
HAL Id: tel-00164027
https://theses.hal.science/tel-00164027

Submitted on 19 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling flexible Networks On-Chip
L. Pieralisi

To cite this version:
L. Pieralisi. Modeling flexible Networks On-Chip. Micro and nanotechnologies/Microelectronics.
Institut National Polytechnique de Grenoble - INPG, 2006. English. �NNT : �. �tel-00164027�

https://theses.hal.science/tel-00164027
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N̊ attribué par la bibliothèque

THESE

pour obtenir le grade de

DOCTEUR DE l‘INPG

Spécialité : « Micro et nano électronique »

préparée au laboratoire TIMA
dans le cadre de l’Ecole Doctorale « E.E.A.T.S. »

présentée et soutenue publiquement

par

Lorenzo Pieralisi

le 07/07/2006

Titre :

Modélisation de réseau de communication flexible pour les
systèmes monopuce

Directeur de thèse : Ahmed Amine JERRAYA

JURY

M. Frédéric Pétrot , Président
M. Amara Amara , Rapporteur
M. Alain Greiner , Rapporteur
M. Ahmed Amine Jerraya , Directeur de thèse
M. Marcello Coppola , Co-encadrant
M. Eric Flamand , Examinateur

Résumé

Les systèmes monopuce deviennent de plus en plus complexes, intégrant com-
posants à la fois logiciels et matériels dans le but de procurer une capacité de
calcul croissante aux applications embarquées. L’interconnexion des compo-
sants devient un élément crucial de la conception ; il fournit aux concepteurs
des fonctionalités avancées telles qu’opérations atomiques, transactions pa-
rallèles et primitives de communication permettant des systèmes sécurisés.
Le concept de réseau sur puce s’impose comme élément de communication
pour les architectures d’interconnexion des systèmes de la prochaine généra-
tion. Le rôle des réseaux sur puce consiste à remplacer les bus partagés dont
la mise à l’échelle comporte de sérieux problèmes de conception et représente
un goulot d’étranglement pour le système global.
La modélisation d’un réseau sur puce est une tâche extrêmement complexe ;
ces modèles doivent être à la fois rapides en terme d’exécution, précis et ils
doivent exporter des interfaces standard afin d’en améliorer la réutilisation.
Les principales contributions de cet ouvrage sont représentées par : (1) le
développement d’un simulateur de réseaux sur puce complet, précis au cycle
près, basé sur OCCN, un logiciel de simulation libre disponible sur « source-
forge » à l’adresse http://occn.sourceforge.net , (2) l’intégration de plusieurs
environnements de simulation hétérogènes en plate-formes très complexes
utilisées pour étudier des systèmes monopuce réels produits par STMicro-
electronics et (3) une connaissance complète des concepts sous-jacents aux ré-
seaux sur puce qui a apporté une contribution importante au développement
de STNoC�, la nouvelle technologie d’interconnexion de STMicroelectronics
développée au sein du laboratoire Advanced System Technology (AST) de
Grenoble. L’environnement de modélisation réalisé a été utilisé pour l’étude
de deux systèmes monopuce réels développés par STMicroelectronics orientés
vers la télévision numérique à très haute définition (HDTV).

Mots-clés : systèmes monopuce, qualité de service, modélisation au ni-
veau transactionnel, co-simulation, SystemC, plate-forme, interface, POSIX,
réseaux sur puce, couches réseaux, commutation par paquet.

http://occn.sourceforge.net

Abstract

The Multi-Processors Systems on a chip (MPSoC) era is bringing about many
new challenges for systems design in terms of computation and communi-
cation subsystems complexity. Interconnection systems became a pivotal
component of the overall design, providing designers with advanced commu-
nication features such a split transactions, atomic operations and security
adds-on. Momentum is building behind Networks on-chip (NoC) as future
on-chip interconnection technology. Networks on-chip role is about to take
over shared busses whose scalability properties are already a major bottle-
neck for system design.
Modeling of on-chip network is an exacting work; networks models must be
fast, accurate and they have to sport standard interfaces. The main con-
tributions of this work to networks on-chip design and implementation are:
(1) the development of a brand new, full-fledged network on-chip simulator
based on OCCN, an open-source framework for NoC modeling developed
within sourceforge available at http://occn.sourceforge.net, (2) the successfull
integration of heterogeneous simulation environments in extremely complex
platforms used to benchmark real STMicroelectronics SoC and (3) a thor-
ough understanding and contribution to the design of STNoC�, the new
interconnection technology developed within AST Grenoble lab of STMicro-
electronics for future generation systems. The modeling environment has
been used to benchmark two STMicroelectronics systems on-chip for High
Definition digital Television (HDTV).

Keywords: system on-chip, quality of service, transaction level model-
ing, co-simulation, SystemC, platform, interfaces, POSIX, networks on-chip,
packet switching, layers.

http://occn.sourceforge.net

”Don’t be afraid to attempt the impossible.
Simply knowing what is impossible is

useful knowledge – and you may well find,
in the wake of some unexpected success,

that not half of the things we call impossible
have any right at all to wear the label.”

– Michael Abrash

To mum and dad, with love

Acknowledgements

This is the part of my thesis I was raring to write, in order to thank all of
the people involved directly and indirectly on its development. First and
foremost, I want to thank Marcello and Master Jerraya for the simple reason
that, without their immense help, I would not have achieved any of this,
which actually means a lot to me. I have come a long way and I learned a
lot from you. Believe me, it was such a pleasure, and the forthcoming years
will prove what I am talking about. Frankly, thank you very much. A fond
wink to the STNoC� cabal (alphabetical order), Ennio (STNoC� guestlist),
Giuseppe, Marcela, Marcello, Michael, Miltos, Nicola, Payal, Philippe, Ric-
cardo, Saurin, Valerio and all the guys who contributed to its development,
including ST Tunis and ST Catania OCCS mates. Benchmarking made us
toil, working together made us friends, and you know, at the end of the day,
the acquired knowledge will make us win.
Great many thanks to Thesis committee in alphabetical order, Professor
Amara AMARA, Engineer Eric FLAMAND, Professor Alain GREINER and
Professor Frédéric PÉTROT, for accepting to review my PhD thesis and
their willingness to attend its defence. A sad farewell from TIMA/SLS guys;
working with you was a privilege and your kindness, liveliness and sympathy
made my life ways better. I want to thank the Linux community for devel-
oping a top-notch operating system and for distributing it as open source.
It is a monument of knowledge that must not be taken for granted. Let me
thank Marcello, Stéphane and Gianluca for giving me the possibility to help
them develop open-source software (OCCN). When you contribute to open
source software your work is of small but immediate benefit to other people,
which, after all, is the most enjoyable pleasure. Always remember, freedom
does matter.
Last but not least, I want to dedicate this work to my beloved parents Bruno
and Giancarla, and Ramona chérie, without whose help and love none of this
would have been possible. I love you.

Lorenzo

Table des matières

1 Présentation de la thèse 2

1.1 Problématique . 2

1.2 Contribution . 3

1.3 Présentation de la structure de la thèse 3

2 Modélisation de réseau flexible pour les systèmes monopuce 5

2.1 Introduction . 5

2.2 État de l’art . 5

2.3 Méthodologie de modélisation de réseaux sur puce 15

2.3.1 Simulations distribuées pour les systèmes monopuce . . 19

2.4 Exploration d’architecture du réseau STNoC� 20

2.5 Conclusion . 27

3 SoCs interconnections 28

3.1 Introduction . 28

3.2 Networks on-chip motivations 28

3.3 State of the art . 32

3.3.1 Shared multi-layer buses and crossbars 32

3.3.1.1 AMBA Bus 32

3.3.1.2 IBM� Core Connect 34

TABLE DES MATIÈRES ix

3.3.1.3 STMicroelectronics STBus 37

3.3.1.4 AMBA AXI 38

3.3.1.5 SONICS� Silicon backplane 40

3.3.2 On-chip switching networks 42

3.3.2.1 LIP6 SPIN 42

3.3.2.2 Philips’ Æthereal Network on-chip 44

3.3.2.3 MIT Raw . 45

3.3.2.4 Arteris NoC 48

3.4 Summary of existing interconnections 49

3.5 Conclusion . 51

4 Networks On-chip: A layered approach for On-chip commu-
nication 52

4.1 Introduction . 52

4.2 Networks on-chip: a micronetwork of components 53

4.3 Data link layer . 56

4.3.1 Flit-level flow control 56

4.3.1.1 Wormhole flow control 57

4.3.1.2 Virtual channel flow control 57

4.4 Network Layer . 59

4.4.1 Network topologies . 59

4.4.2 Routing algorithms . 61

4.4.2.1 Deterministic routing 61

4.4.2.2 Adaptive routing 62

4.4.3 Guaranteed services . 63

4.4.3.1 Traffic shaping 64

4.4.3.2 Resource reservation 64

4.4.4 Best effort services . 67

4.4.5 Arbitration policy and algorithms 68

4.5 Transport Layer . 69

x TABLE DES MATIÈRES

4.5.1 Bus bridging . 69

4.5.2 Advanced protocol issues 73

4.5.2.1 Atomic transactions and compound operations 75

4.6 STNoC� network on-chip . 77

4.6.1 STNoC� router . 79

4.6.2 STNoC� network interface 82

4.7 Conclusion . 84

5 Networks On-Chip Modeling: Application to STNoC� 85

5.1 Introduction . 85

5.2 System level design . 86

5.3 SystemC environment . 87

5.3.1 SystemC Kernel . 90

5.3.2 SystemC groundwork for transaction-level modeling . . 92

5.4 Transaction Level Modeling (TLM) 93

5.4.1 TLM State of the art 95

5.4.2 TLM OSCI standard 97

5.5 OCCN: On-Chip Communication Network 99

5.5.1 OCCN methodology overview 100

5.5.2 OCCN API and library components 101

5.5.2.1 PDU . 102

5.5.2.2 MasterPort/SlavePort 106

5.5.2.3 Master/Slave Interfaces 108

5.6 Networks on-chip modeling methodology 113

5.6.1 Routers modeling principles 116

5.6.2 Pipeline modeling and scheduling 119

5.6.3 Models profiling and simulation speed 125

5.6.4 Modularized arbitration 130

5.6.5 Network Interface models structure and hierarchy . . . 131

5.6.6 Network interface size and frequency conversion 134

TABLE DES MATIÈRES xi

5.6.7 Network interface C++ objects inheritance and com-
position patterns . 134

5.7 Co-simulation wrappers . 135

5.7.1 SystemC/Verilog wrappers 137

5.7.2 TLM to signals wrappers 138

5.8 Distributed simulations for Networks On-chip 140

5.8.1 POSIX primitives for concurrent simulations 141

5.8.2 Delta cycle parallelism through kernel helper threads . 142

5.8.3 SystemC Kernel critical regions 147

5.8.4 Wrap-up and on-going work 148

5.9 Conclusion . 149

6 STNoC� benchmarking 150

6.1 Introduction . 150

6.2 STMicroelectronics STBus based SoC 150

6.2.1 STBus Genkit . 152

6.2.2 Mixed-level interconnection simulations 155

6.3 Applications high-level descriptions 156

6.3.1 Video streams . 157

6.4 Traffic Modeling . 159

6.4.1 IPTG overview and sample file 160

6.5 Conclusion . 161

7 Outcomes analysis of STNoC� benchmarking 162

7.1 Introduction . 162

7.2 STNoC� general characterization 163

7.2.1 Throughput and latency measures 163

7.3 STNoC� benchmarking of real applications 169

7.4 Conclusion . 174

8 Conclusions and future work 175

xii TABLE DES MATIÈRES

8.1 Introduction . 175

8.2 Security monitoring . 176

8.3 Towards clustered NoC-based platforms 178

8.4 Conclusion . 181

Table des figures

2.1 Architecture de bus AHB . 6

2.2 Bus multicouche . 9

2.3 Structure du protocole d’interconnexion 10

2.4 Réseau vu comme un ensemble de commutateurs et interfaces 11

2.5 Exemples de topologies . 14

2.6 Couches du protocole OCCN 15

2.7 Infrastructure d’un modèle de nœud 17

2.8 Modèle de microarchitecture d’une interface réseau 18

2.9 Modèle UML d’une interface réseau 19

2.10 Environnement d’exploration d’architecture pour STNoC� . . 21

2.11 Débit atteignable par un réseau STNoC� 8x8 22

2.12 Latences d’un réseau STNoC� 8x8 23

2.13 Architecture de l’expérimentation menée sur STNoC� 24

2.14 Qualité de service appliquée 25

3.1 Local vs. Global wires delay 30

3.2 AMBA bus architecture . 33

3.3 AHB bus microarchitecture 34

3.4 PLB interconnection . 36

3.5 CoreConnect Based System-on-a-chip 36

3.6 STBus protocol hierarchy . 37

xiv TABLE DES FIGURES

3.7 AXI read channel overview . 39

3.8 Silicon backplane . 41

3.9 Silicon backplane block integration 42

3.10 SPIN topology:A Fat-Tree Network 43

3.11 SPIN router macrocell microarchitecture 44

3.12 Overview of an Æthereal router 45

3.13 RAW interconnect . 46

3.14 RAW tiles . 47

3.15 NoC layers in Arteris solution 48

3.16 Arteris ”Danube” design flow 49

4.1 OSI stack paradigm . 53

4.2 Layers clustering . 55

4.3 Virtual channel vs. wormhole flow control 58

4.4 Example of networks topologies 60

4.5 Example of ring topology . 62

4.6 TDM network example . 66

4.7 Transport layer . 70

4.8 AHB wrap4 burst transaction 71

4.9 AHB end-to-end connection 72

4.10 UMA multiprocessors architecture 74

4.11 NUMA multiprocessors architecture 74

4.12 Example of race prevention 77

4.13 Generic NoC router microarchitecture 79

4.14 Spidergon topology . 80

4.15 STNoC� packet layering . 83

5.1 SystemC flow . 88

5.2 SystemC sample RTL model 89

5.3 SystemC scheduler scheme . 91

TABLE DES FIGURES xv

5.4 SystemC Simple Bus TLM structure 94

5.5 TLM stack . 96

5.6 OSI like OCCN layering model 100

5.7 OCCN API class hierarchy . 102

5.8 Send/Receive protocol example 103

5.9 Example of protocol implementation through MsgBox functions111

5.10 Standard router sketched micro-architecture 114

5.11 Standard router link protocol handshake 115

5.12 Router model infrastructure 118

5.13 Simulation speed comparison 129

5.14 Simulation speed-up . 129

5.15 Mock-up of a NI microarchitecture 132

5.16 NI UML basic representation 133

5.17 Simple architecture example 136

5.18 Wrapper example . 137

5.19 Adapter/Converter . 140

5.20 Parallel resources . 143

5.21 SystemC scheduler flow of time 143

5.22 Working crew paradigm . 145

6.1 An example of a STMicrolectronics SoC 151

6.2 STBus genkit design flow . 153

6.3 NoC QT graphical user interface 154

6.4 STNoC design flow extension 155

6.5 Example of MPEG P-frame 159

6.6 Pseudo IPTG config file . 160

7.1 Accepted throughput . 164

7.2 Latency: random and hot-spot traffic 165

7.3 STNoC� mappings . 167

xvi TABLE DES FIGURES

7.4 Throughput measure in a 6x6 network 168

7.5 Latency measure in a 6x6 network 169

7.6 An STNoC� case study . 170

7.7 MPEG QoS proof of concept, FIFO starvation avoidance . . . 171

7.8 High-Definition (HD) QoS proof of concept, FIFO starvation
avoidance . 172

8.1 Security attacks classes . 176

8.2 STNoC� in a multi-tile parallel architecture 180

Liste des tableaux

5.1 OSCI terminology . 98

5.2 VHDL vs. OCCN . 130

Chapitre 1
Présentation de la thèse

1.1 Problématique

Au cours des trois décennies écoulées, depuis 1975, l’industrie des semicon-
ducteurs a été gouvernée par la loi de Moore, qui affirme que le niveau d’inté-
gration des circuits double tous les 18 mois [34]. Ceci a amené à la possibilité
d’intégrer dans une seule puce l’ensemble des fonctions d’un système informa-
tique : acquisition des données depuis des capteurs analogiques ou des réseaux
de communication, traitement du signal, analyse et prise de décisions, émis-
sion de données ou rétroaction sur le monde extérieur. Une telle situation
laisse entrevoir le développement de produits électroniques de faible coût,
destinés au grand public, et dotés de fonctions intelligentes, grâce à l’emploi
de tels systèmes embarqués ou systems on-chip. Le concept de system-on-chip
implique une complexité croissante concernant la spécification, la vérification
fonctionnelle et temporelle ainsi que le test de circuits monolithiques de plus
de 200 millions de transistors. Ces aspects étaient encore gérables pour des
circuits plus petits, et leur intégration en plus grands systèmes modulaires
était plus aisée, précisément parce que les éléments restaient séparables.
À l’heure actuelle, toutes les méthodes de conception commencent par frag-
menter le système en éléments plus petits (processeurs, DSP, mémoires, in-
terfaces, . . .), si possible puisés dans des bibliothèques. Le problème incon-
tournable qui se pose est le suivant :

� Par quel moyen implémenter la communication entre ces éléments ?

De nombreux travaux de recherche sont désormais présents en littérature,
tous abordant l’étude d’une nouvelle méthodologie pour l’implémentation

1.2 Contribution 3

de l’interconnexion pour circuits intégrés : les ainsi-dits Networks-on-chip
[40]. Le rôle des réseaux sur puce consiste à résoudre les divers problèmes
qui affligent la technologie d’interconnexion couramment utilisée pour les
systèmes monopuce, le bus partagé. En particulier, ces systèmes contiennent
de plus en plus d’éléments, ce qui implique des besoins en bande passante
et latence maximum de plus en plus strictes, concept qui contraste avec la
nature partagée d’un bus, qui pose donc des problèmes non négligeables en
terme de mise à l’échelle.

1.2 Contribution

Les travaux de cette thèse consistaient à étudier, modéliser et implémenter,
un réseau de communication flexible pour les futurs systèmes monopuce. Une
nouvelle méthodologie de modélisation permettant la simulation au cycle près
de réseaux complexes a été développée, qui a permis une étude approfondie
de plusieurs system-on-chip au sein de STMicroelectronics. En particulier,
les travaux de cette thèse ont contribué d’une façon significative au flot de
conception de STNoC�, la nouvelle technologie d’interconnexion développée
par STMicroelectronics. Les modèles développés dans le cadre de cette thèse
constituent une partie fondamentale de la méthodologie de conception de
réseaux au niveau système qui a été appliquée à deux systèmes monopuce
réels développés par STMicroelectronics, orientés vers la télévision numérique
à haute définition.

1.3 Présentation de la structure de la thèse

Ce manuscrit se compose de deux parties fondamentales :

� Une partie introductive en français, qui présente les principaux concepts
et contributions.

� Une partie en anglais, dont le contenu décrit d’une façon détaillée les
travaux développés.

La thèse est constituée des chapitres suivant :

� ce chapitre présente la structure de la thèse.

4 Présentation de la thèse

� le deuxième chapitre résume le contenu de la thèse en français, en dé-
crivant les principaux points abordés, détaillés en anglais dans les cha-
pitres qui suivent.

� le troisième chapitre réalise un état de l’art qui définit les composants
d’interconnexion pour les systèmes monopuce existants ainsi que de
nouvelles technologies qui viennent d’être déployées.

� le quatrième chapitre définit les couches dont un réseau se compose et
les éléments architecturaux du réseau STNoC� développé par STMi-
croeletronics.

� dans le cinquième chapitre, la méthodologie de modélisation de réseaux
sur puce développée dans le cadre de cette thèse et appliquée au flot de
conception de STNoC� est expliquée en détail, ainsi qu’une méthode
qui permet des simulations SystemC distribuées.

� le sixième chapitre complète la description des composants utilisés dans
l’étude approfondie de systèmes monopuce réels développés par STMi-
croelectronics, où le bus d’interconnexion a été partiellement remplacé
par une architecture de réseau STNoC�.

� le septième chapitre montre les résultats obtenus lors de tests effectués
sur le réseau STNoC� dans des conditions de trafic aléatoire et de trafic
engendré par des IPs de STMicroelectronics.

� enfin le huitième chapitre tire les conclusions et décrit les évolutions
futures concernant STNoC� qui sont en cours chez STMicroelectronics.

Chapitre 2
Modélisation de réseau de
communication flexible pour les
systèmes monopuce

2.1 Introduction

Ce chapitre constitue un résumé de la thèse en français ; la thèse complète
est développée en détail dans la deuxième partie, en anglais, qui commence
au chapitre 3. Tout au long de ce chapitre, les concepts de base de réseaux
sur puce et le flot de conception du STNoC�, la nouvelle technologie d’in-
terconnexion au sein de STMicroelectronics, sont décrits, avec une attention
particulière accordée à la modélisation du réseau et son implémentation.

2.2 État de l’art

Cette section vise à présenter les principales technologies qui ont été déployées
jusqu’à présent et les principaux axes de recherche concernant les systèmes
de communication sur puce.
La technologie la plus utilisée pour ce qui concerne l’interconnexion des sys-
tèmes monopuce est celle du bus partagé (voir figure 2.1). Elle a déjà été
utilisée dans un très grand nombre de produits, de sorte que tous les sys-
tèmes intégrés utilisent à peu près des technologies équivalentes.

6 Modélisation de réseau flexible pour les systèmes monopuce

Fig. 2.1: Un exemple d’architecture de bus [2] (ARM AHB).

2.2 État de l’art 7

Un bus partagé se compose notamment :

� D’un bus de données partagé (unique et connecté à tous les éléments
du système).

� D’un bus d’adresses ayant les mêmes caractéristiques.

� D’un élément particulier du système, appelé arbitre du bus, connecté
par des liaisons point à point à tous les autres éléments.

Tous les éléments connectés au bus sont à même d’échantillonner ou piloter
les lignes du bus de données ; par contre le bus d’adresses ne peut être piloté
que par certains d’entre eux, les mâıtres.
Dans une architecture de bus ces éléments appelés mâıtres initient les tran-
sactions sur le bus en pilotant les bus d’adresses, transactions adressées à
des esclaves qui sont identifiés par des plages d’adressage. La nature parta-
gée d’un bus implique une étape d’arbitrage qui sert à choisir le mâıtre qui
peut disposer du bus. Cette centralisation est une caractéristique spécifique
qui distingue les bus partagés des réseaux de communication pour lesquels
l’arbitrage est distribué. Les transactions sont soit des écritures (le mâıtre
requiert une écriture dans une zone de mémoire appartenant à l’esclave), soit
des lectures (le mâıtre demande des données à l’esclave qui les lui retourne).
Il existe plusieurs extensions qui peuvent être apportées aux protocoles des
bus. Par exemple l’atomicité des primitives de synchronisation entre proces-
seurs, pour la gestion de la cohérence des mémoires caches ainsi que pour la
politique d’arbitrage.
Un bus partagé, et en particulier sa topologie, possède plusieurs avantages.
Premièrement, il peut supporter directement le modèle de communication
par adressage mémoires des CPUs, qui représente actuellement le modèle le
plus répandu pour les IPs (« Intellectual Properties »). En y intégrant de
légères modifications les interfaces du bus peuvent supporter des opérations
complexes (communication par flux) et surtout réutilisables (« transaction-
centric-design »). Deuxièmement, le mode de fonctionnement de l’arbitre est
simple et on peut facilement l’adapter aux différentes applications requises.
Finalement, le concept de bus est parfaitement mâıtrisé par les concepteurs
de matériel, ce qui favorise son usage et sa large diffusion.
Malheureusement un bus partagé a aussi des limites, impliquées dans la plu-
part des cas par sa nature partagée. Ce sont des limites qui ont stimulé
sensiblement des travaux de recherche pour essayer de déterminer de vraies
alternatives au concept de bus. Un bus partagé implique de nombreux pro-
blèmes de mise à l’échelle. Ceci s’avère être inacceptable, surtout pour le

8 Modélisation de réseau flexible pour les systèmes monopuce

débit global. Un arbitrage plus sophistiqué et des mémoires cache ne peuvent
qu’alléger cette contrainte assez forte. Le problème peut être résolu de deux
façons : soit en augmentant la largeur du bus, soit en augmentant la fréquence
d’horloge. Les deux solutions ne sont pas satisfaisantes car elles impliquent
des problèmes électriques auxquels il est coûteux de remédier convenable-
ment.
Même si le débit global est suffisant, le bus n’est plus utilisable pour des
grands systèmes avec un nombre élevé d’éléments à connecter. Dans ce cas,
le goulot d’étranglement devient l’arbitre central qui doit choisir un mâıtre
auquel concéder le bus parmi des dizaines. Un arbitre central peut difficile-
ment accomplir cette tâche efficacement, sans introduire un accroissement de
la latence diminuant ainsi le débit global, à cause des cycles où le bus ne peut
pas être utilisé. Cet effet va empirer de plus en plus au fur et à mesure que
les technologies évoluent et que l’échelle d’intégration augmente.
Un bus partagé, ne possédant aucun concept de couches de communication,
empêche un découplage efficace des deux parties de calcul et de communica-
tion, ce qui représente une entrave majeure au développement de systèmes
hiérarchiques.
En résumant, on peut ramener toutes les limites d’un bus partagé à un pro-
blème de mise à l’échelle. Une solution assez répandue pour résoudre ce
problème consiste à multiplier les bus dans les systèmes (voir figure 2.2).
Ainsi, les concepteurs sont à même de découper le système en parties plus ou
moins indépendantes formant une hiérarchie de bus ou un bus multi-couche.
Ces bus peuvent être connectés entre eux par des ponts qui permettent de
mieux gérer le débit requis et créer des liens entre les différentes parties.
Une infinité de solutions est possible, ce qui favorise l’exploration d’architec-
ture. Ceci permet de mieux choisir les arbitrages dans les divers bus grâce à
une politique d’arbitrage qui devient de plus en plus distribuée par rapport
au concept d’arbitre central d’un bus partagé. Beaucoup d’exemples de bus
multi-couche sont déjà présents dans des produits commerciaux ; le STBus
[67] de STMicroelectronics et l’architecture AMBA [2] développée par ARM
en représentent une partie. Toutefois ces solutions doivent être conçues ad-
hoc pour chaque système, ce qui rend la conception coûteuse et surtout non
durable. De plus, comme le nombre des composants sur puce augmente de
plus en plus, la solution multi-couche ne pourra pas résoudre indéfiniment le
problème fondamental de mise à l’échelle.
Le concept de réseau sur puce s’est imposé comme solution possible au pro-
blème de l’interconnexion (voir figure 2.3). Il existe deux raisons principales
qui le soutiennent. Premièrement, les réseaux sur puce aident à résoudre
les problèmes électriques que les nouvelles technologies (submicroniques) im-
posent, parce qu’ils structurent d’une façon convenable les fils globaux (voir

2.2 État de l’art 9

Fig. 2.2: Un exemple d’architecture de bus multi-couche

figure 2.4). En même temps ils permettent de les partager en réduisant leur
nombre et en améliorant leur usage. Les réseaux sur puce peuvent être ef-
ficaces et fiables, et surtout ils facilitent la mise à l’échelle par rapport aux
bus partagés et multi-couche. Deuxièmement, les réseaux sur puce aident à
découpler les parties de calcul et de communication (NI - Network Interface,
voir figure 2.4), ce qui est essentiel lorsqu’il faut gérer des systèmes conte-
nant un grand nombre d’éléments. Les réseaux sur puce constituent la future
technologie d’interconnexion pour les systèmes intégrés et permettent à la
fois de fournir une interface complète et flexible aux couches logicielles et un
niveau d’abstraction de l’interconnexion qui convienne au développement et
à la conception au niveau système.
L’emploi de réseaux comme interconnexion pour systèmes sur puce implique
un certain nombre de questions qui doivent être prises en compte. Contraire-
ment aux interconnexions telles que bus ou fils point-à-point, où les modules
communicants sont connectés directement, dans les réseaux ces mêmes mo-
dules communiquent par l’intermédiaire de nœuds. Ainsi, l’arbitrage d’un ré-
seau change de centralisé à distribué et les problématiques telles que transac-
tions désordonnées, latence élevée et contrôle de flux « end-to-end » doivent
être prises en compte par les IPs ou le réseau même.

Il existe un grand nombre de propositions en littérature concernant les

10 Modélisation de réseau flexible pour les systèmes monopuce

Fig. 2.3: Structuration de la communication pour les futures systèmes sur puce

2.2 État de l’art 11

Fig. 2.4: Réseau vu comme un ensemble de commutateurs (S), interfaces (NI),
et ressources. Le réseau permet une effective structuration de l’intercon-
nexion.

12 Modélisation de réseau flexible pour les systèmes monopuce

réseaux sur puce, chacune avec ses atouts et ses points faibles. Il est tout
à fait utile de les approfondir toutes, tout en sachant que, considérant les
grands axes de recherche, deux points clés s’avèrent être fondamentaux et
discriminatoires :

1. Topologie fixe ou paramétrable

2. Infrastructure mise en place pour garantir une certaine qualité de ser-
vice du réseau

En ce qui concerne le premier point, une topologie fixe implique beaucoup
d’avantages. La topologie étant fixe, les concepteurs peuvent mieux régler
les paramètres des nœuds du réseau (mémoire tampon, canaux virtuels, al-
gorithme de routage). Par contre, l’exploration d’architecture de l’intercon-
nexion qui en découle s’en voit être limitée, car du moment que la topologie
d’interconnexion a été fixée à priori, les concepteurs ont moins de degrés
de liberté. Une topologie paramétrable possède des avantages et des points
faibles spéculaires par rapport à une topologie fixe. Bien sûr, elle permet une
exploration d’architecture de réseau optimale, aidant à adapter la meilleure
topologie et le meilleur algorithme de routage à une application donnée. Par
contre la possibilité d’avoir un réseau paramétrable implique un nombre élevé
de degrés de liberté pour la conception des éléments fondamentaux du réseau
(nœuds et interfaces), concept qui contraste bien souvent avec un réglage op-
timal et surtout à bas coût en terme de surface, détail très important pour
la conception de circuits intégrés.
Le deuxième point représente une question cruciale dont la solution ne peut
pas être définie incontestablement. La théorie basique des réseaux recom-
mande deux approches pour garantir une certaine qualité de service aux IPs
qui les utilisent :

Approche « Best-Effort » : Une application est structurée sur un en-
semble d’IPs communiquant par un réseau avec une certaine topolo-
gie. L’application a des besoins tels que débit et latence. Le réseau est
dimensionné de façon à pouvoir fournir le débit et la latence requis.
L‘atout principal de cette solution est la simplicité d’implémentation
et le bas coût en termes de ressources occupées qui en découle pour
le système. Le point faible réside dans le fait que cette solution peut
causer un surdimensionnement du réseau et, comme pour un bus multi-
couche, doit être appliquée cas par cas selon les conditions requises par
l’application ; Cette approche souffre donc d’un défaut de programma-
bilité.

2.2 État de l’art 13

Approche « Guaranteed services » : Le réseau de communication peut
être considéré comme un fournisseur de services intégrés : les IPs re-
quièrent certaines conditions de fonctionnement qui doivent être né-
gociées avec le réseau. Le réseau en tant que fournisseur de service
peut accepter ou refuser la connexion selon l’état actuel où le réseau se
trouve. La transmission et la réception des données peuvent avoir lieu
seulement après la mise en place d’une connexion entre les IPs conforme
aux conditions requises. Évidemment cette approche possède un degré
de programmabilité bien plus important que l’approche «best-effort» ;
le système a donc la qualité d’être prévisible et flexible. Le principal
point faible est dû au coût en surface qui découle d’une architecture de
réseau capable de fournir des services intégrés1, considérant les tenants
et les aboutissants que cette caractéristique implique savoir. Laquelle
de ces deux approches est la meilleure reste une question ouverte, ce
seront les réalisations qui éliront la plus convenable pour chaque type
d’application (étant donné que toute considération correcte devra sans
doute être rapportée à chaque cas particulier).

L’évolution de ces deux approches représente la solution aux futurs systèmes
de communication pour les systèmes monopuce. Dans le cadre de cette thèse,
une nouvelle technologie d’interconnexion de systèmes monopuce ainsi que
les outils pour sa modélisation et son implémentation ont été développés.
STNoC�, le réseau sur puce développé par STMicroelectronics, est l’abou-
tissement d’un grand effort de conception, dont cette thèse constitue tout de
même une partie importante.

1Les services garantis requièrent des composants matériels spécifiques dans les nœuds,
par exemple des tables de routage ; une qualité de service construite sur un réseau « best-
-effort » ne requiert pas de composants supplémentaires, ce qui diminue les besoins en
surface.

14 Modélisation de réseau flexible pour les systèmes monopuce

Fig. 2.5: Exemples de topologies

Le réseau sur puce STNoC� est basé sur une topologie fixe surnommée
« Spidergon » (voir figure 2.5), dont l’algorithme de routage qui détermine
le chemin le plus court entre deux nœuds est le suivant (où N correspond au
nombre de nœuds) :

if (dest = curr) then
output← NI

else
if (|dest− curr| ≤ N

4) ‖ (|dest− curr| ≥ (N − N
4)) then

if (dest ∈ [curr + 1, .., curr + N
4]) then

output← RIGHT
else
output← LEFT

else
output← ACROSS

end if
end if

end if

STNoC� a choisi comme implémentation de services une modalité « best-
effort », sur laquelle une infrastructure de qualité de service très puissante et
flexible a été construite ; les détails de cette implémentation sont confidentiels
STMicroelectronics et donc ne peuvent pas être dévoilés dans cette thèse. Un
exemple d’application de cette technologie sera décrit dans la section 2.4 à
la page 20. Les sections suivantes décrivent et résument le développement
de l’environnement de simulation de STNoC�, un élément qui a fait preuve
de maturité et d’efficacité en systèmes réels ciblant la télévision numérique à

2.3 Méthodologie de modélisation de réseaux sur puce 15

haute définition, produits par STMicroelectronics.

2.3 Méthodologie de modélisation de réseaux

sur puce

La conception des systèmes monopuce représente une tâche très complexe
dont les différents stades deviennent de plus en plus découplés et indépen-
dants. La définition d’un flot de conception qui fournit un niveau d’abstrac-
tion adéquat pour la conception au niveau système représente un élément
fondamental pour la conception de circuits à complexité croissante.

Le projet On-Chip Communication network (OCCN) [17], développé sous
« sourceforge », fournit un environnement efficace et performant pour la
spécification, modélisation et simulation de réseaux sur puce basé sur une
méthodologie orientée objet conçue sur le noyau SystemC. OCCN augmente
la productivité du développement d’adaptateurs de communication grâce à
une interface de programmation (API) universelle [17]. Cette interface de
communication fournit une nouvelle méthode de modélisation qui prône la
création et la réutilisation de modèles exécutables au niveau transactionnel
entre différentes plate-formes de simulation. La méthodologie OCCN se fo-
calise sur la modélisation de réseaux sur puce complexes en proposant une
approche par couches pour la modélisation (voir figure 2.6). OCCN définit

Fig. 2.6: Couches de modélisation du protocole OCCN

trois couches différentes. Le plus bas niveau implémenté par OCCN, intitulé
NoC Communication Layer intègre une ou plusieurs couches OSI, en com-
mençant par abstraire le niveau physique. Au plus haut niveau de la pile du

16 Modélisation de réseau flexible pour les systèmes monopuce

protocole d’OCCN, la couche applicative se calque sur la couche applicative
du protocole OSI [63]. Positionnée entre la couche applicative et la couche de
communication, la couche d’adaptation implémente une ou plusieurs couches
du protocole, en incluant composants logiciels et matériels.
OCCN implémente la communication entre modules en utilisant l’approche
générique SystemC [33], où un port peut être vu comme un point d’accès
à un service définit par l’API d’OCCN. L’application du modèle conceptuel
d’OCCN à SystemC est définie comme suit :

- La couche de communication est implémentée comme un ensemble de
classes C++ dérivées de la classe sc_channel. Le canal de communi-
cation établit le transfert de messages entre les différents ports selon la
pile du protocole supportée par un réseau spécifique.

- L’interface de communication (API) est implémentée comme une spé-
cialisation de la classe sc_port de SystemC. Cette interface fournit les
mémoires tampon requises pour la communication entre modules et la
synchronisation.

- La couche d’adaptation convertit les transactions de requête entre mo-
dules engendrées par l’interface de l’application (API) en primitives
appartenant à la couche de communication.

Les composants fondamentaux de l’API d’OCCN sont le « protocol data
unit » (ou PDU, d’après la terminologie OSI) et les interfaces MasterPort
et SlavePort. Dans OCCN la communication entre modules est basée sur
des canaux qui implémentent des protocoles en définissant des règles et des
types pour les PDUs. En général, les PDUs peuvent représenter des bits, des
jetons, des messages d’un réseau d’ordinateurs, ou des signaux sur un réseau
sur puce. Chaque PDU est composé de deux entités :

- L’en-tête intègre l’adresse de destination et il inclut l’adresse de la
source. De plus, l’en-tête contient des codes d’opération qui servent
à distinguer (a) requêtes / réponses (b) lectures/écritures (c) instruc-
tions de synchronisation (d) instructions bloquantes/non-bloquantes et
(e) instructions de système.

- Le champ de donnée (appelé payload), ou service data unit est une
séquence de bits qui n’ont pas de signification pour le canal.

Le paradigme utilisé par les interfaces de communication OCCN (objets Msg-
Box) afin d’envoyer et de recevoir des données est le passage de messages,

2.3 Méthodologie de modélisation de réseaux sur puce 17

qui définit des primitives send et receive pour communiquer par l’envoi et la
réception de PDUs.

Les modèles d’interconnexion de STNoC� ont été développés en utilisant
les briques de base fournies par l’environnement OCCN. La figure 2.7 définit
le squelette d’un modèle de nœud STNoC� en OCCN. La partie mâıtre du

Fig. 2.7: Infrastructure d’un modèle de nœud

nœud est contrôlée par un objet OCCN MasterPort (un port par lien d’un
mâıtre et une Msgbox par lien d’un esclave), qui consiste en un port SystemC
hiérarchique, construit pour s’adapter aux interfaces implémentées dans les
objets MsgBox. En OCCN un nœud peut être vu comme une machine à
états hiérarchique, où les étapes de pipeline sont décomposées en entrée,
commutation et sortie. Chaque étape de pipeline est composée de détails
microarchitecturaux.

18 Modélisation de réseau flexible pour les systèmes monopuce

Fig. 2.8: Modèle de microarchitecture d’une interface réseau

Le modèle d’une interface réseau suit la configuration de la microarchitec-
ture (voir figure 2.8), où le composant est divisé en deux parties principales :

- Noyau.

- « Shell ».

Le rôle du « shell » consiste à gérer la couche transport de l’interface ré-
seau tandis que le noyau est chargé de contrôler le flux des données vers le
nœuds et mettre en place la réalisation des paquets. La figure 2.9 définit un
schéma basique en UML du modèle de l’interface réseau qui éclaircit les re-
lations entre les différents objets utilisés. L’environnement de modélisation
développé pour STNoC� autour d’OCCN contient aussi des adaptateurs qui
permettent la co-simulation de modèles transactionnels tels qu’OCCN avec
des composants RTL décrits soit en SystemC soit en Verilog. Le développe-
ment de ces couches d’adaptation a été une partie fondamentale de ma thèse
car il a permis de réutiliser et d’adapter le nouveau flot de conception aux
éléments déjà existants au sein de STMicroelectronics.

2.3 Méthodologie de modélisation de réseaux sur puce 19

Fig. 2.9: Modèle UML d’une interface réseau

2.3.1 Simulations distribuées pour les systèmes mono-
puce

Une partie des travaux concernant la modélisation a été consacrée à la ré-
écriture du noyau SystemC afin de permettre des simulations distribuées de
systèmes monopuce. La solution mise en place est basée sur le concept de
helper threads, à savoir des tâches d’exécution qui permettent la mise en pa-
rallèle et la concurrence lors de l’exécution de simulations en SystemC. Une
première partie du travail a été nécessaire pour définir avec quelle granularité
la mise en parallèle du noyau SystemC était possible.
Une fois convenu que la partie de code pouvant être mise en parallèle cor-
respond au delta cycle [33], le développement du code a été assez facile.
En effet, un delta cycle correspond au plus petit grain de synchronisation
possible entre « processes » SystemC. Il restait tout de même des problèmes
non négligeables concernant la protection des sections critiques, zones de code
partagées en mémoire qui doivent être protégées afin d’éviter une concurrence
indéterministe (« race conditions ») entre tâches (voir l’exemple de code sui-
vant, qui représente une section critique dans la gestion de « processes »
SystemC).

20 Modélisation de réseau flexible pour les systèmes monopuce

inline void sc_runnable::push_back_method(sc_method_handle method_h){ // assert(method_h->next_runnable() == 0); // Can't queue twice.method_h->set_next_runnable(SC_NO_METHODS);#ifdef MP_STpthread_spin_lock(&m_lock);#endifm_methods_push_tail->set_next_runnable(method_h);m_methods_push_tail = method_h;#ifdef MP_STpthread_spin_unlock(&m_lock);#endif}
Section critique, accès aux listes chaînées

Dans le noyau SystemC il y a beaucoup de sections critiques, en particulier
en ce qui concerne la gestion des méthodes et « processes ». La solution au
problème des sections critiques a été une des étapes les plus compliquées dans
le cadre de cette thèse.
Des améliorations sont à l’étude pour parachever le nouveau noyau de simu-
lation SystemC. Les premiers résultats de simulation ont démontré l’efficacité
du nouveau noyau pour des modèles contenant un nombre moyen (10 - 20)
de nœuds. Les simulations ont été exécutées sur une machine Intel Xeon
(biprocesseur), Linux SMP 2.4, fonctionnant à la fréquence de 2.8 Ghz.

2.4 Exploration d’architecture du réseau ST-

NoC�

L’environnement de simulation développé dans le courant de cette thèse a été
utilisé à plusieurs reprises pour l’exploration d’architecture d’interconnexions
de systèmes monopuce réels de STMicroelectronics. Afin de protéger les pro-
priétés intellectuelles de STMicroelectronics, il est impossible de décrire les
études menées desdits systèmes. C’est pourquoi, dans le cadre de cette thèse,
deux types de tests ont été créés expressément afin de démontrer à la fois
les propriétés de STNoC� et du simulateur. La figure 2.10 décrit le flot de
conception de STNoC� en détail. Le flot de conception fait usage de différents
composants puisés dans des librairies de modèles propres à STMicroelectro-
nics (par exemple le Genkit pour le STBus et les IP Traffic Generator pour
la génération de trafic). Grâce à une forte reconfigurabilité cet instrument
permet de tester et de simuler un grand nombre de configurations de réseau
en un temps restreint. La configuration est faite par des fichiers XML dont
la grammaire permet une analyse facile et standard pour la création et la
connexion de composants.

2.4 Exploration d’architecture du réseau STNoC� 21

Fig. 2.10: Environnement d’exploration d’architecture pour STNoC�

Les résultats qui suivent sont décrits dans le seul et unique
but de démontrer comment on peut caractériser un vrai réseau
sur puce d’un point de vue du flot de conception. Ces résultats
partiels ne sont pas optimisés et ils ne correspondent surtout pas à
la caractérisation officielle du réseau STNoC�. La caractérisation
officielle de STNoC� est disponible comme document interne et
confidentiel de STMicroelectronics et ne peut pas être dévoilée
dans le cadre de cette thèse pour des raisons de confidentialité.

Un premier test a été écrit pour caractériser les propriétés de STNoC� à
travers un trafic purement aléatoire. La configuration choisie est celle d’un
réseau STNoC� à huit nœuds où tous les nœuds envoient et reçoivent des
paquets de tous les autres. Le graphe en figure 2.11 compare le débit offert
au débit accepté par le réseau. L’axe X correspond au nombre de « flits »
(FLow control digITS [21]) injectés par cycle d’horloge. L’axe Y correspond
aux « flits » acceptés. La courbe se compose de deux parties :

- Linéaire.

- Saturation.

En zone linéaire le réseau est à même d’accepter le trafic injecté ; l’efficacité
de l’algorithme de routage, du contrôle de flux et de la mise en mémoire

22 Modélisation de réseau flexible pour les systèmes monopuce

Fig. 2.11: Débit atteignable par un réseau STNoC� 8x8

2.4 Exploration d’architecture du réseau STNoC� 23

tampon peut être mesurée grâce aux latences des paquets. Dans ce but, le
graphe en figure 2.12 montre les latences des paquets sur le réseau.

Fig. 2.12: Latence d’un réseau STNoC� 8x8, avec trafic « hot-spot » et aléatoire

Plus particulièrement, le trafic injecté est de deux types :

Trafic aléatoire qui consiste à envoyer des paquets uniformément distribués
à tous le nœuds du réseau qui fonctionnent à la fois comme mâıtres et
esclaves.

Trafic « hot-spot » qui consiste à envoyer un pourcentage p du trafic au
nœud « hot-spot » selon la formule :

P (destination == hotspot) = (p) ∗ (N − 1) + (1− p) ∗ N − 1

N
(2.1)

24 Modélisation de réseau flexible pour les systèmes monopuce

où N est le nombre de nœuds et p la probabilité selon une distribution
de Bernoulli d’une destination de type « hot-spot ».

Lorsque 40% du trafic est dirigé vers une seule cible (« hot-spot »), le point de
saturation décrôıt d’une façon très importante, ce qui implique une saturation
à très bas seuil.

Des contraintes de confidentialité obligent à ne pas décrire les résultats,
fondamentaux pour STNoC�, obtenus dans l’étude approfondie de deux sys-
tèmes réels produits par STMicroelectronics orientés vers la télévision nu-
mérique à très haute définition. Afin de remplacer ces expériences, un test
simplifié a été mis en place, dont le schéma est montré en figure 2.13. Deux

Fig. 2.13: Architecture de l’expérimentation menée sur STNoC�

sous-systèmes (MPEG et Blitter) ont été modélisés en utilisant les généra-
teurs de trafic IPTG développés par STMicroelectronics. Une première me-
sure a été effectuée sur l’occupation des FIFOs du mâıtre MPEG qui exécute
des lectures.

2.4 Exploration d’architecture du réseau STNoC� 25

En figure 2.14 une trace vcd de l’occupation des FIFO du mâıtre MPEG
en lecture est montrée, pour deux cas :

- Arbitrage « Least Recently Used » (LRU), qualité de service non inté-
grée.

- Qualité de service intégrée.

Fig. 2.14: Effet de l’arbitrage sur l’occupation des FIFOs des mâıtres MPEG

Un but impératif dans la conception d’une interconnexion consiste à éviter
une situation de « famine » d’une IP pour ce qui concerne les transactions à
traiter. C’est le cas d’une FIFO dont l’occupation croise l’axe X (confronter
figure 2.14). Si la FIFO est vide, ce qui arrive régulièrement avec un arbi-
trage LRU qui ne garantit pas un débit correct, l’IP ne peut avancer dans le
traitement des données. Ceci s’avère être un problème grave, signifiant que
l’interconnexion ne procure pas le débit nécessaire.
Il existe une réponse à ce problème ; cette réponse, implémentée en STNoC�,
est dénommée qualité de service. Les détails d’implémentation ne peuvent
être dévoilés pour des raisons de confidentialité. Par contre, la figure 2.14
montre très clairement que lorsque STNoC� intègre des arbitres capables de
garantir une qualité de service nécessaire, le comportement de la FIFO, et
du coup de l’application, est bien meilleur. Non seulement l’occupation ne
descend jamais à zero, mais elle reste à des valeurs toujours élevées, ce qui
garantit un très bon fonctionnement en toutes conditions. En ce qui concerne
la comparaison des latences sur le réseau, STNoC� utilise un outil dénommé
SysProbe. Les latences peuvent être mesurées de différentes façons (de la
requête à l’acquittement, de la requête à la réponse), et les résultats sont
disponibles en format texte.

26 Modélisation de réseau flexible pour les systèmes monopuce

STbus type : 3Data size: 64 bitsSimulation Start Time: 0 psSimulation End Time: 1499998000 psSimulation duration: 1499998000 psClock period: 4000 psSTbus Frequency: 250.00 MhzSTbus Clock cycles 374998Window Time Frame 10LATENCY :Name Min MaxReq2R_Req 23 67Req2R_Eop 26 67THROUGHPUT (MB/s):Data Throughput : 32.4 MB/sFull Data Throughput : 32.4 MB/sBANDWIDTH :Max Available Bandwidth 2000.0 MB/sMax Available Bandwidth Req 2000.0 MB/sMax Available Bandwidth Resp 1600.00 MB/sReal_Bandwidth 32.4 MB/s
« Process » de lecture MPEG, arbitrage de type LRU

Ce fichier de texte produit par SysProbe montre les champs les plus inté-
ressants des statistiques mesurées sur STNoC�. Des valeurs sont obtenues
statiquement, d’autres dynamiquement. Dans cet exemple le débit demandé
par le mâıtre MPEG est d’environ 30 Moctets par seconde. Le débit dispo-
nible en réponse est limité par la sérialisation des transactions en « flits »
(FLow control digITS).
Les « flits » de header (en-tête) ne sont pas comptés comme débit disponible
parce qu’ils transportent des informations de contrôle. Les opérations sont
toutes des lectures de 32 octets, sur un chemin de données de 64 bits, ce
qui fait qu’un cinquième de la bande disponible est utilisé pour envoyer des
contrôles (un paquet de réponse est composé de cinq « flits » : 1 de header +
4 de payload 4x8=32 octets). En intégrant le mécanisme de qualité de service,
le réseau permet de limiter les latences (voir les statistiques qui suivent).

STbus type : 3Data size: 64 bitsSimulation Start Time: 0 psSimulation End Time: 1499998000 psSimulation duration: 1499998000 psClock period: 4000 psSTbus Frequency: 250.00 MhzSTbus Clock cycles 374998Window Time Frame 10LATENCY :Name Min MaxReq2R_Req 23 42Req2R_Eop 24 42THROUGHPUT (MB/s):Data Throughput : 32.4 MB/sFull Data Throughput : 32.4 MB/sBANDWIDTH :Max Available Bandwidth 2000.0 MB/sMax Available Bandwidth Req 2000.0 MB/sMax Available Bandwidth Resp 1600.00 MB/sReal_Bandwidth 32.4 MB/s
« Process » de lecture MPEG, qualité de service intégrée

2.5 Conclusion 27

La latence maximum est un paramètre fondamental pour les IPs, car les
FIFOs internes sont dimensionnées en fonction de la latence maximum de
l’interconnexion afin d’éviter une situation de « famine » pour le traitement
des données. La qualité de service, en diminuant la latence maximum (de 67
à 42 cycles), améliore d’une façon très importante le comportement des IPs,
y compris les besoins en surface.

2.5 Conclusion

Ce chapitre a permis d’introduire les principaux concepts et contributions de
cette thèse. La partie restante du document (en anglais) détaille les travaux,
en approfondissant tous les concepts mentionnés dans ce chapitre concernant
la modélisation, la conception et l’étude de STNoC, la nouvelle technologie
d’interconnexion développée au sein de STMicroelectronics.

Chapter 3
SoCs interconnections

3.1 Introduction

This chapter provides an in-depth outlook over existing interconnection ar-
chitectures. First, networks-on-chip motivations are highlighted, with a clear
focus on both technology and system level design issues. Secondly and fi-
nally, a state of the art section describes interconnection mediums deployed
in current system-on-chip solutions, with a fleeting wink to first motivating
networks on-chip examples just appearing in real designs.

3.2 Networks on-chip motivations

IC manufacturing technology will empower system designers with the capa-
bility to integrate a few billion transistors on a single chip within a few years.
If these predictions are correct and the market will continue to demand ever
higher volumes of ICs, the key question shifts on how the future chips will
be designed. A few trends are radically complicating the architectures and
the design of integrated circuits [40]:

Scalability concerns. Technology scaling works better for transistors than
for wires (see figure 3.1). Hence, wires [76] dominate performance fig-
ure, power consumption and area, so that transistors constraints on de-
sign methodologies are relaxed. This implies a profound shift in system
level design, the focus changes from number crunching and computation
to data transport and communication.

3.2 Networks on-chip motivations 29

Deep submicron effects (DSM). Deep submicron effects have been pro-
posed as potential showsteppers to the continuing advancements in in-
tegrated circuit performance [69]. Examples of DSM include the rising
resistance-capacitance (RC) delay of on-chip wiring, noise issues such
as crosstalk and delay degradation [15], and increasing power dissipa-
tion. A digital or system designer with an expected design produc-
tivity of millions of transistors per day is not able to deal with these
effects properly. This is the reason behind the tremendous need for IP
reuse, designed by skilled experts. However, it is of the utmost im-
portance that DSM effects do not show up again when reused blocks
are combined. Consequently, blocks must be built with composability
properties since the beginning of the design flow.

Clock distribution methods. One of the toughest problem in today’s AS-
ICs design, concerns the distribution of a skew-free synchronous clock
over the whole chip. Many methods for distributing a clock have been
treated thoroughly in the research literature over the last few years,
from more obvious solutions, such as using asynchronous communica-
tion between locally clocked regions (Globally Asynchronous Locally
Synchronous - GALS) to more elegant methods like distributing a
standing wave on the clock-wires across the whole chip. Most of to-
day’s research is targeted towards reducing the clock-skew and jitter
by enhancing current clock distribution methods together with new
and better de-skew circuits and improved noise filtering in order to re-
duce the jitter. However, it is very unlikely that future chips will be
synchronous designs whose clock is supplied by a single root clock tree.

Intellectual Properties (IPs) reuse. Synthesis technology development
does not keep the pace with IC manufacturing technology develop-
ment. As an aftermath, semiconductor companies are pushing the reuse
of complex design units which represent the basic components of the
design flow. These primitives made great strides from individual tran-
sistors to ALU till processor cores. Reuse is the main driving factor to
boost productivity and is unlikely to change in the years to come.

Networks on-chip (NoCs) represent the best candidate to address the afore-
mentioned issues [40]. NoCs leverage two main mechanisms to overcome the
limits of current interconnection solutions: reuse and predictability.
Reuse represents the ultimate mean to bridge the technology gap. More and
more complex components, from transistors to gates to functional blocks such
as ALUs to microprocessors and DSP cores have become the primitive build-
ing blocks. In this way, the designer is empowered with a level of abstraction

30 SoCs interconnections

Figure 3.1: Local vs. Global wires delay

3.2 Networks on-chip motivations 31

that allows to focus more on system functionality rather than low level design
details. However, as a difference to the past, communication ”components”
also have to become primitive design elements. This is exactly where NoCs
come into play.
The main immediate benefit of a NoC based approach is clearly due to the
possibility to reuse the communication networks throughout different prod-
ucts. Furthermore, reuse is not limited to components. New products can
be made up of existing complete systems. For instance, a traditional mobile
phone can be enhanced by a video streaming subsystem and a digital still
camera subsystem. The same modules must be reused again and again.
Obviously, defining a standard for high level interfaces between these features
is a subject of the utmost importance to allow an efficient communication.
NoC provides an excellent groundwork for this kind of features.
From a predictability perspective, the regularity of NoC layout provides well-
-characterized electrical and physical properties. The router-to-router wires,
most likely the longest on the chip save clock, power and ground wires, have
all exactly the same fixed length. Due to its regular geometry and communi-
cation network, the interconnection becomes much more predictable. With
the sharing of communication medium among many resources, an active com-
ponent can affect the available resources of other components.
Thus, the network has not only to guarantee bandwidth requirements but
also access policies for bandwidth scheduling. A reliable communication re-
source allocation policy providing a predictable communication performance
for all applications in the NoC is a crux for improving the composability of
the design (see [45]). If a component can request, obtain and use commu-
nication bandwidth independently of all others in the NoC, modularity is
improved because the basic components do not change throughout different
designs.

From users’ point of view, a certain behavior is expected of applications;
in other words, they must guarantee certain predictable behaviors.
While those expectations may be low, as is often the case for personal comput-
ers, a certain robustness is always assumed. Consumer electronics is subject
to higher demand: a television must provide a solid user interface; crashes or
weird behaviors would be definitely frowned upon by consumers [31]. Real-
time applications (e.g. involving audio and video, or control systems) demand
even stricter requirements; a television must display at least 50 pictures of a
constant quality per second; hence, the essence of Quality of service consists
in providing a predictable system behavior to the user. To limit the expo-
nential complexity of global methods and solutions, there is an increasing
interest in subdividing global problems into local, decoupled problems [30]

32 SoCs interconnections

and then composing the local solutions.
All the approaches that advocate local solutions have a common reliance on
a scalable and compositional communication medium to efficiently combine
the large number of (hardware and software) IPs or subsystems in a working
system.

Predictability and reuse are the challenges addressed by NoCs, which
therefore play a pivotal role in future SoCs. The interconnection becomes
the real added value; to keep abreast of current technologies, systems on-chip
need flexible, predictable and scalable solutions for on-chip communication.
In the remainder of this section, a state of the art of current interconnection
technologies is provided, starting from typical bus based solution to more
sophisticated switching networks.

3.3 State of the art

Buses have successfully been implemented in virtually all complex System
On-Chip Silicon designs. Buses have typically been handcrafted around ei-
ther a specific set of features relevant to a narrow target market, or support
for a specific processor.
Several motivations (see section 3.2) forced evolutions of systems architec-
tures, in turn driving evolutions of required buses. Buses have made great
strides since the shared buses era. New features include split and retry tech-
niques, pipelining and various attempts to define standard communication
sockets.
In the remainder of this section a state of the art is unfolded trying to sum
up the main interconnection architectures for systems on-chip.

3.3.1 Shared multi-layer buses and crossbars

In this subsection several bus architectures are reported with a key focus
on advanced features and enhancements brought about by technologies im-
provements and evolutions.

3.3.1.1 AMBA Bus

The Advanced Microcontroller Bus Architecure (AMBA) specification is by
now a renowned on-chip bus architecture. It has been deployed in a number

3.3 State of the art 33

of chips coming from e.g. STMicroelectronics, for a variety of applications.
Three distinct busses are defined within the AMBA specification:

- the Advanced High performance Bus (AHB)

- the Advanced System Bus (ASB)

- the Advanced Peripheral Bus (APB)

The most interesting component of AMBA bus is the AHB bus, hence it is
worth a brief description.
Within AMBA architecture AHB acts as the high-performance backbone
system bus. AHB supports an efficient connection of processors, on-chip
memories and off-chip external memory interfaces with low-power macrocell
functions. In figure 3.2 an hypothetical bus cut is shown, including an AHB
bus as system bus. The backbone AHB bus is able to sustain the external

Figure 3.2: An example of AMBA bus Architecture

memory bandwidth, on which the CPU and other Direct Memory Access
(DMA) devices reside, plus a bridge to a narrower APB bus on which the
lower bandwidth peripheral devices are located (UART, PIO).
The AHB architecture integrates the features required for high-performance,
high clock frequency systems including:

- burst transfers

- split transactions

- single cycle bus master handover

- single clock edge operation

34 SoCs interconnections

- non-tristate implementation

The AHB bus protocol is designed to be used with a central multiplexor
interconnection scheme (see figure 3.3). Using this scheme all bus masters
drive out the address and control signals indicating the transfer they wish to
perform and the arbiter determines which master has its address and control
signals routed to all of the slaves. A central decoder selects the appropriate
signals from the slave that is involved in the transfer.

Figure 3.3: AHB bus microarchitecture

3.3.1.2 IBM� Core Connect

The IBM Core Connect architecture provides three buses for interconnecting
cores, library macros and custom logic:

- Processor Local Bus (PLB)

- On-Chip Peripheral Bus (OPB)

3.3 State of the art 35

- Device Control Register(DCR) Bus

The PLB and OPB buses provide the primary means of data flow among
macro elements. Because these two buses have different structures and con-
trol signals, individual macros are designed to interface to either the PLB or
OPB.
Usually the PLB interconnects high-bandwidth devices such as processor
cores, external memory interfaces and DMA controllers.

In particular, the PLB addresses the high performance, low latency and
design flexibility issues needed in a highly integrated SOC through:

- Decoupled address, read data and write data buses with split transac-
tion capability

- Concurrent read and write transfers yielding a maximum bus utilization
of two data transfers per clock

- Address pipelining that reduces bus latency by overlapping a new write
request with an ongoing write transfer and up to three read requests
with an ongoing read transfer

- Ability to overlap the bus request/grant protocol with an ongoing trans-
fer

Figure 3.4 illustrates the connection of multiple masters and slaves through
the PLB macro. Each PLB master is attached to the PLB macro via separate
address, read data and write data buses and a plurality of transfer qualifier
signals. PLB slaves are attached to the PLB macro via shared, but decoupled,
address, read data and write data buses along with transfer control and
status signals for each data bus. Figure 3.5 illustrates how the CoreConnect
architecture can be used to interconnect macros in a Power PC 440 based
SoC.
High performance, high bandwidth blocks such as the PowerPC 440 CPU
core, PCI-X bridge and PC133/DDR133 SDRAM Controller reside on the
PLB, while the OPB hosts lower data rate peripherals. The daisy-chained
DCR bus provides a relatively low-speed data path for passing configuration
and status information between the PowerPC 440 CPU core and other on-
chip macros.

36 SoCs interconnections

Figure 3.4: PLB interconnection

Figure 3.5: CoreConnect Based System-on-a-chip

3.3 State of the art 37

3.3.1.3 STMicroelectronics STBus

The STBus [67] is a set of protocols, interfaces, primitives and architectures
specifying an interconnection system, versatile in terms of performance, ar-
chitecture and implementation. The STBus is the result of the evolution
of the interconnection subsystem developed for microcontroller dedicated to
consumer applications, such as set top boxes, ATM networks, digital still
cameras and others.

Three different types of the STBus protocols exist, each having a different
level of complexity in terms of both performance and implementation:

Type 1 is the simplest protocol, and is intended to be used for peripherals
registers access. No pipeline is implemented in type 1 protocol. It acts
as a RG protocol.

Type 2 adds pipelines features. It supports operation code for ordered tran-
sactions. The number of request cells mirrors the number of responses.

Type 3 is an advanced protocol implementing split transactions for high
bandwidth requirements (high performance systems). It supports out
of order executions. This interface is asymmetrical in that response
size might differ from request size.

Figure 3.6: STBus protocol hierarchy

The STBus protocol can be seen as organized in layers, as shown in figure 3.6.
Each operation is broken into one or more request/response pairs. Primitive
operations have a single request/response pair. Depending on the STBus
type, compound operations may contain multiple pairs of packets. These
packets are then mapped to cell in physical interface.

38 SoCs interconnections

Depending on the interface type, the amount of information to be transferred
in the request phase is the same or may differ from response phase. This
asymmetricity is pivotal for performance and bandwidth allocation.
To conclude this brief description of STBus architecture a list of building
blocks is in order.

An STBus architecture is made up of:

- node

- registers

- size/type/frequency converters

- buffers

The node is responsible for the arbitration and the routing of the transac-
tions. The arbitration is performed by one or more highly tunable arbiters.
The type/size/frequency converters are self-explicative components to per-
form whatever conversion is required for mismatched interfaces.
A buffer is just a retiming stage usually designed to break critical paths for
back-end synthesis. The register file is used to program the interconnect,
including arbitration policies and dynamic priorities.

3.3.1.4 AMBA AXI

The Advanced eXtensible Interface AXI [3] is the latest generation AMBA
interface. It is targeted at high-performance, high-frequency system designs
and includes a number of features that make it suitable for a high-speed
submicron interconnect. The key features of AXI protocol are:

- separate address/control and data phases

- support for unaligned data transfers using byte strobes

- burst-based transactions with only start address issued

- separate read and write data channels to enable low-cost Direct memory
Access

- multiple outstanding accesses

- out-of-order transactions management

3.3 State of the art 39

AXI protocol is burst-based. Every transaction has address and controls in-
formation on the address channel that describes the nature of the data to be
transferred. The data is transferred between master and slave using a write
channel to the slave or a read channel to the master. In write transactions,
in which all the data flows from the master to the slave, the AXI has an
additional write response channel to allow the slave to signal to the master
the completion of write transaction.
One of the key feature of AXI protocol resides in its possibility to issue ad-
dress information ahead of the actual data transfer and to enable support
for multiple outstanding transactions as well as out-of-order completion of
transactions. In figure 3.7 the architecture of read channels is reported.

Figure 3.7: AXI read channel overview

The AXI protocol provides a single interface definition for describing in-
terfaces:

- between a master and the interconnect

- between a slave and the interconnect

- between a master and a slave

This flexible interface enables a variety of different interconnect implemen-
tations. Most systems use one of three interconnect approaches:

- shared address and data buses

- shared address buses and multiple data buses

40 SoCs interconnections

- multilayer, with multiple address and data buses

In most systems, the address channel bandwidth is significantly less than
data channel bandwidth. Such systems can achieve good balance between
system performance and interconnect complexity by using a shared address
bus with multiple data buses to enable concurrent data transfer.

It is worth mentioning some advanced AXI features that represented a
stepping stone in current buses architecture. In particular the AXI protocol
sports:

Burst types The AXI supports three different burst types that are suitable
for:

- normal memory access

- wrapping cache line bursts

- streaming data to peripheral FIFO locations

System cache support The cache-support signal of the AXI enables a
master to provide to a system-level cache the bufferable, cacheable,
and allocate attributes of a transaction.

Protection unit support To enable both privileged and secure access, the
AXI provides three levels of protection unit support.

Atomic operations The AXI defines mechanisms for both exclusive and
locked accesses.

The AXI architecture features also an additional low-power interface as an
optional extension to the data transfer protocol that targets two different
classes of peripherals:

- Peripherals that require a power down sequence, and that can have
their clocks turned off only after they enter a low-power state.

- Peripherals that have no power-down sequence, and that can indepen-
dently indicate when it is acceptable to turn off their clocks.

3.3.1.5 SONICS� Silicon backplane

Silicon backplane III [66] is the first product of Sonics’ SMART interconnect
series whose goal consists in providing an innovative, highly configurable, sca-
lable SOC inter-block communication (see figure 3.8) system that integrally

3.3 State of the art 41

manages data, control, debug and test flows. SMART interconnect-based
design addresses SOC integration both at the IP core level and at the system
architecture level.
The interface to the IPs is based on the industry standard Open Core Protocol
(OCP) (see [54]), which provides a standardized, configurable point-to-point
core socket interface.
The SiliconBackplane interconnect is comprised of agents, each of which is
mated to an IP core in order to decouple core functionality from inter-core
communications [65], a crucial feature in nowadays systems. The block di-

Figure 3.8: Example of Silicon backplane III integration in a multimedia SoC

agram in figure 3.9 shows the fundamental components of the silicon back-
plane. Each IP core communicates with an attached agent through stan-
dardized µNetwork interface ports using the Open Core Protocol (OCP).
The agents communicate with each other using a network that implements
the silicon backplane protocol. The agents provided by the Silicon-Backplane
collectively manage all SOC communication, which occurs in the µnetwork.
The focus of silicon backplane design flow is more on configurability than de-
sign itself. Socket design allows designer to concentrate on OCP configuration
on a per IP basis. Through the Fast Forward Development Environment sil-
iconbackplane empowers the designer with a tool to configure agents that
can match configuration requirements of the cores and the communication
requirements of the application.
The real added value that silicon backplane brought about is the possibility
of greater reuse of SoC larger portions, in that it enables and fosters the
development of chips as hierarchical ”tiles”.
A tile is a collection of function requiring minimal assistance from the rest

42 SoCs interconnections

Figure 3.9: IP blocks integration in a network architecture

of the die and frequently includes an embedded processing unit, local mem-
ory, and relevant I/O resources. Through agents and reconfigurability, tile
based architecture facilitates reuse across a SoC product family improving
time-to-market.

3.3.2 On-chip switching networks

Innovative NoC architectures include the LIP6 SPIN, the MIT Raw, Philips’
Æthereal NoC and Arteris NoC. In this section additional insights will be pro-
vided about these interesting technologies for on-chip communication based
on switching networks.

3.3.2.1 LIP6 SPIN

The Scalable Programmable Integrated Network (SPIN) developed at LIP6
laboratory of ”Pierre and Marie Curie” University in Paris represents a land-
mark in networks on-chip literature [34], and constitutes one of the first con-
crete implementation of switching networks brought on silicon [5]. The SPIN
project sports an adaptive and distributed routing strategy with wormhole

3.3 State of the art 43

flow control.
The SPIN point-to-point, full-duplex physical links are 36 bits wide in each
direction and use a credit-based flow control. A SPIN network consists of
three VLSI macrocells, a router and two wrappers Virtual Component Inter-
facing (VCI) standard compliant.
The RSPIN router (see figure 3.11) routes packets to their final destination
whilst the two wrappers (i.e.VCI/SPIN SPIN/VCI) represent the glue useful
for interfacing the SPIN network with the subscribers (e.g. processors, mem-
ories, DSP, . . .).
For layout reasons SPIN network is organized as a Fat-Tree topology (see
figure 3.10); a Fat-Tree is a tree structure with routers on the nodes and
terminals on the leaves, except that every node has replicated fathers. The
size of this network grows with a factor (n) log(n)

8
with n equal to the number

of terminals.

Figure 3.10: SPIN topology:A Fat-Tree Network

The SPIN router macrocell (see figure 3.11) was endowed with small (4
words) input buffers designed to hide link latency and control logic delay.
In case of output contention the SPIN router contains two output buffers of
18 words each. This solution is cleverer and more hardware efficient than
choosing longer input buffers, because case studies showed that in average
just two inputs are subject to contention. The SPIN network proved the
feasibility of networks on-chip as interconnection medium for embedded sys-
tems.
Interested readers are encouraged to peruse [35] where additional insights
about SPIN design and testbenches can be found.

44 SoCs interconnections

Figure 3.11: SPIN router macrocell microarchitecture

3.3.2.2 Philips’ Æthereal Network on-chip

The Æthereal Network on-chip is a full-fledged on-chip interconnection net-
work developed by Philips. It offers guaranteed services to obtain advantages
in composability and robustness of QoS-based design. These services are
mainly used for real-time and critical functions. The Æthereal NoC also pro-
vides best-effort services, to take advantage of their lower resource require-
ments and potentially better average performance. The Æthereal network
services are efficiently implemented through a mix of time-division-multiplex-
ed circuit switching and packet switching. To give time-related guarantees
on a connection, such as throughput guarantees (on a finite time scale) or
latency bounds, the interference of other traffic in the NoC in Æthereal is
limited and characterized.
The Æthereal NoC uses contention-free routing, which is based on a time-
-division-multiplexed circuit switching approach where one or more circuits
are set up for a connection, which is assumed to be relatively long-lived.
Guaranteed throughput (GT) packets never use the same link at the same
time, namely all contention is avoided. In Æthereal this can be achieved by
controlling both the time GT packets enter the network, and their speed in

3.3 State of the art 45

Figure 3.12: Overview of an Æthereal router

the network. All routers have internally a common notion of time, embedded
in a slot counter. GT packets propagate at the rate of one router per slot
counter increment.
The Best-Effort part of the Æthereal router (see figure 3.12) uses packet
switching and has a more conventional structure, with different possibilities
at different costs (wormhole routing, input vs. output buffering). The logi-
cally separated guaranteed (GT) and best-effort (BE) routers are combined
(see figure 3.12) to share the router resources and to obtain the advantages
of both. The GT offers a fixed end-to-end latency for its traffic, which has
the highest priority enforced by an arbiter. The BE router uses all band-
width (slots) that has not been reserved or is not used by the GT traffic.
This allows the sharing of links and data path. The Æthereal network inter-
face converts the OSI network layer of the routers to transport layer services
for the IP. All end-to-end connection properties are implemented by network
interfaces (e.g. reordering, transaction completion and flow control). IPs ne-
gotiate with network interfaces to obtain connections with certain properties.
For this Æthereal network interfaces may reserve resources, such as network
interface buffers and credit counters, and slots in router tables.

To sum up, an Æthereal router has been prototyped, with an area of
0.26mm2 (CMOS12) and offers a 80 Gbyte/sec as peak throughput. The
Æthereal network interface has an area of 0.25mm2 in 0.13 µm, running at
500Mhz.

3.3.2.3 MIT Raw

The MIT Raw microprocessor[75] research prototype uses a scalable instruc-
tion set architecture to attack the emerging wire-delay problem by providing
a parallel software interface to the gate, wire and pin resources of the chip.

46 SoCs interconnections

The Raw processor design divides the usable silicon area into 16 identical,
programmable tiles. Each tile contains:

� one static communication router;

� two dynamic communication routers;

� an eight-stage, in order, single issue, MIPS style processor;

� a four-stage, pipelined floating point unit;

� a 32-Kbyte data cache; and

� 96 Kbytes of software managed instruction cache.

Future raw processors will integrate hundreds of these tiles. The tiles inter-
connect using 32-bit full-duplex on-chip networks, consisting of over 12, 500
wires, as figure 3.13 shows. Two networks are static (routes specified at com-

Figure 3.13: RAW on-chip interconnect a) RAW 16 tiles architecture b) Each tile
has computational resources and four networks, each with eight point-
to-point 32-bit buses

pile time) and two are dynamic (routes specified at runtime).
Each tile connects to its four neighbours, implying that the length of the
longest wire is no greater than the length or width of a tile. This somehow

3.3 State of the art 47

ensures scalability of the architecture.
The Raw ISA exposes these on-chip networks to the software, enabling the
programmer or compiler to directly program the wiring resources of the pro-
cessor and to orchestrate the transfer of data values between the computa-
tional portions of the tiles – much like routing in a full-custom application
specific integrated circuit (ASIC). Effectively the wire delay manifests itself
to the user as networks hops.
The static router is a five-stage pipeline that controls two routing crossbars
and thus two physical networks. Each crossbar routes values between seven
entities (see figure 3.14), – the static router pipeline; the north, east, south,
and west neighbour tiles; and the other crossbar. The RAW microprocessor

Figure 3.14: Two RAW tiles communicating over a static network

also sports a pair of dimension-ordered, wormhole-routed dynamic networks
to the architecture. To send a message on one of these networks, the user
injects a single header word that specifies the destination tile (or I/O port)
a user field, and the length of the message.
The MIT Raw processor represents a stepping stone in advanced computing
and it covers a subject of the utmost importance, namely the need to mitigate
the considerable wire delays that looms on the horizon for nowadays systems
(e.g. Pentium 4 architects had to allocate two pipeline stages solely for the
traversal of long wires), through a scalable yet very impressive design made
up of processing units connected through full-blown static and programmable
on-chip interconnection networks.

48 SoCs interconnections

3.3.2.4 Arteris NoC

The Arteris Network on-chip [8] splits the functionality of the interconnection
into three layers (see figure 3.15). Using the transaction layer, the Network

Figure 3.15: NoC layers in Arteris solution

interface units manage the communication with a connected IP core, provid-
ing the network services to that core.
The Network Interface Unit converts the conventional load/store transac-
tions into the proper packets for transport across the network. On the other
hand, transport layer deals only with packets, and their routing and switching
across the network. Finally, physical layer defines how packets are physically
transmitted between NoC units.
The Arteris network on-chip solution is available through an IP library called
”Danube”. The basic units comprise, Network interface units, packet trans-
port units and physical links (see figure 3.16). The Arteris network on-chip
IP has the following characteristics:

� Support for OCP-IP, AMBA AXI and AMBA AHB

� Globally asynchronous, locally synchronous links technology

� Claimed clock frequency up to 750 Mhz in 90 nm process

� Flexible pipelining and FIFO management

� Flexible topology

3.4 Summary of existing interconnections 49

Figure 3.16: Arteris ”Danube” design flow

In order to create a NoC instance, Arteris developed a tool named NoCEx-
plorer to capture the dataflow requirements of the IP blocks to be serviced
by the NoC.
Strictly speaking the Arteris NoC solution can be described as a pipelined
crossbar architecture, with asynchronous solutions for on-chip links to tackle
the hurdles provided by global wires poor performance.
The Arteris design flow allows a top down methodology to build on-chip in-
terconnection with a tool suite useful to compile and generate SystemC as
well as VHDL models of the aforementioned network on-chip.
The Arteris solution differs from other described solutions in that there is no
notion of router as a basic building block; hence a network can also be treated
as single crossbar instead of a composition of routers blocks connected and
laid out in a more advanced distributed scheme. Fine-grain details of the
interconnection are not provided with Arteris documentation so that addi-
tional details cannot be provided in this short overview.

3.4 Summary of existing interconnections

The different technologies presented in this chapter share some common char-
acteristics that affect performance and cost. AMBA bus is the simplest (and

50 SoCs interconnections

oldest) architecture; transactions are not pipelined, and request/response
pairs are not split (request/response pairs are atomic; this means that just
one outstanding request is allowed per master at a given time). AMBA is
widely used but it is becoming obsolete as more sophisticated architectures
are deployed. It is still useful in legacy subsystems that are not likely to be
changed in new designs in order to re-use existing components.
IBM� Core Connect, AMBA AXI and STBus are all high-performance,
pipelined, split request/response busses, developed for high-end systems-
-on-chip interconnections. They share common features, such as multiple
outstanding requests, multiple interfaces (for instance APB bus in AMBA,
OPB in Core Connect and T1 interface in STBus are just used to connect
peripherals with low-traffic requirements). An interesting feature that lacks
in other buses and is implemented in AMBA AXI is exclusive access, namely
the granting of a transaction to a given master just if the transaction turns
out to be atomic from a slave perspective. This is useful to avoid locking the
bus, that is how atomicity is guaranteed in Core Connect and STBus.
Silicon backplane shares some features of buses (multiplexing of control and
data signals) but integrates also typical techniques used to guarantee services
in networks such as Time Division Multiplexing (TDM). Detailed area fig-
ures are not available for all busses so that silicon area assessments are not
possible at this stage.
Concerning switching networks SPIN and RAW interconnections are typi-
cal networks developed to build parallel embedded processors. SPIN fosters
a fat-tree topology whilst the RAW micro-processor sports a more general
interface where routers can be connected in a configurable topology. A com-
parison of topology is not possible due to lack of test-benches that could
help gauge different design choices (for example flow-control techniques and
related effectiveness). Æthereal network on-chip boasts both guaranteed ser-
vices and best-effort networks. It is entirely programmable, even though
silicon requirements in terms of area are not clear. An application of Æthe-
real to a real Philips system-on-chip would help assess performance and costs
as a whole. In particular, in author’s opinion, time-division-multiplexing in
the guaranteed services network turns out to be a hard constraint on network
design and effectiveness.
Arteris network on-chip represents the simplest form of switching network
brought on-silicon. It would be more appropriate to describe it as a ”serial-
ized” bus rather than a network because the only network concept present
in Arteris NoC is through the notion of packet. The network is split in two
disjointed networks for requests and responses. Arteris network interfaces
were developed to be compliant with many buses protocols, some of which
mentioned in this chapter (e.g. AHB) . Arteris network effectiveness must

3.5 Conclusion 51

be verified in multi-processor design where data-path parallelism is of the
utmost importance.

The design of STNoC� drew the lessons derived from the aforementioned
technologies in order to build a brand-new switching network with all nuts
and bolts but with pragmatism and simplicity in mind as design tenets.
Section 4.6 on page 77 reports STNoC� architecture features.

3.5 Conclusion

All along this chapter, a detailed overview of interconnection technologies has
been unfolded. Motivations behind the introduction of on-chip networks as
main substitute for shared buses were described in details, focusing on differ-
ent facets of system-on-chip design. In particular, technology issues such as
global wire length and the increasing need for computation/communication
decoupling were explained thoroughly.
A state of the art section summed up existing technologies for on-chip com-
munication, in order to lay down a solid background very useful for the
chapters to come. Both shared-buses and networks on-chip examples were
reported, in order to point out strengths and weaknesses of the two design
methodologies. The following chapter describes the development process of
STNoC� network on-chip, the brand-new interconnection medium developed
by STMicroelectronics, starting first by describing the general network pro-
tocol stack fairly adapted to fit the on-chip world.

Chapter 4
Networks On-chip: A layered approach
for On-chip communication

4.1 Introduction

As discussed in chapter 3, one of the major drawbacks of shared busses was
and currently is its lack of modularity. Albeit efforts were made to improve
computation and communication decoupling, interconnection media such as
busses are not endowed with layering concepts, which causes a complete blur-
ring of the communication layers. Networks on-chip, through the notion of
packet, provide a suitable solution to the decoupling issues that are hinder-
ing system on-chip development. Furthermore, through arbitration, networks
bring on-chip pivotal design features such as quality of service (QoS). This
chapter describes the whole new concept of layering on which networks on-
chip are based, as well as advanced arbitration schemes to achieve good qual-
ity of service properties that turn out to be so important in current system
on-chip design methodologies. After a short introduction highlighting new
frontiers in communication design, network layers adapted to on-chip world
are analyzed step-by-step, with detailed insights on arbitration schemes and
advanced protocol issues. A detailed description of STNoC�, the new inter-

4.2 Networks on-chip: a micronetwork of components 53

connection technology developed by STMicroelectronics, ends the chapter, to
describe the architecture internals and to provide the required background
information essential to understand the STNoC� modeling environment, the
ultimate achievement of this thesis.

4.2 Networks on-chip: a micronetwork of com-

ponents

Future generation Systems on-chip will be integrated as a micronetwork of
components[9][20]. The network is the abstraction of the communication
among components and must satisfy quality of service requirements such as
– reliability, performance, and energy bounds – under the limitation of intrin-
sically unreliable signal transmission and significant communication delays on
wires. A micronetwork stack paradigm – such as the one in figure 4.1 can

Figure 4.1: Adaptation to networks on-chip paradigm of OSI [63] stack

be used to abstract the electrical, logic, and functional properties [78] of the
interconnection scheme. SoCs networks differ from wide area networks in
their local proximity and because they exhibit less nondeterminism.
Local, high-performance networks – such as those for large-scale multiproces-
sors – have similar requirements and constraints. Some distinctive characte-

54 Networks On-chip: A layered approach for On-chip communication

ristics, such as energy constraints and design-time specialization, are unique
to SoC networks though. Whereas computation and storage energy greatly
benefits from device scaling, which provides smaller gates and memory cells,
the energy for global communication does not scale down.
On the contrary, as the ”wiring delays” sidebar indicates, projections based
on current delay optimization techniques for global wires show that global
on-chip communication will require increasingly higher energy consumption.
Thus, minimizing the energy used for communications will be a growing con-
cern in forthcoming technologies. Furthermore, network traffic control and
monitoring can help manage the power that networked computational re-
sources consume.
Another facet of the SoC network design problem, design-time specialization,
raises even tougher challenges. Communication network [24][59] design has
traditionally been decoupled from specific end applications and is strongly
influenced by standardization and compatibility constraints in legacy net-
work infrastructures. In SoC networks, these constraints are less restrictive
because developers design the communication network fabric from scratch.
Hence, only the abstract network interface for the end nodes requires stan-
dardization.
Developers can tailor the network architectures to specific applications. These
considerations lead to an envisionable vertical design flow in which every layer
of the micronetwork stack is specialized and optimized for the target appli-
cation.
From a design standpoint, network reconfigurability will be pivotal in pro-
viding plug-and-play component use because the components will interact
with one another through reconfigurable protocols. In figure 4.2 the basic
components of a network on-chip are highlighted with embedded layers in-
formation.
The transport layer defines the communication primitives available to IP
blocks. Special components (network interfaces), located at NoC periphery
[8] provide transport layer services to IP block with which they are paired.
The Network layer defines rules that describe how packets are routed through
switches (routers) to reach final destination. Very little information contained
within the packet is needed to actually transport the packet. A packet is very
flexible, e.g. it can include byte enables or user information without altering
network layer information (aka encapsulation).
The data link layer defines how packets flow through the network (link pro-
tocol, buffers management). Using micronetwork architectures effectively
requires relying on protocols-network control algorithms that are often dis-
tributed. Network control dynamically manages network resources during
system operation, striving to provide the required quality of service.

4.2 Networks on-chip: a micronetwork of components 55

Figure 4.2: Layers clustering

56 Networks On-chip: A layered approach for On-chip communication

Following the micronetwork stack layout shown in figure 4.1, the remainder
of this chapter unfolds the three architecture and control layers – data link,
network, and transport – from the ground up.

4.3 Data link layer

The data link layer defines how to manage the allocation of resources required
by packets as they advance along their route to final destination [21]. The
key resources in most interconnection networks are the channels and buffers.
Buffers are storage implemented in the routers, such as registers or memories,
and allow packets to be held temporarily at the routers ingress and egress
stages.
A good flow-control strategy at data link layer must avoid conflicts that could
end up idling useful resources (e.g. buffers). For instance, it should not
stop a packet craving for an unused channel because it is waiting on a buffer
locked by a packet that is blocked on a busy channel. The solution consists in
decoupling resources, allowing the blocked packet to advance without waiting.
A well-designed flow control, hence an effective data link layer, should be fair.
An unfair control flow can cause a packet to wait endlessly. Wormhole flow-
-control is a well-known technique to achieve high throughput. Each packet
in wormhole flow control is divided into flits [46] (FLow control digITS). A
flit is the smallest piece of information that is schedulable by the flow control
method.
In the remainder of this section flow control methods will be discussed with
a clear focus on their applications to on-chip networks.

4.3.1 Flit-level flow control

Resources coupling is a major hurdle in any interconnection network, and it
represents a very limiting factor in achieving good throughput performance.
Interconnection networks are made up of two types of resources: buffers and
channels. Once a packet A gets a buffer bi, no other packet B can use the
associated channel ci until A releases bi. In networks that implement flit-
-level flow control, packet A may be blocked due to contention elsewhere in
the network while it is still holding bi. In this case channel ci bandwidth is
wasted because there may be other packets in the network, e.g. packet B,
that can make use of the channel resource.
This problem of bandwidth waste due to resource coupling is unique to in-
terconnection networks endowed with flow control managed at the flit-level.

4.3 Data link layer 57

4.3.1.1 Wormhole flow control

In Wormhole routing the head of a packet advances directly from incoming
to outgoing channels of the routing chip; this contrasts with cut-through
switching[80], where packets are atomic and they have to be stored as an
atomic piece of information.
A packet is divided into a number of flits for transmission. The size of a
flit depends on system parameters, in particular the channel datapath. The
header flit (or flits) opens the route. A router examines the header flit(s) of
a message, and it selects the next channel on the route and begins sending
flits on that channel.
As the header advances along the specified route, the remaining flits follow
in the network pipeline. The head flit has to reserve three resources before
it can be forwarded to the next node along a route: a virtual channel for the
packet, one flit buffer, and one flit cycle of the link bandwidth to advance.
The tail flit of a packet is handled like a body flit, but also releases the virtual
channel at which it passes through. A virtual channel maintains the state
needed to allocate the flits of a packet over a channel.
Compared to cut-through flow control [80], wormhole flow control makes far
more efficient use of buffer space, as only a small number of flit buffers are
required per virtual channel. In contrast, cut-through flow control allocates
buffer space on a per packet basis, which implies much more storage than
wormhole flow control. Buffers in wormhole flow control are allocated on
a per flit basis, hence a flit can block because the channel it is requesting
has already been granted to another packet. If a flit cannot make progress
because of a buffer allocation possible failure, the channel goes idle. Even if
there is another packet that could potentially exploit the unused bandwidth,
it cannot, because the blocked packet owns the single virtual channel asso-
ciated with this link. Even though wormhole flow control allocates channel
bandwidth on a per flit basis, only the flits of one packet can exploit this
bandwidth.

4.3.1.2 Virtual channel flow control

Virtual-channel flow control enhances wormhole flow-control by allocating
several virtual channels (channel state and flit buffers) to a single physical
channel; it helps overcome the blocking problems of wormhole flow control.
It permits to other packets to use the channel bandwidth that would be left
unused when a packet blocks. As in wormhole flow control, a header flit
reserves a virtual channel, a downstream flit buffer and an unit of link band-

58 Networks On-chip: A layered approach for On-chip communication

width to advance. Afterwards, intermediate flits from the packet use the
virtual channel allocated by the header and still must allocate a flit buffer
and channel bandwidth.
However, unlike wormhole flow control, these flits have not a guaranteed ac-
cess to channel bandwidth because other virtual channels compete to send
flits of their packets along the same link.
Virtual channels allow packets to pass blocked packets, making use of oth-
erwise idle channel bandwidth, as shown in figure 4.3. Figure 4.3 (b) shows

Figure 4.3: In wormhole flow control (a) Packet 1 blocks; channel a and channel b are idle even though

packet 2 could exploit their bandwidth. In virtual channel flow control (b) 2 can advance

by using a second virtual channel.

a router configuration with two virtual channels per physical channel. Each
virtual channel encompasses a buffer and a state. In this case packet 2 can
allocate the second virtual channel on router B and thus advance to router
C, using otherwise wasted bandwidth of channel a and b.

4.4 Network Layer 59

4.4 Network Layer

The network layer role consists in delivering packets from the source to the
destination. This function differs from that of the data link layer, which has
the goal of managing flits between node end-points. To achieve its goals, the
network layer must know about the topology of the communication network
(the interconnection lay-out of all routers) and choose appropriate paths
through it.
The remainder of this section will highlight different network layer issues
closely related to networks on-chip.

4.4.1 Network topologies

Scalability is an important issue in designing SoC [57]. The direct network
is a network architecture that scales well to a large number of processing
elements [24]. A direct network consists of a set of nodes, each node being
directly connected to a subset of other network nodes in the network. A
common component of this node is a router, which implements network layer
communication among nodes.
Direct networks are defined by a graph G(C,N), where the vertices of the
graph N represent the set of computation elements and the edges of the
graph C represent the set of the communication channels. Several network
properties can be defined considering the graph representation:

- Node degree: Number of channels used to connect a node to its neigh-
bors

- Diameter : The maximum distance between two nodes in the network

- Regularity : A network is regular when all the nodes have the same
degree

- Symmetry : A network is symmetric when it looks alike from every node

The topology defines how the nodes are interconnected by channels and is
usually modeled by a graph as indicated above. Many network topologies
have been proposed in terms of their graph-theoretical properties (see figure
4.4).

60 Networks On-chip: A layered approach for On-chip communication

Figure 4.4: Example of networks topologies

The most popular direct networks are the n-dimensional mesh, the k-
-ary n-cube or torus and the hypercube. All of them are strictly orthogonal,
meaning:

- Nodes can be laid out in an orthogonal n-dimension space end every
link can be arranged in such a way that it produces a displacement in
a single dimension.

- Every node has at least one link crossing each dimension.

In addition to strictly orthogonal topologies, many other topologies have been
proposed in literature. A popular topology is the tree. This topology defines
a connection scheme in which a root node connected to a given number of
descendant nodes. Each of these nodes is in turn connected to a subset of
descendants.
A node with no descendants is a leaf node. In trees the root node and the
nodes in its proximity become a bottleneck to the global interconnection. A
practical way to design trees with higher channel bandwidth in the proximity
of the root node is a fat tree (see figure 3.10 on page 43) implementation (see
[6] for further details).

STMicroelectronics chose to develop an in-house topology dubbed ”Spi-
dergon”. Spidergon uses a regular, constant degree topology that belongs
to the family of undirected k-circulant graphs, i.e. it can be represented as
G(N ; s1; s2; . . . ; sk), 0 < sI < N , where si is an undirected edge between any
network node l and node (l + si)modN . Chordal rings are circulant graphs,

4.4 Network Layer 61

with s1 = 1. These families of graphs have been theoretically studied as
competitors to meshes and tori in respect to graph optimality, i.e. minimum
diameter graphs for a given number of nodes and constant degree for a given
number of nodes.
The Spidergon topology has an extensibility of 2 nodes, and for N=8 it re-
duces to STM Octagon [26]. The total number of edges is 3N

2
, while the

diameter is [N
4

].
For current realistic NoC configurations with up to 60 nodes, the proposed
graph has a smaller number of edges, and a smaller diameter than fat-tree or
mesh topologies, leading to latency reduction for small packets, even when
wormhole routing is employed.

4.4.2 Routing algorithms

Routing algorithms define the path followed by each message or packet. The
list of routing algorithms proposed in the literature is almost endless.
The routing algorithm used influences many properties of interconnection
networks. Hereinafter the most important ones are reported:

Connectivity. It deals with the capability to route packets from any source
node to any destination node.

Adaptivity. Ability to find alternative paths for packets in the presence of
contention.

Deadlock and livelock freedom. Ability to guarantee that packets will
not block or wander across a network forever.

The next subsections present the two most important classes of routing al-
gorithms.

4.4.2.1 Deterministic routing

The simplest routing algorithms are deterministic – they send every packet
from source x to destination y always using the same path. The choice of
routing algorithm can significantly affect network load. For instance, de-
terministic routing algorithms always choose the same path between x and
y, even though there can be multiple paths (not minimal, though). These
algorithms do not consider path diversity of the underlying topology which
worsens load balance properties.

62 Networks On-chip: A layered approach for On-chip communication

Despite this shortcoming, they are very common in on-chip networks because
they are easy to implement and require little silicon area. For networks on-
chip they are the most used routing scheme because of their simplicity.
For Multiprocessors System on-chip in which ordering of packets is a crux
between particular source-destination pairs, deterministic routing is often a
simple way to provide this ordering. This is important for instance, for cer-
tain cache coherence protocols.

4.4.2.2 Adaptive routing

An adaptive routing exploits the network state, typically queue occupancies,
to select among all the possible paths to deliver a packet. Because routing
algorithm depends on the network state, the flow-control method plays a role
in adaptive routing.
This contrasts with deterministic routing in which the routing algorithm and
the flow control mechanisms are definitely decoupled. Many of the issues in-
volved with adaptive routing can be explained by considering an example of
a 6-node ring topology (see figure 4.5). Node 4 is sending a continuous burst

Figure 4.5: 6-nodes ring topology to demonstrate adaptive routing

of packets to node 5, using all available bandwidth [4,5]. In the meantime,
node 2 wants to send a packet to node 0.
It can choose either clockwise or counterclockwise route. Readers could eas-
ily state that the router at node 2 should choose the counterclockwise route

4.4 Network Layer 63

to avoid contention. However, a typical router does not keep a global state
of the network.
The way in which a router collects the state of the network is a crucial ques-
tion for adaptive routing. Algorithms can use local or global information, and
also current or old information. Several kinds of routing can be implemented
ranging from minimal adaptive routing to fully adapting routing. Minimal
adaptive routing always chooses the shortest path towards destination. This
assumption is relaxed in fully adaptive routing.
Whether or not adaptive routing algorithms will be integrated in networks
on-chip is due mainly to complexity and most importantly to transaction
ordering. Paths adaptation can lead to out-of-order management of packets
that could easily end up wreaking havoc in memory coherent multiprocessor
systems.

4.4.3 Guaranteed services

System-on-chip era forces designers to deal with the increasing design com-
plexity, promoting a heavy reuse of intellectual properties (IPs). This means
that applications become dynamic compositions of IP blocks which require a
network which is scalable, programmable and behaves predictably under the
traffic offered by those blocks.
So far, methods to achieve efficiency of resources allocation (e.g. flow con-
trol) were described. However, even the best routing and flow control meth-
ods cannot overcome situations in which a request for a particular resource
cannot be served, because the resource is already overcommitted.
Quality of Service (aka QoS) represents a methodology to provide a fair al-
location of resources according to some service policies. On-chip traffic can
be classified in two broad categories:

- Guaranteed traffic

- Best Effort traffic

This distinction between traffic mirrors traffic requirements. In particular,
the notion of best effort traffic is somewhat related to connectionless service
in that the network ”does its best” to deliver packets with low latency and
providing enough throughput, but network does not ensure any guarantees.
On the other hand guaranteed service classes are guaranteed a certain level
of performance as long as the traffic they generate complies with a set of
constraints. Somehow, there is a network ”contract” between the IP and the

64 Networks On-chip: A layered approach for On-chip communication

network.
The remainder of this subsection explores two possible ways of providing
guaranteed services.

4.4.3.1 Traffic shaping

IP Traffic can either be generated regularly or irregularly, causing spots of
non-uniform behavior that possibly leads to congestion. The simplest way
to guarantee a service is to require that the compound requests for a given
traffic class are less than a bound. Traffic conforming to this bound then is
guaranteed not to saturate the network.
Traffic shaping is about regulating the average rate (and burstiness) of IP
data transmission. When a connection is set-up, the IP and the network
agree on a certain traffic pattern. This could be seen as a service level agree-
ment. As long as the IP sends packet according to the agreed-on contract,
everything goes as expected. Traffic burstiness can exceed bandwidth of
some ports within the network wreaking havoc in performance. Hence, in
situations where stronger guarantees are strictly necessary, it might be com-
pulsory to reserve specific resources over the network at of course much higher
hardware cost.

4.4.3.2 Resource reservation

In situations where hard constraints are required, it is mandatory to reserve
resources rather than rely on traffic shaping. The major drawback is that
resource reservation comes at greater hardware overhead, because these reser-
vations must be stored in the network, implying silicon area to be allocated
for this purpose.
Two mainstream and well-known resource reservation methods seem feasible
for on-chip networks:

- Virtual circuits

- Time-division multiplexing

In virtual circuits, each flow is assigned a specific route through the network.
This approach, which is inherently connection-oriented, requires first of all a
connection set-up from source IP to destination IP before any data is sent. In
the connection set-up phase, it is necessary to establish a ”connection state”
in each of the switches between the source and the destination hosts. The

4.4 Network Layer 65

connection state for a single connection consists of an entry in a ”VC table”
in each switch through which the connection passes. One entry in the VC
table on a single switch contains:

- a virtual circuit identifier (VCI) that uniquely identifies the connection
at this switch and that will be carried inside the header of the packets
that belong to this connection

- an incoming interface on which packets for this VC arrive at the switch

- an outgoing interface in which packets for this VC leave the switch

- a potentially different VCI that will be used for outgoing packets

The semantics of one such entry is as follows. If a packet arrives on the
designated incoming interface and that packet contains the designated VCI
value in its header, then the packet should be sent out the specified outgoing
interface with the specified outgoing VCI value first having been placed in
its header.
Note that the combination of the VCI of packets as they are received at
the switch and the interface on which they are received uniquely identifies
the virtual connection. There may of course be many virtual connections
established in the switch at one time.

Time-division multiplexing (TDM) provides the best control in flits sche-
duling. In order to avoid fluctuations due to resources sharing, TDM reserves
all the resources needed by a particular flow in both time and space.
Because flows have a scheduled access to resources, guarantees are easier to
design.
A TDM implementation splits time into a fixed-number of small slots. The
size and number of slots then define the granularity at which a resource can
be allocated. For instance, the flow of time might be partitioned into 10
slots, with each slot equal to the transmission time of a single flit. If the
channel bandwidth is 2Gbytes/s, each traffic flow could allocate bandwidth
in multiples of 200 Mbytes/s.
If a flow required 400 Mbytes/s it has to allocate 2 of the 10 slots for each
resource it needed. As shown in figure 4.6, to store a timetable for each
resource in the network a timewheel can be employed.
A pointer into the timewheel table indicates the current time slot and the
resource owner during that time slot. For this example, unused slots are
marked as ”BE” because they can be scheduled for best-effort traffic. The
pointer is incremented to the next table entry when time ticks, wrapping to
the top once it reaches the bottom of the table.

66 Networks On-chip: A layered approach for On-chip communication

Figure 4.6: TDM network policy example

4.4 Network Layer 67

4.4.4 Best effort services

In the best effort model the network just makes its ”best effort” to deliver the
packets injected into it without agreeing to any quantitative performance
(quality of service QoS) bounds.
IPs do not request permission before transmitting, and therefore performance
is determined not only by the network itself, but also from IPs traffic combi-
nation, resulting in a complete lack of isolation. Best-effort model is closely
related to the notion of fairness. The notion of fairness is of major impor-
tance in the best effort on-chip networks, due to the lack of explicit admission
control and quantitative service assurances. Fairness is conceptually related
to congestion control; under conditions of low load IPs requirements are sat-
isfied, there is no need for trade-offs and no considerations for decisions that
lead to fair allocation of resources. Fairness becomes an issue only when
there are traffic cases which lead to network overcommitments and IPs have
to compete for their share. Although several definitions of fairness arise from
various disciplines, in the networking world the most popular notion actually
is that of max-min fairness (also referred to as classical notion of fairness).
Formally, let I be a set of requesters and x = (xi;xi > 0; i ∈ I) the vector
of the allocations to each requester. The vector is called feasible if the sum
of the allocations does not exceed the capacity of the resource. Max-min
fairness operates as follows:

- Resources are allocated in increasing order of demand.

- A requester is never allocated a share higher than its demand.

- All requesters with unsatisfied demands are allocated equal shares.

Initially all requesters get at least as much as the ”small” requester demands,
and the remaining resources are evenly distributed among the requesters with
unsatisfied demands. This means that from those requesters with unsatis-
fied demands no one can increase its share without reducing the share of a
requester with an already small one. This can be formally stated as follows:
a vector of allocations x is max-min fair if for any other feasible vector y
there exists a requester j such that yj > xj implies that there exists re-
quester i such that yi < xi < xj. Fairness [29] should not necessary imply
equal distribution of resources to all those users with unsatisfied demands.
A fair allocation of resources is usually defined with respect to a given pol-
icy. A complete discussion of fairness policies is out of scope of this thesis;
however, max-min fairness represents the basic concept on which fairness for

68 Networks On-chip: A layered approach for On-chip communication

best-effort networks can be developed with a mechanism called arbitration.
In the next subsection a number of arbitration schemes will be addressed to
explain how to achieve fairness for different purposes and at different costs.

4.4.5 Arbitration policy and algorithms

Arbitration is the method through which a certain fairness can be achieved
in networks on-chip. Different arbitration algorithms provide a broad range
of performance at variable costs in terms of hardware required.
A crucial property of an arbiter is its capability to serve different requests in
an equal manner. The meaning of ”equal”here is somewhat misused, because
its meaning depends strictly on the context and varies from application to
application.
A typical example of a completely unfair arbiter is a fixed priority one. Each
request is assigned a priority which is hardwired and does not change. The
implementation of such a hardware circuit is very light in terms of hardware,
but the arbitration method is utterly unfair in that if the request coming
from the highest priority is always asserted, none of the other requests will
ever be served.
Round-robin arbitration scheme partially solves the drawbacks of fixed prior-
ity arbiter in terms of fairness. A round-robin arbiter is based on the principle
that a request that was just served should get the lowest priority on the next
round of arbitration. The round-robin arbiter ensures that after a request has
been served it becomes lowest priority. If no requests are asserted priorities
do not change.
In order to introduce a controlled degree of unfairness, a weighted round-
-robin arbiter can be designed. When this arbitration scheme is deployed a
requester is given a number of grants proportional to a weight. Each request
is coupled with a weight wi that indicates the maximum fraction fi of grants
that requester i can receive according to fi = wi

W
where W =

∑n−1
j=0 wj. A

requester with a large weight will receive a large fraction of the grants while
a requester with a small weight receives a smaller fraction. For example, a
weighted round-robin arbiter with five inputs with weights of 2, 3, 3, 6 and
8 will receive 2

22
, 3

22
, 3

22
, 6

22
and 8

22
of the grants respectively. Choosing the

number of weight bits allows weights to be specified with very high precision.
The last arbitration algorithm considered in this subsection is Least Recently
Used (LRU). It slightly differs from a round-robin policy.
The logic behind round-robin is simple but in on-chip networks could lead to
unfairness. The main drawback of round-robin comes up when requests of
a given round-robin index are not driven, causing the priority ”turn” to be

4.5 Transport Layer 69

lost (the index just takes into account the currently granted requester and it
increments). LRU helps overcome this issue. Whenever a requester that has
not been served from the longest time finally comes up with a request, it is
automatically granted. Normally LRU is implemented as a simple ordered
list in hardware, with little silicon area. Its usage is widespread in most of
the current implementations of on-chip networks.

4.5 Transport Layer

The transport layer [74] is the core of the whole protocol hierarchy. Its task
is to provide a data transport channel from the source IP (or entity, see figure
4.7) to the destination IP, independently of the physical network currently
in use. Without the transport layer, the whole concept of layered proto-
cols would make little sense. The transport layer defines the communication
primitives available to interconnected IP blocks.
Special NoC network interfaces [32] (NI), located at NoC boundary, provide
transport-layer services to IP blocks with which they are paired. This is
analogous in data communication network, to Network Interface cards that
source/sink information to the LAN/WAN media. The transport layer de-
fines how information is exchanged between Network Interfaces to implement
a particular transaction. For instance, a NoC transaction is typically made
up of a request from a master Network Interface to a slave Network Interface,
and a response from the slave to the master.
However, the transport layer hides the implementation details of the exchange
to the network and physical layer. Network interfaces that bridge the NoC to
an external protocol (such as AMBA AHB) translate transactions between
the two protocols (bus to NoC and viceversa), tracking transaction state on
both sides. For compatibility with existing bus protocols, NoCs implement
traditional address based Load/Store transactions, with their usual variants
including incrementing, streaming, wrapping bursts, and so forth.
In the remainder of this section an example of bus-bridging will be described
as well as advanced operations that might possibly impact transport layer
features of networks in the years to come.

4.5.1 Bus bridging

One of the major challenges for networks on-chip takeover is the capability
to provide an homogeneous interconnection network which can behave as
an open socket where components can be plugged at will. This challenge

70 Networks On-chip: A layered approach for On-chip communication

Figure 4.7: Transport layer

represents also a major need in that the tight deadlines for time-to-market
force designers to leverage IPs reuse; IP reuse often implies interface reuse,
so that typical bus based load/store transaction must be adapted to network
protocol.
This is what transport layer is all about. Taking the example of an AHB
bus [2], the transport layer protocol, namely the transactions between IP
end-points is fixed by bus protocol rules. The role of transport layer is to
serialize traditional busses control and data paths into a bunch of wires which
correspond to flits, in a way that makes sense for both ends of the network, to
wit, master and slave. In figure 4.8, a typical bus-transaction is shown. It is
made up of typical controls such as address (HADDR), opcode (HTRANS,
HWRITE) and data path (HWDATA, HRDATA), with related slave ac-
knowledge mechanism (HREADY).
In order to establish an effective communication between networks end-points
which actually are plain masters and slaves, these pieces of information must
be packed in some way by master/slave components in order to be rebuilt at
the other network end. In figure 4.9 an end-to-end communication is shown
where a master wants to connect to a slave through an interconnection net-
work.

4.5 Transport Layer 71

Figure 4.8: AHB wrap4 burst transaction

The transport layer represents the glue that ”packs” control and data into
header flits suitable to be unpacked at the slave end point. Figure 4.9 shows
also a possible bitmap where AHB controls are mapped in a hypothetical
header flit to be send over a network. This header flit will drive the AHB
slave control logic in order to rebuild the precise controls for the AHB slave,
at the slave end-point. It is up to the Network Interface to fill up the header
flit with proper bits, and also to manage the communication with the given
upstream/downstream bus protocol.
Network Interface has also to fiddle with network layer bits, but this topic
is out of scope for confidentiality reasons. Suffice it to say that the network
interface is loaded with look-up tables providing network topology layout and
proper routing information.

72 Networks On-chip: A layered approach for On-chip communication

Figure 4.9: AHB end-to-end connection

4.5 Transport Layer 73

To conclude this subsection, it is important to underline two crucial
points:

- Bus bridging can be considered just a pain from the past (protocol
conversion is a hindrance to bandwidth and latency just because it
wastes bus cycles for nothing). A brand new transport layer protocol
able to unify all the existent bus interfaces would be a godsend from
different perspectives. That is why major semiconductor companies are
striving to exploit NoC development to end, somehow, bus bridging
madness.

- Different systems require different protocols, hence bus opcodes. Whilst
Multi-processor systems force the usage of complex end-to-end opcodes
(as the next sections describe) for memory coherence, other just require
opcode to bring big chunks of data to memory back and forth. An open
protocol (this is how it has been defined) must take into account all
possible opcode combinations. There are not many systems designers
who are wringing their hands to accomplish this very convoluted task.

4.5.2 Advanced protocol issues

Multiprocessors are by now common in server environments, and several desk-
top multiprocessors are available from vendors such as Sun, Intel, Compaq
and Apple. In the embedded space, a number of special purpose designs have
used customized multiprocessors, including the Sony Playstation.
Many special purpose embedded designs consist of a general-purpose pro-
grammable processor with special purpose finite-state machines that are used
for stream oriented I/O. In applications ranging from computer graphics and
media processing to telecommunications, this style of special purpose multi-
processor is becoming common.
Centralized shared memory architecture multiprocessors are becoming com-
mon even in embedded world. Because there is a single main memory that
has a symmetric relationship to all processors and a uniform access time
from any processor, these multiprocessors are defined as symmetric shared-
memory multiprocessors (SMPs) and this style of architecture is called UMA
for uniform memory access (see figure 4.10). A second type of multipro-
cessors consist of multiprocessors with physically distributed memory. To
support a large number of processors, memory must be distributed among
the processors rather than centralized, this mostly for bandwidth concerns.
Of course, the larger number of processors raises the need for a high band-
width interconnect (see figure 4.11). This is where networks come into play.

74 Networks On-chip: A layered approach for On-chip communication

Figure 4.10: UMA multiprocessors architecture

Figure 4.11: NUMA multiprocessors architecture

4.5 Transport Layer 75

A number of programming models have been proposed for parallel machines
(e.g. MPI) and memory architecture (e.g DSM). The interested reader is
invited to refer to [58] and [23].
Multiprocessors systems not only affect bandwidth but also how memory ac-
cess should be performed. In particular synchronization is pivotal to avoid
multiple threads of execution to race on shared variables (locking) and to
provide atomic operations such as test and set.
Possibly concurrent execution paths can wreak havoc if some degree of cau-
tion is not exercised when accessing shared variables between threads. A
typical primitive to protect critical regions is a spinlock, that means a lock
that a processor continuously tries to acquire, spinning around a loop until
it succeeds.
While programming details of synchronization primitives are beyond the
scope of this thesis (see [47][10][37][11] for additional insights), the aftermath
of this synchronization primitives is of major importance for interconnec-
tion; namely, the network must support primitives to guarantee atomicity of
operations that in principle are not atomic (e.g. read-modify-write). The
remainder of this section deals with advanced protocol opcodes in networks
that can be useful to guarantee multiprocessor consistent programming mod-
els.

4.5.2.1 Atomic transactions and compound operations

In figure 4.12 two processors execute code that pokes a shared variable i. As
the variable is shared some form of synchronization is needed between the
threads that make up the application.
In this case a spinlock has been used. If the two processors compete for the
spinlock, the one that locks it can directly access the shared variable whilst
the other keep spinning on the lock till it is released.
Anyhow, even the spinlock itself, being a shared variable, suffers from racing
problems between concurrent access. So, there must exist some way in which
the system can guarantee that spinlock locking is atomic from a thread of
execution perspective. In shared busses this requires a feature such as lock to
merge interconnection transactions together in order to be indivisible from a
memory access point of view (acquiring a spinlock implies at least two trans-
actions on the network a read and a write).
For a bus solution is not too difficult to guarantee atomicity, but what about
a network where links are distributed ? Should the network lock all the links
to memory ? or some cleverer solutions must be adopted ? There is no
easy answer. In a system containing more than three or four processors the

76 Networks On-chip: A layered approach for On-chip communication

bandwidth required by spinlocks contention would be unbearable. Moreover,
all this bandwidth is completely and definitely wasted because it just carries
synchronization variables, not useful data for further processing.
Several solutions have been devised, all applicable to networks on-chip de-
signs. The most interesting resides in hardware locking primitives. The major
problem with original spinlock implementation is that it introduces a large
amount of unneeded contention. For instance, when a lock is released, all
processors generate read and write cache misses, although at most one pro-
cessor can get the lock in an unlocked state. This situation can be improved
by explicitly handling the lock from one waiting processor to the next.
In hardware, a list of waiting processors competing for the lock is held, and
it grants the lock to one explicitly, when the locking processor stops spinning
because it exits the critical region. This concept is called queuing lock. This
greatly enhances synchronization operations in multiprocessors programming
model at little hardware cost.

Atomic operations are just one part of the whole story. Current multime-
dia systems on chip contain a load of IPs with strict throughput requirements
to access memory. Double Data Rate (DDR) memories are made up of dif-
ferent banks, and within each bank memory is split into pages. The way in
which transactions are ordered towards memory definitely change how pages
banks are accessed, affecting memory effectiveness.
In order to group transactions directed towards the same memory page (ac-
cessing consecutive locations in a memory page avoids costly page misses
that imply memory stall cycles), compound transactions are built up to lock
transactions together. In this way the interconnect is not allowed to split
traffic coming from different flow because the path is locked. This issue is
strictly related to atomicity of transfers, but for different purposes compared
to synchronization. Atomicity for compound operations is a good feature be-
cause it boosts memory effectiveness. Hence, it is an improvement (see [67])
of existing interconnection protocol. Atomicity for synchronization is just an
hurdle to deal with; it does not bring anything useful on system performance.
When spinlocks are not based on hardware queuing locks, a simple lock sig-
nal on network protocol suffices to guarantee both compound operations and
synchronization primitives.
However, bandwidth waste due to synchronization in this case is hard to sus-
tain, so that synchronization in future systems is likely to be implemented
through hardware mechanisms. Advanced bus protocols such as AMBA
AXI� feature also a different form of synchronization opcodes: exclusive
access. In this case path locking is avoided, but this synchronization comes
at a price.

4.6 STNoC� network on-chip 77

Figure 4.12: Example of race prevention

Atomicity is guaranteed by the slave component; if it decodes an exclusive
access violation, an error opcode is returned to the master, meaning that the
request was not successful. While this approach avoids path locking, it can
unleash an unsustainable bandwidth on the communication channel (masters
getting error responses retry transactions again and again), ending up with
an unfeasible solution for most systems.

To sum up, multiprocessor systems atomicity and bandwidth require-
ments put tough issues on interconnection design. While for shared busses
atomicity guarantees are easy to provide (locking the bus), a distributed
network require thoughtful design choices to be made in order to avoid band-
width waste and design overcommitments.

4.6 STNoC� network on-chip

The STMicroelectronics STNoC� project can be seen as a seamless evolution
of the STM proprietary STBus protocol, by now deployed in a number of SoC
designs. The main objective and idea behind STNoC is to bring an innovative
solution to on-chip communication, based on a packet switching µnetwork of
components.
STBus based solutions started suffering from shortcomings such as wires

78 Networks On-chip: A layered approach for On-chip communication

congestion and difficult timing-closure (see section 3.2 page 28), so that some
technological improvements are in order to empower ST designers with an
interconnection scheme suitable for next generations systems. STNoC� has
been built with two basic guidelines:

- Simplicity

- Pragmatism

An innovative solution to the on-chip interconnection problem has to be
somehow ”simple” in that silicon area is a major cost and competitive factor;
interconnection networks must prove effective with as less buffering as pos-
sible, saving area for advanced computing features such as cache-memories,
processor register files, etc.
Even if the interconnection network may by now be considered as the real
added-value for SoC, its role is ”just” to shuttle code and data within the
system. Computation, so applications, is executed elsewhere (Processing el-
ements); thus, computation part of the chip represents a major cost factor
and its improvement demands area (e.g. memory hierarchy enhancements,
hardware acceleration). A SoC where the interconnection scheme occupies a
big slice of the whole chip area would be definitely frowned upon by system
designers, implying its quick death.

Pragmatism is a pivotal concept in SoC design; the introduction of net-
works on-chip in semiconductor industry arena might be seen as the inte-
gration of convoluted protocol stacks to provide on-chip services such as
connection-oriented schemes, namely the translation on-chip of well-known
concepts coming from the fascinating networking world. The design of on-
-chip network must be ”pragmatic” from this point of view; for instance a
hardware/software network stack such as TCP/IP is well worth in computer
networks, but it is just a harebrained concept for on-chip interconnection
where routers have to be plain hardware elements used to dispatch packets
with no software stack built on top of them.
STNoC� was designed with simplicity and pragmatism in mind, in order
to design a network with all nuts and bolts, but without introducing exotic
concepts and implementation features on already burdened on-chip inter-
connects. STNoC� topology is Spidergon based (see subsection 4.4.1 page
59); despite its simplicity Spidergon topology provides a good trade-off be-
tween performance (e.g. bisection bandwidth and diameter) and cost (e.g.
router arity); STNoC� implements virtual channel flow control, as described
in section 4.3, with decoupled virtual networks for requests and responses to
guarantee deadlock-free routing and operations.

4.6 STNoC� network on-chip 79

The remainder of this section describes, as long as possible due to confiden-
tiality reasons, the different components of STNoC� in order to provide the
groundwork to describe STNoC� modeling and benchmarking in the follow-
ing chapters.

4.6.1 STNoC� router

The router is one key component of the STNoC� interconnection network. It
represents the core communication medium and it covers the protocol layers
described in this chapter up to network layer. Thus, the router is responsible
for forwarding and routing packets throughout the network, from source all
the way down to destination.

Figure 4.13: Generic NoC router microarchitecture

In figure 4.13 a generic router microarchitecture is shown. Generally
speaking, a router is made up of three blocks:

- Input

80 Networks On-chip: A layered approach for On-chip communication

- Switch

- Output

This is by no means a thorough description. A detailed router description
implies the definition of a number of finite state machines, including flow
control logic, arbitration and multiplexors. Besides, the inherent concurrency
in network communication implies the presence of buffering in routers to
guarantee a certain pipelining even under heavy traffic congestion situation.
Different solutions apply to different cases. Normally the choice is between
input/output/mixed queuing architecture. Each solution has its strengths,
weaknesses and cost factors.
In networks on-chip routers, the routing algorithm is either embedded in
routing tables or laid out in hardware circuits within the router. STNoC�
resorts to combinatorial logic within the router to decode the path that has
to be followed by a packet traversing the network. The STNoC� routing
scheme is deterministic (see subsection 4.4.2) and it is based on Spidergon
topology (see figure 4.14); given the high symmetricity and regular properties
the packet decoding scheme is light in terms of gates count. In STNoC� each

Figure 4.14: Spidergon topology

router has a unique address I in the network, 0 ≤ I ≤ N , where N is the
network size in nodes (see figure 4.14, whereN = 12, numbering is clockwise).

4.6 STNoC� network on-chip 81

Since the STNoC� routing algorithm is local, i.e. identical (or symmetric)
for all router nodes, and the topology is – vertex and edge transitive, we may
describe the routing algorithm at any node. When a router receives a header
flit, the algorithm compares the address of the current router (curr) to the
address of the target router (dest) stored in the header flit; the Spidergon
routing algorithm chooses the proper output port according to hardwired
rules.

Hereinafter the basic deterministic shortest-path routing algorithm is un-
folded:

if (dest = curr) then
output← NI

else
if (|dest− curr| ≤ N

4
) ‖ (|dest− curr| ≥ (N − N

4
)) then

if (dest ∈ [curr + 1, .., curr + N
4

]) then
output← RIGHT

else
output← LEFT

else
output← ACROSS

end if
end if

end if

The basic algorithm implies that the cross communication port is selected
at most once, always at the beginning of each packet’s route. Thus, only
packets arriving from an IP resource or cross output need to be considered
for routing. All other packets use the same port, i.e. clockwise or counter-
clockwise, as the one they have used in the previous routing step. This might
be exploited with an extra directional bit in the packet header.
The basic algorithm is appropriate not only for one-to-one (point-to-point),
but also for one-to-many (broadcast, scatter), and many-to-many total ex-
change traffic configurations.
The configuration of the routing algorithm, together with advanced proto-
col features, allows STNoC � to support and usher a brand new quality of
service mechanism built on-top of best-effort services. In particular, fairness
concepts described in section 4.4 are integrated in STNoC� router through
arbitration mechanisms of router FIFOs. STNoC� router provides combina-
torial logic that allows to lock paths in order to support atomic and compound
operations, as discussed in subsection 4.5.2 on page 73. This logic is light in
terms of gates, providing mechanism to support advanced multi-processors

82 Networks On-chip: A layered approach for On-chip communication

architecture and programming models.
For confidentiality reasons, the details of STNoC� router microarchitecture
and arbitration mechanism cannot be unveiled here.
STNoC� router proved to be a really cost effective solution, allowing clock
frequency up to 1Ghz in 90nm ST technology, with a per link bandwidth of
8Gbytes/sec (64 bits data path/flit width).

4.6.2 STNoC� network interface

Whereas the router component manages the on-chip protocol stack up to
network layer, the network interface (see also subsection 5.6.5 page 131 for
NI modeling) is a key component of transport layer management and bus-
bridging.
One of the toughest issues in STNoC� deployment consisted in re-use exist-
ing IP interfaces. Within STMicroelectronics, two bus based interfaces are
used. One can simply argue that two interfaces are not that many to deal
with; however, we must take into account that the problem resides in their
number but also in their usage count.
Both STBus and AMBA interfaces are massively deployed in STMicroelec-
tronics systems; these legacy interfaces are ”golden handcuffs” that somehow
forced STNoC� developers1 to rethink the role of a NI in an on-chip environ-
ment. The role of the network interface (NI) [61] is to provide the conversion
of the packet based communication of the NoC to the higher-level protocol
than IP modules use. The design of a network interface (either master or
slave) is split in two subcomponents (see figure 5.15 page 132):

- The Shell NI, which manages IP flow control, transaction ordering and
other high-level protocol issues specific to the protocol offered to the
IP.

- The kernel NI, which implements the channels, packetize messages and
schedule them to the routers, implement kernel/router flow control and
clock domain crossing.

The NI kernel has the uphill task of receiving and providing packets, which
contain the data driven by the IP modules via their protocol after sequen-
tialization. The packet structure may vary depending on the protocol used

1Legacy interfaces are a pain for any semiconductor company building networks on-chip.
Every NoC designer would like tossing these interfaces of old out of the way, but time-to-
-market constraints and IP re-use definitely work against brand new network interfaces,
encouraging legacy hardware.

4.6 STNoC� network on-chip 83

by the IP module. However, the packet structure is irrelevant to the kernel
NI, as it just sees packets as pieces of data to be transported over the NoC.
The NI kernel communicates with the NI shell through memory buffers. A
synchronization block ensures proper operations when frequency conversion
is performed. The shell NI acts as a slave/master for master/slave IPs.
A key feature of the NI consists in driving all of the IP controls, according to
the IP protocol specification (e.g. STBus). As the end-point of the commu-
nication, the shell NI has to manage advanced protocol issues such as write
posting mechanisms, quality of service and out-of-order management.
To be noted that the shell NI is the only component whose behavior can
bias somehow routers behaviors in terms of quality of service requirements.
The NI is the entry point of the network, hence in some broad sense ”the
service provider” (see subsection 4.4.4 on page 67 in this chapter). According
to the interconnection specification, the designers of STNoC� can tune the
NI through specific ”knobs” in order to let it meet the IP requirements. This
simple programming can be done either statically or dynamically through
registers address space. In figure 4.15 is reported the structure of STNoC�
packet omitting low level details.

Segmentation and reassembly are very common operations in on-chip net-
works. Let us consider an example. An AHB bus protocol defines an end-

Figure 4.15: STNoC� packet layering

-to-end protocol specification through which IPs communicate. Referring to
figure 4.9 on page 72, the header part of a transport layer packet is defined
as a bitmap of AHB control signals crammed (so sequentialized) in a header
flit. This header field at transport layer becomes a payload at network layer.
The kernel NI fills the network layer header in order to build up a proper
packet suitable to be forwarded to the NoC.
This layering within the network interface fosters modularity of the design.
The kernel NI can be easily reused throughout different interconnection de-
signs, with nary a change. Only the transport layer protocol changes (of

84 Networks On-chip: A layered approach for On-chip communication

course just if the IP interface changes), so does the shell NI in order to adapt
the two parties (network and IP) no longer matched.
The STNoC� NI has been designed for both STBus and AMBA AXI end-
-to-end on-chip protocols, with little area and avoiding CAM (Content Ad-
dressable Memory) to manage transaction ordering and addresses alignment
issues.

4.7 Conclusion

This chapter went through several design concepts applied to on-chip inter-
connection networks. Firstly, communication layers were described as well
as their implications on interconnection design patterns. Networks on-chip
foster a layered protocol stack that ultimately allows decoupling of com-
munication and computation parts of the chip, improving the whole design
methodology. Moreover, advanced arbitration schemes and protocol issues
were presented in order to underline real challenges that are looming large
for system on-chip designers. As long as possible due to confidentiality rea-
sons, STNoC� network on-chip architecture was described, highlighting how
theoretical concepts such as layering apply to real network design.
Given the general background provided so far, the following chapter presents
STNoC� network on-chip methodology and design flow, with a clear focus
on our modeling methodology, OCCN, developed on-purpose for system level
design of the new STMicroelectronics network on-chip. To the best of our
knowledge, transaction level models (TLMs) of STNoC�, developed within
OCCN, represent the first existing example of clock-accurate TLMs of on-
chip networks.

Chapter 5
Networks On-Chip Modeling:
Application to STNoC�

5.1 Introduction

Modeling, especially at system level, has become a fundamental step on build-
ing systems on-chip. This chapter, the core of the whole thesis work, deals
with system and platform modeling of on-chip networks by providing an in-
depth overview of simulation and modeling techniques integrated in OCCN,
a freeware, networks on-chip simulator available under sourceforge, devel-
oped internally by STMicroelectronics. Firstly, a comprehensive description
of the SystemC kernel is reported in order to provide basic simulator seman-
tics. Afterwards, OCCN details of STNoC� models are unfolded, together
with a wealth of code snippets useful to grasp modeling principles. Finally,
an in-depth overview of advanced simulation techniques such as distributed
simulations are reported in order to show our interesting achievements in
this field. In particular, the SystemC kernel has been thoroughly ported to
an SMP aware configuration, which allows concurrent simulation execution
on multiple processors at a given time. Section 5.8 reports all the develop-
ment stages as well as benefits for networks on-chip simulations, which is the

86 Networks On-Chip Modeling: Application to STNoC�

subject this chapter is all about. STNoC� SystemC models are described
step-by-step all along this chapter, including interesting titbits very useful in
modeling context.

5.2 System level design

The emergence of the System-On-Chip era is bringing about many new chal-
lenges at all stages of the design process. Designers have to face complex
designs; hence a complete revision of systems specification, verification and
partitioning is in order. The ITRS roadmap for design technology correctly
identifies design productivity as the key hurdle in keeping up with the technol-
ogy advances. In order to keep abreast with technologies advances, a ”small”
team of engineers must continue to be able to design a leading-edge chip in
a restricted short time. There are two categories of productivity issues:

System complexity issues that rise from handling the sheer size of the
SoC. Moore’s law governs scalability properties of nowadays systems.
Over the past decade, Electronic Design Automation tools such as RTL
synthesis improved designer’s productivity from 4Kgates per manyear
to over 100Kgates per engineer year. Although significant, this rate
is insufficient to keep up with Moore’s law. Design re-use and new
hierarchical technologies are also required to maintain the productivity
pace.

Silicon complexity issues are related to the manufacturing technology. This
includes device and interconnect parasitics, physical and electrical de-
sign rules, device reliability and process variability. In this way silicon
complexity is the outcome of the underlying physics that enlarges sys-
tem complexity. In sum, silicon complexity increases the number of
steps in the design flow.

The rapid evolution of Electronic System Level (ESL) methodology chal-
lenges productivity issues through a new design paradigm defined as system
level design [43]. System level design focuses on the functionality and the
relationships of the primary systems components, separating system design
from implementation. Low-level implementation issues greatly increase the
number of parameters and constraints in the design space, thus extremely
complicating optimal design selection and verification efforts. Similar to near-
-optimal combinatorial algorithms, ESL models effectively prune away poor

5.3 SystemC environment 87

design choices by identifying bottlenecks and focus on closely examining fea-
sible options.
Abstraction is a powerful approach for design and implementation of com-
plex systems. In order to deal with less and less details, system level design
fosters a brand-new methodology which relaxes models constraints.

Network-on-chip paradigm brought about many new challenges for SoC
simulations, ranging from simulation speed to models distributeness. Net-
works made up of several routers and network interfaces further load already
burdened simulations, leading to poor CPU load efficiency. From this per-
spective, on building a Network-On-Chip simulator [77], a good balance must
be found in order to endow models with an adequate level of abstraction to
meet simulation targets, getting rid of pointless details that can be consid-
ered furtherly in successive design steps. To specify, design and implement
such complex Networks on-chip, simulators developers are compelled to move
on from the Hardware Description Languages (HDLs) of old to simulator
able to cope with system level design requirements in a standardized man-
ner. This was one of the main driving factor that pushed the confluence of
many streams ideas into Open SystemC Initiative (OSCI) SystemC language
[72][71], a full-fledged C++ simulator for system level design.

SystemC (see section 5.3) has become the de-facto mainstream design
environment for hardware and software constructs. The reason is clear:
the design complexity steep increase driven by Moore’s law [52] demands
fast and accurate executable specifications to validate systems concepts and
only C/C++ languages can provide adequate levels of abstraction, hardware-
software integration and performance.

5.3 SystemC environment

One of the primary goals of SystemC is to enable system level modeling –
that is, modeling of systems above the RTL level of abstraction, – includ-
ing systems which might be implemented in software or hardware or some
combination of the two. One of the challenges in providing a system level
design language is that there is a wide range of design models of computa-
tion, design abstraction levels and design methodologies used in system level
design. To address this challenge in SystemC, a small but very general pur-
pose modeling foundation has been added to the language. On top of this
language foundation more specific models of computation, design libraries
and modeling guidelines can be added, leaving room for further extensions

88 Networks On-Chip Modeling: Application to STNoC�

Figure 5.1: SystemC flow

(see figure 5.1). SystemC empowers designers with an environment suitable
to build a mixture of models of computation.
The notion of model of computation (MOC) is fundamental to system level
design. A model of computation could be defined as follows [33]:

1. The model of time employed (real-valued, integer-valued, untimed) and
the event ordering constraints within the system (globally ordered, par-
tially ordered, etc.)

2. The supported method(s) of communication between concurrent pro-
cesses.

3. The rules for process activation.

Most ”traditional” languages such as VHDL, Verilog, and SDL can be seen
as having a single fixed model of computation, and provide little or no way
for users to customize the given model. In this sense, SystemC also has a
single fixed model of computation, but it is different from other traditional
design languages in several key points:

� The base model of computation is designed to be extremely general.

� The SystemC language as a whole is designed so that customized mod-
els of computation can be efficiently layered on top of the base capa-
bilities provided by the SystemC core language.

Some well-known models of computation which can be naturally implemented
in SystemC include:

5.3 SystemC environment 89

� Static multirate dataflow

� Dynamic multirate dataflow

� Kahn process networks

� Discrete event as used for:

- RTL hardware modeling

- network modeling (e. g. , stochastic or ”waiting” room models)

- transaction-based SoC platform modeling

The Register Transfer Level (RTL) MOC is an acronym for a model-
ing style that corresponds to digital hardware synchronized by clock signals.
This modeling style is deployed within languages such as Verilog and VHDL,
and it is by now widely integrated in commercial hardware synthesis tools.
In the RTL style, all the models interfaces are connected through signals .
Processes can either model sequential logic, in which case they are fired off
by a clock edge (positive or negative), or they can model combinatorial logic,
which means that a change of an input to which the process is sensitive to
causes process execution. RTL models are pin-accurate and cycle-accurate,
meaning that the ports of an RTL modules correspond to wires in the hard-
ware implementation of the module. SystemC signals and VHDL signals

Figure 5.2: SystemC sample RTL model

behaviors are identical. At Register Transfer Level the precise connections

90 Networks On-Chip Modeling: Application to STNoC�

of registers are explicit at the structural boundaries (see figure 5.2). These
explicit connections impose hard constraints on the methodology used to
describe modules interfaces. The restrictions placed on interfaces represent
somewhat limiting factors in terms of modeling methodology; in particular,
as the interfaces level of abstraction plays a pivotal role in models ease-of-use,
adaptation and simulation speed, RTL level of abstraction can be definitely
considered verboten for system level design. Due mainly to complexity rea-
sons, Networks on-chip modeling requires a high-level approach for models
interfaces, implying the need of raising abstraction level.

Transaction Level Modeling (TLM) represents one specific type of the
discrete-event MOC. In TLM, communication between modules is abstracted
through function calls that execute transactions defined in a given target
platform. TLM has become a de-facto standard for system level modeling; a
thorough explanation of its concepts requires a brief introduction of the Sy-
stemC kernel which starting from version 2.0, integrates the basic components
to create full-fledged TLM of systems.

5.3.1 SystemC Kernel

The description of a simulator such as SystemC does not differ much from
whatsoever large program, application or operating systems. Indeed, Sys-
temC can be described with well-known concepts in computer science, the
so-called user level and kernel level. In this section kernel level is described.
Unraveling the SystemC kernel represents a head start for SystemC platform
developers; simulation speed, models testing and correctness, all depend on
a thorough understanding of the underlying simulator core.
The primary purpose of the SystemC kernel is to trigger or resume the execu-
tion of the processes that are supplied by the user as part of the application.
The scheduler is event-driven, meaning that the processes are executed in
response to the occurrence of events. In SystemC, simulation time is an
integer quantity. It is initialized to zero at the start of simulation, and in-
creases monotonically. Similar to VHDL and Verilog, the SystemC scheduler
supports delta cycles. A delta cycle is comprised of separate evaluate and
update phases (see figure 5.3), and multiple delta cycles may occur at a par-
ticular simulated time. Delta cycles are useful or modeling fully-distributed,
time-synchronized computation as found for instance in RTL hardware.

5.3 SystemC environment 91

Figure 5.3: SystemC scheduler scheme

The entities that are visible and scheduled by SystemC kernel can be
listed as follows:

- The set of runnable processes

- The set of update requests

- The set of delta notifications and time-outs

- The set of timed notifications and time-outs

Within SystemC environment channels can be modeled through two struc-
tures: primitive channels and hierarchical channels. A primitive channel is
one that supports the request-update method to model its behavior. The
request-update method of access is designed for simulating concurrency. For
instance, when simultaneous actions are performed (e. g. changing the value
of a signal) it delays any changes of the channel internal state to avoid indeter-
minacy. Primitive channel expressiveness is somehow limited by its internal
construct, that is, the request-update scheme represents what the channel is
all about; no SystemC structures (e.g. SystemC SC THREAD) are allowed
in it.
To model networks routers and network interfaces (NI), a more expressive
form of modeling is required. Through concepts such as ports and interfaces,
SystemC provides a modeling construct dubbed hierarchical channel ; it is a

92 Networks On-Chip Modeling: Application to STNoC�

far more powerful description than a primitive channel, as it allows to define
and use constructs such as threads and methods to model channel behavior
(e.g. arbitration).
Given this brief introduction on channels, the semantics of SystemC scheduler
execution can be sketched as follows:

1. Initialization phase - Execute all processes in an unspecified order.

2. Evaluation phase - Select a process that is ready to run and resume
its execution. This may cause immediate event notifications to occur,
which may result in additional processes being made ready to run in
this same phase.

3. If there are still processes ready to run, go to step 2.

4. Update phase - Execute any pending calls to update() resulting from
request update() calls made in step 2.

5. If there are pending delayed notifications, determine which processes
are ready to run due to the delayed notifications and go to step 2.

6. If there are no more timed notification simulation is finished.

7. Advance the current simulation time to the earliest pending timed no-
tification.

8. Determine which processes are ready to run due to the events that have
pending notifications at the current time. Go to step 2.

An in-depth introduction of SystemC kernel was in order before start-
ing to describe the basic features of Transaction Level Modeling, OCCN,
an open source environment for modeling on-chip networks and distributed
simulations for Networks On-Chip.

5.3.2 SystemC groundwork for transaction-level mod-
eling

The primary objective1 of SystemC 2.0 was to enable system level design
through a wealth of primitives aimed at enhancing the three main constructs
of any SystemC design, to wit:

1SystemC 1.0 was mainly focused on pure hardware constructs such as those of HDLs.

5.4 Transaction Level Modeling (TLM) 93

� Modules

� Channels

� Interfaces

In particular, the generalization of channels to hierarchical channel greatly
simplified the development of Transaction Level Model of interconnection
systems, through the capability of a neat decoupling between communica-
tion and computation design partitions [65]. In SystemC modules (a.k.a.
SC MODULE) are the basic building blocks to partition a design. Mod-
ules allow designers to break complex systems into small manageable pieces.
A modularized design aims at hiding internal data representation and algo-
rithms for other modules.
Through modules, designers succeed in developing hierarchical design. Mod-
ules help outline the structure of the system, whilst processes (a.k.a. SC TH-
READS or SC METHODS) provide the functionality. Processes and func-
tions identify to the SystemC kernel and get called whenever signals these
processes are ”sensitive to” change value.
Electronics systems are inherently parallel with lots of parallel activities con-
stantly taking place. SystemC has the concept of methods, threads and
clocked threads to model parallel activities of a system.
Main difference between threads and methods is about the ”context” of the
process. Methods are plain functions, so that they have no context, whilst
threads (i.e. user level co-routines such as quickthreads [42] or fibers (Win-
dows)) do have a context, meaning that they are able to save system state.
The last basic brick of SystemC environment is the interface, that is, the
access mechanism of a module. Modules, processes and interfaces are the
basic building blocks through which designers can develop Transaction Level
Models of SoC platforms.

5.4 Transaction Level Modeling (TLM)

Transaction-level modeling is a high level methodology used to model digital
systems where details of communication among modules are separated from
computation architecture subsystems details. Communication mechanism
such as on-chip networks are modeled as channels (primitive or hierarchi-
cal), and they export to modules function calls through SystemC interface
classes. Transaction requests are executed calling interface functions defined
and implemented in channels, which encompass low-level details of the data

94 Networks On-Chip Modeling: Application to STNoC�

Figure 5.4: SystemC Simple Bus TLM structure

exchange.
The simple bus example (see figure 5.4) shipped with OSCI SystemC library
is a stripped down but still complete Transaction Level Model of a Bus. The
simple_bus represents a stepping stone2 for TLM developers, because it de-
fines the three basic interfaces that turn out to be useful when describing
systems at this level of abstraction:

- Blocking interface

- Non-Blocking interface

- Direct Access interface

A blocking master interface such as simple_bus_blocking_if which fol-
lows is used by high-level software models that generates burst_read and
burst_write on the bus during their execution. Normally, these software
models run ”natively” on the host processor and they are mostly employed
for software debugging early in the design cycle. They are not cross-compiled,
because this would imply the usage of an Instruction Set Simulator (ISS) to
execute the code, which causes a substantial computational overhead.

2The up-and-coming TLM OSCI standard corresponds to its natural evolution.

5.4 Transaction Level Modeling (TLM) 95

class simple_bus_locking_if: public virtual sc_interface{public:virtual simple_bus_status burst_read(unsigned int unique_priority,int *data,unsigned int start_address,unsigned int length=1,bool lock=false)=0;
virtual simple_bus_status burst_write(unsigned int unique_priority,int *data,unsigned int start_address,unsigned int length=1,bool lock=false)=0;
};

simple_bus_blocking_IF

The non-blocking master interface is used by masters which are not allowed
to block. If several masters drive requests concurrently, an arbitration takes
place and the transaction completion time is not bounded. After calling the
method, a non-blocking master can call a given method (get_status() in
simple_bus) on subsequent clock cycles to poll the bus in order to check
for transaction completion. The non-blocking interface is usually used by
processor models (i.e. ISSes). These models are not allowed to block because
they must be activated on each clock cycle to simulate proper processor
behavior (e.g. pipeline).
The direct interface provides instantaneous access to slaves. The accesses are
routed through the bus just because a routing scheme (i.e. address decoding)
can be used to select and enable the slave module. When a direct access is
performed, the SystemC scheduler does not play any role, so that simulated
time does not advance and no arbitration occurs.
A key use of direct interface is for running ISS debuggers, which should get
instantaneous snapshots of windows in memory (i.e. slave modules). The
simple_bus, as already mentioned, defined the guidelines for transaction-
-level modeling. The next subsections will provide additional insights about
TLM state of the art, with a particular focus on TLM OSCI standard.

5.4.1 TLM State of the art

The TLM modeling effort undertaken by Open SystemC Initiative fostered a
new way for modeling systems at a higher level of abstraction than RTL. TLM
concepts and features are by now well-established and integrated in a num-
ber of design environments worldwide both from CAD vendor (e.g. Synopsys
(SystemStudio)[70] , ARM(Realview / MaxSim)[7], Coware(ConvergenceSC

96 Networks On-Chip Modeling: Application to STNoC�

)[19], Cadence(NCSIM)[12], semiconductor companies (STM (OCCN, TLM-
INFRA)[17], Sonics (OCP-IP Channels))[36] and academical works (S.Malik

et al. (OCCA)[81], A.A.Jerraya et al.(ROSES)[16], D.D.Gajski (SpecC))[27]
just to mention a few.
To define a proper TLM state of the art, a tight-knit group of engineers from
Nokia, Texax Instruments, Synopsys and Sonics defined, through a white
paper (see [36]), the by now renowned TLM communication layers, with the
objective of standardizing TLM interfaces. TLM Layering is a subject of
the utmost importance in system level design. TLM layering is supported
through interface based design [64]. The interoperability of models from dif-
ferent abstraction layers can be implemented with adapter components such
as layer-wrappers. Figure 5.5 has the worth of summing up the very sparse
definitions of TLM defined in literature. Message Layer could be defined as a

Figure 5.5: TLM stack of communication layers

completely functional level of modeling. Models at this level are untimed and
simulation event-driven. A sample transaction between initiator and target
implies the transfer of several data, which may be of very abstract data type.
RTL has been already mentioned; its purpose corresponds to SoC hardware
design. It is not handy when it comes down to modeling software components
and behaviours.
L-1 and L-2, that is, Transfer Layer and Transaction Layer, strictly draw
a line between models whose simulations are event-driven and those whose

5.4 Transaction Level Modeling (TLM) 97

behaviour is clock-accurate3.
Event driven models are mainly oriented towards software debugging where
just event ordering is meaningful. Clock-accurate models, still not useful
for purposes such as synthesis, allow detailed architecture exploration and
in-depth performance analysis. Strictly speaking, this simple distinction rep-
resents the essence of TLM layering and suffices to clearly identify a State-
of-the Art for TLM. Models cited in literature belong to one of the two TLM
layers4, depending upon the context and modeling objectives.

5.4.2 TLM OSCI standard

The main shortcoming of TLM methodology introduced by OSCI was the lack
of fixed guidelines for TLM models definition. While an RTL model has well-
defined and fixed set of rules by construction (due to synthesis constraints),
TLM models basic constructs leave room for different programming styles
and most importantly different interfaces. Hence, a TLM standard was in
order, in particular to boost Intellectual Property (IP) models exchange, a
key factor for IP-reuse and an effective system level design.
OSCI TLM standard [62] takes into account different facets of system level
design:

- Providing an early platform for software development

- System level design exploration and verification

- The need to use system level models in block level verification

TLM standard defines three key concepts:

- Interfaces

- Blocking and Non-Blocking

- Bidirectional vs Unidirectional

The emphasis on interface is due to the object oriented nature of C++
[68][22][25] language and to the need for decoupling communication and com-
putation parts of design. As already stated, in SystemC there are two types of
processes (SC THREADS and SC METHODS). Threads have a context, so

3It is worth noting that the SystemC MOC enables both types of simulations.
4CAD vendors usually provide both models in their tools.

98 Networks On-Chip Modeling: Application to STNoC�

OSCI Terminology Contains wait() Can be called from
Blocking Possibly SC THREAD only

Non Blocking No SC METHOD or SC THREAD

Table 5.1: OSCI terminology

that they can call wait() macro to suspend and save their state (see [42] for
additional details about SystemC threads implementation in Unix). Methods
are plain functions, so more efficient but more convoluted to use. Thus, OSCI
defines interfaces as in table 5.1. The third definition concerns transactions
direction. An example will clarify this concept. Common transactions over
a shared bus are bi-directional (e.g. load/store). Other are unidirectional,
such as packet flow through a network.
The remainder of this subsection describes unidirectional interfaces defined
by OSCI standard, because they have been used for modeling of STNoC�
networks On-chip. The following code snippet reports the signature of block-
ing unidirectional interfaces defined by OSCI standard:

template < typename T >class tlm_blocking_get_if :public virtual sc_interface{public:virtual T get(tlm_tag<T> *t = 0) = 0;virtual void get(T &t) { t = get();}};
template < typename T >class tlm_blocking_put_if :public virtual sc_interface{public:virtual void put(const T &t) = 0;};

Unidirectional Blocking Interface

Since TLM standard allows modules to call wait in the blocking function,
they never fail. For convenience (and with a simple C++ trick) several
get() signatures are provided, using a dummy tlm_tag<T> template object
in order to endow the slave interface with multiple get() function calls. The
choice of put() and get() as function names is due to the overloaded nature
of instructions such as read or write that do not ensure any generalization
of semantics for control and data movement. These functions must be called
by threads (they are supposed to block through wait calls) otherwise the
function call would simply crash the system.
The non-blocking interface (code snippet embedded which follows) may fail,
since they are not allowed to wait for the correct conditions for these calls to
succeed. Hence nb_put and nb_get must return a bool to indicate whether

5.5 OCCN: On-Chip Communication Network 99

the non-blocking access succeeded.

template < typename T >class tlm_nonblocking_get_if :public virtual sc_interface{public:virtual bool nb_can_get(tlm_tag<T> *t = 0) const = 0;virtual bool nb_get(T &t) { } = 0;virtual const sc_event &ok_to_get(tlm_tag<T> *t = 0) const = 0;};
template < typename T >class tlm_nonblocking_put_if :public virtual sc_interface{public:virtual bool nb_put(const T &t) = 0;virtual bool nb_can_put(tlm_tag<T> *t = 0) const = 0;virtual const sc_event &ok_to_put(tlm_tag<T> *t = 0) const = 0;};

Unidirectional non-blocking Interface

OSCI standard defines also nb_can_put and nb_can_get to poke the channel
without moving any data. These methods are sufficient to do polling puts
and gets.
Models of STNoC� Network Interfaces sport successfully unidirectional in-
terfaces, providing the end users with simple and standard function calls to
access the communication medium. STNoC� Network interface models pro-
vide also wrappers to standard RTL interfaces, proving in this way a nice
flexibility of the approach that TLM OSCI standard enabled.

5.5 OCCN: On-Chip Communication Network

The On-Chip Communication Network (OCCN) provides an efficient, open-
-source, GNU-GPL licensed framework, developed within Sourceforge for
the specification, modeling, simulation, and design exploration of Networks-
-On-Chip (NoC) based on an object oriented C++ library built on top of
SystemC. OCCN was shaped by Advanced System Technology (AST) lab-
oratory experience in developing communication architectures for different
Systems on chip. OCCN increases the productivity of developing communi-
cation adapter models through the definition of an universal communication
Application Programming Interface (API)[17]. This flexible API provides a
new design pattern that enables creation and reuse of executable transaction
level models across a large variety of SystemC based environments and sim-
ulation platforms. It also addresses model portability, simulation platform
independence and high-level performance modeling issues.

100 Networks On-Chip Modeling: Application to STNoC�

5.5.1 OCCN methodology overview

As all systems development methodologies, any SoC object oriented modeling
would consist of a modeling language, modeling heuristics and a methodol-
ogy. Modeling heuristics are informal guidelines specifying how the language
constructs are used in the modeling process. Thus, the OCCN methodology
focuses on modeling complex networks on-chip communication by provid-
ing a flexible, open-source, object-oriented C++ based library built on top
of SystemC. Alike OSI layering, OCCN methodology for NoC establishes a
conceptual model for inter-module communication based on layering, with
each layer translating transaction requests to a lower level communication
protocol. As shown in figure 5.6 OCCN methodology defines three distinct

Figure 5.6: OSI like OCCN layering model

OCCN layers. The lowest layer provided by OCCN called NoC Communica-
tion Layer, implements one or more consecutive OSI layers starting first by
abstracting the physical layer.
For instance, the communication layer of STNoC� router model abstracts
physical, link and network layers. On top of the OCCN protocol stack, the
user-defined application layer maps directly to the application layer of the
OSI protocol stack. Sandwiched between the application and NoC commu-
nication layers lies the adaptation layer that maps to one or more middle
layers of the OSI protocol stack, including software and hardware adaptation
components. The aim of this layer is to provide, through efficient, inter-
dependent entities called communication drivers, the necessary computation,
communication and synchronization library functions and services that allow
the application to run. Although adaptation layer is usually user defined, it

5.5 OCCN: On-Chip Communication Network 101

utilizes functions defined within the OCCN communication API.

5.5.2 OCCN API and library components

The OCCN implementation for inter-module communication layering uses
generic SystemC methodology, e.g. a SystemC port is seen as a service
access point (SAP), with the OCCN API defining its service. Applying the
OCCN conceptual model to SystemC, we have the following mapping:

- The NoC communication layer, is implemented as a set of C++ classes
derived from the SystemC sc_channel class. The communication chan-
nel establishes the transfer of messages among different ports according
to the protocol stack supported by a specific NoC.

- The communication API is implemented as a specialization of the
sc_port SystemC object. This API provides the required buffers for
inter-module communication and synchronization.

- The adaptation layer translates inter-module transaction requests com-
ing from the application API to the communication API.

The fundamental components of the OCCN API are the Protocol Data Unit
(PDU), the MasterPort/SlavePort and Master/Slave Interface.
OCCN ports and interfaces are integrated as a superset of basic SystemC
ports and interfaces (MasterPort, SlavePort, MasterIf, SlaveIf) in or-
der to define environment specific access primitives. A great effort has been
made in order to define these primitives as a reduced subset of functions (see
figure 5.7), to improve models portability.
The BusBaseChannel class constitutes the main building block from which
complex models of busses can be built. It contains functions useful at port
binding to create dynamically Master and Slave Interfaces.
The paradigm used for sending and receiving PDUs through ports is message
passing with send and receive primitives for point-to-point and multi-point
communication. In figure 5.8 a simple schematic behavior of how send and
receive primitives are implemented is reported, in order to give an idea about
data flowing. Send() like primitives are used to send Pdus (a.k.a. flits) on the
link channel end, and can be seen as active agents from a protocol standpoint.
Receive() and Reply() functions act as slave agents in that they respond
to send transactions. All of these primitives make up the OCCN protocol
suite. Next chapter will provide more detailed information on send/receive
primitives inner workings. It is worth noting that primitives used in ports

102 Networks On-Chip Modeling: Application to STNoC�

Figure 5.7: OCCN API class hierarchy

and busses (such as notify_sending_completion()) are exclusively man-
aged by bus model developer. They are not, or better, they must not be
visible to external modules because they represent OCCN internal mecha-
nisms that provide transactions scheduling and release. It is up to models
writers to implement them properly in order to achieve expected goals. In
particular, they are used to fire off events and flags of blocking (send()) and
non-blocking interfaces (asend()).

In the next subsections the different components of the OCCN API will
be explained along with code snippets useful to describe code functionalities.

5.5.2.1 PDU

In OCCN, inter-module communication is based on channels implementing
well-specified protocols by defining rules (semantics) and types (syntax) for
sending and receiving protocol data units (or PDUs according to OSI ter-
minology). In general, PDUs may represent bits, tokens, cells, frames, or
messages in a computer network, signals in an on-chip network or jobs in
queuing network. Thus, PDUs are a fundamental ingredient for implement-
ing inter-module (or inter processing element) communication using arbitrar-
ily complex data structures.
Each PDU is usually made up of two different entities:

5.5 OCCN: On-Chip Communication Network 103

Figure 5.8: Send/Receive protocol example

- The control field (template H, also called protocol control information)
provides destination address(es) and sometimes it includes source ad-
dress. Moreover control integrates operation code that distinguishes
(a) requests/responses, (b) load/store instructions, (c) synchronization
instructions, (d) blocking/non-blocking instructions, and (e) system
instructions. Sometimes performance related information is included,
such as a transaction identify/type and epoch numbers.

- The data field (array of BU template type, called payload, or service
data unit) is a sequence of bits that are usually meaningless for the
channel.

The PDU Class (see code snippet) provides modeling support for the control
and data field:

template <typename H, typename BU=H, int size=1>class Pdu{public:
Pdu();
// Assignments modify & return lvalue.Pdu& operator=(const BU& right);Pdu& operator=(const BU* right);BU& operator[](unsigned int x);

104 Networks On-Chip Modeling: Application to STNoC�

operator const BU();
// Conditional operators return true/false:int operator==(const Pdu& right) const;int operator!=(const Pdu& right) const;
// std streamsfriend ostream& operator<< <>(ostream& os, const Pdu& ia);friend istream& operator>> <>(istream& is, Pdu& right);
// Pdu streamsfriend Pdu<H,BU,size>& operator<< <> (Pdu& left,const Pdu& right);friend Pdu<H,BU,size>& operator>> <> (Pdu& left, Pdu& right);
template <typename H2, typename BU2, int size2>void* operator new(unsigned int sz, MasterPort<Pdu,Pdu<H2,BU2,size2> > *port);template <typename H2, typename BU2, int size2>void* operator new(unsigned int sz, SlavePort<Pdu,Pdu<H2,BU2,size2> > *port);void* operator new(unsigned int sz);
// for channels implementation like AHB (need for BU OR Hdr transfer only)void copy_sdu(Pdu& src);void copy_pci(Pdu& src);

public:enum {pci_size = sizeof(H)};enum {sdu_size = size * sizeof(BU)};enum {pdu_size = sizeof(H) + size * sizeof(BU)};
union{ struct{ H hdr;BU body[size];}pdu;char stream[pdu_size];} view_as;
unsigned int stream_tail;unsigned int stream_head;

};
PDU Class

The view_as union, the actual Pdu class data (control plus data), is a hack
implemented to pack data [38] in a way suitable for subsequent segmentation
and re-assembly operations on a per-byte basis. In particular, the union can
be easily unpacked using the stream array which provides a per-byte view
of the Pdu class data, as a stream of serial bytes. The Pdu class provides
also proxy calls such as copy_sdu and copy_pci which are useful to copy
independently the two instances (hdr, body a.k.a. pci/sdu) of the Pdu class.
They are implemented using normal memcpy operations, in order to copy in
an effective way a simple stream of bytes. Pdu class also features a memory
allocator (new) whose role is to allocate a memory arena at simulation start
[68][51] to improve heap based allocation of PDUs. Getting a hold of memory
becomes a matter of allocating object from the arena without resorting to
libc malloc calls (unless arena size is exhausted).
A layered approach like OCCN one allows also packed data encapsulation;
in particular PDUs may belong to different layers that make up the network
protocol stack. The PDU plays a very important role in OCCN API, with its

5.5 OCCN: On-Chip Communication Network 105

structure being determined by the corresponding on-chip communication ar-
chitecture. In a network on-chip context normally the control field (template
H, hdr field in the view_as union) implements the point-to-point link con-
trols whilst the body field (template BU, array body in the view_as union)
mirrors the data path. It is very important to note that a data path can
actually encompass header flits; this notation could result a bit misleading,
hence it deserves an example.
In section 5.6 our modeling methodology for a network on-chip router will be
detailed. Within that context the control signals crammed on the Pdu class
(the H template field) are better described through the cntrl_flit struct:

typedef struct {bool req;bool ack;bool eop;bool sop;} cntrl_�it;
OCCN PDU Controls struct

Throughout the different OCCN models, control variables are always modeled
using plain C structs. Modeling control signals through plain variables, the
OCCN methodology, as I am going to report, differs from standard RTL
modeling techniques where signals are modeled using the sc_signal class.
SystemC signals are primitive channels, scheduled by the SystemC kernel
and triggered by event notifications. These constructs burden the kernel
worsening simulation speed, which is why OCCN does not rely on signals,
using variables instead. In the router example available within sourceforge
http://occn.sourceforge.net (occn::std_router in occn 2.0.1beta), a Pdu,
namely the class exchanged by routers instances, is declared as follows:

typedef Pdu<cntrl_�it,data_�it<unsigned int> > NoC_Pdu;
PDU de�nition example

where the data_flit template represents the data sent along the data path
wires. The data flit class (see next snippet) just cloaks abstract data types
(meta_data) used to model header and data flits in an abstract manner. The
pointer to the data structure allows to avoid many copies in flit transmission
(the pointer is set up for each packet, so that transmitting a packet is a matter
of copying a pointer). The controls class (template H of PDU, cntrl_flit
described early, instantiated in the previous snippet) defines signals which
govern the link-to-link protocol.

http://occn.sourceforge.net

106 Networks On-Chip Modeling: Application to STNoC�

template <typename T>struct data_�it{meta_data<T> *data;unsigned int �it_number;};template<typename T>class meta_data{public:meta_data();meta_data(int hdr_size);
~meta_data();
//Overloaded output streamfriend ostream &operator<< <> (ostream& output,const meta_data<T>& value);
void set_source(int source_address);
void set_destination(int destination_address);
void set_id(unsigned int id);
void set_data(T data_in);
unsigned int get_source();
unsigned int get_size();
unsigned int get_destination();
unsigned int get_id();
T get_data();
void clean();

private:
/* Source address of packet*/unsigned int source;
/* Destination address of the packet */unsigned int destination;
/* Number of �it */unsigned int size;
/* This is the packet */QueueObject< T > data;unsigned int pkt_id;

};
data_�it class

The meta_data class, along with the actual flits to send in the queue data, de-
clares and defines utility functions (inline) that set/poke/poll sensible packet
fields such as source and destination, with function such as for instance
get_destination(). Additional fields not strictly present in the header flit
but useful for debugging can be added at will such as pkt_id.

5.5.2.2 MasterPort/SlavePort

The second pillar of OCCN API is represented by MasterPort and SlavePort
(figure 5.7).

5.5 OCCN: On-Chip Communication Network 107

template<class WPdu, class RPdu=WPdu>class MasterPort :public sc_port<MasterIf<WPdu,RPdu>,MAX_IF >{
public:MasterPort();

void bind(MasterIf<WPdu,RPdu>& interface);void operator () (MasterIf<WPdu,RPdu>& interface);void operator () (sc_port<MasterIf<WPdu,RPdu>, MAX_IF> &port);
// communication APIvoid send(WPdu* pk); // synchronous blocking call (emission + propagation + reception delays)void asend(WPdu* pk); // asynchronous blocking call (emission delay)RPdu* receive();void reply();void reply(N_uint nb_cycles);void reply(sc_time& delay);
// same with time-out featurevoid send(WPdu* pk, sc_time& time_out, bool& sent);void asend(WPdu* pk, sc_time& time_out, bool& sent);RPdu* receive(sc_time& time_out, bool& received);

protected:
private:
};

MasterPort class

An OCCN Master/Slave Port inherits a plain SystemC port with an in-
terface declared as a MasterIf. The Master/Slave Port class defines the
primitive visible to the end-user, namely send, asend/ receive and reply
functions. These functions represent the upper layer of the OCCN proto-
col suite, and qualify the Message Passing paradigm. To be noted that the
blocking/non-blocking behaviour of these primitives is managed internally in
the MasterIf/SlaveIf, and it is up to the channel developer. Thus, put it in
a general context, a send primitive should be blocking, the normal OCCN
behaviour, but it has not to be blocking. As I am going to report in the next
subsections, blocking is not always the wished behavior, sometimes polling
produces better results, avoiding the usage of multiple threads to manage
concurrent hardware behaviours in communication channels. To provide the
reader with a code example the next code snippet reports the behaviour of
the send primitive :

template<class WPdu, class RPdu>void MasterPort<WPdu,RPdu>::send(WPdu* pk){ //pseudo-code..(*this)->wait_write_authorization();(*this)->write_pdu(*pk);(*this)->end_of_writing();(*this)->wait_sending_completion();}
Send primitive

108 Networks On-Chip Modeling: Application to STNoC�

Through the -> C++ overloaded operator, the port class gains access of
the related interface, where methods such as wait_write_authorization()
are actually defined. The Master/Slave Port class is a template on Pdus
that characterizes the full-duplex point-to-point link. A point-to-point link
is created by the bound of Port and Interface carried out before simulation
start. As the reader may easily notice, the next code snippet reports the
OCCN port bind function which is actually syntactic sugar to conceal the
real binding function of the primitive SystemC port, called using the usual
C++ namespace determiner.

void MasterPort<WPdu,RPdu>::bind(MasterIf<WPdu,RPdu>& interface){ sc_port_b<MasterIf<WPdu,RPdu> >::bind(*(interface.get_master_if_pointer()));}
Master/Slave Port bind function

The purpose of having standard Ports relies on the increasing need for stan-
dard interfaces, in order to speed up the development of common wrappers
to the modeling environment. This kind of modeling, where a Pdu is sent
in one shot through a function call (i.e. send), defines a modeling style that
might be classified as Transaction Level clock-accurate modeling. The rea-
son is twofold: firstly, protocol management is carried out through interface
method calls such as send, which is the essence of TLM. Secondly and even-
tually, the modeling of control and data signals at the bit level (through
variables not SystemC signals) permits to control the models dynamic at the
bit level, as in RTL simulations. Clock accuracy remains a choice of the
model developer, as it relates to the instant of sampling. The bit-accuracy
of the models interfaces does not automatically guarantee the clock accuracy
of models. In section 5.6, where I describes thoroughly the internals of a
clock-accurate model of a router, the network is governed by a thread which
samples incoming signals at the positive edge of the clock. This means that
the model behaviour follows the clock tick, and OCCN models developed in
this way are unquestionably clock accurate even though they do not rely on
SystemC signals.

5.5.2.3 Master/Slave Interfaces

Master/Slave Interfaces description wraps up our tour over OCCN basic com-
ponents. As in all interface method calls based models, the interfaces either
directly (through function definitions) or indirectly (through virtual pointer
dereferencing) represents the place where the protocol is defined. OCCN

5.5 OCCN: On-Chip Communication Network 109

developers made a design decision where the interface clearly draws a line
between functions available to the models users and those available to models
developers. In the code snippet below the Master/Slave interface declaration
is reported:

template<class WPdu, class RPdu>class MasterIf :public Msgbox<WPdu,RPdu>{public:MasterIf(MasterIf<WPdu,RPdu>* ptr_if=0);virtual MasterIf* get_master_if_pointer();virtual ~MasterIf();
// re-routed functionsvirtual void register_port(sc_port_base&, const char*);virtual void back_door_write(unsigned int size,unsigned int address,unsigned char *bu�er);virtual void back_door_read(unsigned int size,unsigned int address,unsigned char *bu�er);virtual void set_index(N_uint new_index, MasterIf *me=0);virtual const sc_time& get_clock_period();

protected:
private:MasterIf<WPdu,RPdu> *ref_interface;
};

Master/Slave Interface de�nition

The Master/Slave Interface is mostly a container for the Msgbox object (see
5.7), plus some utility functions for debugging and direct access (i.e. backdoor
access which skips channel arbitration for instance, see simple bus direct
interface). The MsgBox object (see the stripped down header file) is a sort
of hodge-podge where all kind of useful functions are defined and declared.

template <class WPdu, class RPdu>class Msgbox : public sc_interface{
public:// constructorsMsgbox();~Msgbox();

// Access methods typically if Msgbox is used as master// module sideN_int wait_write_authorization();N_int wait_write_authorization(sc_time& time_out);N_int ask_write_authorization();N_uint write_pdu(WPdu& _ref);void end_of_writing();N_int wait_sending_completion();N_int wait_sending_completion(sc_time& time_out);void cancel_sending();
// channel sidevoid authorize_writing();bool is_writing_completed();void assign_writing_event(sc_event*);void enable_writing_event();void disable_writing_event();void notify_sending_completion();void assign_sending_cancel_event(sc_event*);bool is_sending_cancelled();void reset_sending_cancel();void reset_writing_access();

110 Networks On-Chip Modeling: Application to STNoC�

// Access methods typically if Msgbox is used as slave// module sideN_int wait_read_authorization();N_int wait_read_authorization(sc_time& time_out);N_int ask_read_authorization();N_uint read_pdu(RPdu* _ref);void end_of_reading();N_int wait_receiving_completion();void cancel_receiving();
// channel sidevoid authorize_reading();bool is_reading_completed();void assign_reading_event(sc_event*);void enable_reading_event();void disable_reading_event();void notify_receiving_completion();void enable_receiving_completion_event();void disable_receiving_completion_event();void assign_receiving_cancel_event(sc_event*);bool is_receiving_cancelled();void reset_receiving_cancel();void reset_reading_access();
// data/ctrl members accessWPdu* get_write_pdu_ptr();RPdu* get_read_pdu_ptr();void set_write_pdu_ptr(WPdu*); // shouldn't be used by uservoid set_read_pdu_ptr(RPdu*); // shouldn't be used by user};

Master/Slave Interface de�nition

The core of the interface functionality is implemented in the Msgbox ob-
ject which contains cycle callable functions to manage communication. The
code comments explicitly defines the functions available to access methods
such as send or receive and those that should in principle be visible only to
the channel side, namely to the model developer. Access functions such as
wait_write_authorization() are used by primitive such as send to ask
channel control and to transfer data. Control functions such as autho-

rize_writing() are used explicitly by model developers to control flow of
data and protocol timing. Let us suppose that a master module, possibly
a Network interface (NIC) which contains a MasterPort has just called a
send primitive to send a Pdu to the downstream router (which contains and
implements a Master Interface, so a Msgbox) as depicted in figure 5.9. The
send primitive orderly calls wait_write_authorization(), write_pdu(),
end_of_writing() and wait_sending_completion(). To describe OCCN
inner-workings I am going to describe these functions step by step.

5.5 OCCN: On-Chip Communication Network 111

Figure 5.9: Example of protocol implementation through MsgBox functions

template<class WPdu, class RPdu>inlineN_int Msgbox<WPdu,RPdu>::wait_write_authorization(){ return (writing_access->lock()==0 ? 1 : 0);}
wait_write_authorization()

N_int Mutex::lock(){ if (locked){ // mutex is already locked : we wait for being noti�edsc_event* ev=free_ev.remove();if (ev == 0){ ev = new sc_event();}lock_candidates_ev.add(ev);wait(*ev);free_ev.add(ev);}else{ // mutex free : we take it but maybe with a delay of one delta cyclelocked=true;if (unlocked_during_current_delta_cycle){ notify_lock_spys(SC_ZERO_TIME);wait(SC_ZERO_TIME);}else{ notify_lock_spys();}}

112 Networks On-Chip Modeling: Application to STNoC�

return 0;}
Mutex lock() function

The wait_write_authorization() function try to lock an object called a
mutex (writing_access). This function may block, when the mutex is al-
ready locked, allowing just one thread to call it and to access the channel
at a given time. The mutex state is controlled by the router behaviour()

thread (through interfaces utility functions such as authorize_writing(),
see figure 5.9) that can unlock the mutex when the protocol allows it. To
be noted that the wait calls in the locking function do not imply a blocking
behaviour of the mutex; it is up to the model developer to unlock the mutex
at given times in order to make the lock call pass with no blocking. In partic-
ular, calling an authorize_writing() (following code snippet) before a user
try to lock the mutex always end up providing a non-blocking behaviour.

template<class WPdu, class RPdu>inlinevoid Msgbox<WPdu,RPdu>::authorize_writing(){ if (*writing_completed) // current writing was completed by user{ *writing_completed = false; // reset writing statuswriting_access->unlock();}}
authorize_writing()

As the reader may have understood by now, it is the scheduling of function
calls that determines the models behaviour; a proper scheduling of func-
tion calls, as I am going to describe in section 5.6, may provide a pipelined
architecture, modeled with these MsgBoxes function calls to be completely
non-blocking, still providing a cycle-true behaviour.
The write_pdu function is an inline function that just copies the Pdu in Msg-
Box internal storage. The calling of end_of_writing() (code snippet which
follows) sets a flag used by the router to check the send primitive completion
(through is_writing_completed() function).

template<class WPdu, class RPdu>inlinevoid Msgbox<WPdu,RPdu>::end_of_writing(){ *writing_completed = true;if (*writing_event_enabled){ writing_event->notify();}}
end_of_writing()

5.6 Networks on-chip modeling methodology 113

The function wait_sending_completion() is a further blocking function
that can be used to manage multiple blocking conditions on a single send
call. The notify_sending_completion() function releases the event on
which the send call is blocked.
All of the functions described so far provide a simple but still powerful set of
primitives to manage a given point-to-point link protocol in a timely or event
driven manner (the event granularity is defined by the threads that calls these
functions not by the functions themselves). Through these simple primitives
(which end up providing blocking and releasing conditions, and flags to avoid
polling) any kind of on-chip protocol can be modeled. To be noted that
in this example the router does not check the Pdu fields in order to make
decisions. In a real world router such as the one I describe in section 5.6, the
router checks control fields (such as req in struct cntrl_flit, see subsection
5.5.2.1 above) to guarantee the point to point protocol correctness. From this
standpoint, the router FSMs can be thought as RTL finite state machines,
because the precision in terms of bits and timing may be the same (in case a
clocked implementation of primitives is chosen). The only difference consists
in choosing in a proper way the instant of sampling of Pdu fields (which
models link controls and data signals), which is up to model developers,
because plain variables do not guarantee threads order consistency in that
variables changes take effect immediately, not after a delta cycle. As SystemC
threads or methods ordering is unspecified (and this is correct because it is
the way hardware works) this modeling methodology requires some degree
of caution to schedule execution of functions that implement e.g. router
behaviour (behaviour() thread in figure 5.9), as I am going to describe
more thoroughly in section 5.6.

5.6 Networks on-chip modeling methodology

Interconnection networks have been becoming the main added-value of cur-
rent semiconductor technologies. Their complexity in terms of gates, proto-
cols and structure implies an increasing need for modeling abstraction. Net-
works may easily contain tens of routers and Network Interfaces, impacting
in a significant way simulations performance. OCCN and its networks mod-
eling methodology provide a solution to handle this steep increase in inter-
connection complexity. Unfortunately, due to confidentiality issues, models
of STNoC� router cannot be explained within this thesis. Hence, as a proof
of concepts, this section describes in details the models of a simple clock-
-accurate router, available under sourceforge, endowed with virtual channels

114 Networks On-Chip Modeling: Application to STNoC�

Figure 5.10: Standard router sketched micro-architecture

5.6 Networks on-chip modeling methodology 115

and two pipelined stages (see pseudo-architecture, figure 5.10), developed
through the modeling methodology also deployed in STNoC� models. The
router microarchicture has been kept simple on purpose in order to demon-
strate modeling methodologies, not hardware design principles. The input
and output queues make up the two pipeline stages. Arbitration of output
stages is executed in a round-robin fashion, virtual channel inclusive. Out-
put queues are locked on a per-flit basis, in order to avoid intermingling flits
belonging to different packets, which is the essence of wormhole flow con-
trol. Link arbitration between virtual channels is performed once again in
a round-robin fashion. The reported tests are carried out on a mesh topol-
ogy, even though other topologies are built in the OCCN network executable.
The routing algorithm chosen is X-Y [79], a widespread deadlock-free routing
algorithm for 2-D meshes.
The router-to-router and router-to-NI links protocol is shown in figure 5.11.
It is based on a simple request acknowledge handshake where the sop eop
signal are raised respectively when the first flit and the last flit of a packet
are driven on the data path. In particular, figure 5.11 shows a hypothetic

Figure 5.11: Standard router link protocol handshake

protocol handshake for a three flits packet, with a bubble cycle where the ac-
knowledge is not raised within a clock cycle from request by the downstream
channel end.
The router model, developed with all OCCN building blocks allows to unfold
two advanced simulation techniques. Firstly, as already described, link pro-
tocol control and data are modeled using plain variables through PDUs; this
allows us to get rid of SystemC signals which somehow burden the SystemC
kernel. Secondly and eventually, the router pipeline is scheduled statically;
this means that the order in which the different pipeline stages executes is
determined by model developer, not by the SystemC kernel through methods
and threads sensitivity lists. This second technique requires a thorough un-

116 Networks On-Chip Modeling: Application to STNoC�

derstanding of the router microarchitecture, because, as I am going to prove,
the network scheduler (just a SC THREAD per network, which executes on
the positive clock edge) has to call the functions that model the pipeline FSMs
in an order that provides a cycle-accurate behaviour of the router, still guar-
anteeing consistency through different simulations (modeling signals through
variables is error prone because changes to signals are visible instantaneously
not after a delta cycle; the functions scheduling becomes vital to guarantee
the model consistency). A profiling sections will help highlight the main
differences between a model which exploits signals and OCCN, along with
a simulation speed comparison to gauge the improvements brought by our
modeling techniques.

5.6.1 Routers modeling principles

Models of routers must satisfy two basic requirements:

Simulation speed is a major modeling issue when it comes down to router
modeling. A router is a basic components of a network so it is replicated
a number of times. Hence, its simulation burden must be kept as low
as possible.

Parametric models represent a key factor in interconnection exploration;
recompilation for huge platforms is definitely frowned upon by system
designers.

As usual, these requirements conflict. Dynamic reconfiguration strictly im-
plies models complexity, which in turn causes simulation slow down. A trade-
off must be found to achieve both goals. The following code snippet reports
the OCCN standard router class declaration.

template <typename MPDU,typename SPDU>class std_router : public BusBaseChannel<MPDU,SPDU>{public://constructorstd_router(sc_module_name name,...);
//destructor~std_router();
MasterPort<MPDU> **out; // communication portsc_in<bool> clk;SC_HAS_PROCESS(std_router);

private:
MPDU ** from_in_to_queue;MPDU ** msg_from_in;MPDU ** from_input_queue_to_output_queue;MPDU ** from_queue_to_out;

5.6 Networks on-chip modeling methodology 117

MPDU ** msg_to_out;MPDU ** pdu_for_bw;
CQueueObject<MPDU *> **output_queue;CQueueObject<MPDU *> **input_queue;
N_uint32 router_ports;N_uint32 router_in_bu�er_max_size;N_uint32 router_out_bu�er_max_size;bool router_VC, ni_wait_for_eop;
N_uint32 * routing_table;N_uint32 * RR_port;
bool * wait_for_receive;bool * output_VC;bool * wait_for_eop;bool * sending_response;

public:void clock_th();void input_th();void output_th();void input_to_output_th();
void get_Msgbox_ptr(Msgbox<MPDU,SPDU> **);N_uint32 get_bandwidth();void reset_bandwidth();void create_routing_table(N_uint32);void set_routing_table_element(N_uint32, N_uint32);N_uint32 get_routing_table_element(N_uint32);};

Standard router class declaration

In figure 5.12, the standard router model scheme is reported. A standard
router contains a parametric number of interfaces that are instantiated dy-
namically at binding time, and an array of master ports which depends on
the router arity. The black magic used to create instances of MasterIf suit-
able to be connected to master ports is hidden in the BusBaseChannel class
which is the router base class. Each time a master port is bound to the
standard router (see subsection 5.5.2.2), a function of the BusBaseChannel
is called (get_master_if_pointer(), see code snippet), which returns a new
interface pointer which is stored in the master port to carry out primitive
calls such as send.

118 Networks On-Chip Modeling: Application to STNoC�

Figure 5.12: Router model infrastructure

template<class MPdu, class SPdu>MasterIf<MPdu,SPdu>* BusBaseChannel<MPdu,SPdu>::get_master_if_pointer(){ MasterIf<MPdu,SPdu> *if_ptr = new MasterIf<MPdu,SPdu> (this);
if(if_ptr == 0){ OCCN_error_exit("Interface allocation in Router %s failed",name());}
masters.add(if_ptr);
char tmp[256];sprintf(tmp,"%s_master_%d",name(),masters.get_length());if_ptr->set_name(tmp);
return if_ptr;}

BusBaseChannel get_master_if_pointer() function

Once the binding is completed, the routers instantiated a number of inter-
faces equal to its inbound links a number of MasterPort objects equal to its
outbound links. As reported in the router class declaration, the router mi-
croarchitecture contains input and output queues which represents the two
claimed pipeline stages. These queues are OCCN objects (CQueueObject)
available in the library. Simple routing tables completes the router microar-
chitecture. Input and output FSMs have been modeled using C++ sequential
constructs, as the next section describes.

5.6 Networks on-chip modeling methodology 119

5.6.2 Pipeline modeling and scheduling

OCCN modeling methodology promotes modeling contructs which are the
outcome of lessons learned from years of interconnection modeling experi-
ence [13][14][18]. The big challenge in interconnection modeling consists in
describing an inherently parallel systems (router have many links all possibly
active at any given time stamp), with the least number of processes (either
threads or methods). Processes cause context switches and function calls;
both have strengths and weaknesses. No one-fits-all solution exists.
One of the most important achievement of OCCN router modeling is the
complete avoidance of SystemC processes in routers. In OCCN a network
(see following snippet) is a class that instantiates the given number of routers
and contains a scheduler (clock_tick()) which statically calls the routers
functions that model their microarchitecture. From this standpoint, Sys-
temC does not play any role in the network scheduling; the order of function
calls is determined beforehand and is static throughout the simulation. The
clock_tick() thread is the only thread in the whole network. This means
that through our methodology we can model a synchronous network using
just one thread whatever the size of the network is, which is a result of the
utmost importance because it is a solution whose complexity is constant or
O(1) in Big O notation (see [47]) in terms of SystemC process control.

template <typename MPDU,typename SPDU>class std_network : public sc_module{ public:sc_in<bool> clk;
std_router<MPDU,SPDU> **my_std_router;
SC_HAS_PROCESS(std_network);void clock_tick();std_network(sc_module_name name_,...);
~std_network();
private:N_uint32 std_network_size;std::string std_network_topology;N_uint32 std_network_max_in_bu�er_size;N_uint32 std_network_max_out_bu�er_size;

};
template <typename MPDU,typename SPDU>std_network<MPDU,SPDU>::std_network(sc_module_name name_,...){ std_network_size = size;std_network_topology = noc_topology;std_network_max_in_bu�er_size = in_bu�er_size;std_network_max_out_bu�er_size = out_bu�er_size;
SC_THREAD(clock_tick);sensitive_pos << clk;..//pseudo-code}

Standard network class and constructor

120 Networks On-Chip Modeling: Application to STNoC�

The network scheduler function (clock_tick()) is not more than a plain loop
(see snippet which follows) that scans all of the routers and orderly fires off
the different pipeline stages, namely output_th(),input_to_output_th()
and input_th().

template <typename MPDU,typename SPDU>void std_network<MPDU,SPDU>::clock_tick(){unsigned int router_index;
while(1){wait();for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->output_th();}for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->input_to_output_th();}for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->input_th();}}}

Standard network clock_tick thread

A router could be seen as a hierarchical finite-state-machine. This state
machine contains the different pipelines stages (input, switching, output),
each modeled with a sequential function (e.g. input_th()) which does not
block. Blocking is not allowed otherwise the whole technique is broken (if
any of the functions blocks, the clock_tick scheduler thread is stuck, and
it cannot schedule routers which may have something useful to do in the
given clock cycle). Each pipeline stage is furtherly decomposed in micro-
-architecture details [56]; in the standard router, as already stated, these
microarchitecture FSMs are modeled using simple state variables. STNoC�
implemented more complex C++ structures, but this does not add anything
to the techniques and achievements. From now onwards the modeling of the
different pipeline stages of the router will be explained.

template <typename MPDU,typename SPDU>void std_router<MPDU,SPDU>::input_th(){ N_uint32 input_channel;for(N_uint32 i=0;i<router_ports;i++){input_channel=i;if (!sending_response[i]){if (masters[i]->is_writing_completed()){msg_from_in[i]=(masters[i]->get_write_pdu_ptr());if (router_VC){if (((int)((*(*(msg_from_in[i])).view_as.pdu.body[0].data).get_destination())-(int)((*(*(msg_from_in[i])).view_as.pdu.body[0].data).get_source()))<0){input_channel=i+router_ports;}}if (input_queue[input_channel]->get_length()<router_in_bu�er_max_size){from_in_to_queue[i] = new (MPDU);*(from_in_to_queue[i]) = *(msg_from_in[i]);input_queue[input_channel]->add(from_in_to_queue[i]);occn_hdr(*msg_from_in[i],ack)=true;}

5.6 Networks on-chip modeling methodology 121

else occn_hdr(*msg_from_in[i],ack)=false;masters[i]->authorize_writing();sending_response[i]=true;}}else{masters[i]->set_read_pdu_ptr(msg_from_in[i]);masters[i]->authorize_reading();sending_response[i]=false;}}}
Standard router input_th() function

The input_th() function (see previous code snippet) just models the input
FSMs of the standard router. Its behaviour is straightforward. The send-

ing_response array is a state variable that determines whether the router
is sending a response for the given input port or not. If not, it checks the
MsgBox flag through is_writing_completed() function. A positive test
means that the upstream link sent something so the related PDU is grabbed
and analysed. In particular, through utility functions such as get_source()
and get_destination() the routing related fields of the PDU data (which
mirrors the link data path) are obtained. If there is enough space in the
input buffer, the flit is stored in it, and an acknowledge (ack field accessed
through occn_hdr macro, see subsection 5.5.2.1 for control details, struct
cntrl_flit) is sent back. From this example the reader can understand the
cycle-true behaviour of the model. The input pipeline stage is called on a per
clock basis, and it manages the link signals in a bit accurate way (e.g. the ack
signal). On the other hand, if the input stage for the given port is already
sending a response (sending_response[i] == true), the input stage just
copy the acknowledge back (through set_read_pdu_ptr()) and unlock the
MsgBox mutex through authorize_reading() to let the master port read
the related PDU. This implies a clock cycle to send an acknowledge back,
and it is completely arbitrary as it is an example. The ack could have been
sent in the same cycle the request was driven, if microarchitecture worked
this way.
The input_to_output_th() router function (see following code snippet)
models sequentially the router input/output switching. Its behaviour is easy
to understand. The state array wait_for_eop is used to lock an output
queue. Just to recall that this simple router implements wormhole flow con-
trol but queues are locked on a per packet basis, namely (a router is barred
to intermingle flits belonging to different packets). So, from a queue per-
spective, a packet must be seen as an atomic data, that is why output queue
are locked this way. If the output port is locked (wait_for_eop == true),
the router just check if the corresponding input queue (through the RR_port

array) has something to send. If it is the case, it copies the flit from input

122 Networks On-Chip Modeling: Application to STNoC�

to output like any switch. The function also checks if the flit is the last
of a packet (through the PDU field eop see subsection 5.5.2.1, cntrl_flit
struct); if it is, it unlocks the output queue wait_for_eop = false.
When an output queue is unlocked (wait_for_eop == false) the router be-
haviour is even simpler. It just arbitrates in a round robin fashion (using the
RR_port array) and if there is any winner (input queue is_not_empty() ==

true) it locks the related output queue (wait_for_eop = true) and update
the RR_port index for the next arbitration step. The break C statement
allows to stop arbitration when a winner is found (the code bails out of the
for loop).

template <typename MPDU,typename SPDU>void std_router<MPDU,SPDU>::input_to_output_th(){
for(N_uint32 o=0;o<(router_ports*(1+router_VC));o++){if (output_queue[o]->get_length()<router_out_bu�er_max_size){if (wait_for_eop[o]==true){if (input_queue[RR_port[o]]->is_not_empty()){from_input_queue_to_output_queue[o]=input_queue[RR_port[o]]->check();output_queue[o]->add(from_input_queue_to_output_queue[o]);input_queue[RR_port[o]]->remove();if (occn_hdr(*from_input_queue_to_output_queue[o],eop)==true) wait_for_eop[o]=false;else wait_for_eop[o]=true;//}}}else{if (o<router_ports){for(N_uint32 i=0;i<router_ports;i++){RR_port[o]=(RR_port[o]+1)%router_ports;if (input_queue[RR_port[o]]->is_not_empty()){from_input_queue_to_output_queue[o]=input_queue[RR_port[o]]->check();if (get_routing_table_element((N_uint32)((*(*(from_input_queue_to_output_queue[o])).view_as.pdu.body[0].data).get_destination()))==o){output_queue[o]->add(from_input_queue_to_output_queue[o]);input_queue[RR_port[o]]->remove();if ((*(from_input_queue_to_output_queue[o])).view_as.pdu.hdr.eop==true) wait_for_eop[o]=false;else wait_for_eop[o]=true;break;}}}}else{for(N_uint32 i=router_ports;i<(router_ports*(1+router_VC));i++){RR_port[o]=(((RR_port[o]+1)%router_ports)+router_ports);if (input_queue[RR_port[o]]->is_not_empty()){from_input_queue_to_output_queue[o]=input_queue[RR_port[o]]->check();if (get_routing_table_element((N_uint32)((*(*(from_input_queue_to_output_queue[o])).view_as.pdu.body[0].data).get_destination()))==(o%router_ports)){output_queue[o]->add(from_input_queue_to_output_queue[o]);input_queue[RR_port[o]]->remove();if ((*(from_input_queue_to_output_queue[o])).view_as.pdu.hdr.eop==true) wait_for_eop[o]=false;else wait_for_eop[o]=true;break;}}}}}}}}

Standard router input_to_output_th() function

5.6 Networks on-chip modeling methodology 123

Finally, the third and last pipeline stage of the OCCN standard router cor-
responds to its output behaviour (output_th(), see following code snippet).
The output behaviour just mirrors the input behaviour of the router. The
state array wait_for_receive governs the output scheduling. If the router
is not waiting any acknowledge (wait_for_receive == false) this means
it is in a send state. If an output queue is not empty, the flit can be sent.
To be noted that the out array is an array of OCCN MasterPort, used to
govern the link behaviour.

template <typename MPDU,typename SPDU>void std_router<MPDU,SPDU>::output_th(){ for(N_uint32 i=0;i<router_ports;i++){if (!wait_for_receive[i]){if (output_queue[i+(router_ports*output_VC[i])]->is_not_empty()){if ((*(out[i]))->ask_write_authorization()){(*(out[i]))->set_write_pdu_ptr(output_queue[i+(router_ports*output_VC[i])]->check());(*(out[i]))->end_of_writing();wait_for_receive[i]=true;}}else{if (i!=0) output_VC[i]=(output_VC[i]+1)%(1+router_VC);else if (ni_wait_for_eop==false){output_VC[i]=(output_VC[i]+1)%(1+router_VC);}}
}else{if ((*(out[i]))->ask_read_authorization()){msg_to_out[i]=(*(out[i]))->get_read_pdu_ptr();if (occn_hdr(*msg_to_out[i],ack)==true){delete output_queue[i+(router_ports*output_VC[i])]->remove();}out[i]->reply();wait_for_receive[i]=false;if (i!=0) output_VC[i]=(output_VC[i]+1)%(1+router_VC);else if (occn_hdr(*msg_to_out[i],eop)==1){output_VC[i]=(output_VC[i]+1)%(1+router_VC);ni_wait_for_eop=false;}else{ni_wait_for_eop=true;}}}}}

Standard router output_th() function

To guarantee a non-blocking behaviour of the output sequential functions,
instead of using possibly blocking function to access the link such as wait_-
write_authorization in send primitive (see subsection 5.5.2.2), the stan-
dard router calls ask_write_authorization() (see following code snippet).
It differs from the former in that it executes a trylock on the mutex object,
which does not block if mutex locking fails. To be noted that, as already
explained, the sequential functions that model the router microarchitecture
are not allowed to block otherwise the whole modeling technique is broken.
If the output stage is on the receiving path (wait_for_receive == true),

124 Networks On-Chip Modeling: Application to STNoC�

the router checks the acknowledge ack (using occn_hdr macro) and, if pos-
itive, it deletes the acknowledged flit from the output queue. The rest of
code is about arbitrating between virtual channels for a given output port
and does not add anything to the modeling technique.

template<class WPdu, class RPdu>inlineN_int Msgbox<WPdu,RPdu>::ask_write_authorization(){ return (writing_access->trylock()==0 ? 1 : 0);}
Msgbox ask_write_authorization() function

The description of the output stage ends the different pipeline stages. One
additional remark is in order. The number of clock cycles needed to cross
a router from input to output through this modeling and with the router
scheduler clock_tick() written as previously reported is equal to two. This
to let the reader note that the exact timing of the flits is completely deter-
mined by the scheduler and stated before simulation start through the static
scheduling policy. As an example, if the function calls order in the network is
swapped, as in the hypothetic clock_tick() thread which follows, it takes
just a clock cycle to cross a router.

template <typename MPDU,typename SPDU>void std_network<MPDU,SPDU>::clock_tick(){unsigned int router_index;//Calling input �rst causes the router to propagates �it from in to out in//a clock cycle !!!!while(1){wait();for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->input_th();}for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->input_to_output_th();}for(router_index=0;router_index<std_network_size;router_index++){my_std_router[router_index]->output_th();}}}
Swapped standard network clock_tick thread

Hence, the description of pipeline stages through sequential functions and
the router scheduling are distinct problems and must be treated separately.
The decomposition of routers in decoupled pipeline stages allows to describe
a router a sequence of function calls. The scheduling of this functions deter-
mines the exact timing of the microarchitecture. The proposed simulation
technique works well for both combinatorial and sequential logics inside the
routers. It is up to the scheduler policy to determine the exact order in which

5.6 Networks on-chip modeling methodology 125

the function modeling combinatorial and sequential logic must be called to
guarantee a proper microarchitecture behaviour.
The next subsection will show through profiling results and simulation speed
comparisons the benefits of our modeling methodology.

5.6.3 Models profiling and simulation speed

Through tools such as gprof developed by GNU, it is possible to profile
code execution in order to understand and compare the models developed at
different levels of abstraction. Our golden model is represented by OCCN
standard network just described in the previous subsection, where network
static scheduling, SystemC signal avoidance and non-blocking behaviour are
described. To compare our methodology, we profiled a model identical to the
OCCN one (a simple router with virtual channels and two pipeline stages),
scheduled statically as OCCN does, but using SystemC signals instead of
variables to model link protocol. This comparison allows us to isolate the
simulation speed up due to the SystemC signals avoidance. To measure
the simulation speed up brought by the two modeling techniques altogether,
OCCN models simulations speed is compared to a synthesizable VHDL model
of the router, where microarchitecure FSMs were developed through VHDL
combinatorial and sequential process to model the respective logics.
To show the skeleton of the signal level interfaces router model used in our
comparisons, the following code snippet reports the router class, where signal
ports are easily recognizable. The pipeline functions which model the router
combinatorial and sequential logic, scheduled by the network global sched-
uler, as for OCCN, are provided in the class declaration (e.g. xbar2out()).
As for OCCN, a single SC THREAD schedules the routers pipeline on the
positive edge of the clock. The only difference between this model and OCCN
one is represented by the routers interfaces: TLM for OCCN and SystemC
signals for signal level interface model.

template <unsigned int INPUT_PORTS, unsigned int OUTPUT_PORTS,...> class prou : public sc_module {//pseudo-code//PORTSpublic:sc_in<int> data_in[INPUT_PORTS];sc_in<bool> req_in[INPUT_PORTS];sc_in<bool> eop_sop_in[INPUT_PORTS];sc_out<bool> ack_out[INPUT_PORTS];
sc_out<int> data_out[OUTPUT_PORTS];sc_out<bool> req_out[OUTPUT_PORTS];sc_out<bool> eop_sop_out[OUTPUT_PORTS];sc_in<bool> ack_in[OUTPUT_PORTS];
sc_in<bool> clk;sc_in<bool> rst;

126 Networks On-Chip Modeling: Application to STNoC�

//INTERNAL SIGNAL
//VARIABLESbool eop_sop_�ag[OUTPUT_PORTS];bool direction_eop_sop[INPUT_PORTS];int round_robin[OUTPUT_PORTS];int ROUTER_ID;int prev_direction[INPUT_PORTS];
queue<int> data_out_queue[OUTPUT_PORTS];queue<bool> eop_sop_out_queue[OUTPUT_PORTS];queue<int> data_in_queue[INPUT_PORTS];queue<bool> eop_sop_in_queue[INPUT_PORTS];queue<int> direction_in_queue[INPUT_PORTS];
state_port input_state[INPUT_PORTS];state_port output_state[OUTPUT_PORTS];routing_class<mesh> routing_table[INPUT_PORTS];
//pipeline functions declarationsvoid in2out();void xbar2out(int);void read_in();void read_in_port(int);void write_out_port(int);void write_out();void reset_method();void clk_method();
//CONSTRUCTORSC_HAS_PROCESS(prou);

};
Signal level interface router

The profiling results shows unquestionably some benefits brought by our
OCCN modeling technique. In the following profiling call graph, the syntax
is the gprof one. index is the function ranking, time the percentage of sim-
ulation time spent in current function, self the time spent in the function
itself, children the time spent in functions called by the current function,
called the number of times function get called and finally name field is self
explicative, the demangled function name. In a SystemC signal level simu-
lation, ten percent of simulation time is spent on updating SystemC signals
(perform_update() call), with no strings attached. OCCN simulations, as
they do not exploit SystemC signals at interfaces (signals modeled through
plain C++ variables), spend a percentage of time close to 0 in the func-
tion (perform_update()) which is called by the SystemC kernel in any case,
but in OCCN does nothing at all. As these SystemC models are just used
for benchmarking and never for synthesis, modeling SystemC signals at the
interface can be considered with no doubt as a waste of CPU. OCCN sim-
ulations are still clock accurate and any kind of measures obtained through
SystemC signal interfaces are possible within OCCN (trace file included).
The only benefits coming from SystemC signal level interfaces is about the
models writing: SystemC signals guarantee consistency to threads ordering
by construction (delta cycle update aware) whilst plain variables do not. But
what OCCN showed is that, with cautious coding, this ten percent of CPU
time wasted in updating signals away can be reused for loftier purposes.

5.6 Networks on-chip modeling methodology 127

index % time self children called name---0.00 0.00 1/400018 sc_simcontext::initialize(bool) [116]0.02 0.46 400017/400018 sc_simcontext::crunch() [6][18] 10.0 0.02 0.46 400018 sc_prim_channel_registry::perform_update() [18]0.02 0.44 7691723/7691723 sc_prim_channel::perform_update() [19]---
Signal level interface router, perform_update()

index % time self children called name---0.00 0.00 1/300001 sc_simcontext::initialize(bool) [129]0.00 0.00 300000/300001 sc_simcontext::crunch() [5][209] 0.0 0.00 0.00 300001 sc_prim_channel_registry::perform_update() [209]---
OCCN interface router, perform_update()

To furtherly bolster the claims set out so far, the following code snippet re-
ports the profiling sections related to the notify_delayed() function which
is called by signal channels anytime a signal value changed value. Signal
level interface router spends nearly six percent of simulation time in notifying
events in virtue of signal values changes. In the report, the functions above
the profiled function (notify_delayed() in this case) represent the callers;
the column value tells the following: notify_delayed() was called 13244-
405 times. In particular, it was called 1093826 times by sc_signal<int>-

::update(), 1445239 times by sc_signal<state_port>::update() and so
on. As the reader can countercheck the clock update plays a minor role
in event notification (see sc_clock::posedge_action()) and most impor-
tantly they are inevitable in a clock accurate simulation.
From the OCCN profiling report, it is easy to see that only the clock causes
event notifications, because OCCN simulations do not use SystemC signals at
the interfaces. From this standpoint, on the upshot, these profiling outcomes
state that OCCN simulations trigger the bare minimum of event notifications
in a SystemC clock accurate simulation, which is a major goal to get better
and better simulation speed, proving the methodology effectiveness.

index % time self children called name---0.00 0.00 200012/13244405 sc_clock::posedge_action() [67]0.00 0.00 200012/13244405 sc_clock::negedge_action() [75]0.00 0.02 1093826/13244405 sc_signal<int>::update() [58]0.00 0.03 1445239/13244405 sc_signal<state_port>::update() [47]0.03 0.20 10305316/13244405 sc_signal<bool>::update() [22][24] 6.1 0.04 0.25 13244405 sc_event::notify_delayed() [24]0.04 0.21 13244405/13244406 sc_simcontext::add_delta_event(sc_event*) [25]---
Signal level interface router, notify_delayed()

128 Networks On-Chip Modeling: Application to STNoC�

index % time self children called name---0.00 0.00 200000/400000 sc_clock::posedge_action() [39]0.00 0.00 200000/400000 sc_clock::negedge_action() [38][66] 0.6 0.00 0.01 400000 sc_event::notify_delayed() [66]0.01 0.00 400000/400001 sc_simcontext::add_delta_event(sc_event*) [63]---
OCCN interface router, notify_delayed()

For what concerns simulation speeds, the two models developed with different
modeling techniques at the interfaces (SystemC signals and TLM) were com-
pared using a testbench where all network interfaces inject flits at full rate
in the network in order to make the code crunch as much as possible. The
topology tested was a 10 nodes mesh with a X-Y routing algorithm. Input
and Output buffer lengths were set to 3 flits. Simulation speed comparisons
were carried out on an Intel Xeon machine, running Linux kernel 2.4.21 com-
piled for SMP, CPU frequency 2.80 Ghz with cache size 512 Kbyte. All of
the models and SystemC library were compiled with O3 gcc compiler option,
no debug mode. To be noted that, as already stated, the two models deploy
the same methodology concerning network scheduling, the only difference re-
sides in models interfaces and this is important to gauge the simulation speed
up brought by SystemC signal riddance. The simulation speed outcomes in
figure 5.13 clearly states that OCCN models run at nearly twice the speed
of an equivalent SystemC signal level interface routers, and this speed-up is
mostly due to the SystemC signals avoidance (hence, event notifications).
Figure 5.13 reports the simulation speed comparison even for respectively 20
nodes and 40 nodes meshes networks. No surprise the simulation speed up
(see figure 5.14) increases (75/41=1.82 (10 nodes), 35/18=1.94 (20 nodes)
and 14/6=2.33 (40 nodes)) bolstering anew that the simulation speed up is
brought mainly by SystemC signals avoidance. The more the nodes the worse
the simulation speed of the signal level interface routers, because the signals
update burden becomes heavier for bigger networks. The time spent in net-
work control (scheduling) is the same for both models and obviously worsens
as the network grows in size (the scheduler has to manage and schedule more
functions so that to simulate one clock cycle it takes more time).
In order to end and achieve this section, I am going to report, in table 5.2
simulation speed of a router developed within OCCN and a synthesizable
router written in VHDL. This comparison was chosen in order to demonstrate
how much the combined modeling techniques implemented in OCCN (static
pipeline scheduling plus signals avoidance) to achieve clock accuracy can
gain over a pure RTL model. A synthesizable RTL model defines processes
for combinatorial and sequential hardware blocks, and internally the router

5.6 Networks on-chip modeling methodology 129

Figure 5.13: Simulation speed comparison

Figure 5.14: Simulation speed-up

130 Networks On-Chip Modeling: Application to STNoC�

building blocks (e.g. arbiters) communicate through signals. VHDL language
was chosen as RTL model because, at least at STMicroelectronics, SystemC
is not well-accepted for synthesis, hence pure hardware modeling. Anyhow,
it is fair to state that a pure, synthesizable SystemC model will never run an
order of magnitude faster than a VHDL compiled one (i.e. see Interleaved
Compiled Code Architecture (INCA) by Cadence [12]), this because process
control of the scheduler is significant in both kernels and simulation speed is
kernel-bounded. VHDL simulations were run in batch mode using ncsim sim-
ulator [12]. In contrast to the previous comparison, the VHDL versus OCCN

VHDL OCCN
3.3 (Kcycles/sec) 206 (kcycles/sec)

Table 5.2: VHDL vs. OCCN

router test aimed at comparing the simulation speed of just one router, in or-
der to get the real speed-up brought by the combined simulation techniques
(static pipeline scheduling plus signals avoidance). Strictly speaking, the
simulation speedup factor (206/3.3 ≈ 60), compared to the one in figure 5.14
is mainly brought by the router static scheduling; put it in another words,
static scheduling allows to tease as little as possible the respective simulation
kernel (SystemC), gaining a definitely significant factor in simulation perfor-
mance. Once again, apart from synthesis purposes, I want to remind that
benchmarking results obtained through OCCN and VHDL models are the
same, which means that benchmarking tests using OCCN can be carried out
with the same precision in much shorter time.
With an eye to the future, the next milestone in OCCN development con-
sists in making it independent of the SystemC kernel, possibly through a
synchronous (and light) simulation micro-kernel whose role is about to fire
off router pipeline stages as clock ticks come. Even deploying static schedul-
ing, the SystemC kernel plays a heavy role in simulation performance which
is of no interest for simulations whose scheduling has been determined be-
forehand. It is difficult to predict the further simulation speed improvement
that can be obtained through this approach, but in author’s opinion it is
really worth the effort for next generation systems on-chip simulations.

5.6.4 Modularized arbitration

Arbitration plays a paramount role in on-chip interconnections. Arbitration
schemes are hierarchical (link, queue) and require a nested modularization.
A key element for networks on-chip modeling consists in the capability to

5.6 Networks on-chip modeling methodology 131

explore different solutions early in the design cycle. Arbitration is not an
exception.
The solution to this issue applied to STNoC� routers and network interfaces
models is templatization. This means that queues and link arbiters are tem-
plate classes with well specified APIs (e.g. function arbitrate). Changing an
arbiter is just a matter of redeclaring a given component and recompiling it.
Policy and mechanism are fundamental concepts in computer science, and
widely applied in C++ design patterns. When the model is recompiled the
arbitration mechanism does not change (inputs request to the arbiter the
link or the queues possibly with a priority), but the policy does change (the
method to determine the channel or queue owner).
Embedded a simple code snippet of a router queue arbiter.

template <typename MANAGER_T>inlinevoid outa<MANAGER_T>::arbitrate()
{ switch(fsm_status){case FREE:arbitrate_priority();break;case LOCK:break;default:break;}}

router queue arbiter

As stated early, the arbiter is templatized. The mechanism provided by the
arbiter object is embedded in arbitrate_priority() function. Different
arbiters implement this function in a different way. Policy changes but the
mechanism stays the same. C++ design patterns proved efficient for networks
on-chip modeling.

5.6.5 Network Interface models structure and hierar-
chy

The Network Interface (NI) is a key component of a network on-chip. It rep-
resents the glue defining the interface between transport and network layer,
so that, somehow it has to provide mechanisms to protocol translation. More-
over, NI performs size and frequency conversions to adapt flows coming from
”remote” parts of the systems to the backbone frequency and data path. The
modeling of the Network Interface component mirrors the network interface

132 Networks On-Chip Modeling: Application to STNoC�

microarchitecture.
At microarchitectural level the network interface is split in two parts: ker-
nel and shell (see figure 5.15). The shell manages transport layer protocol

Figure 5.15: Mock-up of a NI microarchitecture

from/to IPs whilst kernel network interface packetizes transactions into flits
and controls the flow from/to routers.
Therefore, an STNoC� model of NI is a hierarchical composition of objects
(see UML notation in figure 5.16). The main class is a templatized class
whose template types are the incoming/outgoing transactions corresponding
to transport layer protocol.

template <typename REQ,typename RSP,typename DATATYPE,typename MPDU,typename SPDU,unsigned int TRANSPORT_DP_SIZE>class bca_master_shellNI :virtual public tlm_blocking_get_if<RSP>,virtual public tlm_blocking_put_if<REQ>,public sc_module{};
master network interface

The remainder of template types is mainly used by the kernel network inter-
face. In particular, MPDU and SPDU represent flits data and control sent
over the network. The SystemC interface to/from the IPs is modeled after
the TLM OSCI standard using blocking put/get interfaces.
A key development feature of network interface is represented by its class
hierarchy. The design pattern used is composition. This means that the
network interface is built from two objects modeling shell and kernel level.

5.6 Networks on-chip modeling methodology 133

Figure 5.16: NI UML basic representation

Inheritance was not used because a shell network interface is not a super-
set of a kernel network interface, the two objects have distinct features that
must be kept apart. The following code snippet highlights this important
distinction.

template <typename REQ,typename RSP,typename DATATYPE,..>class bca_master_shellNI :virtual public tlm_blocking_get_if<RSP>,virtual public tlm_blocking_put_if<REQ>,public sc_module{ STNoC_master_kernel_NI<DATATYPE,TRANSPORT_DP_SIZE,MPDU,SPDU>* get_ni(){return ni;}STNoC_master_kernel_NI<DATATYPE,TRANSPORT_DP_SIZE,MPDU,SPDU>* ni;};
network interface composition

This apparently useless distinction turns out to be very important when it
comes to changing kernel part of the network interface. Composition allows
changes to be local in kernel network interface, whilst inheritance would have
changed the methods available to network interface users (shell) (changing
a hierarchical object means changing the methods available to that object,
this is not true for composition [25]).

134 Networks On-Chip Modeling: Application to STNoC�

5.6.6 Network interface size and frequency conversion

As described early the network interface plays a crucial role in interfacing
the ”external world” (IPs) to the network on-chip backbone. Size and fre-
quency conversion are tough details to deal with even in simulations. Whilst
frequency conversion in SystemC is rather simple to implement, the size
conversion is a fiendish puzzle from different perspectives. It must be para-
metric, flexible and reconfigurable. IP data path sizes range from 32 bits
to 256 bits and all the possible combinations must be taken into account
to provide good tools for architectural exploration. In STNoC� size conver-
sion is handled through templates for a simple reason: avoiding code bloat.
Template allows to define IPs sizes at compilation time so that the compiler
can remove useless code whether size conversion is upsize (from 32 bits to
128 bits), downsize or there is no size conversion at all. STNoC� models of
Network Interfaces implement size conversion in a very efficient way from a
code size perspective (code snippet embedded, see figure 5.16 on page 133).

template <..>void NI_req_path<..>::data_put(const sc_bv<TRANSPORT_DP_SIZE>& data,const sc_bv<TRANSPORT_BE_SIZE>& be,bool data_�ag){ if (TRANSPORT_DP_SIZE > FLIT_DATA_SIZE){\\ downsize code}else if (TRANSPORT_DP_SIZE == FLIT_DATA_SIZE) {\\nosize conversion code}else {\\ upsize code}}
size conversion

The rest of the duty is done by the respective code that actually converts
data path sizes in an efficient manner (data packing [38]).
Frequency conversion is of no interest because is handled automatically by
hardware logic modeled in NI so that it just requires the possibility to declare
multiple clock sources in network interfaces models.

5.6.7 Network interface C++ objects inheritance and
composition patterns

Since the network interface is a highly modularized component, the C++
code used to describe it is highly modularized as well. A simple example
was given in subsection 5.6.5 with the composition of kernel and shell net-
work interfaces. The kernel network interface is made up of a number of

5.7 Co-simulation wrappers 135

subcomponents, each one covering a particular task. Two points are worth
mentioning here:

Simulation speed is strictly influenced by function calls. The composition
of objects imposes function calls to communicate between them, some-
how causing a simulation slow down. Functions inlining is highly used
in STNoC� models to define functions as fast as macros, namely inline
small functions.

Code modularity is important to achieve, especially for code re-use. Of
course, a monolithic module without a function call (code ”slush”)
would simulate faster than a highly modular simulation platform but
debug time and classes re-use must be taken into account in modeling
time. Debug time is becoming the longest spell in modeling deadlines
and things are getting worse for software programmers because of the
code bloat due to platforms complexity.

An example is in order here to describe how modularity is boosted in STNoC�
models.

template <typename DATATYPE,unsigned int TRANSPORT_DP_SIZE>class NI_kernel_logic : public sc_module{public:
NI_logic combinatorial_forward_logic;NI_logic combinatorial_backward_logic;

};
NI logic

The class NI_kernel_logic encloses (see UML in figure 5.16) combinatorial
logic paths useful to model hardware logic behaviors. In this way, through
function calls (often inlined) combinatorial logic provides mechanism to NI
kernel logic. A library of different logic components can be developed and
maintained independently of kernel logic class. Once again, the decoupling
of mechanism and policy helps improve code modularity.

5.7 Co-simulation wrappers

Communication refinement can be defined as the mapping of an abstract
communication protocol to an actual implementation through co-simulation
wrappers normally dubbed as adapter and converter. All along this process

136 Networks On-Chip Modeling: Application to STNoC�

the abstract communication scheme is either mapped onto whatsoever is pro-
vided by a given target architecture, or, refined into a more detailed custom
implementation. Before describing communication refinement examples of
STNoC�, the process of communication refinement must be addressed in a
general way in order to introduce some key terms and ideas. Communica-
tion refinement is easily described considering a simple example. Formally,
two high-level processing elements (PE1 and PE2 in figure 5.17) connected
through an abstracted channel CH. A possible procedure to refine this model

Figure 5.17: Simple architecture example

in a more detailed architecture can be carried out in several steps.

1. Choose a level of abstraction of the refined channel

2. Replace the communication channel CH with a refined protocol which
describes the chosen channel

3. Implement the communication of the modules PE1 and PE2 over CHrefined

by two possible approaches:

- wrapping CHrefined in a way that the resulting channel CHwrapped

matches the interface needs of PE1 and PE2, or by

- refining PE1 and PE2 into PE1refined and PE2refined such that
their respective interfaces match CHrefined (adaptation)

After step 2 the interfaces of the modules and the refined communication are
no longer compatible. In step 3, this mismatch is fixed through the mod-
ification of one of the connection points; either the channel is enclosed in
a wrapper module to endow it with the interface of the original channel, or
the modules are refined so that they comply with the respective interfaces
again (see figure 5.18). Both procedures ”refine” the channel in a given im-

5.7 Co-simulation wrappers 137

Figure 5.18: Wrapper example

plementation. The designer can either choose a wrapper approach, so that
the mapping is carried out in the wrapper containing the refined channel or
implement the mapping in the modules themselves.

5.7.1 SystemC/Verilog wrappers

Backward compatibility and legacy code are issues to take into account for
modeling of complex systems. The definition ”legacy” code here unfolds to
different meanings. Verilog components are still in use within ST in sys-
tem simulation, verification and tuning, in particular for memory subsys-
tems where the effort of modeling memory component in a cycle accurate
way is tough. For STNoC�benchmarking, memory controller was simulated
through Verilog code. Moreover, Verilog model of ST memory controllers
are endowed with RTL gate delays (signals can be treated as early, mid-
dle or late) 5 depending on timing of combinatorial critical paths. SystemC
wrappers must be designed with this delay in mind for two reasons:

- To guarantee clock accuracy

- To avoid bugs very hard to track down

To simulate Verilog modules in SystemC a simple ”stub” developed in C++
sufficed to wrap the two environments. Simulations were performed within
NCSIM[12] which allows co-simulation of Verilog and SystemC in the same
run. Hereinafter a code snippet of the stub is reported.

5This refers to the instant of sampling.

138 Networks On-Chip Modeling: Application to STNoC�

class MEMORY_WRAPPER_CLASSNAME : public sc_module{ MEMORY_WRAPPER_CLASSNAME(sc_module_name name_, const char *hdl_name,..):sc_module(name_), m_mem_base_addr(t_mem_base_addr){
MEMORY_inst = new MEMORY_CLASSNAME("MEMORY_inst", hdl_name);SC_METHOD(update_signals);\\sensitivity list omitted for con�dentiality}

void update_signals(){ \\update of signals between systemc and verilog worlds}};
SystemC/Verilog wrapper

Actually, the update_signals() class just acts as a signals converter and
write them in variables readable by a Verilog module. The object MEMORY-

_inst represents the wrapped Verilog object instantiated through a pointer
to a compiled verilog code defining the memory controller architecture (hdl-
_name). There are some more hurdles to tackle anyway. In particular, the
update_signals() function has a very complex sensitivity list.
Leaving out implementation details for confidential reasons, SystemC / Ver-
ilog wrapping lasts one of the most complex problems in SoC benchmarking.
Guaranteeing clock accuracy with mixed level simulation due to legacy code
still represents a major challenge and a lot of work has to be done about this
topic in the years to come.

5.7.2 TLM to signals wrappers

As STNoC� routers and network interfaces sport a TLM interface and generic
SystemC RTL models have signal interfaces, wrappers were needed to adapt
interconnection models sporting mismatched interfaces. These wrappers were
developed as adapters (see A1 figure 5.18). To provide further details, a
TLM to RTL adapters implements an interface and contains a port suitable
for the refined channel. The role of the adapter consists in getting/putting
transactions and translating them into signals. In the following code snippet
a TLM transaction of STNoC� is reported.

5.7 Co-simulation wrappers 139

template <typename CONTROLS,..>class basic_bca_request{public:
data_path<TRANSPORT_DP_SIZE_INBYTES> data;
CONTROLS controls;

};
struct control_signals{unsigned char opcode;unsigned char t_id;unsigned char source_id;};

TLM request transaction

These transactions must be translated by the adapter in sc_signals suitable
to be driven to RTL modules. Hereinafter an adapter module is reported.

template <class ADDRESS_TYPE,..>class RTL_to_TLM_NI : public sc_module {/** STNoC Side */sc_port<tlm_blocking_get_if<TLM_response<TRANSPORT_DP_SIZE> > > get_port;sc_port<tlm_blocking_put_if<TLM_request<TRANSPORT_DP_SIZE> > > put_port;
RTL_port<DATA_TYPE, ADDRESS_TYPE, BE_TYPE> In;};

template <class ADDRESS_TYPE,.. >void RTL_to_TLM_NI< ADDRESS_TYPE,..>::receive_request(){ while (1) {// while loopIn.gnt.write(true);if (In.req.read()){TLM_request<TRANSPORT_DP_SIZE> req;req.controls.address=(unsigned int) (In.add.read()); // ADDRESS_TYPEreq.controls.be= (unsigned int) (In.be.read()); //BE_TYPEreq.controls.eop=In.eop.read(); //boolreq.controls.opcode= (unsigned int) (In.opc.read());
put_port->put(req);}wait();}}

TLM to RTL adapter

The receive_request() process picks up signals from the input port, it pre-
pares the TLM request and it sends it to TLM channel through put interface.
To be precise the wrapper in this case functions as a converter (see figure
5.19), because on both sides (upstream and downstream) ports are used. In
SystemC terms, an adapter differs from a converter in that an adapter is a
channel because it has a set of interface methods that can be accessed through
the ports of the connected modules. On the other hand, to replace a channel
a module with ports instead of interfaces may be used. Hence, the main dif-
ference between adapter and converter is that the adapter is a hierarchical
channel (because it defines interfaces) whilst a converter is a normal mod-
ule that implements the protocol through SystemC plain ports. Converters

140 Networks On-Chip Modeling: Application to STNoC�

Figure 5.19: Adapter/Converter

were successfully and heavily utilized throughout STNoC� benchmarking for
different purposes, mainly for re-use of legacy simulators code.

5.8 Distributed simulations for Networks On-

-chip

Although computers keep getting faster, the demand placed on them by SoC
simulation platforms is increasing at least as fast. Hardware designers want
to simulate chips containing lots of concurrent Intellectual Properties (IPs).
Software developers would like testing and debugging their programs early
in the design cycle. Verification engineers would like bumping RTL designs
with complex testbenches and nested constraints. To cut a long story short,
computing power for many users is never enough. In order to handle larger
and larger problem, computer architects have started turning more to paral-
lel computers.
Parallelism has been introduced at several levels. At the ISA level, for in-
stance, pipelining, superscalar and VLIW designs can be exploited to gain
about a factor ten in performance over pure sequential simulations. How-
ever, in order to improve significantly SoC simulations speed, it is necessary
to replicate entire CPUs or parts of them (hyper-threading technology), and
to make them all work together efficiently. Herein lies the challenge for
distributed simulations of SoCs, and in particular simulations run on SMP

5.8 Distributed simulations for Networks On-chip 141

machines, as described in the remainder of this section.

5.8.1 POSIX primitives for concurrent simulations

On a multi-processor system, threading (i.e. programming using threads
lightweight parallelism in processes, see [11][73][4]) partitions a process in
multiple streams of execution capable of performing more than one compu-
tation at the same time. The threaded programming model isolates indepen-
dent or loosely coupled functional code units (threads) in a clever way that
is made explicit in the program’s source code (through threading primitives).
If activities are designed as threads, synchronization must be somehow en-
sured to guarantee dependencies correctness. Threading has implicit advan-
tages such as exploitation of programs parallelism and modular programming
model.
Of course, these advantages come at a price. The time it takes to synchro-
nize threads has to be included in the unwanted side-effects. It is very easy
to lose performance by crippling the threaded code with too many synchro-
nization points. The threaded programming model paradigm is simple to
grasp, but writing proper threaded code is never trivial. Writing code that
works well in multiple threads implies a thorough knowledge of threaded
code possible issues such as race conditions, deadlocks and priority inversion.
Writing multi-threaded code implies almost certainly to use library code such
as POSIX pthreads library.

Most threaded programs need to share data between threads [11]. The
most common and general way to synchronize between threads is to ensure
that all memory accesses to the same (or related data) are mutually exclu-
sive. For SystemC SMP kernel development two types of synchronization
primitives have been used:

- pthread mutexes

- pthread spinlocks

The main (but still crucial) difference between mutexes (MUT mutual EX
exclusion) and spinlocks concerns thread blocking. The critical distinction is
that a thread trying to lock a spinlock does not block when the spinlock is
already locked down by another thread. Rather the thread keeps ”spinning”,
trying to grab the lock quickly again and again until it gets granted access to
protected data. Spinlocks are great for fine-grain parallelism [47] [10], when

142 Networks On-Chip Modeling: Application to STNoC�

the code has been designed to execute only on a multi-processor, optimized
and balanced to grab the spinlock for only a bunch of instructions, and
performance is more important than yielding the processor resources to other
processes (possibly processor hogs, craving for CPU time). Threads context
switch time is a good measure of spinlocks effectiveness. If locking a spinlock
takes more than the time a context switch from one thread to another takes,
performance can be improved using mutexes and letting the operating system
scheduler switch context for a while.
Mutexes and spinlocks are useful synchronization tools. But to build a proper
SystemC parallel kernel, barriers are also needed to ensure that all threads
cooperating in SystemC kernel execution reach a specific point before any
can pass (see subsection 5.8.2). Pthreads library provides an opaque type for
barrier (barrier_t) built on top of mutexes, meaning that threads waiting
on this barrier are allowed to sleep. For fine-grain parallelism such as it is
in SystemC, those barriers could end up providing dreadful performance6.
Spinlocks based barrier will be described shortly as an alternative.

5.8.2 Delta cycle parallelism through kernel helper th-
reads

The former sections provided an in-depth overview of SystemC kernel and
methodology to achieve high simulation speeds (TLM). Strictly speaking, Sy-
stemC scheduler runs sequentially processes that are supposed to be simul-
taneously executed, ensuring that the execution time and causality remain
consistent for the whole system. In other words, the kernel is a single thread
of execution that exploit resources (Hardware) to represent the semantics of
a parallel processing system (see figure 5.20).

6STNoC� models profiling has been carried out using Oprofile, see [55] for further
details.

5.8 Distributed simulations for Networks On-chip 143

Figure 5.20: Parallel resources

The figure 5.21 hereinafter shows the classical time consumption of the

Figure 5.21: SystemC scheduler flow of time

unique processor usable at any given time by the current SystemC kernel. It
may be noticed that the time consumed by the scheduler (S) is not negligi-
ble compared to the time consumed by the processes themselves (T). This
is mainly due to the large number of synchronization needed between the
processes (see the notion of delta cycle in subsection 5.3.1).
Strictly speaking, the core functions of the SystemC kernel are crunch and
simulate functions within the sc_simcontext class; their role is to manage
simulation time, event notification and the notion of delta cycles. Further-
more, the crunch function is in charge of firing off threads and methods that
happened to be activated in a given simulation context (delta cycles, clock
edges or instantaneous notification). The following code snippet reports the
crunch function core loop.

144 Networks On-Chip Modeling: Application to STNoC�

//execute method processes
sc_method_handle method_h = pop_runnable_method();while(method_h != 0){try{method_h->execute();}catch(const sc_exception& ex){cout << "" << ex.what() << endl;m_error = true;return;}method_h = pop_runnable_method();}
// execute (c)thread processes
sc_thread_handle thread_h = pop_runnable_thread();while(thread_h != 0 && ! thread_h->ready_to_run())thread_h = pop_runnable_thread();
if(thread_h != 0)m_cor_pkg->yield(thread_h->m_cor);

Crunch function loop

The code just represents a sequence of statements that pops off each method
or thread that is ready to run (hence it is ”runnable”) and fires it off in
order to ”crunch” its instructions. To manage clusters and then to distribute
processes according to the processor’s load, the crunch loop may be replicated
in a number of kernel helper threads 7 equal to the number of processors minus
1 (the main co-routine is already a thread). Thus, within the sc_context

class some pthreads get created whose role is to execute the code of the main
crunch loop in an infinite tight-loop (see following code snippet).

/* NP normally should match number of processors (hardware or logical)Note the main_t array of pthread_t identi�ers (PID),stored to implement searching by PID keys insc_simcontext associative arrays (arrays of main co-routinesand currentprocesses) */
for(int i=1;i< NP;++i){if (pthread_create(&main_t[i],NULL,&sc_simcontext::pthread_helper_method,NULL)){printf("ERROR Could not create thread\n");exit(1);}}
// pthread helper (static) function simply replicates crunch main loop
void* sc_simcontext::pthread_helper_method(void* arg){ while(1){
7In this context a thread is an operating system control path; e.g. in Linux, threads

are a specialized form of the general task structure. Interested readers are encouraged to
peruse the Linux clone system call. Linux (STNoC� development has been carried out
exploiting this great operating system) schedules threads like any process in the system,
so that ”kernel threads” means threads schedulable by the Operating System.

5.8 Distributed simulations for Networks On-chip 145

sc_method_handle method_h = sc_curr_simcontext->pop_runnable_method();while(method_h != 0) {try {method_h->execute();}catch(const sc_exception& ex) {cout << "\n" << ex.what() << endl;m_error = true;
}method_h = sc_curr_simcontext->pop_runnable_method();

}
sc_thread_handle thread_h = sc_curr_simcontext->pop_runnable_thread();while(thread_h != 0 && ! thread_h->ready_to_run()) {thread_h = sc_curr_simcontext->pop_runnable_thread();}
if(thread_h != 0) {sc_curr_simcontext->cor_pkg()->yield(thread_h->m_cor);}

}}
pthread helper

The main thread, namely the one that executes the whole SystemC kernel
code, must trigger the execution of these helper threads in order to inform
them that the main crunch loop is about to start and they all have to start
crunching code as a thread working crew (see [11]). In a work crew, data is
processed independently by a set of threads (see figure 5.22). The members

Figure 5.22: Working crew paradigm

of SystemC work crew remove runnable ”processes”8 from SystemC kernel
shared linked lists (of runnable methods and threads) and execute whatever
is required by theses processes instructions. Each queued SystemC process

8The term process is somehow misleading in this section. SystemC kernel processes
are either SC THREADS or SC METHODS, not the pthreads used to allow concurrent
execution.

146 Networks On-Chip Modeling: Application to STNoC�

could describe a variety of operations (hardware or software behaviors), but
the common queue and mission (to execute the linked lists of processes)
make the operating systems helper threads a ”crew” rather than independent
worker threads. To synchronize the helper threads with the main kernel co-
-routine (the one that executes the whole SystemC simulator) at the end of
the tight-loop, a sort of barrier is needed9. Barrier synchronization provided
by pthreads library is based on mutexes, namely it is a blocking barrier of
type barrier_t (see following code snippet); its performance easily ends up
being unaffordable for SystemC simulations, because each threads arriving
at the barrier (unless it is the last) blocks and a context switch occurs.

//Helper thread functionvoid* sc_simcontext::pthread_helper_method(void* arg){ while(1){
//Posix barrierpthread_barrier_wait(&s_barrier);

sc_method_handle method_h = sc_curr_simcontext->pop_runnable_method();while(method_h != 0) {try {method_h->execute();}catch(const sc_exception& ex) {cout << "\n" << ex.what() << endl;m_error = true;}method_h = sc_curr_simcontext->pop_runnable_method();
}
sc_thread_handle thread_h = sc_curr_simcontext->pop_runnable_thread();while(thread_h != 0 && ! thread_h->ready_to_run()) {thread_h = sc_curr_simcontext->pop_runnable_thread();} if(thread_h != 0) {sc_curr_simcontext->cor_pkg()->yield(thread_h->m_cor);}//Posix barrierpthread_barrier_wait(&s_barrier);}

}
helper threads barrier example

A spinlock based barrier might represent a solution. This represents a very
tricky point: an helper thread spinning on a barrier consumes its timeslice
pointlessly. It might happen that an helper thread ready to crunch code
(after having spun for ages) is preempted by the operating systems because
its timeslice is exhausted, a complete and utter non-sense but still real due
to spinning barrier implementation. It is not clear which barrier (mutex or
spinlock based) provides a better solution to this issue, it heavily depends on
simulation patterns.

9Note that the main co-routine can easily run out of process to execute whilst an helper
thread is executing one. If no barrier is used, havoc occurs.

5.8 Distributed simulations for Networks On-chip 147

5.8.3 SystemC Kernel critical regions

Helper kernel threads allow for parallel execution of crunch main loop; this
implies the possibility to fire off more than one System process (methods or
threads) at a given time. Parallel execution is not for free anyway. SystemC
kernel shared data structure must be protected by concurrent accesses in or-
der to avoid pesky critical regions to deal with. In particular, events queues
and runnable process linked lists are notorious candidates for bugs.
Parallel execution can be serialized in two ways: mutexes or spinlocks. Sy-
stemC parallelism is very fine-grained (meaning that just all the activities
within a delta cycle can be executed in parallel without losing models seman-
tics); mutex are not a suitable solution to critical regions protection because
they are blocking and operating system context switches are not affordable
in SystemC simulations. The only feasible way to proceed consists in using
spinlocks for critical regions. Spinlocks have to be placed carefully in order to
boost concurrency in System kernel [48], getting good overall performance.
An example is in order here:

inline void sc_runnable::push_back_method(sc_method_handle method_h){ // assert(method_h->next_runnable() == 0); // Can't queue twice.method_h->set_next_runnable(SC_NO_METHODS);#ifdef MP_STpthread_spin_lock(&m_lock);#endifm_methods_push_tail->set_next_runnable(method_h);m_methods_push_tail = method_h;#ifdef MP_STpthread_spin_unlock(&m_lock);#endif}
Linked list critical region

A spinlock in this case is declared and used to protect the global pointer of
runnable methods m_methods_push_tail. A cleverer solution would consist
in declaring per cpu data and use processor affinity in order to avoid con-
tention in data access. This solution is under thorough study and shows very
promising.
Events management too, contains some code that unfortunately must be se-
rialized. Delta and time events insertion and removal from scheduler event
vectors must be protected through synchronization primitives (see following
code snippet, function remove_delta_event(sc_event*)). Perhaps, this
represents the sneakiest hurdle to parallel execution; delta events and time
notifications execute very often in SystemC simulations, reducing in a signif-
icant way the parallelizable code, therefore the achievable speed-up.

148 Networks On-Chip Modeling: Application to STNoC�

voidsc_simcontext::remove_delta_event(sc_event* e){ pthread_spin_lock(&e_lock);int i = e->m_delta;int j = m_delta_events.size() - 1;assert(i >= 0 && i <= j);if(i != j) {sc_event** l_delta_events = m_delta_events.raw_data();l_delta_events[i] = l_delta_events[j];l_delta_events[i]->m_delta = i;}m_delta_events.decr_count();e->m_delta = -1;pthread_spin_unlock(&e_lock);}
remove_delta_event

This section reported some of the major SystemC critical regions, not all,
just because the concepts are the same for them all and the others do not
add anything to the underlying issues.

5.8.4 Wrap-up and on-going work

The current main issues regarding SystemC porting to SMP systems concern
a careful placement of spinlocks and an in-depth profiling of the time spent
in the synchronization barriers.
Furthermore, the brand-new kernel must be studied using real world Sy-
stemC platforms in order to understand which simulation patterns may take
advantage of parallel simulations, pursuing the path towards scalable sys-
tems. Early tests, performed on STMicroelectronics platforms containing a
significant number of routers and Network Interfaces 10 (hence a high level of
hardware parallelism) showed 20%-30% simulation speed increase compared
to sequential execution (simulation performed on a 2 way Intel-Xeon SMP
box, with Linux kernel 2.4, running at 2 Ghz of clock frequency). Compiling
a SystemC kernel for SMP simulations is just a matter of switching a com-
pilation macro. Further tests will be undertaken in order to simulate real
designs.
Before concluding, a different approach is worth mentioning. In literature
[50] some works pointed out the possibility to simulate different SystemC
schedulers in parallel, each representing a ”tile” of a very complex system.
It is a really attractive concept, mostly within distributed systems, but in
author’s opinion it is still far from the reality of current platforms.

SystemC 3.0 release (software modeling constructs) will be bringing about

10Ranging from 10 to 20, considered as average complexity networks.

5.9 Conclusion 149

new software models to execute on top of current SystemC scheduler. There-
fore, software models will still end up scheduling in lower layers of the Sy-
stemC kernel, leaving room for further enhancements of SMP scheduling. In
sum, all the exposed facets will play a role in SystemC on SMP effectiveness,
a role whose importance relies on SystemC kernel developers.
Herein lies the challenge for future Systems on Chip simulations.

5.9 Conclusion

This chapter, the very core of the thesis, explained a number of modeling
features that are by now integrated in STNoC� design flow. The description
covered SystemC kernel and its evolution developed by STMicroelectronics
for distributed simulations. Details were provided about STNoC� models
and advanced C++ modeling techniques, such as objects inheritance and
composition. Profiling and simulation speed comparisons of different mod-
eling techniques were carried out. To complete the description of STNoC�
design flow, the next chapter describes STNoC�-related modeling environ-
ments and general concepts which proved useful for STNoC� benchmarking,
such as traffic generators, traffic characterization and STBus design flow.

Chapter 6
STNoC� benchmarking

6.1 Introduction

The former chapters provided an in-depth description of networks-on-chip
state of the art, layering and STNoC�, the STMicroelectronics network on-
chip modeling environment. In order to discuss interesting benchmark results
of STNoC�, further concepts and modeling components descriptions are still
lacking and must be unraveled to grasp simulation outcomes with some degree
of detail. This chapter fills the gap, with a brief description of the components
used to benchmark some applications on top of STNoC� backbone.

6.2 STMicroelectronics STBus based SoC

STNoC� is the natural evolution of the proprietary STBus protocol devel-
oped by STMicroelectronics. SoC are calling for parallelism and this is where
an on-chip interconnection network comes into play. In figure 6.1 an ex-
tremely complex SoC by STMicrolectronics is shown. It is a full-blown in-
tegrated system for High-definition Digital TeleVision (HDTV) which com-
prises a number of IPs with different traffic characteristics both in terms of
bandwidth, latency and real-time requirements. The interconnection subsys-
tem represents a key component of the architecture and has been designed as
a hierarchical STBus interconnect. Strictly speaking, the entire interconnec-
tion is not shown in all its glory; in particular subsystems such as video pipes
actually contain local interconnects to let the IPs making up the subsystem
communicate.

6.2 STMicroelectronics STBus based SoC 151

Figure 6.1: An example of a STMicrolectronics SoC

152 STNoC� benchmarking

It is quite simple to understand how things get really complicated when de-
sign of interconnection systems such as this one must be developed. First
of all, a major hurdle consists in defining the bus hierarchy, namely how to
structure the bus layers into different components. Secondly, at top level,
traffic is mainly directed towards external memory. The way in which traffic
flows are grouped is of a major importance to the system performance. Fi-
nally, arbitration clearly becomes a distributed concept. Whereas arbitration
in a shared bus is local and concentrated in a single point, in a distributed bus
such as the STBus, global arbitration corresponds to the aggregate actions
of different single arbiters. An arbitration which is effective locally could be
a drag for the entire system when checked from a global perspective.

STBus provided a really smart solution to this kind of systems, but, as in
all nice pictures, there are some shadows looming large at the horizon. One
main hindrance to the evolution of buses is wires congestion. In a top-level
(leaving out for now the low-level buses) interconnect such as the one shown
in figure 6.1, the number of wires is tremendous. Wires congestion has not
been a problem to the design of system yet, but for future systems it might
cause severe performance degradation.
On-chip networks through serialization of wires into flits, allows the mitiga-
tion of wires congestion problems.
Even though it is clear that through serialization a NoC could provide great
benefits to the wire congestion issue, it is not always that easy to understand
at which level of the bus hierarchy a network on-chip can lead to better or
at least same performance reducing wiring issues. In such complex systems,
the only way to have an in-depth knowledge of system properties is through
benchmarking.
In the remainder of this chapter the different components used to benchmark
such complex SoC are explained as long as basic descriptions of typical appli-
cations. The next chapter will cover a given test-case that, unfortunately, is
just a reduced subset of an entire system, this due to confidentiality reasons.

6.2.1 STBus Genkit

The STBus Genkit is a development platform for building any STBus inter-
connect from high-level SystemC model down to gate level implementation.
It is a key component of the STBus and is developed internally by STMi-
crolectronics OCCS group which is in charge of STBus deployment. The
STBus Genkit, through a user friendly graphical user’s interface (GUI) de-
veloped using QT library, allows the designer to fully exploit the STBus

6.2 STMicroelectronics STBus based SoC 153

reconfigurability. In short, the Genkit is a way to reduce STbus based sys-
tem time to design.

In figure 6.2 the Genkit design flow is sketched. Following a top-down

Figure 6.2: STBus genkit design flow

methodology, the design starts at transaction level where first estimations
are made, using high-level simulations (mostly for software debugging early
in the design cycle). Clock-accurate simulations (BCA stands for Bus Clock
Accurate) are used to size up STBus components in a more detailed way.
At this level of accuracy bandwidth and latency measures are accurate; the
designers can choose to reconfigure the components if the designed system
does not meet the requirements.
To be noted that the previously described OCCN simulator of STNoC�, even
though it is a transaction level model, it can be described as a BCA simu-
lator, in that it allows clock-accurate measures of bandwidth and latency.
The real difference between STBus BCA models and STNoC� models is the
way in which interfaces are abstracted. OCCN sports a TLM clock-accurate
interface, where communication takes place using function calls. STBus mod-
els sport a signal level RTL interface, which causes a simulation slow-down.
Work is in progress to convert STBus interfaces to transaction level. BCA
models do not contain gate level delays and synthesis constraints.
RTL libraries included in the Genkit can be linked to create a synthesized
version of the STBus interconnection, ready for verification and back-end.
To be noted that not all STBus components are available as SystemC BCA
models; in particular the memory controller is available just as a Verilog
component.
Additional insights will be provided briefly in subsection 6.2.2.

154 STNoC� benchmarking

The Genkit design flow is well-supported by a powerful graphical user inter-
face based on the QT library [60]. In figure 6.3, the extension of graphical

Figure 6.3: NoC QT graphical user interface

user interface to NoC components is reported, providing an idea of the envi-
ronment. On the left-hand side of the snapshot, model hierarchy and textual
description of elements are present. Models are picked-up from a library
and connected as graphic objects. In this way, the end user does not have
to know the underlying models details, binding rules and so on. Anything
is automatically managed through the graphical user interface. Command
buttons on upper toolbars hide scripts that generate model, makefiles and
top-level instantiation.

Due to the ever increasing complexity in interconnection design, STNoC�
integrated an extension of the Genkit design flow to promote architectural
exploration of different network architectures early in the design cycle. In
figure 6.4 the procedure to build STNoC� platforms using the NoC architec-
tural exploration framework is shown. Starting from an XML configuration
file, a NoC platform is built, together with appropriate traffic generators (see
section 6.4 on page 159). Simulation runs are checked after simulation com-
pletion, saved in a data base repository, and analyzed through perl scripts.
VCD files are analyzed through Sysprobe tool developed by STMicroelec-
tronics to extract latencies, request to grant statistics and possible protocol
violation for high-level verification.

6.2 STMicroelectronics STBus based SoC 155

Figure 6.4: STNoC design flow extension

Hereinafter a code snippet of a STNoC XML configuration file is reported:

<platform><interconnect><topology>spidergon</topology><node id=``0''><type> Master </type><initiator><con�g_r>CUSTOM_R</con�g_r><con�g_w>CUSTOM_W</con�g_w></initiator></node><node id=``1''><type> Slave </type><target><start_address>0x100</start_address><end_address>0x1FF</end_address></target></node>
STNoC XML grammar of a platform

The given platform is instantiated as a Spidergon topology, with two nodes
configured as a master and a slave. It is possible to declare the slave address
space and initiator configuration files. This ”STNoC� explorer” turned out
to be very useful to explore different NoC architectures and some results will
be reported and highlighted in chapter 7.

6.2.2 Mixed-level interconnection simulations

One of the major concern of STNoC� benchmarking consisted in mixed level
simulations. As already stated bandwidth and latency accurate measures
require bus cycle accurate models. To build a hierarchical interconnect made

156 STNoC� benchmarking

up of a hybrid solution (bus for local subsystem, NoC for system backbone),
models with different interfaces had to be connected. Moreover, to bench-
mark memory access co-simulation of SystemC and Verilog models had to be
carried out, implying the use of a proprietary (NCSIM[12]) simulator that
allows to execute concurrently different kernels (SystemC and Verilog) at a
time.
Adapters and converters have been thoroughly described in section 5.7 on
page 135. Even if it may seem the easiest part of the work, mixed-level
simulations turned out to be one of the most complex task for platform de-
velopers. In particular, wrappers must guarantee clock-accuracy, meaning
that the interface translation has to be somehow ”transparent” from a timing
point of view; the wrappers are just the glue that merges the mismatched
interfaces, they must not affect the flow of time. This was not an easy task
at all.
Besides, Verilog models of the memory controller contain gate level delay to
simulate instant of sampling (for instance, a signal declared early is allowed
to change in the first 25% slice of the clock cycle). Wrappers must take delays
into account to guarantee clock accuracy; this delay is parametric, implying
configurable wrappers to be instantiated depending on the compiled Verilog
architecture.
Mixed-level simulations allowed the benchmarking of STNoC� in real SoC
designs such as the one in figure 6.1. Even if the real expected outcome of
such platforms is architectural exploration, the possibility to run simulations
of real SoC can be already considered a factor of success, given the tremen-
dous complexity of nowadays systems.
Together, STBus Genkit and STNoC� OCCN models have been used to
benchmark two real SoCs developed by STMicroelectronics with high simu-
lation speed and clock-accuracy.

6.3 Applications high-level descriptions

Multimedia is considered as a godsend in the networking domain. This be-
cause providing multimedia, which implies high bandwidth, represents an
immense challenge from different perspectives. Multimedia is an important
market share even for semiconductor companies such as STMicroelectronics
whose revenue is mostly brought and made up of chips capable of running
high-end multimedia applications. STMicroelectronics is on the leading edge
concerning set top boxes chips, high definition television and mobile platforms
(that are integrating multimedia components). No surprises the application

6.3 Applications high-level descriptions 157

explained in this thesis is part of the multimedia world.
If providing multimedia through computer networks (e.g. video on-demand)
represents a critical task, on-chip designers (mostly interconnection design-
ers) are not having that much fun in designing interconnection systems able
to sustain these impressive bandwidth requirements either. The design of an
interconnection for system on-chip capable of guaranteeing bandwidth and
latency constraints for application such as MPEG (Motion Picture Experts
Group) standard is more an art than a science; this mainly because, as the
next section highlights, the application generated traffic is somewhat sta-
tistical, depending on algorithm combination of images whose bandwidth is
difficult to predict statically.
Networks on-chip, STNoC� in this case, can change the methodology ap-
plied to design interconnection systems through a well-known concept named
Quality of Service. Achieving quality of service represents a fundamental
step towards predictable systems. An efficient Quality of Service mecha-
nism clearly empowers designers with a methodology to control how traffic
is routed through the interconnect, changing the design paradigm in a sig-
nificant way.
The remainder of this section reports a basic introduction of complex video
applications, in order to highlight how their traffic can impact interconnec-
tion design for systems on-chip.

6.3.1 Video streams

Video streams traffic is normally generated through images scanning [74]. A
typical 2-D image is obtained through a camera scan; an electron beam is
used to get camera signals across the image and down it, recording the light
intensity. At the end of the scan, called a frame, the loop restarts. This
intensity of the beam as a function of time is broadcast, and receivers recon-
struct the image.
The precise scanning parameters vary from country to country. North and
South America and Japan has 525 scan lines, a horizontal-to-vertical aspect
ratio of 4:3, and 30 frames/sec. The European System has 625 scan lines,
the same aspect ratio of 4:3 and 25 frames/sec.
Color video uses the same scanning method as monochrome (black and
white), except that instead of scanning the image with one moving beam,
it uses three synchronous beams, one for each primary colors: red, green and
blue (RGB). Standards of TV (NTSC, PAL, SECAM) combine RGB signals
into a luminance (brightness) and two chrominance (color).
As already stated, semiconductor companies are investing a lot in High Def-

158 STNoC� benchmarking

inition Television (HDTV) systems in that they show promising and ensure
a huge market share. They improve the granularity of images by doubling
the number of scan lines (aspect ratio of 16:9). Digital Video is a sequence
of frames, each made up of a rectangular grid of picture elements, or pix-
els. Color video uses 8 bits per RGB color. Typical resolutions of monitors
are in the ranges 1024x768, 1280x960 and 1600x1200. Even the smallest
of these with 24 bits per pixel and 25 frames/sec unleashes a bandwidth of
472 Mbps. As the reader can understand, not a light workload for on-chip
interconnections.

Encoding and decoding algorithms are widely deployed to compress video
streams. The MPEG standard defined many algorithms over the the last few
years to compress videos. Because movies contain both images and sound,
MPEG can compress both audio and video.
Let us consider video compression: two types of redundancies exist, namely
spatial and temporal. Spatial redundancy can be solved by working out
each frame separately with an on-purpose algorithm (e.g. JPEG). Additional
compression can be achieved by exploiting the similarity between consecutive
frames. MPEG takes into account different operating modes of cameras by
defining four kinds of frames:

1. I (Intracoded) frames: Self-contained image frames, coded without the
need for reference to other frames. Use JPEG for I-frame encoding
(spatial redundancy).

2. P (Predictive) frames: Encoding of motion vector and small mac-
roblocks differences. Used preceding frames for temporal redundancy.

3. B (Bidirectional) frames: Forward/Backward interpolated prediction.
Predicted by both previous and next frames.

4. DC (DC-Coded) frames: Encoded through block averages, they include
only discrete cosine value of each block; used for rapid searching.

I frames are just still pictures that can be encoded/decoded through a form
of JPEG. To understand the statistical behavior of bandwidth in MPEG
stream, P frames are much more interesting. They are based on the concept
of macroblocks, whose typical resolution corresponds to 16x16 pixels in lumi-
nance space and 8x8 pixels in chrominance space. A macroblock is encoded
by searching the previous frame for it or a picture block that slightly differs
from it.
An example is in order here, shown in figure 6.5. The two frames backgrounds

6.4 Traffic Modeling 159

Figure 6.5: Example of MPEG P-frame

are the same, but they differ in the position of the car. The macroblocks
which encompass the background scene will provide a perfect match, but the
macroblocks which include the car differ in position by some details and have
to be searched through some algorithm.

Normally in STMicroelectronics chips MPEG decoding pass through me-
mory access. Whilst memory accesses caused by uncompressed flows are pre-
dictable (a given number of pixels accessed sequentially, aka raster mode),
memory accesses unleashed by MPEG decoding are inherently dependent on
the type of images (still picture, camera panning or zooming) so less pre-
dictable. This type of traffic can cause network overcommitment (network
designed for the worst case). Quality of services ”knobs” can turn out to
be very helpful to avoid network overcommitment. In particular network
interfaces dynamic programming can help overcome the fluctuation in band-
width demands coming from irregular traffic flow such as MPEG video. The
memory access footprint has also severe consequences on memory efficiency,
a subject which is out of scope of this thesis.

6.4 Traffic Modeling

The benchmarking of a complex object such as a hierarchical interconnection
requires models capable of running at very high simulation speed. Platforms
containing 50-60 bus masters connected through a hybrid bus/NoC solution
are common for STMicroelectronics designers. Whilst the interconnection
modeling features have been thoroughly described in chapter 5 and in sub-
section 6.2.1, how traffic is generated has not been described yet.
First and foremost, it is important to underline that VHDL code of STMi-

160 STNoC� benchmarking

croelectronics IPs is available for simulations; so it may seem natural to use
VHDL IP models to generate real traffic on the network. But there is a catch:
simulations of many IPs using VHDL code takes days to be executed, some-
thing that conflicts with fast architectural exploration needs. Fine tuning of
interconnection requires many simulation runs so that VHDL simulation of
IP traffic is not affordable to benchmark current systems on-chip.
To solve, somehow, computational burden issues related to VHDL simu-
lations, system platform group of STMicroelectronics developed high-level
traffic generators, in SystemC environment, whose name is IP Traffic Gener-
ator (IPTG). Due to confidentiality reasons, IPTG cannot be described. In
the next subsection a brief description of a hypothetical configuration file is
reported.

6.4.1 IPTG overview and sample file

The role of an IPTG consists in generating IP traffic according to some con-
figuration file loaded at run-time. Strictly speaking, an IPTG is a SystemC
element whose processes behave as an IP with a given bus interface. Com-
bination of opcodes, operating modes and timing of transactions allows to
describe an IP in an accurate manner, taking advantage of the compiled na-
ture of SystemC code which in turn provides high-simulation speed. In figure
6.6 an IPTG pseudo-config file is reported. Through simple variable assign-

Figure 6.6: Pseudo IPTG config file

ments, IP protocol, data size and a number of others parameters can be set
to describe an IP configuration. Then, a section named ”behavior” contains
the dynamic execution of opcode according to complex internal mechanisms,

6.5 Conclusion 161

hidden to the users. In figure 6.6, a behavior that executes store transactions
mixed with no-operations (NOP) at different addresses is shown.
IPTG allows to define the configuration of complex operations by means of
behavior composition; this means that different behavior components could
be integrated together to simulate complex threads of execution with fast
C++ models. Platforms containing more than 50 IPTGs have been executed
for STNoC� benchmarking with satisfactory simulation speeds.

6.5 Conclusion

The aim of this chapter consisted in introducing different components and
concepts useful to understand one of the most important activities developed
in this thesis, namely networks on-chip benchmarking. Firstly, high level
traffic descriptions were thoroughly explained, in particular regarding MPEG
traffic behavior. STBus Genkit basic features were considered as well as its
powerful design flow, which completed STNoC� design environment in order
to build hierarchical interconnections. The explication of the inner-workings
of IP Traffic Generators (IPTGs), very useful to generate traffic behaviors
over the network, ended the chapter. The next chapter shows the outcomes of
STNoC� benchmarking executed on synthetic case-studies, as the completion
of a lot of work, including modeling, architectural design, traffic study and
mapping.

Chapter 7
Outcomes analysis of STNoC�
benchmarking

7.1 Introduction

STNoC� benchmarking was a compelling work due to the huge amount
of parameters involved in architectural exploration and system complexity.
STNoC� models made great strides to tackle systems complexity through
a reconfigurability pushed to the limit, allowing benchmarking of extremely
complex systems on-chip. As described those chips models are made-up of
heterogeneous1 components, connected together through some adapters and
converters.
Due to confidentiality reasons, unfortunately, these complex benchmarks
cannot be described within this thesis. To partially replace such complex
benchmarks, this chapter reports two kinds of measures for STNoC�, chosen
on-purpose as proof-of-concept. Firstly, generic topology characterization
through random traffic is reported, in order to better describe and highlight
Spidergon topology properties. Secondly and finally, outcomes of through-
put and latency of real applications whose traffic passes through STNoC�
are described. In particular, a comparison of arbitration is reported in order
to show how quality of service can help build chips with predictable perfor-
mance, achieving low-latency and fair bandwidth share on top of a best-effort
network.

1Heterogeneous here is used in modeling context.

7.2 STNoC� general characterization 163

7.2 STNoC� general characterization

STNoC� general characterization has been carried out through random traf-
fic generation as provided with SystemC Verification Library, which is an
open-source collection of objects developed on top of SystemC to somehow
enhance the SystemC capabilities in terms of verification properties. Seeds
randomization was taken into account in our NoC simulator (see figure 6.4
on page 155), in order to generate random traffic with good statistical prop-
erties. IPTGs were configured in this case as a traffic instance that drives
burst of read/write transaction over the network according to some IPTG
internal commands.
Random traffic characterization is the first step after mathematical study of
the network, in order to check whether or not the behavior of queue archi-
tecture, flow control and routing fits with expected results. In some sense, it
represents the first ”practical” feedback obtained through system simulation,
and its usage is typical of early stages of design when just high-level param-
eters are significant to the whole system performance (e.g. which routing
algorithm performs better in a given context).
In the following subsection throughput and latency measures of various net-
work configurations are presented with embedded comments.

The objective of the results described in the next subsection
(7.2.1) is to underline how network characterization can be car-
ried out in a real world network on-chip. They must not be taken
as official results and bounds of STNoC� network on-chip because
they have not been optimized. Official STNoC� characterization
is a confidential document of STMicroelectronics and cannot be
unveiled due to confidentiality reasons.

7.2.1 Throughput and latency measures

Generic measures for STNoC� characterization and benchmarking were car-
ried out in order to definitely state topology properties and find out the best
approach concerning buffering model and allocation. In figure 7.1 a typi-
cal measure of networks on-chip (accepted vs. offered load) is reported for
STNoC�, for plain random traffic (each node sends traffic randomly to other
ones, 8 nodes STNoC� configuration). The X-axis unit corresponds to the
number of flits injected into the network per each node per clock cycle. The
Y-axis corresponds to the accepted flits.

164 Outcomes analysis of STNoC� benchmarking

Figure 7.1: Accepted throughput

The shape of the curve is a typical one for interconnection networks. In the
first part of the curve, as the offered traffic increases, the accepted traffic
increases as well; the network in this configuration is linear. Whatever is in-
jected gets accepted by the network, meaning that the network under these
traffic conditions is able to sustain the required traffic. A more interesting
point is about the threshold at which the network starts saturating, meaning
the throughput curve becomes flat. At this point the network is no longer
able to behave linearly, and it becomes somehow ”outgunned”.
Injected flits, as highlighted later, suffer from unbounded latencies, making
the network completely unusable (who is willing to fiddle with unbounded
latencies after all ?). It is worth noting that the saturation threshold strictly
depends on FIFO sizes inside the routers2. As the attentive reader might be
noticing, the saturation point increases as FIFO sizes increase, this because
FIFOs improve the network pipeline in terms of accepted load, at the cost of
larger router silicon area. The routing algorithm used in this experiment is
dubbed Afirst in that packets choose the across link as the first hop or never,
due to Spidergon topology properties. Many other algorithms are possible
each with its strengths and weaknesses.
In figure 7.2 an interesting latency plotting is reported.

2Queuing strategy cannot be unveiled due to confidentiality reasons.

7.2 STNoC� general characterization 165

Figure 7.2: Latency: random and hot-spot traffic

166 Outcomes analysis of STNoC� benchmarking

In figure 7.2 packets’ latency is measured under two different traffic con-
ditions:

Random Traffic consists in sending uniform randomly distributed packets
to all networks nodes that act as masters and slaves in the same time.

Hotspot traffic consists in choosing a percentage p of the traffic to be hot-
spot, namely directed towards a given target, according to the hot-spot
model:

P (dest == hotspot) = (p) ∗ (N − 1) + (1− p) ∗ N − 1

N
(7.1)

with N number of nodes and p Bernoulli probability of hot-spot desti-
nation.

It is worth emphasizing that when just 40% of traffic is directed towards
a hot-spot destination, the saturation point decreases in a staggering way,
implying early saturation. This straightforward example demonstrates how
useless is the usage of a network on-chip when most of the traffic is directed
towards a single target. No network could improve this kind of gridlock,
which falls back to a shared bus solution3.
Even if a network cannot be considered the holy grail when traffic is just-
one-target based, networks on-chip turned out to exhibit interesting physical
properties with respect to busses (see section 3.2 on page 28).
Clearly, the exponential steep slope of the latency curve at saturation point
describes an unusable service.

The saturation point states which workloads can be sustained by the
networks, and the goodness of a network can be judged by two major factors:

- Latency behavior in linear sector.

- Saturation point.

In the linear portion of the curve, the network ensured linear throughput
with latency dependent on routing algorithm, flow control, arbitration and
buffer architecture. All of these parameters influence the network behavior
in the linear operation range.
The saturation point as well is determined by the aforementioned parameters.
For current systems the network range in which STNoC� provides linear

3As traffic becomes more and more hot-spot, the concurrency in the network in terms
of routing path is lost.

7.2 STNoC� general characterization 167

behavior with low latency proved to be fairly suitable4, throughout different
configurations of real world systems on-chip.

Random traffic characterization was also very useful to compare differ-
ent routing algorithms5 and mapping of STNoC� configurations. In figure
7.3 several mappings of initiators and targets on a 6x6 STNoC� network is
shown. As each Processing Element (PE) is supposed to be mapped on a
NI, mapping becomes a very important step of the interconnection design
flow, as topology properties and routing algorithm ones can influence net-
work performance. In a 6x6 network (network arity 12 with 6 initiators and

Figure 7.3: STNoC� possible mapping in 6x6 configurations

6 targets) initiators and targets can be mapped according to different per-
mutations. However, this placement inherently affects performance because
of network topology and routing algorithm properties. Through straightfor-
ward maths, it is easy to verify that mapping D provides the least average

4It might be better described as ”overkill”.
5They are not described here due to confidentiality reasons.

168 Outcomes analysis of STNoC� benchmarking

distance in terms of hops (1.83 hops) between initiators and targets, whilst
layout E provides the worst case (2.44 hops). No surprise the results mirror
these theoretical averages. In figure 7.4, outcomes of throughput for all map-
ping configurations in figure 7.3 are reported (afirst routing algorithm); it is
worth noting the difference in throughput performance between the D and E
cases (see D and E configurations), where D case study neatly outperforms E
case. Latency results are more self-evident in order to gauge the saturation

Figure 7.4: Throughput measure for mappings in figure 7.3

point of the network (that is what these estimations are all about). In fig 7.5
the gap in performance between case D and E is clearer; network mapping
D saturation point is about 0.5 flit/cycle/node whilst for case E is 0.4; a
significant factor, given that its value resorts just to how IPs are logically
placed on the on-chip network.
Several mapping tools such as [53][39] are available in literature, with dif-

ferent characteristics and capabilities. While mapping subject is out of scope
of this thesis, it is worth pointing out that, as in multi-layer busses, mapping
is a compelling step of the design flow that strictly affects interconnection
performance. Bad mapping of IPs on a distributed interconnection can cause
severe performance degradation, so that it must be considered early in the
design process as a vital factor of success to the system performance. Map-
ping of IPs on Network Interfaces is a hot research topic that deserves further
study in order to become really mature to be deployed in real world systems
on a chip.

7.3 STNoC� benchmarking of real applications 169

Figure 7.5: Latency measure for mappings in figure 7.3

7.3 STNoC� benchmarking of real applica-

tions

The simulation environment described throughout this document has been
successfully used to simulate and benchmark real SoC products by STMicro-
electronics. Two chips for High-Definition Digital Television (HDTV)6 have
been successfully and thoroughly benchmarked using our NoC simulation
environment. Just to provide additional insights, these chips integrate more
than 50 bus initiators, with an interconnection hierarchy made up of sev-
eral layers. In order to talk numbers, the interconnection was comprised
of tenths of routers and STBus nodes, including a memory controller slave
co-simulated in Verilog. A run of this kind of platform normally takes min-
utes to run 7, with all probes on (vcd files and quality of services statistics).
Writing on probes implies system calls, which in turn means that simula-
tion speed is system calls dominated. The C++ simulator by itself runs at
very high-speed (∼ 100 Kcycles/sec) compared to RTL simulations that take
hours if not days to execute, and there is still room for code improvements.
The effectiveness of TLM modeling proved to be quite staggering after all.
In order to highlight what kind of benchmarks are possible using STNoC�

6It is worth noting that the simulator is general purpose, namely any kind of chip could
be simulated with clock-accuracy; it is not limited to subclasses of applications.

7On an Intel Xeon box running at 2.8 Ghz, Linux kernel 2.4.

170 Outcomes analysis of STNoC� benchmarking

simulator apart from random traffic characterization, a case study is ex-
plained in this section.
In figure 7.6 an STNoC� layout is shown. In figure 7.6, two clusters of ini-

Figure 7.6: An STNoC� case study

tiators are connected to STNoC� backbone through two STBus nodes work-
ing as traffic concentrators, namely they coalesce different somewhat related
traffic behaviors into one stream directed towards an STBus target. The
interconnect must be tailored in a way that guarantees MPEG (see section
6.3, on page 156) the required Quality of Service support from the intercon-
nection (bandwidth met plus bounded acceptable latencies).
The Blitter application is a graphic co-processor, whose role is to offload pro-
cessors for tasks such as graphic motion and scrolling and whose requirements
can be easily satisfied using the leftover bandwidth of other applications.
The simple platform was built using our NoC explorer, based on XML con-
figuration (see figure 6.4 on page 155). In figure 7.7 a QoS proof of concept is
shown. The two VCD waveforms display fifo occupancy of the IP generating
traffic. In this specific case an MPEG reader was chosen. A FIFO level of
zero means an IP in a starvation state, namely read responses corresponding
to requests sent over the network have not come back on time to avoid IP
idling, implying a lack of bandwidth on the interconnection. In particular,

7.3 STNoC� benchmarking of real applications 171

Figure 7.7: MPEG QoS proof of concept, FIFO starvation avoidance

the two waveforms compare fifo occupancy in the cases where LRU arbitra-
tion was used in STNoC� arbiters (QoS off) to a case in which QoS knobs
of STNoC� were turned on to regulate traffic smoothness.
The simulations outcomes are overly clear: LRU arbitration is not effec-
tive, leading to periodical starvation of IP (points in which FIFO occupancy
crosses zero). QoS knobs of STNoC� proved effective, in that FIFO occu-
pancy is high, near full, all along the simulation time corresponding to steady
state.
As described in section 6.3 on page 156, MPEG is a particular kind of traf-
fic, whose behaviour strictly depends on the compressed images. In order
to get a complete proof of concept, in figure 7.8 a comparison similar to the
MPEG one is shown, in a network layout identical to the one in figure 7.6,
replacing MPEG initiators with high-definition, uncompressed streams, with
a more predictable behavior in terms of traffic. In this case, due to the reg-
ular nature of uncompressed streams, the outcomes are even clearer. The
LRU arbitration mechanism turned out to provide really bad performance,
with steep slope towards zero crossing of FIFO occupancy (steep slope means
more zero crossings per time unit). Turning on the QoS knobs8 the FIFO
occupancy is in a stable, still zero slope state, all along the simulation. This
result turns out to be pivotal to the interconnection, and therefore to the
the chip, performance. The interconnection network is able to ”feed” the IP
regularly with the data it needs, meaning a perfect behavior.

So far, we concentrated on FIFO occupancy properties. To highlight
more features of NoC explorer, it is time to discuss latency measures. Latency

8These features cannot be described due to confidentiality reasons. Additional insights
might be got within STNoC� architecture documentation.

172 Outcomes analysis of STNoC� benchmarking

Figure 7.8: High-Definition (HD) QoS proof of concept, FIFO starvation avoidance

measures are obtained using SysProbe tool developed by STMicroelectronics.
Latency can be measured per initiator in a number of flavors (request to
grant, request to response, etc.) and results exported as plain text files.

STbus type : 3Data size: 64 bitsSimulation Start Time: 0 psSimulation End Time: 1499998000 psSimulation duration: 1499998000 psClock period: 4000 psSTbus Frequency: 250.00 MhzSTbus Clock cycles 374998Window Time Frame 10LATENCY :Name Min MaxReq2R_Req 23 67Req2R_Eop 26 67THROUGHPUT (MB/s):Data Throughput : 32.4 MB/sFull Data Throughput : 32.4 MB/sBANDWIDTH :Max Available Bandwidth 2000.0 MB/sMax Available Bandwidth Req 2000.0 MB/sMax Available Bandwidth Resp 1600.00 MB/sReal_Bandwidth 32.4 MB/s
MPEG reader statistics LRU arbiters

In the embedded snapshot the most interesting fields of Sysprobe concern-
ing NoC benchmarking are reported. Some values are computed statically
(e.g. max available bandwidth) whilst others are sampled dynamically. The
snapshot above reports outcomes of an MPEG read process initiator whose
bandwidth is around 30 Mbytes/sec. As it is an STBus initiator, latency
is measured as delay between assertion of request and response request, in
number of cycles.
To be noted, that the maximum available bandwidth of responses is limited
by the serialization of transactions into flits. Header flits are not considered

7.3 STNoC� benchmarking of real applications 173

as available bandwidth. As most of the opcodes are load 32 bytes in a 64 bits
data path, one fifth of the bandwidth is wasted to send headers (a response
packet is made up of five flits: a header plus four payloads 4x8=32 bytes).
Other fields are self-explanatory.
It is worth noting the low maximum latency (67 clock cycles)9. This is due to
the ”synthetic”nature of the testbench, where just few initiators are involved
for demonstration purposes.
In real STMicrolectronics chips, where initiators easily exceed 50 units, la-
tency increases solid when all traffic is directed towards a single target (see
figure 7.2 on page 165), with hundreds of cycles to take into account.

STbus type : 3Data size: 64 bitsSimulation Start Time: 0 psSimulation End Time: 1499998000 psSimulation duration: 1499998000 psClock period: 4000 psSTbus Frequency: 250.00 MhzSTbus Clock cycles 374998Window Time Frame 10LATENCY :Name Min MaxReq2R_Req 23 42Req2R_Eop 24 42THROUGHPUT (MB/s):Data Throughput : 32.4 MB/sFull Data Throughput : 32.4 MB/sBANDWIDTH :Max Available Bandwidth 2000.0 MB/sMax Available Bandwidth Req 2000.0 MB/sMax Available Bandwidth Resp 1600.00 MB/sReal_Bandwidth 32.4 MB/s
MPEG reader statistics QoS arbiters

The preceding snapshot is just there to report the benefits of QoS in inter-
connection latencies. There are two points worth mentioning:

Maximum latency is the real critical parameter. Initiators FIFOs are de-
signed to cope with worst cases; the lowest the maximum latency the
least buffering is needed. This is vital to interconnection design.

40% gain is not a neglectable factor, even in these simple simulations. This
is the essence of the whole thesis. Quality of service is a key component
of future systems on-chip design. For sure, Quality of service is not a
magic wand, but it still empowers designers with a design feature to
implement better and better interconnection network with less design
overcommitments and more efficient area utilization.

9”Low” here is misused because it must be always compared to a relative measure. In
real systems on-chip initiators could well end up suffering from hundreds of clock cycles
of latency. Author’s point of view is highly biased by these bullying latency measures, so
that 67 cycles sound as a relief from pain.

174 Outcomes analysis of STNoC� benchmarking

The transaction level models of STNoC�, together with STMicroelectronics
tools such as IPTG, Genkit and Sysprobe, allowed to create a flexible yet
powerful environment, which can be used to design and test complex, hybrid
(bus plus NoC) interconnection systems.

7.4 Conclusion

This chapter, through simple but still effective measures and comments proved
our methodology effectiveness for the design of real networks on-chip. The
measures reported were of two types:

- Random traffic characterization.

- Bandwidth and latency outcomes of real traffic streams.

Random traffic characterization was executed to determine and show generic
topological properties of the STNoC� network on-chip. It leveraged statisti-
cal properties of SystemC Verification Library through IPTG configuration.
Real traffic streams mirror traffic behaviors used in STMicroelectronics divi-
sions to shape real interconnections and provided a simple but still complete
idea on how to design real interconnection networks through our methodol-
ogy. All of the results reported in this chapter represent the end product of
the thesis work. Modeling, architecture design and traffic mapping, all take
part in the whole design flow which is currently in use at STMicroelectronics
to design interconnection networks.
The next chapter draws the thesis’ conclusion, with an eye ahead towards
the future, introducing exciting challenges that SoC manufacturers have been
brewing for interconnection designers.

Chapter 8
Conclusions and future work

8.1 Introduction

Networks on-chip underwent years of debates, discussions and consequently
improvements. The main objective of this thesis was to highlight some de-
tails, facts, research perspectives about this fascinating technology for on-chip
interconnections. By now, networks on-chip are ready for the fray.
So far, networks on-chip researchers, and STMicroelectronics ones are no ex-
ception, strove to convince that networks provide on-chip designers a suitable
solution to the on-chip interconnection problem. Benchmarking was a pivotal
instrument to consolidate network concept, to prove performance effective-
ness and high-level estimations of parameters. Transaction-Level modeling
proved to be a very mature simulation technique, through which a number of
simulations with a score of variable parameters have been carried out. Net-
works on-chip have come a long way since their early days.
It is time to move ahead towards future challenges and issues to solve that
are just appearing at the horizon.
Security is already a major concern for on-chip designers and networks on-
-chip must integrate some degree of flexibility to support security enhance-
ments. Furthermore, systems on-chip have been integrating functionality
through flexible components such as programmable CPUs. Flexibility calls
for software development, and networks on-chip must be able to support this
shift in the design paradigm through an efficient interconnection network.
The NoC must somehow support this flexibility through features allowing a
powerful programming model and QoS support for programming services.

The last chapter of this thesis is dedicated to these two emerging issues

176 Conclusions and future work

(opportunities) that ultimately influence the way in which code and data are
shuttled forth and back in a system on-chip design.

8.2 Security monitoring

The growing number of instances of breaches in information security in the
last few years has brought about a compelling case for efforts towards se-
cure electronic systems. Embedded systems that are by now ubiquitously
in use to capture, store, manipulate and access data of sensitive nature, put
several interesting security challenges. Security has been the subject of in-
tensive research in the area of cryptography, computing and networking. In
embedded world, it represents an entirely new metric that designers have
to consider throughout the design process, along with other metrics such as
cost, power and performance. Various attacks on electronic and computing
systems have shown that crackers rarely target flaws of well-designed crypto-
graphic algorithms. Instead, they rely on exploiting security vulnerabilities
in the software and hardware components of the implementation. As shown

Figure 8.1: Security attacks classes

in figure 8.1 three kinds of security attacks have been classified [44]:

Software Attacks such as those against operating system kernels, repre-
sent a harmful example security breach. A kernel has full access to
the system and can communicate with any part of the address space.

8.2 Security monitoring 177

This means that an attacker can read or write to the BIOS memory
on the motherboard or on a peripheral hardware. New BIOSes are
implemented through Flash ROMs that can be re-written from soft-
ware; these ROMs are rarely fully-utilized, unfortunately leaving room
to store backdoor information and viruses.

Physical Attacks can be launched through probes to eavesdrop on inter-
components communication. However, for systems on-chip, sophisti-
cated micro-probing techniques become necessary, implying mandatory
de-packaging. Physical attack at chip level are hard to use because their
expensive infrastructure requirement. However they can be deployed
once and then reused for subsequent non-invasive attacks.

Side Channel Attacks such as timing analysis and power analysis exploit
information leakage on the chip. For instance, the operating current
drawn by a hardware device is correlated to computations it is per-
forming. Power consumption increases if more state transitions occurs.
Power analysis attacks rely on the observation that in some systems,
the power profile of cryptographic computations can be directly used
to interpret the cryptographic key.

The evolution of on-chip macro architecture models have been proposed to
provide adequate security functions. Basic security functions, like confiden-
tiality, integrity and authentication, can be implemented with appropriate
security protocols and cryptographic algorithms. A hardware-only approach
uses ASICs to implement a given cryptographic algorithm in hardware. This
approach is effective for few ciphers, but less effective in terms of cost and
flexibility when a variety of ciphers are desired.
A software-only approach using a typical embedded general-purpose proces-
sor (EP) core for performing security protocol and cryptography processing.
A number of hybrid hardware-software approaches have been proposed to ef-
ficiently implement security functions. In particular, interconnection schemes
must be enhanced to support security attributes of transactions to allow se-
curity level monitoring in the interconnection core.
Through observability a system on-chip operating system is capable of track-
ing down the behavior of hardware tasks. As proposed in [49], the network
interface plays a role of the utmost importance in monitoring transactions in
that it is the glue that interfaces IPs to the communication medium. The role
of the network interface is about checking transactions and possibly notify
”exceptions” to the software layer in order to take adequate countermeasures
in case of security faults or violation.

178 Conclusions and future work

Interested readers are directed to [28] to get additional insights about se-
curity monitoring in networks on-chip, a comprehensive overview of current
security technologies applied to networks on-chip solutions.

8.3 Towards clustered NoC-based platforms

The demand for even more computing power keeps increasing in a staggering
way. Since 1980, the complexity of the software as well as the scale and solu-
tion quality of applications have continuously driven the development of even
faster processors. A number of important problems have been identified in
the areas of defense, aerospace, automotive applications and science, whose
solutions require a tremendous amount of computational power.
In order to provide a solution to these tough challenge problems, attention
is turning more and more to computer systems capable of computing at ter-
aflops (1012 floating-point operations per second) level. Even the simplest of
these problems requires gigaflops (109 floating-point operations per second)
of performance for hours at a time. Parallel computers with multiple proces-
sors are opening the door to teraflops computing performance to meet the
increasing demand of computational power. The demand comprehends more
computing power, higher network and input/output (I/O) bandwidths, and
more storage capacity.
Processors are becoming very complex. As an aftermath, processor design
cost is growing so fast that only a few companies all over the world can afford
to design a new processor. A possible and feasible alternative choice consists
in designing parallel computers from legacy components (processors, memo-
ries, interconnects). Distributed-memory multiprocessors or multicomputers
clusters can be built using this approach. This cluster consists of a set of
processors, each one endowed with its own local memory (see figure 4.11 on
page 74). Processors communicate between themselves by forwarding mes-
sages through an interconnection network.
Programming multicomputers turned out to be an exacting task. The pro-
grammer has to take care of distributing code and data among the processors
in an efficient way, calling message passing code (e.g. MPI [41] API) when-
ever some data are needed by other processors.
On the other hand, shared-memory multiprocessors provide a single mem-
ory space to all the processors; in this way, the memory sharing decreases
the latency penalties due to the exchange of data among them. Access to
shared memory has been traditionally implemented by using an interconnec-
tion network between processors and memory (see figure 4.10 on page 74).

8.3 Towards clustered NoC-based platforms 179

This architecture is referred to as uniform memory access (UMA) architec-
ture. It is not scalable in that memory access time increases as system grows
in size.
Recently, shared-memory multiprocessors followed some trends previously
established for multicomputers. In particular, memory has been physically
split among processors, therefore reducing the memory access time for local
accesses and improving scalability. These parallel architectures are reported
in literature as distributed shared-memory multiprocessors (DSMs). Access
to remote memory are performed through an interconnection network. The
main difference between DSMs and multicomputers is that in DSM machines
messages are initiated by memory accesses (i.e. page faults); in multicom-
puters messages are typical networks packets (e.g. MPI data).
Caching allows to reduce memory latency; in particular, cache memories are
organized in a hierarchical layout with several levels. This architecture pro-
vides non-uniform memory access (NUMA) time. The main problem in DSM
consists in maintaining caches coherent.
Although there are many similarities between interconnection networks for
multicomputers and DSMs, it is important to bear in mind that performance
requirements may be very different. Messages are usually very short when
DSMs are used. Moreover, network latency is important because the time it
takes to map and unmap pages of memory depends on that latency. Mes-
sages (e.g. send receive MPI packets) are typically longer and less frequent
when using multicomputers and it is up to the programmer to adjust the
granularity of messages.

Interconnection networks, and networks on-chip in this context, play a
major role in the performance of modern parallel computers. STNoC� is
going to be deployed as interconnection network within the SHAPES project
(Scalable Software Hardware Architecture Platform for Embedded Systems
http://shapes.atmelroma.it), a scalable software and hardware architecture
for current and forthcoming embedded applications. In figure 8.2, a realistic
mock-up of a multi-tile parallel embedded architecture is shown. The het-
erogeneous tile in figure 8.2 is composed of a VLIW floating-point DSP[1], a
RISC machine, on-chip memory, and a network interface. It includes a few
million gates, for optimal balance among parallelism, local memory and IP
reuse for future technologies.
So far, the challenges posed on STNoC� were mostly ”hardware” pushed;
software engineering was not taken into account throughout STNoC� bench-
marking just because software components in benchmarked STMicroelectron-
ics chips were hidden in low-level subsystems. At top level, the goal of the
interconnection was ”just” to provide enough bandwidth with limited latency

http://shapes.atmelroma.it

180 Conclusions and future work

Figure 8.2: STNoC� in a multi-tile parallel architecture

8.4 Conclusion 181

to hardwired IP, with no strings attached.
Given the shift of chips towards parallel computer architectures, software de-
velopment is going to strictly influence the interconnection design.
Programming model goodness (e.g. MPI) depends on how effective the in-
terconnection is in providing required QoS and fairness, forcing the NoC to
supply some kind of on-purpose services to software APIs. Through dedicated
resources STNoC� supports classes of services to build stacked quality of ser-
vice features on top of the bare interconnection medium. The real challenge
looming large at the horizon consists in taking into account interconnection
medium for software development performance early in the design cycle, not
as an afterthought. Scalable programming models effectiveness for parallel
machines such as SHAPES [1] rely on a scalable, programmable and flexi-
ble interconnection network such as STNoC� to provide connection schemes
able to support the tremendous pressure exerted on software development
performance.

8.4 Conclusion

This chapter wrapped up and achieved the thesis work. Two important is-
sues that have to be dealt with were stated, in order to underline current and
future activities in the STNoC� development process.
Security is a subject of the utmost importance in all steps of design flow;
interconnections play an important role in guaranteeing secure transactions
over the chip, by adding special opcodes recognizable by network interfaces
and so by upper layers in the chip stack. The first section of this chapter
described briefly security implications on on-chip networks.
The massive need for parallelism is setting new challenges for on-chip de-
signers that have to deal with multi-processors architectures and related pro-
gramming models. The network, as it is the medium that allows sending
and receiving code and data, represents a paramount component to guaran-
tee programming model efficiency and effectiveness. Section 8.3 highlighted
STNoC� development on this precise direction. Future STNoC� enhance-
ments will be strongly biased by software requirements in order to focus the
research on features that may provide valuable support to this complex shift
in the design paradigm.

Bibliographie

[1] F. Aglietti et al. ”The APEmille supercomputer: Linux in the Theoretical
High Energy Physics”. In Proceeedings of the 5th annual Linux expo,
Rayleigh,North Carolina, pages 71–84, March 1999. 179, 181

[2] ”AMBA specification rev. 2.0”. available at http://www.arm.com. 6, 8,
70

[3] ”AMBA AXI protocol”. specification available at http://www.arm.com.
38

[4] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. ”Scheduler Ac-
tivations: Effective Kernel Support for the User-Level Management of
Parallelism”. ACM Transactions on Computer Systems, 10(1):53–79,
February 1992. 141

[5] A. Andriahantenaina. ”Implémentation matérielle d’un micro-réseau
SPIN à 32 ports”. PhD thesis, Université Paris VI, Janvier 2006. 42

[6] A. Andriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and C. Zefe-
rino. ”SPIN: A Scalable, Packet switched, On-Chip Micronetwork”. In
Proc. Design Automation and Test in Europe Conf., pages 70–73, 2003.
60

[7] ”ARM Realview � ESL interfaces”. available at http://www.arm.com/
products/DevTools/ESLmodelinterfaces.html. 95

[8] ”A Comparison of Network-on-Chip and Busses”. white paper available
at http://www.arteris.net. 48, 54

[9] L. Benini and G. De Micheli. ”Networks On-Chip: A New SOC Para-
digm”. IEEE Transactions on Computers, 35:70–78, 2002. 53

http://www.arm.com
http://www.arm.com
http://www.arm.com/products/DevTools/ESLmodelinterfaces.html
http://www.arm.com/products/DevTools/ESLmodelinterfaces.html
http://www.arteris.net

BIBLIOGRAPHIE 183

[10] D. Bovet and M. Cesati. ”Understanding the LINUX kernel”. O’Reilly,
third edition, 2005. 75, 141

[11] D. Butenhof. ”Programming with POSIX threads”. Addison-Wesley pro-
fessional, 1997. 75, 141, 145

[12] ”NC-Sim simulator”. documentation available at http://www.cadence.
com. 96, 130, 137, 156

[13] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi,
and C. Turchetti. ”System-Level Power Analysis Methodology Applied to
AMBA AHB Bus”. In Proc. Design, Automation and Test Conference,
Munich, 2003. 119

[14] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Tur-
chetti. ”Transaction-Level Model of AMBA Bus architecture using Sys-
temC 2.0”. In Proc. Design, Automation and Test Conference, Munich,
2003. 119

[15] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. ”Theory of
Latency-Insensitive Design”. IEEE Transactions on Computer-Aided
Design of Integrated Circuits, 20(9), September 2001. 29

[16] W. Cesario et al. ”Multiprocessor SoC Platforms: A Component Based
Design Approach”. IEEE Design and test of Computers, 19(6), Novem-
ber 2002. 96

[17] M. Coppola, S. Curaba, M. Grammatikakis, G. Maruccia, and F. Papa-
riello. ”The OCCN user manual”. Available at http://occn.sourceforge.
net. 15, 96, 99

[18] M. Coppola, Curaba.S., M. Grammatikakis, and G. Maruccia. ”IPSIM:
SystemC 3.0 Enhancements for Refinement”. In Proc. Design Automa-
tion and test in Europe Conf., pages 106–111, 2003. 119

[19] ”Coware Platform Architect”. documentation available at http://www.
coware.com/products/platformarchitect.php. 96

[20] W. Dally and B. Towles. ”Route Packets, Not Wires: On-Chip Intercon-
nection Networks”. In DAC 2001, Las Vegas, Nevada, USA, June 2001.
53

[21] W. Dally and B. Towles. ”Principles and Practices of Interconnection
Networks”. Morgan Kaufmann, 2003. 21, 56

http://www.cadence.com
http://www.cadence.com
http://occn.sourceforge.net
http://occn.sourceforge.net
http://www.coware.com/products/platformarchitect.php
http://www.coware.com/products/platformarchitect.php

184 BIBLIOGRAPHIE

[22] H. Deitel and P. Deitel. ”C++ : How to Program”. Prentice Hall, 1998.
97

[23] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White. ”The Source Book of Parallel Computing”. Morgan Kaufmann,
2003. 75

[24] J. Duato, S. Yalamanchili, and L. NI. ”Interconnection Networks”. Mor-
gan Kaufmann, 2003. 54, 59

[25] B. Eckel. ”Thinking in C++ Volume 1: Introduction to Standard C++”.
Eckel,B., 2000. 97, 133

[26] K. Faraydon, A. Nguyen, S. Dey, and R. Rao. ”On-Chip Communication
Architecture for OC-768 Network Processors”. In Proceedings Design
Automation Conference Las Vegas, Nevada, USA, June 2001. 61

[27] D. Gajsky, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. ”SpecC:
Specification Language and Methodology”. Kluwer Academic, 2000. 96

[28] C. Gebotys and R. Gebotys. ”A Framework for Security on NoC Tech-
nologies”. In Proc. IEEE Society Annual Symposium on VLSI, 2003.
178

[29] P. Gevros, J. Crowcroft, P. Kirstein, and S. Bhatti. ”Congestion Control
Mechanism and the Best Effort Service Model”. IEEE Network, May
2001. 67

[30] K. Goossens, O. Gangwal Prakash, J. Roever, and A. Niranjan. ”Inter-
connect and Memory Organization in SoCs for Advanced Set-Top Boxes
and TV – Evolution, Analysis and Trends”. In J. Nurmi, H. Tenhunen,
J. Isoaho, and A. Jantsch, editors, ”Interconnect-Centric Design for SOC
and NOC”, pages 399–423. Kluwer, 2004. 31

[31] K. Goossens and A. Rădulescu. ”Communication Services for Networks
On Silicon”. In S. Bhattacharya, E. Deprettere, and J. Teich, editors,
”Domain-Specific Processors: Systems, Architectures, Modeling and Si-
mulation”, pages 275–299. Marcel Dekker, 2003. 31

[32] A. Grasset, F. Rousseau, and A. Jerraya. ”Network Interface Generation
for MPSoC: from Communication Service Requirements to RTL Imple-
mentation”. In 15th IEEE International Workshop on Rapid System
Prototyping (RSP), Geneva, Switzerland, June 2004. 69

BIBLIOGRAPHIE 185

[33] T. Grötker, S. Liao, G. Martin, and S. Swan. ”System Design with
SystemC”. Kluwer Academic, 2002. 16, 19, 88

[34] P. Guerrier. ”Un réseau d’interconnexion pour systèmes intégrés”. PhD
thesis, Université Paris VI - Pierre et Marie Curie, UFR d’Informatique,
2000. 2, 42

[35] P. Guerrier and A. Greiner. ”A Generic Architecture for On-Chip Packet
Switched Interconnections”. In Proc. Design,Automation and Test in
Europe, pages 250–256, 2000. 43

[36] H. Haverinen, M. Leclercq, N. Weyrich, and D. Wingard. ”SystemC
based SoC Communication Modeling for the OCP protocol”, October
2002. white paper available at http://www.ocpip.org. 96

[37] R. Hyde. ”The Art of Assembly Language”. No Starch Press, 2003. 75

[38] R. Hyde. ”Write Great Code”, volume 1. No Starch Press, 2004. 104,
134

[39] A. Jalabert, S. Murali, L. Benini, and G. De Micheli. ”XpipesCompiler:
A Tool for Instantiating Application Specific Networks On Chip”. In
Proc. Design, Automation and Test in Europe Conf., 2004. 168

[40] A. Jantsch and H. Tenhunen. ”Networks on Chip”. Kluwer Academic
Publisher, 2003. 3, 28, 29

[41] G. Karniadakis and R. Kirby. ”Parallel Scientific Computing in C++
and MPI: A Seamless Approach to Parallel Algorithms and Their Im-
plementation”. Cambridge Universisty Press, 2003. 178

[42] D. Keppel. ”Tools and Techniques for Building Fast Portable Thread
Packages”. Technical report, University of Washington, UWCSE 93-05-
06, 1993. 93, 98

[43] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. ”System Level Design: Orthogonalization of Concerns and
Platform-Based Design”. IEEE Transactions on Computer-Aided Design
of Integrated Circuits, 19(12):1523–1543, December 2000. 86

[44] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravi. ”Security
as a New Dimension in Embedded System Design”. In Proc. Design and
Automation Conference, San Diego, California, USA, June 2004. 176

http://www.ocpip.org

186 BIBLIOGRAPHIE

[45] S. Kumar, Jantsch.A., J. Soininen, M. Forsell, M. Millberg, J. Öberg,
K. Tiensyrjä, and A. Hemani. ”A Network On-Chip Architecture and
Design Methodology”. In Proceedings of IEEE Computer Society Annual
Symposium on VLSI, April 2002. 31

[46] P. Li-Shuan and W. Dally. ”Flit-Reservation Flow Control”. In Procee-
dings of the 6th international symposium on high-performance computer
architecture, Toulouse, France, pages 73–84, January 2000. 56

[47] R. Love. ”Linux Kernel Development”. Novell Press, 2005. 75, 119, 141

[48] ”Linux Scalability Effort”, http://lse.sourceforge.net. 147

[49] T. Marescaux, J-Y. Mignolet, A. Bartic, W. Moffat, D. Verkest, and
R. Lauwereins. ”Networks on-chip as hardware components of an OS for
Reconfigurable Systems”. In Proc. FPL, 2003. 177

[50] S. Meftali et al. ”SOAP Based Distributed Simulation Environment for
System-on-Chip (SoC) design”. In Forum on Specification and Design
Languages, 2005. 148

[51] S. Meyers. ”Effective C++: 50 Specific Ways to Improve Your Program
and Design”. Addison-Wesley, Reading, MA, 1997. 104

[52] G. Moore. ”Cramming more Components onto Integrated Circuits”. Elec-
tronics, 38(8), April 1965. 87

[53] S. Murali and G. De Micheli. ”SUNMAP: A Tool for Automatic To-
pology Selection and Generation NoCs”. In Proceedings of Design and
Automation Conference, San Diego, California, USA, June 2004. 168

[54] ”OCP IP Data Sheet”. available at http://www.ocpip.org. 41

[55] ”Oprofile: A system wide profiler for Linux Systems”, http://oprofile.
sourceforge.net. 142

[56] G. Palermo and C. Silvano. ”PIRATE: A Framework for Po-
wer/Performance Exploration of Network-On-Chip Architectures”. In
Proc. Int. Workshop on Power and Timing modeling (PATMOS), pages
521–531, 2004. 120

[57] S. Pasricha, N. Dutt, and M. Ben-Romdhane. ”Constraint-Driven Bus
Matrix Synthesis for MPSoC”. In Proceedings of ASP-DAC, Yokohama,
Japan, January 2006. 59

http://lse.sourceforge.net
http://www.ocpip.org
http://oprofile.sourceforge.net
http://oprofile.sourceforge.net

BIBLIOGRAPHIE 187

[58] D. Patterson and J. Hennessy. ”Computer Architecture: A Quantitative
Approach”. Morgan Kaufmann, 2003. 75

[59] L. Peterson and B. Davie. ”Computer Networks”. Morgan Kaufmann,
2003. 54

[60] ”QT 4.0 white paper”. Available at http://www.trolltech.com. 154

[61] A. Rădulescu, J. Dielissen, K. Goossens, E. Rijpkema, and P. Wielage.
”An Efficient On-Chip Network Interface offering Guaranteed Services,
Shared-Memory Abstraction, and Flexible Network Programming”. In
Proc. of Design, Automation and Test Conference in Europe, February
2004. 82

[62] A. Rose, S. Swan, J. Pierce, and J. Fernandez. ”Transaction-Level Mode-
ling in SystemC”, 2004. white paper available at http://www.systemc.org.
97

[63] T. Rose. ”The OpenBook: A Practical Perspective on OSI”. Prentice
Hall, 1990. 16, 53

[64] J. Rowson and A. Sangiovanni-Vincentelli. ”Interface Based Design”. In
Proceedings of the Design Automation Conference, pages 178–183, 1997.
96

[65] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli. ”Addressing the System-on-a-chip Intercon-
nect Woes Through Communication Based Design”. In Proceedings of
the 38th Design Automation Conference, June 2001. 41, 93

[66] ”SiliconBackplane III Micronetwork IP”. available at http://www.
sonicsinc.com. 40

[67] ”STBUS Communication System: Concepts and Definition”. STMicroe-
lectronics internal document. 8, 37, 76

[68] B. Stroustrup. ”The C++ Programming Language”. Addison-Wesley,
2000. 97, 104

[69] D. Sylvester. ”A Global Wiring Paradigm for Deep Submicron Design”.
IEEE Transactions on Computer-Aided Design of Integrated Circuits,
19(2), February 2000. 29

[70] ”System Studio”. documentation available at http://www.synopsys.com/
products/cocentric studio/cocentric studio.html. 95

http://www.trolltech.com
http://www.systemc.org
http://www.sonicsinc.com
http://www.sonicsinc.com
http://www.synopsys.com/products/cocentric_studio/cocentric_studio.html
http://www.synopsys.com/products/cocentric_studio/cocentric_studio.html

188 BIBLIOGRAPHIE

[71] ”Functional Specification for SystemC 2.0”, 2001. Available at http://
www.systemc.org. 87

[72] ”SystemC User’s Guide”, 2001. Available at http://www.systemc.org. 87

[73] A. Tanenbaum. ”Modern Operating Systems”. Prentice Hall, 2001. 141

[74] A. Tanenbaum. ”Computer Networks”. Prentice Hall, 2003. 69, 157

[75] M. Taylor et al. ”The Raw Microprocessor: A Computational Fabric for
Software Circuits and General-Purpose Programs”. IEEE Micro, March
2002. 45

[76] T. Theis. ”The Future of Interconnection Technology”. IBM Journal of
Research and Development, 44(3), 2000. 28

[77] R. Thid, M. Millberg, and A. Jantsch. ”Evaluating NoC Communica-
tion Backbones with Simulation”. In Proceedings of the IEEE NorChip,
November 2003. 87

[78] A. Valentian and A. Amara. ”On-Chip Signaling for Ultra Low-Voltage
0.13µm CMOS SOI Technology”. In Proc. NEWCAS, Montreal, Canada,
June 2004. 53

[79] J. Wu. ”Fault-Tolerant Adaptive and Minimal Routing in Mesh-
Connected Multicomputers Using Extended Safety Levels”. IEEE Tran-
sactions on Parallel and Distributed Systems, 11(2), February 2000. 115

[80] M. Yang and L. M. Ni. ”Design of Scalable and Multicast Capable Cut-
Through Switches for High-Speed LANs”. In Proceedings of the Interna-
tional Conference on Parallel Processing, pages 324–332, August 1997.
57

[81] X. Zhu and S. Malik. ”A Hierarchical Modeling Framework for On-
Chip Communication Architectures”. In Proceedings of International
Conference on Computer-Aided Design 2002, November 2002. 96

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org

	1 Présentation de la thèse
	1.1 Problématique
	1.2 Contribution
	1.3 Présentation de la structure de la thèse

	2 Modélisation de réseau flexible pour les systèmes monopuce
	2.1 Introduction
	2.2 État de l'art
	2.3 Méthodologie de modélisation de réseaux sur puce
	2.3.1 Simulations distribuées pour les systèmes monopuce

	2.4 Exploration d'architecture du réseau STNoC™
	2.5 Conclusion

	3 SoCs interconnections
	3.1 Introduction
	3.2 Networks on-chip motivations
	3.3 State of the art
	3.3.1 Shared multi-layer buses and crossbars
	3.3.1.1 AMBA Bus
	3.3.1.2 IBM™ Core Connect
	3.3.1.3 STMicroelectronics STBus
	3.3.1.4 AMBA AXI
	3.3.1.5 SONICS™ Silicon backplane

	3.3.2 On-chip switching networks
	3.3.2.1 LIP6 SPIN
	3.3.2.2 Philips' Æthereal Network on-chip
	3.3.2.3 MIT Raw
	3.3.2.4 Arteris NoC

	3.4 Summary of existing interconnections
	3.5 Conclusion

	4 Networks On-chip: A layered approach for On-chip communication
	4.1 Introduction
	4.2 Networks on-chip: a micronetwork of components
	4.3 Data link layer
	4.3.1 Flit-level flow control
	4.3.1.1 Wormhole flow control
	4.3.1.2 Virtual channel flow control

	4.4 Network Layer
	4.4.1 Network topologies
	4.4.2 Routing algorithms
	4.4.2.1 Deterministic routing
	4.4.2.2 Adaptive routing

	4.4.3 Guaranteed services
	4.4.3.1 Traffic shaping
	4.4.3.2 Resource reservation

	4.4.4 Best effort services
	4.4.5 Arbitration policy and algorithms

	4.5 Transport Layer
	4.5.1 Bus bridging
	4.5.2 Advanced protocol issues
	4.5.2.1 Atomic transactions and compound operations

	4.6 STNoC™ network on-chip
	4.6.1 STNoC™ router
	4.6.2 STNoC™ network interface

	4.7 Conclusion

	5 Networks On-Chip Modeling: Application to STNoC™
	5.1 Introduction
	5.2 System level design
	5.3 SystemC environment
	5.3.1 SystemC Kernel
	5.3.2 SystemC groundwork for transaction-level modeling

	5.4 Transaction Level Modeling (TLM)
	5.4.1 TLM State of the art
	5.4.2 TLM OSCI standard

	5.5 OCCN: On-Chip Communication Network
	5.5.1 OCCN methodology overview
	5.5.2 OCCN API and library components
	5.5.2.1 PDU
	5.5.2.2 MasterPort/SlavePort
	5.5.2.3 Master/Slave Interfaces

	5.6 Networks on-chip modeling methodology
	5.6.1 Routers modeling principles
	5.6.2 Pipeline modeling and scheduling
	5.6.3 Models profiling and simulation speed
	5.6.4 Modularized arbitration
	5.6.5 Network Interface models structure and hierarchy
	5.6.6 Network interface size and frequency conversion
	5.6.7 Network interface C++ objects inheritance and composition patterns

	5.7 Co-simulation wrappers
	5.7.1 SystemC/Verilog wrappers
	5.7.2 TLM to signals wrappers

	5.8 Distributed simulations for Networks On-chip
	5.8.1 POSIX primitives for concurrent simulations
	5.8.2 Delta cycle parallelism through kernel helper threads
	5.8.3 SystemC Kernel critical regions
	5.8.4 Wrap-up and on-going work

	5.9 Conclusion

	6 STNoC™ benchmarking
	6.1 Introduction
	6.2 STMicroelectronics STBus based SoC
	6.2.1 STBus Genkit
	6.2.2 Mixed-level interconnection simulations

	6.3 Applications high-level descriptions
	6.3.1 Video streams

	6.4 Traffic Modeling
	6.4.1 IPTG overview and sample file

	6.5 Conclusion

	7 Outcomes analysis of STNoC™ benchmarking
	7.1 Introduction
	7.2 STNoC™ general characterization
	7.2.1 Throughput and latency measures

	7.3 STNoC™ benchmarking of real applications
	7.4 Conclusion

	8 Conclusions and future work
	8.1 Introduction
	8.2 Security monitoring
	8.3 Towards clustered NoC-based platforms
	8.4 Conclusion

