puisque pour tout i = 1, 2, . . . , κ le symbiote i ne
peut vivre qu’en association avec les hôtes du même type, il est toutefois facile de montrer, par
un argument de couplage, que si g ≤ 1 et β ≤ max (βc g, 1), les pathogènes disparaissent.

La prochaine étape est d’étendre les résultats du modèle du champ moyen au modèle spatial
correspondant. Nous commençons par considérer une population de deux hôtes et un seul symbiote,
disons le symbiote 1, et supposons qu’au temps 0 tous les hôtes de type 1 sont associés. Dans le
cas limite β = ∞, la transition (1, 0) → (1, 1) est instantanée pourvu que R1 ≤ R2 afin d’éviter
les problèmes d’hôtes isolés non associés ne pouvant être atteint par aucun symbiote. Il en résulte
que le processus ξ

1

t est un modèle des votants biaisé pour lequel les hôtes de type 1 se reproduisent
au taux g νR1 et ceux de type 2 au taux νR1 . En particulier, si g < 1, alors ξ

1

t ⇒ δ2, tandis que
si g > 1, alors ξ

1

t ⇒ δ1. Le théorème 10 nous dit qu’en toute dimension le résultat est également
vérifié si g > 1 et β ∈ (0,∞) est suffisamment grand.
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Théorème 10 Fixons α = 0, g > 1 et R1 ≤ R2. Au temps 0, ξ0(x) = (1, 1) ou (2, 0) pour tout
site x ∈ Z

d. Il existe une valeur critique β
T h10

c ∈ (0,∞) telle que si β > β
T h10

c alors ξ
1

t ⇒ δ1.

Les arguments de notre preuve n’impliquent toutefois pas le résultat analogue pour g < 1. Nous
pensons en fait qu’à l’exception du cas particulier d’une dynamique unidimensionnelle à plus
proches voisins, P (ξ

1

t (x) = 2) 6→ 1. Décrivons, avant de justifier notre conjecture, ce cas par-
ticulier. Supposons que ξ

1

0 (x) = 1 pour x > 0, et ξ
1

0 (x) = 2 pour x ≤ 0, le système étant
initialement occupé par une infinité de pathogènes de type 1 mais dépourvu de pathogènes de
type 2. Notons r

2

t = sup {x ∈ Z : ξ
1

t (x) = 2} la position au temps t de l’hôte de type 2 le plus à
droite. En particulier, r

2

0 = 0. Le résultat suivant implique que pour β suffisamment grand, les 2
se propagent vers la droite en éliminant les 1 et leurs pathogènes.

Théorème 11 Posons d = 1 et R1 = 1. Si α = 0 et g < 1, il existe β
T h11

c ∈ (0,∞) tel que pour
tout β > β T h11

c , le processus r
2

t → ∞ quand t→ ∞ avec probabilité 1.

Nous pensons que le résultat n’est valable que dans le cas d’une dynamique unidimensionnelle
à plus proches voisins. Notons tout d’abord qu’à l’exception de ce cas particulier la dynamique
produit des hôtes isolés, c’est-à-dire des hôtes de type 1 (resp. 2) encerclés d’hôtes de type 2 (resp.
1). Comme suggéré par le théorème 10, quand g > 1, un hôte isolé de type 2 est rapidement
avalé par les hôtes de type 1 avoisinants. Quand en revanche g < 1, un hôte 1 situé au coeur
d’un regroupement de 2 en expansion ne peut être infecté par aucun pathogène dès lors que ce
regroupement excède une certaine taille critique. Dans cette zone en expansion, le processus se
comporte alors comme un modèle des votants (non biaisé) de sorte que les 1 peuvent maintenant
rivaliser avec les 2, et survivre.

Nous étudions pour finir la coexistence des symbiotes dans le cas neutre g = 1. Notons d’abord
que, pour g = 1, le processus ξ

1

t est un modèle des votants de paramètre 1. En particulier, il n’existe
pas, en dimension d ≤ 2, de mesure stationnaire µ telle que µ (ξ

1
(x) = i) 6= 0 pour toute couleur

i ∈ {1, 2, . . . , κ} (voir Holley et Liggett, 1975). Puisque, dans le cas d’interactions spécialisées,
ξ

2

t (x) = i implique que ξ
1

t (x) = i, la coexistence des symbiotes ne peut être possible. Bien qu’en
dimension d ≥ 3, les hôtes coexistent, étant donnée la formation de regroupements, le problème
de la coexistence des symbiotes reste délicat. En d’autres termes, le modèle des votants exhibe des
regroupements dont le diamètre peut excéder une longueur critique, empêchant ainsi les symbiotes
de se propager. Pour contourner cette difficulté, nous introduisons un nouveau processus, noté ξ̂t,
pour lequel les symbiotes évoluent comme précédemment et les hôtes réalisent un modèle des
votants de seuil θ. Précisément, les taux de transition sont donnés par

c(i,i)(k,0) (x, ξ) =

{

1 si card {z ∈ Z
d : 0 < ||x− z|| ≤ R1 et ξ̂

1
(z) = k} ≥ θ

0 sinon

c(i,0)(i,i) (x, ξ) = β × card {z ∈ Z
d : 0 < ||x− z|| ≤ R2 et ξ̂

2
(z) = i}.

L’introduction de ce système de particules est motivée par le théorème 1 de Durrett (1992) selon
lequel le modèle des votants de seuil θ admet une mesure stationnaire non triviale suffisamment
proche d’une mesure produit pour entrâıner notre dernier résultat.

Théorème 12 Fixons g = 1 et θ < νR1/κ. Si R1 et R2 sont suffisamment grands, alors il existe
une valeur critique β T h12

c ∈ (0,∞), dépendant de κ, telle que si β > β Th12

c , alors tous les hôtes et
symbiotes coexistent, tandis que si β < β T h12

c , la coexistence des symbiotes est impossible.

Comparaison du modèle spatial et du modèle du champ moyen

Les simulations numériques du modèle du champ moyen indiquent que la coexistence des sym-
biotes n’est possible que pour g < 1. Les simulations du modèle spatial révèlent un comportement
similaire. Quand g < 1 et α < β, tous les hôtes et symbiotes coexistent. Dans ce cas, nous
observons que la taille des regroupements est limitée par la présence de pathogènes. Les regroupe-
ments d’hôtes non associés s’étendent jusqu’à la frontière de regroupements d’hôtes associés du
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même type. Après invasion du symbiote privilégié (celui de taux d’infection β), les regroupements
rétrécissent de nouveau. Le cas g > 1 et α < β est relativement différent. Les regroupements
d’hôtes associés à leur mutualiste privilégié se forment et continuent de s’étendre, de même que
pour le modèle des votants. Les mutualistes non privilégiés (ceux de taux d’infection α), semblent
incapables de résister face au mutualiste privilégié, de même que pour le modèle du champ moyen
avec un hôte et deux symbiotes de taux d’infection a et b respectivement (a < b). En résumé, les
pathogènes ont la capacité de modifier la structure spatiale de leurs hôtes en favorisant la diversité
locale, tandis que les mutualistes ne modifient pas cette structure. Cette différence est par ailleurs
d’autant plus prononcée avec la spécificité des symbiotes.

4. Modèle des votants et modèle des votants biaisé en milieu hétérogène

Notre dernier processus stochastique est destiné à modéliser le flux de gènes d’une culture
transgénique vers une population naturelle par pollinisation. Comme les plantes cultivées sont les
descendantes de plantes naturelles, l’existence d’un flux de gènes des unes aux autres n’est pas
surprenante. De l’insertion de nouveaux gènes dans le génôme des plantes cultivées, induisant
l’expression de protéines ayant des fonctions biologiques spécifiques, nâıt la préoccupation que ces
nouveaux gènes s’échappent dans la nature et confèrent un accroissement de la fitness de certaines
espèces, et que les plantes naturelles deviennent des envahisseurs aggressifs. Pour comprendre
comment la configuration spatiale de cultures permanentes d’organismes génétiquement modifiés
affecte le flux de gènes et l’invasion de transgènes au sein des populations naturelles adjacentes,
nous introduisons un modèle stochastique spatial en milieu hétérogène. Le milieu représentera les
cultures permanentes d’organismes génétiquement modifiés inscrites dans une matrice de plantes
naturelles. Ces cultures étant fixées, le flux de gènes aura lieu uniquement des plantes transgéniques
vers les plantes naturelles.

Notre modèle s’inspire du modèle de génétique des populations le plus simple, le modèle haplöıde
de Wright-Fisher avec sélection. La version spatiale de ce modèle est le modèle des votants biaisé.
Nous considérons le modèle des votants en milieu hétérogène avec la présence d’un flux de gènes
récurrent depuis les cultures transgéniques vers le milieu naturel. Plus précisément, notre modèle
est un processus de Markov ξt : Z

d −→ {0, 1}, où les 0 représentent les individus porteurs d’un
gène naturel, et les 1 les individus porteurs d’un transgène. Un site x ∈ Z

d est dit occupé par un
0 (resp. 1) si ξ(x) = 1 (resp. 0). Nous utiliserons également la notation x ∈ ξt si et seulement
si ξt(x) = 1. Le sous-ensemble ∆ ⊂ Z

d représente la partie de l’habitat occupé par les plantes
transgéniques. Nous gelons l’évolution sur ∆ en prétendant que si x ∈ ∆ alors, à tout instant t ≥ 0,
ξt(x) = 1. Pour décrire la dynamique, nous introduisons une probabilité de transition p (x, z) sur
Z

d qui soit invariante par translation, i.e. p (x, z) = q (z− x), symétrique, et telle que q (z) ait une
variance σ2 < ∞. Un site x ∈ Z

d − ∆ occupé par un 0 choisit, avec un taux β et une probabilité
p (x, z), un site z ∈ Z

d dont il prend la couleur, alors que si le site x est occupé par un 1, le choix
se fait au taux 1. En d’autres termes,

c01 (x, ξ) = β
∑

z

p (x, z) 1{ξ(z)=1} et c10 (x, ξ) =
∑

z

p (x, z) 1{ξ(z)=0, x 6∈∆}.

Excepté dans le cas ∆ = ∅, nous supposons désormais que ξ0(x) = 1 si et seulement si x ∈ ∆. En
particulier, il résulte de la dynamique que ξt(x) = 1 pour tous t ≥ 0 et x ∈ ∆.

Notons tout d’abord que si ∆ = ∅ et β = 1 alors ξt est le modèle des votants. Dans ce cas, les
résultats de Holley et Liggett (1975) révèlent un changement de comportement contrasté selon la
dimension. Si d ≤ 2 alors ξt ⇒ α δ0 +(1−α) δ1, pour un α ∈ [0, 1], où δi désigne la masse de Dirac
en ξ ≡ i, tandis que si d ≥ 3, la coexistence est possible, i.e. il existe une mesure stationnaire µ
telle que µ (ξ(x) = 0) 6= 0 et µ (ξ(x) = 1) 6= 0. Choisir ∆ 6= ∅ peut modifier drastiquement le
comportement limite du processus. En prenant par exemple ∆ = {0} et d ≤ 2, la particule située
à l’origine produira un amas de particules qui envahira l’espace dans sa totalité.

Si l’on pose ∆ = ∅ et β > 1 alors ξt est le modèle des votants biaisé. Les résultats de Bramson
et Griffeath (1980, 1981) montrent que si Ω∞ = {ξt 6= ∅ pour tout t ≥ 0} et qu’à t = 0 une seule
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particule est présente à l’origine, il existe un convexe A tel que sur Ω∞ et pour tout ε > 0

(1 − ε) t A ∩ Z
d ⊂ ξt ⊂ (1 + ε) t A ∩ Z

d pour tout t suffisamment grand.

De plus, sur Ωc
∞, le processus converge exponentiellement vite vers δ0.

Fixons maintenant d = 1. La discussion ci-dessus implique que si ∆ 6= ∅ alors ξt ⇒ δ1. La
première question à laquelle nous souhaiterions répondre est la suivante. Quel est l’effet de la
géométrie de ∆ sur la vitesse de convergence vers δ1 ? La première étape est d’étudier le processus
de configuration initiale ξ0(x) = 1{x≤ 0}. Dans le cas particulier ∆ = ∅, le comportement du
processus à l’interface a été étudié par Cox et Durrett (1995). Pour formuler leur résultat, nous
introduisons le zéro le plus à gauche et le un le plus à droite

ℓt = inf {x ∈ Z : ξt(x) = 0} et rt = sup {x ∈ Z : ξt(x) = 1}.

Pour des raisons techniques, nous supposons de plus que p est irréductible et que q admet des
moments d’ordre 3. Alors {rt − ℓt : t ≥ 0} est stochastiquement compact, i.e. pour tout ε0 > 0 il
existe M <∞ tel que P (rt − ℓt > M) ≤ ε0. Voir Cox et Durrett (1995), Section 4. En notant par
ailleurs Φ(x) la densité de la loi normale centrée réduite,

lim
t→∞

P (rt/σ
√
t ≤ x) = lim

t→∞
P (ℓt/σ

√
t ≤ x) = Φ(x).

Dans le cas ∆ = Z
−, l’ensemble des entiers négatifs ou nuls, nous pouvons de nouveau montrer

la compacité stochastique de {rt − ℓt : t ≥ 0}. L’équation précédente, en revanche, n’est plus
satisfaite puisque les processus rt et ℓt sont maintenant condamnés à vivre à droite de zéro. Plus
précisément, nous avons le

Théorème 13 Fixons β = 1. Si x ≥ 0 et xt = xσ
√
t alors

lim
t→∞

P (rt ≥ xt) = lim
t→∞

P (ℓt ≥ xt) =

√

2

π

∫ ∞

x

exp

[

− y2

2

]

dy.

En d’autres termes, les particules diffusent vers la droite, révélant une invasion relativement lente.
Au vu du théorème 13, notre intuition est que la vitesse d’invasion du transgène est d’autant
plus grande que ∆ est fragmenté. Pour préciser notre argument, considérons le processus sur le
tore εZ/NZ où N est un entier positif et ε un réel proche de 0. Nous accélérons le temps d’un
facteur ε

−2
et introduisons la probabilité de transition pε (x, y) = q (ε

−1
(y−x) mod Nε

−1
) pour

formuler la dynamique. Fixons L > 0 et K = N/L de sorte que K et L ε
−1

soient des entiers, avec
K pair. Pour tout site z ∈ {0, 1, . . . , K − 1}, considérons enfin les sous-ensembles

Bz = [ z L, (z + 1)L) ∩ εZ et ∆ =
⋃

z pair

Bz .

Le lecteur notera que la condition ξ0(x) = 1 si et seulement si x ∈ ∆ implique que, pour tout
choix de L, exactement la moitié des sites est initialement occupée. Désignons par Tinv le temps
d’arrêt Tinv = inf {t ≥ 0 : ξt ≡ 1}, quantité que l’on nommera temps de complète invasion.

Théorème 14 Fixons β = 1. Si p (x, y) est à support compact alors

lim
ε→ 0

P (Tinv ≤ t) =

{

1 −
∫ L

0

(Ψt ∗ Ψt)(x) dx

}N/2L

où

Ψt(x) = − ∂

∂x

√

2

π

∫ ∞

x/σ
√

t

exp

[

− y2

2

]

dy.
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Le théorème 14 nous donne un indice des effets de ∆ sur le temps de complète invasion. Les études
numériques révèlent que, pour t ≥ 0 fixé, la fonction L 7→ limε→0 P (Tinv ≥ t) est croissante. Il en
résulte que le temps de complète invasion sera très lent dans le cas extrême L = N/2, et de plus
en plus rapide au fur et à mesure que le nombre de composantes de ∆ augmente.

Nous considérons maintenant le processus sur Z où les particules donnent naissance selon la
probabilité de transition p (x, y). Posons ∆ = Z

− et ξ0(x) = 1 si et seulement si x ∈ ∆. Supposons
de plus que p (x, y) est à support compact. La prochaine étape est d’étudier les propriétés du un
le plus à droite rt. Le comportement de rt quand β = 1 et t → ∞ découle du théorème 13. En
travaillant un peu plus, nous pouvons montrer que le processus revient infiniment souvent à sa
configuration initiale.

Théorème 15 Si β = 1 alors P (rt = 0 i.s.) = 1.

Pour étudier le cas β 6= 1, considérons une dynamique à plus proches voisins, i.e. p (x, y) = 1/2 si
et seulement si |x− y| = 1. Si β < 1, le théorème 15 assorti d’un argument de couplage implique
que rt = 0 i.s.. Le processus n’exhibe toutefois pas le comportement décrit par le théorème 13.

Théorème 16 Si β < 1 alors P (rt ≥ x) ≤ β x à tout instant t ≥ 0.

Enfin, si β > 1, le processus se comporte comme le modèle correspond en milieu homogène, i.e. le
processus crôıt linéairement en temps avec une vitesse de l’ordre de β − 1.

Théorème 17 Si β > 1, il existe C <∞ et γ > 0 tels que pour tout t > 0 et tout ε > 0

P (| rt − (β − 1) t | ≥ ε t) ≤ C e−γε2t.

En conclusion, les théorèmes 13 et 16-17 impliquent que si β ≥ 1 alors, pour tout entier x ≥ 0 et
tout ε > 0, il existe t0 ≥ 0 tel que P (rt ≥ x) ≥ 1 − ε pour tout t ≥ t0, tandis que si β < 1 alors
P (rt ≥ x) ≤ β x pour tout t ≥ 0. Les théorèmes 15-17 nous donnent par ailleurs la loi du 0-1

P (rt = 0 i.s.) =

{

0 si β > 1

1 si β ≤ 1.

En particulier, si β = 1 et p (x, y) est à support compact, le un le plus à droite rt converge en
probabilité vers l’infini quand t→ ∞ mais pas presque sûrement.

En conclusion, nos résultats confirment la nécessité d’un contrôle des flux récurrents de gènes
depuis les cultures génétiquement modifiées vers le milieu naturel. La sélection et la structure spa-
tiale jouent toutes deux un rôle essentiel dans la vitesse et l’étendue de l’invasion par le transgène.
Pour prendre totalement possession de la population naturelle, le transgène a besoin d’un avantage
sélectif. Néanmoins, même si le transgène n’a pas d’avantage selectif, il continuera d’être présent
dans le mileu naturel, la superficie qu’il pourra envahir dépendant fortement de la portée de dis-
persion. En considérant que le pollen peut se disperser à travers de longues distances, la pollution
génétique des populations naturelles reste donc une préoccupation sérieuse.

5. Résultat de continuité pour les systèmes de particules multicolores

Comme suggéré aux Sections 1-3, étant donné un système de particules ξt : Z
d −→ F , une

méthode classique pour prouver l’existence de mesures stationnaires non triviales pour le processus
stochastique ξt consiste à appliquer un argument de renormalisation. L’idée de base est de comparer
une certaine collection de bons évènements pour le processus vu sous une échelle spatio-temporelle
adéquate à un modèle de percolation orientée. Pour plus de détails sur la percolation orientée, nous
renvoyons le lecteur à Durrett (1984). L’argument de renormalisation a été inventé par Bramson
et Durrett (1988), et revu par Durrett (1991, 1995).
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Pour formuler notre résultat de continuité, nous considérons un ouvert Λ et supposons que notre
processus dépend d’un paramètre λ ∈ Λ, i.e. la couleur de x ∈ Z

d passe de i à j au taux

cij (λ, x, ξ) = hij (λ, ξ(x + z1), ξ(x+ z2), . . . , ξ(x + zN)).

Nous faisons de plus l’hypothèse de continuité

(HC) Pour tout δ > 0, il existe un voisinage V de λ0 dans Λ tel que

|cij (λ, 0, ξ) − cij (λ0, 0, ξ)| < δ ∀ λ ∈ V , ∀ i, j ∈ F, ∀ ξ ∈ F Z
d

.

Notre dernier théorème nous dit que, si l’on parvient à montrer, grâce à l’argument de renormali-
sation, l’existence d’une mesure stationnaire pour le processus de paramètre λ0 ∈ Λ, alors il existe
un voisinage V de λ0 dans Λ tel que les processus de paramètre λ ∈ V continuent d’exhiber, en
un sens qui sera précisé plus loin, le même comportement. Le résultat a déjà été établi dans de
nombreux cas particuliers. Voir, e.g., Durrett et Neuhauser (1997), Schinazi (2001, 2002) ou les
théorèmes 2 et 9 ci-dessus.

Pour faire la connnexion entre systèmes de particules et percolation orientée, l’idée consiste à
transformer l’espace-temps du processus en mur en briques, chaque brique étant associée à un bon
évènement. Notons ξ̄t : Z

d −→ F le système de particules de paramètre λ0 ∈ Λ construit à partir
d’une collection de processus de Poisson indépendants (Harris, 1972), et posons

L = {(z, n) ∈ Z
2 : z + n est pair et n ≥ 0}.

Soient L, T et Γ des entiers tels que T = ΓL, et H une collection de configurations déterminées
par la valeur de ξ̄ sur [−L,L ]d. Notons e1 le premier vecteur unité de Z

d, et pour z ∈ Z, désignons
par Hz la collection H translatée du vecteur Lze1. Nous dirons alors qu’un site (z, n) ∈ L est
occupé si ξnT ∈ Hz. Fixons enfin k0, j0 ∈ N

∗ et M = max {j0, k0}, et considérons la bôıte

Bz,n = (Lze1, n T ) + {[−k0L, k0 L ]d × [ 0, j0 T ]}.

Chaque (z, n) ∈ L est associé à un bon évènement Ez,n mesurable par rapport à la représentation
graphique du processus restreinte à Bz,n. Nous supposons enfin que pour tout ε > 0 l’hypothèse
de comparaison est satisfaite pour le processus de paramètre λ0, i.e.

(P ε
λ0

) Les paramètres L et Γ peuvent être choisis suffisamment grands de sorte que

1. P (Ez,n) ≥ 1 − ε et

2. Si (z, n) est occupé et Ez,n se réalise, alors (z − 1, n+ 1) et (z + 1, n+ 1) sont occupés.

Ici, (z, n) occupé signifie que ξ̄nT ∈ Hz. En d’autres termes, dans la définition de P ε
λ0

, occupé

s’applique au processus de paramètre λ0. Désignons par Pλ0 la propriété que pour tout ε > 0
l’hypothèse de comparaison P ε

λ0
est satisfaite. Nous avons alors le théorème suivant.

Théorème 18 Supposons HC et Pλ0 . Pour tout ε > 0, il existe un voisinage Vε de λ0 dans Λ tel
que pour tout λ ∈ Vε, l’hypothèse de comparaison P ε

λ est satisfaite.

Comme suggéré plus haut, le théorème 18 implique que si λ est proche de λ0 alors les processus
de paramètres λ et λ0 exhibent le même comportement au sens où chacun des deux processus
admet une mesure stationnaire ν telle que, pour tout z ∈ Z, ν(ξ ∈ Hz) > 0. Au-delà d’un simple
résultat de continuité, le théorème 18 nous donne un indice sur la stratégie à suivre pour étudier
le comportement d’un système de particules. Plus précisément, nous avons le

Corollaire 19 Supposons que ξt exhibe une transition de phase en λ0 ∈ Λ. Alors, le comporte-
ment du processus quand λ = λ0 ne peut être étudié par le biais du théorème de comparaison.



La preuve du corollaire 19 est directe. Supposons que l’on réussisse à construire une mesure
invariante ν pour le processus de paramètre λ0 par le biais du théorème de comparaison, autrement
dit que l’on réussisse à prouver que l’hypothèse Pλ0 ci-dessus est satisfaite. Le théorème 18 nous
assure alors de l’existence d’un voisinage V de λ0 dans Λ tel que, pour tout λ ∈ V , le processus
de paramètre λ continue d’exhiber le même comportement, ce qui contredit l’existence d’une
transition de phase en λ0 et prouve le corollaire 19.

Nous pensons enfin que le théorème 18 n’est pas satisfait pour λ0 = ∞ et λ > 0 grand (voir la
discussion qui suit le théorème 11 ci-dessus). L’argument de continuité pour λ0 = ∞ et λ grand
est toutefois vérifié dans certains cas. Voir, e.g., les théorèmes 7 et 10 pour des illustrations.

6. Simulations numériques

Les possesseurs d’une version récente de Linux intéressés par les simulations peuvent se rendre
à l’adresse www.univ-rouen.fr/LMRS/Persopage/Lanchier/index.html où la plupart des modèles
spatiaux présentés dans cette thèse peuvent être téléchargés.
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Presentation of the results

The processes we will be interested in all along this thesis, referred to as multicolor particle

systems, are Markov processes ξt : Z
d −→ F where Z

d denotes the d-dimensional space with integer
coordinates, and F a finite set called set of colors. To describe the evolution of our processes, we
first introduce an interaction neighborhood

N = {z0, z1, . . . , zN} ⊂ Z
d with z0 = 0.

If the system is in some configuration ξ ∈ F Z
d

, the color of x ∈ Z
d flips from i to j at rate

cij (x, ξ) = hij (x, ξ(x + z0), ξ(x + z1), . . . , ξ(x+ zN )).

In other words, our interaction is finite range, i.e., the flip rates at x depend only on the location
of site x and of the color of a finite number of its neighbors. In most of our examples, the processes
will be assumed to be translation invariant, i.e., the rules applied at x are just a translation of
those applied at 0, which means that we will drop the dependence on the location of x in the
function hij . To figure out the behavior of a multicolor particle system, the main objective will
be to investigate its stationary measures, i.e., the measures µ such that Pµ(ξt ∈ A) = µ(A) at
any time t ≥ 0 and for any A ∈ F , where Pµ denotes the law of the process starting from the
distribution µ, and F the usual σ-algebra on the set of functions ξ : Z

d −→ F .

1. The successional model

The first one of our spatial models, called successional model, is a continuous-time Markov
process in which the state at time t is a function ξt : Z

d −→ {0, 1, 2}. A site x ∈ Z
d is said to

be empty if ξ(x) = 0, and occupied by a particle of type 1 (resp. 2) if ξ(x) = 1 (resp. 2). The
evolution at site x is described by the transition rates

c01 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c12 (x, ξ) = 1

c02 (x, ξ) = λ2

∑

0<||x−z||≤R

1{ξ(z)=2} c20 (x, ξ) = 1.

We called our process successional model to refer to the ecological succession phenomenon it
describes the evolution. In our ecological context, 1’s are the individuals of a so-called pioneer

species that can invade a hostile environment. The appearance of this first species then helps the
development of a second species, here the particles of type 2. In plant communities, the spontaneous
transition 1 → 2 is explained by the presence of a seed bank in the soil.

First of all, if only 2’s are present, the system reduces to the contact process with parameter
λ2. In this case, there is a critical value λc ∈ (0,∞) such that the following holds: If λ2 ≤ λc

then the process converges in distribution δ0, the “all 0” configuration. Otherwise, there exists a
stationary measure µ2 that concentrates on configurations with infinitely many 2’s (Liggett, 1999).
In particular, in the case λ1 ≤ λc and λ2 ≤ λc, it is easy to see that there is extinction, i.e., ξt
converges to δ0.

To avoid trivialities, we assume from now on that ξ0 contains infinitely many 1’s and 2’s. To
begin with, if λ1 ≥ λ2 > λc a standard coupling argument (Harris, 1972) involving our model and
the contact process implies that 2’s survive. If λ2 > λ1 > λc a new coupling argument together
with the results of Durrett and Neuhauser (1997), Section 3, allows to prove that 2’s win. In
conclusion, we get the following theorem, where ⇒ denotes weak convergence.

Theorem 1 We set λ2 > λc. If λ1 ≥ λ2 then 2’s survive, i.e. P (∀ t ≥ 0, ∃ x : ξt(x) = 2) = 1.
If λ1 < λ2 then 2’s win, i.e. ξt ⇒ µ2, the upper invariant measure of the contact process.

15
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We now focus on the case λ2 > 0 close to 0. If we suppress the transition 0 → 2 (λ2 = 0),
the process becomes a forest fire model in which 0 = alive, 1 = on fire, and 2 = burnt. By using
a rescaling argument, Durrett and Neuhauser (1991) proved that, in the 2-dimensional nearest
neighbor case, there is a critical value αc ∈ (0,∞) such that if λ1 > αc then there exists a
nontrivial stationary measure ν that concentrates on configurations with infinitely many 1’s and
2’s. Theorem 2 tells us that 1’s and 2’s still coexist for λ2 > 0 sufficiently small, i.e., the process
has a stationary distribution ν = νλ1,λ2 such as ν(ξ(x) = 1) 6= 0.

Theorem 2 We set d = 2 and λ1 > αc. There exists β T h2

c ∈ (0,∞) such that if λ2 ≤ β T h2

c then
1’s and 2’s coexist, i.e. ξt ⇒ ν with ν(ξ(x) = 1) 6= 0.

We now come to our main result, that is to prove that 2’s still win if λ1 = λ2. Although the
result is not surprising, its proof relies on a somewhat interesting property of the dual process.

Theorem 3 If λ1 = λ2 > λc and ξ0 is translation invariant then ξt ⇒ µ2.

To describe the dual process, we start by constructing the particle system from a collection of
independent Poisson processes. For x, z ∈ Z

d with ||x − z|| ≤ R, let {T x,z

n : n ≥ 1} be the arrival
times of independent Poisson processes with rate λ1. At times T

x,z

n , we draw an arrow from site
x to site z to indicate that, if x is occupied and z is empty, then the particle at x gives birth to a
particle of the same type at z. To take into account the transitions 1 → 2 and 2 → 0, we introduce
two further collections of independent Poisson processes {U x

n : n ≥ 1} and {V x

n : n ≥ 1}, x ∈ Z
d,

each of them has parameter 1. We put a × at (x, U
x

n ) to indicate that a particle of type 2 is killed,
and a • at (x, V

x

n ) to indicate that a particle of type 1 changes its color.
At this point, the reader should see that, since the ×’s do not kill both types of particles,

the construction of a dual process from the graphical representation we have just introduced will
produce a somewhat complicated object. The main ingredient to simplify the dual process is to
observe that, since 1’s (resp. 2’s) do not see the ×’s (resp. the •’s), we can superimpose the ×’s
and the •’s. In other words, we remove the •’s from our graphical representation, and pretend that
the ×’s effect is now to kill 2’s, and paint 1’s the color 2.

We will say that (z, s) and (x, t), 0 ≤ s ≤ t, are strongly connected if there is a sequence of
times s0 = s < s1 < · · · < sn+1 = t and spatial locations x0 = z, x1, . . . , xn = x so that

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segment {xi} × (si, si+1) does not contain any ×’s.

If instead of the condition 2 above

3. The set

n
⋃

i=0

{xi} × (si, si+1) contains exactly one ×,

we will say that (z, s) and (x, t) are weakly connected. Finally, we will say that there is a path

from (z, s) to (x, t) if both points are either strongly or weakly connected. In view of the ×’s
effect, if there is a path from (z, s) to (x, t), a particle of type 1 at (z, s) can certainly be the
ancestor of a particle of type 2 at (x, t) if it goes through one × on its way up to (x, t). In
conclusion, the dual process starting at (x, t) will be defined by letting

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}

where a dual path from (x, t) to (z, t−s), 0 ≤ s ≤ t, indicates the existence of a path from (z, t−s)
to (x, t). We now observe that {(ξ̂ (x,t)

s , s) : 0 ≤ s ≤ t} exhibits a tree structure divided into two
stages depending on the number of × (0 or 1) an ancestor has to cross to reach (x, t). A site z ∈ Z

d

is called an upper ancestor (resp. a lower ancestor) at time s if there is a path from (z, s) to (x, t)
containing 0 (resp. 1) ×. As in the mutitype contact process (Neuhauser, 1992), the tree structure
of the dual process allows us to define an ancestor hierarchy in which the members are arranged
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according to the order they determine the color of (x, t). The first ancestor in the hierarchy will
be called the determining particle, and the first upper ancestor the distinguished particle.

With this construction in mind, we can now sketch the proof of Theorem 3. The first step is
to prove that P (Θ1 < ∞) = 1, where Θ1 is the last time the determining particle is an upper
ancestor. The rest of the proof then relies on the observation that, once the determining particle is
a lower ancestor (after time Θ1), it can only paint (x, t) the color 2 since the ×’s effect is to change
the color of 1’s. In d ≤ 2, we wait until time Θ1 and then prove that the distinguished particle and
the determining particle coalesce with probability 1 so that they will land, for t sufficiently large,
on the same site. If this site is initially occupied by a 1, the determining particle will paint (x, t)
the color 2 while if it is occupied by a 2, the distinguished particle will paint (x, t) the color 2 unless
a lower ancestor does it earlier. In d ≥ 3, we rely on the fact that Θ1 <∞ to construct a sequence
of lower ancestors ζs(n) that come before the distinguished particle in the ancestor hierarchy, and
extract a subsequence of candidates ζs(nk) that do not coalesce together to conclude that at least
one lands on a 1 and paints (x, t) the color 2.

2. The multitype contact process with frozen states

Our second spatially explicit stochastic model is a continuous-time Markov process in which
the state at time t is a function ξt : Z

d −→ {0, 1, 2, 3}. As previously, a site x ∈ Z
d is said to

be occupied by a particle of type 1 (resp. 2) if ξ(x) = 1 (resp. 2), and empty otherwise. We now
distinguish two types of empty site, namely a site x ∈ Z

d will be a free site if ξ(x) = 0 and will
be a frozen site if ξ(x) = 3. The evolution at site x is described by the transition rates

c01 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c13 (x, ξ) = 1

c31 (x, ξ) = λ1

∑

0<||x−z||≤R

1{ξ(z)=1} c30 (x, ξ) = γ

c02 (x, ξ) = λ2

∑

0<||x−z||≤R

1{ξ(z)=2} c20 (x, ξ) = 1.

In particular, the process is a generalization of the multitype contact process (Neuhauser, 1992)
in which 1’s inhibit the spread of 2’s by freezing the sites they have just occupied. Reciprocally,
the multitype contact process is just the extreme case γ = ∞. The interpretation we have in
mind is that of a spatial model of allelopathy. In biology literature, allelopathy is defined as a
process involving secondary metabolites produced by plants, micro-organisms, viruses and fungi
that influence growth and development of biological systems. In our case, 1’s are the individuals
of an inhibitory species and 2’s the individuals of a susceptible species.

To investigate our model, we first observe that if only 2’s are present, the process reduces as
before to the contact process with parameter λ2. In particular, if λ2 ≤ λc then the process converges
in distribution to δ0 while if λ2 > λc then ξt ⇒ µ2 (see Section 1). If only 1’s are present, we have
almost the same result. Namely, if λ1 ≤ λc then the process converges in distribution to δ0 while
if λ1 > λc there exists a nontrivial stationary measure ν1 that concentrates on configurations with
infinitely many 1’s and 3’s. In particular, in the case λ1 ≤ λc and λ2 ≤ λc, there is extinction of
both species.

To avoid trivialities, we assume from now on that both parameters λ1 and λ2 are > λc and that
ξ0 contains infinitely many 1’s and 2’s. First of all, a standard coupling argument implies that the
survival probability of 1’s is nondecreasing with respect to λ1 and nonincreasing with respect to
λ2 and γ. The analogous result holds for 2’s. In conclusion, we get the following

Theorem 4 Let Θ
i

t = {x ∈ Z
d : ξt(x) = i} be the set of sites occupied at time t by a particle

of type i. Then the survival probabilities P (Θ
i

t 6= ∅ for all t ≥ 0), i = 1, 2, are monotonous with
respect to each of the parameters λ1, λ2 and γ.
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In particular, by observing that the model with parameter γ = ∞ corresponds to the multitype
contact process, Theorem 4 above and Theorem 1 in Neuhauser (1992) imply that

Theorem 5 If λ1 > λ2 > λc and γ ∈ (0,∞) then ξt ⇒ ν1.

We now focus on the case λ1 = λ2. Since the evolution rules help 1’s, we expect that the
processes with or without frozen states exhibit different behaviors. Theorem 6 tells us that 1’s still
win in d ≥ 3 if γ <∞ while 1’s and 2’s coexist if γ = ∞. See Theorem 3 in Neuhauser (1992). We
conjecture that 1’s win in any dimension but our proof heavily relies on transience of symmetrical
random walks in d ≥ 3.

Theorem 6 If ξ0 is translation invariant, λ1 = λ2 > λc and d ≥ 3 then ξt ⇒ ν1.

The proof of Theorem 6 partly relies on the duality techniques introduced in Section 1. To figure
out the properties of the dual process, we start by constructing the process from collections of
Poisson processes in the case λ1 = λ2. For x, z ∈ Z

d, ||x−z|| ≤ R, let {T x,z

n : n ≥ 1}, {U x

n : n ≥ 1}
and {V x

n : n ≥ 1} be the arrival times of Poisson processes with rates λ1, 1 and γ respectively.
At times T

x,z

n , we draw an arrow from x to z to indicate that if x is occupied by a 1 and z is
empty then z becomes occupied by a 1 while if x is occupied by a 2 and z is free then z becomes
occupied by a 2. At times U

x

n , we put a × at x to indicate that a death occurs, and at times V
x

n ,
we put a • at x to indicate that a frozen site becomes free.

We now say that there is a path from (z, s) to (x, t), 0 ≤ s ≤ t, if (z, s) and (x, t) are strongly
connected (see 1 and 2 page 16), and that there is a dual path from (x, t) to (z, t− s) if there is
a path from (z, t− s) to (x, t). Finally, the dual process starting at (x, t) will be defined as for the
basic multitype contact process, that is by letting

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}.

As previously, the set {(ξ̂ (x,t)

s , s) : 0 ≤ s ≤ t} exhibits a tree structure that allows to define an
ancestor hierarchy in which the members are arranged according to the order they determine the
color of (x, t). The elements of ξ̂

(x,t)

s are called the upper ancestors, and the first upper ancestor
in the hierarchy the distinguished particle.

The main difference with the multitype contact process is that 1’s now produce 3’s that are
forbidden for 2’s. In particular, the color of (x, t) will not depend only on the state of the upper
ancestors at time 0. The key idea is to prove that the number of frozen sites visited by the
distinguished particle on its way up to (x, t) tends to infinity as t → ∞, which blocks 2’s from
determining the color of (x, t). To do this, we rely on the idea introduced in Section 1. First
of all, we call z ∈ Z

d a lower ancestor at time s if (z, s) and (x, t) are weakly connected. In
view of the ×’s effect, if the points (z, s) and (x, t) are weakly connected, a particle of type 1
at (z, s) can freeze the path of the distinguished particle at some particular point. The aim is to
construct a collection of lower ancestors ζs(n) that are good candidates to realize this event. If
all these ancestors coalesce, which occurs with probability 1 in d ≤ 2, and land at time 0 on a
2, we cannot conclude. If, on the contrary, d ≥ 3, enough transience allows us to construct an
infinite subsequence ζs(nk) of lower ancestors that land on sites occupied at time 0 by a particle of
type 1, and realize our good event.

If we now focus on the case λ1 < λ2, the results of Durrett and Neuhauser (1997), Section 3,
imply that 2’s win in d = 2 provided that γ = ∞. By relying on a perturbation argument (see
Section 5), we can prove that the result still holds when γ is sufficiently large. More precisely,

Theorem 7 We assume that d = 2 and λ2 > λ1 > λc. Then, there exists a critical value γc ∈
(0,∞) such that ξt ⇒ µ2 for any γ > γc.

To merge our results together, we now set βc (γ, λ1) = inf {λ2 ≥ 0 : 1’s die out} for given
parameters γ > 0 and λ1 > λc, with the usual convention inf ∅ = ∞. A fairly straightforward
application of Theorems 4-7 then implies that βc (γ, λ1) ↓ λ1 as γ ↑ ∞. This tells us in particular
that our particle system with frozen states behaves nearly like the basic multitype contact process
when γ is large, which can be seen as a continuity result.
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3. Host-pathogen and host-mutualist interactions

Our third stochastic model is intended to mimic the local interactions within a population of
hosts and symbionts, and figure out the role of symbionts on diversity and structure of plant
communities. In a general way, a symbiont is an organism that lives in close association with a
host. It can either have a harmful effect, in which case we call it a pathogen, or a beneficial effect, in
which case we call it a mutualist. An important component of multi-host, multi-symbiont models
is the degree to which different symbionts and hosts can associate with each other. This is referred
to as specificity. A specialist symbiont associates with a very small number of hosts; a generalist

symbiont associates with many hosts. The ease of transmission of a symbiont to a host, referred
to as transmissibility, is another important factor in host-symbiont interactions.

To describe the host dynamics, we employ the simplest of all multi-species models, namely
the voter model (Holley and Liggett, 1975, Clifford and Sudbury, 1973). Into this population,
we introduce symbionts with varying degrees of specificity and transmissibility. More precisely,
our model is a continuous-time Markov process ξt : Z

d −→ {1, 2, . . . , κ} × {0, 1, . . . , κ} where
the integer κ denotes both the number of hosts and the number of symbionts involved in the
interaction. A site x ∈ Z

d is said to be occupied by an unassociated host of type i if ξ(x) = (i, 0),
and by a host of type i associated with a symbiont of type j if ξ(x) = (i, j). Later on, we will write
ξt(x) = (ξ

1

t (x), ξ
2

t (x)), where ξ
1

t (x) (resp. ξ
2

t (x)) denotes the type of the host (resp. the symbiont)
present at x at time t, with ξ

2

t (x) = 0 denoting the absence of a symbiont. The evolution at site
x is described by the transition rates

c(i,j)(k,0) (x, ξ) = λ
∑

0<||x−z||≤R1

{

1{ξ(z)=(k,0)} + g

κ
∑

ℓ=1

1{ξ(z)=(k,ℓ)}

}

c(i,0)(i,j) (x, ξ) = cij
∑

0<||x−z||≤R2

κ
∑

ℓ=1

1{ξ(z)=(ℓ,j)}.

The birth rate of unassociated hosts is equal to λ. The parameter g indicates the variation of the
birth rate of hosts associated with a symbiont. If 0 ≤ g < 1, the symbiont is a pathogen; if g = 1,
the symbiont has no effect on the birth rate of the host; if g > 1, the symbiont is a mutualist.
The parameters cij denote the rate at which symbiont j infects host i. This parameter will allow
us to mimic specialist and generalist symbionts. Finally, births and infections occur within a local
neighborhood, with R1 denoting the birth range of hosts, and R2 the infection range of symbionts.
The cardinality of each of these neighborhoods will be denoted by νR1 and νR2 respectively.

Before we describe the behavior of the spatially explicit stochastic model, we look at the mean-
field model (Durrett and Levin, 1994), that is, we pretend that all sites are independent and that
the system is spatially homogeneous. This then results in a system of differential equations for
the densities of unassociated and associated hosts. We let ui denote the density of unassociated
hosts of type i, and vij denote the density of host i associated with symbiont j. Furthermore, we
assume that cii = β and cij = α for i 6= j, with 0 ≤ α ≤ β. We define

u· =

κ
∑

i=1

ui, v·j =

κ
∑

i=1

vij , vi· =

κ
∑

j=1

vij and v·· =

κ
∑

i=1

κ
∑

j=1

vij .

One way to obtain the mean-field limit is to set the neighborhood ranges, R1 and R2 equal to R
and then let R go to infinity. To obtain a meaningful limit, we also need to rescale the parameters
λ, α, and β by the neighborhood size νR, that is, we set λ = 1

νR
(this also sets the time scale),

and define

α =
a

νR
and β =

b

νR
.

In the limit, R → ∞, sites become independent. If, in addition, the initial configuration is trans-
lation invariant, the dynamics of the densities for i 6= j is then described by the following system
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of differential equations, called mean-field equations.

u′i = (1 − ui) (ui + g vi·) − ui

∑

j 6=i

(uj + g vj·) − b ui v·i − a
∑

j 6=i

ui v·j

v′ii = b ui v·i − vii (u· + g v··)

v′ij = a ui v·j − vij (u· + g v··).

When a = 0, the symbionts are specialists. As a increases to b, the association turns into a
generalist relationship. When g = 1, the system has a conserved quantity, namely the initial host
densities hi = ui + vi·, i = 1, 2, . . . , κ. If (κ− 1) a+ b > κ, then for g 6= 1, there exists a nontrivial
equilibrium with u1 = u2 = · · · = uκ ≥ 0 and v1· = v2· = · · · = vκ· > 0. Numerical simulations
indicate that this equilibrium is locally stable for a < b when g < 1, but not for g > 1. If initially
only two hosts and one symbiont, say symbiont 1, are present then for 0 < g < 1, pathogen 1
will go extinct and both hosts may coexist. We conjecture similar behavior for the spatial model,
except in the 1-dimensional, nearest neighbor case (see Theorem 11 and discussion following the
theorem). When g > 1, host 2 goes extinct provided the initial density of mutualists of type 1 is
sufficiently large. The spatial analogue of this result is proved in Theorem 10.

We now return to the spatially explicit model with parameters λ, α, and β. To define the time
scale, we set λ = 1. We discuss both the generalist case α = β and the specialist case α = 0, and
provide comparisons with the mean-field model.

Generalist interactions

We consider the generalist case α = β of the spatially explicit stochastic model. In the corre-
sponding mean-field model, coexistence of hosts and symbionts is possible when b > 1. On the
other hand, for b ≤ 1, symbionts are unable to persist. It is not hard to see that the nontrivial
equilibrium of unassociated hosts, (u·, v··), is locally stable and that the boundary point v·· = 0
is unstable for b > 1. The behavior of the spatially explicit model is more complicated and may
depend on the spatial dimension, as we will see in the following.

If g = 1, then the symbionts have no effect on the hosts, which means that the spatially explicit
processes ξ

1

t and ξ
2

t are stochastically independent. Moreover, it is easy to see that ξ
1

t is a voter
model run at rate 1, and that ξ

2

t is a multitype contact process in which particles give birth at
rate β νR2 and die at rate νR1 . See respectively Holley and Liggett (1975) and Neuhauser (1992)
for a study of these two processes. It follows that there exists a critical value βc(R1, R2) ∈ (0,∞)
that depends on νR1 and νR2 such that the symbionts can survive if and only if β > βc(R1, R2).
If we ignore host and symbiont types but rather focus on associated versus unassociated hosts,
then for β > βc(R1, R2), regardless of the spatial dimension, there exists a nontrivial stationary
distribution of associated and unassociated hosts. Moreover, if d ≥ 3, there exists a stationary
distribution in which all hosts and symbionts coexist.

To analyze the case g 6= 1, we define the color-blind process where a site is in state 0 if it is
occupied by an unassociated host, and in state 1 if it is occupied by an associated host. We obtain
a particle system ζt : Z

d −→ {0, 1} with transition rates

c01 (x, ζ) = β
∑

0<||x−z||≤R2

1{ζ(z)=1}

c10 (x, ζ) =
∑

0<||x−z||≤R1

{

1{ζ(z)=0} + g 1{ζ(z)=1}
}

.

When g = 1, the process reduces to a contact process with birth rate β νR2 and death rate νR1 . We
denote the critical value of this contact process by βc(R1, R2) as above. A coupling argument allows
us to compare the processes with g 6= 1 and g = 1, and to deduce that if g ≤ 1 and β > βc(R1, R2)
then ζt has a nontrivial stationary measure, while if g ≥ 1 and β ≤ βc(R1, R2) then ζt ⇒ δ0, the
“all 0” configuration. To cover the remaining cases, we introduce the contact process ηt in which
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particles give birth at rate β νR2 and die at rate g νR1 . Then ηt has a nontrivial stationary measure
if and only if β > g βc(R1, R2) which, with a new coupling argument, implies that if g ≤ 1 and
β ≤ g βc(R1, R2), then the pathogens die out, while if g ≥ 1 and β > g βc(R1, R2), then ζt has a
nontrivial stationary measure. These results are summarized in the following theorem.

Theorem 8 Assume that α = β and that ζ0 is translation invariant with P (ζ0(x) = 1) > 0.

(a) If g ≤ 1, then ζt ⇒ δ0 if β ≤ g βc, and a nontrivial equilibrium exists if β > βc.

(b) If g ≥ 1, then ζt ⇒ δ0 if β ≤ βc, and a nontrivial equilibrium exists if β > g βc.

We now focus on the case β > 1 and g > 0 close to 0. First of all, we observe that if g = 0
and R1 = R2 = R then the process ζt is the biased voter model with parameters β and 1. In
particular, P (ζt(x) = 0) → 1 if β < 1 while P (ζt(x) = 1) → 1 if β > 1. Moreover, in the latter
case, fixation occurs for the process ξt since hosts associated with pathogens are now sterile. By
using a perturbation argument (see Section 5), we can show that if β > 1 and g > 0 is sufficiently
close to 0 then the pathogens still survive.

Theorem 9 Assume α = β and R1 = R2. If β > 1 there exists a critical value gc > 0 such that
if g ≤ gc then ζt ⇒ µ with µ (ζ(x) = 1) 6= 0.

Specialist interactions

In the specialist case α = 0 and β > 0, the process is more difficult to investigate since the
evolution of each symbiont strongly depends on the configuration of the host population. That is,
there is no particle system ζt : Z

d −→ {0, 1} which allows us to describe the global evolution of
the symbionts regardless of their type. Since for any i = 1, 2, . . . , κ the symbiont i can live only
through hosts of type i, it is, however, easy to deduce from a coupling argument that if g ≤ 1
and β ≤ max (βc g, 1), then the pathogens die out.

The next step is to extend the results of the mean-field model to the corresponding spatial model.
To do this, we consider a population of two hosts with only one type of symbiont, say symbiont
of type 1, and start the evolution with all the hosts of type 1 associated with a symbiont. Then,
in the limiting case β = ∞, the transition (1, 0) → (1, 1) is instantaneous provided that R1 ≤ R2

to avoid the problem of isolated unassociated host that cannot be reached by any symbiont. This
implies that the process ξ

1

t is a biased voter model in which hosts of type 1 give birth at rate g νR1

and hosts of type 2 at rate νR1 . In particular, if g < 1, then ξ
1

t ⇒ δ2, the “all 2” configuration,
while if g > 1, then ξ

1

t ⇒ δ1, the “all 1” configuration. Theorem 10 tells us that, in any dimension,
the result still holds if g > 1 and β ∈ (0,∞) is sufficiently large.

Theorem 10 Assume that α = 0, g > 1, and R1 ≤ R2. At time 0, ξ0(x) = (1, 1) or (2, 0) for all
x ∈ Z

d. Then, there is a critical value β Th10

c ∈ (0,∞) such that if β > β Th10

c then ξ
1

t ⇒ δ1.

The arguments in our proof, however, do not imply the analogous result for g < 1. We think
actually that except in the 1-dimensional nearest neighbor case, P (ξ

1

t (x) = 2) 6→ 1. Before ex-
plaining our intuition, we describe the behavior of the 1-dimensional process with nearest neighbor
interactions for the hosts and short range interactions for the pathogens. Assume that at time 0,
ξ

1

0 (x) = 1 for x > 0 with infinitely many pathogens of type 1, and ξ
1

0 (x) = 2 for x ≤ 0 with
no associated pathogens. Denote by r

2

t = sup {x ∈ Z : ξ
1

t (x) = 2} the rightmost host of type 2.
Then r

2

0 = 0. The following result implies that for β large enough, 2’s will spread to the right and
eliminate 1’s together with their associated pathogens.

Theorem 11 Assume d = 1 and R1 = 1. If α = 0 and g < 1, there exists β T h11

c ∈ (0,∞) such
that if β > β Th11

c , then r
2

t → ∞ as t→ ∞ with probability 1.

We conjecture that this result should only be true in the 1-dimensional nearest neighbor case. We
first observe that except in the 1-dimensional nearest neighbor case, the dynamics produce isolated

hosts, that is hosts of type 1 (resp. 2) surrounded by a cluster of hosts of type 2 (resp. 1). As
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suggested by Theorem 10, when g > 1, isolated 2’s are swallowed very quickly by surrounding 1’s.
On the other hand, when g < 1, an isolated 1 located in a linearly growing cluster of 2’s cannot
be invaded anymore by any pathogen as soon as the cluster has reached some critical size. In this
expanding region, the process then behaves like an unbiased voter model in which 1’s can now
compete with 2’s, and survive.

Lastly, we investigate the coexistence of symbionts in the neutral case g = 1. We observe that,
in this case, the first coordinate process ξ

1

t performs a voter model run at rate 1. In particular,
in d ≤ 2, there does not exist any stationary distribution µ such that µ (ξ

1
(x) = i) 6= 0 for any

i ∈ {1, 2, . . . , κ} (see Holley and Liggett, 1975). Since in the specialist case, ξ
2

t (x) = i implies
that ξ

1

t (x) = i, the same conclusion holds for the symbionts. In d ≥ 3, coexistence occurs for
the process ξ

1

t , i.e., there is a stationary measure µ which satisfies the condition above. However,
due to the formation of clusters, the problem of coexistence of the symbionts remains a difficult
question. Namely, the voter model ξ

1

t exhibits clusters whose diameter can exceed some critical
size, which prevents the symbionts from spreading out. To get around this difficulty, we introduce
a modification of the particle system, denoted by ξ̂t, in which the symbionts evolve as previously
but where the hosts now perform a threshold θ voter model. More precisely, the process ξ̂t evolves
according to the following transition rates

c(i,i)(k,0) (x, ξ) =

{

1 if card {z ∈ Z
d : 0 < ||x− z|| ≤ R1 and ξ̂

1
(z) = k} ≥ θ

0 otherwise

c(i,0)(i,i) (x, ξ) = β × card {z ∈ Z
d : 0 < ||x − z|| ≤ R2 and ξ̂

2
(z) = i}.

The introduction of this particle system is motivated by Theorem 1 of Durrett (1992) which implies
that the threshold θ voter model has a nontrivial stationary distribution which is close enough to
a product measure to produce our last result.

Theorem 12 Let g = 1 and θ < νR1/κ. If R1 and R2 are sufficiently large, then there is a critical
value β T h12

c ∈ (0,∞), depending on κ, such that if β > β T h12

c , then all the hosts and symbionts
coexist, while if β < β Th12

c , then coexistence is not possible.

Comparison of the spatially explicit and the mean-field model

Numerical simulations of the mean-field model indicate that coexistence is only possible
when g < 1. Simulations of the spatially explicit model show similar behavior. When g < 1
and α < β, then coexistence of hosts and pathogens is possible. We observed that in this case,
cluster size is limited by the presence of pathogens: In the absence of pathogens, clusters grow
at the expense of neighboring clusters that contain symbionts. Upon invasion by the preferred
symbionts (those with infection rate β), the clusters appear to shrink again. The case g > 1 and
α < β is quite different. Clusters of hosts with their preferred mutualists form and appear to
continue to grow, just as in the voter model case. Less preferred mutualists (those with infection
rate α) do not seem to be able to persist with preferred mutualists, just as is the mean-field case
of one host and two symbionts with infection rates a and b, respectively (a < b). In summary,
pathogens have the ability to alter the spatial structure of their hosts by promoting local diversity,
whereas mutualists do not alter the spatial structure of their hosts. This difference in behavior is
more pronounced the more host-specific the symbionts are.

4. Voter model and biased voter model in heterogeneous environment

Our last stochastic process is intended to model the gene flow from transgenic crop into na-
tural populations of close relatives through pollination. Since crop plants are descended from
wild plants, the existence of a gene flow between each of them is no surprise. With novel genes
being inserted into the genomes of crop plants to express proteins for specific biological functions,
there is increased concern that these novel genes would escape into the wild and confer increased
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fitness to some species and that the wild plants could become aggressive invaders. To understand
how the spatial configuration of permanent plots of genetically modified crop plants affect gene
flow and invasion of transgenes into adjacent natural populations of close relatives, we propose a
spatially explicit, stochastic model in a heterogeneous environment. The environment will reflect
the permanent plots of genetically modified organisms embedded in a matrix of wild plants. Since
we think of the genetically modified crop plants as planted, gene flow will only occur within the
wild plants and from the genetically modified plants to the wild plants.

Our model is based on the simplest population genetics model, the haploid Wright-Fisher model
with selection. The spatial analog of the Wright-Fisher model is the (biased) voter model. We
define the voter model in a heterogeneous environment with gene flow in such a way to address
the problem of recurrent gene flow from genetically modified crop plants to their wild relatives.
More precisely, our spatial model is a continuous-time Markov process ξt : Z

d −→ {0, 1}. We think
of 1’s as representing individuals carrying the transgene, and 0’s as the ones carrying the wild type
gene. A site x ∈ Z

d is said to be occupied by a 1 (resp. 0) if ξ(x) = 1 (resp. 0). We will also use the
notation x ∈ ξt if and only if ξt(x) = 1. The subset ∆ ⊂ Z

d represents the part of the habitat that
is occupied by transgenic crop plants. We freeze the evolution on ∆ by pretending that if x ∈ ∆
then, at any time t ≥ 0, ξt(x) = 1. To describe the dynamics, we introduce a transition probability
p (x, z) on Z

d that is translation invariant, i.e., p (x, z) = q (z − x), symmetric, and such that q (z)
has variance σ2 <∞. If a site x ∈ Z

d −∆ is occupied by a 1, then, at rate 1, it picks a site z ∈ Z
d

with probability p (x, z) and changes to the state of the individual at z. If the site x is occupied
by a 0, it chooses a site z ∈ Z

d at rate β according to p (x, z) and changes to the state of the site
z. That is, the evolution is described by the transition rates

c01 (x, ξ) = β
∑

z

p (x, z) 1{ξ(z)=1} and c10 (x, ξ) =
∑

z

p (x, z) 1{ξ(z)=0, x 6∈∆}.

Except in the case ∆ = ∅, we assume from now on that ξ0(x) = 1 if and only if x ∈ ∆. In
particular, it follows from the dynamics that for all t ≥ 0, ξt(x) = 1 for x ∈ ∆.

We first observe that if ∆ = ∅ and β = 1 then ξt is the d-dimensional voter model. In this case,
the results of Holley and Liggett (1975) reveal a sharp change in behavior depending on the spatial
dimension: If d ≤ 2 then ξt ⇒ α δ0 +(1−α) δ1, for some α ∈ [0, 1], where δi denotes the point mass
on ξ ≡ i, while if d ≥ 3, coexistence is possible, i.e., there exists a stationary distribution µ such
as µ (ξ(x) = 0) 6= 0 and µ (ξ(x) = 1) 6= 0. Choosing ∆ 6= ∅ can drastically change the limiting
behavior of the process. For instance, if we set ∆ = {0} and d ≤ 2, then the particle located at
the origin will produce a cluster that will invade the whole space.

If we set ∆ = ∅ and β > 1 then ξt is the biased voter model. The results of Bramson and
Griffeath (1980, 1981) show that if we let Ω∞ = {ξt 6= ∅ for all t ≥ 0} and start with a single 1
at the origin, there exists a convex set A so that on Ω∞ we have for any ε > 0

(1 − ε) t A ∩ Z
d ⊂ ξt ⊂ (1 + ε) t A ∩ Z

d for all t sufficiently large.

Moreover, on Ωc
∞, the process converges to the “all 0” configuration exponentially fast.

We now fix d = 1. The discussion above implies that if ∆ 6= ∅ then ξt ⇒ δ1. The first question
we would like to answer is: What is the effect of the geometry of ∆ on the speed of convergence
to the “all 1” configuration? The first step is to study the process with ξ0(x) = 1{x≤ 0}. In the
special case ∆ = ∅, the behavior of the process at the interface has been investigated by Cox
and Durrett (1995). We consider the leftmost-zero and rightmost-one processes

ℓt = inf {x ∈ Z : ξt(x) = 0} and rt = sup {x ∈ Z : ξt(x) = 1}.
Moreover, we assume, for technical reasons, that p is irreducible and that q has finite third mo-
ments. Then {rt−ℓt : t ≥ 0} is stochastically compact, that is for any ε0 > 0 there exists a constant
M < ∞ such that P (rt − ℓt > M) ≤ ε0. See Cox and Durrett (1995), Section 4. Moreover, if we
denote by Φ(x) the standard normal distribution function, then

lim
t→∞

P (rt/σ
√
t ≤ x) = lim

t→∞
P (ℓt/σ

√
t ≤ x) = Φ(x).
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In the case ∆ = Z
−, the set of nonpositive integers, we can prove that {rt − ℓt : t ≥ 0} is still

stochastically compact. The previous equation, however, becomes false since rt and ℓt are now
forced to live on the right side of zero. More precisely, we have the following

Theorem 13 Let β = 1. If x ≥ 0 and xt = xσ
√
t then

lim
t→∞

P (rt ≥ xt) = lim
t→∞

P (ℓt ≥ xt) =

√

2

π

∫ ∞

x

exp

[

− y2

2

]

dy.

In words, the particles diffuse to the right, which reveals a very slow invasion. In view of Theo-
rem 13, our guess is that the more ∆ is scattered, the faster the transgene will invade the wild
population. To make this argument precise, we consider the process on the torus εZ/NZ where
N is a positive integer and ε is close to 0. Moreover, we speed up time by ε

−2
, and introduce

the transition probability pε (x, y) = q (ε
−1

(y − x) mod Nε
−1

) to formulate the dynamics. We
let L > 0 and K = N/L such that both K and L ε

−1
are integers, with K even. For any

site z ∈ {0, 1, . . . , K − 1}, we define the subsets

Bz = [ z L, (z + 1)L) ∩ εZ and ∆ =
⋃

z even

Bz.

The reader will note that since we start the process with ξ0(x) = 1 if and only if x ∈ ∆, for any
choice of L, half of the sites are initially occupied, and half of the sites are initially vacant. Finally,
we denote by Tinv the stopping time Tinv = inf {t ≥ 0 : ξt ≡ 1}. We refer to Tinv as the time to

complete invasion.

Theorem 14 Let β = 1. If p (x, y) has compact support then

lim
ε→ 0

P (Tinv ≤ t) =

{

1 −
∫ L

0

(Ψt ∗ Ψt)(x) dx

}N/2L

where

Ψt(x) = − ∂

∂x

√

2

π

∫ ∞

x/σ
√

t

exp

[

− y2

2

]

dy.

Theorem 14 gives us insights into the effects of the spatial configuration of ∆ on the time to
complete invasion. Numerical investigations suggest that, for fixed t ≥ 0, the function L 7→
limε→0 P (Tinv ≥ t) is increasing. This implies that for N fixed, the time to complete invasion
will be very slow in the extreme case L = N/2, and faster and faster while increasing the number
of components of ∆.

We now consider the process on Z where the particles give birth according to the transition
probability p (x, y). Let ∆ = Z

− and start the process with ξ0(x) = 1 if and only if x ∈ ∆. More-
over, we assume that p (x, y) has compact support. The next step is to investigate the properties
of the rightmost-one process rt with birth rate β. The behavior of rt as t → ∞ follows from
Theorem 13. By working a little bit more, we can prove that the process comes back to its initial
configuration infinitely often.

Theorem 15 If β = 1, then P (rt = 0 i.o.) = 1.

To investigate the case β 6= 1, we consider the process with nearest neighbor interactions, i.e., we
let p (x, y) = 1/2 if |x− y| = 1. If β < 1, Theorem 15 accompanied by a coupling argument implies
that rt = 0 i.o.; the process however does not exhibit the behavior described in Theorem 13.

Theorem 16 If β < 1, then P (rt ≥ x) ≤ β x at any time t ≥ 0.

Finally, if β > 1, the process behaves like the corresponding biased voter model in homogeneous
environment, namely the process grows linearly in time with a wave speed of order β − 1.
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Theorem 17 If β > 1, there exist C <∞ and γ > 0 such that for any t > 0 and any ε > 0

P (| rt − (β − 1) t | ≥ ε t) ≤ C e−γε2t.

In conclusion, Theorems 13 and 16-17 imply that if β ≥ 1 then, for any integer x ≥ 0 and ε > 0,
there is t0 ≥ 0 such that P (rt ≥ x) ≥ 1 − ε for any t ≥ t0, while if β < 1 then P (rt ≥ x) ≤ β x

for any t ≥ 0. Moreover, Theorems 15-17 exhibit the 0-1 law:

P (rt = 0 i.o.) =

{

0 if β > 1

1 if β ≤ 1.

In particular, if β = 1 and p (x, y) has compact support, the rightmost-one process rt converges in
probability to infinity as t→ ∞ but not almost surely.

In conclusion, our results confirm the need to monitor recurrent gene flow from genetically mod-
ified crops to their wild relatives. Both selection and the spatially explicit structure of our model
greatly affect the rate and extent of invasion of transgenes into wild populations. To completely
take over a wild population, the transgene needs to be favored by selection. However, even if the
transgene is not favored, it will continue to be present in the wild population and the extend to
which it can penetrate into the wild population depends strongly on the dispersal range. Consider-
ing that pollen can disperse over very large spatial distances, genetic pollution of wild population
remains a serious concern, even if the transgene is not favored by selection.

5. Continuity result for multicolor particle systems

As suggested in Sections 1-3, given a particle system ξt : Z
d −→ F , a well-known method for

proving the existence of nontrivial stationary distributions for the process ξt is to apply a rescaling

argument. The basic idea is to compare a certain collection of good events for the process viewed
on suitable space and time scale with an oriented site percolation process. For more details about
oriented percolation, we refer the reader to Durrett (1984). The rescaling argument has been
invented by Bramson and Durrett (1988) and is reviewed in Durrett (1991, 1995).

To formulate our continuity result, we introduce an open set Λ and assume that our particle
systems now depend on a parameter λ ∈ Λ, i.e., the color of x ∈ Z

d flips from i to j at rate

cij (λ, x, ξ) = hij (λ, ξ(x + z1), ξ(x+ z2), . . . , ξ(x + zN)).

Moreover, we make the continuity assumption

(CA) For any δ > 0, there exists a neighborhood V of λ0 in Λ such that

|cij (λ, 0, ξ) − cij (λ0, 0, ξ)| < δ ∀ λ ∈ V , ∀ i, j ∈ F, ∀ ξ ∈ F Z
d

.

Our last theorem tells us that, if one succeeds in showing, through the rescaling argument, the
existence of a stationary distribution for the process with parameter λ0 ∈ Λ, then there is a
neighborhood V of λ0 in Λ such that the processes with parameter λ ∈ V still exhibit, in some
sense that will be precised later, the same behavior. The result has already been proved in many
special cases. See, e.g., Durrett and Neuhauser (1997), Schinazi (2001, 2002) or Theorems 2
and 9 above.

To make the connection between particle systems and oriented percolation, the basic idea is to
turn the space-time of the process into a brick wall, each brick is associated with a certain good
event. Let ξ̄t : Z

d −→ F define the particle system with parameter λ0 ∈ Λ that is constructed
from a collection of independent Poisson processes (Harris, 1972), and set

L = {(z, n) ∈ Z
2 : z + n is even and n ≥ 0}.

Let L, T and Γ be integers with T = ΓL, and H be a collection of configurations determined by
the value of ξ̄ on [−L,L ]d. For any z ∈ Z, we denote by Hz the collection H translated by the
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vector Lze1, and say that a site (z, n) ∈ L is occupied if ξnT ∈ Hz. Here, e1 denotes the first
unit vector of the d-dimensional lattice. Finally, we let k0, j0 ∈ N

∗, set M = max {j0, k0}, and
introduce the space-time region

Bz,n = (Lze1, n T ) + {[−k0L, k0 L ]d × [ 0, j0 T ]}.

Each (z, n) ∈ L is associated with a certain good event Ez,n measurable with respect to the
graphical representation of the process in Bz,n. Finally, we suppose that, for any ε > 0, the
comparison assumption holds for the process with parameter λ0, i.e.,

(P ε
λ0

) The parameters L and Γ can be chosen sufficiently large so that

1. P (Ez,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ez,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

Here, (z, n) occupied means that ξ̄nT ∈ Hz . That is, in the definition of P ε
λ0

, occupied applies to
the particle system with parameter λ0. Let Pλ0 be the property that for any ε > 0 the comparison
assumption P ε

λ0
is satisfied. Then, we get the following theorem.

Theorem 18 Assume CA and Pλ0 . Then, for any ε > 0, there is a neighborhood Vε of λ0 in Λ
such that the following holds: For any λ ∈ Vε, the comparison assumption P ε

λ is satisfied.

As previously explained, Theorem 18 tells us that if λ is close to λ0 then the processes with
parameters λ and λ0 exhibit the same behavior in the sense that each of both processes has a
stationary distribution ν such that, for any z ∈ Z, ν(ξ ∈ Hz) > 0. But beyond a simple continuity
result, Theorem 18 gives us insights into the strategy to study the behavior of a particle system.
More precisely, we get the following

Corollary 19 Assume that the process ξt exhibits a phase transition at λ0 ∈ Λ. Then, the
behavior of the process when λ = λ0 cannot be investigated through the comparison result.

The proof of Corollary 19 is straightforward. Assume that one succeeds in constructing a stationary
measure ν for the process with parameter λ0 through the comparison result, that is proving that
the assumption Pλ0 holds. Then, Theorem 18 tells us that there is a neighborhood V of λ0 in Λ
such that, for any λ ∈ V , the process with parameter λ still exhibits the same behavior, which is
not consistent with the existence of a phase transition at λ0 and proves Corollary 19.

Finally, we think that Theorem 18 does not hold in the very useful case λ0 = ∞ and λ > 0
large (see the discussion following Theorem 11 above). The continuity argument when λ0 = ∞
and λ is large, however, holds in some special cases. See, e.g., Theorems 7 and 10 for illustrations.

6. Numerical simulations

Possessors of a recent version of Linux who are interested in numerical simulations can go to
the address www.univ-rouen.fr/LMRS/Persopage/Lanchier/index.html where most of the spatial
models introduced in this thesis can be downloaded.
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Multicolor particle systems and spatial structures

1. Construction of particle systems

In a general way, we will call particle system any Markov process ξt which evolves on a spatial
structure, typically a graph such as Z

d, and with values in a finite set F = {0, 1, . . . , κ−1} called
set of colors. The value of ξt(x) indicates the color of site x ∈ Z

d at time t ≥ 0. To describe the
evolution of the processes we are interested in, we consider an interaction neighborhood

N = {z0, z1, . . . , zN} ⊂ Z
d with z0 = 0.

If the system is in some configuration ξ : Z
d −→ F , the color of x ∈ Z

d flips to i ∈ F at rate

ci (x, ξ) = hi (ξ(x + z0), ξ(x+ z1), . . . , ξ(x + zN)).

In other words, the flip rates at x only depend on the colors of site x and of a finite number of
neighboring sites. Moreover, our particle systems are translation invariant, i.e., if τx denotes the
translation operator τx ξ(z) = ξ(x+ z), then

ci (x, ξ) = ci (0, τx ξ) for any x ∈ Z
d.

To figure out the behavior of a particle system, the main objective is to investigate its stationary

measures, i.e., the measures µ such that Pµ(ξt ∈ A) = µ(A) for any t ≥ 0 and A ∈ F . Here, Pµ

denotes the law of the process starting from the distribution µ, and F the usual σ-algebra on the
set of the functions ξ : Z

d −→ F . To justify the use of a plural, we observe that the transition
rates above indicate that the particle systems we are interested in are not irreducible and have,
a priori, more than one stationary measure. Finally, if the process has an absorbing state ξ̄, the
measure that concentrates on the configuration ξ̄ is a stationary measure, that we will call, for
obvious reasons, trivial stationary measure.

We now observe that, since the spatial structure on which our particles evolve has infinitely
many sites, the jumping times of the process cannot be ordered. In particular, it is not clear that
the transition rates ci (x, ξ) specify a unique Markov process. An idea of Harris (1972), however,
assures us of the existence and the uniqueness of the particle system provided that

c = sup
{

ci (x, ξ) : i ∈ F, x ∈ Z
d, ξ ∈ FZ

d
}

< +∞.

Since the set of colors and the interaction neighborhood are finite, the reader will note that the
previous condition holds systematically for our translation invariant processes. The basic idea is
to construct the particle system from a collection of independent Poisson processes {T x,i

n : n ≥ 1},
x ∈ Z

d, i ∈ F , each of them has parameter c. At time t = T
x,i

n , the color of x flips to i with
probability ci (x, ξt−)/c, which, in view of the well-known properties of the Poisson processes, will
produce the desired flip rate. Now, we draw an unoriented arc between x and y at time T

x,i

n if
y − x ∈ N to indicate that both sites may interact. We fix t0 > 0, and say that there is a path

between x and y if there exists a sequence of sites x0, x1, . . . , xn such that x0 = x, xn = y, and
for i = 1, 2, . . . , n, the sites xi−1 and xi are connected by time t0 by an arc. This construction
defines an equivalence relation on the set of sites, and so a partition of Z

d. Then, it is easy to
prove that, for t0 > 0 sufficiently small, each of these equivalence classes are a.s. finite, so that the
color of site x ∈ Z

d at time t0 results from a finite number of interactions. This also implies that
the configuration of the process at any time t ≥ 0 can be computed by induction.

The rest of this paper is devoted to what seems to be the main leitmotiv of the particle systems
literature: The connection between particle systems and spatial structures. To investigate such
processes, the basic idea is to introduce beforehand a simplified version of the model, obtained
either by removing the spatial structure, or by turning the discrete lattice into a continuous spatial

29
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structure, the effect is to make the initial stochastic model a deterministic model. To motivate this
strategy, the reader will note all along this part that the three versions of a given particle system –
no spatial structure, continuous spatial structure, and discrete spatial structure – usually exhibit,
in some sense to be precised, the same properties. By increasing in particular the size of the
interaction neighborhood or the dimension of the space, which reduces the interactions between
adjacent sites, the stochastic model will tend to behave like its deterministic versions.

2. Mean-field model: Removal of the spatial structure

If we assume that all the sites in Z
d are independent and that the system is spatially homoge-

neous, then all the concepts related to the spatial structure lose their consistency, the only objects
still visible under this assumption are the particle densities ui for i ∈ F . The new model resulting
from this transformation, or mean-field model (Durrett and Levin, 1994), is then described by a
coupled system of ordinary differential equations

u′i (t) = gi (u0 (t), u1 (t), . . . , uκ−1 (t)), i ∈ F

called mean-field equations. More precisely,

u′i = 〈 ci (0, ξ) 1{ξ(0) 6=i} 〉u −
∑

j 6=i

〈 cj (0, ξ) 1{ξ(0)=i} 〉u

where 〈φ(ξ) 〉u denotes the expected value of φ(ξ) under the product measure π(ξ(x) = j) = uj .
The previous equation, though not very welcoming, is easy to understand. The first member on
the right-hand side is just the probability that the color of 0 flips to i when 0 is not already
occupied by a particle of type i, which contributes to increase the density ui. The second member,
on the contrary, is the probability that the color of 0 flips from i to some other color j 6= i, which
contributes to decrease ui.

As we will see further, the analysis of the mean-field model is essential for a better understanding
of the particle system, in the sense that the existence of locally stable fixed points for the nonspatial
model is often symptomatic of the existence of stationary measures for the original spatial model.
To specify this argument, we consider a particle system ξ : Z

d −→ F whose transition rates at site
x ∈ Z

d depend on some parameter λ ∈ D, with D connex, i.e.,

ci (λ, x, ξ) = hi (λ, ξ(x+ z0), ξ(x+ z1), . . . , ξ(x + zN)).

We will say that i ∈ F and λ ∈ D are strongly compatible if the spatial model with parameter λ has
a stationary distribution µ such that µ (ξ(x) = i) 6= 0, and will denote by Di the set of parameters
λ ∈ D that are strongly compatible with the color i ∈ F . Now, if there is a color i ∈ F with
Di 6∈ {∅, D}, i.e., there exist parameters λ1, λ2 ∈ D such that the color i is strongly compatible
with λ1 but not with λ2, we will say that the process exhibits a phase transition. In this case, the
elements of ∂Di, the topological boundary of Di in D, will be called critical values. By analogy, we
will say that i ∈ F and λ ∈ D are weakly compatible if the nonspatial model with parameter λ has
a locally stable fixed point u such that ui 6= 0, and will denote by D′

i the set of parameters λ ∈ D
that are weakly compatible with the color i ∈ F . As explained above, the existence of locally stable
fixed points for the nonspatial model is often symptomatic of the existence of stationary measures
for the spatial model, which we will express by the existence of a homeomorphism ψ : D −→ D
such that ψ(Di) = D′

i for any color i ∈ F . The existence of such a ψ, however, is not systematic.
As we will see further through concrete examples, the introduction of a spatial structure in the
form of local interactions can modify the behavior of the system depending on spatial parameters
such as the dimension or the range of the interactions.
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3. Long range limits and rapid stirring limits: Continuous spatial structure

3.1. Long range processes

We have just seen that if the sites in Z
d are independent, then our model becomes devoid of

spatial structure and, in this way, considerably simplified. The next step is to see that if we increase
the range of the interactions, we simplify the original particle system as well, by producing a
deterministic spatial model. To formulate the dynamics of our long range processes, it is convenient
to assume that the interactions between neighboring sites are described by a transition probability
p (x, z), i.e., the flip rates ci (x, ξ) now depend on the transition p (x, z) and the colors of the sites
z such that p (x, z) 6= 0. For more convenience, we will construct the long range version on εZd,
where the scale parameter ε > 0 is intended to go to zero. Let q (x) be a continuous symmetric
kernel with compact support, and, for x ∈ εZd, let

qε (x) = ε

∫

x+Bε

q (z) dz1 · · · dzd where Bε = [− ε/ 2, ε/ 2)d.

Then, the long range version ξε : εZd −→ F is derived from the original particle system by
replacing p (x, z) with the transition probability pε (x, z) = qε (z − x). Intuitively, taking ε > 0
small increases the size of the interaction neighborhood and keeps the process close to a product
measure. The rate of change of the densities can then be computed by assuming that adjacent
sites are independent.

To make this argument precise and figure out what happens through an example, we now
introduce the 1-dimensional long range sexual reproduction process ξε : εZd −→ {0, 1}. The
transition rates at site x ∈ Z

d are given by

0 → 1 at rate λ
∑

z

pε (x, z) 1{ξε(z)=1, ξε(z+ε)=1} 1 → 0 at rate 1.

In other words, if we think of sites in state 0 as empty, and sites in state 1 as occupied, the
evolution can be interpreted as follows. Each particle dies at rate 1. A pair of particles located at
adjacent sites z and z + ε produces at rate λ an offspring which is then sent to x with probability
pε (x, z). If x is empty the birth occurs, otherwise it is suppressed. The behavior of the process
when ε→ 0 and ε > 0 is small has been investigated by Neuhauser (1994). Her first result is the

Theorem 1 Let uε(t, x) = P (ξε
t (x) = 1) and assume that ξε

0(x), x ∈ εZ, are independent and
that uε(0, x) = Φ(x) is continuous. Then, as ε→ 0, uε(t, x) → u(t, x) the bounded solution of

∂t u(t, x) = − u(t, x) + λ (1 − u(t, x))

∫

q (x− z)u2 (t, z) dz with u(0, x) = Φ(x).

In particular, as mentioned above, the model defined on a continuous spatial structure, obtained
by taking the limit ε → 0, exhibits a deterministic behavior described by a certain partial diffe-
rential equation. Although we focus on a particular example, the proof of results such as Theorem
1 is always a three-step process whose first step is to define

The influence set I
x,t

ε (s)

Let a site x ∈ εZ and a time t ≥ 0. In a general way, the influence set I
x,t

ε (s) contains all the
sites which may influence the color of x at time t. To define I

x,t

ε (s), we need first of all to construct
the process from a graphical representation. For any x ∈ εZ, let {U x

n : n ≥ 1} be independent
Poisson processes with rate 1 and, for any x, z ∈ εZ such that pε (x, z) > 0, let {T x,z

n : n ≥ 1}
be independent Poisson processes with rate λ pε (x, z). The interpretation is as follows. At times
U

x

n , we kill the particle at x if it is present, while at times T
x,z

n , a new particle is born at x if
z and z + ε are occupied and x is empty. The set I

x,t

ε (s) is defined by going backwards in time.

Let I
x,t

ε (0) = {x}. If z ∈ I
x,t

ε (s) and T
z,z′

n = t − s, we add z′ and z′ + ε to I
x,t

ε (s). The Poisson
processes {U x

n : n ≥ 1} have no effect for the moment.
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We now label I
x,t

ε (s) by letting X k

ε (s) denote the location at time t − s of the k-th particle
added to the influence set. To describe the family structure of I

x,t

ε (s), we define a collection of
random variables µ k

ε . More precisely, we set µ 2k

ε = µ
2k+1

ε = n if the particle X
n

ε is the parent
of X 2k

ε and X
2k+1

ε . The reader will note that, in view of the inversion of time, an offspring in
the original process becomes a parent in the influence set. If a death occurs at X k

ε (s), we will
set X k

ε = ∆ and say that the k-th particle is virtual. By convention, if a particle is virtual, the
pairs of particles generated by this particle will be virtual as well. In the same way, if a particle
is not born yet, we will say that this particle is virtual and assign the value Υ to its location. To
conclude, we will note that the color of x at time t can be computed from knowing {X k

ε (s), k ≥ 1}
and {µ k

ε , k ≥ 1}, and the colors ξ
ε

t−s(z) of sites z ∈ I
x,t

ε (s) at time t− s.

Convergence of uε(t, x)

The second step is to prove the convergence of uε(t, x) = P (ξε
t (x) = 1) as ε→ 0. Let a collision

define the event that there exist i 6= j such that X
i

ε (s) = X
j

ε (s) at some time s ≤ t. Then, for any
fixed time t, the probability of any collision by time t tends to 0 as ε→ 0. To prove this point, we
first denote by Kt the number of particles that are born before time t in the influence set. Then,
EKt ≤ e 2λt. Moreover, if x ∈ εZ and M = supz∈R

q (z), then the probability that an offspring is
sent to x is at most εM , whatever the location of the parents. This implies that the probability
of any collision by time t can be bounded by

P (collisions by time t | Kt ≤ K) + P (Kt > K) ≤ K
2
εM + K

−1
e 2λt.

Finally, taking K = ε
−0.2

, the right-hand side of the previous equation tends to 0 as ε→ 0. From
this result, it is not difficult to deduce that our labeled influence set converges in distribution to
a labeled branching random walk :

(

{X k

ε (s), s ≥ 0}, µ k

ε

)

k≥1
⇒

(

{Z k

s , s ≥ 0}, µ k
)

k≥1
as ε→ 0

where Z k

s is the location at time s of the k-th particle in a branching random walk on R starting at
Z

1

0 = x and where particles die at rate 1, and pairs of particles are born at rate λ. More precisely,
if the parent is located at x, then the pair is sent to a site z chosen at random according to the
kernel q (x− z).

We now assume that ξε
0(x), x ∈ εZ, are independent and that uε(0, x) = Φ(x) is continuous. If

the particle at Z k

t is virtual at time 0, we set ζ0(k) = 0. Otherwise, we flip a coin with success
probability Φ(Z k

t ), and set ζ0(k) = 1 if there is a success, and ζ0(k) = 0 otherwise. Now, if there
is no collisions, then the influence set I

x,t

ε (s) and the branching random walk {Z k

s , s ≥ 0} exhibit
the same family structure. In particular, starting from the same configuration, i.e., the sites X k

ε (t)
and Z k

t have the same color, then ξε
t (x) = ζt(1). Since I

x,t

ε (s) is finite and Φ(x) continuous, it
follows from the continuous mapping theorem that uε(t, x) → P (ζt(1) = 1) as ε→ 0.

The limit u(t, x) satisfies the integro-differential equation

To conclude, we now prove that the function u(t, x) = P (ζt(1) = 1) satisfies the partial differ-
ential equation given in Theorem 1. Let x, z ∈ εZ with x 6= z. Then, the result above also implies
that the probability of a collision between the particles of the influence sets I

x,t

ε (s) and I
z,t

ε (s)
tends to 0 as ε→ 0. This tells us that both sites x and z are asymptotically independent. In other
respects, a simple generator calculation leads to

∂t uε(t, x) = − uε(t, x) + λ
∑

z

pε (x, z)P (ξε
t (x) = 0, ξε

t (z) = ξε
t (z + ε) = 1).

This and the fact that the sites x, z and z + ε become independent when ε→ 0 imply that

∂t u(t, x) = lim
ε→0

∂t uε(t, x) = − u(t, x) + λ (1 − u(t, x))

∫

q (x− z)u2 (t, z) dz
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which completes the proof of Theorem 1. For a rigorous proof of the previous equation, we refer
one more time the reader to Neuhauser (1994), Section 2.

Even if we do not give the details of the proofs, it is interesting for our purpose to know the
end of the story, that is the behavior of the stochastic model when ε > 0 is small. We first observe
that any spatially homogeneous solution v(t) = u(t, x) of the integro-differential equation given
above is also a solution of the mean-field equation v′ = −v + λ (1 − v) v2. It is easy to see that
if λ > 4 the previous equation has two nontrivial fixed points 0 < ρu < ρs with ρs stable and ρu

unstable in the sense that if v(0) < ρu then v(t) → 0 while if v(0) > ρu then v(t) → ρs. If we
now start from a spatially inhomogeneous density Φ(x), a result of Weinberger (1982) implies that
the system exhibits traveling wave solutions u(t, x) = U(x− c(λ) t) where the wave speed c(λ) is
nondecreasing with respect to λ. Moreover, if c(λ) > 0 and Φ(x) exceeds ρu in a sufficiently large
interval, then there is a larger interval in which the density will be close to ρs at some later time.
Relying on this result and a rescaling argument, Neuhauser (1994) proved that

Theorem 2 If c(λ) > 0 and ε > 0 is small, then ξε
t has a nontrivial stationary distribution in

which the density of particles is close to ρs.

In other words, the stochastic spatial model exhibits the behavior predicted by its nonspatial
deterministic version, provided that the range of the interactions is sufficiently large.

3.2. Rapid stirring

The second way to simplify our stochastic models is to scale space by ε and stir the particles
at rate ε

−2
. Taking ε > 0 small will produce the same conclusion as for the long range processes.

The stirring mechanism operates at fast rate, and keeps the particle system close to a product
measure, so that the rate of change of the densities can be computed assuming that adjacent sites
are independent. Making ε → 0 will produce, as previously, a deterministic spatial model. The
evolution of this system, however, will be described by a so called reaction-diffusion equation rather
than an integro-differential equation. More precisely, we let ε > 0 and consider the translation
invariant particle system ξε : εZd −→ F which evolves as follows.

1. The state of site x ∈ Z
d flips to i ∈ F at rate

ci (x, ξε) = hi (ξε(x), ξε(x+ ε z1), . . . , ξ
ε(x+ ε zN)).

2. For any x, z ∈ εZd with ||x− z||1 = ε, we exchange the values at x and z at rate ε
−2

.

To construct the process from Harris’ graphical representation, we first introduce a collection of
independent Poisson processes {T x,i

n : n ≥ 1}, x ∈ Z
d, i ∈ F , with parameter

c = sup
{

ci (x, ξ) : i ∈ F, ξ ∈ F Z
d
}

as well as a sequence {U x,i

n : n ≥ 1} of independent random variables that are uniform on [0, 1].
At time t = T

x,i

n , the state of site x will flip to i if U
x,i

n ≤ ci (x, ξε
t−)/c. To stir the particles,

we consider, for any x, z ∈ εZd with ||x − z||1 = ε, a further collection of independent Poisson
processes {V x,z

n : n ≥ 1} with parameter ε
−2

. At time V
x,z

n , we exchange the values at x and
z. The behavior of the particle system when ε → 0 is described by the following mean-field limit

theorem of De Masi, Ferrari and Lebowitz (1986).

Theorem 3 Let uε
i (t, x) = P (ξε

t (x) = i) and assume that ξε
0(x), x ∈ εZ, are independent and

that uε
i (0, x) = Φi(x) is continuous. Then, as ε→ 0, uε

i (t, x) → ui(t, x) the bounded solution of

∂t ui(t, x) = ∆ui + gi (u) and ui(0, x) = Φi(x).
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We remind the reader that the functions gi (u), i ∈ F , have been defined in Section 2 by

gi (u) = 〈 ci (0, ξ) 1{ξ(0) 6=i} 〉u −
∑

j 6=i

〈 cj (0, ξ) 1{ξ(0)=i} 〉u.

This tells us that, as for the long range limits, the spatially homogeneous solutions of the reaction-
diffusion equation satisfy the mean-field equation as well. In particular, we expect a one-to-one
correspondence between the stationary measures of the stochastic model with ε > 0 small, and
the locally stable fixed points of the nonspatial model. The rest of this section is devoted to the
proof of Theorem 3. The strategy is the same as previously and we start by the construction of

The influence set I
x,t

ε (s)

The role of I
x,t

ε (s) is the same as previously. It allows us to keep track of the ancestors and to
deduce the color of site x at time t from the configuration of the particle system at earlier time.
First of all, we set I

x,t

ε (0) = {x}. Then, I
x,t

ε makes transitions as follows.

1. If z ∈ I
x,t

ε (s) and T
z,i

n = t− s, then we add the points of z + εN to I
x,t

ε (s).

2. If z ∈ I
x,t

ε (s) and V
z,z′

n = t− s, then we move the particle at z to z′.

To label our influence set, we define a sequence X k

ε (s), k ≥ 1, by induction. Let X
0

ε (0) = x, and
move X

0

ε (s) as dictated by the stirring mechanism. If mN +1 particles have been created at some
arrival time T

z,i

n = t− s with z = X
k

ε (s) for some k ≤ mN + 1, then we set

X
mN+j+1

ε (s) = εzj + X
k

ε (s) for j = 1, 2, . . . , N,

and µ
m+1

ε = k to indicate that X
k

ε (s) is the mother of X
mN+2

ε (s), · · · , X (m+1)N+1

ε (s). After being
created, the N particles move according to the stirring described by the rule 2 above. Finally, we
set X k

ε (s) = Υ before the k-th particle is born. Then, the state of x at time t can be computed
from knowing the labeled influence set at time s as well as the states ξ

ε

t−s(z) of sites z ∈ I
x,t

ε (s).

Convergence of uε
i (t, x)

The basic idea is the same as for the long range processes. If a new particle X
k

ε (s) is created at
the location of an existing particle, we call this event a collision. It should be intuitively clear that
if t is fixed, then the probability that a collision occurs by time t tends to 0 as ε → 0. In other
respects, the stirring mechanism described in the rule 2 above tells us that the process X k

ε (s)
approaches a Brownian motion as ε→ 0. The last two results imply that our labeled influence set
converges in distribution to a labeled branching Brownian motion:

(

{X k

ε (s), s ≥ 0}, µ k

ε

)

k≥1
⇒

(

{Z k

s , s ≥ 0}, µ k
)

k≥1
as ε→ 0

where Z
k

s denotes the location at time s of the k-th particle in a d-dimensional branching Brownian
motion starting at Z

1

0 = x and where particles give birth to N new particles at rate cκ. See Durrett
and Neuhauser (1994), Section 2, for the details of the proof.

The conclusion is rigorously the same as for the long range processes. The limit ui(t, x) will
be computed from the branching Brownian motion Zs and independent coin flips. Let Kt be the
number of particles in Zt and, for 0 ≤ k ≤ Kt, let ζ0(k) be independent and equal to i with proba-
bility Φi(Z

k

t ). Since I
x,t

ε (s) and Zs exhibit the same family structure and that Φi is continuous,
the continuous mapping theorem implies that uε

i (t, x) → P (ζt(0) = i) as ε→ 0.

The limit u(t, x) satisfies the reaction-diffusion equation

This follows from a generator calculation and the fact that the rate of change of the densities
can be computed assuming that adjacent sites are independent. Let ψz,i be the function defined
on the set of the configurations by ψz,i(ξ) = 1 if ξ(z) = i, and = 0 otherwise. If L denotes the
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generator of the particle system with no stirring, then

Lψz,i =
∑

j

{

− hj0 (i, j1, . . . , jN ) ψz,i + hi (j0, j1, . . . , jN ) ψz,j0

}

N
∏

ℓ=1

ψz+εzℓ,jℓ

where the sums are over j0, j1, . . . , jN ∈ F . It follows, for the system with stirring, that

P (ξε
t (x) = i) =

∑

z

p ε
t (x, z) Φi(z)

+

∫ t

0

∑

z

p ε
s (x, z) E

{

−
∑

j

hj0 (i, j1, . . . , jN ) ψz,i (ξε
t−s)

N
∏

ℓ=1

ψz+εzℓ,jℓ
(ξε

t−s)

+
∑

j

hi (j0, j1, . . . , jN ) ψz,j0 (ξε
t−s)

N
∏

ℓ=1

ψz+εzℓ,jℓ
(ξε

t−s)

}

ds

where p ε
s (x, z) denotes the transition probability of a random walk that jumps from site x to site

z at rate ε
−2

if ||x − z||1 = ε. To deduce an expression of ui(t, x), we now observe that, since the

influence sets I
z,t

ε (s) and I
z′,t

ε (s), z 6= z′, are asymptotically independent,

lim
ε→0

E

{

ψz,j0 (ξε
t−s)

N
∏

ℓ=1

ψz+εzℓ,jℓ
(ξε

t−s)

}

=

N
∏

ℓ=0

ujℓ
(t− s, z).

In particular, if we denote by pt(x, z) the transition probability of a Brownian motion run at rate
2, and take the limit ε→ 0, then

ui(t, x) =

∫

pt(x, z) Φi(z) dz

+

∫ t

0

∫

ps(x, z)

{

−
∑

j

hj0 (i, j1, . . . , jN ) ui(t− s, z)

N
∏

ℓ=1

ujℓ
(t− s, z)

+
∑

j

hi (j0, j1, . . . , jN ) uj0(t− s, z)

N
∏

ℓ=1

ujℓ
(t− s, z)

}

dz ds

=

∫

pt(x, z) Φi(z) dz +

∫ t

0

∫

ps(x, z) gi (u (t− s, z)) dz ds.

Differentiating with respect to the time then yields Theorem 3.

4. The stochastic model: Return to the discrete spatial structure

We have just seen that if the range of the interactions is multiplied by a factor ε
−1

, or that a
stirring at rate ε

−2
is introduced, then, when t is fixed, ξε

t converges, as ε→ 0, to a deterministic
limit. This limit is the bounded solution of a certain partial differential equation. In this section,
we now focus on the behavior of the particle systems just as they have been introduced in Section
1, that is evolving on a discrete spatial structure. This can be considered as an inversion of the

roles played by space and time, in the sense that, in the previous section, we fixed a time t and
looked at what happened at that time when the spatial structure approaches a continuum, while
now, the spatial structure is fixed and we look at what happens when the time goes up to infinity.
The reader will note that the main consequence of this return to a discrete spatial structure is
to make our spatial model a stochastic model. In particular, our next step is to investigate the
existence of nontrivial stationary distributions for the process.
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4.1. Oriented percolation

The main method for proving the existence of nontrivial stationary measures, invented by
Bramson and Durrett (1988), is based on the comparison of the particle system viewed on suitable
length and time scales with oriented percolation. To prepare the comparison, we first introduce
oriented percolation and its basic properties. Let

L = {(z, n) ∈ Z
2 : z + n is even and n ≥ 0}.

We define random variables ω(z, n), (z, n) ∈ L, to be 1 if (z, n) is open and to be 0 if (z, n)
is closed. We will say that there is a path from (z,m) to (z′, n), or that (z′, n) can be reached
from (z,m), and write (z,m) → (z′, n), if there is a sequence z = zm, . . . , zn = z′ such that

1. For k = m, . . . , n− 1, |zk − zk+1| = 1.

2. For k = m, . . . , n, the site (zk, k) is open, i.e., ω(zk, k) = 1.

From now on, we assume that the ω(z, n) are M -dependent with density p, i.e.,

P (ω(zi, ni) = 0 for 1 ≤ i ≤ m) = (1 − p)m

for any (zi, ni), 1 ≤ i ≤ m, such that ||(zi, ni) − (zj , nj)||∞ > M if i 6= j. That is, sites that are
sufficiently far apart are independent of each other. Let

C0 = {(z, n) ∈ L : (0, 0) → (z, n)}

be the cluster containing the origin. See Figure 1 for a picture of this cluster when p = 0.7 and
p = 0.8. For our purpose, the event of interest is Ω∞ = {|C0| = ∞}. If Ω∞ occurs, we say that
percolation occurs. To prepare the proof of the following results, we now let WA

n be the set of wet

sites at level n when starting from the initial condition A ⊂ 2Z, i.e.,

WA
n = {z : (x, 0) → (z, n) for some x ∈ A}.

Finally, we let τA = inf {n : WA
n = ∅}, and use the short Wn = WA

n when A = 2Z.

Figure 1. Pictures of the cluster C0. The origin (0, 0) is at the bottom left corner of the picture. The density of
open sites is p = 0.7 and p = 0.8, respectively.

Lemma 4.1 If p > 1 − 3−4(2M+1)2 then P (τ0 = ∞) > 0.
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Proof The proof is based on a contour argument. To begin with, we prove the result when the
sites are assumed to be independent. Let CN denote the set of wet sites when starting from the
initial condition [−2N, 0], and set

D = {z ∈ R
2 : |z1| + |z2| ≤ 1} and DN =

⋃

(z,n)∈CN

((z, n) +D).

If the cluster CN is finite, the contour associated with CN , denoted by Γ, will be the boundary of
the unbounded component of (R × (−1,∞)) −DN . Then, we orient the boundary in such a way
that the segment from (0,−1) to (1, 0) is oriented in the direction indicated. Now that our contour
is defined, the idea of the proof is to estimate

P (|C0| <∞) = P (Γ exists) ≤ E (number of contours).

We observe that the first segment of the contour is always (0,−1) → (1, 0). Then, there are at
most 3 choices at each step. This implies that there are at most 3m−1 contours of length m. In
other respects, a geometrical argument allows to see that, for a contour of length m to exist, there
must be at least m/4 closed sites. See Durrett (1984), Section 10, for the details. Finally, since the
shortest possible contour has length 2N + 4, we can conclude that if p > 1 − 3−4 then

P (τ [−2N,0] <∞) ≤
∞
∑

m=2N+4

3m−1 (1 − p)m/4 = C (3 (1 − p)1/4)2N .

It is easy to see that the lemma follows for independent site percolation. To deal with the M -
dependent case, we observe that, given (z0, n0) ∈ L, there are at most (2M + 1)2 sites (z, n) ∈ L
such that ||(z0, n0) − (z, n)||

∞
≤ M . Therefore, for each contour of length m, there is a set of at

least m/4 (2M + 1)2 sites which are separated by more than M and which must be closed for the
contour to exist. This completes the proof. �

To study the existence of stationary measures, we also need to prove that if we start the process
from a good configuration, then we will have a positive density of wet sites. To be precise, we
introduce W̄ θ

0 ⊂ 2Z such that {z ∈ W̄ θ
0 }, z ∈ 2Z, are independent and have probability θ. Finally,

let W̄ θ
n be the set of wet sites at level n when starting from W̄ θ

0 .

Lemma 4.2 If p > 1 − 3−4(2M+1)2 and θ > 0 then lim inf
n→∞

P (0 ∈ W̄ θ
2n) > 0.

Proof Let A, B ⊂ 2Z. If we map L into itself by sending (z,m) 7→ (z, 2n−m) and reverse the
orientation of the graph, the distribution of the process is unchanged, so that

P (WA
2n ∩ B 6= ∅) = P (WB

2n ∩ A 6= ∅).

In particular, by choosing A = W̄ θ
0 and B = {0}, the previous duality equation leads to

P (0 ∈ W̄ θ
2n) = P (W 0

2n ∩ W̄ θ
0 6= ∅) = 1 − E

{

(1 − θ)|W
0
2n|

}

≥ θ × P (W 0
2n 6= ∅) ≥ θ × P (τ0 = ∞).

The result then follows from Lemma 4.1. This completes the proof. �

4.2. The comparison theorem

To make the connection between particle systems and oriented percolation, the first step is
to turn the space-time into a brick wall, each brick is associated with a certain good event. We
consider a translation invariant finite range process ξt : Z

d −→ F that is constructed from the
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Harris’ graphical representation given in Section 1, integers L, T and Γ with T = ΓL, and a
collection H of configurations determined by the value of ξ on [−L,L ]d. For any z ∈ Z, we denote
by Hz the collection H translated by the vector Lze1 and say that a site (z, n) ∈ L is occupied

if ξnT ∈ Hz. Here, e1 denotes the first unit vector of the d-dimensional lattice. Finally, we let k0

and j0 be two integers, set M = max {j0, k0}, and introduce the space-time region

Bz,n = (Lz e1, n T ) + {[−k0L, k0 L ]d × [ 0, j0 T ]}.

Each (z, n) ∈ L is associated with a certain good event Ez,n measurable with respect to the
graphical representation of the process in Bz,n. See Figure 2 for a picture. Finally, we assume that
there exists an ε > 0 small such that

1. P (Ez,n) ≥ 1 − ε.

2. If (z, n) is occupied and Ez,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

This holds for any (z, n) ∈ L. The conditions 1 and 2 above are usually referred to as the comparison

assumption. To formulate the comparison theorem, we let

Xn = {z : (z, n) ∈ L with (z, n) occupied}

be the set of occupied sites at level n.

Theorem 4 If the comparison assumption holds, then the random variables ω(z, n) can be de-
fined in such a way that Xn dominates an M -dependent oriented percolation process with initial
condition W0 = X0 and density 1 − ε, i.e., Wn ⊂ Xn for any n ≥ 0.

Proof The first step is to construct the random variables ω(z, n) by induction, through a sequence
of subsets Vn, n ≥ 0. To define Vn, we set V0 = X0 and, for n ≥ 1, pretend that z ∈ Vn if there is
x ∈ V0 such that either (z − 1, n− 1) or (z + 1, n− 1) can be reached from (x, 0). In particular,
Wn ⊂ Vn so we just need to prove that Vn ⊂ Xn. We assume that Vn ⊂ Xn at some level n ≥ 0,
and define the ω(z, n), and hence Vn+1, as follows.

1. If z ∈ Vn ⊂ Xn, we set ω(z, n) = 1 if the good event Ez,n occurs, and = 0 otherwise.

2. If z 6∈ Vn, the value of ω(z, n) is unimportant, so we set ω(z, n) equal to an independent
random variable that is 1 with probability 1 − ε, and 0 with probability ε.

To prove the inclusion Vn+1 ⊂ Xn+1 at level n + 1, we first observe that if z′ ∈ Vn+1 then
either z′−1 ∈ Vn and ω(z′−1, n) = 1, or z′ +1 ∈ Vn and ω(z′ +1, n) = 1. The point 1 above then
implies that either (z′ − 1, n) is occupied and Ez′−1 occurs, or (z′ + 1, n) is occupied and Ez′+1

occurs. In either case, z′ ∈ Xn+1. The last thing to check is the M -dependence

P (ω(zi, ni) = 0 for 1 ≤ i ≤ m) ≤ εm

for any (zi, ni), 1 ≤ i ≤ m, such that ||(zi, ni) − (zj , nj)||∞ > M if i 6= j. To prove this point, we
observe that ω(zi, ni) is determined either by independent flip coin, or by the event Ezi,ni . In the
first case, ω(zi, ni) is clearly independent of the ω(zj, nj) for j 6= i. In the second case, we observe
that, since M = max {j0, k0}, the boxes Bzj ,nj , 1 ≤ j ≤ m, are disjoint, which implies that the
events Ezj ,nj are independent. This completes the proof. �

The last step is to deduce from the comparison theorem the existence of a nontrivial stationary
distribution for our particle system. First of all, we assume that the comparison assumption holds
for some ε < 3−4(2M+1)2 where M = max {j0, k0}. We start the process ξt from a translation
invariant configuration such that the events {z ∈ X0}, z ∈ 2Z, are independent and have prob-
ability θ > 0. Then, run the process to time S, take the Cesaro average of the distribution at
times 0 ≤ s ≤ S, and extract a convergent subsequence. By Liggett (1985), Proposition 1.8, the
limit µ is known to be a stationary measure. We now set W0 = X0. Then, Lemma 4.2 implies
that lim infn→∞ P (0 ∈W2n) > 0. Since ξ0 is translation invariant, Theorem 4 allows us to deduce
that, for any z ∈ Z, µ (ξ ∈ Hz) > 0, so that µ has the desired property.



Multicolor particle systems and spatial structures 39
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Figure 2. Picture of the rescaling argument.

4.3. A continuity result

We now consider a system ξt : Z
d −→ F whose transition rates ci (x, ξ) = ci (λ, x, ξ) depend

on a parameter λ ∈ D, where D is an open set, and assume that one succeeds in proving the
existence of a stationary distribution for the process with parameter λ0 ∈ D, i.e., the evolution is
described by the transition rates ci (λ0, x, ξ), through the rescaling argument introduced in § 4.2.
The objective of this paragraph is to prove that, under some continuity assumptions, there is a
neighborhood V of λ0 in D such that the comparison with supercritical oriented site percolation
still holds for the set of processes with parameter λ ∈ V (see Lanchier, 2005c). This tells us that
our particle system still exhibits the same behavior after a slight perturbation of the evolution.
From now on, this result will be referred to as continuity result. The argument is very useful and
has been proved in many special cases. See for instance Durrett and Neuhauser (1997), Schinazi
(2001, 2002) and Lanchier (2005a). In this paragraph, we prove the result in the general case.

To formulate our result, we consider a particle system ξt : Z
d −→ F whose transition rates

continuously depend on λ ∈ D. That is, for any λ0 ∈ D, we have

(CA) For any δ > 0, there exists a neighborhood V of λ0 in D such that

|ci (λ, 0, ξ) − ci (λ0, 0, ξ)| < δ ∀ λ ∈ V , ∀ i ∈ F, ∀ ξ ∈ F Z
d

.

From now on, we denote by ξ̄t the process with parameter λ0. Finally, given all the ingredients
introduced in § 4.2, we suppose that, for any ε > 0, the comparison assumption holds for the
process with parameter λ0. More precisely,

(P ε
λ0

) The parameters L and Γ can be chosen sufficiently large so that

1. P (Ez,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ez,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

Here, (z, n) occupied means that ξ̄nT ∈ Hz. That is, the assumption P ε
λ0

applies to the particle
system with parameter λ0. Let Pλ0 be the property that P ε

λ0
is satisfied for any ε > 0.

Theorem 5 Assume CA and Pλ0 . Then, for any ε > 0, there is a neighborhood Vε of λ0 in D
such that the following holds: For any λ ∈ Vε, the comparison assumption P ε

λ is satisfied.
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As previously explained, Theorem 5 tells us that if λ is close to λ0 then the processes with
parameters λ and λ0 exhibit the same behavior in the sense that each of both processes has a
stationary distribution ν such that, for any z ∈ Z, ν(ξ ∈ Hz) > 0. But beyond a simple continuity
result, Theorem 5 gives us insights into the strategy to study the behavior of a particle system.
More precisely, we get the following

Corollary 6 Assume that the process ξt exhibits a phase transition at λ0 ∈ D. Then, the behavior
of the process when λ = λ0 cannot be investigated through the comparison result.

The proof of Corollary 6 is straightforward. Assume that one succeeds in constructing a stationary
measure ν for the process with parameter λ0 through the comparison result, that is proving that
the assumption Pλ0 holds. Then, Theorem 5 tells us that there is a neighborhood V of λ0 in D
such that, for any λ ∈ V , the processes with parameter λ and λ0 exhibit the same behavior, which
is not consistent with the existence of a phase transition at λ0 and proves Corollary 6.

Before going into the details of the proof, we start by observing that, typically, the transition
rates ci (λ, x, ξ), i ∈ F , are linear functions of the parameter λ. See, e.g., Durrett (1995). In partic-
ular, even though essential, the continuity assumption CA is not very restrictive so that our results
can be plentifully applied. Finally, we think that Theorem 5 does not hold in the very useful case
λ0 = ∞ and λ > 0 large (see for instance the discussion following Theorem 3 of Lanchier and
Neuhauser (2005)). The continuity result when λ0 = ∞ and λ is large, however, holds in some
special cases, and the strategy of our proof is general enough to be easily adapted to such cases
provided that one has an explicit description of the process to be investigated. See for instance
Lanchier (2005b) or Lanchier and Neuhauser (2005) for illustrations. The rest of the paragraph is
devoted to the proof of Theorem 5.

To begin with, we prove that, with probability close to 1, the dual process ξ̄
(x,T )

s starting
at (x, T ) does not escape from a spatial box to be fixed later. The objective is to fix the appropriate
space and time scale so that the comparison assumption holds.

The first step is to construct the process ξ̄t from a graphical representation and to define its
dual process. Let {T x,i

n : n ≥ 1}, x ∈ Z
d, i ∈ F , be a collection of independent Poisson processes

with parameter

ci (λ0) = sup
{

ci (λ0, 0, ξ) : ξ ∈ F Z
d
}

and define the evolution of the process ξ̄t from these exponential clocks as explained in Section 1.
The dual process ξ̄

(x,T )

s is then defined by going backwards in time. In a general way, it allows us
to deduce the color of site x at time T from the configuration at earlier time by keeping track of
the ancestors. The dual process starts at ξ̄

(x,T )

0 = {x} and makes transitions as follows.

If z ∈ ξ̄
(x,T )

s and T
z,i

n = t− s, then we add the points of z + N to ξ̄
(x,T )

s

where N denotes the interaction neighborhood. From the previous definition, it is easy to see that
we can determine the color of (x, T ) by knowing the colors of sites z ∈ ξ̄

(x,T )

s at time T − s. The
dual process is naturally defined only for 0 ≤ s ≤ T but it is convenient to assume that the Poisson
processes in the construction are defined for negative times and ξ̄

(x,T )

s for all s ≥ 0.

Lemma 4.3 There exists a convex set A ⊂ R
d such that for any δ > 0

P
(

(1 − δ) t A ∩ Z
d ⊂ ξ̄

(0,T )

t ⊂ (1 + δ) t A ∩ Z
d
)

→ 1 as t→ ∞.

Proof The basic idea is that ξ̄
(0,T )

s is almost a Richardson’s model that is linearly growing in
time. Unfortunately, since our dual process increases by “blocks”, we did not find any coupling
argument to prove the domination by a Richardson’s model. The proof of Durrett (1988), however,
can be easily extended to our model, so we just give the key ideas and refer the reader to the last
reference for the details. The first step is to introduce, for any x, y ∈ Z

d, the stopping times

t(x) = inf
{

s ≥ 0 : x ∈ ξ̄
(0,T )

s

}

and t(x, y) = inf
{

s ≥ 0 : y ∈ ξ̄
(x,T−t(x))

s+t(x)

}

.
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For a given site x ∈ Z
d and positive integers m and n, let Xm,n = t(mx, nx) be the amount of

time it takes the dual process starting at site mx to reach nx. Then, {Xm,n : m ≤ n} satisfies the
hypothesis of Liggett (1985), Theorem 2.6, Chapter 6, which implies that

X0,n

n
=

t(nx)

n
−→ µ(x) a.s. as n→ ∞.

This tells us that ξ̄
(0,T )

s grows linearly in each direction and proves the result in d = 1. To prove
the result in d ≥ 2, we first turn ξ̄

(0,T )

s into a solid blob by letting

ξ̃
(0,T )

s =
{

x+ y : x ∈ ξ̄
(0,T )

s and y ∈ [−1/2, 1/2]d
}

.

This allows us to extend the definitions of t(x) and of µ(x) to x ∈ R
d, the d-dimensional space

with real coordinates. This new definition makes µ a norm on R
d. The shape result then follows

by taking A = {x : µ(x) ≤ 1}, the unit ball in that norm. �

Lemma 4.4 Let T = ΓL. There exists an integer ℓ0 such that

P
(

{ξ̄ (x,T )

s : 0 ≤ s ≤ T } ⊂ [−ℓ0 L, ℓ0L ]d for any x ∈ [−2L, 2L ]d
)

→ 1 as L→ ∞.

Proof This is a straightforward consequence of Lemma 4.3 supplemented with a coupling argu-
ment. We fix t0 > 0 such that [−4, 4 ]d ⊂ t0A. Then, the shape result implies that

P
(

{ξ̄ (x,T )

s : 0 ≤ s ≤ T } 6⊂ 2 (T + t0L)A for some x ∈ [−2L, 2L ]d
)

≤ P
(

[−2L, 2L ]d 6⊂ ξ̄
(0,T +t0L)

t0L

)

+ P
(

ξ̄
(0,T+t0L)

T+t0L 6⊂ 2 (T + t0L)A
)

→ 0

as L→ ∞. The result then follows by taking ℓ0 such that 2 (Γ + t0)A ⊂ [−ℓ0, ℓ0 ]d. �

We are now ready to prove Theorem 5. In what follows, we will denote by ξ̄t the process with
fixed parameter λ0 ∈ D, i.e., the process with transition rates ci (λ0, x, ξ), and will denote by ξt
the process with parameter λ ∈ D close to λ0. For more convenience, the objects associated with
ξ̄t will be written as their analogous for ξt with a bar in addition.

Given an integer M̄ ≥ 1, a collection H of configurations determined by the value of ξ on the
spatial box [−L,L ]d, and a collection Ēz,n, (z, n) ∈ L, of good events that are measurable with
respect to the graphical representation of the process ξ̄t in the space-time region

B̄z,n = (Lze1, n T ) + {[−k0 L, k0L ]d × [ 0, j0 T ]}

with max {j0, k0} = M̄ , we assume that

(Pλ0 ) For any ε > 0, the parameters L and Γ can be chosen sufficiently large so that

1. P (Ēz,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ēz,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

Here, (z, n) occupied means that ξ̄nT ∈ Hz. The proof of Theorem 5 is a three-step process. The
basic idea is to define, for (z, n) ∈ L, a new good event Ez,n to be the intersection of three good
events E

j

z,n, j = 1, 2, 3. This event will have to insure us that the assumption P ε
λ holds for the

process with parameter λ close to λ0.
The first good event will be E

1

z,n = Ēz,n. Now, to make sure that Ez,n is measurable with

respect to the graphical representation in some box Bz,n, we first let E
2

z,n be the event that

{ξ̄ (x,(n+1)T )

s : 0 ≤ s ≤ T } ⊂ [(z − ℓ0)L, (z + ℓ0)L ]d for any x ∈ [(z − 2)L, (z + 2)L ]d.

The event E
2

z,n seems to be the bad one since it does not say anything about the process with

parameter λ. The third good event, however, will allow us to solve the problem. To define E
3

z,n, the



42 Systèmes de particules multicolores

first step is to construct both processes ξ̄t and ξt by using the same Harris’ graphical representation.
More precisely, for any color i ∈ F , we let

ci (λ, λ0) = max (ci (λ), ci (λ0)) = sup
{

max (ci (λ, 0, ξ), ci (λ0, 0, ξ)) : ξ ∈ F Z
d
}

and let {T x,i

n : n ≥ 1}, x ∈ Z
d, be a collection of Poisson processes with parameter ci (λ, λ0), all

of them are independent. To complete the construction, for any x ∈ Z
d and i ∈ F , we toss a coin

with success probability

pi (λ, λ0) =
|ci (λ) − ci (λ0)|

ci (λ, λ0)
=

|ci (λ) − ci (λ0)|
max (ci (λ), ci (λ0))

.

If there is a success, we put a ω0 at point (x, T
x,i

n ) if ci (λ) < ci (λ0), and a ω at point (x, T
x,i

n ) if
on the contrary ci (λ) > ci (λ0). Then, the process ξ̄t (resp. ξt) can be constructed as explained in
Section 1 by using the exponential clock devoid of ω (resp. ω0). In other words, the process with
parameter λ0 does not see the ω’s while the process with parameter λ does not see the ω0’s.
Finally, we let m0 denote an integer to be fixed later and set

Bz,n = (Lze1, nΓL) + {[−m0L,m0L ]d × [ 0, j0 ΓL ]}.

Then, E
3

z,n will be the event that none of the exponential clocks in Bz,n is labeled, i.e., there is
neither ω nor ω̄ in the space-time region Bz,n.

Now that our three good events E
j

z,n, j = 1, 2, 3, are defined, the next step is to prove that our
choice of Ez,n implies Theorem 5. To begin with, we let ε > 0 and apply the comparison assumption
Pλ0 to pick L and Γ so that P (E

1

z,n) = P (Ēz,n) ≥ 1−ε/ 3. In other respects, Lemma 4.4 implies the

existence of an integer ℓ0 independent of L such that, for L sufficiently large, P (E
2

z,n) ≥ 1− ε/ 3.
This last observation allows us to fix the size of Bz,n by setting m0 = max {k0, ℓ0}. Now that L
and Γ are fixed so that E

1

z,n and E
2

z,n occur with probability close to 1, we are ready to estimate
our third event. A straightforward calculation shows that

P (E
3

z,n) ≥ 1 − (2m0 L+ 1)d
κ−1
∑

i=0

{

1 − exp
(

− |ci (λ) − ci (λ0)| j0 ΓL
)}

.

This together with the continuity assumption CA implies the existence of a neighborhood Vε of λ0

in D such that P (E
3

z,n) ≥ 1− ε/ 3, for any λ ∈ Vε. In conclusion, we have proved that there exist
parameters L and Γ, and a neighborhood Vε of λ0 such that P (Ez,n) ≥ 1 − ε, for any λ ∈ Vε.

We are now ready for the final denouement. First of all, we observe that the event Ez,n is
measurable with respect to the graphical representation in Bz,n. That is, the configuration of the
process at time (n+1)T in the box Bz−1∪Bz+1 only depends on what happens in the space-time
region Bz,n. In particular, if M = max {j0,m0} then, whenever ||(zi, ni) − (zj , nj)||∞ > M , the
events Ezi,ni and Ezj ,nj are independent. To prove Theorem 5, the last thing we have to check is
that if (z, n) is occupied and Ez,n occurs, then (z− 1, n+ 1) and (z+ 1, n+ 1) will be occupied as
well, where “occupied” now applies to the process with parameter λ. This results from a coupling
argument. More precisely, we assume that ξnT ∈ Hz, and set ξ̄nT = ξnT . If both processes are
constructed from the same graphical representation, it is easy to see that on E

2

z,n ∩ E 3

z,n

ξ̄
(x,(n+1)T )

s = ξ
(x,(n+1)T )

s for any x ∈ [(z − 2)L, (z + 2)L ]d and 0 ≤ t ≤ T.

The properties of the dual process (see above), together with ξ̄nT = ξnT then implies that

ξ̄(n+1)T (x) = ξ(n+1)T (x) for any x ∈ [(z − 2)L, (z + 2)L ]d.

Finally, if our good event Ez,n occurs, the event E
1

z,n tells us that ξ̄(n+1)T ∈ Hz−1 ∩ Hz+1. In
conclusion, ξ(n+1)T ∈ Hz−1 ∩Hz+1 and Theorem 5 follows.
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4.4. Host-symbiont interactions

To conclude this section and figure out how the comparison theorem introduced in § 4.2 works
through a concrete instance, we now investigate a particle system modeling the local interactions
between hosts and symbionts. An important component of multi-host, multi-symbiont models is
the degree to which different symbionts and hosts can associate with each other. This will be
referred to as specificity. A specialist symbiont associates with a very small number of hosts; a
generalist symbiont associates with many hosts. The ease of transmission of a symbiont to a host,
referred to as transmissibility, is another important factor in host-symbiont interactions.

The spatially explicit model

To describe the host dynamics, we employ the simplest of all multi-species models, namely
the voter model (Holley and Liggett, 1975, Clifford and Sudbury, 1973). Into this population,
we introduce symbionts with varying degrees of specificity and transmissibility. More precisely,
our model is a continuous-time Markov process ξt : Z

d −→ {1, 2, . . . , κ} × {0, 1, . . . , κ} where
the integer κ denotes both the number of hosts and the number of symbionts involved in the
interaction. A site x ∈ Z

d is said to be occupied by an unassociated host of type i if ξ(x) = (i, 0),
and by a host of type i associated with a symbiont of type j if ξ(x) = (i, j). Later on, we will write
ξt(x) = (ξ

1

t (x), ξ
2

t (x)), where ξ
1

t (x) (resp. ξ
2

t (x)) denotes the type of the host (resp. the symbiont)
present at x at time t, with ξ

2

t (x) = 0 denoting the absence of a symbiont. The evolution at site
x ∈ Z

d is described by the transition rates

(i, j) → (k, 0) at rate λ
∑

0<||x−z||≤R1

{

1{ξ(z)=(k,0)} + g

κ
∑

ℓ=1

1{ξ(z)=(k,ℓ)}

}

(i, 0) → (i, j) at rate cij
∑

0<||x−z||≤R2

κ
∑

ℓ=1

1{ξ(z)=(ℓ,j)}.

The birth rate of unassociated hosts is equal to λ. The parameter g indicates the variation of the
birth rate of hosts associated with a symbiont. If 0 ≤ g < 1, the symbiont is a pathogen; if g = 1,
the symbiont has no effect on the birth rate of the host; if g > 1, the symbiont is a mutualist. The
parameters cij denote the rate at which symbiont j infects host i. Finally, births and infections
occur within a local neighborhood, with R1 denoting the birth range of hosts, and R2 the infection
range of symbionts. The neighborhoods of a site x ∈ Z

d will be denoted by N 1
x and N 2

x , and their
cardinality by νR1 and νR2 respectively.

To define the time scale, we set λ = 1. We will discuss the specialist case by setting cii = β > 0
for i = 1, 2, . . . , κ, and cij = 0 for i, j = 1, 2, . . . , κ with i 6= j, and provide comparisons with
the corresponding mean-field model. To begin with, we consider a population of two hosts with
only one symbiont, say symbiont 1, and start the evolution with all the hosts of type 1 associated
with a symbiont. Then, in the limiting case β = ∞, the transition (1, 0) → (1, 1) is instantaneous
provided that R1 ≤ R2 to avoid the problem of isolated unassociated host that cannot be reached
by any symbiont. This implies that the process ξ

1

t is a biased voter model in which hosts of type
1 give birth at rate g and hosts of type 2 at rate 1. In particular, if g < 1, then ξ

1

t ⇒ δ2, the “all
2” configuration, while if g > 1, then ξ

1

t ⇒ δ1, the “all 1” configuration. Theorem 7 tells us that,
in any dimension, the result still holds if g > 1 and β ∈ (0,∞) is sufficiently large.

Theorem 7 Assume that g > 1 and R1 ≤ R2. At time 0, ξ0(x) = (1, 1) or (2, 0) for all x ∈ Z
d.

Then, there is a critical value βc ∈ (0,∞) such that if β > βc then ξ
1

t ⇒ δ1.

The proof of Theorem 7 will give us an illustration of the techniques introduced in § 4.2
and § 4.3. As explained above, the first coordinate process ξ

1

t performs a biased voter model
in the limiting case β = ∞. Hence, we will start by proving a general result about the biased
voter model, and then apply a perturbation argument to extend this result to the region β < ∞.
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Let β1, β2 ∈ (0,∞), and ηt : Z
d −→ {1, 2} be the biased voter model with parameters β1 and β2,

i.e., the process whose state at site x changes as follows.

i → j at rate βj

∑

0<||x−z||≤R

1{η(z)=j} with R = R1.

It is a well-known fact that if β1 > β2 then P (ηt(x) = 1) → 1 as t→ ∞, provided that at time 0,
the process has infinitely many 1’s (see, e.g., Durrett (1988), Chapter 3).

To prove Theorem 7, we will follow the strategy described in Durrett and Neuhauser (1997),
Section 3. We begin with a rescaling argument to estimate the rate of convergence of P (ηt(x) = 1).
This estimate will have to be good enough so that a perturbation argument can be applied. As
explained in § 4.2, the basic idea is to show that for given ε > 0, members of the family of processes
under consideration, when viewed on suitable length and time scales, dominate an M -dependent
oriented percolation process in which sites are open with probability 1 − ε (Durrett, 1995). To
compare the process with a percolation process, we consider a positive integer L to be fixed later,
and scale space by setting

B = [−L, L ]d, Φ(z) = L z, and Bz = Φ(z) + B

for any z ∈ Z
d. Let Γ be a positive integer, and say that (z, n) is occupied if all sites in Bz are

occupied by 1’s at time nΓL. The first step in proving Theorem 7 is the following

Proposition 4.5 Let ε > 0 and β1 > β2. Then L and Γ can be chosen in such a way that the set
of occupied sites dominates the set of open sites in a 3-dependent oriented site percolation process
where sites are open with probability p = 1 − 2 ε/ 3.

The key to the proof is duality (Durrett 1988, Chapter 3). To define the dual process of the biased
voter model, we consider two collections of independent Poisson processes {T x,z

n : n ≥ 1} and
{U x,z

n : n ≥ 1} where 0 < ||x− z|| ≤ R, with parameter β2 and β1 − β2 respectively. At times T
x,z

n

we draw an arrow from z to x and put a δ at site x, while at times U
x,z

n we draw an arrow from z
to x without putting a δ at the tip. The process is then obtained from the graphical representation
as follows. At time T

x,z

n , the particle at x imitates the one at z. At time U
x,z

n , the site x becomes
occupied by a particle of type 1 if z is. We say that there is a path from (x, 0) to (z, t) if there is
a sequence of times s0 = 0 < s1 < · · · < sn+1 = t and spatial locations x0 = x, x1, . . . , xn = z
such that the following two conditions hold.

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any δ’s.

Finally, we say that there exists a dual path from (x, t) to (z, t− s), 0 ≤ s ≤ t, if there is a path
from (z, t− s) to (x, t), and define the dual process starting at (x, t) by setting

η̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}

for any 0 ≤ s ≤ t. The reason why we introduce the dual process is that it allows us to deduce the
state of site x at time t from the configuration at earlier times. More precisely,

ηt(x) = 1 if and only if ηt−s(z) = 1 for some z ∈ η̂
(x,t)

s .

See Durrett (1988), Chapter 3. The strategy to proving Proposition 4.5 can then be summarized
as follows. Let T = ΓL and x ∈ Bz with || z || = 1. Then, we will prove that, with probability
arbitrarily close to 1, there exists a dual path As starting at (x, T ) and landing in the target set B.
More precisely, we will prove that As hits the set J = [−R, R ]d by time T where R = R1 < L, and
then stays inside B until time T . In particular, if B is void of 2’s at time 0 then, with probability
close to 1, Bz will be void of 2’s as well T units of time later. To define the dual path As, we start
the process at A0 = (x, T ) and go down the graphical representation. If As comes across a δ at
some time s = T − T

x,z

n with x = As then move As to z. If As meets the tip of an arrow that is
without a δ at some time s = T −U x,z

n then move As to z only if it takes it closer to 0. Intuitively,
this should cause As to drift towards the set B. We now make this argument precise.
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Lemma 4.6 Assume that x ∈ Bz , || z || = 1, and β1 > β2. There exist C1, γ1 ∈ (0,∞) such that

sup
x∈Bz

Px (As 6∈ J for all s ≤ T ) ≤ C1 exp (−γ1 L)

for L and Γ sufficiently large. Here, the subscript x indicates the starting point.

Proof Let σk denote the k-th time As encounters the tip of an arrow (with or without a δ). At
time σk, the arrow does not have a δ at its tip with probability (β1 − β2)/β1 > 0. Moreover, if
Aσk

6∈ J and the arrow does not have a δ at its tip, then with probability at least 1/2d > 0, As

moves closer to 0. In particular, if N = inf {k ≥ 1 : Aσk
∈ J} then there is c > 0 such that

P (N ≥ c L) ≤ C2 exp (−γ2 L)

for suitable C2, γ2 ∈ (0,∞). Since P (σk − σk−1 > t) = exp (−β1 t), the result follows. �

Lemma 4.7 Assume that β1 > β2. For any y ∈ J there exist C3 <∞ and γ3 > 0 such that

sup
y∈J

Py (As 6∈ B for some s ≤ T ) ≤ C3 exp (−γ3 L)

for L sufficiently large.

Proof We let s0 = 0 and, for k ≥ 1, define the following stopping times

tk = inf
{

t > sk−1 : At /∈ (−L/2, L/2)d
}

sk = inf {t > tk : At ∈ J} and τ = inf {t > 0 : At /∈ B}.

Moreover, we denote by M(t) = sup {k ≥ 1 : σk < t} the number of tips of arrows encountered by
As by time t. Then for any site y ∈ J

Py (As /∈ B for some s ≤ T ) = Py (Aσk
/∈ B for some k ≤M(T ))

≤ Py (Aσk
/∈ B for some k ≤ 2 β1 T ) + P (M(T ) > 2 β1 T )

≤ Py (sk > τ for some k ≤ 2 β1 T ) + P (M(T ) > 2 β1 T )

≤ 2 β1 T supz∈J Pz (s1 > τ) + P (M(T ) > 2 β1 T ).

Since As has a drift towards J and that the time between consecutive jumps has exponential
bound, P (s1 > τ) ≤ C4 exp (−γ4 L) for appropriate C4 <∞ and γ4 > 0 (see the proof of Lemma
3.2). Furthermore, since EM(T ) = β1 T , large deviation estimates imply that there are C5 < ∞
and γ5 > 0 such that P (M(T ) > 2 β1 T ) ≤ C5 exp (−γ5 T ). �

Lemma 4.8 Assume that x ∈ Bz , || z || = 1, and β1 > β2. There exist C6, γ6 ∈ (0,∞) such that

sup
y∈Bz

Px (AT 6∈ B) ≤ C6 exp (−γ6 L)

for Γ and L sufficiently large.

Proof By decomposing according to whether As ∈ J for some s ≤ T or not, we obtain

Px (AT /∈ B) ≤ Px (As /∈ J for all s ≤ T ) + P (AT /∈ B ; As ∈ J for some s ≤ T ).

The first term on the right-hand side can be bounded using Lemma 4.6. For the second term, we
first observe that

P (AT /∈ B ; As ∈ J for some s ≤ T ) ≤ sup
y∈J

Py (As /∈ B for some s ≤ T )
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and then apply Lemma 4.7. This completes the proof. �

Since there are at most (2L+ 1)d sites in Bz , it follows from Lemma 4.8 and duality that there is
a constant C7 <∞ independent of L such that for Γ and L sufficiently large

P (ηT (x) = 2 for some x ∈ Bz) ≤
∑

x∈Bz

Px (AT 6∈ B)

≤ (2L+ 1)dC6 exp (−γ6 L) ≤ C7 L
−1 ≤ ε / 3.

Moreover, since each of the dual paths has a drift toward J , we can fix M > 0, say M = 3, so that
for any ε > 0

P (any of the selected paths is not contained in

[−ML, ML ]d at some time s ≤ T ) ≤ ε / 3

by choosing L sufficiently large. This shows that boxes that are sufficiently far apart are indepen-
dent of each other with high probability and completes the proof of Proposition 4.5.

To deduce Theorem 7 from Proposition 4.5, we now rely on a perturbation argument. More
precisely, we will extend the result to the region β > 0 large by proving that if hosts of type 1
become occupied by their associated mutualists quickly enough, then ξ

1

t will evolve like a biased
voter model in the space-time box B × [ 0,ΓL] with probability close to 1. We first define ξt on
the same space as the biased voter model ηt introduced above with β1 = g and β2 = 1. At time
T

x,w

n , the host present at site w gives birth to an unassociated host of the same type which is
then sent to x. At time U

x,w

n , the birth from w to x occurs only if the host at w is associated
with a mutualist. To describe the evolution of the mutualists, we consider one more collection of
independent Poisson processes, {V x,w

n : n ≥ 1}, 0 < ||x − w|| ≤ R2, with parameter β. At time
V

x,w

n , we draw an arrow labeled with a 1 from w to x to indicate that a mutualist (of type 1)
present at site w gives birth to a mutualist at site x if this site is already occupied by a host
of type 1. We will prove that there exists βc ∈ (0,∞) such that if β > βc and ξ

1

0 = η0 on B,
then ξ

1

t = ηt on Bz with || z || = 1 at time t = ΓL with probability ≥ 1 − ε / 3. Since boxes
that are sufficiently far apart are independent of each other with probability close to 1, we can
focus on [−ML,ML ]d × [ 0,ΓL], M = 3, to estimate this event. Let x ∈ [−ML,ML ]d and follow
the line {x} × [ 0,ΓL] by going forward in time. Each time a host at w attempts to give birth at
site x, we require that the next 1-arrow from w to x appears before the host at w is replaced or
the host at x gives birth. An easy calculation shows that this event occurs with probability

P
(

V
x,w

1 < min (T
y,x

1 , U
y,x

1 ) for any y ∈ N 1
x and

V
x,w

1 < min (T
w,y

1 , U
w,y

1 ) for any y ∈ N 1
w

)

= β (β + 2m)−1

where m = g νR1 . We now denote by K(x, t) the number of unlabeled arrows and δ-arrows that
point at site x by time t > 0, and set IM = [−ML,ML ]d. Then, by observing that EK(x, T ) =
mT , and by decomposing the event to be estimate according to whether K(x, T ) > 2mT or not,
we finally obtain

P (ξ
1

t 6= ηt on Bz at time t = ΓL)

≤
∑

x∈ IM

P (K(x, T ) > 2mT ) + 2mT
∑

x∈ IM

2m

β + 2m

≤ (2ML)d ×
{

C8 exp (−γ8 T ) + 4m2 T (β + 2m)−1
}

for appropriate C8 <∞ and γ8 > 0. Taking L and then β sufficiently large so that

P (ξ
1

t 6= ηt on Bz at time t = ΓL) ≤ ε / 3,

and applying Proposition 4.5 imply that the set of occupied sites dominates the set of open sites
in an oriented percolation process with parameter p = 1 − ε. Here (z, n) occupied means that all



Multicolor particle systems and spatial structures 47

sites in Bz are occupied by associated hosts of type 1 at time nT . This almost produces The-
orem 7. Our last problem is that oriented site percolation has a positive density of unoccupied
sites. To prove that there is an in-all-directions expanding region which is void of hosts of type
2, we apply a result from Durrett (1992) which shows that unoccupied sites do not percolate
when ε is close enough to 0. Since hosts of either type cannot appear spontaneously, once a region
is void of one type, this type can only reappear in the region through invasion from the outside.
This then implies that our process has the desired property and completes the proof of Theorem 7.

The mean-field model

The next step is to compare the spatially explicit and the mean-field models in order to provide
a new illustration of the purpose introduced in Section 2. To define the mean-field model, we
pretend that all sites are independent and that the system is spatially homogeneous. This then
results in a system of differential equations for the densities of unassociated and associated hosts.
To deal with the case of specialist interactions, we let ui denote the density of unassociated hosts
of type i and vii denote the density of hosts of type i associated with a symbiont (of the same
type). We define

u· =

κ
∑

i=1

ui and v·· =

κ
∑

i=1

vii.

The mean-field limit is obtained by letting both neighborhood ranges, R1, R2, go to infinity.
To obtain a meaningful limit, we need to rescale the parameters λ and β by their respective
neighborhood sizes, that is, we set λ = 1

νR1
(this also sets the time scale), and define β = b

νR2
.

The following system of differential equations then describes the mean-field behavior.

u′i = (1 − ui) (ui + g vii) − ui

∑

j 6=i

(uj + g vjj) − b ui vii

v′ii = b ui vii − vii (u· + g v··).

When g = 1, the system has a conserved quantity, namely the initial host densities hi = ui + vii,
i = 1, 2, . . . , κ. If b > κ then for g 6= 1, there exists a nontrivial equilibrium with u1 = u2 =
· · · = uκ ≥ 0 and v11 = v22 = · · · = vκκ > 0. Numerical simulations indicate that the nontrivial
equilibrium is locally stable when g < 1, but not when g > 1.

v11 1

u2

0

1

v11 1

u2

0

1

Figure 3. Solution curves of the mean-field model with b = 3. The parameter g is equal to 0.5 and 2, respectively.

If initially only two hosts and one symbiont, say symbiont 1, are present then for g < 1, pathogen
of type 1 will go extinct and both hosts may coexist. See Figure 3, picture on left, for an illus-
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tration. We will conjecture similar behavior for the spatial model, except in the 1-dimensional,
nearest neighbor case. When g > 1, host of type 2 goes extinct provided the initial density of
mutualists of type 1 is sufficiently large. See Figure 3, picture on right, for an illustration. The
spatial analogue of this result is given by Theorem 7 above.

Comparison of the spatially explicit and the mean-field models

Figure 4. Process with nearest neighbor interactions on the 200 × 200 torus at time 250. Picture on left: β = 2
and g = 0.5. The process starts with unassociated white hosts in J = (90, 110)2 and black hosts associated with
a pathogen outside J. Picture on right: β = 4 and g = 2. The process starts with black hosts associated with a
mutualist in J and unassociated white hosts outside J. In both pictures, gray sites refer to black hosts associated
with a symbiont.

In conclusion, numerical simulations of the mean-field model and Theorem 7 indicate similar
behaviors for the spatial and nonspatial models with only two hosts and one symbiont when g > 1.
In other respects, a careful reading of the proof of Theorem 7 shows that the analogous result holds
when g < 1, that is P (ξ

1

t (x) = 2) → 1 for any x ∈ Z
d, but only in the 1-dimensional nearest

neighbor case. Numerical simulations of the mean-field model reveal a quite different behavior,
namely pathogen will go extinct and both hosts coexist. See Figure 3, picture on left. We think,
however, that except in the 1-dimensional nearest neighbor case, P (ξ

1

t (x) = 2) 6→ 1. Here is our
intuition. We first observe that, if d ≥ 2 or R1 ≥ 2, then the dynamics produce isolated hosts,
that is hosts of type 1 (resp. 2) surrounded by a cluster of hosts of type 2 (resp. 1). As suggested
by Theorem 7, when g > 1, isolated 2’s are swallowed very quickly by surrounding 1’s. On the
other hand, when g < 1, an isolated 1 located in a linearly growing cluster of 2’s cannot be
invaded anymore by any pathogen as soon as the cluster has reached some critical size. In this
expanding region, the process then behaves like an unbiased voter model in which 1’s can now
compete with 2’s, and survive. See Figure 4 for simulations in d = 2. In particular, we conjecture
similar behaviors for the mean-field model and the spatially explicit model in d ≥ 3, in the sense
described in Section 2. That is, in both spatial and nonspatial models pathogen will go extinct
and hosts coexist (see Holley and Liggett, 1975). The result is consistent with the observations
of Section 2, namely there is a critical dimension d0 such that the spatial and nonspatial models
exhibit the same behavior if and only if d ≥ d0. Moreover, the behavior of the particle system
when d = 1 and R1 = 1, that is when the spatial interactions are the most emphasized, contrasts
with the mean-field model.
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5. Geometry of particle systems and duality

We have seen in Section 4 that the construction of stationary measures through the comparison
theorem requires that we scale the space-time of the particle system by turning it into a brick
wall. Moreover, to make sure in practice that the comparison assumption holds for ε small, the
scale parameters L and T have to be chosen sufficiently large. In particular, even if the comparison
theorem is a powerful tool to investigate the macroscopic behavior, or stationary measures, of a
given particle system, it does not tell us anything about its microscopic behavior, or the geometry
of the configurations. A typical phenomenon we think about in particular is called clustering.
Rather than describing with thousands of words what we mean by clustering, we prefer to refer
the reader to Figures 5 and 6 for pictures of the two processes for which this property has been
proved. To have a mathematical definition, let’s consider a particle system ξt : Z

d −→ F . We will
say that clustering occurs if, for colors i, j ∈ F with i 6= j, we have

P (ξt(x) = i, ξt(y) = j) → 0 as t → ∞.

To study the patterns drawn by a particle system, the appropriate tool is called duality. The basic
idea is to pick a site x ∈ Z

d, a time t ≥ 0, and to work backwards in time, starting from the
point (x, t), in order to reconstruct the family tree of the particle present at site x at time t. The

resulting process, denoted by ξ̂
(x,t)

s , is called the dual process starting at (x, t). Such a process has
already been introduced above in the case of the biased voter model. See the proof of Theorem 7,
in § 4.4. In a general way, the consideration of this process leads to a duality relationship which
allows us to deduce the color of site x at time t from the configuration at earlier time. For this
reason, we will call the elements of ξ̂

(x,t)

s , the ancestors of (x, t) at time t− s.
With the dual process in hands, we are now ready to describe a general method to prove that

clustering occurs. Even if the proof can become a real brain twister, the basic idea is easy to
understand. To begin with, we pick two sites x, y ∈ Z

d, and a time t ≥ 0, and consider the dual
processes ξ̂

(x,t)

s and ξ̂
(y,t)

s starting at (x, t) and (y, t) respectively. Typically, both processes exhibit
some tree structure, this topological structure allows to define an ancestor hierarchy in which
the members are arranged according to the order they determine the color of the starting point.
We denote respectively by X

(x,t)

s and X
(y,t)

s the spatial locations of the first ancestor of (x, t)
and (y, t) at time t − s. Since both X

(x,t)

s and X
(y,t)

s are constructed from the same exponential
clocks, the process X

(x,t)

s − X
(y,t)

s is stopped when it hits 0. For this reason, we will call them
coalescing processes. In particular, if one can prove that, by looking backwards in time, both
ancestors will eventually collide with probability 1, then

P (X
(x,t)

t = X
(y,t)

t ) → 1 as t → ∞,

which, by duality, is equivalent to clustering. On the contrary, if the convergence above does not
hold, then duality implies that, at least starting from a good configuration, i.e., a translation
invariant product measure in which all the colors are present, coexistence occurs. We now make
this argument precise through two concrete examples of particle systems.

5.1. A warming up example: The voter model

The voter model, investigated in details in Holley and Liggett (1975), is the first example of
particle system for which clustering has been proved. Before stating their results, we remind the
reader that the basic voter model is the translation invariant process ξt : Z

d −→ {0, 1}, whose
state at site x flips according to the following transition rates

0 → 1 at rate
∑

0<||x−z||≤R

1{ξ(z)=1} 1 → 0 at rate
∑

0<||x−z||≤R

1{ξ(z)=0}.

That is, at some constant rate, the particle at site x picks at random a site z ∈ Z
d with ||x−z|| ≤ R,

and mimics the particle present at site z. See Figure 5 for realizations of the process. As previously
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explained, to study the geometry of a spatial model, the first step is to define the dual process.
In a general way, the dual process allows to keep track of the ancestors of a given particle by
working backwards in time. To begin with, we construct the particle system from a graphical
representation. For any x, z ∈ Z

d, let {T x,z

n : n ≥ 1} be the arrival times of a Poisson process
with parameter 1. At times T

x,z

n , we draw an arrow from z to x and put a × at site x to indicate
that the particle at x mimics the particle at z. The dual process is then constructed from the
graphical representation as in § 4.4 for the biased voter model. We will say that there exists a
path from (x, 0) to (z, t) if there is a sequence of times s0 = 0 < s1 < · · · < sn+1 = t and spatial
locations x0 = x, x1, . . . , xn = z such that the following two conditions hold.

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segment {xi} × (si, si+1) does not contain any ×’s.

Finally, we will say that there exists a dual path from (x, t) to (z, t − s), 0 ≤ s ≤ t, if there is a
path from (z, t− s) to (x, t), and define the dual process starting at (x, t) by setting

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}

for any 0 ≤ s ≤ t. In the case of the voter model, however, since all the arrows are now associated
with a ×, the process ξ̂

(x,t)

s is reduced to a single site which has the interpretation that the particle

present at site x at time t has the same color as the particle present at site ξ̂
(x,t)

s at time t − s.

Moreover, it is easy to see from the graphical representation that ξ̂
(x,t)

s performs a continuous-
time random walk which jumps from z to w ∈ z +N at rate 1. With the ingredients we have just
introduced, we are now ready to prove the

Theorem 8 If d ≤ 2, clustering occurs, i.e., for any initial configuration ξ0, we have

lim
t→∞

P (ξt(x) 6= ξt(y)) = 0 ∀ x, y ∈ Z
d.

Proof First of all, the duality described above implies that if ξ̂
(x,t)

t = ξ̂
(y,t)

t , then the particles
at x and y will have the same ancestor at time t, and so the same color. It follows that

P (ξt(x) 6= ξt(y)) ≤ P (ξ̂
(x,t)

t 6= ξ̂
(y,t)

t ).

Now, since ξ̂
(x,t)

s and ξ̂
(y,t)

s are constructed from the same collection of independent Poisson pro-

cesses, the dual process performs coalescing random walks, i.e., ξ̂
(x,t)

s − ξ̂
(y,t)

s is stopped when it
hits 0. Finally, since our random walks also have mean 0 and finite variance, they are recurrent in
d ≤ 2. In particular, P (ξ̂

(x,t)

t 6= ξ̂
(y,t)

t ) → 0 as t→ ∞. This completes the proof. �

In higher dimensions, the argument of the proof of Theorem 8 does not hold anymore, since in
this case we loose the recurrence property. In fact, the spatial model exhibits a sharp change of
behavior when increasing the dimension, namely clustering in d ≤ 2 and coexistence in d ≥ 3.
More precisely, we have the following result.

Theorem 9 Assume that d ≥ 3. If the events {ξ0(x) = 1}, x ∈ Z
d, are independent and have

probability θ, then ξt ⇒ µ, a translation invariant stationary measure with µ (ξ (x) = 1) = θ.

Proof Let B ⊂ Z
d, and ξ̂

(B,t)

s = {ξ̂ (x,t)

s : x ∈ B}. If we think of ξt as a set valued process in
which the state at time t is the set of sites occupied by 1’s, then by duality

P (ξt ∩ B = ∅) = E

{

(1 − θ)|ξ̂
(B,t)

t |
}

.

Now, since as explained above ξ̂
(B,t)

t is a coalescing random walk, the function t 7→ |ξ̂ (B,t)

t | is

nonincreasing, and so has a limit when t→ ∞. Moreover, 0 ≤ (1− θ)|ξ̂
(B,t)

t | ≤ 1, so it follows from
the bounded convergence theorem that

lim
t→∞

E

{

(1 − θ)|ξ̂
(B,t)

t |
}

exists.
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Figure 5. Realizations of the voter model. The duality between the particle system and coalescing random walks
implies a clustering in dimensions 1 and 2.

This implies that ξt converges to a stationary measure µ as t→ ∞. We now prove that µ satisfies
the desired properties. First of all, since the process is constructed from a translation invariant
collection of Poisson processes, µ will be translation invariant as well. In other respects,

P (x ∈ ξt) = P (ξ̂
(x,t)

t ∈ ξ0) = θ.

Finally, taking the limit as t→ ∞ in the previous equation implies the result. �

To figure out one more time the connection between spatial and nonspatial models, we observe
that if all the sites are assumed to be independent, then the densities of particles are preserved
by the dynamics, i.e., with the usual notations, u′0 = u′1 = 0. This implies that the mean-field
model exhibits a one-parameter family of locally stable fixed points. The behavior predicted by
the deterministic model only occurs in d ≥ 3 for the spatial model. As indicated by the proofs of
Theorems 8 and 9, this comes from the intrinsic properties of symmetric random walks. However,
even without being aware of the proofs, the result is easy to understand: To increase the dimension
of the space reduces the dependence between adjacent sites. In particular, the existence of a critical
dimension d0 such that spatial and nonspatial models exhibit the same behavior if and only if
d ≥ d0 is not so surprising.

5.2. The multitype contact process

The second model that exhibits such a dichotomy, introduced by Neuhauser (1992), is the
multitype contact process, i.e., the continuous-time Markov process whose state at time t is a
function ξt : Z

d −→ {0, 1, 2}, and whose transition rates at site x ∈ Z
d are given by

0 → 1 at rate λ1

∑

0<||x−z||≤R

1{ξ(z)=1} 1 → 0 at rate 1

0 → 2 at rate λ2

∑

0<||x−z||≤R

1{ξ(z)=2} 2 → 0 at rate 1.

In words, each 1 (resp. 2) tries to give birth onto each of its neighbors at rate λ1 (resp. λ2). If
the offspring is sent to an empty site, that is a site in state 0, the birth occurs, otherwise, it is
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suppressed. Moreover, each particle dies at rate 1. In the following, we will investigate the process
when λ1 = λ2, and will denote by λ the common value of both parameters.

To prove that clustering occurs in d ≤ 2, the strategy is the same as for the voter model. We
will pick two sites x, y ∈ Z

d, a time t ≥ 0, and work backwards in time through the dual process to
follow the ancestors of the particles present at (x, t) and (y, t). Then, clustering will occur if both
ancestors coalesce almost surely together. The main difficulty is that the dual process starting at
a single site is now much more complicated than a simple random walk.

To introduce the dual process, the first step is to construct our particle system from a graphical
representation. For any x, z ∈ Z

d with ||x − z|| ≤ R, let {T x,z

n : n ≥ 1} and {U x

n : n ≥ 1} be
the arrival times of independent Poisson processes with rate λ and 1 respectively. The graphical
representation is obtained by drawing an arrow from site x to site z at times T

x,z

n to indicate that,
if the site x is occupied and the site z is empty, then the particle at x gives birth to a particle of
the same type at z. At times U

x

n , we put a × at site x to indicate that any particle present at x
is killed. Paths and dual paths are defined as in § 5.1 (see the conditions 1 and 2, page 50), and
the dual process starting at (x, t) is given by

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}.

From the previous definition, it is easy to see that the state of (x, t) can be determined by knowing

the states of sites z ∈ ξ̂
(x,t)

s at time t − s. The dual process is naturally defined for 0 ≤ s ≤ t
only but it is convenient to assume that the Poisson processes in the construction are defined for
negative times and ξ̂

(x,t)

s for all s ≥ 0. Unlike the voter model, {(ξ̂ (x,t)

s , s) : s ≥ 0} exhibits a
tree structure. This tree structure allows to define an ancestor hierarchy in which the members
are arranged according to the order they determine the color of (x, t). Later on, the first ancestor
in this hierarchy will be called the distinguished particle, and its location at time t − s denoted
by ξ̂

(x,t)

s (1). See Figure 7, picture on left, for an example of ancestor hierarchy and an illustration
of the path of the distinguished particle.

Even if the dual process seems to be a complicated object, it has a nice property, namely the
path of the distinguished particle can be broken at certain points into independent and identically
distributed pieces. These points are called renewal points. This, together with estimates on how
the tree behaves between the renewal points, allows us to trace the history of the tree by looking
at the location of the renewal points.

The renewal points of the dual process starting at (x, t) are well defined only if (x, t) lives

forever, that is ξ̂
(x,t)

s 6= ∅ for any s ≥ 0, an event with positive probability if λ > λc, the critical
value of the basic contact process. See, e.g., Liggett (1999). We start the dual process at (x, t)
and follow the path of the distinguished particle. Whenever the particle jumps to a site that lives
forever, we will call this point a renewal point. Let the spatial displacement between consecutive
renewal points be Xi and the corresponding temporal displacement be τi so that

Sn = x +
n

∑

i=1

Xi and Tn =
n

∑

i=1

τi

will be respectively the spatial and temporal locations of the nth renewal point (see Figure 7,
picture on right). Then, we have the following

Proposition 5.1 If the starting point (x, t) lives forever, {(Xi, τi)}i≥1 form an i.i.d. family of
random vectors on Z

d × R
+. Moreover, we have the exponential bounds

P (||Xi|| > t) ≤ C e−βt and P (τi > t) ≤ C e−βt

for appropriate C <∞ and β > 0.

See Neuhauser (1992), Section 2, for a proof. As previously explained, the process ξ̂
(x,t)

s (1) is more
complicated than a simple random walk. Proposition 5.1, however, tells us that the renewal points
define an embedded random walk for the distinguished particle. This, together with the exponential
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Figure 6. Realizations of the 1 and 2-dimensional multitype contact process. The particle system exhibits the same
behavior as the voter model, that is clustering in d ≤ 2 and coexistence in d ≥ 3.

bounds on the spatial and temporal displacement, implies that our random walk is recurrent in
d ≤ 2, and transient in d ≥ 3. Moreover, since the tree structure is linearly growing in time, the
distinguished particle will stay within a set linearly growing in time which we will call triangle.
Whenever a renewal occurs, the next triangle starts at the bottom of the preceding one. Hence, we
obtain the picture of a chain of connected triangles where we can find our distinguished particle
with probability close to 1.

To prove that clustering occurs in d ≤ 2, we pick two sites x, y ∈ Z
d, and keep track of

the distinguished particles starting at (x, t) and (y, t), respectively. By Proposition 5.1, there
exists a finite distance K such that, with probability close to 1, both ancestors move indepen-
dently to each other without collision of their triangles as long as they are separated by more
than K. Recurrence implies that, in d ≤ 2, we can bring the distinguished particles within a finite
distance K, this occurs infinitely often. Finally, as soon as both particles are within K, there is a
positive probability that they coalesce. In conclusion, we get the

Lemma 5.2 Let x, y ∈ Z
d. If d ≤ 2 then P (ξ̂

(x,t)

t (1) 6= ξ̂
(y,t)

t (1)) → 0 as t→ ∞.

The behavior when d ≥ 3 is quite different. Transience of random walks, together with the ex-
ponential bounds given in Proposition 5.1, implies that there is a positive probability that the
triangles of both distinguished particles do not collide. More precisely, we have the following

Lemma 5.3 Let ||x− y|| ≥ K. If d ≥ 3 then there exists C <∞ such that

P (|| ξ̂ (x,t)

t (1) − ξ̂
(y,t)

t (1)|| ≥ t
1/8

for all t ≥ 0) ≥ 1 − C K
−1/10 − 2CK

−3/32
.

By working a little bit more, and relying on the same arguments as in the proofs of Theorems 8
and 9, we can deduce from Lemmas 5.2 and 5.3 that

Theorem 10 If λ1 = λ2 and d ≤ 2, clustering occurs, i.e., for any initial configuration ξ0

lim
t→∞

P (ξt(x) 6= ξt(y)) = 0 ∀ x, y ∈ Z
d.

Theorem 11 If λ1 = λ2 and d ≥ 3, coexistence occurs, i.e., there is a translation invariant
stationary distribution ν such that ν (ξ(x) = 1) 6= 0 and ν (ξ(x) = 2) 6= 0.
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Figure 7. Pictures of the dual process.

5.3. More duality: The successional model

The aim of this last paragraph is to investigate in detail the duality properties of the successional
model introduced in Lanchier (2005a), and to give, through this example, a new application of
the notion of renewal points described previously. Our spatial model is a continuous-time Markov
process in which the state at time t is a function ξt : Z

d −→ {0, 1, 2}. A site x ∈ Z
d is said to

be empty if ξ(x) = 0, and occupied by a particle of type 1 (resp. 2) if ξ(x) = 1 (resp. 2). The
evolution of our successional model is given by the following transitions at site x.

0 → 1 at rate λ1

∑

0<||x−z||≤R

1{ξ(z)=1} 1 → 2 at rate 1

0 → 2 at rate λ2

∑

0<||x−z||≤R

1{ξ(z)=2} 2 → 0 at rate 1.

In words, each 1 (resp. 2) tries to give birth onto each of its neighbors at rate λ1 (resp. λ2). If the
offspring is sent to an empty site, the birth occurs, otherwise, it is suppressed. Each 1 becomes 2
at rate 1. Finally, each 2 dies, that is becomes 0, at rate 1 as well.

We called our process successional model to refer to the ecological succession phenomenon it
describes the evolution. In our ecological context, 1’s are the individuals of a so-called pioneer

species that can invade a hostile environment. The appearance of this first species then helps the
development of a second species, here the particles of type 2. In plant communities, the spontaneous
transition 1 → 2 is explained by the presence of a seed bank in the soil.

We first observe that, if only 2’s are present, the system reduces to the basic contact process
with parameter λ2. In this case, there exists a critical value λc ∈ (0,∞) such that the following
holds: If λ2 ≤ λc then the process converges in distribution to the all empty state. Otherwise,
there exists a stationary measure µ2 with µ2(ξ(x) = 2) > 0. See, e.g., Liggett (1999). To avoid
trivialities, we now start the evolution with infinitely many 1’s and 2’s, and focus on the behavior
of the particle system when both λ1 and λ2 are supercritical. The case λ1 < λ2 is easy to deal
with. We denote by ξ

1

t the process with parameters λ1 and λ2, and by ξ
2

t the process obtained
from ξ

1

t by replacing the transition 1 → 2 by 1 → 0. This makes ξ
2

t a multitype contact process
with parameters λ1 and λ2. Then, a standard coupling argument allows to define both processes
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on the same space, starting from the same configuration, in such a way that the successional
model ξ

1

t has more 2’s and fewer 1’s than the multitype contact process ξ
2

t . Theorem 1 of
Neuhauser (1992) then implies that both processes exhibit the same behavior, i.e.,

Theorem 12 If λ2 > λ1 > λc then ξt ⇒ µ2.

However, since the spontaneous transition 1 → 2 prevents the 1’s from surviving without the 2’s,
the behavior of our successional model when λ1 ≥ λ2 is quite different of that of the multitype
contact process. The next step is to prove that 2’s still win if λ1 = λ2. Although Theorem 13 is
not surprising, the proof relies on a somewhat interesting property of the dual process.

Theorem 13 If λ1 = λ2 > λc and ξ0 is translation invariant then ξt ⇒ µ2.

The rest of this section is devoted to the proof of Theorem 13, which is based on duality. The first
step will be to figure out the geometry of the dual process. In the case of the successional model,
the dual process will exhibit a tree structure divided into two stages that we will call upper and
lower trees. As for the multitype contact process introduced above, the path of the ancestors which
will determine the color of (x, t) can be broken into independent and identically distributed pieces.
In particular, in view of the sharp change of behavior of symmetric random walks depending on
the dimension, the strategy will be different in d ≤ 2 and d ≥ 3. The reader will note, however,
that the process now exhibits the same behavior in any dimension.

Geometrical properties of the dual process

To describe the dual process, we start by constructing the particle system from a collection of
independent Poisson processes. First of all, we fix λ1 = λ2, denote by λ their common value, and,
for x, z ∈ Z

d with ||x − z|| ≤ R, let {T x,z

n : n ≥ 1} be the arrival times of independent Poisson
processes with rate λ. At times T

x,z

n , we draw an arrow from site x to site z to indicate that,
if the site x is occupied and the site z is empty, then the particle at x gives birth to a particle
of the same type at z. To take into account the transitions 1 → 2 and 2 → 0, we introduce two
further collections of independent Poisson processes {U x

n : n ≥ 1} and {V x

n : n ≥ 1}, x ∈ Z
d, each

of them has parameter 1. We put a × at (x, U
x

n ) to indicate that a particle of type 2 is killed,
and a • at (x, V

x

n ) to indicate that a particle of type 1 changes its color.
At this point, the reader should see that, since the ×’s do not kill both types of particles,

the construction of a dual process from the graphical representation we have just introduced
will produce a somewhat complicated object. The main ingredient to simplify the dual process
is to observe that, since the particles of type 1 (resp. 2) do not see the ×’s (resp. the •’s),
we can superimpose the ×’s and the •’s. In other words, we remove the •’s from our graphi-
cal representation, and pretend that the ×’s effect is now to kill the particles of type 2, and
paint the particles of type 1 the color 2. In view of this new interpretation, it is natural to ex-
tend the definition of path introduced above for the multitype contact process by allowing paths
to contain at most one ×. We now give the details of our construction. We will say that the
points (x, s) and (z, t) are strongly connected, and write (x, s) → (z, t), if there is a sequence of
times s0 = s < s1 < · · · < sn+1 = t and spatial locations x0 = x, x1, . . . , xn = z so that

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segment {xi} × (si, si+1) does not contain any ×’s.

If instead of the condition 2 above we have the condition

3. The set
n
⋃

i=0

{xi} × (si, si+1) contains exactly one ×,

we will say that (x, s) and (z, t) are weakly connected, and write (x, s) ⇀ (z, t). Finally, we will
say that there is a path from (x, s) to (z, t) if both points are either strongly or weakly connected.
In view of the ×’s effect, if there is a generalized path from (x, s) to (z, t), a particle of type 1
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at (x, s) can certainly be the ancestor of a particle of type 2 at (z, t) if it goes through one × on
its way up to (z, t). In conclusion, we will define the dual process starting at (x, t) by setting

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}

where, as usual, a dual path from (x, t) to (z, t− s), 0 ≤ s ≤ t, indicates the existence of a path
from (z, t − s) to (x, t). The next step in proving Theorem 13 is to figure out the geometry of

the dual process. To begin with, we observe that {(ξ̂ (x,t)

s , s) : 0 ≤ s ≤ t} exhibits a tree structure
divided into two stages depending on the number of × (0 or 1) an ancestor has to cross to
reach (x, t). We denote by Γ the set of points that are strongly connected with (x, t), i.e.,

Γ = {(z, t− s) ∈ Z
d × R

+ : (z, t− s) → (x, t)}.

The tree Γ is broken at some points by a × at which a new tree forms. The picture of the dual
process we then obtain is that of an expanding cone of trees connected with Γ by some ×’s. In
the following, Γ will be called the upper tree starting at (x, t), and the trees starting at a × will
be called the lower trees. For an illustration, see Figure 8 where Γ is drawn in solid lines and the
lower trees in dotted lines. We now denote by ξ̂

x,1

s and ξ̂
x,2

s the dual subsets given by

ξ̂
x,1

s = {z ∈ Z
d : (z, t− s) → (x, t)} and ξ̂

x,2

s = {z ∈ Z
d : (z, t− s) ⇀ (x, t)}.

By analogy with our partition in upper and lower trees, the elements of ξ̂
x,1

s and ξ̂
x,2

s will be
called upper ancestors and lower ancestors respectively. As for the multitype contact process, the
tree structure of the dual process allows to define an ancestor hierarchy in which the members
are arranged according to the order they determine the color of (x, t). Here, the geometry of the
dual also plays an important role since the color of (x, t) strongly depends on the type of the
ancestors. To specify this idea, we now explain in greater detail how to deduce the color of (x, t)
from knowing the ancestor hierarchy and the type (upper or lower) of each ancestor.

From now on, we will call determining particle the first ancestor in the hierarchy, and distin-

guished particle the first upper ancestor. For a picture of the path of the distinguished particle,
see Figure 8. To determine the color of (x, t), we first look at the determining particle to know
which of the following four events occurs.

1. The ancestor is an upper ancestor that lands on a 1.

2. The ancestor is an upper ancestor that lands on a 2 or a lower ancestor that lands on a 1.

3. The ancestor is a lower ancestor that lands on a 2.

4. The ancestor lands on an empty site.

In the case 1 (resp. 2), the determining particle will paint (x, t) the color 1 (resp. 2) and the
algorithm is done. In the cases 3 and 4, the determining particle cannot paint (x, t) any color. In
the case 4, we repeat the same reasoning with the second ancestor of the hierarchy (instead of the
determining particle). In the case 3, the particle of type 2 can block some other ancestors from
deciding the color of (x, t). Since these ancestors cannot determine the color of (x, t) anymore, we
need to remove them from the hierarchy. To do this, we follow the determining particle on its way
up to (x, t) until the first × we encounter, remove all the ancestors of the dual process starting
at this × from the hierarchy, and repeat the same reasoning with the first ancestor of (x, t) that
is left. If after the second trial none of the ancestors painted (x, t) any color, that is one of both
cases 3 or 4 occurs one more time, we start again with the next ancestor, and so on.

Proof of Theorem 13 in dimension d ≤ 2

The strategy we will follow to prove Theorem 13 is quite different depending on the dimension.
In this paragraph, we will deal with the case d ≤ 2 relying on the recurrence of 1 and 2-dimensional
random walks.

For more convenience, we will work backwards in time by sending s 7→ t − s. We first observe
that if the upper tree Γ does not live forever then, for t sufficiently large, all the ancestors are
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Figure 8. Pictures of the dual process.

lower ancestors, i.e., ξ̂
(x,0)

t = ξ̂
x,2

t , which implies that none of the ancestors can paint (x, 0) the
color 1. To avoid trivialities, we assume from now on that Γ lives forever. We denote by Θ1 the
first time the determining particle penetrates in a lower tree Γ1 that lives forever. The algorithm
of the first ancestor implies that, after time Θ1, the determining particle stays trapped inside Γ1.
This implies that after time Θ1 (1) The paths of the determining and distinguished particles have
the same law, and (2) The determining particle can only paint (x, 0) the color 2. Motivated by the
properties (1) and (2) above, we first prove that Θ1 is a.s. finite.

Lemma 5.4 P (Θ1 = ∞) = 0.

Proof To begin with, let {sk}k≥1 be the jumping times of the determining particle, and let xk be
its location between times sk−1 and sk, with the convention s0 = 0. We denote by σ1 the first time
the ancestor meets a ×, and by Ω1 the lower tree starting at (x, σ1), that is the first lower tree the
determining particle visits. See Figure 8, picture on right. If Ω1 lives forever then Θ1 = σ1 and the
proof is done. Otherwise, we define a sequence of stopping times {σn}n≥1 and a sequence of lower
trees {Ωn}n≥1 as follows. If Ωn−1 does not live forever, we let σn be the first time the determining
particle visits a new lower tree after Ωn−1 dies, and by Ωn this lower tree. On the other hand, if
Ωn−1 lives forever, we set σn = ∞ and Ωn = ∅. The reader will note that, for any k ≥ 1, the
path the determining particle follows on its way up from (xk, sk) to (x, 0) contains exactly one ×
so that if Ωn−1 does not live forever, then σn is finite with probability 1 and Ωn is well defined.
Let N = inf {n ≥ 1 : σn = ∞}, and An be the event that Ωn lives forever. If the event An−1 does
not occur, the tree Ωn is well defined and the event An determined by parts of the graph that are
after Ωn−1 dies so An−1 and An are independent. More generally, since the trees Ω1, Ω2, . . . , Ωn

are disjoint, A1, A2, . . . , An are independent. Moreover, the probability that An occurs is equal to
p (λ), the survival probability of the contact process with parameter λ starting from one infected
site. This implies that

P (N > n) = P (Ac
1 ∩ · · · ∩ Ac

n−1 ∩ Ac
n) =

n
∏

i=1

{

1 − P (Ai)
}

= (1 − p (λ))n.

The condition λ > λc then leads to p (λ) > 0 and P (N = ∞) = 0. Finally, by observing
that Θ1 = σN , the lemma follows. �
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By Lemma 5.4, the determining particle is trapped, at some time Θ1 a.s. finite, inside a lower tree
that lives forever, which implies that the determining particle can only paint (x, 0) the color 2.
At this point, the worst scenario we have in mind is that the determining particle lands on a 2
and the distinguished particle on a 1. In such a case, the determining particle, which is a lower
ancestor, cannot paint (x, 0) any color whereas the distinguished particle can bring a particle of
type 1 to (x, 0). To see that this bad event has probability 0, we prove that the determining and
distinguished particles coalesce with probability 1. We first observe that, after time Θ1, the paths
of both ancestors have the same law. Proposition 5.1 then tells us that the path of the determining
particle can be broken into independent and identically distributed pieces at some renewal points.
The renewal points of the determining particle are defined as in § 5.2 by replacing the upper tree
Γ by the lower tree Γ1. Lemma 5.2 then implies that the determining and distinguished particles
coalesce with probability 1. In particular, we can suppose, by taking t sufficiently large, that both
ancestors land at time t on the same site. If the site both ancestors land on is occupied by a particle
of type 1, the determining particle, that is a lower ancestor by Lemma 5.4, will paint (x, 0) the
color 2. If the site is occupied by a 2, the distinguished particle will paint (x, 0) the color 2 unless
a lower ancestor succeeds earlier. Finally, if the target site is empty, we start over again with the
second ancestor, and so on. Since the tree starting at the point where both particles coalesce is
linearly growing in time and the initial configuration is translation invariant, we eventually find,
by Lemma 9.14 in Harris (1976), an ancestor landing on an occupied site that will bring a 2 to
(x, 0). This concludes the proof of Theorem 13 in d ≤ 2.

Proof of Theorem 13 in dimension d ≥ 3

The strategy to deal with the case d ≥ 3 is quite different. To begin with, we will construct
by induction an ordered set of ancestors {ηt(k)}k≥1 that are good candidates for painting (x, 0)
the color 2. By relying on Lemma 5.4, we will prove that, for k ≥ 1 and t sufficiently large, ηt(k)
is a lower ancestor that comes before the distinguished particle in the ancestor hierarchy. Then,
relying on the transience of d-dimensional random walks for d ≥ 3, we will extract a subsequence
of ancestors {ηt(ki)}i≥1 that never coalesce together. In particular, the number of sites occupied
by these candidates can be made arbitrarily large so that we will eventually find one, landing on
a particle of type 1, that will paint (x, 0) the color 2.

We start by constructing inductively the ordered ancestor set {ηt(k)}k≥1. The first member of
the sequence ηt(1) is the determining particle. Before defining the second member, we wait until
time Θ1 that the determining particle jumps in Γ1. Then, we look at the ancestor hierarchy at
that time, and discard all the ancestors that land on S0(1) or a site that does not live forever.
Here, S0(1) is the spatial location of the determining particle at time Θ1. The second member
of the sequence will be the first ancestor that is left after discarding. The reader will note that
the existence of such an ancestor follows from the fact that Γ lives forever. Then, by using the
arguments of Lemma 5.4, one can prove that ηt(2) also penetrates, at some time Θ2 a.s. finite, in a
lower tree Γ2 that lives forever. We then repeat the same procedure to define the third candidate,
and so on. For any k ≥ 1, let Γk be the infinite lower tree visited by the k-th member, Θk the
first time the ancestor penetrates in Γk, and S0(k) its spatial location at time Θk. By Proposition
5.1, the path of the k-th member can be broken, from time Θk, into i.i.d. pieces. We denote
by (Sn(k), Tn(k)) the n-th renewal point of the k-th member, by Xi(k) the spatial displacement
between consecutive renewals, and by τi(k) the corresponding temporal displacement, i.e.,

Sn(k) = S0(k) +

n
∑

i=1

Xi(k) and Tn(k) = Θk +

n
∑

i=1

τi(k).

The strategy to prove that, with probability 1, there exists a subsequence ηt(ki) of lower an-
cestors that never coalesce together can be formulated as follows. Let n ∈ N

∗, and assume that
there exist n lower ancestors ηt(k1), ηt(k2), . . . , ηt(kn) that never coalesce together. Then, given
an integer m > kn, we will prove that, with positive probability, we can

Gm,K =
Bring ηt(m) at least K units apart from each of the ηt(ki) and trap the n + 1
ancestors inside large disjoint cubes without collision of their triangles.
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Here, G is for good event. Then, relying on Lemma 5.3, we will prove that if the event Gm,K

occurs for K sufficiently large, then

lim
t→∞

|| ηt(ki) − ηt(m)|| = ∞ for i = 1, 2, . . . , n

with probability close to 1. We will then conclude by proving that with probability 1 the good
events Gm,K occur for infinitely many m > kn. In what follows, we give the proofs for the
determining particle only but the same holds for the other members of the sequence.

Lemma 5.5 Let K ∈ N
∗ and DK = [−K,K ]d. For any time t ≥ Θ1, the event B that the

determining particle leaves the box DK in less than one unit of time, and then survives without
giving birth until time t+K has positive probability.

Proof It is trivial if we think of the process as being generated by the Harris’ graphical repre-
sentation introduced above. �

Lemma 5.6 Let Ht,K be the event that the triangles of the first ancestor are inside a box z+DK

from time t to time t+K. For any ε1 > 0, there exists K such that P (Ht,K) ≥ 1 − ε1.

Proof The basic idea is to prove that the events (1) The renewal points of the determining
particle belong to z + [−K/2,K/2 ]d between times t and t + K, and (2) The triangles of the
determining particle are smaller than K/2 between times t and t+K, both occur with probability
close to 1 for K large. This is a straightforward consequence of Proposition 5.1. �

We are now ready to prove that, with probability 1, there is an integer m > kn such that ηt(m)
does not coalesce with the first n members of the subsequence ηt(ki). Let Gm,K be the event that,
for i = 1, 2, . . . , n, there is a time ti ∈ [Θm,Θm +K ] such that ηt(ki) and ηt(m) are good and at
least K units apart from each other at time t = ti.

Lemma 5.7 For any ε2 > 0, there exists K sufficiently large such that on the event Gm,K

P
(

lim
t→∞

inf
1≤i≤n

|| ηt(ki) − ηt(m)|| = +∞
)

≥ 1 − ε2.

Proof Let 1 ≤ i ≤ n, and assume that the ancestors ηt(ki) and ηt(m) are good and K units
apart at some time t ≥ Θm. Then, Lemma 5.3 implies that there exists C > 0 such that

P
(

the particles ηt(ki) and ηt(m) do never coalesce
)

= P
(

lim
t→∞

|| ηt(ki) − ηt(m)|| = +∞
)

≥ 1 − C K
−1/10 − 2C K

−3/32
.

In particular, for K sufficiently large,

P
(

ηt(ki) and ηt(m) coalesce for some 1 ≤ i ≤ n
)

≤
n

∑

i=1

P
(

ηt(ki) and ηt(m) coalesce
)

≤ nC K
−1/10

+ 2nCK
−3/32 ≤ ε2.

This proves the lemma. �

Lemma 5.8 There exists K sufficiently large such that P (lim supm→∞Gm,K) = 1.

Proof Since the n lower ancestors ηt(ki) do not coalesce and that Θm → ∞, Lemma 5.7 implies
that there exists an integer m such that the distances between the ancestors at time Θm are
bigger than 4

√
dK. For i = 1, 2, . . . , n, we denote by Hi the event that the triangles of ηt(ki)
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are contained, between time Θm and time Θm +K, in some box Ωi = zi +DK . The reader will
observe that m has been chosen so that Ωi ∩ Ωj = ∅ as soon as i 6= j. In particular, the good
events Hi, i = 1, 2, . . . , n, are determined by disjoint parts of the graph, and then are independent.
This together with Lemma 5.6 implies that, for K sufficiently large,

P (H1 ∩ H2 ∩ · · · ∩ Hn) =

n
∏

i=1

P (Hi) ≥ 1 − n ε1.

Now that the n lower ancestors ηt(ki), 1 ≤ i ≤ n, are trapped inside large disjoint cubes, we
require each of them to be good at least once between time Θm and time Θm + K. Since this
occurs if each of the n ancestors has at least one renewal in this interval of time, the probability
that this event occurs can be bounded from below by

n
∏

i=1

P (τ1(ki) < K) ≥
[

1 − C e−β K
]n

for appropriate C < ∞ and β > 0. To conclude, the last thing we require is that ηt(m) is good
and at least K units apart from each other ancestor between time Θm +1 and time Θm +K. Since
the cubes Ωi are at least 2K units apart from each other, this occurs, by Lemma 5.5, with positive
probability. Putting things together, it follows that there exists ε3 > 0 such that P (Gm,K) ≥ ε3
for m sufficiently large. Finally, by observing that the events Gm1,K and Gm2,K are independent
as soon as |Θm1 − Θm2 | > K, we can conclude, by the Borel-Cantelli Lemma, that, for infinitely
many m ≥ 1, the good event Gm,K occurs. �

To conclude the proof of Theorem 13, we now denote by B
(x,0)

s the set of sites x ∈ Z
d occupied at

time s by a particle of type 1, and set

ηt = {ηt(k) : k ≥ 1 with Θk ≤ t}.

First of all, Lemma 5.7 implies that if the event Gm,K occurs, then the ancestor ηt(m) coalesces
with one of the ηt(ki), 1 ≤ i ≤ n, with probability < ε2. In other respects, Lemma 5.8 tells us
that the good event Gm,K occurs for infinitely many m ≥ 1. This implies that, by choosing t
sufficiently large, the cardinality of ηt can be made arbitrarily large. More precisely, for any ε > 0
and M > 0, there exists a time t0 ≥ 0 such that P (card ηt < M) ≤ ε for t ≥ t0. Lemma 9.14 of
Harris (1976) and the translation invariance of the initial configuration then imply that

lim
t→∞

P (ηt ∩ B
(x,0)

t = ∅) = 0.

In particular, if t is large, there will be a lower ancestor ηt(n) occupied by a particle of type 1. We
now look at the ancestors that come before ηt(2) in the hierarchy until we find one that lands on
an occupied site. If a 1 stands at this site, the ancestor will paint (x, 0) the color 2 and the proof is
done. If a 2 stands at this site, S0(1) will be empty at time Θ

−

1 whatever the color of the sites the
next ancestors land on. So, we look at ηt(2), and so on. If none of the ancestors that come before
ηt(n) in the hierarchy succeeds in painting (x, 0) the color 2, ηt(n) will do it. This completes the
proof of Theorem 13.

For another illustration of the duality techniques we have just introduced, we refer the reader
to Lanchier (2005b) where we investigate the multitype contact process with frozen states.
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Phase transitions and duality properties of a

successional model

N. Lanchier

Abstract The first purpose of this article is to study the phase transitions of a new in-
teracting particle system. We have two types of particles. Each type gives birth to particles
of the same type as the parent. The second type can die while the first one mutates into
the second one. Specifically, we prove that the three possible evolutions of the process, that
is extinction, survival of 2’s, or coexistence, may occur depending on the selected parame-
ters. The main objective, however, is to investigate the duality properties of the process; the
corresponding dual process exhibits a structure somewhat different from that of well-known
particle systems.

1. Introduction

The spatial model we introduce in this paper is a continuous-time Markov process in which the
state at time t is a function ξt : Z

d −→ {0, 1, 2}. A site x ∈ Z
d is said to be empty if ξ(x) = 0, and

is said to be occupied by a particle of type 1 (resp. 2) if ξ(x) = 1 (resp. 2). The evolution rules
can be formulated as follows:

1. Each 1 (resp. 2) tries to give birth onto each of its neighbors at rate λ1 (resp. λ2). Here, the
neighbors of a site x ∈ Z

d is the set of y ∈ Z
d such that ||x − y|| ≤ R where || · || is a norm

and where R is a positive constant.

2. If the offspring is sent to an empty site, the birth occurs. Otherwise, it is suppressed.

3. Each 1 becomes 2 at rate 1.

4. Each 2 dies, that is becomes 0, at rate 1.

We called our process successional model to refer to the ecological succession phenomenon it
describes the evolution. In our ecological context, 1’s are the individuals of a so-called pioneer

species that can invade a hostile environment. The appearance of this first species then helps the
development of a second species, here the particles of type 2. In plant communities, the spontaneous
transition 1 → 2 is explained by the presence of a seed bank in the soil.

First of all, if only 2’s are present, the system reduces to the contact process with parameter λ2.
In this case, there exists a critical value λc ∈ (0,∞) such that the following holds: If λ2 ≤ λc then
the process converges in distribution to the all empty state. Otherwise, there exists a stationary
measure µ2 that concentrates on configurations with infinitely many 2’s. See, e.g., Liggett (1999).
To avoid trivialities, we assume from now on that ξ0 contains infinitely many 1’s and 2’s.

We first suppose that λ1 ≥ λ2 > λc and consider two initial configurations ξ
1

0 and ξ
2

0 such
that ξ

2

0 (x) = 0 if ξ
1

0 (x) = 0, and ξ
2

0 (x) = 2 otherwise, i.e., ξ
2

0 can be deduced from ξ
1

0 by
replacing each 1 by a 2. This makes ξ

2

t a contact process with parameter λ2 > λc. Then, relying
on a standard argument from Harris (1972) we may run both processes on the same probability
space in such a way that if ξ

2

t (x) = 2 then ξ
1

t (x) 6= 0. This implies, in particular, that 2’s
survive, i.e., P (∀ t ≥ 0, ∃ x : ξ

1

t (x) = 2) = 1. We now suppose that λ2 > λ1 > λc. In this case,
due to a lack of monotonicity, the previous coupling fails. We then take ξ

1

0 = ξ
2

0 and replace
the transition 1 → 2 in ξ

1

t by the transition 1 → 0 in ξ
2

t . This makes ξ
2

t a multitype contact
process with parameters λ1 and λ2 (see Neuhauser, 1992). By running both processes on the same
space as before, one can prove that ξ

1

t has more 2’s and fewer 1’s than ξ
2

t . Then, the results
of Section 3 in Durrett and Neuhauser (1997) implies that ξ

1

t ⇒ µ2. Here, ⇒ denotes weak
convergence. These results are summarized in the following theorem.

AMS 2000 subject classifications: Primary 60K35; 82C22
Keywords and phrases: Competition model, multitype contact process, forest fire model, duality.
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Theorem 1 We set λ2 > λc. If λ1 ≥ λ2 then 2’s survive, i.e., P (∀ t ≥ 0, ∃ x : ξt(x) = 2) = 1.
If λ1 < λ2 then 2’s win, i.e., ξt ⇒ µ2, the upper invariant measure of the contact process.

We now focus on λ2 close to 0. If we suppress the transition 0 → 2, namely if λ2 = 0, we
can view the process as a forest fire model. In words, 0 = alive, 1 = on fire, and 2 = burnt.
By using a rescaling argument, Durrett and Neuhauser (1991) proved that, in the 2-dimensional
nearest neighbor case, the process exhibits a phase transition. More precisely, there is a critical
value αc ∈ (0,∞) such that if λ1 > αc then there exists a nontrivial stationary measure ν that
concentrates on configurations with infinitely many 1’s and 2’s. Theorem 2 tells us that 1’s and
2’s still coexist for sufficiently small λ2 > 0.

Theorem 2 Assume that ξ0 contains infinitely many 1’s. If d = 2 and λ1 > αc there is βc ∈ (0,∞)
such that if λ2 ≤ βc then 1’s and 2’s coexist, i.e., ξt ⇒ ν with ν(ξ(x) = 1) 6= 0.

We now come to the main result of this paper: To improve Theorem 1 by proving that 2’s still
win if λ1 = λ2. Although Theorem 3 is not surprising, the proof relies on a somewhat interesting
property of the dual process.

Theorem 3 Assume that the configuration ξ0 contains infinitely many 2’s and is translation
invariant. If λ1 = λ2 > λc then 2’s win, i.e., ξt ⇒ µ2.

The main ingredient of the proof is duality. To figure out the structure of the dual process, we will
start by focusing on the multitype contact process that we denote by ηt : Z

d −→ {0, 1, 2}. Then
we will see how to construct both processes ξt and ηt using the same graphical representation and
what makes the dual process of ξt different from that of the multitype contact process. First of all,
we fix λ1 = λ2, denote by λ their common value, and, for x, y ∈ Z

d, ||x−y|| ≤ R, let {T x,y

n : n ≥ 1}
and {U x

n : n ≥ 1} be the arrival times of Poisson processes with rates λ and 1 respectively. At
times T

x,y

n , we draw an arrow from site x to site y while at times U
x

n , we put a cross × at site x.
This may be interpreted as follows. If at time T

x,y

n , the site x is occupied and the site y empty then
the particle at x gives birth to a particle of the same type at y. At time U

x

n , we remove the particle
at x if it is present. These evolution rules make ηt the multitype contact process with parameters
λ1 = λ2 = λ. (See Neuhauser (1992) for a complete study of this process). Finally, we say that
there is a path from (y, 0) to (x, t) if there is a sequence of times s0 = 0 < s1 < · · · < sn+1 = t
and spatial locations x0 = y, x1, . . . , xn = x such that the following two conditions hold.

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any ×’s.

Since the ×’s kill both types of particles, the ancestor of a particle at x at time t can be located
at y at time 0 only if there is a path from (y, 0) to (x, t). In conclusion, the dual process starting
at (x, t), that is the set of the potential ancestors of site x at time t, will be defined by reversing
the arrows and letting

η̃
(x,t)

s = {y ∈ Z
d : there is a path from (x, 0̃) to (y, s̃)}

where s̃ = t− s. From a topological point of view, it is known that the set {(η̃ (x,t)

s , s) : 0 ≤ s ≤ t}
exhibits a tree structure. See for instance Durrett (1995), Liggett (1999), or Neuhauser (1992).

A natural way to construct our successional model would be to introduce a new collection of
Poisson processes {V x

n : n ≥ 1}, x ∈ Z
d, with rate 1, put a dot • at site x at time {V x

n : n ≥ 1},
and pretend that the ×’s effect is now to kill the particles of type 2 only while the •’s effect is to
paint the particles of type 1 the color 2. The first ingredient in proving Theorem 3 is to observe
that, since the particles of type 1 (resp. 2) do not see the ×’s (resp. the •’s), we can superimpose
the ×’s and the •’s. In other words, we use the same collections of Poisson processes as in the
multitype contact process, namely we remove the •’s, and say that if at time U

x

n the site x is
occupied by a particle of type 1 (resp. of type 2) then we paint this particle the color 2 (resp. we
kill this particle). Relying on this graphical representation, it is natural to extend the definition
of path by replacing the condition 2 above with
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3. The set

n
⋃

i=0

{xi} × (si, si+1) contains at most one ×.

That is, a path is now allowed to contain at most one ×. In view of the ×’s effect, if there is a
path from (y, 0) to (x, t) then a particle of type 1 at y at time 0 can certainly be the ancestor of
a particle of type 2 located at x at time t if it goes through one × on its way up to (x, t). If we
define the dual process starting at (x, t) by letting

ξ̃
(x,t)

s = {y ∈ Z
d : there is a path from (x, 0̃) to (y, s̃)},

the set {(ξ̃ (x,t)

s , s) : 0 ≤ s ≤ t} now exhibits a tree structure divided into two stages depending
on the number of × (0 or 1) an ancestor has to cross to reach (x, t). Then, a site y ∈ Z

d will
be called an upper ancestor (resp. a lower ancestor) at time s if there is a path from (y, s) to
(x, t) containing 0 (resp. 1) ×. We will use the terminology upper stage (resp. lower stage) to
refer to the set of the upper (resp. lower) ancestors. Here, as in the mutitype contact process, the
tree structure of the dual process allows us to define an ancestor hierarchy in which the members
are arranged according to the order they determine the color of (x, t). The first ancestor in the
hierarchy will be called the determining particle, and the first upper ancestor the distinguished

particle.
With this construction in mind, we can sketch the proof of Theorem 3 as follows. The first

step is to prove that the last time Θ1 at which the determining particle belongs to the upper
stage of the tree structure is a.s. finite, i.e., P (Θ1 = ∞) = 0. The rest of the proof then relies
on the observation that, once trapped inside the lower stage, the determining particle can only
paint (x, t) the color 2 since the ×’s effect is to change the color of the 1’s. In d ≤ 2, we will wait
until time Θ1 and then prove that the distinguished particle and the determining particle coalesce
with probability 1 so that they will land for t sufficiently large on the same site. If this site is
initially occupied by a particle of type 1, the determining particle will paint (x, t) the color 2. If
the site is occupied by a particle of type 2, the distinguished particle will paint (x, t) the color 2
unless a lower ancestor does it earlier. In d ≥ 3, we will rely on the fact that Θ1 <∞ to construct
inductively a sequence of lower ancestors ζs(k) that come before the distinguished particle in the
ancestor hierarchy. We will then extract a subsequence of candidates ζs(ki) that do not coalesce
together, and we will conclude that at least one lands on a 1 and paints (x, t) the color 2.

In conclusion, the phase diagram looks like Figure 1 where our theorems are summarized. For
the same reasons as Durrett and Neuhauser (1991), we do not know how to prove that the prob-
ability that coexistence occurs is increasing with respect to λ1 but simulations in dimension 2
exhibit such a picture. We also conjecture the existence of a critical interval Ic such that for any
λ1 ∈ Ic the three possible evolutions can occur. In particular, if λ1 ∈ Ic and λ2 ≤ λc we can notice
that the probability that the 2’s survive is paradoxically decreasing with respect to λ2.

Except Section 2 that focuses on Theorem 2, the rest of the article is devoted to the proof of
Theorem 3. In Section 3 we investigate in greater details the duality properties of the process.
Relying on the construction given in Section 3, we then prove Theorem 3 in two steps. In Section
4, we start by dealing with the case d ≤ 2, and then conclude in Section 5 with the case d ≥ 3.

2. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. In particular, we will prove that, in dimension
2, coexistence occurs for an open set of values (λ1, λ2) in R

2. We conjecture that such a property
holds in any dimension but our proof heavily relies on Lemma 1.1 of Durrett and Neuhauser (1991)
that has been proved in d = 2 only.

If λ2 = 0, we recall that 0 can be interpreted as a living tree, 1 as a burning tree and 2 as a
burnt site. We let B = (−L,L)2 and, for any m ∈ Z, Bm = mLe1 + B, where e1 = (1, 0) is the
first unit vector of Z

2. For (m,n) ∈ Z
2 with m and n both even or m and n both odd, we say that

(m,n) is occupied if the following two conditions are satisfied.
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Figure 1. Phase diagram.

1. There are more than
√
L burning trees in Bm at some time t ∈ [nΓL, (n+ 1)ΓL ].

2. There is at least one burning tree in Bm at all times t ∈ [(n+ 1)ΓL, (n+ 2)ΓL ].

Here Γ is a positive constant that will be fixed later. The following lemma implies that there exists
a critical value αc ∈ (0,∞) such that coexistence occurs for λ1 > αc and λ2 = 0.

Lemma 2.1 (Durrett and Neuhauser) There exists αc ∈ (0,∞) such that if λ1 > αc and
λ2 = 0 then Γ and L can be chosen so that the set of occupied sites dominates the set of wet sites
in a one-dependent oriented percolation process with parameter p = 1 − 6−36.

See Durrett and Neuhauser (1991), Lemma 1.1. Now, given Γ and L, it is clear that there
exists βc ∈ (0,∞) such that if λ2 ≤ βc the probability that the 2’s give birth in the space-
time box Bm × [nΓL, (n+ 2)ΓL ] can be bounded by 6−36. This implies that Lemma 2.1 holds
for λ2 ≤ βc and p = 1 − 2 × 6−36. In particular, there exists, for λ1 > αc and λ2 ≤ βc, an
infinite cluster of occupied sites. See Durrett (1984), Section 10. In conclusion, there is a station-
ary distribution that concentrates on configurations with infinitely many 1’s and 2’s. See, e.g.,
Durrett (1995), Section 4. This completes the proof of Theorem 2.

3. Construction and properties of the dual process

From now on and until the end of this paper, we suppose that λ1 = λ2 and denote by λ their
common value. We start by constructing the process from a collection of Poisson processes in the
following way. For x, y ∈ Z

d, ||x − y|| ≤ R, we let {T x,y

n : n ≥ 1} and {U x

n : n ≥ 1} be the arrival
times of Poisson processes with rates λ and 1 respectively. At times T

x,y

n , we draw an arrow from
x to y to indicate that a birth may occur. More precisely, if x is occupied and y is vacant then the
particle present at site x gives birth in y to a particle of the same type. At times U

x

n , we put a
cross × at x to indicate that a particle of type 1 present at x becomes 2 while a particle of type
2 is killed. A result of Harris (1972) implies that such a graphical representation can be used to
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construct the process starting from any initial configuration ξ0 : Z
d −→ {0, 1, 2}. See Figure 2 for

a picture of the graphical representation.
After constructing the graphical representation, we can now define the dual process. We say

that (x, 0) and (y, t) are strongly connected, and write (x, 0) → (y, t), if there is a sequence of
times s0 = 0 < s1 < · · · < sn+1 = t and spatial locations x0 = x, x1, . . . , xn = y so that

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any ×’s.

If instead of 2 we have the condition

3. The set

n
⋃

i=0

{xi} × (si, si+1) contains exactly one ×,

we say that (x, 0) and (y, t) are weakly connected, and write (x, 0) ⇀ (y, t). Since the ×’s do not
kill the 1’s but change them into 2’s, we must take into account the paths that contain one × in
the construction of the dual. So, to define the dual process, we reverse the arrows and time by
mapping s̃ = t− s, and let

ξ̃
(x,t)

s = {y ∈ Z
d : (x, 0̃) → (y, s̃) or (x, 0̃) ⇀ (y, s̃)}.

Since it will be easier to work with a forward process than a backward process, we also introduce
the dual ξ̂

(x,0)

s that is constructed from the graphical representation that has an arrow from x
to y at time T

x,y

n and that is defined by

ξ̂
(x,0)

s = {y ∈ Z
d : (x, 0) → (y, s) or (x, 0) ⇀ (y, s)}.

This can be done because the processes ξ̃
(x,t)

s and ξ̂
(x,0)

s have the same law. Before going into the
proof of Theorem 3, we now investigate the geometry of the dual process. First of all, we can
observe that {(ξ̂ (x,0)

s , s) : s ≥ 0} has a tree structure constituted of the points that are either
strongly or weakly connected. Let Γ be the set of points strongly connected with (x, 0), i.e.,

Γ = {(y, t) ∈ Z
d × R

+ : (x, 0) → (y, t)}.
It is clear that the tree Γ is broken at some points by a × at which a new tree forms. So the
picture we obtain is that of an expanding cone of trees connected with Γ by some ×’s. In the
following, Γ will be called the upper tree starting at (x, 0) and the trees starting at a × the lower

trees. For an illustration, see Figure 3 where Γ is drawn in solid lines and the lower trees in dotted
lines. Although the dual process seems to be a complicated object, in view of the translation
invariance of the graphical representation, one can break it up into identically distributed pieces.
More precisely, the upper tree and each of the lower trees have the same law as the tree structure of
the contact process with parameter λ. See e.g., Durrett (1995) or Liggett (1999) for a construction

of the contact process. We now denote by ξ̂
x,1

s and ξ̂
x,2

s the dual subsets given by

ξ̂
x,1

s = {y ∈ Z
d : (x, 0) → (y, s)} and ξ̂

x,2

s = {y ∈ Z
d : (x, 0) ⇀ (y, s)}.

By analogy with the cutting of the tree structure in upper tree and lower trees, the elements
of ξ̂

x,1

s and ξ̂
x,2

s will be called respectively upper ancestors and lower ancestors. As for the mul-
titype contact process, the tree structure of the dual process allows to define an ancestor hi-
erarchy in which the members are arranged according to the order they determine the color
of (x, 0). Here, the geometry of the dual plays an important part since the color of (x, 0) strongly
depends on the type of the ancestors. To specify this idea, we now explain in greater detail how
to deduce the color of (x, 0) from the ancestor hierarchy and the type of each of them.

First of all, we denote by ξ̂
(x,0)

s (n) the n-th member of the ordered ancestor set and let ξ̂
x,1

s (k) =

ξ̂
(x,0)

s (nk) be the k-th upper ancestor. Later on, ξ̂
(x,0)

s (1) and ξ̂
x,1

s (1) will be called the determining

particle and the distinguished particle respectively. For a picture of the path of the distinguished
particle, see Figure 3. We now give an algorithm to determine the color of (x, 0) depending on the
type of each ancestor and the initial configuration. First of all, we look at the determining particle
to know which of the following four events occurs.
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Figure 2. Harris’ graphical representation. The black lines refer to the 1-particles, the gray ones to the 2-particles,
and the dotted ones to empty sites.

1. The ancestor is an upper ancestor that lands on a 1.

2. The ancestor is an upper ancestor that lands on a 2 or a lower ancestor that lands on a 1.

3. The ancestor is a lower ancestor that lands on a 2.

4. The ancestor lands on an empty site.

In the case 1 (resp. 2), the determining particle will paint (x, 0) the color 1 (resp. 2) and the
algorithm is done. In the cases 3 and 4, the determining particle cannot paint (x, 0) any color.
In the case 4, we repeat the same reasoning with the second ancestor of the hierarchy (instead
of the determining particle). In the case 3, the particle of type 2 can block some other ancestors
from determining the color of (x, 0). Since these ancestors cannot determine the color of (x, 0)
anymore, we need to remove them from the hierarchy. To do this, we follow the determining
particle on its way up to (x, 0) until the first × we encounter, remove all the ancestors of the dual
process starting at this × from the hierarchy and repeat the same reasoning with the first ancestor
of (x, 0) that is left. If after the second trial no ancestor can paint (x, 0) any color, that is one of
both cases 3 or 4 occurs one more time, we start again with the next ancestor, and so on.

We now refer to the right side of Figure 3 for an example of application. The determining
particle is a lower ancestor that lands on a 2 (case 3) so it cannot paint (x, 0) any color. The first
× the determining particle encounters on its way up is located at site x at the top of the picture.
The ancestors of this × are the determining particle and the second ancestor so we try again with
the third ancestor. The third ancestor lands on an empty site (case 4) so we look at the fourth
ancestor. The fourth ancestor is an upper ancestor that lands on a 1 (case 1) so it paints (x, 0)
the color 1 and the algorithm is done.

As we will see further, the state of (x, 0) strongly depends on the spatial location of the first
ancestor and of the distinguished particle. Fortunately, by using an idea of Kuczek (1989), one
can easily manage the path of the distinguished particle, which is crucial to the proof of Theorem
3. To be precise, its path can be broken into i.i.d. pieces at certain points called renewal points.
To define these points, we follow the path of the distinguished particle starting at (x, 0) and, each
time it jumps to a site that lives forever, call this site a renewal point. Let (Sn, Tn) be the location
of the n-th renewal. We denote by Xi the spatial displacement between consecutive renewal points,
and by τi the corresponding temporal displacement so that

Sn = x +
n

∑

i=1

Xi and Tn =
n

∑

i=1

τi.
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Figure 3. Pictures of the dual process.

One of the main ingredients we need to prove Theorem 3 is then given by the following proposition.
For the details of the proof, see Neuhauser (1992), Section 2.

Proposition 3.1 (Neuhauser) If the upper tree lives forever, {(Xi, τi)}i≥1 form an i.i.d. family
of random vectors on Z

d × R
+. Moreover, we have the exponential bounds

P (||Xi|| > t) ≤ C e−βt and P (τi > t) ≤ C e−βt

for appropriate C <∞ and β > 0.

Sketch of the proof First of all, denote by σ0 the first jumping time of the distinguished
particle, that is σ0 = inf {t > 0 : ξ̂

x,1

t (1) hits a ×}, by x1 its spatial location after σ0, and by
β1 the branch of Γ starting at (x1, σ0). See Figure 4, picture on right. If β1 lives forever then
(x1, σ0) is the first renewal point. Else, we define the sequences {(xk, σk−1)}k≥1 and (βk)k≥1 as
follows. If σk−1 <∞, let xk be the location of the particle after σk−1 and βk the branch starting
at (xk, σk−1). Note that such a branch always exists since we have supposed that Γ lives forever.
Then denote by σk the time when βk dies out. The sequences are defined until σk is equal to
infinity. If σk = ∞ then βk lives forever and (xk, σk−1) is the first renewal point of the distin-
guished particle. To determine the next one, we start over again the whole procedure replacing
(x, 0) by (xk, σk−1), and so on. Now, it is clear that from time σk−1 the particle stays forever
inside βk so that its path only depends on βk. In particular, what happens before and after σk−1

is determined by disjoint parts of Γ. This implies that the random variables (Xi, τi) are indepen-
dent. Moreover, since the graphical gadget is translation invariant, the vectors (Xi, τi) are also
identically distributed. For a proof of the exponential bounds, see Neuhauser (1992), Section 2. �

In conclusion, Proposition 3.1 gives us control over the location of the distinguished particle at the
renewal points. Moreover, the contact process grows at most linearly in space (see e.g., Durrett
(1988), Section 1) so between consecutive renewals the particle stays within a set linearly growing
which we will call triangle in the next sections.
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Figure 4. Pictures of the dual process.

4. Proof of Theorem 3 in dimension ≤ 2

The techniques and tools we will make use to prove Theorem 3 are quite different depending
on the dimension of the state space. In this section, we deal with the case d ≤ 2 relying on the
recurrence of 1 and 2-dimensional random walks. To begin with, we will show that the determin-
ing particle is trapped with probability 1 inside a lower tree that lives forever so that, for t large
enough, the determining particle is a lower ancestor. At this point, the worst scenario we have in
mind is that the distinguished particle lands on a 1 and the determining particle on a 2. In such a
case the determining particle, which is a lower ancestor, cannot paint (x, 0) any color whereas the
distinguished particle can possibly bring a 1 to (x, 0). To conclude, we will then prove that this
bad event is negligible showing that, with probability 1, we can make coalesce the distinguished
particle and the determining particle together and so make them land on the same site. If this site
is occupied by a particle of type 1, the determining particle will paint (x, 0) the color 2. If the site
is occupied by a particle of type 2, the distinguished particle will paint (x, 0) the color 2 unless a
lower ancestor does it earlier.

First of all, we can observe that if the upper tree starting at (x, 0) does not live forever then,

for t large enough, ξ̂
(x,0)

t = ξ̂
x,2

t . In particular, since each of the lower ancestors meets one ×, the
point (x, 0) cannot be reached in this case by a 1 (see the description of the ancestor hierarchy
in Section 3). So, to avoid trivialities, we suppose that the upper tree Γ lives forever. Note that
the probability of such an event is equal to the survival probability of the contact process with
parameter λ starting from one infected site, that is positive since λ > λc. The first step is to prove
that the determining particle is a.s. trapped inside a lower tree after a finite time. More precisely,
if we let Θ1 be the last time the determining particle is strongly connected with (x, 0) then

Lemma 4.1 P (Θ1 = ∞) = 0.

Proof To begin with, let sk, k ≥ 1, be the jumping times of the determining particle and xk its
location before sk. Denote by σ1 the first time the particle meets a ×, i.e.,

σ1 = inf {t ≥ 0 : ξ̂
(x,0)

t (1) is a lower ancestor},
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and by Ω1 the lower tree starting at (x1, σ1), that is the first lower tree the particle visits. See
Figure 5, picture on left. In view of the duality properties, once the particle penetrates in Ω1, it
remains trapped inside (as long as the lower tree is alive). Hence, if Ω1 lives forever, ξ̂

(x,0)

t (1) is
a lower ancestor for any t ≥ σ1, and the proof is done. Otherwise, we denote by σ2 the first time
the determining particle visits a new lower tree after Ω1 dies and by Ω2 this lower tree. Note that
for all k ≥ 1 the path the particle takes to climb from (xk, s

−
k ) to (x, 0) contains one × so σ2

is a.s. finite and Ω2 is well defined. While the particle is not trapped in a lower tree that lives
forever, we thus construct by induction a sequence of trees Ωk visited by the first ancestor. Now,
denote by Bn the event that the first n trees Ω1, Ω2, . . . , Ωn are bounded and, for any k ≥ 1,
by Ak the event that the k-th tree lives forever. If Ak does not occur then Ωk+1 is well defined
and the event Ak+1 is determined by parts of the graph that are after Ωk dies so Ak and Ak+1

are independent. More generally, since the trees Ω1, Ω2, . . . , Ωk+1 are disjoint, A1, A2, . . . , Ak+1

are independent. Moreover, since Ωk has the same distribution as the tree structure of the contact
process, the probability that Ak occurs is given by p (λ), the survival probability of the contact
process with parameter λ starting from one infected site. This implies that

P (Bn) = P (Ac
1 ∩ . . . ∩ Ac

n−1 ∩ Ac
n) =

n
∏

k=1

P (Ac
k) = (1 − p (λ))n.

Finally, since λ is supercritical, the survival probability of the contact process p (λ) is strictly
positive so that limn→∞ P (Bn) = 0. This completes the proof of the lemma. �

The next step is to prove that the determining and distinguished particles coalesce with prob-
ability 1. To do this, we first note that after penetrating in a lower tree Γ1 that never dies, the
determining particle is weakly connected with (x, 0) and so jumps to a new branch each time it
meets a ×. In particular, from time Θ1, the path of the determining particle can be broken up, as
that of the distinguished particle, into i.i.d. pieces. We define the renewal points of the determining
particle as before replacing the upper tree Γ by the lower tree Γ1 starting at (S0(1),Θ1). Here,
S0(1) is the site where the determining particle jumps at time Θ1. We denote by (Sn(1), Tn(1))
the location of the n-th renewal after Θ1, and by Xi(1) and τi(1) the spatial and temporal dis-
placements between two consecutive renewals, so

Sn(1) = S0(1) +

n
∑

i=1

Xi(1) and Tn(1) = Θ1 +

n
∑

i=1

τi(1).

By translation invariance of the graphical representation (see the description of the tree structure
in Section 3), the families {(Xi, τi)}i≥1 and {(Xi(1), τi(1))}i≥1 are identically distributed so Propo-
sition 3.1 holds again for the random vectors (Xi(1), τi(1)). In particular, as long as their triangles
do not collide, both particles behave nearly like independent random walks. This constitutes the
main ingredient to prove coalescence.

The first idea to establish coalescence is to extend the notion of renewals for both particles,
that is to break up the set of both paths into i.i.d. pieces. To do this, we say that an ancestor is
good at time t if it did not meet any arrow since its last renewal. Observe that if both particles are
good at the same time, what happens before and after that time uses disjoint parts of the graph
and then is independent. We now prove that both particles are good i.o. at the same time.

Lemma 4.2 P (the determining and distinguished particles are good at the same time i.o.) = 1.

Proof To begin with, we construct by induction two sequences of subscripts (nk)k≥0 and (mk)k≥1

as follows. We let n0 = 1, and for any k ≥ 1

mk = min {m ≥ 1 : Tm > Tnk−1
(1)} and nk = min {n ≥ 1 : Tn(1) > Tmk

}.

See Figure 5, picture on right, for an illustration. Then, denote by Ek the event that the deter-
mining particle lives without giving birth between time Tnk−1

(1) and time Tmk
. Note that if Ek
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Figure 5. Pictures of the dual process.

occurs then both particles are obviously good at time Tmk
. Moreover, in view of the exponential

bound given by Proposition 3.1, for any time T > 0

P (Tmk
− Tnk−1

(1) > T ) ≤ P (Tmk
− Tmk−1 > T ) = P (τ1 > T ) ≤ C e−βT

so that P (Ek) ≥ (1−C e−βT ) e−(1+2dλ)T . Here, e−(1+2dλ)T is the probability that the determining
particle lives without giving birth for T units of time. Since this holds for all T > 0, there exists a
constant ε0 > 0 such that P (Ek) ≥ ε0. In other respects, the events Ek are determined by disjoint
parts of the graphical gadget so they are independent. Hence, by the Borel-Cantelli Lemma, we
can conclude that

P (both particles are good at the same time i.o.) ≥ P ( lim sup
k→∞

Ek) = 1.

This proves the lemma. �

To make coalesce both particles together, we now proceed in two steps. First of all, relying on
the recurrence of 1 and 2-dimensional random walks, Neuhauser (1992) proved that with positive
probability we can bring both particles within a finite distance K without collision of their trian-
gles. Then, as soon as the particles are close enough to each other, we try to make them coalesce.
More precisely, we have the following lemma.

Lemma 4.3 If the determining and distinguished particles are within a finite distance K at some
time t ≥ Θ1 then the event A that they coalesce has positive probability.

Proof To find a lower bound for P (A), we consider the following particular event. We require
the distinguished particle to keep still for 3dK units of time and the determining particle to jump
toward the distinguished particle until they coalesce. To estimate this event, we observe that since
both ancestors are within a distance K it takes the determining particle at most dK steps by
increasing or decreasing each of its coordinates to reach the distinguished particle. Moreover, the
probability of having neither birth nor death between times 0 and 1, a good oriented arrow between
times 1 and 2, and a death between times 2 and 3 is given by

e−2 (1 − e−1) e−(4d−1)λ (1 − e−λ).

Since it takes the determining particle at most 3dK units of time to reach the distinguished particle
in the manner just described, we can conclude that

P (A) ≥ e−3dK(1+2dλ)
[

e−2 (1 − e−1) e−(4d−1)λ (1 − e−λ)
]dK

> 0
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where e−3dK(1+2dλ) is the probability that the distinguished particle survives without giving birth
for 3dK units of time. This completes the proof. �

If we do not succeed in gluing the particles together, we use the restart argument given by Lemma
4.2, i.e., we wait until both particles are good at the same time and then start over again the whole
procedure. Since the set of both paths is broken into i.i.d. pieces, we can apply the Borel-Cantelli
Lemma to conclude that coalescence eventually occurs with probability 1.

To complete the proof of Theorem 3 in d ≤ 2 we now use the dual process ξ̃
(x,t)

s , 0 ≤ s ≤ t,
starting at (x, t) and determine the ancestor hierarchy after t units of time by going backwards in
time. First of all, since both particles coalesce a.s., we can suppose by taking t large enough that
they land at time 0 on the same site. If this site is occupied by a 1, the determining particle, that
is a lower ancestor by Lemma 4.1, will paint (x, t) the color 2. On the other hand, if both land on a
2, it is the distinguished particle that will paint (x, t) the color 2 unless a lower ancestor succeeds
earlier. Finally, if the target site is empty, we start over again with the second ancestor, and so
on. Since the tree starting at the point where both particles coalesce is linearly growing in time
and ξ0 is translation invariant, we eventually find, by Lemma 9.14 in Harris (1976), an ancestor
landing on an occupied site that will bring a 2-particle to (x, t). This concludes the proof.

5. Proof of Theorem 3 in dimension ≥ 3

The strategy of the proof to deal with the case d ≥ 3 is quite different. To begin with, we
will construct by induction an ordered set of ancestors ζt(k), k ≥ 1, that are candidates for
painting (x, 0) the color 2. Using Lemma 4.1, we will prove that for any k ≥ 1, and for t suffi-
ciently large, ζt(k) is a lower ancestor that comes before the distinguished particle in the ancestor
hierarchy. Then, relying on the transience of d-dimensional random walks for d ≥ 3, we will extract
a subsequence of ancestors, denoted by ζt(ki), i ≥ 1, that never coalesce together. In particular,
the number of sites occupied by these candidates can be made arbitrarily large so that we find
one landing on a 1 that will paint (x, 0) the color 2.

We start by constructing inductively the ordered ancestor set ζt(k), k ≥ 1. The first member
of the sequence ζt(1) is the determining particle. Before defining the second member, we wait
until the first one penetrates in a lower tree Γ1 that lives forever. By Lemma 4.1, the time Θ1

when this event occurs is a.s. finite, so Γ1 is well defined. Then, we look at the ancestor hierarchy
at time Θ1 and discard all the ancestors that land on S0(1) or a site that does not live forever.
Here, S0(1) is the spatial location of the determining particle at time Θ1. The second member
of the sequence is then the first ancestor that is left. Observe that such an ancestor exists since
we assumed that Γ lives forever. Moreover, by using the arguments of Lemma 4.1, one can prove
that ζt(2) also penetrates with probability 1 in a lower tree Γ2 that lives forever. We then repeat
the same procedure to define the third candidate, and so on.

For any k ≥ 1, we let Γk be the infinite lower tree visited by the k-th member of the sequence,
and denote by Θk the first time the ancestor penetrates in Γk and by S0(k) its spatial location at
time Θk. As previously, one can break up from time Θk the path of the k-th member into i.i.d.
pieces. We denote by (Sn(k), Tn(k)) the n-th renewal point, by Xi(k) the spatial displacement
between consecutive renewals, and by τi(k) the corresponding temporal displacement, i.e.,

Sn(k) = S0(k) +
n

∑

i=1

Xi(k) and Tn(k) = Θk +
n

∑

i=1

τi(k).

The strategy to prove that with probability 1 there exists a subsequence ζt(ki) of lower ancestors
that never coalesce together is the following. First of all, we let n ∈ N

∗, the set of positive inte-
gers, and assume that there exist n lower ancestors ζt(k1), ζt(k2), . . . , ζt(kn) that never coalesce
together. Then, given m > kn, we will prove that with positive probability we can

Gm,K =
Bring ζt(m) at least K units apart from each of the ζt(ki) and trap the n + 1
ancestors inside large disjoint cubes without collision of their triangles.
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Here, G is for good event. Then, relying on Lemma 5.5 of Neuhauser (1992), we will prove that
on the event Gm,K and for K sufficiently large

lim
t→∞

inf
1≤i≤n

||ζt(ki) − ζt(m)|| = +∞

with probability close to 1. We will then conclude by proving that with probability 1 the good
events Gm,K occur for infinitely many m > kn. In what follows, we give the proofs for the
determining particle only but the same holds for the other members of the sequence.

Lemma 5.1 Let K ∈ N
∗ and DK = [−K,K ]d. For any t ≥ Θ1 the event B that the determining

particle leaves DK in less than one unit of time and then survives without giving birth until
time t+K has positive probability.

Proof If the determining particle stands out of DK at time t, then P (B) can be bounded from
below by e−(1+2dλ)K , that is the probability of living without giving birth for K units of time.
Otherwise, we require the determining particle to increase or decrease its first spatial coordinate
until leaving DK . A straightforward calculation shows that

P (B) ≥ e−(1+2dλ)K
[

e−1/K (1 − e−1/2K) e−dλ/K (1 − e−dλ/K)
]K

> 0

since it takes at most K steps for the ancestor to reach a face. This concludes the proof. �

Lemma 5.2 Let Ht,K be the event that the triangles of the first ancestor are inside a box z+DK

from time t to time t+K. For any ε1 > 0, there exists K such that P (Ht,K) ≥ 1 − ε1.

Proof To make the notations easier, we will omit, all along the proof, the number 1 that refers
to the determining particle. Moreover, since the graphical representation is translation invariant,
we can suppose that the first renewal point after time t stands on the origin and let z = 0.
Observe that in this case, Ht,K occurs if the spatial locations of the particle at the renewals do not
leave the box 1

2 DK and if each triangle is smaller than 1
2 K. See Figure 6 for a picture. Denoting

by γ̂s the location of the random walk Sn at time s and by Nt,K the number of triangles between
times t and t+K, we then obtain

P (Ht,K does not occur) ≤ P

(

Nt,K >
2

m
K

)

+ P

(

the largest triangle is >
K

2
; Nt,K ≤ 2

m
K

)

+ P

(

||γ̂s||∞ >
K

2
for some t ≤ s ≤ t+K ; Nt,K ≤ 2

m
K

)

where m = E τ1. To begin with, we can bound the first term on the right-hand side by using the
large deviation estimate

P

(

Nt,K >
2

m
K

)

≤ C e−βK

for appropriate C < ∞ and β > 0. Moreover, since the random vectors Xi, i ≥ 1, have the same
distribution, the second term can be bounded as follows

P

(

the largest triangle is >
K

2
; Nt,K ≤ 2

m
K

)

≤ P

(

max
1≤i≤2m−1K

||Xi||∞ >
K

2

)

≤ 2

m
K P

(

||X1||∞ >
K

2

)

≤ 2

m
KC e−βK/2.
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Observe now that if the random walk Sn leaves the box 1
2 DK then at least one of its coordinates

is bigger than 1
2 K so the third term can be bounded by

d
∑

i=1

P

(

|γ̂ (i)

s | > K

2
for some t ≤ s ≤ t+K ; Nt,K ≤ 2

m
K

)

= d P

(

|γ̂ (1)

s | > K

2
for some t ≤ s ≤ t+K ; Nt,K ≤ 2

m
K

)

where the superscript (i) refers to the i-th coordinate. We can use the reflection principle to bound
this last term by

2 d P

(

|S (1)

2m−1K − S
(1)

0 | > K

2

)

.

In other respects, Chebyshev’s inequality gives for any θ > 0

P

(

|S (1)

2m−1K − S
(1)

0 | > K

2

)

≤ e−θK/2
2m−1K

∏

i=1

E e θX
(1)

i = exp

(

−θK
2

+
2K

m
logφ(θ)

)

where φ(θ) is the moment generating function of X
(1)

1 . Since EX
(1)

1 = 0 and Var X
(1)

1 <∞ we can

state that logφ(θ) ≤ C θ2 for some C > 0 and for θ small enough. In particular, taking θ =
1√
K

in the last expression we conclude that

P

(

||γ̂s||∞ >
K

2
for some t ≤ s ≤ t+K ; Nt,K ≤ 2

m
K

)

≤ 2 d e−
√

K/4

for K large enough. Putting things together, we can finally maintain that

P (Ht,K) ≥ 1 − C e−βK − 2

m
KC e−βK/2 − 2 d e−

√
K/4.

This completes the proof of the lemma. �

t

t + K
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Figure 6. Picture of the event Ht,K .

We are now ready to prove that with probability 1 there is an integer m > kn such that ζt(m)
does not coalesce with the first n members of the subsequence ζt(ki). We let Gm,K be the event
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that for any 1 ≤ i ≤ n there is a time ti ∈ [Θm,Θm +K ] such that ζt(ki) and ζt(m) are good and
at least K units apart from each other at time t = ti.

Lemma 5.3 For any ε2 > 0, there exists K sufficiently large such that on the event Gm,K

P
(

lim
t→∞

inf
1≤i≤n

||ζt(ki) − ζt(m)|| = +∞
)

≥ 1 − ε2.

Proof We let 1 ≤ i ≤ n and assume that the ancestors ζt(ki) and ζt(m) are good and K units
apart at some time t ≥ Θm. Then, Lemma 5.5 of Neuhauser (1992) implies that there exists a
constant C > 0 such that

P
(

the particles ζt(ki) and ζt(m) do never coalesce
)

= P
(

lim
t→∞

||ζt(ki) − ζt(m)|| = +∞
)

≥ 1 − C K
−1/10 − 2CK

−3/32
.

In particular, for K large enough,

P
(

ζt(ki) and ζt(m) coalesce for some 1 ≤ i ≤ n
)

≤
n

∑

i=1

P
(

ζt(ki) and ζt(m) coalesce
)

≤ nC K
−1/10

+ 2nCK
−3/32 ≤ ε2.

This proves the lemma. �

Lemma 5.4 There exists K sufficiently large such that P (lim supm→∞Gm,K) = 1.

Proof Since the n lower ancestors ζt(ki) do not coalesce and that Θm → ∞, we can find by
Lemma 5.3 a large enough m such that the distances between the ancestors at time Θm are bigger
than 4

√
dK. We denote by Hi the event that the triangles of ζt(ki) are contained, between time

Θm and time Θm + K, in some box Ωi = zi + DK . Observe that m has been chosen so that
Ωi ∩ Ωj = ∅ as soon as i 6= j. Hence the events Hi are determined by disjoint parts of the graph,
and then are independent. This together with Lemma 5.2 implies that for K sufficiently large

P (H1 ∩ · · · ∩ Hn) =
n

∏

i=1

P (Hi) ≥ 1 − n ε1.

Now that the n lower ancestors ζt(ki) are trapped inside large disjoint cubes, we require each of
them to be good at least once between time Θm and time Θm +K. Since this occurs if each of the
n ancestors has at least one renewal in this interval of time, the probability that this event occurs
can be bounded from below by

n
∏

i=1

P (τ1(ki) < K) ≥
[

1 − C e−β K
]n

for appropriate C < ∞ and β > 0. The last thing we need to conclude is that ζt(m) is good
and at least K units apart from each other ancestor between time Θm + 1 and time Θm + K.
Since the cubes Ωi are at least 2K units apart from each other, this occurs, by Lemma 5.1,
with positive probability. Putting things together we can state that there exists an ε3 > 0 such
that P (Gm,K) ≥ ε3 for m sufficiently large. By observing that the events Gm1,K and Gm2,K are
independent as soon as |Θm1 − Θm2 | > K, we can conclude by the Borel-Cantelli Lemma that
with probability 1 the events Gm,K occur for infinitely many m ≥ 1. �

To conclude the proof of Theorem 3, we now use, as in Section 4, the dual process ξ̃
(x,t)

s starting
at (x, t) and determine the ancestor hierarchy by going backwards in time. We denote by B

(x,t)

s



the set of sites occupied at time s by a 1 and let ζt = {ζt(k) : k ≥ 1 with Θk ≤ t}. Firstly, Lemma
5.3 implies that on the event Gm,K the lower ancestor ζt(m) coalesces with one of the ζt(ki)
with probability < ε2. Moreover, by Lemma 5.4, Gm,K occurs for infinitely many m ≥ 1. This
implies in particular that the cardinality of ζt can be made arbitrarily large by choosing t large
enough, i.e., given ε4 > 0 and M > 0 there exists a time t0 ≥ 0 so that P (card ζt < M) ≤ ε4 for
any t ≥ t0. By Lemma 9.14 of Harris (1976), the translation invariance of ξ0 then implies that

lim
t→∞

P (ζt ∩B (x,t)

0 = ∅) = 0.

So, for t sufficiently large, there is a lower ancestor ζt(n) that lands at time 0 on a 1. Now, we
look at the ancestors that come before ζt(2) in the hierarchy until we find one that lands on an
occupied site. If a 1 stands at this site, the ancestor will paint (x, t) the color 2 and the proof is
done. On the other hand, if the site is occupied by a 2, S0(1) will be empty at time (t − Θ1)

+

whatever the color of the next ancestors. Then, we look at ζt(2), and so on. Finally, if none of the
ancestors that come before ζt(n) in the hierarchy succeeds in painting (x, t) the color 2, this last
one will do it. This completes the proof of Theorem 3.
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Multitype contact process with frozen states: a

spatial model of allelopathy

N. Lanchier

Abstract In this paper, we introduce a generalization of the two colors multitype contact
process intended to mimic a biological process called allelopathy. Precisely, we have two
types of particles. Each type gives birth to particles of the same type and dies at rate 1.
When a particle of type 1 dies, it gives way to a frozen site that blocks particles of type 2
for an exponentially distributed amount of time. Specifically, we investigate in details the
phase transitions as well as the duality properties of the interacting particle system.

1. Introduction

The model we introduce in this paper is a continuous-time Markov process in which the state
at time t is a function ξt : Z

d −→ {0, 1, 2, 3}. A site x ∈ Z
d is said to be occupied by a particle

of type 1 (resp. 2) if ξ(x) = 1 (resp. 2), and is said to be empty otherwise. We distinguish two
types of empty site. Namely, a site x ∈ Z

d will be called a free site if ξ(x) = 0 and a frozen

site if ξ(x) = 3. The evolution rules are defined as follows:

1. Each 1 (resp. 2) tries to give birth onto each of its neighbors at rate λ1 (resp. λ2). Here, the
neighbors of a site x ∈ Z

d is the set of y ∈ Z
d such that ||x − y|| ≤ R where || · || is a norm

and where R is a positive constant.

2. If the offspring of a 1 (resp. of a 2) is sent to a site in state 0 or 3 (resp. in state 0), the birth
occurs. Otherwise, it is suppressed.

3. Both types die at rate 1. Type 1 (resp. 2) gives way to a frozen site (resp. to a free site).

4. Frozen sites (3) become free (0) at rate γ > 0.

In particular, the process is a generalization of the multitype contact process (Neuhauser, 1992)
in which 1’s inhibit the spread of 2’s by freezing the sites they have just occupied. Reciprocally,
the multitype contact process is just the extreme case γ = ∞ in which the transition 3 → 0 is
instantaneous. The interpretation we have in mind is that of a spatial model of allelopathy. In
biology literature, allelopathy is defined as a process involving secondary metabolites produced
by plants, micro-organisms, viruses and fungi that influence growth and development of biological
systems. In our case, 1’s are the individuals of an inhibitory species and 2’s the individuals of a
susceptible species. The reader especially interested in this biological process can refer to Durrett
and Levin (1997) as well. Their stochastic spatial model also is a generalization of the multitype
contact process but with only three states: 0 = empty, 1 = inhibitory species, and 2 = susceptible
species. Particles of type 1 die at rate 1 while there is a constant c > 0 such that particles of
type 2 die at rate 1 + c × the number of neighbors in state 1. That is, the particles of type 1
increase the death rate of the neighboring particles of type 2. Precisely, their stochastic spatial
process models the competition of the colicin-producing Escherichia coli and colicin-sensitive
bacteria. The particle system we introduce in this paper, on the contrary, is more appropriate
to investigate plant competitions involving inhibitory species such as Hieracium pilosella. In this
case, the inhibitory species produces toxic substances that prevent susceptible species from setting
up for a certain amount of time.

To investigate our model, we first observe that if only 2’s are present, the process reduces to the
basic contact process with parameter λ2. In such a case, there exists a critical value λc ∈ (0,∞)

AMS 2000 subject classifications: Primary 60K35; 82C22
Keywords and phrases: Multitype contact process, competition model, allelopathy, duality.

79
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such that if λ2 ≤ λc then the process converges in distribution to the all empty state while if
λ2 > λc there exists a stationary measure µ2 that concentrates on configurations with infinitely
many 2’s. See, e.g., Liggett (1999). If only 1’s are present, we have almost the same result: If λ1 ≤ λc

then the process converges in distribution to the all empty state while if λ1 > λc there exists a
nontrivial stationary measure ν1 that concentrates on configurations with infinitely many 1’s and
3’s. To construct this measure, we start the process from a configuration with infinitely many
1’s, take the Cesaro average of the distributions from time 0 to time T and extract a convergent
subsequence. Then, by Proposition 1.8 of Liggett (1985), the limit ν1 is known to be an invariant
measure. Moreover, since the 1’s do not see the 3’s, we obtain ν1(ξ(x) = 1) = µ2(ξ(x) = 2)
provided that λ1 = λ2. To avoid trivialities, we assume from now on that both λ1 and λ2 are > λc

and that ξ0 contains infinitely many 1’s and 2’s.
We first set γa < γb and denote by ξ

i

t the process with parameters λ1, λ2 and γi. Then, if we
think of the processes as being generated by Harris’ graphical representation, we may run ξ

a

t and
ξ b

t simultaneously, starting from the same initial configuration, in such a way that ξ
a

t has more
1’s and fewer 2’s than ξ b

t , i.e., for any x ∈ Z
d, if ξ

a

t (x) = 2 then ξ b

t (x) = 2, and if ξ b

t (x) = 1 then
ξ

a

t (x) = 1. The same coupling argument implies that the process is also monotonous with respect
to each of the parameters λ1 and λ2. These results are summarized in the following theorem.

Theorem 1 Let Θ
i

t = {x ∈ Z
d : ξt(x) = i} be the set of sites occupied at time t by a particle

of type i. Then the survival probabilities P (Θ
i

t 6= ∅ for all t ≥ 0), i = 1, 2, are monotonous with
respect to each of the parameters λ1, λ2 and γ.

In particular, if we set γa ∈ (0,∞) and γb = ∞ then the process ξ
a

t will have more 1’s and fewer
2’s than ξ b

t . Now, as explained above, ξ b

t is the multitype contact process with parameters λ1 and
λ2. Theorem 1 in Neuhauser (1992) implies that if λ1 > λ2 and we start with infinitely many 1’s,
then ξ b

t ⇒ µ1, the upper invariant measure of the basic contact process. Here, ⇒ denotes weak
convergence. It follows that

Theorem 2 Assume that ξ0 contains infinitely many 1’s. If λ1 > λ2 and γ ∈ (0,∞) then ξt ⇒ ν1.

We now focus on the case λ1 = λ2. Since the evolution rules help the 1’s, we expect in this
case that the processes with or without frozen states exhibit different behaviors. Theorem 3 tells
us that if λ1 = λ2 and γ < ∞ the 1’s still win in d ≥ 3 while 1’s and 2’s coexist if γ = ∞. See
Theorem 3 in Neuhauser (1992). We conjecture that the 1’s win in any dimension but our proof
heavily relies on transience of symmetrical random walks in d ≥ 3.

Theorem 3 Assume that ξ0 contains infinitely many 1’s and is translation invariant. If λ1 = λ2

and d ≥ 3 then ξt ⇒ ν1.

The proof of Theorem 3 partly relies on the duality techniques introduced in Neuhauser (1992)
and Lanchier (2005). To figure out the properties of the dual process, we start by constructing
the process from collections of Poisson processes in the case λ1 = λ2. For x, y ∈ Z

d, ||x− y|| ≤ R,
let {T x,y

n : n ≥ 1}, {U x

n : n ≥ 1} and {V x

n : n ≥ 1} be the arrival times of Poisson processes
with rates λ1, 1 and γ respectively. At times T

x,y

n , we draw an arrow from x to y to indicate that
if x is occupied by a 1 and y is empty then y becomes occupied by a 1 while if x is occupied
by a 2 and y is free then y becomes occupied by a 2. At times U

x

n , we put a cross × at x to
indicate that a death occurs, and at times V

x

n , we put a dot • at x to indicate that a frozen site
becomes free. Finally, we say that there is a path from (y, s) to (x, t) if there exists a sequence of
times s0 = s < s1 < · · · < sn+1 = t and spatial locations x0 = y, x1, · · · xn = x such that

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any ×’s.

If there is a path from (y, t− s) to (x, t), we say that there is a dual path from (x, t) to (y, t− s)
and define the dual process starting at (x, t) by

ξ̃
(x,t)

s = {y ∈ Z
d : there is a dual path from (x, t) to (y, t− s)}.
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Then {(ξ̃ (x,t)

s , s) : 0 ≤ s ≤ t} exhibits a tree structure that allows us to equip the dual process with
an ordered relation in which the members are arranged according to the order they determine the
color of (x, t). See Neuhauser (1992), Section 2. The tree {(ξ̃ (x,t)

s , s) : 0 ≤ s ≤ t} will be called the
upper tree starting at (x, t) and the elements of ξ̃

(x,t)

s the upper ancestors. The first upper ancestor
will be called the distinguished particle.

The main difference with the multitype contact process is that now 1’s produce 3’s that are
forbidden for the 2’s. In particular, the state of (x, t) will not depend only on the state of the
upper ancestors at time 0. The key idea is to prove that the number of frozen sites visited by the
distinguished particle on its way up to (x, t) tends to infinity as t → ∞, which blocks 2’s from
determining the color of (x, t). If instead of the condition 2 above we have the condition

3. The set
n
⋃

i=0

{xi} × (si, si+1) contains exactly one ×,

we will say that (y, s) and (x, t) are weakly connected and that y is a lower ancestor. In view of the
×’s effect, if both points (y, 0) and (x, t) are weakly connected, then a particle of type 1 at y at
time 0 can freeze the path of the distinguished particle at some particular point. The aim will be
to construct a collection of lower ancestors ζt(n) that are good candidates to realize this event. If
all these ancestors coalesce, which occurs with probability 1 in d ≤ 2 by the results of Section 3 in
Neuhauser (1992), and land at time 0 on a 2, we will not be able to conclude. If, on the contrary,
d ≥ 3, the lower ancestors ζt(n) will behave nearly like transient random walks so that it will be
possible to extract a subsequence of ancestors ζt(nk) that will land on sites occupied at time 0 by
a particle of type 1.

Finally, if we focus on the case λ1 < λ2, it is not clear that the 2’s win. Theorem 4 tells us that,
in d = 2, the particles of type 2 win provided that γ is sufficiently large.

Theorem 4 Assume that ξ0 contains infinitely many 2’s. If d = 2 and λ1 < λ2 then there exists
a critical value γc ∈ (0,∞) such that ξt ⇒ µ2 for any γ > γc.

To figure out the implications of our results, we fix λ1 > λc and γ > 0, and denote by
βc (γ, λ1) the infimum of λ2 ≥ 0 such that the 1’s die out, with the convention inf ∅ = ∞. A
fairly straightforward application of Theorems 1-4 then implies that λ1 7→ βc (γ, λ1) is nonde-
creasing and βc (γ, λ1) ↓ λ1 as γ ↑ ∞. In conclusion, the phase diagram we obtain is given by
Figure 1 where our results are summarized.

Unfortunately, we do not know what is the outcome of the competition when particles evolve
in a spatial structure and (λ1, λ2) is such that λ1 < λ2 < βc (γ, λ1). To deal with this case, we
look at the mean-field model (Durrett and Levin, 1994), that is we pretend that all the sites are
independent and that the system is spatially homogeneous. Then, the evolution can be formulated
thanks to the following ordinary differential equations.

u′1 = λ1 u0 u1 + λ1 u3 u1 − u1

u′2 = λ2 u0 u2 − u2

u′3 = u1 − λ1 u1 u3 − γ u3

where ui denotes the density of sites in state i. Let Ω = {u : ui ≥ 0, u0 + u1 + u2 + u3 = 1}
be the collection of values we are interested in and, for fixed γ > 0, set

D1 = {(λ1, λ2) : λ1 > 1 and (λ2 − λ1) γ < (λ1 − 1)λ1} and

D2 = {(λ1, λ2) : λ2 > 1 and λ2 > λ1}.

First of all, a straightforward calculation shows that the ODE has a nontrivial fixed point u on the
boundary u2 = 0 if and only if λ1 > 1, where nontrivial means 6= (1, 0, 0, 0). Moreover, by studying
the eigenvalues of the linearization at point u of the ODE, one can prove that the equilibrium u is
stable if (λ1, λ2) ∈ D1, and unstable otherwise, that is the linearization has an unstable direction
that points into int Ω, the interior of Ω. In the same way, if λ2 > 1 there is a nontrivial equilibrium
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Figure 1. Phase diagram.

u on the boundary u1 = u3 = 0 that is stable if (λ1, λ2) ∈ D2, and unstable otherwise. Finally,
the ODE has a fixed point belonging to int Ω if and only if

λ2 > λ1 > 1 and γ <
λ1 − 1

λ2 − λ1
λ1

that is (λ1, λ2) ∈ D1 ∩ D2. Our mean-field model, however, exhibits the same property as the
mean-field model introduced in Durrett and Levin (1997). Namely, the boundary fixed points only
are locally stable. See Figure 2 for a picture of the solution curves when λ1 = 2, λ2 = 3, and γ = 1
and 1.5 respectively. In words, if (λ1, λ2) ∈ D1 ∩ D2 then none of both species can invade the
other one in its equilibrium. If the density of particles of type 1 (resp. 2) is close to the equilibrium
value, and particles of type 2 (resp. 1) are introduced with a low density, then the density of 2’s
(resp. 1’s) shrinks to 0. In a homogeneously mixing population, the outcome of the competition
then depends on the initial densities. Relying on the instability of the interior fixed point, we
think that, for the particle system, given a set of parameters λ1, λ2 > λc and γ > 0, there is a
stronger type that will win the competition provided that ξ0 contains infinitely many 1’s and 2’s.
In conclusion, we summarize and complete Theorems 2-4 with the

Conjecture 5 For any λ1 > λc and λ2 > λc, there is a critical value γc such that the following
holds: If γ < γc then ξt ⇒ ν1 while if γ > γc then ξt ⇒ µ2.

The rest of this paper is devoted to proofs. In Section 2, we will investigate in greater details the
duality properties of the process. Relying on the results of Section 2, we will then prove Theorem
3 in Section 3. Finally, the proof of Theorem 4 will be carried out in Section 4.

2. Graphical representation and duality

The first step in proving Theorem 3 and Theorem 4 is to construct the process from a collection
of Poisson processes in the case λ1 ≤ λ2. For x, y ∈ Z

d, ||x − y|| ≤ R, let {T x,y

n : n ≥ 1},



Multitype contact process with frozen states 83

u1

u
2

0 1

1

u1

u
2

0 1

1

Figure 2. Projection of the solution curves for the mean-field model. Picture on left: λ1 = 2, λ2 = 3 and γ = 1.
Picture on right: λ1 = 2, λ2 = 3 and γ = 1.5.

{U x

n : n ≥ 1} and {V x

n : n ≥ 1} be the arrival times of Poisson processes with rates λ2, 1 and γ
respectively. At times T

x,y

n , we draw an arrow from x to y, toss a coin with success probability
(λ2 − λ1)/λ2, and if there is a success label the arrow with a 2. If at time T

x,y

n the site x is
occupied by a 1, the site y is empty, that is free or frozen, and the arrow is unlabeled then y
becomes occupied by a 1 while if x is occupied by a 2 and y is free then the site y becomes
occupied by a 2. At times U

x

n , we put a cross × at x to indicate that a death occurs, i.e., a 1 gives
way to a frozen site and a 2 to a free site. Finally, at times V

x

n , we put a dot • at x to indicate that
a frozen site becomes free. A result of Harris (1972) implies that such a graphical representation
can be used to construct the process starting from any initial configuration ξ0 : Z

d −→ {0, 1, 2, 3}.
See Figure 3 for a picture. After constructing the graphical representation, we now define the dual
process. We say that two points (x, s) and (y, t) in Z

d × R
+ are connected or that there is a path

from (x, s) to (y, t) if there exists a sequence of times s0 = s < s1 < s2 < · · · < sn < sn+1 = t and
spatial locations x0 = x, x1, x2, · · · xn = y such that

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any ×’s.

If instead of 2 we have the condition

3. The set

n
⋃

i=0

{xi} × (si, si+1) contains exactly one ×,

we say that (x, s) and (y, t) are weakly connected. Finally, we say that there is a dual path from
(x, t) to (y, t− s), 0 ≤ s ≤ t, if there is a path from (y, t− s) to (x, t). In other words, dual paths
move against the direction of time and arrows. We then define the dual process by setting

ξ̃
(x,t)

s = {y ∈ Z
d : there is a dual path from (x, t) to (y, t− s)}

for any 0 ≤ s ≤ t. Since it will be easier to work with a forward process than a backward process,
we also introduce the dual ξ̂

(x,0)

s that is defined by

ξ̂
(x,0)

s = {y ∈ Z
d : there is a path from (x, 0) to (y, s)}.

The reader will note that both processes ξ̃
(x,t)

s and ξ̂
(x,0)

s have the same law. First of all, we observe
that {(ξ̃ (x,t)

s , s) : 0 ≤ s ≤ t} exhibits a tree structure. As for the mutitype contact process, such a
structure allows us to equip the dual process ξ̃

(x,t)

s with an ordered relation in which the members
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are arranged according to the order they determine the color of (x, t). See e.g., Neuhauser (1992),
Section 2, for a complete description of this hierarchy. From now on, the tree

Γ = {(ξ̃ (x,t)

s , s) : 0 ≤ s ≤ t}

will be called the upper tree starting at (x, t) and the elements of ξ̃
(x,t)

s the upper ancestors. We
denote by ξ̃

(x,t)

s (n) the n-th member of the ordered ancestor set, and call distinguished parti-

cle the first upper ancestor. For an example of ancestor hierarchy, see Figure 4, picture on left.
The algorithm for deducing the location of the distinguished particle can be described as follows.
First of all, we start at (x, t), and go down the graphical representation until the first time a
× is encountered. Then, we go back up until the first time the tip of an arrow is encountered.
We follow this arrow against its direction to the branch the arrow is attached to, and repeat
the above procedure until we reach time 0. If (y, s′) and (x, t) are weakly connected, the tree

starting at (y, s′) will be called a lower tree and the elements of ξ̃
(y,s′)

s the lower ancestors. We
observe that, contrary to the multitype contact process, the state of some sites (free or frozen)
strongly depends on the lower ancestors. Namely, a lower ancestor can bring a 1 up to a × and
then freeze a site belonging to the upper tree.

2

2
2

2

2

22

2

Figure 3. Harris’ graphical representation. The black lines refer to 1’s, the pale gray ones to 2’s, the dark gray
ones to frozen sites, and the dotted ones to free sites.

To conclude this section, we now describe an algorithm to determine the color of (x, t) in the
case λ1 ≤ λ2. We say that an arrow from x to y is bad for the 2’s if its target site y is frozen.
First of all, we determine which of the following three events occurs: The site the distinguished
particle lands on at time 0 is (1) in state 1, (2) in state 2, or (3) in state 0 or 3. In the case 1,
the distinguished particle will paint (x, t) the color 1 if it does not cross any 2-arrow. Otherwise,
we follow the path of the distinguished particle on its way up to (x, t) until the first 2-arrow
we encounter, look backwards in time starting from the location where this arrow is attached,
and discard all the ancestors of this point. The reason why we need to discard these ancestors
is that they are now blocked on their way up to (x, t) by a particle of type 1. In the case 2, the
distinguished particle will paint (x, t) the color 2 if it does not cross any arrow bad for the 2’s.
Otherwise, we discard as previously all the ancestors of the point where the first bad arrow is
attached since these ancestors are now blocked by a particle of type 2. Finally, in the case 3, the
distinguished particle cannot paint (x, t) any color. If after the first trial, the distinguished particle
did not paint (x, t) any color, we repeat the same procedure with the first upper ancestor that
is left after discarding, and so on. We now refer to Figure 4, picture on left, for an illustration
of this algorithm. The distinguished particle lands on a 2 (case 2) but crosses the arrow bad for
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the 2’s that points from x − 2 to x − 3 before reaching (x, t) so we discard all the ancestors of
this arrow. Since the only one is the distinguished particle, we now focus on the second ancestor
of the hierarchy. The second ancestor lands on a 1 (case 1) but crosses the 2-arrow that points
from x to x − 1. Since the ancestors of this 2-arrow are the second and third ancestors, we look
at the fourth ancestor. The fourth ancestor lands on a 2 (case 2) and does not cross any arrow
bad for the 2’s so (x, t) will be of type 2. The reader will note that, due to the • under its tip,
the 2-arrow on the right side of the picture is not bad for the 2’s.

3. Proof of Theorem 3

To establish Theorem 3, the strategy consists in proving that if the upper tree Γ lives forever
then, with probability 1, the distinguished particle will jump infinitely often on a frozen site. To do
this, we will focus on the structure of the lower trees and show that the number of lower ancestors
that freeze the sites visited by the distinguished particle tends to infinity as t→ ∞. We will finally
conclude by exhibiting an upper ancestor that will bring a 1 to (x, t).

1 23 45

2

2

2

2

2

(x, t)

2

0

0

0

0

0

0

3

3

3

12 1 2
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Γ3

z1z3

s1

σ1
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(x, 0)

α1

α2

α3

Figure 4. Dual process.

From now on, we denote by λ the common value of λ1 and λ2 and suppose that Γ lives forever.
The reader will observe that such an event occurs with positive probability since λ > λc. For more
convenience, we use in this section the dual process ξ̂

(x,0)

s starting at (x, 0). The main objective
is to prove that the number of frozen sites visited by the distinguished particle tends to infinity
as t → ∞. First of all, we follow the path of the distinguished particle starting from (x, 0) and,
for n ≥ 1, denote by αn the n-th arrow we cross. See Figure 4, picture on right. We let zn and sn

be respectively the arrival site and the temporal location of the arrow αn and denote by Nt the
number of arrows αn that point by time t to a frozen site, i.e.,

Nt = card {n ≥ 1 : ξsn(zn) = 3 and sn ≤ t}.

By construction, Nt also denotes the number of frozen sites visited by time t by the distinguished
particle. In particular, the main result we have to prove is the

Proposition 3.1 If d ≥ 3 then lim t→∞Nt = ∞ a.s.
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The intuitive idea of the proof is that the lower ancestors provide enough 1’s to freeze the path of
the distinguished particle at infinitely many points. First of all, we denote by σn the arrival time
of the first × located under the tip of αn, i.e.,

σn = min {U zn

k : U
zn

k ≥ sn}

and let Γn be the lower tree starting at (zn, σn), that is

Γn = {(y, s) ∈ Z
d × [σn,∞) : there is a path from (zn, σn) to (y, s)}.

See Figure 4 for a picture. We say that Γn is good if the following two conditions are satisfied.

1. Γn lives forever and

2. The vertical segment {zn} × (sn, σn) does not contain any dots.

As we will see further, the properties 1 and 2 will give us a good opportunity to freeze the site zn

at time sn. Let Gn be the event that the n-th lower tree is good.

Lemma 3.2 P (lim supn→∞Gn) = 1.

Proof To begin with, denote by An the event that Γn lives forever, and by Bn the event that
{zn} × (sn, σn) does not contain any dots. The first step is to prove that, for any n ≥ 1, there
exists a.s. an integer m ≥ n such that Am occurs. To do this, we set Γn1 = Γn and, while Γnk

is bounded, we denote by Γnk+1
the first lower tree that is born after Γnk

dies. Note that if Ank

does not occur, then Γnk+1
is well defined and the event Ank+1

is determined by parts of the graph
that are after Γnk

dies so that Ank
and Ank+1

are independent. More generally, since the trees
Γn1 , Γn2 , · · · , Γnk+1

are disjoint, the events An1 , An2 , · · · , Ank+1
are independent. Moreover, the

probability that Ank
occurs is given by the survival probability p (λ) of the basic contact process

with parameter λ starting from one infected site so

P (Ac
n ∩ Ac

n+1 ∩ · · · ) ≤ lim
k→∞

P (Ac
n1

∩ Ac
n2

∩ · · · ∩ Ac
nk

)

≤
∞
∏

k=1

P (Ac
nk

) = lim
k→∞

(1 − p (λ))k = 0

as soon as λ > λc. In particular,

P (lim sup
n→∞

An) = lim
n→∞

P (An ∪ An+1 ∪ · · · ) = 1.

This proves that, with probability 1, there exist infinitely many lower trees Γn that live forever.
In other respects, since σn − sn is exponentially distributed with parameter λ, one can state that

P (Bn) = P (σn − sn ≤ V zn
1 ) = λγ−1 (λ+ γ)−1 > 0.

By independence, we can finally conclude that P (lim supn→∞An ∩ Bn) = 1. �

To complete the proof of Proposition 3.1, we now consider, for any n ≥ 1 and s ≥ σn, the
time-translation dual process

ξ̂
(zn,σn)

s = {y ∈ Z
d : there is a path from (zn, σn) to (y, s)},

and denote by ζs(n) the associated distinguished particle, that is the first ancestor of (zn, σn).
First of all, we can observe that if the lower tree Γn lives forever then ζs(n) is well defined for any
s ≥ σn. Moreover, if we suppose that Γn is good and that ζs(n) lands on a 1 then, in view of the
condition 2 above, the site zn will be frozen at time sn. In particular, if Γnk

is a subsequence of
good trees given by Lemma 3.2, the proof of Proposition 3.1 can be completed with the
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Lemma 3.3 Let Ωs = {ζs(nk) : σnk
≤ s} and Θ

1

s be the set of sites occupied at time s by a 1.
If ξ0 is translation invariant and d ≥ 3 then, starting from infinitely many 1’s

lim
t→∞

card (Ωt ∩ Θ
1

0 ) = ∞ a.s.

Proof By Proposition 2.1 of Neuhauser (1992), the path of ζs(nk) can be broken into independent
and identically distributed pieces so that the process ζs(nk) is transient in d ≥ 3. See Neuhauser
(1992), Sections 4 and 5, for a proof. This, together with Lemmas 5.3 and 5.4 in Lanchier (2005)
implies that card (Ωt) → ∞. Finally, since ξ0 is translation invariant, Lemma 9.14 of Harris (1976)
tells us that card (Ωt ∩ Θ

1

0 ) → ∞ as t→ ∞ with probability 1. �

To conclude the proof of Theorem 3, we now use the dual process ξ̃
(x,t)

t and construct a se-
quence of upper ancestors η

(x,t)

t (k), k ≥ 0, that are candidates to paint (x, t) the color 1. The
first member of the sequence will be the distinguished particle. Next, we renumber the sequence
of frozen points (zk, sk), k ≥ 1, visited by the distinguished particle by going forward in time, and
denote by nt the number of frozen points encountered. For each 1 ≤ k ≤ nt, we look backwards
in time starting from the location where the arrow αk is attached and discard all the ancestors
of this particular point. We then define η

(x,t)

t (k) as the first upper ancestor that is left after dis-
carding. Let ηt = {η (x,t)

t (k) : 0 ≤ k ≤ nt}. Proposition 3.1 tells us that limt→∞ nt = ∞ with
probability 1. This, together with Lemmas 5.3 and 5.4 in Lanchier (2005), implies that the car-
dinality of ηt can be made arbitrarily large by choosing t sufficiently large. In particular, a new
application of Lemma 9.14 in Harris (1976) gives us that

lim
t→∞

P (ηt ∩ Θ
1

0 = ∅) = 0.

Hence, there exists at least one candidate that lands on a 1. We denote by η
(x,t)

t (k0) the first one
in the hierarchy. Since the arrow αk0 is bad for the 2’s, the upper ancestor η

(x,t)

t (k0) will finally
paint (x, t) the color 1. This completes the proof of Theorem 3.

4. Proof of Theorem 4

In this section, we assume that d = 2, set λ1 < λ2 and prove that there is γc < ∞ such that
for any γ > γc the 2’s win. In view of the evolution rules, the survival of 2’s is not clear and tools
as coupling and duality fail in proving Theorem 4. We will first rely on the rescaling argument
described in Durrett and Neuhauser (1997), Section 3, valid in the case γ = ∞, and then, prove
that taking γ > 0 sufficiently large does not affect too much the process. We start by introducing
the suitable space and time scales. We let L be a positive integer and, for z = (z1, z2) in Z

2, set

Φ(z) = (Lz1, Lz2), B = [−L,L ]2, B(z) = Φ(z) +B.

Moreover, we tile B(z) with L
0.1 × L

0.1
squares by setting

π(w) = (L
0.1
w1, L

0.1
w2), D = (−L 0.1

/ 2, L
0.1
/ 2 ]2,

D(w) = π(w) +D, Iz = {w ∈ Z
2 : D(w) ⊆ B(z)}.

We say that B(z) is good if B(z) is void of 1’s and has at least one particle of type 2 in each of
the squares D(w) for w ∈ Iz . For z = (z1, z2) ∈ Z

2 with z1 and z2 both even for even k, and z1
and z2 both odd for odd k, we say that (z, k) is occupied if B(z) is good at time kT , where T is
an integer to be picked later. Moreover, we require this event to occur for the process restricted
to the region Φ(z) + [−ML,ML ]2. We start by assuming that γ = ∞.

Proposition 4.1 (Durrett and Neuhauser) If λ2 > λ1 and T = L2 then for any ε > 0, the
parameters L and M can be chosen so that the set of occupied sites dominates the set of open
sites in an M -dependent oriented percolation process with parameter 1 − ε.
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See Durrett and Neuhauser (1997), Proposition 3.1 and Lemma 3.7. Given z ∈ Z
2, || z || = 1,

and x ∈ B(z), the strategy to prove Proposition 4.1 is to construct a dual path At starting
at A0 = (x, T ) that lands on B at time 0 and blocks 1’s from determining the color of (x, T ). To
make the proof more explicit, we divide it into three steps.

Construction of the selected path

It essentially relies on a procedure called repositioning algorithm. We start by breaking up the
path of the first ancestor at some points called renewal points. To define these points, we follow
the dual path of the distinguished particle starting at (x, T ) and, whenever it jumps to a branch
that lives forever, call its target site a renewal point. See Neuhauser (1992), Section 2. We then
call a renewal point associated with a 2-arrow if the first arrow a particle crosses on its way up the
designated path of the first ancestor starting at the renewal point is a 2-arrow. We set σ0 = 0 and,
for i ≥ 1, denote by σi the times when At jumps to a renewal point associated with a 2-arrow.
Between times σi, the process At follows the path of the first ancestor while its position at times
σi is determined by the repositioning algorithm. If we pretend that a 1 was able to come up all
the way to a renewal point associated with a 2-arrow, this 1 would now be blocked by this arrow
and some other site, if it exists, would be the next candidate for a path determining the color
of (x, T ). We call this site Bσi . To describe the algorithm, we now embed into the selected path
a jump process St which stays put except at times σi. Denoting by J = [−L/10, L/10 ]2 and by
dist(z, J) the Euclidean distance between a point z and the set J , the process St can be defined as
follows. If dist(Bσi , J) < dist(Aσi , J) and Bσi lives forever, we set Sσi = Bσi , otherwise Sσi = Aσi .
In either case, At continues starting at Sσi and uses the path determined by the algorithm of the
first ancestor until time σi+1 where the repositioning algorithm is applied again. If both sites Aσi

and Bσi are contained in J , we toss a fair coin to determine which path to continue with.

First step

The objective is now to prove that, with probability close to 1, the selected path starting
at (x, T ) will reach the set J before time σK where K is defined as

K = min {k ≥ 1 : σk ≥ T − 2L
0.5}.

The main ingredient of the proof is provided by Proposition 2.1 of Neuhauser (1992) that allows
to break up the path of the first ancestor into i.i.d. pieces. More precisely, if we denote by Xi the
spatial displacement between consecutive renewal points, and by τi the corresponding temporal
displacement, one can prove the following result.

Proposition 4.2 (Neuhauser) If the upper tree starting at (x, T ) lives forever, {(Xi, τi)}i≥1

form an i.i.d. family of random vectors on Z
d × R

+. Moreover, we have the exponential bounds

P (||Xi|| > t) ≤ C1 e
−γ1 t and P (τi > t) ≤ C1 e

−γ1 t

for appropriate constants C1 <∞ and γ1 > 0.

In particular, the location of the distinguished particle at the renewal points can be controlled
using the following large deviations principle.

Lemma 4.3 Let Hn be a renewal process whose interarrival times Li = Hi −Hi−1 are i.i.d. with
mean λ and such that P (Li > t) ≤ C2 e

−γ2 t. Then for any ε > 0 there exist constants C3 < ∞
and γ3 > 0 such that

P (Hn ≥ (1 + ε)nλ) ≤ C3 e
−γ3 nλ and P (Hn ≤ (1 − ε)nλ) ≤ C3 e

−γ3 nλ.

In other respects, the spatial displacement Xi having mean 0 due to the translation invariance of
the graphical representation, the renewal points define an embedded symmetrical random walk for
the distinguished particle. So, if we now apply the repositioning algorithm at times σi and select,
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with positive probability, Bσi instead of Aσi the spatial displacement ||Sσi+1 || − ||Sσi || will have
negative mean as long as St is outside of J . Intuitively, this should cause St to drift towards the
set J . We now make this argument precise.

Lemma 4.4 If λ1 < λ2 there exist C4 <∞ and γ4 > 0 so that

P (σ1 > t) ≤ C4 e
−γ4 t.

Proof Since the arrows are labeled independently of each other and with probability (λ2 −
λ1)/λ2 > 0, a geometric number of trials suffices to find a renewal point associated with a 2-
arrow. The lemma then follows from the second exponential bound in Proposition 4.2. �

To prove that the selected path reaches the set J by time σK we still need an estimate on the
maximum size of the spatial displacement Yi = Sσi −Sσi−1 of the embedded jump process. We let
M(t) be the number of times the repositioning algorithm has been applied by time t.

Lemma 4.5 We set T = L2. If λ1 < λ2 then for any γ5 > 0 there exist C5 < ∞ and γ6 > 0 so
that for L sufficiently large

P

(

max
1≤k≤M(T )

||Yk|| >
γ6

γ4
logL

)

≤ C5 L
−γ5 .

Proof We first set m = EM(t)/t and decompose the event according to whether M(T ) > 2mT
or M(T ) ≤ 2mT . Then for any γ6 > 0

P

(

max
1≤k≤M(T )

||Yk|| >
γ6

γ4
logL

)

≤ P (M(T ) > 2mT ) + 2mT P

(

||Y1|| >
γ6

γ4
logL

)

.

The first large deviations estimate in Lemma 4.3 takes care of the first term on the right-hand
side. In other respects, since between times σk−1 and σk the process spreads out at most linearly,
the spatial displacement ||Yk|| is of the same order as the corresponding temporal displacement
σk − σk−1. In particular, by Lemma 4.4

P (||Yk|| > t) ≤ C6 e
−γ4 t

for all t ≥ 0 and appropriate C6 <∞. Putting things together, we finally obtain

P

(

max
1≤k≤M(T )

||Yk|| >
γ6

γ4
logL

)

≤ C3 exp(−γ3mT ) + 2mT C6 L
−γ6 .

Now, for given γ5 > 0, we can choose γ6 > 0 so that the wanted inequality holds for appropriate
C5 <∞ and L sufficiently large. This completes the proof. �

Lemma 4.6 Let x ∈ B(z) with || z || = 1. If λ1 < λ2 then for any γ7 > 0

Px (Sσk
/∈ J for all k ≤ K) ≤ C7 L

−γ7

for some C7 <∞ and L large enough. Here the subscript on P indicates the starting site.

Proof We first observe that

Px (Sσk
/∈ J for all k ≤ K) ≤ Px (Sσk

/∈ J for all k ≤ 2mT ) + P (K > 2mT )

≤ Px

(

Sσk
/∈ J for all k ≤ 2mT ; max

1≤k≤2 mT
||Yk|| ≤

γ6

γ4
logL

)

+ P

(

max
1≤k≤2 mT

||Yk|| >
γ6

γ4
logL

)

+ P (K > 2mT )
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We restrict the jump size ||Yk|| to ensure that Sσk
will not miss the set J . The last two terms on

the right-hand side can be bounded by using Lemma 4.5 and the first large deviations estimate
in Lemma 4.3 respectively. For the first term, note that there exists m1 > 0 so that on the set
{Sσk−1

/∈ J}, E (||Sσk
||−||Sσk−1

|| | Fσk−1
) ≤ − m1 where Fσk−1

= σ(Sσ0 , . . . , Sσk−1
). It follows that

for γ6 and L sufficiently large there exists m2 with 0 < m2 ≤ m1 so that

E
(

{||Sσk
|| − ||Sσk−1

||} 1{||Yk|| ≤ (γ6/γ4) logL} | Fσk−1

)

≤ − m2

on the set {Sσk−1
/∈ J}. This implies that

Px

(

Sσk
/∈ J for all k ≤ 2mT ; max

1≤k≤2 mT
||Yk|| ≤

γ6

γ4
logL

)

≤ C8 e
−γ8 L

for appropriate C8 <∞ and γ8 > 0, which concludes the proof. �
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Figure 5. Pictures of the selected path. First step: With probability close to 1, At reaches J before time σK . Second
step: With probability close to 1, At belongs to I at time σK , that is SσK ∈ I.

Second step

We now let I = [−2L/5, 2L/5 ]2 and prove that with probability close to 1 the selected
path At belongs to I at time σK , that is SσK ∈ I. In view of Lemma 4.6, we just need to
show that starting from any site y ∈ J , the process St stays inside of I for T units of time.

Lemma 4.7 If λ1 < λ2 then for any y ∈ J and any γ9 > 0

Py (Sσk
/∈ I for some k ≤M(T )) ≤ C9 L

−γ9

for appropriate C9 <∞ and L sufficiently large.

Proof We let s0 = 0 and, for k ≥ 1, define the following stopping times

tk = inf
{

t > sk−1 : St /∈ [−L/ 5, L / 5 ]2
}

sk = inf {t > tk : St ∈ J} and R = inf {t > 0 : St /∈ I}.
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Then for any site y ∈ J

Py (Sσk
/∈ I for some k ≤M(T ))

≤ P

(

sk > R for some k ≤ 2mT ; max
1≤k≤2 mT

||Yk|| ≤
γ6

γ4
logL

)

+ P

(

max
1≤k≤2 mT

||Yk|| >
γ6

γ4
logL

)

+ P (M(T ) > 2mT ).

To estimate the first term on the right-hand side, we only need to estimate the probability that
St leaves I before returning to J . As in Lemma 4.6, we use that ||Sσk

||− ||Sσk−1
|| has negative drift

and bounded increments on {max1≤k≤2 mT ||Yk|| ≤ (γ6/γ4) logL}. Hence

P

(

sk > R for some k ≤ 2mT ; max
1≤k≤2 mT

||Yk|| ≤
γ6

γ4
logL

)

≤ 2mT P

(

s1 > R ; max
1≤k≤2 mT

||Yk|| ≤
γ6

γ4
logL

)

≤ C10 e
−γ10 L

for appropriate C10 < ∞ and γ10 > 0. Finally, the last two terms can be bounded using Lemma
4.5 and the first large deviations estimate in Lemma 4.3. �

The proof of the second step is now straightforward combining Lemma 4.6 and Lemma 4.7.

Lemma 4.8 Assume x ∈ B(z) for some z ∈ Z
2 with || z || = 1. If λ1 < λ2 then for any γ11 > 0

Px (SσK /∈ I) ≤ C11 L
−γ11

for appropriate C11 <∞ and L sufficiently large.

Proof By decomposing according to whether Sσk
∈ J for some k ≤ K or not, we obtain

Px (SσK /∈ I) ≤ Px (Sσk
/∈ J for all k ≤ K) + P (SσK /∈ I |Sσk

∈ J for some k ≤ K).

The first term on the right-hand side can be bounded using Lemma 4.6. For the second term, we
first observe that

P (SσK /∈ I |Sσk
∈ J for some k ≤ K) ≤ sup

y∈J
Py (Sσk

/∈ I for some k ≤M(T ))

and then apply Lemma 4.7. This completes the proof. �

Third step

To complete the comparison with oriented percolation process, we still need to prove that
provided B is good at time 0, (SσK , σK) will be occupied, with probability close to 1, by a 2. Since
the selected path has been constructed to block 1’s, this 2 will determine the type of (x, T ) unless
another 2 succeeds earlier. This will prove that the 2’s in B invade the neighboring boxes B(z)
with probability close to 1.

Lemma 4.9 Assume B is good at time 0. If SσK ∈ I there exist C12 <∞ and γ12 > 0 so that

P ((SσK , σK) is not occupied by a 2) ≤ C12 exp(−γ12 L
0.1

).

Proof To begin with, observe that except for exponentially small probability, σK ≤ T − L
0.5

.
More precisely, by Lemma 4.4,

P (σK > T − L
0.5

) ≤ P (σ1 > L
0.5

) ≤ C4 exp(−γ4 L
0.5

).
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Now, if σK ≤ T − L
0.5

, we run the dual process starting at (SσK , σK) for another L
0.5 − L

0.2

units of time. Then, it follows from the properties of the dual of the contact process that, except
for a probability ≤ C13 exp(−γ13 L

0.1
), we can select L

0.1
sites at about time L

0.2
which are

contained in the dual process starting at (SσK , σK) such that (i) all these sites are contained
in [−3L/ 5, 3L/ 5 ]2, (ii) they are at least L

0.3
units apart from each other, and (iii) none of the

duals starting at these sites interferes with any of the other duals for the remaining L
0.2

units of
time. Since each of the duals has positive probability of surviving and B is good at time 0, each
of these L

0.1
sites has probability η > 0 of being occupied by a 2. In conclusion,

P ((SσK , σK) is not occupied by a 2)

≤ C4 exp(−γ4 L
0.5

) + C13 exp(−γ13 L
0.1

) + (1 − η)L0.1 ≤ C12 exp(−γ12 L
0.1

)

for appropriate C12 <∞ and γ12 > 0. �

Conclusion

We are now ready to conclude the proof of Proposition 4.1. First of all, combining Lemma 4.8
and Lemma 4.9 implies that if B is good at time 0 then

P (ξT (x) = 1) ≤ C11 L
−γ11 + C12 exp(−γ12 L

0.1
) ≤ C14 T

−4

for appropriate C14 < ∞ and any x ∈ B(z) with || z || = 1. In particular, since there are at
most (2L+ 1)2 sites in [−L,L ]2, it follows that

P (ξT (x) = 1 for some x ∈ B(z)) ≤ C15 L
−6 ≤ ε / 3

for L sufficiently large. In other respects, the process dominates a one-color contact process with
parameter λ1 > λc so the probability that there exists an L

0.1 ×L
0.1

square D(w) ⊆ B(z) that is
empty can be bounded by C16 L

1,8
exp(−γ16 L

0.2
) ≤ ε / 3. Finally, since the selected paths have

a drift toward J , we can find M > 0 so that

P (any of the selected paths is not contained in

[−ML/ 3, ML / 3 ]2 for some t ≤ T ) ≤ ε / 3.

This shows that boxes that are sufficiently far apart are independent of each other with high
probability. Proposition 4.1 then follows.

To generalize the comparison to γ > 0 sufficiently large, we just need to prove that, with
probability close to 1, the process behaves like the multitype contact process (i.e., none of the 2’s
is blocked by a frozen site) inside the space-time box

J(z) × [ 0, T ] where J(z) = Φ(z) + [−ML/ 3, ML / 3 ]2.

Now, the event we are interested in occurs if and only if each time an arrow points at a site
x ∈ J(z) by time T this site is not in state 3. So, to make sure that this occurs, we will follow the
line {x} × [ 0, T ] by going forward in time and each time we will encounter a × we will put a • at
x before meeting the next tip of arrow. By letting K(x, t) be the number of arrows that point at
site x by time t and decomposing according to whether K(x, T ) > 2λ2T or not, we obtain

P (any of the 2’s is blocked) ≤
∑

x∈J(z)

P (K(x, T ) > 2λ2T ) + 2λ2T
∑

x∈J(z)

P (U
x

1 < V
x

1 )

≤ (2ML/ 3)2
(

C17 e
−γ17T + 2λ2T γ

−1 (γ + 1)−1
)

≤ ε/ 3

for T and γ sufficiently large and appropriate C17 < ∞ and γ17 > 0. At this point, we have
proved that if λ1 < λ2 and γ is sufficiently large then there exist L and M so that the set of
occupied sites dominates the set of open sites in an M -dependent oriented percolation process
with parameter 1 − ε. This almost produces Theorem 4. Our last problem is that oriented site



percolation has a positive density of unoccupied sites. To prove that there is an in-all-directions
expanding region which is void of 1’s, we apply a result from Durrett (1992) which shows that
unoccupied sites do not percolate when ε is close enough to 0. Since particles of either type cannot
appear spontaneously, once a region is void of one type, this type can only reappear in the region
through invasion from the outside. This then implies that our process has the desired property
and completes the proof of Theorem 4.

Acknowledgment. I would like to thank Claudia Neuhauser for her advice in analysing the
mean-field model, and Pierre Margerie for fruitful discussions in ecology.
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Stochastic spatial models of host-pathogen and

host-mutualist interactions

N. Lanchier and C. Neuhauser∗

Abstract Mutualists and pathogens, collectively called symbionts, are ubiquitous in plant
communities. While some symbionts are highly host-specific, others associate with multi-
ple hosts. The outcome of multispecies host-symbionts interactions with different degrees of
specificity are difficult to predict at this point due to a lack of a general conceptual frame-
work. Complicating our predictive power is the fact that plant populations are spatially
explicit and we know from past research that explicit space can profoundly alter plant-plant
interactions. We introduce a spatially explicit, stochastic model to investigate the role of
explicit space and host-specificity in multispecies host-symbiont interactions. We find that
in our model, pathogens can significantly alter the spatial structure of plant communities,
promoting coexistence, whereas mutualists appear to have only a limited effect. Effects are
more pronounced the more host-specific symbionts are.

1. Introduction

The diversity and structure of plant communities is largely determined by nutrient availability,
competition among plants, herbivory, and associations between plants and their symbionts. The
first three have been the focus of much ecological research, both empirical and theoretical. The
role of symbionts on diversity and structure has received less attention (Aerts, 2002) and will be
the topic of this paper.

A symbiont is an organism that lives in close association with a host. It can either have a
harmful effect, in which case we call it a pathogen, or a beneficial effect, in which case we call
it a mutualist. Symbionts are ubiquitous. For instance, more than 90% of terrestrial plants as-
sociate with mycorrhizal fungi (Trappe, 1987), a beneficial association that supplies nutrients to
the plant, and, in return, carbon to the fungal partner. Fecundity and viability of virtually all
plants are affected by pathogens, sometimes with devastating effects, such as Dutch elm disease
or chestnut blight that point to the important role of pathogens in structuring plant communities.
Mathematical models play an important role in elucidating the roles of symbionts in community
dynamics.

Modeling of disease dynamics has had a long tradition, starting with the model by Kermack and
McKendrick (1927), which describes the course of a disease outbreak caused by a single disease
infecting a single host. This model and its extensions have yielded enormously valuable insights
into disease dynamics and potential control strategies. Although originally developed to describe
epidemics in human populations, it can equally well be applied to plant diseases. A key concept
of disease dynamics is the basic reproductive rate R0, which is defined as the expected number
of secondary infections caused by an infected individual when introduced into a population of
susceptible individuals (Anderson, 1981). The condition for a disease outbreak is given in the
biological literature as R0 > 1. This condition is based on a single-host, single-disease model in a
non-spatial population. Including spatial structure in the form of local interactions has shown that
for a disease to spread, R0 needs to exceed a threshold that is greater than that for a non-spatial
population. The reason for this is the lack of sufficient numbers of susceptible individuals near the
location of a disease outbreak once the disease starts spreading. One of the first models where this
has been demonstrated mathematically is the contact process (Harris, 1974, Mollison, 1977).

Much of the theoretical work in the epidemiological literature has focused on single-host, single-
disease dynamics. A rapidly increasing empirical body of work on multispecies host-disease dy-

∗Partially supported by NSF Grants DMS-00-72262 and DMS-00-83468 to C. Neuhauser.

AMS 2000 subject classifications: Primary 60K35; 82C22
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namics necessitates the development of a theoretical framework. This has only begun recently (see
Holt et al., 2003 and references therein). An attempt for a broad classification was made by Holt
et al. (2003) using a graphical isocline framework that allows for generalizations that are appli-
cable to a wide range of host-pathogen models. A recent model by Dobson (2004) investigates
persistence of a pathogen that can infect multiple hosts.

Modeling of host-mutualist interactions has primarily focused on evolutionary questions, such
as the evolution of cheaters (i.e., symbionts that receive benefits but do not confer them). Al-
most no modeling has been done on the effects of local (spatial) interactions on host-mutualist
dynamics. Similarly, no theoretical framework has been developed for multispecies host-mutualist
interactions.

An important component of multi-host, multi-symbiont models is the degree to which different
symbionts and hosts can associate with each other. This is referred to as specificity. A specialist

symbiont associates with a very small number of hosts; a generalist symbiont associates with many
hosts. The ease of transmission of a symbiont to a host, referred to as transmissibility, is another
important factor in host-symbiont interactions.

In this paper, we investigate the role of spatial structure caused by local interactions, such as
symbiont transmission and host dispersal, on persistence of host-symbiont associations for both
generalists and specialists in multi-host, multi-symbiont models. We employ the simplest of all
multi-species models to describe the host dynamics, the voter model (Holley and Liggett, 1975,
Clifford and Sudbury, 1973). The voter model is defined on the d-dimensional integer lattice, where
each lattice site is occupied by an individual characterized by one of a finite number of types.
Individuals give birth to offspring of their own kind at a constant rate, and their offspring displace
randomly chosen individuals within their dispersal neighborhood. The dynamics imply that all
sites remain occupied at all times. Into this population, we introduce symbionts with varying
degrees of specificity and transmissibility. More precisely, our spatial model is a continuous-time
Markov process ξt : Z

d −→ {1, 2, . . . , κ} × {0, 1, . . . , κ} where the integer κ denotes both the
number of hosts and the number of symbionts involved in the interaction. A site x ∈ Z

d is said
to be occupied by an unassociated host of type i, i = 1, 2, . . . , κ, if ξ(x) = (i, 0), and by a host of
type i, i = 1, 2, . . . , κ, associated with a symbiont of type j, j = 1, 2, . . . , κ, if ξ(x) = (i, j). We
will write ξt(x) = (ξ

1

t (x), ξ
2

t (x)), where ξ
1

t (x) denotes the type of the host present at x at time t
and ξ

2

t (x) the type of the symbiont present at x at time t, with ξ
2

t (x) = 0 denoting the absence
of a symbiont. We set ||x || = supi=1,2,...,d |xi|. The evolution at site x ∈ Z

d is described by the
transition rates

(i, j) → (k, 0) at rate λ
∑

0<||x−z||≤R1

{

1{ξ(z)=(k,0)} + g

κ
∑

ℓ=1

1{ξ(z)=(k,ℓ)}

}

(i, 0) → (i, j) at rate cij
∑

0<||x−z||≤R2

κ
∑

ℓ=1

1{ξ(z)=(ℓ,j)}.

The transition (i, j) → (k, 0) is the birth of an unassociated host at x by either unassociated or
associated neighboring hosts. The birth rate of unassociated hosts is equal to λ. The parameter
g indicates the variation of the birth rate of hosts associated with a symbiont. If 0 ≤ g < 1,
the symbiont is a pathogen; if g = 1, the symbiont has no effect on the birth rate of the host
and we refer to this as the neutral case; if g > 1, the symbiont is a mutualist. The transition
(i, 0) → (i, j) is the transmission of a neighboring symbiont j to an unassociated host of type
i at x. The parameters cij denote the rate at which symbiont j infects host i. This parameter
will allow us to mimic specialist and generalist symbionts. Births and infections occur within a
local neighborhood, with R1 denoting the birth range of hosts, and R2 the infection range of
symbionts. Neighborhoods are punctured boxes with side 2Ri +1, i = 1, 2, centered at site x, that
is N i

x = {z ∈ Z
d : 0 < ||x− z|| ≤ Ri}. The cardinality of this set is denoted by νRi = |N i

x|.
Before we describe the behavior of the spatially explicit, stochastic model, we will look at the

mean-field model (Durrett and Levin, 1994). The mean-field model is described by a system of
differential equations for the densities of unassociated and associated hosts. To define it, we let ui
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denote the density of unassociated hosts of type i, i = 1, 2, . . . , κ, and vij denote the density of
host i associated with symbiont j, i, j = 1, 2, . . . , κ. It follows from the dynamics of the spatially
explicit, stochastic model that at all times

∑

i

ui +
∑

i,j

vij = 1.

Furthermore, we assume that for i = 1, 2, . . . , κ, cii = β, and for i, j = 1, 2, . . . , κ with i 6= j,
cij = α with 0 ≤ α ≤ β. We define

u· =

κ
∑

i=1

ui, v·j =

κ
∑

i=1

vij , vi· =

κ
∑

j=1

vij and v·· =

κ
∑

i=1

κ
∑

j=1

vij .

One way to obtain the mean-field limit is to set the neighborhood ranges, R1 and R2 equal to R
and then let R go to infinity. To obtain a meaningful limit, we also need to rescale the parameters
λ, α, and β by the neighborhood size νR, that is, we set λ = 1

νR
(this also sets the time scale),

and define

α =
a

νR
and β =

b

νR
.

In the limit, R → ∞, sites become independent. If, in addition, the initial configuration is trans-
lation invariant, the dynamics of the densities for i 6= j is then described by the following system
of differential equations, called mean-field equations.

dui

dt
= (1 − ui) (ui + g vi·) − ui

∑

j 6=i

(uj + g vj·) − b ui v·i − a
∑

j 6=i

ui v·j

dvii

dt
= b ui v·i − vii (u· + g v··)

dvij

dt
= a ui v·j − vij (u· + g v··).

When a = 0, the symbionts are specialists. As a increases to b, the association turns into a generalist
relationship. The following results are proved in Section 2. When g = 1, the system has a conserved
quantity, namely the initial host densities hi = ui + vi·, i = 1, 2, . . . , κ. If (κ − 1) a+ b > κ, then
for g 6= 1, there exists a nontrivial equilibrium with u1 = u2 = · · · = uκ ≥ 0 and v1· = v2· = · · · =
vκ· > 0 such that for i = 1, 2, . . . , κ,

ui =
g

(κ− 1) a+ b− κ (1 − g)
and hi =

1

κ
.

Furthermore, for i 6= j
vij

vii
=

a

b
.

Numerical simulations indicate that the nontrivial equilibrium is locally stable for a < b when
g < 1, but not for g > 1. In addition, if g = 0 and (κ − 1) a + b > κ, all hosts will be associated
at equilibrium. If initially only two hosts and one symbiont, say symbiont 1, are present then for
0 < g < 1, simulations indicate that pathogen 1 will go extinct and both host 1 and host 2 may
coexist. We will conjecture similar behavior for the spatial model, except in the 1-dimensional,
nearest neighbor case (see Theorem 3 and discussion following the theorem). When g > 1, host 2
goes extinct provided the initial density of mutualists of type 1 is sufficiently large. The spatial
analogue of this result is proved in Theorem 2. Both results are illustrated in Figure 1.

We now return to the spatially explicit model with parameters λ, α, and β. To define the time
scale, we set λ = 1. We will discuss both the generalist case α = β and the specialist case α = 0,
and provide comparisons with the mean-field model.



98 Systèmes de particules multicolores
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Figure 1. Solution curves of the mean-field model with a = 0 and b = 3. The parameter g is equal to 0.5 and 2,
respectively.

Generalist interactions

We consider the generalist case α = β of the spatially explicit, stochastic model. In the corre-
sponding mean-field model, coexistence of hosts and symbionts is possible when b > 1. For b ≤ 1,
symbionts are unable to persist. When a = b, symbionts are no longer host-specific, and the mean-
field model can be reduced to one with ui and vi·. It is not hard to see then that the nontrivial
equilibrium of unassociated hosts, (u·, v··), is locally stable since in this case

dv··
dt

= v·· [(b − 1)u· − g v··].

With u· + v·· = 1, it follows that, the boundary point v·· = 0 is unstable for b > 1 and that

(u·, v··) =

(

g

b− 1 + g
,

b− 1

b− 1 + g

)

is locally stable. Furthermore, any vector (h1, h2, . . . , hκ) with hi ≥ 0 and
∑

i hi = 1 gives rise to
an equilibrium if we set

ui =
g

b− 1 + g
hi and vi· =

b − 1

g
ui.

The behavior of the spatially explicit model is more complicated and may depend on the spatial
dimension, as we will see in the following.

If g = 1, then the symbionts have no effect on the hosts, which means that the spatially explicit
processes ξ

1

t and ξ
2

t are stochastically independent. Moreover, by looking at the transition rates,
it is easy to see that ξ

1

t is a multitype voter model run at rate 1, and that ξ
2

t is a multitype contact
process in which particles give birth at rate β νR2 and die at rate νR1 . See respectively Holley and
Liggett (1975) and Neuhauser (1992) for a study of these two processes. It follows that there exists
a critical value βc(R1, R2) ∈ (0,∞) that depends on the neighborhood sizes νR1 and νR2 such that
the symbionts can survive if and only if β > βc(R1, R2). If we ignore host and symbiont types but
rather focus on associated versus unassociated hosts, then for β > βc(R1, R2), regardless of the
spatial dimension, there exists a nontrivial stationary distribution of associated and unassociated
hosts. Moreover, if d ≥ 3, there exists a stationary distribution in which all hosts and symbionts
coexist.

Unfortunately, we cannot say much about coexistence when g 6= 1. To analyze this case, we
define the “color-blind” process where a site is in state 0 if it is occupied by an unassociated host,
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and in state 1 if it is occupied by an associated host. We obtain a particle system ζt : Z
d −→ {0, 1}

with transitions at x ∈ Z
d

0 → 1 at rate β
∑

0<||x−z||≤R2

1{ζ(z)=1}

1 → 0 at rate
∑

0<||x−z||≤R1

{

1{ζ(z)=0} + g 1{ζ(z)=1}
}

.

When g = 0, the process reduces to a biased voter model. When g = 1, it reduces to a contact
process with birth rate β νR2 and death rate νR1 . We denote the critical value of this contact
process by βc(R1, R2) as above. A standard coupling argument allows us to compare the processes
with g 6= 1 and g = 1, and to deduce that if g ≤ 1 and β > βc(R1, R2) then ζt has a nontrivial
stationary measure, while if g ≥ 1 and β ≤ βc(R1, R2) then the mutualists die out, i.e., ζt ⇒ δ0,
the “all 0” configuration (i.e., ζ(x) ≡ 0). To cover the remaining cases, we introduce the contact
process ηt in which particles give birth at rate β νR2 and die at rate g νR1 . Then ηt has a nontrivial
stationary measure if and only if β > g βc(R1, R2) which, with a new coupling argument, implies
that if g ≤ 1 and β ≤ g βc(R1, R2), then the pathogens die out, while if g ≥ 1 and β > g βc(R1, R2),
then ζt has a nontrivial stationary measure.

We now focus on the case β > 1 and g > 0 close to 0. First of all, we observe that if g = 0 and
R1 = R2 then the process ζt is the biased voter model with parameters β and 1. In particular,
P (ζt(x) = 0) → 1 if β < 1 while P (ζt(x) = 1) → 1 if β > 1 provided we start with infinitely
many 0’s and 1’s at time 0. Moreover, in the latter case, fixation occurs for the process ξt since
hosts associated with pathogens are now sterile. The behavior is identical to that of the mean-field
model. We will use a perturbation argument in Section 4 to show that if β > 1 and g > 0 is
sufficiently close to 0 then the pathogens still survive. The results are summarized in Figure 2
and in the following theorem where “⇒” denotes weak convergence and δ0 is the distribution that
concentrates on the “all 0” configuration.

Theorem 1 Assume that α = β and that ζ0 is translation invariant with P (ζ0(x) = 1) > 0.

(a) If g ≤ 1, then ζt ⇒ δ0 if β ≤ g βc, and a nontrivial equilibrium exists if β > βc. If g ≥ 1,
then ζt ⇒ δ0 if β ≤ βc, and a nontrivial equilibrium exists if β > g βc.

(b) If β > 1 there exists gc > 0 such that if g ≤ gc then ζt ⇒ µ with µ (ζ(x) = 1) 6= 0.

Part (b) of this theorem will be proved in Section 4.

Specialist interactions

In the specialist case α = 0 and β > 0, the process is more difficult to investigate since the
evolution of each symbiont strongly depends on the configuration of the host population. That
is, there is no particle system ζt : Z

d −→ {0, 1} which allows us to describe the global evolution
of the symbionts regardless of their type. Since for any i = 1, 2, . . . , κ the symbiont i can live
only through hosts of type i, it is, however, easy to deduce from a coupling argument that if
g ≤ 1 then the processes with α = 0 and α = β can be defined on the same space so that,
starting from the same configuration, the process with α = 0 has fewer pathogens. In words, the
survival of the pathogens is harder to obtain with specialist interactions. In particular, if g ≤ 1
and β ≤ max (βc g, 1), then the pathogens die out.

The next step is to extend the results of the mean-field model summarized in Figure 1 to the
corresponding spatial model with short range interactions. To do this, we consider a population
of two hosts with only one type of symbiont, say symbiont of type 1, and start the evolution
with all the hosts of type 1 associated with a symbiont. Then, in the limiting case β = ∞, the
transition (1, 0) → (1, 1) is instantaneous, i.e., unassociated hosts of type 1 become instantaneously
associated with a symbiont, provided that R1 ≤ R2 to avoid the problem of isolated unassociated
host that cannot be reached by any symbiont. This implies that the process ξ

1

t is a biased voter
model in which hosts of type 1 give birth at rate g νR1 and hosts of type 2 at rate νR1 . In
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Figure 2. Phase diagram of the spatial model with generalist interactions.

particular, if g < 1, then ξ
1

t ⇒ δ2, the “all 2” configuration, while if g > 1, then ξ
1

t ⇒ δ1, the
“all 1” configuration. Theorem 2 tells us that, in any dimension, the result still holds if g > 1
and β ∈ (0,∞) is sufficiently large.

Theorem 2 Assume that α = 0, g > 1, and R1 ≤ R2. At time 0, ξ0(x) = (1, 1) or (2, 0) for all
x ∈ Z

d. Then, there is a critical value β Th2

cr ∈ (0,∞) such that if β > β T h2

cr then ξ
1

t ⇒ δ1.

The arguments in our proof, however, do not imply the analogous result for g < 1. We think
actually that except in the 1-dimensional nearest neighbor case, P (ξ

1

t (x) = 2) 6→ 1. Before ex-
plaining our intuition, we describe the behavior of the 1-dimensional process with nearest neighbor
interactions for the hosts and short range interactions for the pathogens. Assume that at time 0,
ξ

1

0 (x) = 1 for x > 0 with infinitely many pathogens of type 1, and ξ
1

0 (x) = 2 for x ≤ 0 with
no associated pathogens. Denote by r

2

t = sup {x ∈ Z : ξ
1

t (x) = 2} the rightmost host of type 2.
Then r

2

0 = 0. The following result implies that for β large enough, 2’s will spread to the right and
eliminate 1’s together with their associated pathogens.

Theorem 3 Assume d = 1 and R1 = R2 = 1. If α = 0 and g < 1, there exists β Th3

cr ∈ (0,∞) such
that if β > β Th3

cr , then r
2

t → ∞ as t→ ∞ with probability 1.

We conjecture that this result should only be true in the 1-dimensional nearest neighbor case.
Here is the intuition. We first observe that except in the 1-dimensional nearest neighbor case, the
dynamics produce isolated hosts, that is hosts of type 1 (resp. 2) surrounded by a cluster of hosts
of type 2 (resp. 1). As suggested by Theorem 2, when g > 1, isolated 2’s are swallowed very quickly
by surrounding 1’s. On the other hand, when g < 1, an isolated 1 located in a linearly growing
cluster of 2’s cannot be invaded anymore by any pathogen as soon as the cluster has reached some
critical size. In this expanding region, the process then behaves like an unbiased voter model in
which 1’s can now compete with 2’s, and survive. See Figure 3 in Section 5 for simulations in
d = 2.

Lastly, we investigate the coexistence of symbionts in the neutral case g = 1. We observe that,
in this case, the first coordinate process ξ

1

t performs a voter model run at rate 1. In particular,
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in d ≤ 2, there does not exist any stationary distribution µ such that µ (ξ
1
(x) = i) 6= 0 for any

i ∈ {1, 2, . . . , κ} (see Holley and Liggett, 1975). Since in the specialist case, ξ
2

t (x) = i implies
that ξ

1

t (x) = i, the same conclusion holds for the symbionts. In d ≥ 3, coexistence occurs for
the process ξ

1

t , i.e., there is a stationary measure µ which satisfies the condition above. However,
due to the formation of clusters, the problem of coexistence of the symbionts remains a difficult
question. Namely, the voter model ξ

1

t exhibits clusters whose diameter can exceed some critical
size, which prevents the symbionts from spreading out. To get around this difficulty, we introduce
a modification of the particle system, denoted by ξ̂t, in which the symbionts evolve as previously
but where the hosts now perform a threshold θ voter model. More precisely, the process ξ̂t evolves
according to the following transitions at x ∈ Z

d.

(i, j) → (k, 0) at rate

{

1 if card {z ∈ Z
d : 0 < ||x− z|| ≤ R1 and ξ̂

1
(z) = k} ≥ θ

0 otherwise

(i, 0) → (i, i) at rate β card {z ∈ Z
d : 0 < ||x− z|| ≤ R2 and ξ̂

2
(z) = i}.

The introduction of this particle system is motivated by Theorem 1 of Durrett (1992) which implies
that the threshold θ voter model has a nontrivial stationary distribution which is close enough to
a product measure to produce our next result. We will prove the following result.

Theorem 4 Let g = 1 and θ < νR1/κ. If R1 and R2 are sufficiently large, then there is a critical
value β Th4

cr ∈ (0,∞), depending on κ, such that the following holds: If β > β Th4

cr , then coexistence
occurs, and if β < β T h4

cr , then coexistence is not possible.

Here coexistence means that there is a stationary measure µ such that µ (ξ̂
2
(x) = i) 6= 0 for any

type i ∈ {1, 2, . . . , κ}. Unfortunately, we do not know how to prove something better than coexis-

tence is not possible when β < β Th4

cr . However, we conjecture that starting from product measure
in which each host is associated with a symbiont and has density 1/κ, all the symbionts die out.

To justify our conjecture, we observe that the processes η
i

t defined by η
i

t (x) = 1 if ξ̂
2

t (x) = i
and η

i

t (x) = 0 otherwise, do not interact since they are confined to their associated hosts. Since
Theorem 1 of Durrett (1992) tells us that the hosts coexist with density of each type close to 1/κ,
each symbiont should remain subcritical. Finally, since the symbionts can only spread out through
their host, we conjecture that β T h4

cr is increasing with respect to κ.

Comparison of the spatially explicit and the mean-field model

Numerical simulations of the mean-field model indicate that coexistence is only possible when
g < 1. Simulations of the spatially explicit model show similar behavior. When g < 1 and α < β,
then coexistence of hosts and pathogens is possible. We observed that in this case, cluster size is
limited by the presence of pathogens: In the absence of pathogens, clusters grow at the expense
of neighboring clusters that contain symbionts. Upon invasion by the preferred symbionts (those
with infection rate β), the clusters appear to shrink again. The case g > 1 and α < β is quite
different. Clusters of hosts with their preferred mutualists form and appear to continue to grow,
just as in the voter model case. Less preferred mutualists (those with infection rate α) do not
seem to be able to persist with preferred mutualists, just as is the mean-field case of one host and
two symbionts with infection rates a and b, respectively (a < b). In summary, pathogens have the
ability to alter the spatial structure of their hosts by promoting local diversity, whereas mutualists
do not alter the spatial structure of their hosts. This difference in behavior is more pronounced
the more host-specific the symbionts are.

The rest of this paper is devoted to proofs. In Section 2, we will investigate the mean-field model.
In Section 3, we will prove a preliminary result about the biased voter model to prepare the proofs
of Theorems 1 and 2, which will be carried out in Sections 4 and 5, respectively. Section 6 will be
devoted to the proof of Theorem 3. Finally, we will investigate the coexistence of symbionts and
prove Theorem 4 in Section 7.
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2. The mean-field model

The mean-field model was introduced in Section 1. Our first claim was that the host density
hi = ui +vi· is a conserved quantity when g = 1. A straightforward calculation shows that if g = 1,

d

dt
(ui + vi·) = 0.

from which our claim follows.

We summarize the behavior of the mean-field model in the following proposition.

Proposition 2.1 For (κ − 1) a + b > κ and g ≥ 0, there exists a nontrivial equilibrium with
u1 = u2 = · · · = uκ ≥ 0 and v1· = v2· = · · · = vκ· > 0 such that for i = 1, 2, . . . , κ,

ui =
g

(κ− 1) a+ b− κ (1 − g)
and hi =

1

κ
.

Furthermore, for i 6= j
vij

vii
=

a

b
.

Proof If we denote by hi = ui + vi· the density of host i (both associated and unassociated),
then

dhi

dt
= ui + g vi· − hi (u· + g v··).

By setting the right-hand side equal to 0, we obtain

hi =
ui + g vi·
u· + g v··

.

It follows that
hi

hj
=

ui (1 − g) + g hi

uj (1 − g) + g hj

from which we conclude that
hi

hj
=

ui

uj
=

vi·
vj·
.

In the symmetric case, h1 = h2 = · · · = hκ = 1
κ , we find u1 = u2 = · · · = uκ and v1· = v2· = · · · =

vκ·. The nontrivial equilibrium can then be computed explicitly. We find

ui =
g

(κ− 1) a+ b− κ (1 − g)
and hi =

1

κ
.

Specifically, when g = 0, ui = 0 and consequently all hosts will be associated at equilibrium. The
condition for the existence of a nontrivial point equilibrium, namely (κ − 1) a + b > κ, follows
directly from requiring that ui < 1/κ and hi = 1/κ. Furthermore, it follows from

b ui v·i = vii (u· + g v··) and a ui v·j = vij (u· + g v··)

that
a

b
=

v·i
v·j

vij

vii
.

Since v·i = v·j by symmetry, the last claim follows as well. �
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3. Preliminary results about the biased voter model

As explained in the introduction, if α = β and R1 = R2, then the “color-blind” process ζt
performs a biased voter model when g = 0. If we set α = 0 and consider a population of two host
types with only one symbiont type, then the process ξ

1

t , which describes the evolution of both
host types, performs a biased voter model in the limiting case β = ∞. So, to prove Theorems 1
and 2, we will start by proving a general result about the biased voter model, and then apply a
perturbation argument to extend this result to the region g > 0 small in the first case, and to the
region β < ∞ large in the second case. Let β1, β2 ∈ (0,∞), and ηt : Z

d −→ {1, 2} be the biased
voter model with parameters β1 and β2, i.e., the process whose state at site x changes as follows:

i → j at rate βj

∑

0<||x−z||≤R1

1{η(z)=j}.

It is a well-known fact that if β1 > β2 then P (ηt(x) = 1) → 1 as t→ ∞, provided that at time 0,
the process has infinitely many 1’s and 2’s (see, e.g., Durrett (1988), Chapter 3).

To prove Theorems 1 and 2, we will follow the strategy described in Durrett and
Neuhauser (1997), Section 3. We begin with a rescaling argument to estimate the rate of con-
vergence of P (ηt(x) = 1). This estimate will have to be good enough so that a perturbation
argument can be applied. The basic idea is to show that for given ε > 0, members of the family of
processes under consideration, when viewed on suitable length and time scales, dominate an M -
dependent oriented percolation process in which sites are open with probability 1−ε (Durrett 1995,
Section 4). To compare the process with a percolation process, we consider a positive integer L to
be fixed later, and scale space by setting

B = [−L, L ]d, Φ(z) = L z, and Bz = Φ(z) + B

for any z ∈ Z
d. Let Γ be a positive integer, and say that (z, n) is occupied if all sites in Bz are

occupied by 1’s at time nΓL. The first step in proving Theorems 1 and 2 is the following

Proposition 3.1 Let ε > 0 and β1 > β2. Then M , L and Γ can be chosen in such a way that the
set of occupied sites dominates the set of open sites in an M -dependent oriented site percolation
process where sites are open with probability p = 1 − 2 ε/ 3.

The key to the proof is duality (Durrett 1988, Chapter 3). To define the dual process of the biased
voter model, we consider two collections of independent Poisson processes {T x,z

n : n ≥ 1} and
{U x,z

n : n ≥ 1} where 0 < ||x−z|| ≤ R1, with parameter β2 and β1−β2 respectively. At times T
x,z

n

we draw an arrow from z to x and put a δ at site x, while at times U
x,z

n we draw an arrow from z
to x without putting a δ at the tip. The process is then obtained from the graphical representation
as follows: At time T

x,z

n , the particle at x imitates the one at z. At time U
x,z

n , the site x becomes
occupied by a particle of type 1 if z is. We say that there is a path from (x, 0) to (z, t) if there is
a sequence of times s0 = 0 < s1 < · · · < sn+1 = t and spatial locations x0 = x, x1, . . . , xn = z
such that the following two conditions hold:

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any δ’s.

Finally, we say that there exists a dual path from (x, t) to (z, t− s), 0 ≤ s ≤ t, if there is a path
from (z, t− s) to (x, t), and define the dual process starting at (x, t) by setting

η̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}

for any 0 ≤ s ≤ t. The reason why we introduce the dual process is that it allows us to deduce the
state of site x at time t from the configuration at earlier times. More precisely,

ηt(x) = 1 if and only if ηt−s(z) = 1 for some z ∈ η̂
(x,t)

s .
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See Durrett (1988), Chapter 3. The strategy to proving Proposition 3.1 can then be summarized
as follows: Let T = ΓL and x ∈ Bz with || z || = 1. Then, we will prove that, with probability
arbitrarily close to 1, there exists a dual path As starting at (x, T ) and landing in the target set
B. More precisely, we will prove that As hits the set J = [−R1, R1 ]d by time T where R1 < L/2,
and then stays inside B until time T . Recall that R1 denotes the range of the interactions. In
particular, if B is void of 2’s at time 0 then, with probability close to 1, Bz will be void of 2’s as
well T units of time later. To define the dual path As, we start the process at A0 = (x, T ) and go
down the graphical representation. If As comes across a δ at some time s = T −T

x,z

n with x = As

then move As to z. If As meets the tip of an arrow that is without a δ at some time s = T −U
x,z

n

then move As to z only if it takes it closer to 0. Intuitively, this should cause As to drift towards
the set B. We now make this argument precise in a series of lemmas.

Lemma 3.2 Assume that x ∈ Bz , || z || = 1, and β1 > β2. There exist C1, γ1 ∈ (0,∞) such that

sup
x∈Bz

Px (As 6∈ J for all s ≤ T ) ≤ C1 exp (−γ1 L)

for L and Γ sufficiently large. Here, the subscript x indicates the starting point.

Proof Let σk denote the k-th time As encounters the tip of an arrow (with or without a δ). At
time σk, the arrow does not have a δ at its tip with probability (β1 − β2)/β1 > 0. Moreover, if
Aσk

6∈ J and the arrow does not have a δ at its tip, then with probability at least 1/2d > 0, As

moves closer to 0. In particular, if N = inf {k ≥ 1 : Aσk
∈ J} then there is c > 0 such that

P (N ≥ c L) ≤ C2 exp (−γ2 L)

for suitable C2, γ2 ∈ (0,∞). Since P (σk − σk−1 > t) = exp (−β1 t), the result follows. �

Lemma 3.3 Assume that β1 > β2. For any y ∈ J there exist C3 <∞ and γ3 > 0 such that

sup
y∈J

Py (As 6∈ B for some s ≤ T ) ≤ C3 exp (−γ3 L)

for L sufficiently large.

Proof We let s0 = 0 and, for k ≥ 1, define the following stopping times

tk = inf
{

t > sk−1 : At /∈ (−L/2, L/2)d
}

sk = inf {t > tk : At ∈ J} and τ = inf {t > 0 : At /∈ B}.

Moreover, we denote by M(t) = sup {k ≥ 1 : σk < t} the number of tips of arrows encountered by
As by time t. Then for any site y ∈ J

Py (As /∈ B for some s ≤ T ) = Py (Aσk
/∈ B for some k ≤M(T ))

≤ Py (Aσk
/∈ B for some k ≤ 2 β1 T ) + P (M(T ) > 2 β1 T )

≤ Py (sk > τ for some k ≤ 2 β1 T ) + P (M(T ) > 2 β1 T )

≤ 2 β1 T supz∈J Pz (s1 > τ) + P (M(T ) > 2 β1 T ).

Since As has a drift towards J and that the time between consecutive jumps has exponential
bound, P (s1 > τ) ≤ C4 exp (−γ4 L) for appropriate C4 <∞ and γ4 > 0 (see the proof of Lemma
3.2). Furthermore, since EM(T ) = β1 T , large deviation estimates imply that there are C5 < ∞
and γ5 > 0 such that P (M(T ) > 2 β1 T ) ≤ C5 exp (−γ5 T ). �
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Lemma 3.4 Assume that x ∈ Bz , || z || = 1, and β1 > β2. There exist C6, γ6 ∈ (0,∞) such that

sup
y∈Bz

Px (AT 6∈ B) ≤ C6 exp (−γ6 L)

for Γ and L sufficiently large.

Proof By decomposing according to whether As ∈ J for some s ≤ T or not, we obtain

Px (AT /∈ B) ≤ Px (As /∈ J for all s ≤ T ) + P (AT /∈ B ; As ∈ J for some s ≤ T ).

The first term on the right-hand side can be bounded using Lemma 3.2. For the second term, we
first observe that

P (AT /∈ B ; As ∈ J for some s ≤ T ) ≤ sup
y∈J

Py (As /∈ B for some s ≤ T )

and then apply Lemma 3.3. This completes the proof. �

Since there are (2L+1)d sites in Bz, it follows from Lemma 3.4 and duality that there is a constant
C7 <∞ independent of L such that for Γ and L sufficiently large

P (ηT (x) = 2 for some x ∈ Bz) ≤
∑

x∈Bz

Px (AT 6∈ B)

≤ (2L+ 1)dC6 exp (−γ6 L) ≤ C7 L
−1 ≤ ε / 3.

Moreover, since each of the dual paths has a drift toward J , we can fix M > 0, say M = 3, so that
for any ε > 0

P (any of the selected paths is not contained in

[−ML, ML ]d at some time s ≤ T ) ≤ ε / 3

by choosing L sufficiently large. This shows that boxes that are sufficiently far apart are indepen-
dent of each other with high probability and completes the proof of Proposition 3.1.

4. Proof of Theorem 1

This section is devoted to the proof of part (b) of Theorem 1 which describes the behavior
of the process for β > 1 and g close to 0 in the generalist case α = β. As already explained in
the introduction, if g = 0 then the process ζt : Z

d −→ {0, 1} reduces to the biased voter model
with parameters 1 and β so that if β > 1 then P (ζt(x) = 1) → 1 as t → ∞. To prove that the
pathogens still survive when g > 0 is sufficiently small, we show that for M = 3 and any ε > 0,
we can choose L and Γ such that Proposition 3.1 holds for β1 = β and β2 = 1. Now that Γ and L
are fixed and M = 3, we can assert that there exists gc > 0 small so that

P (some infected host in [−ML,ML]d gives birth to a healthy host sent to B

between time 0 and time T ) ≤ (2ML+ 1)d (1 − exp (− gc T )) ≤ ε / 3.

This tells us that if g < gc, then the set of occupied sites dominates the set of open sites in an
oriented percolation process with parameter p = 1 − ε. Here (z, n) occupied means that all sites
in Bz are occupied by pathogens at time nT . Finally, by taking ε > 0 sufficiently small so that
percolation occurs with positive probability, Theorem 1 follows.
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5. Proof of Theorem 2

The proof of Theorem 2 also relies on a perturbation argument. In the case β = ∞ and
R1 ≤ R2, the transition (1, 0) → (1, 1) is instantaneous, i.e., unassociated hosts of type 1 become
instantaneously associated with a mutualist, provided that all the hosts of type 1 are initially
associated with a mutualist. The assumption R1 ≤ R2 is to avoid the problem of births of isolated,
unassociated hosts of the same type that are not accessible to mutualists. Under these assumptions,
the process ξ

1

t performs a biased voter model with parameters β1 = g and β2 = 1. In particular,
well-known results about the biased voter model imply that if g > 1, then P (ξ

1

t (x) = 1) → 1 as
t→ ∞.

To extend the result to the region β > 0 large, we prove that if hosts of type 1 become occupied
by their associated mutualists quickly enough, then ξ

1

t will evolve like a biased voter model in the
space-time box B× [ 0,ΓL] with probability close to 1. We first define ξt on the same space as the
biased voter model ηt introduced in Section 3 with β1 = g and β2 = 1. At time T

x,w

n , the host
present at site w gives birth to an unassociated host of the same type which is then sent to x. At
time U

x,w

n , the birth from w to x occurs only if the host at w is associated with a mutualist. To
describe the evolution of the mutualists, we consider one more collection of independent Poisson
processes, {V x,w

n : n ≥ 1}, 0 < ||x−w|| ≤ R2, with parameter β. At time V
x,w

n , we draw an arrow
labeled with a 1 from w to x to indicate that a mutualist (of type 1) present at site w gives birth
to a mutualist at site x if this site is already occupied by a host of type 1. We will prove that
there exists β Th2

cr ∈ (0,∞) such that if β > β T h2

cr and ξ
1

0 = η0 on B, then ξ
1

T = ηT on Bz with
|| z || = 1 at time T = ΓL with probability ≥ 1 − ε / 3. Since boxes that are sufficiently far apart
are independent of each other with probability close to 1, we can focus on [−ML,ML ]d× [ 0,ΓL],
M = 3, to estimate this event. Let x ∈ [−ML,ML ]d and follow the line {x} × [ 0,ΓL] by going
forward in time. Each time a host at w attempts to give birth at site x, we require that the next
1-arrow from w to x appears before the host at w is replaced or the host at x gives birth. A
straightforward calculation shows that this event occurs with probability

P
(

V
x,w

1 < min (T
y,x

1 , U
y,x

1 ) for any y ∈ N 1
x and

V
x,w

1 < min (T
w,y

1 , U
w,y

1 ) for any y ∈ N 1
w

)

= β (β + 2m)−1

where m = g νR1 . Let’s now denote by K(x, T ) the number of unlabeled arrows and δ-arrows that
point at site x by time T , and set IM = [−ML,ML ]d. Then, by observing that EK(x, T ) = mT ,
and by decomposing the event to be estimated according to whether K(x, T ) > 2mT or not, we
finally obtain

P (ξ
1

T 6= ηT on Bz) ≤
∑

x∈ IM

P (K(x, T ) > 2mT ) + 2mT
∑

x∈ IM

2m

β + 2m

≤ (2ML)d ×
{

C8 exp (−γ8 T ) + 4m2 T (β + 2m)−1
}

for appropriate C8 <∞ and γ8 > 0. Taking L and then β sufficiently large so that

P (ξ
1

T 6= ηT on Bz) ≤ ε / 3,

and applying Proposition 3.1 imply that the set of occupied sites dominates the set of open sites
in an oriented percolation process with parameter p = 1 − ε. Here (z, n) occupied means that all
sites in Bz are occupied by associated hosts of type 1 at time nT . This almost produces Theorem
2. Our last problem is that oriented site percolation has a positive density of unoccupied sites. To
prove that there is an in-all-directions expanding region which is void of hosts of type 2, we apply
a result from Durrett (1992) which shows that unoccupied sites do not percolate when ε is close
enough to 0. Since hosts of either type cannot appear spontaneously, once a region is void of one
type, this type can only reappear in the region through invasion from the outside. This implies
that P (ξ

1

t (x) = 2) → 0 as t→ ∞ for any x ∈ Z
d and completes the proof of Theorem 2.
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Figure 3. Process with nearest neighbor interactions on the 200 × 200 torus at time 250. Picture on left: β = 2
and g = 0.5. The process starts with unassociated white hosts in J = (90, 110)2 and black hosts associated with
a pathogen outside J. Picture on right: β = 4 and g = 2. The process starts with black hosts associated with a
mutualist in J and unassociated white hosts outside J. In both pictures, gray sites refer to black hosts associated
with a symbiont.

6. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. The method of the proof can also be applied
to give a more explicit proof of Theorem 2 without too much more work. For the proof, we will
assume that the birth rate λ is not set equal to 1. In fact, we will prove Theorem 3 first for λ
small and then change the time scale so that it holds for λ = 1 as well. We start by introducing
the rightmost host 2 process r

2

t and the leftmost symbiont 1 process ℓ
1

t , i.e.,

r
2

t = sup {x ∈ Z : ξ
1

t (x) = 2} and ℓ
1

t = inf {x ∈ Z : ξ
2

t (x) = 1}.

We observe that because of nearest neighbor interactions, ℓ
1

t −r 2

t ≥ 1 at any time t ≥ 0. Moreover,
if Gt = ℓ

1

t −r 2

t −1 denotes the number of sites between both processes, then r
2

t changes as follows:

for Gt = 0 : r
2

t →
{

r
2

t + 1 at rate λ

r
2

t − 1 at rate λg
and for Gt > 0 : r

2

t →
{

r
2

t + 1 at rate λ

r
2

t − 1 at rate λ

which suggests that r
2

t drifts to the right if g < 1 (and to the left if g > 1). To make this argument
precise, we will prove the following lemma.

Lemma 6.1 For g 6= 1, there exists ε0 > 0 such that: lim
T→∞

1

T

∫ T

0

1{Gt=0} dt ≥ ε0.

To deduce Theorem 3 from Lemma 6.1, we first observe that E r
2

t ≥ λ(1 − g) ε0 t for g < 1. A
large deviation estimate then implies that

P (r
2

t ≥ (1 − ε)σ t) ≥ 1 − C9 e
−γ9t

where σ = λ(1 − g) ε0. This implies that if g < 1, then r
2

t → ∞ with probability 1. If g > 1,
then E r

2

t ≤ −λ(g − 1) ε0 t, and a similar argument implies that r
2

t → −∞ with probability
1. The proof of Lemma 6.1 is based on a rescaling argument. The main objective is to prove
that the fraction of time the host present at site r

2

t + 1 is associated with a symbiont is greater
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than some positive constant. To be able to compare the particle system with oriented perco-
lation process, we will artificially freeze r

2

t by introducing the process seen from the interface,
namely ιt(x) = ξt(x+ r

2

t + 1). From this new point of view, the symbiont evolves on the half-line
Z

+. To do this comparison, we need to extend some results on oriented percolation to oriented
percolation in half-space, i.e., the process in which all sites to the left of 0 are closed.

Oriented percolation in half-space

As explained above, our first objective is to investigate 1-dependent site percolation process in
the half-space. Let

Ω = {(x, n) : x+ n is even and n ≥ 0}.
For any (x, n) ∈ Ω, let ω(x, n) define a random variable with the following property: If x < 0
then ω(x, n) = 0, while if x ≥ 0, then ω(x, n) = 1 with probability p and ω(x, n) = 0 with
probability 1−p. The site (x, n) is said to be open (resp. closed) if ω(x, n) = 1 (resp. 0). Finally, 1-
dependent with parameter p means that whenever (xi, ni), 1 ≤ i ≤ m, is a sequence with xi ≥ 0 for
any 1 ≤ i ≤ m where ||(xi, ni) − (xj , nj)||∞ > 1 for i 6= j, then

P (ω(xi, ni) = 0 for 1 ≤ i ≤ m) = (1 − p)m.

We say that (y, n) can be reached from (x,m) and write (x,m) → (y, n) if there exists a sequence
of points x = xm, xm+1, . . . , xn = y such that |xi+1 − xi| = 1 for m ≤ i ≤ n− 1, and ω(xi, i) = 1
for m ≤ i ≤ n. To formulate the next result, we let

WA
n = {y : (x, 0) → (y, n) for some x ∈ A} and τA = inf {n : WA

n = ∅}
for any A ⊂ 2Z

+. Finally, if A = 2Z
+, we will write Wn = WA

n and τ = τA.

Lemma 6.2 If p > 1 − 3−72 then there exists ε1 > 0 such that P (0 ∈ W2n) ≥ ε1 for any n ≥ 0.

Proof The proof closely follows Durrett (1984), Section 10, so we will try to be as brief as
possible, and refer the reader to this reference for details. The first step is a slight modification
of the contour argument applied to independent site percolation process. Let A = {0, 2, . . . , 2N}
and C = {(y, n) : there exists x ∈ A with (x, 0) → (y, n)}. We set

D = {(a, b) ∈ R
2 : | a | + | b | ≤ 1} and W =

⋃

z∈C

(z +D).

If the set C is finite, we denote by Γ the boundary of the unbounded component of (R×(−1,∞))−
W and orient the boundary in such a way that the segment from (2N,−1) to (2N+1, 0) is oriented
in the direction indicated. The boundary is a contour line, if it exists, starting at (2N,−1) and
ending at (0,−1). There are at most 3m−1 contours of length m. Moreover, for a contour of length
m to exist, there must be at least m/8 closed sites to the right of zero. To prove this point, we call
a segment a line segment of the form x+ F where x ∈ C and F is one of the sides of D. The site
closest to the right of the segment is the site associated with the segment. Here, right and left are
defined according to the orientation introduced above. We call segments of Γ which look like տ
ւ ց and ր segments of types 1, 2, 3 and 4 respectively. By construction, a site associated with
a segment of type 1 or 2 must be closed. Let mi and m̄i be respectively the number of segments
of type i and the number of segments of type i located on the left of zero. Since the contour starts
at (2N,−1) and ends at (0,−1), m1 +m2 = m3 +m4 + 2N , so if the contour has length m then
m1 + m2 ≥ m/2. The same reasoning leads to m1 + m4 = m2 + m3 so that m̄2 + m̄3 ≤ m/2.
Now, since the sites located on the left of zero are closed with probability 1, we obtain m̄1 = 0
and m̄2 = m̄3 ≤ m/4, which implies (m1 +m2) − (m̄1 + m̄2) ≥ m/4. Finally, since a site in W c

can be associated with at most two segments of type 1 and 2, it follows that the number of sites
on the right of zero that must be closed is ≥ m/8. Noticing that the shortest possible contour has
length 2N + 4, one can conclude that

P (τ [0,2N ] <∞) ≤
∞
∑

m=2N+4

3m (1 − p)m/8 = C10 (3 (1 − p)1/8)2N
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if p > 1 − 3−8 and the variables ω(x, n) are independent. To deal with the 1-dependent case, we
observe that there are 9 sites in Ω with (|m | + |n |)/2 ≤ 1 so for each Γ of length m there is a
set of m/72 sites which are separated by more than one and which must be closed for the contour
to exist. In conclusion, if p > 1 − 3−72 then P (τ0 = ∞) > 0. Finally, if we map Ω into itself by
sending (x,m) 7→ (x, n−m) and reverse the orientation of the graph then

P (WA
n ∩B 6= ∅) = P (WB

n ∩A 6= ∅).

Taking A = 2Z
+ and B = {0}, it then follows that P (0 ∈ W2n) ↓ P (τ0 = ∞) > 0. In conclusion,

the lemma holds by setting ε1 = P (τ0 = ∞). �

The process seen from the interface

To prove Lemma 6.1 for g < 1, we introduce the nearest neighbor contact process ξ
−

t in
which a particle at x dies at rate 2λ, gives birth at rate βνR2 , and sends its offspring to one
of the neighbors at random in N 2

x . The process is modified so that particles located in the
interval (−∞, r

2

t ] are removed. More precisely, each time a particle in ξ
−

t tries to give birth
to a particle which is sent to a site in (−∞, r

2

t ], the birth is suppressed. Furthermore, if a particle
is present at site r

2

t + 1 when the process r
2

t moves to the right, then this particle is removed.
(The proof is similar in the case g > 1, provided one replaces ξ

−

by ξ
+

where particles give birth
at rate βνR2 but now die at rate 2λg.) The first step is to prove that ξt dominates the process ξ

−

t .

Lemma 6.3 If g < 1, the processes ξt and ξ
−

t can be defined on the same probability space in
such a way that if the inclusion ξ

−

0 ⊂ ξ
2

0 holds at time 0 then ξ
−

t ⊂ ξ
2

t at any later time.

Proof Let’s start by observing that if the rightmost process r
2

t jumps to the right, a particle
located at r

2

t +1, if it is present, is removed from both processes ξ
−

t and ξ
2

t and that, if it jumps to
the left, both configurations stay unchanged. Therefore, it suffices to prove that the inclusion holds
when r

2

t is constant, say r
2

t = 0 at any time. This follows from a standard coupling argument so
we just need to define a graphical representation that preserves the inclusion. We consider for any
x, z ≥ 0 with |x − z| = 1 the independent Poisson processes {S x,z

n : n ≥ 1} and {T x,z

n : n ≥ 1}
with rate λg and λ(1− g), respectively. For any x, z ≥ 0, with 0 < ||z−x|| ≤ R2, we also introduce
the Poisson process {U x,z

n : n ≥ 1} with rate β. The evolution of ξt is as follows: At time S
x,z

n ,
the host present at site x gives birth to a healthy host of the same type, which is then sent to z.
At time T

x,z

n , the birth occurs only if the host at x is healthy. At time U
x,z

n , a pathogen (of type
1) at site x infects a host of type 1 at z if it is present. Finally, the process ξ

−

t evolves according
to the following rules: At time U

x,z

n , a particle at site x gives birth to a new particle which is then
sent to z. If the site is empty, the birth occurs. Otherwise, it is suppressed. At times T

x,z

n and
S

x,z

n , a particle present at z is removed. Such a coupling leads to the desired result. �

We now introduce the process seen from the interface: ηt(x) = ξ
−

t (x + r
2

t + 1). To describe this
process, we define the translation operators τ1 and τ−1 by setting

[τ1 η] (x) = η (x+ 1) and [τ−1 η] (x) =

{

η (x− 1) if x ≥ 1

0 if x ≤ 0.

Then ηt evolves according to the following rules:

1. A particle at x gives birth at rate βνR2 to a new particle which is then sent to a neighbor
within the neighborhood N 2

x . If the target site is empty the birth occurs, otherwise it is
suppressed. Moreover, no births are allowed to the left of 0.

2. Each particle dies at rate 2λ.

3. Depending on whether ξ
2

t (r
2

t + 1) = 0 or 1, ηt respectively shifts as follows:

ηt →
{

τ1 ηt at rate λ

τ−1 ηt at rate λ
and ηt →

{

τ1 ηt at rate λ

τ−1 ηt at rate λg.
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To compare ηt with an oriented percolation process in half-space, we let Γ and L be two large
integers to be fixed later, and scale space by setting

B = [−L, L ], Φ(z) = L z and Bz = Φ(z) + B.

Let Jz = Φ(z) + (−L/5, L/5), and say that the site (z, n) ∈ Ω is occupied if there is at least one
particle in the interval Jz at time nΓL. Let’s fix z ≥ 0 even, and start the process ηt with one
particle in Jz. The first step is to investigate the process with no deaths inside Bz and modified
so that any particle outside Bz is killed. We denote by η̄t this new process.

Lemma 6.4 Let ε2 = 6−72 and β > λ. Then Γ and L can be chosen so that

P (η̄ΓL ∩ Jz+1 6= ∅) ≥ 1 − 2 ε2/3.

Proof A standard coupling argument implies that η̄t has more particles if we increase the range
of the interactions. So, we just need to prove the result when the offspring is sent to one of the
two nearest neighbors. The idea is to prove that the rightmost particle in η̄t reaches the right edge
of Bz by time ΓL, and then stays inside Jz+1 ∩Bz until time ΓL. Let

rt = sup {x ∈ Bz : η̄t(x) = 1} and τ = inf {t ≥ 0 : rt = Φ(z + 1)}.

Then, on the set {τ > t}, we have E (rt−r0) ≥ (β−λ) t. In particular, since β > λ, the parameters
Γ and L can be chosen such that P (τ > ΓL) ≤ ε2/3. This implies that the rightmost particle will
reach Jz+1 by time ΓL with high probability. To prove that the rightmost particle does not leave
Jz+1 until time ΓL, we observe that

rt → rt − 1 at rate ≤ λ and rt → rt + 1 at rate

{

≥ β if rt < Φ(z + 1)

0 if rt = Φ(z + 1).

Then well-known estimates about random-walks imply that

P
(

∃ t ∈ [τ, ΓL] : rt /∈ Jz+1

)

≤ ΓL

(

λ

β

)L/5

≤ ε2/3

for L sufficiently large. This completes the proof. �

We now fix Γ and L such that Lemma 6.4 holds. To extend the result to the process ηt, we just
need to choose λ > 0 sufficiently small so that the probability a death occurs in the space-time
region Bz × [0, ΓL ] is smaller than ε2/3. In other respects, since the result holds for the process
modified so that any particle outside Bz is killed, it follows that: If λ > 0 is small then the set of
occupied sites dominates the set of wet sites in an oriented percolation process in the half-space
with parameter 1 − 6−72. Lemma 6.2 then implies that

P (there is at least one particle in Jz at time 2nΓL) ≥ ε1 > 0

for any integer n ≥ 0, provided that η0 contains infinitely many particles. Now, it is easy to see
that there exists a constant ε3 > 0 independent of n such that: If there is at least one particle in
the interval Jz at time 2nΓL then the probability that ξ

−

t (r
2

t + 1) = ηt(0) = 1 for at least one
unit of time between times 2nΓL and 2 (n+ 1)ΓL is greater than ε3. This tells us that

lim
T→∞

1

T

∫ T

0

1{ηt(0) = 1} dt ≥ ε0

for some appropriate constant ε0 > 0. Since Lemma 6.3 implies that {ηt(0) = 1} ⊂ {Gt = 0},
Lemma 6.1 follows from the previous inequality. A time change now allows us to set λ = 1, which
then completes the proof of Theorem 3.
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7. Proof of Theorem 4

This section is devoted to the proof of Theorem 4 which addresses coexistence of the symbionts
in the neutral case g = 1. To remind the reader, we assume that the symbionts evolve as previously
but the hosts perform a threshold θ voter model according to the following rate at x:

i → j at rate

{

1 if card {z ∈ Z
d : 0 < ||x− z|| ≤ R1 and ξ̂

1

t (z) = j} ≥ θ

0 otherwise.

It is easy to see that the critical value for the infection rate, β Th4

cr (κ), is strictly bounded away
from 0. Namely, if κ = 1, then the symbionts perform a basic contact process with death rate
1, provided θ ≤ νR1 , and birth rate βνR2 . Furthermore, since the contact process is monotone,
β Th4

cr (κ) ≥ β T h4

cr (1) for κ ≥ 1, from which our claim follows.
To prove Theorem 4, we will compare the particle system viewed on suitable length and time

scales with a 1-dependent oriented percolation process in two dimensions. The properties of the
process in the absence of symbionts was described in Durrett (1992). To apply his results, we
introduce, for any x ∈ Z

d, the house

Hx = [x1 L, (x1 + 1)L) × · · · × [xd L, (xd + 1)L),

where L is an integer to be fixed later and xi denotes the i-th coordinate of the vector x. We fix
σ < 1/κ such that θ < σ νR1 , and say that Hx is good if it contains at least σ Ld hosts of each
type. For x ∈ Z

d, we define ||x ||2 = (|x1|2 + · · · + |xd|2)1/2 and set B2(x, r) = {y : ||y − x||2 ≤ r}.
We say that B2(0, r) is good if for any x ∈ B2(0, r) the house Hx is good. For z even for even n or
z odd for odd n, we will say that (z, n) is occupied if the following two conditions hold:

1. For any x ∈ B2(zKe1,K), the house Hx is good at time nΓL.

2. For any i = 1, 2, . . . , κ, B2(zKLe1,KL) has at least one symbiont of type i at time nΓL.

Here, e1 denotes the first unit vector, and K and Γ are large integers that will be fixed later. Note
that the set B2(zKe1,K) is defined on the rescaled lattice, whereas B2(zKLe1,KL) is defined on
the original lattice. We will prove the following result.

Proposition 7.1 Let ε > 0 and θ < νR1/κ. There exists β T h4

cr ∈ (0,∞) such that if β > β T h4

cr

then K, L and Γ can be chosen in such a way that the set of occupied sites dominates the set of
open sites in a 1-dependent oriented percolation process with parameter 1 − ε.

The first step in proving Proposition 7.1 is to summarize the results of Durrett (1992), Section 2,
which describe the behavior of the process in the absence of symbionts. To formulate the result
we are interested in, we set R1 = L(M1 + 1) where L and M1 are large integers.

Lemma 7.2 (Durrett) Let ε > 0 and θ < νR1/κ. There exist R0, M0 and Γ such that the
following holds: If M1 ≥M0 and B2(0, R0M1) is good at time 0 then, for L large, B2(0, R0M1) is
good until time ΓL and B2(0, 2R0M1) is good at time ΓL with probability at least 1 − ε/ 3.

The sets described in Lemma 7.2 provide an environment favorable to the survival of symbionts.
To explain this, we introduce, for any type i = 1, 2, . . . , κ, the processes η

i

t defined by η
i

t (x) = 1

if ξ̂
2

t (x) = i and η
i

t (x) = 0 otherwise. Since α = 0, it is easy to see that, for i = 1, 2, . . . , κ, the
processes η

i

t do not interact. We fix a type i ∈ {1, 2, . . . , κ}, and focus on the process η
i

t . The
evolution of η

i

t is as follows:

1. Each particle dies at rate at most κ and gives birth at rate βνR2 .

2. A particle born at site x is sent to a site z chosen at random from N 2
x .

3. If the target site z is occupied by an unassociated host of type i then the birth occurs.
Otherwise, it is suppressed.
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The proof of Theorem 4 relies, like Theorems 1 and 2, on a perturbation argument. More precisely,
we first prove Proposition 7.1 in the extreme case β = ∞, and then extend the result to the
region β > 0 large. We denote by η̄

i

t the process η
i

t modified so that no births are allowed
outside B2(0,KL).

Lemma 7.3 Assume that B2(0,K) is good until time ΓL and that at time 0 there exists x ∈
B2(0,KL) with ηi

0(x) = 1. If R2 ≥ 4 dL and β = ∞ then

{x ∈ Z
d : ξ̂

1

t (x) = i} ∩ B2(0,KL) = {x ∈ Z
d : η̄

i

t (x) = 1} for all t ≤ ΓL.

Proof This is elementary geometry. To begin with, we cover the set B2(0,KL) with a finite
number of Euclidean balls Bj , j ∈ I, each of them has radius r =

√
dL. Then, it is easy to see

that, for any j ∈ I, Bj contains at least one house. In particular, as long as B2(0,K) is good, Bj

contains at least one host of type i provided that Bj ⊂ B2(0,KL). At any time 0 ≤ t ≤ ΓL, let’s

pick one at random and denote by Xj(t) its spatial location. Now, since R2 ≥ 4 r
√
d, we have

min
{

||Xj(t) −Xk(t)|| : k 6= j
}

≤ R2 for all j ∈ I and for all t ≤ ΓL.

This implies that, for any x, z ∈ B2(0,KL) occupied by a host of type i, there exists a chain of
sites x0 = x, x1, . . . , xn = z such that the following two conditions hold:

1. For k = 1, 2, . . . , n, ||xk−1 − xk|| ≤ R2 and

2. For k = 0, 1, . . . , n, the site xk is occupied by a host of type i.

In particular, since η̄
i

t starts with at least one particle in B2(0,KL) and B2(0,KL) is finite, all
the hosts of type i are instantaneously invaded by a symbiont at time 0. It is easy to prove by
induction that this holds until time ΓL. If a host of type i gives birth to an unassociated host
which is sent to a site x ∈ B2(0,KL) at time t, pick Xj(t) such that ||x − Xj(t)|| ≤ R2. Since
Xj(t) is occupied by a symbiont of type i, the host at x will be instantaneously invaded. �

To extend the result to β > 0 large, it is convenient to construct the process ξ̂t from a graphical
representation. For any type i ∈ {1, 2, . . . , κ} and x ∈ Z

d, let {T i,x

n : n ≥ 1} be independent
Poisson processes with rate 1. At time T

i,x

n the state of x flips to (i, 0) if the set N 1
x has at least

θ hosts of type i. For x ∈ Z
d, let {U x

n : n ≥ 1} be independent Poisson processes with rate β. At
time U

x

n , we choose at random a site z from N 2
x . If a host of a certain type is present at site x,

and a symbiont of the same type is present at site z, then the host at site x becomes associated
if it is not already. So that Lemma 7.3 holds for β < ∞ large, we now require the following two
good events, denoted by G1 and G2, respectively: Firstly, we need a quick invasion of the ball
B2(0,KL) by the symbionts. More precisely, G1 will be the event that if at time 0 there exists
x ∈ B2(0,KL) with ηi

0(x) = 1, then for all z ∈ B2(0,KL), with z occupied by host i, the host
present at site z becomes associated before another host attempts to give birth in B2(0,KL). To
estimate P (G1), we observe that, for any z ∈ B2(0,KL), the host at site z can be reached in at
most 4KL/R2 steps by a symbiont, i.e., if the host at z is of type i then there is a chain of sites
x0, x1, . . . , xn = z with n ≤ 4KL/R2, satisfying the conditions 1 and 2 above and such that x0

is occupied by a symbiont of type i at time 0. We denote by νKL the number of sites in the ball
B2(0,KL). Then since the transition i → j occurs at rate at most 1 and there are κ hosts and
νKL sites in B2(0,KL), new hosts are born at rate at most κ νKL. We set n equal to the integer
part of 4KL/R2. Then

P (G1) ≥ 1 − νKL n
κ νKL

κ νKL + β/n

≥ 1 − νKL
4KL

R2

κ νKL

κ νKL +R2 β/4KL
.

Now that B2(0,KL) has been invaded, we secondly require it to remain fully occupied until time
ΓL. In other words, G2 will be the event that given that at time 0 all hosts are associated, each
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time a host is born at some site x ∈ B2(0,KL), it becomes associated before another host is born
in the ball B2(0,KL), this occurs from time 0 to time ΓL. Let N denote the number of times a
host is born in B2(0,KL) from time 0 to time ΓL. Since EN ≤ κ νKLΓL, we find that

P (N > 2 κ νKL ΓL) ≤ C11 exp (−γ11 ΓL)

for appropriate C11 < ∞ and γ11 > 0. If only one host in B2(0,KL) is unassociated, it becomes
associated at rate at least β. Births of hosts in B2(0,KL) occur at rate at most κ νKL. Let X be
a random variable with exponential distribution with parameter β and Y be a random variable
with exponential distribution with parameter κ νKL. Then

P (Gc
2) ≤ P (N > 2 κ νKL ΓL) + P (Gc

2 ; N ≤ 2 κ νKL ΓL)

≤ C11 exp (−γ11 ΓL) + 2 κ νKL ΓLP (Y ≤ X)

≤ C11 exp (−γ11 ΓL) + 2 κ νKL ΓL
κ νKL

β + κ νKL
.

The proof of Proposition 7.1 is now straightforward. Let ε > 0 and assume that B2(0,K) is good
and that B2(0,KL) has at least one symbiont of each type at time 0. Fix R1 = L(M1 + 1) and
K = R0M1, then apply Lemma 7.2 and choose L sufficiently large so that B2(0,K) is good from
time 0 to time ΓL and B2(0, 2K) is good at time ΓL with probability at least 1 − ε/ 3. Now,
increase L and then choose β sufficiently large so that both probabilities P (G1) and P (G2 |G1)
are greater than 1− ε/ 3. To see that this produces the desired result, we observe that if B2(0,K)
is good from times 0 to ΓL then Lemma 7.3 implies that, on G1 ∩G2, the balls B2(−KLe1,KL)
and B2(KLe1,KL) contain at least one symbiont of each type. This completes the proof.

To deduce the existence of a nontrivial stationary measure µ from Proposition 7.1, we start
the process ξ̂t from a product measure in which each host is associated with a symbiont and has
density 1/κ. Then, we take the Cesaro average of the distributions from time 0 to time T and
extract a convergent subsequence. By Proposition 1.8 of Liggett (1985), the limit µ is known to be
an invariant measure. To see that µ has the desired property, we observe that if L is large then the
law of large numbers implies that (z, 0), z even, is occupied with probability close to 1. Moreover,
if ε > 0 is small, well-known percolation results imply that, at any level n, the density of occupied
sites is positive, which implies that µ (ξ̂

2
(x) = i) 6= 0 for any i ∈ {1, 2, . . . , κ}. At this point, we

have proved that there is a critical value β T h4

cr ∈ (0,∞) such that if β > β Th4

cr then coexistence
occurs.

To see that β Th4

cr can be chosen so that if β < β Th4

cr then coexistence does not occur, we
rely on a standard coupling argument. If we think of the process as being generated by the
Poisson processes introduced above, it is easy to see that if β1 < β2, then the processes with
parameters β1 and β2 can be defined on the same space, starting from the same initial config-
uration, in such a way that the process with parameter β1 has fewer symbionts of type i for
any i ∈ {1, 2, . . . , κ}. This completes the proof of Theorem 4.

Acknowledgment. The authors would like to thank an anonymous referee for his/her careful
reading of the proofs.
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Voter model and biased voter model in

heterogeneous environments

N. Lanchier and C. Neuhauser∗

Abstract With the rapid adoption of transgenic crops, gene flow from transgenic crops to
wild relatives through pollen dispersal is of significant concern and warrants both empirical
and theoretical studies to assess the risk of introduction of transgenes into wild populations.
We propose to use the (biased) voter model in a heterogeneous environment to investigate the
effects of recurrent gene flow from transgenic crop to wild relatives. Our main findings suggest
that unless transgenes confer increased fitness in wild relatives, introgression of transgenes
into populations of wild plants is slow and maybe even reversible without intervention. Our
study also addresses the effects of different spatial planting patterns of transgenic crops on
the rate of introgression.

1. Introduction

The technology of inserting genes into the genomes of organisms for commercial applications
was developed in the early 1980s. Insulin was the first commercial product that was produced by
a genetically engineered organism. It was approved by the U.S. Federal Drug Administration in
1982. Shortly thereafter, in 1983, the first genetically modified tobacco plant was engineered to
express an antibiotic gene from a bacterium. Since then, genetic engineering has become a standard
tool of gene technology for drug and agricultural product design. Genetically modified crop plants
(transgenic crops) are now being developed to resist insect herbivory, herbicides, or viral pathogens.
A well-known example is Bt maize that is engineered to express a gene from the soil bacterium
Bacillus thuringiensis (Bt). This gene codes for a toxin that is lethal to the larval stage of maize’s
main insect pest, the European corn borer Ostrinia nubilalis (Hübner) [Lepidoptera: Crambidae].
Bt maize has been commercially available since the mid 1990s and was planted on about 32
percent of corn acreage in the U.S. in 2004 (www.ers.usda.gov/data/biotechcrops). Other widely
used genetically engineered crops include cotton and soybeans, which have both been engineered
to be herbicide tolerant and were planted on 60 percent and 85 percent of U.S. acreage in 2004,
respectively (www.ers.usda.gov/data/biotechcrops).

Environmental safety of transgenic crops is a major concern, particularly the potential of gene
transfer from transgenic crops into natural populations of close relatives through pollination. That
this concern is not just a theoretical possibility was demonstrated by Watrud et al. (2004) in a
recent study of gene flow among Agrostis stolonifera and some of its close relatives. A. stolonifera

is a wind-pollinated perennial grass in the genus Agrostis that is estimated to contain over 200
species worldwide (Soreng and Peterson 2003). A. stolonifera is commonly used on golf courses
and as a forage crop. It has been genetically modified to express resistance to glyphosate, the
active ingredient of RoundUp herbicide (Monsanto, St. Louis, MO). Watrud et al. (2004) set up
a field experiment to measure the gene flow among A. stolonifera and some of its close relatives.
This experiment showed that gene flow typically occurs within 2 km, but long distance dispersal
events of up to 21 km were also observed.

Crop plants are descended from wild plants and have close relatives among them. It is therefore
no surprise that gene flow between crop plants and wild plants has occurred in the past (Ellstrand
et al. 1999). However, with novel genes being inserted into the genomes of crop plants to express
proteins for specific biological functions, there is increased concern that these novel genes would
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AMS 2000 subject classifications: Primary 60K35; 82C22
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116 Systèmes de particules multicolores

escape into the wild and confer increased fitness to some species and that the wild plants could
become aggressive invaders.

Few mathematical models have explored the potential of gene flow from genetically engineered
crops to wild relatives (Huxel 1999, Wolf et al. 2001, Haygood et al. 2003). They found that even
if selection disfavors the transgene, invasion into the wild population is possible. Their models
point to the need for closer monitoring of gene flow from genetically engineered crops into wild
populations.

None of the models mentioned above is spatially explicit. Since gene flow is an inherently
spatial process, the lack of a spatial component is potentially a serious shortcoming. To begin to
understand how the spatial configuration of permanent plots of genetically modified crop plants
affect gene flow and invasion of transgenes into adjacent natural populations of close relatives, we
propose a spatially explicit, stochastic model in a heterogeneous environment. The environment
will reflect the permanent plots of genetically modified organisms embedded in a matrix of wild
plants. Since we think of the genetically modified crop plants as planted, gene flow will only occur
within the wild plants and from the genetically modified plants to the wild plants. The model is
based on the simplest population genetics model, the haploid Wright-Fisher model with selection.
The spatial analog of the Wright-Fisher model is the (biased) voter model. We will define the
voter model in a heterogeneous environment with gene flow in such a way to address the problem
of recurrent gene flow from genetically modified crop plants to their wild relatives.

The heterogeneous voter model is a continuous-time Markov process in which the state at time t
is a function ξt : Z

d −→ {0, 1}. We think of 1’s as representing individuals carrying the transgene,
and 0’s as the ones carrying the wild type gene. A site x ∈ Z

d is said to be occupied by a 1 (resp.
0) if ξ(x) = 1 (resp. 0). We will also use the notation x ∈ ξt if and only if ξt(x) = 1. The subset
∆ ⊂ Z

d represents the part of the habitat that is occupied by transgenic crop plants. We freeze
the evolution on ∆ by pretending that if x ∈ ∆ then, at any time t ≥ 0, ξt(x) = 1. The dynamics
are defined as follows. Let p (x, y) be a transition probability on Z

d that is translation invariant,
i.e., p (x, y) = q (y − x), symmetric, i.e., q (z) = q (−z), and such that q (z) has variance σ2 < ∞.
If a site x ∈ Z

d − ∆ is occupied by a 1, then, at rate 1, it picks a site y ∈ Z
d with probability

p (x, y) and changes to the state of the individual at y. If the site x is occupied by a 0, it chooses
a site y ∈ Z

d at rate β according to p (x, y) and changes to the state of the site y. Except in the
homogeneous case ∆ = ∅, we will assume from now on that ξ0(x) = 1 if and only if x ∈ ∆. It
follows from the dynamics that for all t > 0, ξt(x) = 1 for x ∈ ∆.

We first observe that if ∆ = ∅ and β = 1 then ξt is the d-dimensional voter model. In this
case, the results of Holley and Liggett (1975) reveal a sharp change in behavior depending on the
spatial dimension: If d ≤ 2 then ξt ⇒ α δ0 + (1 − α) δ1, for some α ∈ [0, 1], where δi denotes the
point mass on ξ ≡ i. Furthermore, clustering occurs, that is for any x, y ∈ Z

d,

P (ξt(x) = 0, ξt(y) = 1) → 0 as t→ ∞.

If d ≥ 3, and ξθ
0 denotes the initial distribution in which the coordinates ξθ

0(x) are independent
and equal to 1 with probability θ, then ξθ

t ⇒ ξθ
∞, a stationary measure in which P (ξθ

∞ = 1) = θ.
Choosing ∆ 6= ∅ can drastically change the limiting behavior of the process. For instance, if we
set ∆ = {0} and d ≤ 2, then the particle located at the origin will produce a cluster that will
invade the whole space.

If ∆ = ∅ and β > 1, then ξt is the biased voter model. The results of Bramson and
Griffeath (1980 and 1981) show that, in any dimension, if we let Ω∞ = {ξt 6= ∅ for all t ≥ 0},
then starting from a configuration where there is a single 1 at the origin, there is a convex
set A so that on the event Ω∞ we have for any ε > 0

(1 − ε) t A ∩ Z
d ⊂ ξt ⊂ (1 + ε) t A ∩ Z

d for all t sufficiently large.

Moreover, on Ω
c

∞, the process converges to the “all 0” configuration exponentially fast.
We now fix d = 1. The discussion above implies that if ∆ 6= ∅ then ξt ⇒ δ1. The first question

we would like to answer is: What is the effect of the geometry of ∆ on the speed of convergence to
the all occupied configuration? The first step to answer this question is to investigate the process
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starting from ξ0(x) = 1{x≤0}. In the special case ∆ = ∅, the behavior of the process at the
interface has been studied by Cox and Durrett (1995). To introduce their results, let’s consider
the leftmost-zero and the rightmost-one processes

ℓt = inf {x ∈ Z : ξt(x) = 0} and rt = sup {x ∈ Z : ξt(x) = 1}.

Moreover, we assume, for technical reasons, that

(i) p is irreducible, i.e., it is possible to get from 0 to any x ∈ Z in a finite number of steps.

(ii) q has finite third moments, i.e.,
∑

z |z|3 q (z) <∞.

Then {rt − ℓt : t ≥ 0} is stochastically compact, that is for any ε0 > 0 there exists a
constant M < ∞ such that P (rt − ℓt ≥ M) ≤ ε0. See Cox and Durrett (1995), Section 4.
Moreover, if we denote by Φ(x) the standard normal distribution function, then

lim
t→∞

P (rt/σ
√
t ≤ x) = lim

t→∞
P (ℓt/σ

√
t ≤ x) = Φ(x).

In the case ∆ = Z
−, the set of nonpositive integers, we will prove that the family {rt − ℓt : t ≥ 0}

is still stochastically compact. The previous equation however becomes false since rt and ℓt are
now forced to live on the right side of zero. More precisely, we will prove that

Theorem 1 Let β = 1. If x ≥ 0 and xt = xσ
√
t then

lim
t→∞

P (rt ≥ xt) = lim
t→∞

P (ℓt ≥ xt) =

√

2

π

∫ ∞

x

exp

[

− y2

2

]

dy.

In words, the particles diffuse to the right, which reveals a very slow invasion. In view of Theorem
1, our guess is that the more ∆ is scattered, the faster the transgene will invade the wild population.

To make this argument precise, we consider the process on the torus εZ/NZ where N is a
positive integer and ε is close to 0. Moreover, we speed up time by ε

−2
and introduce the transition

probability pε (x, y) = q (ε
−1

(y − x) mod Nε
−1

) to formulate the dynamics. We let L > 0 and
K = N/L such that both K and L ε

−1
are integers, with K even. For any z ∈ {0, 1, . . . , K − 1},

we define the subsets

Bz = [ z L, (z + 1)L) ∩ εZ and ∆ =
⋃

z even

Bz.

The reader will note that since we start the process with ξ0(x) = 1 if and only if x ∈ ∆, for any
choice of L, half of the sites are initially occupied, and half of the sites are initially vacant. Finally,
we denote by Tinv the stopping time Tinv = inf {t ≥ 0 : ξt ≡ 1}. We refer to Tinv as the time to

complete invasion.

Theorem 2 Let β = 1. If p (x, y) has compact support then

lim
ε→ 0

P (Tinv ≤ t) =

{

1 −
∫ L

0

(Ψt ∗ Ψt)(x) dx

}N/2L

where

Ψt(x) = − ∂

∂x

√

2

π

∫ ∞

x/σ
√

t

exp

[

− y2

2

]

dy.

Theorem 2 gives us insights into the effects of the spatial configuration of ∆ on the time to complete
invasion. Numerical investigations suggest that, for fixed t ≥ 0, the function L 7→ limε→0 P (Tinv ≥
t) is increasing. This implies that for N fixed, the time to complete invasion will be slowest in the
extreme case L = N/2, and faster as the number of components of ∆ increases.
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Unfortunately, we do not know how to extend Theorem 2 to higher dimensions. To be convinced
however that the analogous result holds in d = 2, we simulated the process on a 200× 200 lattice
with periodic boundary conditions and nearest neighbor interactions, tiled into 20 × 20 squares
Bi,j , i, j = 1, 2, . . . , 10. Figure 1 shows the time to complete invasion in three different environ-
ments. In the chess-board model, ∆ is the set of Bi,j with i+ j even. In the striped model, ∆ is the
set of Bi,j with i even. Finally, in the four-patch model, ∆ is the set of Bi,j with i, j = 1, 2, . . . , 5
or i, j = 6, 7, . . . , 10. As suggested by Figure 1, the simulations reveal that Tinv is a decreasing
function of the number of components of ∆.
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Figure 1. Evolution to resistance.

We now consider the process on Z where the particles give birth according to the transi-
tion probability p (x, y). Let ∆ = Z

− and start the process with ξ0(x) = 1 if and only if
x ∈ ∆. Moreover, we assume that p (x, y) has compact support, i.e., there exists R > 0 such
that if |x−y| > R then p (x, y) = 0. The next step is to investigate the properties of the rightmost-
one process rt with birth rate β. The limiting behavior of rt as t → ∞ follows from Theorem 2.
By working a little bit more, we can prove that the process comes back to its initial configuration
infinitely often. See Figure 4 for a picture.

Theorem 3 Assume that p (x, y) has compact support. If β = 1, then P (rt = 0 i.o.) = 1.

To investigate the case β 6= 1, we consider the process with nearest neighbor interactions, i.e., we
let p (x, y) = 1/2 if |x− y| = 1. If β < 1, Theorem 3 accompanied by a coupling argument implies
that rt = 0 i.o.; the process however does not exhibit the behavior described in Theorem 1.

Theorem 4 Assume nearest neighbor dispersal. If β < 1 then P (rt ≥ x) ≤ β x at any time t ≥ 0.

Finally, if β > 1, the process behaves like the corresponding biased voter model in homogeneous
environment, namely the process grows linearly in time with a wave speed of order β − 1. See
Figure 5 for a picture.

Theorem 5 Assume nearest neighbor dispersal. If β > 1, there exist C <∞ and γ > 0 such that
for any t > 0 and any ε > 0

P (| rt − (β − 1) t | ≥ ε t) ≤ C e−γε2t.

In conclusion, Theorems 1 and 4-5 imply that if β ≥ 1 then, for any integer x ≥ 0 and ε > 0,
there is t0 ≥ 0 such that P (rt ≥ x) ≥ 1− ε for any t ≥ t0, while if β < 1 then P (rt ≥ x) ≤ β x for
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any t ≥ 0. Moreover, Theorems 3-5 exhibit the 0-1 law:

P (rt = 0 i.o.) =

{

0 if β > 1

1 if β ≤ 1.

In particular, if β = 1 and p (x, y) has compact support, the rightmost-one process rt converges in
probability to infinity as t→ ∞ but not almost surely.

Our results confirm the need to monitor recurrent gene flow from genetically modified crops to
their wild relatives but our results differ in an important way from the results of non-spatial models
analyzed by other researchers (Huxel 1999, Wolf et al. 2001, Haygood et al. 2003) who consistently
found that the transgene would eventually go to fixation over a wide range of parameters even if
not favored by selection. Both selection and the spatially explicit structure of our model greatly
affect the rate and extent of invasion of transgenes into wild populations. If the transgene is favored
by selection, it will completely take over a wild population. In the neutral case, the transgene can
penetrate a wild population arbitrarily far, which can result in fixation when the wild population
is only of limited spatial extent, but the invasion is slow. If the transgene is not favored, it will
continue to be present in the wild population and the extent to which it can penetrate into the
the wild population depends strongly on the strength of selection. Simulations strongly indicate
that the dispersal distance is a key factor in how quickly and to what extent transgenes can
invade natural populations. Considering that pollen can disperse over very large spatial distances,
genetic pollution of wild population remains a serious concern, even if the transgene is not favored
by selection.

Modeling at this conceptual level can only point out the various factors that affect transgene
introgression. It does by no means replace necessary field work and system specific simulation
models that are parametrized by field data. However, our work clearly shows that spatially explicit
and stochastic models can contribute to a deeper understanding of the problem of recurrent gene
flow by identifying key parameters that need to be measured to assess risk.

The paper is organized as follows. Section 2 provides some preliminary results. Section 3 is
devoted to the proofs of Theorems 1 and 2, Section 4 to the proof of Theorem 3, and Section 5
to the proofs of Theorems 4 and 5. Figures 4 and 5 provide some visualizations of the effects of
dispersal range and selection strength.

2. Duality. Preliminary results

We start by constructing the process from a collection of Poisson processes in the case β ≥ 1.
For each x ∈ Z

d − ∆, we let {S x

n : n ≥ 1} and {T x

n : n ≥ 1} be the arrival times of independent
Poisson processes with rate 1 and β − 1 respectively, and we let {U x

n : n ≥ 1} and {V x

n : n ≥ 1}
be i.i.d. sequences with P (U

x

n = y) = P (V
x

n = y) = p (x, y). At times S
x

n we draw an arrow
from U

x

n to x and put a δ at x while at times T
x

n we just draw an arrow from V
x

n to x. Then the
process is obtained from the graphical representation as follows: At time S

x

n , the site x imitates
the site U

x

n , i.e., becomes occupied by a 1 (resp. 0) if U
x

n is occupied by a 1 (resp. 0). At time
T

x

n , the site x becomes occupied by a 1 if V
x

n is occupied by a 1. An idea of Harris (1972) implies
that such a graphical representation can be used to construct the process starting from any initial
configuration ξ0 : Z

d −→ {0, 1}. After constructing the graphical representation, we can now
define the dual process. We say that there is a path from (z, 0) to (x, t) if there is a sequence of
times s0 = 0 < s1 < · · · < sn+1 = t and spatial locations x0 = z, x1, . . . , xn = x such that the
following two conditions hold:

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si and

2. For i = 0, 1, . . . , n, the vertical segment {xi} × (si, si+1) do not contain any δ’s.

We say that there exists a dual path from (x, t) to (z, t − s), 0 ≤ s ≤ t, if there is a path
from (z, t− s) to (x, t), and we define the dual process starting at (x, t) by setting

ξ̂
(x,t)

s = {z ∈ Z
d : there is a dual path from (x, t) to (z, t− s)}
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for any 0 ≤ s ≤ t. The dual process allows us to deduce the state of site x at time t from the
configuration at earlier times. Recall that x ∈ ξt if and only if ξt(x) = 1. Then,

x ∈ ξt ⇐⇒ ξ̂
(x,t)

s ∩ ξt−s 6= ∅.

See, e.g., Durrett (1988), Chapter 3. In the homogeneous case ∆ = ∅, the dual process is a well-

known object. If β = 1, the process ξ̂
(x,t)

s performs a continuous-time random walk on Z
d run

at rate 1. Starting the dual process from two sites x and y amounts to running two individual
dual processes ξ̂

(x,t)

s and ξ̂
(y,t)

s independently until their Z
d coordinates are identical, at which

point they coalesce, i.e., ξ̂
(x,t)

s − ξ̂
(y,t)

s has 0 as an absorbing state. After coalescing, the two dual
processes move together according to the rules of the dual process of a single random walk. This
implies a duality between the voter model and coalescing random walks when β = 1. If β > 1, the
dual process branches when it encounters the tip of a single arrow. More precisely, we start with
a single particle at x at time s = 0. If a particle in ξ̂

(x,t)

s meets a δ at some time s = t− S
z

n then

this particle moves to U
z

n . If a particle in ξ̂
(x,t)

s meets the tip of a single arrow at time s = t− T
z

n

then this particle gives birth to a new particle which is then sent to V
z

n . In conclusion, for β > 1,
there is a duality between the biased voter model and coalescing branching random walks.

In the heterogeneous case ∆ 6= ∅, we observe that if z ∈ ∆ then no arrows point at z. If β = 1,
the process ξ̂

(x,t)

s then evolves like a continuous-time random walk until the first time it visits
∆ where it becomes frozen. It is convenient to construct the dual process in the heterogeneous
environment from that in a homogeneous environment: If we denote by ζt the process constructed
from the graphical representation in homogeneous environment, then ξt can be constructed from
the graphical representation obtained by removing all the arrows that point at a site z ∈ ∆.
Since both processes have the same graphical representation on Z

d − ∆, ξ̂
(x,t)

s and ζ̂
(x,t)

s move

together until they hit ∆ when ξ̂
(x,t)

s is frozen. In the same way, if β > 1, the particles in each

dual move and give birth together as long as they belong to Z
d −∆. When a particle in ξ̂

(x,t)

s hits

the set ∆ it is frozen, whereas the corresponding particle in ζ̂
(x,t)

s continues to move and give birth.

The rest of this section is devoted to the proof of a preliminary result, which is the main
ingredient to establish Theorems 1-3. From now on, we set d = 1, let ∆ = Z

− be the set of
nonpositive integers and assume that ξ0(x) = 1 if and only if x ∈ ∆. We define the leftmost-zero

and the rightmost-one processes by

ℓt = inf {x ∈ Z : ξt(x) = 0} and rt = sup {x ∈ Z : ξt(x) = 1}.

Proposition 2.1 Let ∆ = Z
− and β = 1. Then the family {rt − ℓt : t ≥ 0} is stochastically

compact. That is, for any ε0 > 0 there is M > 0 so that P (rt − ℓt ≥M) ≤ ε0 at any time t ≥ 0.

In the case ∆ = ∅, Proposition 2.1 was proved by Cox and Durrett (1995), Section 4. Their proof
relies on a strong analysis of the dual process and random walks estimates. They introduced the
following concept, which is key to proving Proposition 2.1: The event that there are x, y ∈ Z

such that x < y and ξ̂
(y,t)

t ≤ 0 < ξ̂
(x,t)

t will be called an inversion. If we let Bt be the number of
inversions that occur by time t, then Cox and Durrett (1995) showed that

−1 ≤ rt − ℓt ≤ Bt.

The proof of Proposition 2.1 can then be reduced to an analysis of the dual process. See Cox and
Durrett (1995), Section 4. To deduce Proposition 2.1 from the result in the homogeneous case, we
will prove that there exists a constant C <∞ such that E (Bt) ≤ C×E (B′

t), where B′
t denotes the

number of inversions by time t for the process ζt defined above. To compare the dual processes,
we introduce the following notation: For any x, y ∈ Z, we consider the stopping times

σx,y = inf
{

s ≥ 0 : ξ̂
(x,t)

s = ξ̂
(y,t)

s or ξ̂
(x,t)

s , ξ̂
(y,t)

s ≤ 0
}

,

τx,y = inf
{

s ≥ 0 : ζ̂
(x,t)

s = ζ̂
(y,t)

s

}

and sx = inf
{

s ≥ 0 : ξ̂
(x,t)

s ≤ 0
}

.
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Moreover, we let ̺x,y = min (σx,y, τx,y) and sx,y = min (sx, sy). We are now ready to prove
Proposition 2.1. For a better understanding of Lemmas 2.2-2.5, we refer the reader to Figure 2,
which gives a picture of the stopping times we have just introduced. Finally, we would like to
remind the reader that our construction implies that ξ̂

(x,t)

s and ζ̂
(x,t)

s move together as long as
their position is to the right of zero.

Lemma 2.2 For any z ∈ Z
− and w ∈ Z, P (σz,w > 2 t) ≤ P (τz,w > t).

Proof If w ≤ 0, the inequality is trivial since in this case σz,w = 0. To deal with the case w > 0,
we observe that σz,w is the first time a rate-one random walk starting at w hits Z

− while τz,w is
the first time a rate-two random walk starting at w − z ≥ w hits 0. �

Lemma 2.3 For any x, y ∈ Z, P (σx,y > 2 t ; sx,y < ̺x,y) ≤ P (τx,y > t ; sx,y < ̺x,y).

Proof We first observe that

P (σx,y > t ; sx,y < ̺x,y) = P (σx,y > t ; sx,y < ̺x,y ; sx < sy)

+ P (σx,y > t ; sx,y < ̺x,y ; sx > sy).

We will prove the assertion for sx,y = sx. By the Markov property

P (σx,y > 2 t ; sx < ̺x,y ; sx < sy) =

∫ ∞

0

P (σx,y > 2 t ; ̺x,y > s ; sy > s) P
x
(sx ∈ ds)

=
∑

z≤0

∑

w>0

∫ ∞

0

P (σx,y > 2 t ; ̺x,y > s ; sy > s ; ξ̂
(x,t)

s = z ; ξ̂
(y,t)

s = w) P
x
(sx ∈ ds)

=
∑

z≤0

∑

w>0

∫ ∞

0

P (σz,w > 2 t− s)

× P ( ̺x,y > s ; sy > s ; ξ̂
(x,t)

s = z ; ξ̂
(y,t)

s = w) P
x
(sx ∈ ds).

Similarly,

P (τx,y > t ; sx < ̺x,y ; sx < sy) =
∑

z≤0

∑

w>0

∫ ∞

0

P (τz,w > t− s)

× P (̺x,y > s ; sy > s ; ζ̂
(x,t)

s = z ; ζ̂
(y,t)

s = w) P
x
(sx ∈ ds).

Now, since ξ̂
(x,t)

s = ζ̂
(x,t)

s and ξ̂
(y,t)

s = ζ̂
(y,t)

s until time s = sx,y it follows that

P (̺x,y > s ; sy > s ; ξ̂
(x,t)

s = z ; ξ̂
(y,t)

s = w ; sx = s)

= P (̺x,y > s ; sy > s ; ζ̂
(x,t)

s = z ; ζ̂
(y,t)

s = w ; sx = s).

Furthermore, Lemma 2.2 implies that for z ≤ 0

P (σz,w > 2 t− s) ≤ P (σz,w > 2 (t− s)) ≤ P (τz,w > t− s).

This completes the proof. �

Lemma 2.4 For any x, y ∈ Z, P (σx,y > 2 t) ≤ P (τx,y > t).

Proof We observe that if sx,y ≥ ̺x,y then σx,y = τx,y since ξ̂
(x,t)

s = ζ̂
(x,t)

s and ξ̂
(y,t)

s = ζ̂
(y,t)

s

until time sx,y. In particular,

P (σx,y > 2t ; sx,y ≥ ̺x,y) ≤ P (σx,y > t ; sx,y ≥ ̺x,y) = P (τx,y > t ; sx,y ≥ ̺x,y).

The conclusion then follows from Lemma 2.3. �
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∆ ∆ ∆

Figure 2. Pictures of the dual processes. The solid lines refer to the path of the dual processes moving together.

The dotted lines refer to the path of ζ̂
(·,t)

s after that ξ̂
(·,t)

s has been frozen.

Lemma 2.5 For any integer y > 0,

∑

x

P (ξ̂
(x+y,t)

t ≤ 0 < ξ̂
(x,t)

t | σx,x+y > t) ≤
∑

x

P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t | τx,x+y > t).

Proof We first observe that P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t ) = P (ζ̂
(−x,t)

t ≤ 0 < ζ̂
(−x−y,t)

t ) so that

∑

x>0

P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t ) ≤ 1

2

∑

x

P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t ).

Since P (ξ̂
(x,t)

t > 0) = 0 for any x ≤ 0, it suffices to prove that

P (ξ̂
(x+y,t)

t ≤ 0 < ξ̂
(x,t)

t | σx,x+y > t) ≤ 2P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t | τx,x+y > t)

for any x > 0 and y > 0. Now, if an inversion occurs before time t then sx+y ≤ t, and hence

P (ξ̂
(x+y,t)

t ≤ 0 < ξ̂
(x,t)

t | σx,x+y > t) ≤ P (ξ̂
(x,t)

t > 0 ; sx+y ≤ t | σx,x+y > t)

=

∫ t

0

P (ξ̂
(x,t)

t > 0 ; sx+y = s | σx,x+y > t) P
x+y

(sx+y ∈ ds)

≤
∫ t

0

P (ζ̂
(x,t)

t > 0 ; sx+y = s ; ζ̂
(x+y,t)

t ≥ 0 | τx,x+y > t) P
x+y

(sx+y ∈ ds)

+

∫ t

0

P (ζ̂
(x,t)

t > 0 ; sx+y = s ; ζ̂
(x+y,t)

t ≤ 0 | τx,x+y > t) P
x+y

(sx+y ∈ ds)

= 2 P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t | τx,x+y > t).

The last step follows from the fact that if ξ̂
(x+y,t)

s becomes frozen, ζ̂
(x+y,t)

s can be thought of
as starting from a site to the left of 0 and running until time t. This together with the fact that
the dispersal probability kernel is symmetric then implies the result. This completes the proof. �

By Cox and Durrett (1995), Section 3, there exists a constant α that depends only on y − x such
that P (τx,y > t) ∼ α/

√
t as t → ∞. Lemma 2.4 then implies that there is C < ∞ such that,
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for t sufficiently large, P (σx,y > t) ≤ C × P (τx,y > t). This together with Lemma 2.5 leads to

E (Bt) =
∑

y>0

∑

x

P (ξ̂
(x+y,t)

t ≤ 0 < ξ̂
(x,t)

t )

=
∑

y>0

∑

x

P (ξ̂
(x+y,t)

t ≤ 0 < ξ̂
(x,t)

t | σx,x+y > t) P (σx,x+y > t)

≤ C
∑

y>0

∑

x

P (ζ̂
(x+y,t)

t ≤ 0 < ζ̂
(x,t)

t | τx,x+y > t) P (τx,x+y > t) = C × E (B′
t).

Proposition 2.1 then follows from Proposition 1 in Cox and Durrett (1995).

3. Proofs of Theorems 1 and 2

Proof of Theorem 1

By symmetry, we only need to prove the result for rt. Since ξt(xt) = 1 implies that rt ≥ xt, it
follows from the duality properties introduced in Section 2 that

P (rt ≥ xt) ≥ P (ξt(xt) = 1) = P (sxt ≤ t).

Donsker’s Theorem implies that ζ
(xt,t)

s /σ
√
t converges in distribution to W x

s , a standard Brownian
motion starting at x. We denote by τ0 the first time W x

s hits 0. Then

lim
t→∞

P (rt ≥ xt) ≥ lim
t→∞

P (σxt ≤ t) = P (τ0 ≤ 1) =

√

2

π

∫ ∞

x

exp

[

− y2

2

]

dy.

For a proof of the last step, see Karlin and Taylor (1975), Section 7.3. To get the opposite inequality,
let ε0 > 0 and refer to Proposition 2.1 to choose M > 0 such that P (rt − ℓt ≥ M) ≤ ε0. Since
ξt(xt −M) = 0 and rt ≥ xt imply rt − ℓt ≥M we obtain

P (rt ≥ xt) ≤ P (ξt(xt −M) = 1) + ε0.

Finally, since limt→∞ P (ξt(xt) = 1) = limt→∞ P (ξt(xt −M) = 1), the result follows. �

Proof of Theorem 2

For any z ∈ {0, 1, . . . , K − 1}, let Tz define the stopping time

Tz = inf {t ≥ 0 : ξt ≡ 1 on Bz}.

We observe that if z is even then Bz ⊂ ∆, which implies that Tz = 0. Furthermore, if x ∈ Bz

and y ∈ Bz+2 then pε(x, y) = 0 for ε > 0 sufficiently small so that Tinv = maxz Tz. It follows that
for ε sufficiently small, the stopping times Tz are independent. We assume for the rest of the proof
that ε is sufficiently small so that both assertions above hold. To estimate Tz for odd z, we now
consider the edge processes

ℓt(z) = inf {x ∈ Bz : ξ̂
(x,t)

t ∈ Bz}
rt(z + 1) = sup {x ∈ Bz : ξ̂

(x,t)

t ∈ Bz}.

Since ξt 6≡ 1 on Bz if and only if ℓt(z) < rt(z + 1) + ε, we obtain

P (Tz > t) = P (ℓt(z) − rt(z + 1) < ε).

Unfortunately, in view of the properties of the dual process, ℓt(z) and rt(z + 1) are not a priori
independent. To deal with this problem, we set

rt(z) = sup {x ∈ Bz : ξ̂
(x,t)

t ∈ Bz−1}
ℓt(z + 1) = inf {x ∈ Bz : ξ̂

(x,t)

t ∈ Bz+1}
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Figure 3. limε→0 P (Tinv > t) with respect to L with σ2 = 1 and N = 10.

and observe that rt(z) and ℓt(z + 1) move independently as long as rt(z) < ℓt(z + 1). Moreover,
Proposition 2.1 implies that for any z ∈ {0, 1, . . . , K − 1},

lim
ε→ 0

P (ℓt(z) ≥ x) = lim
ε→ 0

P (rt(z) ≥ x).

Hence, for odd z,

lim
ε→ 0

P (Tz > t) = lim
ε→ 0

P (rt(z) − ℓt(z + 1) ≤ 0).

To investigate the process rt(z)−ℓt(z+1), we first observe that rt(z)−z L and (z+1)L−ℓt(z+1)
are identically distributed. Furthermore, by Theorem 1,

lim
ε→ 0

P (rt(z) − z L ≥ x) =

√

2

π

∫ ∞

x/σ
√

t

exp

[

− y2

2

]

dy.

In particular, rt(z) − z L and (z + 1)L− ℓt(z + 1) have density

Ψt(x) = − ∂

∂x

√

2

π

∫ ∞

x/σ
√

t

exp

[

− y2

2

]

dy =

√

2

π

1

σ
√
t
exp

[

− 1

2t

x2

σ2

]

.

It follows that for odd z,

lim
ε→ 0

P (Tz > t) = lim
ε→ 0

P (rt(z) − ℓt(z + 1) ≤ 0)

= lim
ε→ 0

P (rt(z) − z L+ (z + 1)L− ℓt(z + 1) ≤ L) =

∫ L

0

(Ψt ∗ Ψt)(x) dx.

Since the stopping times Tz are independent, Tinv can be estimated

lim
ε→ 0

P (Tinv ≤ t) = lim
ε→ 0

P (max
z

Tz ≤ t)

= lim
ε→ 0

∏

z odd

P (Tz ≤ t) =

{

1 −
∫ L

0

(Ψt ∗ Ψt)(x) dx

}N/2L

which completes the proof of Theorem 2. �
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By working a little bit more, one can prove that

(Ψt ∗ Ψt)(x) =

∫ + x
2

−x
2

Ψt

(x

2
+ u

)

Ψt

(x

2
− u

)

du

=
4

π

1

σ2t
exp

[

− x2

4σ2t

]
∫ x

2

0

exp

[

− u2

σ2t

]

du.

This expression is difficult to analyze. We therefore resort to numerical simulations of the
function L 7→ limε→0 P (Tinv ≥ t) to convince the reader that limε→0 P (Tinv ≥ t) is increasing
with respect to L (see Figure 3).

4. Proof of Theorem 3

Recall that the transition probability p (x, y) has compact support, and let R > 0 such
that if |x− y| > R then p (x, y) = 0. We start by introducing the stopping times

τ
1

s = inf {t ≥ s : ℓt = rt + 1},
τ

2

s = inf {t ≥ s : ℓt ≤ R}, and τ
3

s = inf {t ≥ s : rt = 0},

and, for x ≥ 0, the interface process ιt(x) = ξt(x+ℓt−1). We observe that, since rt = 0 if and only
if ξt(x) = 1{x≤0}, it suffices to prove that P (τ

3

s <∞) = 1. To do this, we will prove that each of
the stopping times introduced above is finite with probability 1. Let ε0 > 0. Then Proposition 2.1
provides a constant M > 0 such that

P (rs − ℓs ≥M) ≤ ε0 ∀ s ≥ 0.

Furthermore, if rs − ℓs < M , then the number of possible configurations for the process ιs is at
most 2M <∞. In particular, there is ε1 > 0 such that the probability that from time s the process
rt−ℓt decreases to −1 is ≥ ε1. Since rs−ℓs < M infinitely often, P (τ

1

s <∞) = 1. Let t1 = τ
1

s and
denote by ζt the voter model starting at time t1 from ζt1(x) = ξt1(x) = 1{x≤rt1}. Since p (x, y) = 0
if |x − y| > R, it is easy to check that ξt and ζt can be defined on the same space in such a way
that ξt = ζt until the first time t2 = τ

2

t1 at which the process ℓt visits [1, R]. Moreover, Theorem 5
of Cox and Durrett (1995) implies that the leftmost-zero ℓ′t = inf {x : ζt(x) = 0} is recurrent, so
P (τ

2

t1 <∞) = 1 and
P (ℓt visits [1, R] i.o.) = 1.

To conclude, we use the argument described above: If rt2 − ℓt2 < M then rt2 < R +M and the
number of possible configurations ξt2 is at most 2R+M . In particular, there is ε2 > 0 such that the
probability that from time t2 the process rt decreases to 0 is ≥ ε2. In conclusion, each time ℓt visits
the set [1, R], the process rt returns to zero with probability at least ε2 (1 − ε0) > 0. The Borel-
Cantelli Lemma then implies the result.

5. Proofs of Theorems 4 and 5

Proof of Theorem 4

The key of the proof is duality. Recall that if β < 1, the dual process performs coalescing
branching random walks in which each particle gives birth to a new particle at rate 1 − β. Let’s
denote by X

(x,t)

s = max ξ̂
(x,t)

s the right edge of the dual process. If we start the process from the
initial configuration ξ0(x) = 1{x≤0}, the duality property

ξt(x) = 0 ⇐⇒ ξ0(z) = 0 for some z ∈ ξ̂
(x,t)

t

implies that ξt(x) = 1 if and only if X
(x,t)

t > 0. Moreover, in the nearest neighbor case, the right
edge process X

(x,t)

s is easy to describe.
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Figure 4. Voter model with ∆ = Z
− in the interval [-20, 380] from time 0 at the top to time 20 000 at the bottom.

Picture on left: The range of the interactions = 2 and the number of returns to zero = 91. Picture on right: The
range = 4 and the number of returns to zero = 6.

1. If X
(x,t)

s meets a δ, then it is forced to move along the corresponding δ-arrow.

2. If a particle at X
(x,t)

s branches, then X
(x,t)

s moves only if it takes it further from 0.

In conclusion, if x > 0 then X
(x,t)

s is a continuous-time random walk which makes transitions

X
(x,t)

s →
{

X
(x,t)

s + 1 at rate 1

X
(x,t)

s − 1 at rate β

and with 0 as absorbing state. Let ux be the probability that X
(x,t)

s = 0 at some time s ≥ 0. By
decomposing according to whether X

(x,t)

s first jumps on the left or on the right gives

ux =
β

β + 1
ux−1 +

1

β + 1
ux+1 ∀ x ≥ 1.

This implies that ux+1 − ux is a geometrical sequence with parameter β so that

ux − u0 =

x−1
∑

k=0

β k (u1 − u0) =
1 − β x

1 − β
(u1 − u0).

Now, since X
(x,t)

s drifts to the right, limx→∞ ux = 0. Moreover, u0 = 1 so it follows from the
previous equation that u1 = β. In conclusion, ux = β x and

P (rt ≥ x) = P (X
(x,t)

t = 0) ≤ P (X
(x,t)

s = 0 at some time s ≥ 0) = β x.

This completes the proof. �

Proof of Theorem 5

We denote by τ the last time the rightmost-one process rt returns to zero. Since β > 1, there
exist C < ∞ and γ > 0 such that P (τ > ε t) ≤ C exp (−γ ε t). In particular, it suffices to prove
the result for the continuous-time random walk Yt starting at Y0 = 0 which makes transitions

Yt →
{

Yt + 1 at rate β

Yt − 1 at rate 1.
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Figure 5. Range 2 voter model with ∆ = Z
− in the interval [-20, 380] from time 0 at the top to time 4 000 at the

bottom. Picture on left: β = 0.95. Picture on right: β = 1.05.

Let Zn be the discrete-time version of Yt, namely the Bernoulli random walk which jumps on the
right with probability β/(1 + β) and on the left with probability 1/(1 + β). Then, Proposition 3,
Section 1.5, in Spitzer (1976) implies that

P

{∣

∣

∣

∣

Zn

n
− β − 1

β + 1

∣

∣

∣

∣

≥ ε

}

≤ 2 e−γε2n

for any n ≥ 1 and ε > 0. To deduce the analogous result for the continuous-time version Yt,
we observe that large-deviations results for the Poisson distribution imply that the probability
of more than (β + 1 + ε) t or less than (β + 1 − ε) t jumps by time t is smaller than C e−γt for
some C, γ ∈ (0,∞). It follows that

P (|Yt − (β − 1) t | ≥ ε t) ≤ C e−γε2t

for appropriate C <∞ and γ > 0. �
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Continuity result for multicolor particle systems

N. Lanchier

Abstract The aim of this paper is to prove a continuity result for particle systems. Let ξt

be a particle system whose transition rates depend continuously on a parameter λ ∈ Λ. We
give a sufficient condition so that if λ is close enough to a fixed λ0 ∈ Λ then the processes
with parameters λ and λ0 exhibit, in some sense to be precised, the same behavior. This
result, referred to as continuity result, has already been proved in many special cases. In
this article, we prove the result for a large class of multicolor particle systems. Moreover, we
will see that our result gives us insights into the strategy to study the behavior of a particle
system.

1. Introduction

The processes we will be interested in all along this paper, that we will refer to as multicolor

particle systems, are Markov processes ξt : Z
d −→ F where Z

d denotes the d-dimensional space
with integer coordinates, and F a finite set called set of colors. To describe the evolution of our
processes, we consider an interaction neighborhood

N = {z0, z1, . . . , zN} ⊂ Z
d with z0 = 0.

If the system is in some configuration ξ : Z
d −→ F , the color of x ∈ Z

d flips to i ∈ F at rate

ci (λ, x, ξ) = hi (λ, ξ(x+ z0), ξ(x+ z1), . . . , ξ(x + zN)).

In other words, our interaction is finite range, i.e., the flip rates depend only on the color of x and
of a finite number of neighbors, and translation invariant, i.e., the rules applied at x are just a
translation of those applied at 0. Moreover, we assume that the flip rates ci (λ, x, ξ) depend on a
parameter λ ∈ Λ, where Λ is an open set.

Given a multicolor particle system ξt : Z
d −→ F , a well-known method for proving the existence

of nontrivial stationary distributions for the process ξt is to apply a rescaling argument. The basic
idea is to compare a certain collection of good events for the process viewed on suitable space and
time scale with an oriented site percolation process. The rescaling argument has been invented
by Bramson and Durrett (1988) and is reviewed in Durrett (1991, 1995). Let’s now assume that
one succeeds in proving the existence of a stationary distribution for the process with parameter
λ0 ∈ Λ, i.e., the evolution is described by the transition rates ci (λ0, x, ξ), through the rescaling
argument. The aim of this paper is to prove that, under some continuity assumptions, there is a
neighborhood V of λ0 in Λ such that the comparison with supercritical oriented site percolation
still holds for the set of processes with parameter λ ∈ V . This tells us in particular that our
particle system still exhibits the same behavior after a slight perturbation of the evolution. From
now on, this result will be referred to as continuity result. The argument is very useful and has
been proved in many special cases. See, e.g., Durrett and Neuhauser (1997), Schinazi (2001, 2002)
and Lanchier (2005a). In this paper, we prove the result in the general case.

To formulate rigorously our result and prepare its proof, we first remind the strategy of the
rescaling argument introduced in Bramson and Durrett (1988). The first step is to define oriented
percolation. For more details, we refer the reader to Durrett (1984). To begin with, let

L = {(z, n) ∈ Z
2 : z + n is even and n ≥ 0}.

From each (z, n) ∈ L, we draw an oriented arc to (z − 1, n + 1) and (z + 1, n + 1), and define a
random variable ω(z, n) to be 1 if (z, n) is open and to be 0 if (z, n) is closed. We will say that
there is a path from (z,m) to (z′, n) if there exists a sequence z = zm, . . . , zn = z′ such that

AMS 2000 subject classifications: Primary 60K35; 82C22
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1. For any k = m, . . . , n− 1, |zk − zk+1| = 1 and

2. For any k = m, . . . , n, the site (zk, k) is open, i.e., ω(zk, k) = 1.

Finally, given an initial condition W0 ⊂ 2Z, we let

Wn = {z : there is a path from (x, 0) to (z, n) for some x ∈W0}

be the set of wet sites at level n. Later on, the random variables ω(z, n), (z, n) ∈ L, will be assumed
to be M -dependent with density p which means that

P (ω(zi, ni) = 0 for 1 ≤ i ≤ m) = (1 − p)m

for any (zi, ni), 1 ≤ i ≤ m, such that ||(zi, ni) − (zj , nj)||∞ > M if i 6= j. To make the connection
between particle systems and oriented percolation, the basic idea is to turn the space-time of the
process into a brick wall, each brick is associated with a certain good event. To be precise, we
consider a particle system ξt : Z

d −→ F that is constructed from a collection of independent
Poisson processes (Harris, 1972), integers L, T and Γ with T = ΓL, and a collection H of configu-
rations determined by the value of ξ on [−L,L ]d. For any z ∈ Z, we denote by Hz the collection
H translated by the vector Lze1, and say that a site (z, n) ∈ L is occupied if ξnT ∈ Hz. Here, e1
denotes the first unit vector of the d-dimensional lattice. Finally, we let k0 and j0 be two integers,
set M = max {j0, k0}, and introduce the space-time region

Bz,n = (Lze1, n T ) + {[−k0L, k0 L ]d × [ 0, j0 T ]}.

Each (z, n) ∈ L is associated with a certain good event Ez,n measurable with respect to the
graphical representation of the process in Bz,n. See Figure 1 for a picture. Finally, we assume that
there exists an ε > 0 small such that

1. P (Ez,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ez,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

This holds for any (z, n) ∈ L. The conditions 1 and 2 above are usually referred to as the comparison

assumption. To formulate the comparison theorem, we let

Xn = {z : (z, n) ∈ L with (z, n) occupied}

be the set of occupied sites at level n.

Theorem 1 If the comparison assumption holds, then the random variables ω(z, n) can be de-
fined in such a way that Xn dominates an M -dependent oriented percolation process with initial
condition W0 = X0 and density 1 − ε, i.e., Wn ⊂ Xn for any n ≥ 0.

See Durrett (1995), Section 4. Well-known results about oriented percolation (Durrett, 1984) tell
us that if ε > 0 is sufficiently small then there is a positive probability that percolation occurs,
i.e., lim infn→∞ P (Wn 6= ∅) > 0. Theorem 1 and Liggett (1985), Proposition 1.8, then imply the
existence of a stationary distribution ν such that, for any z ∈ Z, ν(ξ ∈ Hz) > 0. In other words,
the rescaling argument allows to prove the existence of nontrivial stationary distributions.

To formulate our result, we now consider a multicolor particle system ξt : Z
d −→ F whose

evolution is described by the transition rates ci (λ, x, ξ), i ∈ F , λ ∈ Λ, introduced above. Moreover,
we suppose that following continuity assumption holds.

(CA) For any δ > 0, there exists a neighborhood V of λ0 in Λ such that

|ci (λ, 0, ξ) − ci (λ0, 0, ξ)| < δ ∀ λ ∈ V , ∀ i ∈ F, ∀ ξ ∈ F Z
d

.

Let λ0 ∈ Λ fixed, and denote by ξ̄t the process with parameter λ0. Finally, given all the ingredients
introduced above, we suppose that, for any ε > 0, the comparison assumption holds for the process
with parameter λ0. More precisely,

(P ε
λ0

) The parameters L and Γ can be chosen sufficiently large so that
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1. P (Ez,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ez,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

Here, (z, n) occupied means that ξ̄nT ∈ Hz. That is, in the definition of P ε
λ0

, “occupied” applies
to the particle system with parameter λ0. From now on, we let Pλ0 be the property that the
comparison assumption P ε

λ0
is satisfied for any ε > 0.

(n + 1) T

(n + 2) T

(n + 3) T

n T

L(z − k0) e1 L(z − 1) e1 L(z + 1) e1 L(z + k0) e1

L(z + 1) e1L(z − 1) e1 L(z + 3) e1

Hz

Hz+1

Hz+2Hz

Bz, n

Bz+1, n+1

Figure 1. Picture of the rescaling argument.

Theorem 2 Assume CA and Pλ0 . Then, for any ε > 0, there is a neighborhood Vε of λ0 in Λ
such that the following holds: For any λ ∈ Vε, the comparison assumption P ε

λ is satisfied.

As previously explained, Theorem 2 tells us that if λ is close to λ0 then the processes with
parameters λ and λ0 exhibit the same behavior in the sense that each of both processes has a
stationary distribution ν such that, for any z ∈ Z, ν(ξ ∈ Hz) > 0. But beyond a simple continuity
result, Theorem 2 gives us insights into the strategy to study the behavior of a particle system.
More precisely, we get the following

Corollary 3 Assume that the process ξt exhibits a phase transition at λ0 ∈ Λ. Then, the behavior
of the process when λ = λ0 cannot be investigated through the comparison result.

The proof of Corollary 3 is straightforward. Assume that one succeeds in constructing a stationary
measure ν for the process with parameter λ0 through the comparison result, that is proving that
the assumption Pλ0 holds. Then, Theorem 2 tells us that there is a neighborhood V of λ0 in Λ such
that, for any λ ∈ V , the processes with parameters λ and λ0 exhibit the same behavior, which is
not consistent with the existence of a phase transition at λ0 and proves Corollary 3.

Before going into the details of the proof, we start by observing that, typically, the transition
rates ci (λ, x, ξ), i ∈ F , are linear functions of the parameter λ. See, e.g., Durrett (1995). In
particular, even though essential, the continuity assumption CA is not very restrictive so that our
results can be plentifully applied. Finally, we think that Theorem 2 does not hold in the very useful
case λ0 = ∞ and λ > 0 large (see for instance the discussion following Theorem 3 of Lanchier and
Neuhauser (2005)). The continuity result when λ0 = ∞ and λ is large, however, holds in some
special cases, and the strategy of our proof is general enough to be easily adapted to such cases
provided that one has an explicit description of the process to be investigated. See for instance
Lanchier (2005b) or Lanchier and Neuhauser (2005) for illustrations.
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2. Preliminary results about the dual process

In this section, we let ξ̄t : Z
d −→ F be the process with parameter λ0, i.e., the evolution is

described by the transition rates ci (λ0, x, ξ), and prove that, with probability close to 1, the dual
process ξ̄

(x,T )

s starting at (x, T ) does not escape from a spatial box to be fixed later. The objective
is to fix the appropriate space and time scale so that the comparison assumption holds.

The first step is to construct the process ξ̄t from a graphical representation and to define its
dual process. To begin with, we let {T x,i

n : n ≥ 1}, x ∈ Z
d, i ∈ F , be a collection of independent

Poisson processes with parameter

ci (λ0) = sup
{

ci (λ0, 0, ξ) : ξ ∈ F Z
d
}

.

The reader will note that, since ci (λ0, 0, ξ) only depends on the color of 0 and of a finite number
of neighboring sites, ci (λ0) < ∞. At time t = T

x,i

n , the color of site x ∈ Z
d flips to i ∈ F with

probability ci (λ0, x, ξ̄t−)/ci (λ0). An argument from Harris (1972) implies that such a graphical
representation can be used to construct the process starting from any initial configuration. The
dual process ξ̄

(x,T )

s is then defined by going backwards in time. In a general way, it allows us to
deduce the color of site x at time T from the configuration at earlier time by keeping track of the
ancestors. The dual process starts at ξ̄

(x,T )

0 = {x} and makes transitions as follows.

If z ∈ ξ̄
(x,T )

s and T
z,i

n = t− s, then we add the points of z + N to ξ̄
(x,T )

s

where N denotes the interaction neighborhood. From the previous definition, it is easy to see that
we can determine the color of (x, T ) by knowing the colors of sites z ∈ ξ̄

(x,T )

s at time T − s. The
dual process is naturally defined only for 0 ≤ s ≤ T but it is convenient to assume that the Poisson
processes in the construction are defined for negative times and ξ̄

(x,T )

s for all s ≥ 0.

Lemma 2.1 There exists a convex set A ⊂ R
d such that for any δ > 0

P
(

(1 − δ) t A ∩ Z
d ⊂ ξ̄

(0,T )

t ⊂ (1 + δ) t A ∩ Z
d
)

→ 1 as t→ ∞.

Proof The basic idea is that ξ̄
(0,T )

s is almost a Richardson’s model that is linearly growing in
time. Unfortunately, since our dual process increases by “blocks”, we did not find any coupling
argument to prove the domination by a Richardson’s model. The proof of Durrett (1988), however,
can be easily extended to our model, so we just give the key ideas and refer the reader to the last
reference for the details. The first step is to introduce, for any x, y ∈ Z

d, the stopping times

t(x) = inf
{

s ≥ 0 : x ∈ ξ̄
(0,T )

s

}

and t(x, y) = inf
{

s ≥ 0 : y ∈ ξ̄
(x,T−t(x))

s+t(x)

}

.

For a given site x ∈ Z
d and positive integers m and n, let Xm,n = t(mx, nx) be the amount of

time it takes the dual process starting at site mx to reach nx. Then, {Xm,n : m ≤ n} satisfies the
hypothesis of Liggett (1985), Theorem 2.6, Chapter VI, which implies that

X0,n

n
=

t(nx)

n
−→ µ(x) a.s. as n→ ∞.

This tells us that ξ̄
(0,T )

s grows linearly in each direction and proves the result in d = 1. To prove
the result in d ≥ 2, we first turn ξ̄

(0,T )

s into a solid blob by letting

ξ̃
(0,T )

s =
{

x+ y : x ∈ ξ̄
(0,T )

s and y ∈ [−1/2, 1/2]d
}

.

This allows us to extend the definitions of t(x) and of µ(x) to x ∈ R
d, the d-dimensional space

with real coordinates. This new definition makes µ a norm on R
d. The shape result then follows

by taking A = {x : µ(x) ≤ 1}, the unit ball in that norm. �
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Lemma 2.2 Let T = ΓL. There exists an integer ℓ0 such that

P
(

{ξ̄ (x,T )

s : 0 ≤ s ≤ T } ⊂ [−ℓ0 L, ℓ0L ]d for any x ∈ [−2L, 2L ]d
)

→ 1 as L→ ∞.

Proof This is a straightforward consequence of Lemma 2.1 supplemented with a coupling argu-
ment. We fix t0 > 0 such that [−4, 4 ]d ⊂ t0A. Then, the shape result implies that

P
(

{ξ̄ (x,T )

s : 0 ≤ s ≤ T } 6⊂ 2 (T + t0L)A for some x ∈ [−2L, 2L ]d
)

≤ P
(

[−2L, 2L ]d 6⊂ ξ̄
(0,T +t0L)

t0L

)

+ P
(

ξ̄
(0,T+t0L)

T+t0L 6⊂ 2 (T + t0L)A
)

→ 0

as L→ ∞. The result then follows by taking ℓ0 such that 2 (Γ + t0)A ⊂ [−ℓ0, ℓ0 ]d. �

3. Proof of the continuity result

This section is devoted to the proof of Theorem 2. In what follows, we will denote by ξ̄t the
process with fixed parameter λ0 ∈ Λ, i.e., the process with transition rates ci (λ0, x, ξ), and will
denote by ξt the process with parameter λ ∈ Λ close to λ0. For more convenience, the objects
associated with ξ̄t will be written as their analogous for ξt with a bar in addition.

Given an integer M̄ ≥ 1, a collection H of configurations determined by the value of ξ on the
spatial box [−L,L ]d, and a collection Ēz,n, (z, n) ∈ L, of good events that are measurable with
respect to the graphical representation of the process ξ̄t in the space-time region

B̄z,n = (Lze1, n T ) + {[−k0 L, k0L ]d × [ 0, j0 T ]}

with max {j0, k0} = M̄ , we assume that

(Pλ0 ) For any ε > 0, the parameters L and Γ can be chosen sufficiently large so that

1. P (Ēz,n) ≥ 1 − ε and

2. If (z, n) is occupied and Ēz,n occurs, then (z − 1, n+ 1) and (z + 1, n+ 1) are occupied.

Here, (z, n) occupied means that ξ̄nT ∈ Hz. The proof of Theorem 2 is a three-step process. The
basic idea is to define, for (z, n) ∈ L, a new good event Ez,n to be the intersection of three good
events E

j

z,n, j = 1, 2, 3. This event will have to insure us that the assumption P ε
λ holds for the

process with parameter λ close to λ0.
The first good event will be E

1

z,n = Ēz,n. Now, to make sure that Ez,n is measurable with

respect to the graphical representation in some box Bz,n, we first let E
2

z,n be the event that

{ξ̄ (x,(n+1)T )

s : 0 ≤ s ≤ T } ⊂ [(z − ℓ0)L, (z + ℓ0)L ]d for any x ∈ [(z − 2)L, (z + 2)L ]d.

The event E
2

z,n seems to be the bad one since it does not say anything about the process with
parameter λ. The third good event, however, will allow us to solve the problem. To define the event
E

3

z,n, the first step is to construct both processes ξ̄t and ξt by using the same Harris’ graphical
representation. More precisely, for any color i ∈ F , we let

ci (λ, λ0) = max (ci (λ), ci (λ0)) = sup
{

max (ci (λ, 0, ξ), ci (λ0, 0, ξ)) : ξ ∈ F Z
d
}

and let {T x,i

n : n ≥ 1}, x ∈ Z
d, be a collection of Poisson processes with parameter ci (λ, λ0), all

of them are independent. To complete the construction, for any x ∈ Z
d and i ∈ F , we toss a coin

with success probability

pi (λ, λ0) =
|ci (λ) − ci (λ0)|

ci (λ, λ0)
=

|ci (λ) − ci (λ0)|
max (ci (λ), ci (λ0))

.

If there is a success, we put a ω0 at point (x, T
x,i

n ) if ci (λ) < ci (λ0), and a ω at point (x, T
x,i

n ) if
on the contrary ci (λ) > ci (λ0). Then, the process ξ̄t (resp. ξt) can be constructed as explained in
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Section 2 by using the exponential clock devoid of ω (resp. ω0). In other words, the process with
parameter λ0 does not see the ω’s while the process with parameter λ does not see the ω0’s.
Finally, we let m0 denote an integer to be fixed later and set

Bz,n = (Lze1, nΓL) + {[−m0L,m0L ]d × [ 0, j0 ΓL ]}.

Then, E
3

z,n will be the event that none of the exponential clocks in Bz,n is labeled, i.e., there is
neither ω nor ω0 in the space-time region Bz,n.

Now that our three good events E
j

z,n, j = 1, 2, 3, are defined, the next step is to prove that our
choice of Ez,n implies Theorem 2. To begin with, we let ε > 0 and apply the comparison assumption
Pλ0 to pick L and Γ so that P (E

1

z,n) = P (Ēz,n) ≥ 1−ε/ 3. In other respects, Lemma 2.2 implies the

existence of an integer ℓ0 independent of L such that, for L sufficiently large, P (E
2

z,n) ≥ 1− ε/ 3.
This last observation allows us to fix the size of Bz,n by setting m0 = max {k0, ℓ0}. Now that L
and Γ are fixed so that E

1

z,n and E
2

z,n occur with probability close to 1, we are ready to estimate
our third event. A straightforward calculation shows that

P (E
3

z,n) ≥ 1 − (2m0 L+ 1)d
κ−1
∑

i=0

{

1 − exp
(

− |ci (λ) − ci (λ0)| j0 ΓL
)}

.

This together with the continuity assumption CA implies the existence of a neighborhood Vε of λ0

in Λ such that P (E
3

z,n) ≥ 1 − ε/ 3, for any λ ∈ Vε. In conclusion, we have proved that there exist
parameters L and Γ, and a neighborhood Vε of λ0 such that P (Ez,n) ≥ 1 − ε, for any λ ∈ Vε.

We are now ready for the final denouement. First of all, we observe that the event Ez,n is
measurable with respect to the graphical representation in Bz,n. That is, the configuration of the
process at time (n+1)T in the box Bz−1∪Bz+1 only depends on what happens in the space-time
region Bz,n. In particular, if M = max {j0,m0} then, whenever ||(zi, ni) − (zj , nj)||∞ > M , the
events Ezi,ni and Ezj ,nj are independent. To prove Theorem 2, the last thing we have to check is
that if (z, n) is occupied and Ez,n occurs, then (z− 1, n+ 1) and (z+ 1, n+ 1) will be occupied as
well, where “occupied” now applies to the process with parameter λ. This results from a coupling
argument. More precisely, we assume that ξnT ∈ Hz, and set ξ̄nT = ξnT . If both processes are
constructed from the same graphical representation, it is easy to see that on E

2

z,n ∩ E 3

z,n

ξ̄
(x,(n+1)T )

s = ξ
(x,(n+1)T )

s for any x ∈ [(z − 2)L, (z + 2)L ]d and 0 ≤ t ≤ T.

The properties of the dual process (see Section 2), together with ξ̄nT = ξnT then implies that

ξ̄(n+1)T (x) = ξ(n+1)T (x) for any x ∈ [(z − 2)L, (z + 2)L ]d.

Finally, if our good event Ez,n occurs, the event E
1

z,n tells us that ξ̄(n+1)T ∈ Hz−1 ∩ Hz+1. In
conclusion, ξ(n+1)T ∈ Hz−1 ∩Hz+1 and Theorem 2 follows.
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Résumé : La plupart des modèles mathématiques introduits dans la littérature biologique décri-
vant des phénomènes spatiaux de populations en interaction consistent en des systèmes d’équations
différentielles ordinaires obtenues sous des hypothèses de dispersion globale, excluant par con-
séquent toute structure spatiale. Les systèmes de particules, au contraire, sont des processus
de Markov d’espace d’états FS où F est un ensemble fini de couleurs et S est une structure
spatiale, typiquement Z

d. Ils sont en ce sens parfaitement adaptés à l’étude des conséquences
de l’inclusion d’une structure spatiale sous forme d’interactions locales. Nous étudions les pro-
priétés mathématiques (mesures stationnaires, géométrie des configurations, transitions de phases)
de différents systèmes de particules multicolores définis sur Z

d. Chacun de ces systèmes est
déstiné à modéliser les interactions locales au sein d’une communauté de populations structurée
spatialement. Plus précisément, les processus biologiques étudiés sont la succession écologique,
l’allélopathie ou compétition entre une espèce inhibitrice et une espèce sensible, les interactions
multispécifiques hôtes-symbiontes, et les migrations continues de gènes des cultures transgéniques
par pollinisation en milieu hétérogène. Les techniques mathématiques sont purement probabilistes,
incluant le couplage, la dualité, les arguments multi-échelle, la percolation orientée, les propriétés
asymptôtiques des marches aléatoires, ou encore les estimations de grandes déviations.

Mots-clefs : Processus de Markov, systèmes de particules en interaction, modèle des votants,
processus de contact multitype, percolation orientée, argument multi-échelle, dualité, marches
aléatoires, coalescence, modèles de compétition, modèles d’épidémie, génétique des populations.

Abstract: Most mathematical models in the biological literature that describe inherently spatial
phenomena of interacting populations consist of systems of ordinary differential equations obtained
under global dispersion assumptions, thus leaving out any spatial structure. Interacting particle
systems are Markov processes with state space FS where F is a finite set of colors and where S is
a spatial structure, typically Z

d. They are ideally suited to study the consequences of the inclusion
of a spatial structure in the form of local interactions. We investigate the mathematical properties
(stationary distribution, geometry of the configurations, phase transitions) of various multicolor
particle systems defined on Z

d. Each of these systems is intended to model local interactions
within a spatially structured community of populations. More precisely, the biological processes
we investigate are ecological succession, allelopathy or competition between an inhibitory species
and a susceptible species, multi-species host-symbiont interactions, and persistent gene flow from
transgenic crops to wild relatives through pollination in a heterogeneous environment. The math-
ematical techniques are probabilistic, including coupling, duality, multiscale arguments, oriented
percolation, asymptotic properties of random walks, and large deviations estimates.

Keywords: Markov processes, interacting particle systems, voter model, multitype contact pro-
cess, oriented percolation, multiscale argument, duality, random walks, coalescence, competition
models, epidemics models, population genetics.


