J. Y. Merlinand and P. Vaugeois, Les aciers inoxydables dans l'échappement automobile, Revue de Métallurgie -CIT, pp.1529-1536, 1994.

P. Bastid, Comportement thermomécanique de fontes à graphite sphéroïdal pour collecteur d'échappement, Thèse de doctorat, Ecole Nationale Supérieure des Mines de Paris, 1995.

J. Casteland and P. Bourgain, Nuances d'aciers inoxydables pour échappement automobile. Tendances pour résoudre différents problèmes, Revue de Métallurgie -CIT, pp.667-672, 1986.

P. Maîtrepierre, B. Bramaud-gratteau, and J. Decroix, Evolution des matériaux pour la ligne d'échappement automobile européenne, Revue de Métallurgie -CIT, pp.657-666, 1986.

. Arcelor, disponible sur www.arcelor.com [10] N. Fujita, New Ferritic Stainless Steels in Automotive Exhaust System for Clean Environment, 2000.

R. Mohrmann, W. Schmitt, H. Riedel, and A. , Dietsche and A. Fishersworring-Bunk, Modelling of the Fatigue Life of Automobile Exhaust Components, 2002.

P. Maziaszand and M. Pollard, High-Temperature Cast Stainless steel, Advanced Materials & Processes -Metals technology for design, testing and processing, pp.57-59, 2003.

L. Bucher, Fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile, 2002.
URL : https://hal.archives-ouvertes.fr/tel-00163013

P. J. Cunat, Aciers inoxydables -Fabrication, Techniques de l'ingénieur, M 4 543, pp.1-18, 2000.

A. International, Metals Handbook -Properties and Selection: Irons, Steels and High- Performance Alloys, 1990.

D. G. Morris and D. R. Harries, Creep and rupture in Type 316 stainless steel at temperatures between 525 and 900??C Part III: Precipitation behaviour, Metal Science, vol.190, issue.11, pp.542-549, 1978.
DOI : 10.1016/0001-6160(67)90159-9

D. J. Chastel and P. E. Flewitt, The formation of the ?? phase during long term high temperature creep of type 316 austenitic stainless steel, Materials Science and Engineering, vol.38, issue.2, pp.153-162, 1978.
DOI : 10.1016/0025-5416(79)90091-0

J. K. Lai and C. A. Horton, Some effects of thermal aging and grain size on the creep behaviour of a cast of AISI type 316 stainless steel, Materials Science and Engineering, vol.54, issue.2, pp.285-289, 1982.
DOI : 10.1016/0025-5416(82)90124-0

J. K. Lai, A study of precipitation in AISI type 316 stainless steel, Materials Science and Engineering, vol.58, issue.2, pp.195-209, 1983.
DOI : 10.1016/0025-5416(83)90046-0

J. K. Lai, A review of precipitation behaviour in AISI type 316 stainless steel, Materials Science and Engineering, vol.61, issue.2, pp.101-109, 1983.
DOI : 10.1016/0025-5416(83)90191-X

H. Kimura, Y. Ihara, and Y. Minami, Microstructural changes in austenitic stainless steels during long-term aging, Materials Science and Technology, vol.2, pp.795-806, 1986.

T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Materials Science and Technology, vol.49, issue.1, pp.1-14, 2001.
DOI : 10.1016/0001-6160(72)90122-8

R. Stickler and A. Vinckier, La morphologie des carbures (Cr,Fe) 23 C 6 et son influence sur la corrosion intergranulaire d'un acier inoxydable 18, pp.7-8, 1963.

P. Marshall, Austenitic Stainless Steels -Microstructure and Mechanical Properties, 1984.

J. Barcik and B. Brzycka, Chemical composition of $ phase precipitated in chromium-nickel austenitic steels, Metal Science, pp.256-260, 1983.

J. Barcik, Mechanism of ??-phase precipitation in Cr???Ni austenitic steels, Materials Science and Technology, vol.23, issue.1, pp.5-15, 1988.
DOI : 10.1016/0025-5416(83)90191-X

T. C. Chang, G. L. Liu, and D. Y. Lin, Effect of Si on the growth behavior of $ phase in SUS 309L stainless steel, Scripta Materialia, vol.49, pp.855-860, 2003.

S. R. Keown and R. G. Thomas, Role of delta ferrite in thermal aging of type 316 weld metals, Metal Science, vol.40, issue.4, pp.386-392, 1981.
DOI : 10.5006/0010-9312-27.9.376

S. K. Ray, S. L. Mannan, and G. Sasikala, Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal, Materials Science and Engineering, vol.359, pp.86-90, 2003.

L. P. Stoter, Thermal ageing effects in AISI type 316 stainless steel, Journal of Materials Science, vol.2, issue.4, pp.1039-1051, 1981.
DOI : 10.1007/BF00542750

K. A. Taylor, Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scripta Metallurgica et Materialia, vol.32, issue.1, pp.7-12, 1995.
DOI : 10.1016/S0956-716X(99)80002-8

A. Désestret, G. Daufin, L. Kerhervé, F. Michel, and G. Vallier, Utilisation des aciers ferritiques à 17%Cr dans l'industrie laitière, Mémoires et Etudes Scientifiques -Revue de Métallurgie, pp.647-662, 1981.

J. D. Gates and R. A. Jago, Effect of nitrogen contamination on intergranular corrosion of stabilized ferritic stainless steels, Materials Science and Technology, vol.9, issue.4, pp.450-454, 1987.
DOI : 10.5006/0010-9312-29.9.337

C. Brasilleira-de-metalurgia and E. Mineraçao, Characteristic Features of Titanium, Vanadium and Niobium as Microalloy Additions to Steel, Niobium Information, pp.1-6, 1998.

A. J. Deardo, Fundamental Metallurgy of Niobium in Steel, Niobium Science & Technology, Metals & Materials, 2001.

P. Maîtrepierre, B. Bramaud-gratteau, and J. Decroix, Evolution des matériaux pour la ligne d'échappement automobile européenne, Revue de Métallurgie -Cahiers d'Informations Techniques, pp.657-666, 1986.

W. Gordon and A. Van-bennekom, Review of stabilisation of ferritic stainless steels, Materials Science and Technology, vol.17, issue.3, pp.126-131, 1986.
DOI : 10.1007/BF02644003

I. A. Franson and J. D. Fritz, Stabilization Requirements for T409 (UNS S 40900) Ferritic Stainless Steel, SAE, pp.155-161, 1997.
DOI : 10.4271/971005

B. Baroux, M. Mantel, J. Ragot, and P. Chemelle, Relation entre la microstructure et la résistance au fluage et à l'oxydation d'aciers à 17% de chrome stabilisés par du zirconium et du niobium, Mémoires et Etudes Scientifiques -Revue de Métallurgie, pp.637-648, 1990.

M. Grumbach, Aciers microalliés, Techniques de l'ingénieur, pp.1-29, 2000.

S. Lartigue, D. Alaoua, A. Larere, and L. Priester, Precipitation and surface segregation in low carbon steels, Materials Science and Engineering, vol.189, pp.155-163, 1994.

C. I. Garcia, A. J. Deardo, and M. Hua, Precipitation Behaviour in Ultra-Low-Carbon Steels Containing Titanium and Niobium, Metallurgical and Materials Transaction A, vol.28, pp.1769-1780, 1997.

W. J. Poole, M. Charleux, M. Militzer, and A. Deschamps, Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb, pp.1635-1647, 2001.

C. Louis and G. Seux, Caractérisation, quantification des sulfures, carbosulfures et phosphures de titane dans les aciers à dispersoïdes, IRSID, 1996.

D. T. Gawne and G. M. Lewis, Strengthening mechanisms in high-strength microalloyed steels, Materials Science and Technology, vol.209, issue.3, pp.183-191, 1985.
DOI : 10.1179/030716981803275523

F. B. Pickering, Physical metallurgy and the design of steels, Materials science series, Applied science pub, 1978.

K. Ohmura, N. Fujita, M. Kikuchi, and T. Suzuki, Effect of Nb on High-Temperature Properties for Ferritic Stainless Steel, Scripta Materialia, vol.35, issue.6, pp.705-710, 1996.

K. Takao, O. Furukimi, and A. Miyazaki, Effect of Nb on the Proof Strength of Ferritic Stainless Steels at Elevated Temperatures, ISIJ International, vol.42, issue.8, pp.916-920, 2002.

N. Fujita, New Ferritic Stainless Steels in Automotive Exhaust System for Clean Environment, 2000.

K. Ohmura, A. Yamamoto, and N. Fujita, Changes of microstructure and high temperature propertes during high temperature service of Niobium added ferritic stainless steels, Materials Science and Engineering, vol.351, pp.272-281, 2003.

Y. Kimura, K. Yamamoto, F. G. Wei, and Y. Mishima, Design of Laves phase strengthened ferritic heat resisting steels in the Fe-Cr-Nb(-Ni) system, Materials Science and Engineering, pp.329-331, 2002.

M. Schütze, Protective Oxide Scales and their Breakdown, Corrosion and Protection, 1997.

G. C. Wood, The oxidation of iron-chromium alloys and stainless steels at high temperatures, Corrosion science, pp.173-196, 1961.

J. Hertz, J. Bénard, Y. Jeannnin, and J. Moreau, Sur le mécanisme d'oxydation aux températures élevées de l'acier austénitique 18%Cr-8%Ni, pp.389-394, 1960.

L. Antoni and A. Galerie, Corrosion sèche des métaux -Mécanismes, pp.221-222, 2003.

R. Devin, R. Castro, and J. Decroix, L'oxydation à haute température d'aciers inoxydables au Cr et au Cr-Ni à l'air et en atmosphères pauvres en oxygène, pp.665-675, 1963.

H. P. Schmidt, R. E. Lobnig, K. Hennesen, and H. J. Grabke, Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloy, Oxidation of Metals, vol.37, issue.12, pp.81-93, 1992.

W. Zielinski and K. J. Kurzydlowski, TEM studies of the oxide scales formed on type 316 stainless steel during annealing at 600 ??c in a vacuum and air, Scripta Materialia, vol.43, issue.1, pp.33-37, 2000.
DOI : 10.1016/S1359-6462(00)00362-6

Z. Longjiang, L. Tiefan, and S. Jianian, High-Temperature Oxidation of Fe-Cr Alloys in Wet Oxygen, Oxidation of Metals, vol.48, issue.3, pp.347-356, 1997.

J. M. Lameille, C. Berthier, M. Lenglet, D. Abida, J. Lopitaux et al., Relation entre la présence d'Eléments d'Alliage et les Mécanismes de Croissance de la Couche d'Oxydes Formée sur Aciers Ferritiques AISI 430, Materials Science Forum, pp.251-254, 1997.

M. Hubert, P. Becquerelle, B. Savage, J. C. Bavay, and P. Bourgain, Effects of Aluminium and Silicon on the Oxidation Resistance of 13%Cr-Ti Ferritic Stainless Steel, Materials Science and Engineering, vol.87, pp.137-143, 1987.

C. Lille and R. F. , Factors affecting the oxidation mode of stainless steels, Materials at High Temperatures, vol.37, issue.2, pp.287-292, 2000.
DOI : 10.1007/BF00656646

J. Stringer, The reactive element effect in high-temperature corrosion, Materials Science and Engineering: A, vol.120, issue.121, pp.129-137, 1989.
DOI : 10.1016/0921-5093(89)90730-2

J. Mougin, Tenue mécanique des couches d'oxyde thermique générées sur le chrome et sur quelques aciers inoxydables ferritiques: étude des contraintes et de l'adhérence, Thèse de doctorat, 2001.

D. R. Baer, Protective and non-protective oxide formation on 304 stainless steel, Applications of Surface Science, vol.7, issue.1-2, pp.69-82, 1981.
DOI : 10.1016/0378-5963(81)90061-1

F. B. Pickering, Physical metallurgy and the design of steels, Ed. Aaplied science, 1978.

H. U. Hong, S. W. Nam, and B. S. Rho, The fatigue crack initiation at the interface between matrix and $-ferrite in 304L stainless steel, Scripta Materialia, issue.10, pp.39-1407, 1998.

H. U. Hong, S. W. Nam, and B. S. Rho, The effect of $ ferrite on fatigue cracks in 304L steels, International Journal of Fatigue, vol.22, pp.683-690, 2000.

B. S. Rho, S. W. Nam, and H. U. Hong, A study on the carck initiation and growth from $-ferrite/! phase interface under continuous fatigue and creep-fatigue conditions in tpe 304L stainless steels, International Journal of Fatigue, vol.24, pp.1063-1070, 2002.

S. D. Preston, Thermal properties of six automotive alloys, A report for nCode International, 2001.

P. O. Santacreu, Caractérisation en traction à hautes températures des nuances d'aciers inoxydables pour l'échappement automobile (Campagne IRSID 1997, Note technique Ugine, pp.1-10, 1998.

O. Cleizergues, Résultats de la campagne d'essais de fluage sur Extratherm et F17TNb (METCUT), Note technique Ugine, 2000.

&. Ugine and . Alz, Caractéristiques des nuances inox Ugine utilisées dans le débouché "échappement automobile, 2000.

H. J. Frostand and M. F. Ashby, Deformation-mechanism maps -The Plasticity and Creep of Metals and Ceramics, 1982.

P. O. Santacreu, Caractérisation en fluage SAG-Test des nuances échappement, Note technique Ugine, pp.1-5, 1998.

C. Brasilleira-de-metalurgia and E. Mineraçao, Characteristic Features of Titanium, Vanadium and Niobium as Microalloy Additions to Steel, Niobium Information, pp.1-6, 1998.

M. Grumbach, Aciers microalliés, Techniques de l'ingénieur, M 4 525, pp.1-29, 2000.

M. J. Manjoine, Stress relaxation characteristics of type 304 stainless steel, Creep and fatigue in elevated temperature application, 1974.

I. Evenepoel and P. O. Santacreu, Simulation de l'essai de fatigue thermique Ugine avec ABAQUS, Note technique Ugine, pp.1-25, 2000.

K. D. Sheffler, Vaccum Thermal-Mechanical Fatigue Behavior of Two Iron-Base Alloys, Thermal Fatigue of Materials and Components, ASTM STP, vol.612, pp.214-226, 1976.

L. F. Coffin, Instability Effects in Thermal Fatigue, Thermal Fatigue of Materials and Components, ASTM STP 612, pp.227-238, 1976.
DOI : 10.1520/STP27894S

B. Barlas, Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie, Thèse de doctorat, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00162056

R. P. Skelton, Low Cycle Fatigue and Life Prediction, ASTM STP, vol.770, pp.337-381, 1982.

B. Proult, Caractérisation en fatigue oligocyclique du F17TNb (1.4509) à 20°C, pp.1-14, 2001.

B. Tomkins, Fatigue Crack Propagation -An Analysis, Philosolical Magazine, pp.1041-1066, 1968.