Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative

Abstract : In this work, we study the ergodic properties of the horospherical foliation of a geometrically finite negatively curved manifold $M$. One of our main results is the classification of quasi-invariant transverse measures whose Radon-Nokodym derivative is a fixed Hölder cocycle, associated with a Gibbs measure. To such a cocycle we associate certain horospherical means and we prove their equidistribution to the corresponding Gibbs measure when $M$ is compact or convex-cocompact. When $M$ is neither compact nor convex-cocompact, we restrict the study to the means associated with the measure of maximal entropy. We show that they do not diverge; in the case of surfaces, it allows us to prove their equidistribution to the measure of maximal entropy. As a corollary, we get the equidistribution of the orbits of the horocyclic flow of a geometrically finite hyperbolic surface with infinite volume.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00163420
Contributor : Barbara Schapira <>
Submitted on : Tuesday, July 17, 2007 - 2:46:22 PM
Last modification on : Tuesday, December 3, 2019 - 1:35:41 AM
Long-term archiving on: Thursday, April 8, 2010 - 11:28:32 PM

Identifiers

  • HAL Id : tel-00163420, version 1

Citation

Barbara Schapira. Propriétés ergodiques du feuilletage horosphérique d'une variété à courbure négative. Mathématiques [math]. Université d'Orléans, 2003. Français. ⟨tel-00163420⟩

Share

Metrics

Record views

298

Files downloads

325