H. Estimation-des, 59 3.5.6.2 Méthodes basées sur la fonction caractéristique, p.62

E. Estimateur and B. Priori, 82 4.3.2.1 La PDF marginale des coefficients d'ondelettes

S. Modèle and .. Multivarié-cadre-général, Moments absolus d'ordre, p.110

. Nous-avons-observé, espace des transformées tendentàtendentà se regrouper autour des bords des objets dans l'image (e.g. les contours, les lignes, etc) Ce phénomène persisté egalementàegalementà d'autres orientations etàetà d'autreséchellesautreséchelles. Dans la partie de modélisation des statistiques marginales, nous avons supposé que ces coefficients sont indépendants. Cette hypothèse n'est qu'une approximation qui doitêtredoitêtre affinée en prenant en compte les dépendances inter-et intra-´ echelles existent entre les coefficients d'images

@. L. Journaux-internationaux-avec-comité-de-lecture, J. Boubchir, and . Fadili, A Closed-form Nonparametric Bayesian Estimator in the Wavelet-domain of Images Using an Approximate ?-stable Prior, Pattern Recognition Letters, vol.27, issue.12, pp.1370-1382, 2006.

@. J. Fadili and L. Boubchir, Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities, IEEE Transactions on Image Processing, vol.14, issue.2, pp.231-240, 2005.
DOI : 10.1109/TIP.2004.840704

URL : https://hal.archives-ouvertes.fr/hal-01123882

@. L. Conférences-internationales, J. Boubchir, D. Fadili, and . Bloyet, Bayesian Denoising in the Wavelet-domain Using an Analytical Approximate ?-stable prior, Proc. of ICPR'2004 ; the 17 th International Conference on Pattern Recognition, pp.889-892, 2004.

@. L. Boubchir and J. Fadili, Multivariate statistical modeling of images with the curvelet transform, Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005., pp.747-750, 2005.
DOI : 10.1109/ISSPA.2005.1581046

URL : https://hal.archives-ouvertes.fr/hal-01088628

@. L. Boubchir and J. Fadili, Bayesian Denoising Based on the MAP Estimator in Wavelet-domain Using Bessel K Form Prior, Proc. of IEEE ICIP'2005 ; the IEEE International Conference on Image Processing, pp.113-116, 2005.

@. J. Fadili and L. Boubchir, Sparse representations and Bayesian Denoising, the SIAM Conference on Imaging Science, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080084

@. J. Fadili, J. Starck, and L. Boubchir, Morphological Diversity and Sparse Image Denoising, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, pp.589-592, 2007.
DOI : 10.1109/ICASSP.2007.365976

URL : https://hal.archives-ouvertes.fr/hal-00196739

E. Annexe, &. Publications, @. L. Diffusion-des-résultats-conférences-nationales, J. Boubchir, D. Fadili et al., Le processus ?-stable pour l'estimation bayésienne non-paramétrique des images dans le domaine des ondelettes, Proc. of JEMOSICO'2003 ; Journées d'Etudes sur les Méthodes pour les Signaux Complexes en Traitement d'Images, pp.105-118, 2003.

@. L. Boubchir and J. Fadili, Modélisation statistique multivariée des images dans le domaine de la transformée de Curvelet, Proc. of GRETSI'2005 ; 20 th GRETSI Symposium on Signal and Image Processing, pp.233-236, 2005.

@. L. Boubchir, Algorithme EM pour l'estimation des hyperparamètres du débruiteur bayésien d'images basé sur l'a priori des Formes K de Bessel, Proc. of JETIM, pp.47-54, 2006.

@. L. Boubchir, J. Fadili, and D. Bloyet, Le processus ?-stable pour l'estimation bayésienne non-paramétrique des images dans la domaine des ondelettes, Conférences nationales sans actes et sans comité de lecture, 2003.

@. L. Séminaires, J. Boubchir, and . Fadili, Approches bayésiennes pour le débruitage des images dans la domaine des transformées multi-´ echelles, Séminaire Ecole Doctorale SIMEM, issue.11, 2005.

@. L. Boubchir and J. Fadili, Paradigme bayésien et transformées multi-´ echelles pour la restauration d'images, Séminaire GREYC ; Novembre, vol.11, 2005.

&. Bibliographieabramovich, . Benjamini, F. Abramovich, and Y. Benjamini, Thresholding of wavelet coefficients as multiple hypotheses testing procedure, Wavelets and Statistics, pp.5-14, 1995.

&. Abramovich, F. Benjamini-abramovich, and Y. Benjamini, Adaptive thresholding of wavelet coefficients, Computational Statistics & Data Analysis, vol.22, issue.4, pp.351-361, 1996.
DOI : 10.1016/0167-9473(96)00003-5

. Abramovich, Adapting to unknown sparsity by controlling the false discovery rate, The Annals of Statistics, vol.34, issue.2, 2000.
DOI : 10.1214/009053606000000074

&. Abramovich, F. Sapatinas-abramovich, and T. Sapatinas, Bayesian Approach to Wavelet Decomposition and Shrinkage, 1999.
DOI : 10.1007/978-1-4612-0567-8_3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3258

. Abramovich, Wavelet thresholding via a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.60, issue.4, pp.725-749, 1998.
DOI : 10.1111/1467-9868.00151

&. Abramowitz, . Stegun, M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1972.
DOI : 10.1119/1.1972842

. Achim, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.772-783, 2001.
DOI : 10.1109/42.938245

&. Achim, A. Kuruoglu-achim, and E. E. Kuruoglu, Image denoising using bivariate α-stable distributions in the complex wavelet domain, IEEE Signal Processing Letters, vol.12, issue.1, pp.17-20, 2004.
DOI : 10.1109/LSP.2004.839692

. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, pp.267-281, 1973.

&. Andrews, D. F. Andrews, and C. L. Mallows, Scale mixtures of normality, Journal of the Royal Statistical Society, Series B, pp.36-99, 1974.

. Antoniadis, Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study, Journal of Statistical Software, vol.6, issue.6, pp.1-83, 2001.
DOI : 10.18637/jss.v006.i06

URL : https://hal.archives-ouvertes.fr/hal-00823485

&. Bates, . Mclaughlin, S. Bates, and S. Mclaughlin, The estimation of stable distribution parameters from teletraffic data, IEEE Transactions on Signal Processing, vol.48, issue.3, pp.865-870, 2000.
DOI : 10.1109/78.824681

&. Benjamini, . Hochberg, Y. Benjamini, and Y. Hochberg, Controlling the false discovery rate : a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society B, vol.57, pp.289-300, 1995.

L. Boubchir, Algorithme em pour l'estimation des hyperparamètres du débruiteur bayésien d'images basé sur l'a priori des formes k de bessel, Proc. of JE- TIM, pp.47-54, 2006.

. Bibliographie, &. Boubchir, . Fadili, L. Boubchir, and J. Fadili, Bayesian denoising based on the map estimator in wavelet-domain using bessel k form prior, Proc. of IEEE ICIP'2005 ; the IEEE International Conference on Image Processing, pp.113-116, 2005.

&. Boubchir, . Fadili, L. Boubchir, and J. Fadili, Modélisation statistique multivariée des images dans le domaine du curvelet, Proc. of GRETSI'2005 ; the 20th GRETSI Symposium on Signal and Image Processing, pp.233-236, 2005.

&. Boubchir, . Fadili, L. Boubchir, and J. Fadili, Multivariate statistical modeling of images with the curvelet transform, Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005., pp.747-750, 2005.
DOI : 10.1109/ISSPA.2005.1581046

URL : https://hal.archives-ouvertes.fr/hal-01088628

&. Boubchir, . Fadili, L. Boubchir, and J. Fadili, A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate ??-stable prior, Pattern Recognition Letters, vol.27, issue.12, pp.27-1370, 2006.
DOI : 10.1016/j.patrec.2006.01.008

URL : https://hal.archives-ouvertes.fr/hal-00198556

. Boubchir, Le processus ?-stable pour l'estimation bayésienne non-paramétrique des images dans la domaine des ondelettes, Proc. of JEMOSICO, pp.105-118, 2003.

. Boubchir, Bayesian denoising in the wavelet-domain using an analytical approximate /spl alpha/-stable prior, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.889-892, 2004.
DOI : 10.1109/ICPR.2004.1333915

&. Bruce, . Gao, A. G. Bruce, and H. Y. Gao, Understanding WaveShrink: variance and bias estimation, Biometrika, vol.83, issue.4, pp.727-745, 1996.
DOI : 10.1093/biomet/83.4.727

URL : http://biomet.oxfordjournals.org/cgi/content/short/83/4/727

. Buadès, A Non-Local Algorithm for Image Denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.60-65, 2005.
DOI : 10.1109/CVPR.2005.38

T. T. Cai, inequality approach, The Annals of Statistics, vol.27, issue.3, pp.898-924, 1999.
DOI : 10.1214/aos/1018031262

&. Cai, . Silverman, T. T. Cai, and B. W. Silverman, Incorporating Information on Neighboring Coefficients into Wavelet Estimation, 2000.

. Candès, Fast Discrete Curvelet Transforms, Multiscale Modeling & Simulation, vol.5, issue.3, pp.5-8, 2006.
DOI : 10.1137/05064182X

&. Candès, . Donoho, E. J. Candès, and D. L. Donoho, Curvelets : A surprisingly effective nonadaptive representation of objects with edges. Curves and Surface, pp.123-143, 1999.

&. Candès, E. J. Donoho-candès, and D. L. Donoho, singularities, Communications on Pure and Applied Mathematics, vol.9, issue.7, pp.219-266, 2004.
DOI : 10.1002/cpa.10116

&. Candès, . Donoho, E. J. Candès, and D. L. Donoho, Recovering edges in illposed inverse problems : optimality of curvelet frames, Annals of Statistics, vol.30, issue.3, pp.784-842, 2002.

&. Celeux, . Diebolt, G. Celeux, and D. Diebolt, The em algorithm : a probabilistic teacher algorithm derived from the em algorithm for the mixture problem, Computational Statistics Quarterly, vol.2, issue.1, pp.73-82, 1985.

. Chipman, Adaptive Bayesian Wavelet Shrinkage, Journal of the American Statistical Association, vol.3, issue.440, pp.1413-1421, 1997.
DOI : 10.1080/01621459.1997.10473662

&. Claypoole, R. Baraniuk-claypoole, and R. Baraniuk, Multiresolution wedgelet transform for image processing, Wavelet Applications in Signal and Image Processing VIII, 2000.
DOI : 10.1117/12.408609

&. Clyde, M. George-]-clyde, and E. George, Flexible empirical Bayes estimation for wavelets, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.62, issue.4, pp.681-698, 2000.
DOI : 10.1111/1467-9868.00257

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.211.8456

&. Clyde, M. A. George-]-clyde, and E. I. George, Empirical Bayes Estimation in Wavelet Nonparametric Regression, Bayesian Inference in Wavelet Based Models, pp.309-322, 1999.
DOI : 10.1007/978-1-4612-0567-8_19

&. Coifman, R. R. Donoho-]-coifman, and D. L. Donoho, Translation-invariant denoising, Lecture Notes in Statistics : Wavelets and Statistics, pp.125-150, 1995.

&. Cover, . Thomas, T. M. Cover, and J. A. Thomas, Elements of Information Theory, 1991.

&. Crouse, . Baraniuk, M. Crouse, and R. Baraniuk, Contextual hidden Markov models for wavelet-domain signal processing, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136), 1997.
DOI : 10.1109/ACSSC.1997.680036

. Crouse, Wavelet-based statistical signal processing using hidden Markov models, IEEE Transactions on Signal Processing, vol.46, issue.4, pp.886-902, 1998.
DOI : 10.1109/78.668544

. Dabov, Image denoising with block-matching and 3D filtering, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, 2006.
DOI : 10.1117/12.643267

&. Delyon, B. Juditsky-]-delyon, and A. Juditsky, On Minimax Wavelet Estimators, Applied and Computational Harmonic Analysis, vol.3, issue.3, pp.215-228, 1996.
DOI : 10.1006/acha.1996.0017

. Dempster, Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society Series B, vol.39, issue.1, pp.1-38, 1977.

&. Do, . Vitterli, M. N. Do, and M. Vitterli, Contourlets, in beyound Wavelets, 2003.

&. Do, . Vitterli, M. N. Do, and M. Vitterli, Framing pyramids, IEEE Transactions on Signal Processing, vol.51, issue.9, pp.2329-2342, 2003.
DOI : 10.1109/TSP.2003.815389

D. L. Donoho, Wedgelets: nearly minimax estimation of edges, The Annals of Statistics, vol.27, issue.3, pp.859-997, 1998.
DOI : 10.1214/aos/1018031261

&. Donoho, D. L. Donoho, and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

&. Donoho, D. L. Donoho, and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.90-1200, 1995.
DOI : 10.1080/01621459.1979.10481038

. Bibliographie, &. Donoho, . Johnstone, D. L. Donoho, and I. M. Johnstone, Minimax estimation via wavelet shrinkage, Annals of Statistics, vol.26, issue.3, pp.879-921, 1998.

&. Donoho, D. L. Donoho, and I. M. Johnstone, Minimax estimation via wavelet shrinkage, The Annals of Statistics, vol.26, issue.3, pp.879-921, 1998.
DOI : 10.1214/aos/1024691081

S. Efromovich, Quasi-Linear Wavelet Estimation, Journal of the American Statistical Association, vol.6, issue.445, pp.189-204, 1999.
DOI : 10.1090/S0273-0979-1993-00390-2

S. Efromovich, Sharp linear and block shrinkage wavelet estimation, Statistics & Probability Letters, vol.49, issue.4, pp.323-329, 2000.
DOI : 10.1016/S0167-7152(00)00064-X

&. Eslami, . Radha, R. Eslami, and H. Radha, Translation-Invariant Contourlet Transform and Its Application to Image Denoising, IEEE Transactions on Image Processing, vol.15, issue.11, pp.3362-3374, 2006.
DOI : 10.1109/TIP.2006.881992

R. L. Eubank, Nonparametric Regression and Spline Smoothing, 1999.

&. Fadili, . Boubchir, J. M. Fadili, and L. Boubchir, Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities, IEEE Transactions on Image Processing, vol.14, issue.2, pp.231-240, 2005.
DOI : 10.1109/TIP.2004.840704

URL : https://hal.archives-ouvertes.fr/hal-01123882

. Fadili, Morphological Diversity and Sparse Image Denoising, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '07, pp.589-592, 2007.
DOI : 10.1109/ICASSP.2007.365976

URL : https://hal.archives-ouvertes.fr/hal-00196739

&. Fama, . Roll, E. F. Fama, and R. Roll, Parameter Estimates for Symmetric Stable Distributions, Journal of the American Statistical Association, vol.40, issue.334, pp.66-331, 1971.
DOI : 10.1214/aoms/1177729794

&. Fan, G. Xia-]-fan, and X. Xia, Image denoising using local contextual markov model in the wavelet domain, IEEE Signal Processing Latters, vol.8, issue.5, pp.125-128, 2001.

&. Fan, J. Gijbels-]-fan, and I. Gijbels, Local Polynomial Modelling and its Applications, 1996.
DOI : 10.1007/978-1-4899-3150-4

. Figueiredo, On Fitting Mixture Models, Energy Minimization Methods in Computer Vision and Pattern Recognition, pp.54-69, 1999.
DOI : 10.1007/3-540-48432-9_5

R. A. Fisher, Moments and Product Moments of Sampling Distributions, Proceedings of the London Mathematical Society, vol.2, issue.1, pp.199-238, 1928.
DOI : 10.1112/plms/s2-30.1.199

. Foi, Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images, IEEE Transactions on Image Processing, vol.16, issue.5, pp.1395-1411, 2007.
DOI : 10.1109/TIP.2007.891788

&. Freeman, . Adelson, W. T. Freeman, and E. H. Adelson, The design and use of steerable filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.9, pp.891-906, 1991.
DOI : 10.1109/34.93808

H. Y. Gao, Wavelet shrinkage denoising using the non-negative garrote, Journal of Computational and Graphical Statistics, vol.7, issue.4, pp.469-488, 1998.

&. Gao, . Bruce, H. Y. Gao, and A. G. Bruce, Waveshrink with firm skrinkage, Static. Sinica, vol.7, pp.855-874, 1997.

&. Geman, D. Geman-]-geman, and S. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images*, Journal of Applied Statistics, vol.1, issue.5-6, pp.721-741, 1984.
DOI : 10.1109/TIT.1972.1054786

&. Gradshteyn, I. Ryzhik-]-gradshteyn, I. Ryzhik, E. I. Green, and B. W. Silverman, Table of Integrals, Series and Products Nonparametric Regression and Generalised Linear Models, 1980.

U. Grenander, General Pattern Theory, 1993.

&. Grenander, . Srivastava, U. Grenander, and A. Srivastava, Probability models for clutter in natural images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.4, pp.424-429, 2001.
DOI : 10.1109/34.917579

. Hall, Numerical performance of block thresholded wavelet estimators, Statistics and Computing, vol.7, issue.2, pp.115-124, 1997.
DOI : 10.1023/A:1018569615247

. Hsung, Denoising by singularity detection, IEEE Transactions on Signal Processing, vol.47, issue.11, pp.3139-3144, 1999.
DOI : 10.1109/78.796450

&. Huang, . Cressie, S. Huang, and N. Cressie, Deterministic/Stochastic Wavelet Decomposition for Recovery of Signal From Noisy Data, Technometrics, vol.9, issue.3, pp.262-276, 2000.
DOI : 10.1214/aos/1176346060

&. Huang, . Lu, S. Huang, and H. Lu, Bayesian wavelet shrinkage for nonparametric mixed effects models, Statist. Sinica, vol.10, pp.1021-1040, 2000.

W. Härdle, Applied Nonparametric Regression, 1990.

A. Jalobeanu, Modèle, estimation bayésienne et algorithmes pour la déconvolution d'images satellitaires et aériennes, 2001.

&. Jansen, . Bultheel, M. Jansen, and A. Bultheel, Geometrical priors for noise-free wavelet coefficient configurations in image denoising, Bayesian inference in wavelet based models, pp.223-242, 1999.

&. Jansen, . Bultheel, M. Jansen, and A. Bultheel, Empirical Bayes Approach to Improve Wavelet Thresholding for Image Noise Reduction, Journal of the American Statistical Association, vol.96, issue.454, pp.96-629, 2001.
DOI : 10.1198/016214501753168307

. Jansen, Generalized cross validation for wavelet thresholding, Signal Processing, vol.56, issue.1, pp.33-44, 1997.
DOI : 10.1016/S0165-1684(97)83621-3

&. Johnstone, . Silverman, I. Johnstone, and B. Silverman, Empirical Bayes approaches to mixture problems and wavelet regression, 1998.

&. Kervrann, C. Boulanger-]-kervrann, and J. Boulanger, Optimal Spatial Adaptation for Patch-Based Image Denoising, IEEE Transactions on Image Processing, vol.15, issue.10, pp.2866-2878, 2006.
DOI : 10.1109/TIP.2006.877529

N. Kingsbury, Image processing with complex wavelets, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.357, issue.1760, pp.2543-2560, 1999.
DOI : 10.1098/rsta.1999.0447

S. Kotz, Continous Multivariate Distributions, Models and Applications, 2004.

I. A. Koutrouvelis, Regression-Type Estimation of the Parameters of Stable Laws, Journal of the American Statistical Association, vol.39, issue.372, pp.75-918, 1980.
DOI : 10.1080/01621459.1980.10477573

I. A. Koutrouvelis, An iterative procedure for the estimation of the parameters of stable laws, Communications in Statistics - Simulation and Computation, vol.67, issue.1, pp.17-28, 1981.
DOI : 10.1080/03610918108812189

. Bibliographie, . Kuruoglu, and E. E. Kuruoglu, Signal processing in alpha-stable noise environments : A least lp-norme approch, 1998.

&. Lepennec, . Mallat, E. Lepennec, and S. G. Mallat, Bandelet Image Approximation and Compression, Multiscale Modeling & Simulation, vol.4, issue.3, pp.992-1039, 2005.
DOI : 10.1137/040619454

P. Lévy, Théorie de l'addition des variables aléatoires, 1954.

S. Z. Li, Markov Random Field Modeling in Computer Vision, 1995.
DOI : 10.1007/978-4-431-66933-3

&. Liu, . Moulin, J. Liu, and P. Moulin, Analysis of interscale and intrascale dependencies between wavelet coefficients, Proc. Int. Conf. on Image Proc., (ICIP), pp.669-672, 2000.

&. Liu, . Moulin, J. Liu, and P. Moulin, Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients, IEEE Transactions on Image Processing, issue.10, pp.10-1647, 2001.

&. Ma, . Nikias, X. Ma, and C. L. Nikias, Parameter estimation and blind channel identification in impulsive signal enviroments, IEEE Transaction on Signal Processing, issue.12, pp.43-2884, 1995.

&. Magnus, . Neudecker, J. R. Magnus, and H. Neudecker, Matrix Differential Calculs with Applications in Statistics and Econometrics, 1998.

&. Malfait, M. Malfait, and D. Roose, Wavelet-based image denoising using a Markov random field a priori model, IEEE Transactions on Image Processing, vol.6, issue.4, pp.549-565, 1997.
DOI : 10.1109/83.563320

S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE trans. PAMI, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1515/9781400827268.494

S. G. Mallat, A Wavelet Tour of Signal Processing, 1999.

S. G. Mallat, Geometrical grouplets, Applied and Computational Harmonic Analysis, vol.26, issue.2, 2006.
DOI : 10.1016/j.acha.2008.03.004

&. Mallat, . Lepennec, S. G. Mallat, and E. Lepennec, Sparse geometric image representation with bandelets, IEEE Transaction on Image Processing, vol.14, issue.4, pp.423-438, 2005.

&. Mandelbrot, B. B. Van-ness-]-mandelbrot, and J. W. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

K. V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika, vol.57, issue.3, pp.519-530, 1970.
DOI : 10.1093/biomet/57.3.519

. Marron, Exact risk analysis of wavelet regression, Journal of Computational and Graphical Statistics, vol.7, issue.3, pp.278-309, 1998.

. Matalon, Improved denoising of images using modeling of the redundant contourlet transform, Proceeding of the SPIE conference wavelets, p.5914, 2005.

J. Mathieu, Transformée en ondelettes et régression non-paramétrique dans un contexte bayesien, 2002.

J. H. Mcculloch, Simple consistent estimators of stable distribution parameters, Communications in Statistics - Simulation and Computation, vol.15, issue.4, pp.1109-1136, 1986.
DOI : 10.1080/03610918608812563

&. Mclachlan, . Peel, G. J. Mclachlan, and D. Peel, Finite Mixture Models, 2000.
DOI : 10.1002/0471721182

&. Meng, . Rubin, X. L. Meng, and D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, vol.80, issue.2, pp.267-278, 1993.
DOI : 10.1093/biomet/80.2.267

Y. Meyer, Wavelets and Operators, 1992.

&. Moulin, P. Liu-]-moulin, and J. Liu, Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors, IEEE Transactions on Information Theory, vol.45, issue.3, pp.45-909, 1999.
DOI : 10.1109/18.761332

&. Mumford, . Gidas, D. Mumford, and B. Gidas, Stochastic models for generic images, Quarterly of Applied Mathematics, vol.59, issue.1, pp.85-111, 2001.
DOI : 10.1090/qam/1811096

G. P. Nason, Wavelet regression by cross-validation, 1994.

G. P. Nason, Wavelet shrinkage by cross-validation, Journal of the Royal Statistical Society B, vol.58, pp.463-479, 1996.

&. Nikias, . Shao, C. L. Nikias, and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications, 1995.

J. P. Nolan, Numerical calculation of stable densities and distribution functions, Communications in Statistics. Stochastic Models, vol.65, issue.4, pp.759-774, 1997.
DOI : 10.1080/15326349708807450

&. Ogden, . Parzen, R. T. Ogden, and E. Parzen, Change-point approach to data analytic wavelet thresholding, Statistics and Computing, vol.10, issue.2, pp.93-99, 1996.
DOI : 10.1007/BF00162519

&. Ogden, . Parzen, R. T. Ogden, and E. Parzen, Data dependent wavelet thresholding in nonparametric regression with change-point applications, Computational Statistics & Data Analysis, vol.22, issue.1, pp.53-70, 1996.
DOI : 10.1016/0167-9473(95)00041-0

&. Olshausen, B. A. Field-]-olshausen, and D. J. Field, Emergence of simple-cell receptive-field properties by learning a sparse code of naturel images, Nature, issue.6583, pp.381-607, 1996.

&. Percival, . Walden, D. B. Percival, and A. T. Walden, Wavelet Methods for Time Series Analysis, 2000.

. Pizurica, A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising, IEEE Transactions on Image Processing, vol.11, issue.5, pp.545-557, 2002.
DOI : 10.1109/TIP.2002.1006401

D. D. Po and M. N. Do, Directional multiscale statistical modeling of images, Wavelets: Applications in Signal and Image Processing X, pp.69-79, 2003.
DOI : 10.1117/12.506412

. Press, Numerical Recipes in C,The Art of Scientific Computing, 1992.

J. Bibliographie-]-rissanen, Fisher information and stochastic complexity, IEEE Transactions on Information Theory, vol.42, issue.1, pp.40-47, 1996.
DOI : 10.1109/18.481776

. Romberg, Bayesian treestructured image modeling using wavelet domain hidden markov model, Proc. of SPIE, pp.31-44, 1999.

&. Rose, C. Smith-]-rose, and M. Smith, k-statistics : Unbiased estimators of cumulants, Mathematical Statistics with Mathematica chapter, pp.256-259, 2002.

&. Samorodnitsky, . Taqqu, G. Samorodnitsky, and M. S. Taqqu, Stable Non-Gausian Random Processes : Stochastic Models with Infinite Variance, 1994.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

&. Sendur, . Selesnick, L. Sendur, and I. W. Selesnick, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Transactions on Signal Processing, vol.50, issue.11, pp.50-2744, 2002.
DOI : 10.1109/TSP.2002.804091

E. P. Simoncelli, Bayesian Denoising of Visual Images in the Wavelet Domain, Bayesian Inference in Wavelet Based Models, pp.291-308, 1999.
DOI : 10.1007/978-1-4612-0567-8_18

&. Simoncelli, . Adelson, E. P. Simoncelli, and E. H. Adelson, Noise removal via Bayesian wavelet coring, Proceedings of 3rd IEEE International Conference on Image Processing, pp.379-382, 1996.
DOI : 10.1109/ICIP.1996.559512

. Simoncelli, Shiftable multiscale transforms, IEEE Transactions on Information Theory, vol.38, issue.2, pp.587-607, 1992.
DOI : 10.1109/18.119725

&. Simoncelli, . Portilla, E. P. Simoncelli, and J. Portilla, Texture characterization via joint statistics of wavelet coefficient magnitudes, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998.
DOI : 10.1109/ICIP.1998.723417

. Srivastava, Universal analytical forms for modeling image probabilities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.9, pp.1200-1214, 2002.
DOI : 10.1109/TPAMI.2002.1033212

. Starck, The curvelet transform for image denoising, IEEE Transaction on Image Processing, issue.6, pp.11-670, 2002.

. Starck, Wavelets and curvelets for image deconvolution: a combined approach, Signal Processing, vol.83, issue.10, pp.2279-2283, 2003.
DOI : 10.1016/S0165-1684(03)00150-6

C. Stein, Estimation of the Mean of a Multivariate Normal Distribution, The Annals of Statistics, vol.9, issue.6, pp.1135-1151, 1982.
DOI : 10.1214/aos/1176345632

&. Tsihrintzis, . Nikias, G. A. Tsihrintzis, and C. L. Nikias, Fast estimation of the parameters of alpha-stable impulsive interference, IEEE Transactions on Signal Processing, vol.44, issue.6, pp.44-1492, 1996.
DOI : 10.1109/78.506614

&. Vannucci, . Corradi, M. Vannucci, and F. Corradi, Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.61, issue.4, pp.971-986, 1999.
DOI : 10.1111/1467-9868.00214

B. Vidakovic, Nonlinear Wavelet Shrinkage with Bayes Rules and Bayes Factors, Journal of the American Statistical Association, vol.29, issue.441, pp.93-173, 1998.
DOI : 10.1080/01621459.1998.10474099

B. Vidakovic, Statistical Modeling by Wavelets, 1999.
DOI : 10.1002/9780470317020

&. Vidakovic, . Ruggeri, B. Vidakovic, and F. Ruggeri, BAMS Method : Theory And Simulations, 2000.

. Wainwright, Random cascades of gaussian scale mixtures for natural images, 7th IEEE Int'l Conf on Image Processing, 2000.

&. Wand, . Jones, M. P. Wand, and M. C. Jones, Kernel Smoothing, 1995.
DOI : 10.1007/978-1-4899-4493-1

R. Weron, Performance Of The Estimators Of Stable Law Parameters, 1995.

&. Weyrich, . Warhola, N. Weyrich, and G. T. Warhola, Denoising using wavelets and cross-validation, NATO Adv. Study Inst. C, vol.454, pp.523-532, 1995.

G. Winkler, Image analysis, random fields and dynamic Monte Carlo methods : a mathematical introduction, 1995.
DOI : 10.1007/978-3-642-97522-6

P. Wojtaszczyk, A Mathematical Introduction to Wavelets, 1997.
DOI : 10.1017/CBO9780511623790

. Zhu, Exploring texture ensembles by efficient Markov chain Monte Carlo-Toward a "trichromacy" theory of texture, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.6, pp.554-569, 2000.
DOI : 10.1109/34.862195

V. M. Zolotarev, One-dimensional Stable Distribution. Amer, Math. Soc. Transl. of Math. Monographs Russian, vol.65, 1983.