. Au, les deux lignes de fissures n'interagissent plus et seulement une seule d'entre elles se rompt préférentiellement. Il est donc naturel que le seuil de rupture n'évolue alors plus avec d et que l'on observe un palier. On imagine assez facilement que les seuils de rupture mesurés pour les échantillons répulsifs i.e. de type II soient plus grands que pour ceux de type I. Comme leur proportion augmente lorsque d diminue, on comprend qualitativement l'augmentation du seuil de rupture moyen

). Cortet, S. Santucci, L. Vanel, and S. Ciliberto, Slow crack growth in polycarbonate films Super-Arrhenius dynamics for sub-critical crack growth in two-dimmensional disordered brittle media, Liste des publications relatives à la thèse Les articles cités sont téléchargeables sur l'url suivante, pp.1-7, 2005.

P. Santucci, S. Cortet, L. Deschanel, S. Vanel, ). Ciliberto et al., Subcritical crack growth in fibrous materials Imaging the stick-slip peeling of an adhesive tape under a constant load (5) Log-cumulant multifractal analysis of roughness : discrepancy between sub-critical and fast rupture (6) P.-P, A dynamical law for slow crack growth in polycarbonate films (7) P.-P. Cortet, L. Vanel, S. Ciliberto, en préparation pour Physical Review E Slow crack growth in polycarbonate films controlled by crack tip plastic zone growth dynamics 159, pp.595-601, 2006.

E. Chapitre, Liste des publications relatives à la thèse Bibliographie [1] M, Marder et J. Fineberg, Physics today, pp.49-73, 1996.

B. L. Averbach, Fracture : an Advanced Treatise, Liebowitz, p.441, 1968.

I. S. Grigoriev, E. Z. Melikhov, and A. A. Radzig, Handbook of Physical Quantities, 1997.

G. R. Irwin, Fracture : Handbuch der physik, p.557, 1958.

B. R. Lawn and T. R. Wilshaw, Fracture of Brittle Solids, 1975.
DOI : 10.1017/CBO9780511623127

D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, p.100, 1960.
DOI : 10.1016/0022-5096(60)90013-2

G. I. Barenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech, vol.7, p.55, 1962.
DOI : 10.1016/S0065-2156(08)70121-2

J. R. Rice, Fracture : an Advanced Treatise, Liebowitz, p.191, 1968.

D. Maugis, Contact, adhesion, and rupture of elastic solids, 2000.
DOI : 10.1007/978-3-662-04125-3

W. Döll and A. , Polymer Sc, p.105, 1983.

H. R. Brown and I. M. Ward, Craze shape and fracture in poly(methyl methacrylate), Polymer, vol.14, issue.10, p.469, 1973.
DOI : 10.1016/0032-3861(73)90152-3

F. Bueche, Tensile Strength of Plastics above the Glass Temperature, Journal of Applied Physics, vol.26, issue.9, p.1133, 1955.
DOI : 10.1063/1.1722166

F. Bueche, Tensile Strength of Plastics below the Glass Temperature, Journal of Applied Physics, vol.28, issue.7, p.784, 1957.
DOI : 10.1063/1.1722855

V. R. Regel, A. I. Sluzker, and E. E. Tomashevski, Kinetic Nature of Strength of Solids, 1974.

S. S. Brenner, Mechanical Behavior of Sapphire Whiskers at Elevated Temperatures, Journal of Applied Physics, vol.33, issue.1, p.33, 1962.
DOI : 10.1063/1.1728523

L. Pauchard and J. Meunier, Instantaneous and time-lag breaking of a two-dimensional solid rod under a bending stress, Physical Review Letters, vol.70, issue.23, p.3565, 1993.
DOI : 10.1103/PhysRevLett.70.3565

C. Hsieh and R. Thomson, Lattice theory of fracture and crack creep, Journal of Applied Physics, vol.44, issue.5, p.2051, 1973.
DOI : 10.1063/1.1662512

M. Marder, Statistical mechanics of cracks, Physical Review E, vol.54, issue.4, p.3442, 1996.
DOI : 10.1103/PhysRevE.54.3442

S. Santucci, L. Vanel, and S. Ciliberto, Subcritical Statistics in Rupture of Fibrous Materials: Experiments and Model, Physical Review Letters, vol.93, issue.9, p.95505, 2004.
DOI : 10.1103/PhysRevLett.93.095505

URL : https://hal.archives-ouvertes.fr/hal-00111276

R. A. Schapery, A theory of crack initiation and growth in viscoelastic media, International Journal of Fracture, vol.27, issue.1, p.141, 1975.
DOI : 10.1007/BF00034721

R. A. Schapery, A theory of crack initiation and growth in viscoelastic media, International Journal of Fracture, vol.26, issue.4, p.549, 1975.
DOI : 10.1007/BF00116363

A. A. Kaminskii, Analyzing the Laws of Stable Subcritical Growth of Cracks in Polymeric Materials on the Basis of Fracture Mesomechanics Models. Theory and Experiment, International Applied Mechanics, vol.40, issue.8, p.829, 2004.
DOI : 10.1023/B:INAM.0000048678.90425.86

S. Santucci, L. Vanel, A. Guarino, R. Scorretti, and S. Ciliberto, Thermal activation of rupture and slow crack growth in a model of homogeneous brittle materials, Europhysics Letters (EPL), vol.62, issue.3, p.320, 2003.
DOI : 10.1209/epl/i2003-00398-1

S. Santucci, P. Cortet, S. Deschanel, L. Vanel, and S. Ciliberto, Subcritical crack growth in fibrous materials, Europhysics Letters (EPL), vol.74, issue.4, p.595, 2006.
DOI : 10.1209/epl/i2005-10575-2

URL : https://hal.archives-ouvertes.fr/ensl-00156825

E. Bouchaud, G. Lapasset, and J. Planès, Fractal Dimension of Fractured Surfaces: A Universal Value?, Europhysics Letters (EPL), vol.13, issue.1, p.73, 1990.
DOI : 10.1209/0295-5075/13/1/013

K. J. Måløy, A. Hansen, E. L. Hinrichsen, and S. Roux, Experimental measurements of the roughness of brittle cracks, Physical Review Letters, vol.68, issue.2, p.213, 1992.
DOI : 10.1103/PhysRevLett.68.213

S. Roux, Thermally activated breakdown in the fiber-bundle model, Physical Review E, vol.62, issue.5, p.6164, 2000.
DOI : 10.1103/PhysRevE.62.6164

A. Saichev and D. Sornette, Andrade, Omori, and time-to-failure laws from thermal noise in material rupture, Physical Review E, vol.71, issue.1, p.16608, 2005.
DOI : 10.1103/PhysRevE.71.016608

R. H. Doremus, Fracture statistics: A comparison of the normal, Weibull, and Type I extreme value distributions, Journal of Applied Physics, vol.54, issue.1, p.193, 1983.
DOI : 10.1063/1.331731

J. Kierfeld and V. M. Vinokur, Slow Crack Propagation in Heterogeneous Materials, Physical Review Letters, vol.96, issue.17, p.175502, 2006.
DOI : 10.1103/PhysRevLett.96.175502

URL : http://arxiv.org/abs/1010.5639

P. F. Arndt and T. Nattermann, Criterion for crack formation in disordered materials, Physical Review B, vol.63, issue.13, p.134204, 2001.
DOI : 10.1103/PhysRevB.63.134204

J. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports, vol.195, issue.4-5, p.127, 1990.
DOI : 10.1016/0370-1573(90)90099-N

E. Bouchbinder, J. Mathiesen, and I. Procaccia, Roughening of Fracture Surfaces: The Role of Plastic Deformation, Physical Review Letters, vol.92, issue.24, p.245505, 2004.
DOI : 10.1103/PhysRevLett.92.245505

E. Bouchbinder, I. Procaccia, S. Santucci, and L. Vanel, Fracture Surfaces as Multiscaling Graphs, Physical Review Letters, vol.96, issue.5, p.55509, 2006.
DOI : 10.1103/PhysRevLett.96.055509

URL : https://hal.archives-ouvertes.fr/ensl-00156808

P. S. Hope, I. M. Ward, and A. G. Gibson, The hydrostatic extrusion of polymethylmethacrylate, Journal of Materials Science, vol.3, issue.9, p.2207, 1980.
DOI : 10.1007/BF00552308

P. S. Hope, R. A. Duckett, and I. M. Ward, Effect of free monomer content on the drawing behavior of poly(methyl methacrylate), Journal of Applied Polymer Science, vol.25, issue.7, p.1373, 1980.
DOI : 10.1002/app.1980.070250711

S. Rabinowitz, I. M. Ward, and J. S. Parry, The effect of hydrostatic pressure on the shear yield behaviour of polymers, Journal of Materials Science, vol.32, issue.1, p.29, 1970.
DOI : 10.1007/PL00020253

H. Eyring, Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates, The Journal of Chemical Physics, vol.4, issue.4, p.283, 1936.
DOI : 10.1063/1.1749836

R. J. Young and P. A. Lovell, Introduction to polymers : second edition, 1991.

D. G. Fotheringham and B. W. Cherry, The role of recovery forces in the deformation of linear polyethylene, Journal of Materials Science, vol.11, issue.7, p.951, 1978.
DOI : 10.1007/BF00544690

C. Bauwens-crowet, J. C. Bauwens, and G. Homes, The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests, Journal of Materials Science, vol.6, issue.7, p.176, 1972.
DOI : 10.1007/BF02403504

I. M. Ward, Mechanical properties of solid polymers, 1983.

M. C. Boyce, D. M. Parks, and A. S. Argon, Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model, Mechanics of Materials, vol.7, issue.1, p.15, 1988.
DOI : 10.1016/0167-6636(88)90003-8

M. C. Boyce, D. M. Parks, and A. S. Argon, Large inelastic deformation of glassy polymers. Part II: numerical simulation of hydrostatic extrusion, Mechanics of Materials, vol.7, issue.1, p.35, 1988.
DOI : 10.1016/0167-6636(88)90004-X

M. C. Boyce, E. L. Montagut, and A. S. Argon, The effects of thermomechanical coupling on the cold drawing process of glassy polymers, Polymer Engineering and Science, vol.46, issue.16, p.1073, 1992.
DOI : 10.1002/pen.760321605

R. Estevez, S. Basu, and E. Van-der-giessen, Analysis of temperature effects near mode I cracks in glassy polymers, International Journal of Fracture, vol.15, issue.3???4, p.249, 2005.
DOI : 10.1007/s10704-005-2182-1

URL : https://hal.archives-ouvertes.fr/hal-00436815

N. Saad-gouider, R. Estevez, C. Olagnon, and R. Séguéla, Calibration of a viscoplastic cohesive zone for crazing in PMMA, Engineering Fracture Mechanics, vol.73, issue.16, p.2503, 2006.
DOI : 10.1016/j.engfracmech.2006.05.006

URL : https://hal.archives-ouvertes.fr/hal-00436163

M. L. Falk and J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Physical Review E, vol.57, issue.6, p.7192, 1998.
DOI : 10.1103/PhysRevE.57.7192

M. L. Falk, J. S. Langer, and L. Pechenik, Thermal effects in the shear-transformation-zone theory of amorphous plasticity: Comparisons to metallic glass data, Physical Review E, vol.70, issue.1, p.11507, 2004.
DOI : 10.1103/PhysRevE.70.011507

J. Lu and K. Ravi-chandar, Inelastic deformation and localization in polycarbonate under tension, International Journal of Solids and Structures, vol.36, issue.3, p.391, 1999.
DOI : 10.1016/S0020-7683(98)00004-3

F. Leonforte, A. Tanguy, J. P. Wittmer, and J. Barrat, Continuum limit of amorphous elastic bodies II: Linear response to a point source force, Physical Review B, vol.70, issue.1, p.14203, 2004.
DOI : 10.1103/PhysRevB.70.014203

G. R. Strobl, The physics of polymers, 1997.

A. M. Donald and E. J. Kramer, Plane stress deformation zones at crack tips in polycarbonate, Journal of Materials Science, vol.11, issue.11, p.2967, 1981.
DOI : 10.1007/BF00540301

A. M. Donald and E. J. Kramer, Micromechanics and kinetics of deformation zones at crack tips in polycarbonate, Journal of Materials Science, vol.16, issue.179, p.2977, 1981.
DOI : 10.1007/BF00540302

A. Stojimirovic, K. Kadota, and A. Chudnovsky, An equilibrial process zone in polymeric materials, Journal of Applied Polymer Science, vol.46, issue.6, p.1051, 1992.
DOI : 10.1002/app.1992.070460614

J. Rottler and M. O. Robbins, Jamming under Tension in Polymer Crazes, Physical Review Letters, vol.89, issue.19, p.195501, 2002.
DOI : 10.1103/PhysRevLett.89.195501

G. Ryschenkow and H. Arribart, Adhesion Failure in the Stick-Slip Regime: Optical and AFM Characterizations and Mechanical Analysis, The Journal of Adhesion, vol.2, issue.1-2, p.143, 1996.
DOI : 10.1080/14786437708239790

M. Ciccotti, B. Giorgini, D. Vallet, and M. Barquins, Complex dynamics in the peeling of an adhesive tape, International Journal of Adhesion and Adhesives, vol.24, issue.2, p.143, 2004.
DOI : 10.1016/j.ijadhadh.2003.09.001

D. C. Hong and S. Yue, Deterministic Chaos in Failure Dynamics: Dynamics of Peeling of Adhesive Tape, Physical Review Letters, vol.74, issue.2, p.254, 1995.
DOI : 10.1103/PhysRevLett.74.254

M. Ciccotti, B. Giorgini, and M. Barquins, Stick-slip in the peeling of an adhesive tape: evolution of theoretical model, International Journal of Adhesion and Adhesives, vol.18, issue.1, p.35, 1998.
DOI : 10.1016/S0143-7496(97)00067-5

R. De, A. Maybhate, and G. Ananthakrishna, Dynamics of stick-slip in peeling of an adhesive tape, Physical Review E, vol.70, issue.4, p.46223, 2004.
DOI : 10.1103/PhysRevE.70.046223

R. De and G. Ananthakrishna, Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape, Physical Review E, vol.71, issue.5, p.55201, 2005.
DOI : 10.1103/PhysRevE.71.055201

R. De and G. Ananthakrishna, Dynamics of the Peel Front and the Nature of Acoustic Emission during Peeling of an Adhesive Tape, Physical Review Letters, vol.97, issue.16, p.165503, 2006.
DOI : 10.1103/PhysRevLett.97.165503

M. Barquins and M. Ciccotti, On the kinetics of peeling of an adhesive tape under a constant imposed load, International Journal of Adhesion and Adhesives, vol.17, issue.1, p.65, 1997.
DOI : 10.1016/S0143-7496(96)00020-6

V. M. Vinokur and T. Nattermann, Hysteretic Depinning of Anisotropic Charge Density Waves, Physical Review Letters, vol.79, issue.18, p.3471, 1997.
DOI : 10.1103/PhysRevLett.79.3471

M. C. Marchetti, A. A. Middleton, and T. Prellberg, Viscoelastic Depinning of Driven Systems: Mean-Field Plastic Scallops, Physical Review Letters, vol.85, issue.5, p.1104, 2000.
DOI : 10.1103/PhysRevLett.85.1104

J. S. Urbach, C. R. Madison, and J. T. Markert, Reproducibility of Magnetic Avalanches in an Fe-Ni-Co Ferromagnet, Physical Review Letters, vol.75, issue.25, p.4694, 1995.
DOI : 10.1103/PhysRevLett.75.4694

D. Maugis and M. Barquins, Adhesion 12, Allen KW, p.205, 1988.

K. Kendall, Thin-film peeling-the elastic term, Journal of Physics D: Applied Physics, vol.8, issue.13, p.1449, 1975.
DOI : 10.1088/0022-3727/8/13/005

T. Baumberger and C. Caroli, Solid friction from stick???slip down to pinning and aging, Advances in Physics, vol.311, issue.3-4, p.279, 2006.
DOI : 10.1098/rspa.2003.1146

URL : https://hal.archives-ouvertes.fr/hal-01280967

C. Vanneste, A. Gilabert, and D. Sornette, Finite size effect on the current enhancement at the tip of a long defect in a resistor network, Journal of Physics A: Mathematical and General, vol.23, issue.15, p.3591, 1990.
DOI : 10.1088/0305-4470/23/15/029

T. Y. Thomas, Plastic flow and fracture in solids, 1961.

S. Bohn, L. Pauchard, and Y. Couder, Hierarchical crack pattern as formed by successive domain divisions., Physical Review E, vol.71, issue.4, p.46214, 2005.
DOI : 10.1103/PhysRevE.71.046214

S. Bohn, J. Platkiewicz, B. Andreotti, M. Adda-bedia, and Y. Couder, Hierarchical crack pattern as formed by successive domain divisions. II. From disordered to deterministic behavior, Physical Review E, vol.71, issue.4, p.46215, 2005.
DOI : 10.1103/PhysRevE.71.046215

S. Melin, Why do cracks avoid each other?, International Journal of Fracture, vol.48, issue.4, p.37, 1983.
DOI : 10.1007/BF00020156