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Résume étendu

La conception optimale d’éléments de structures mécaniques nécessite une bonne
connaissance des propriétés mécaniques des matériaux constitutifs. Les matériaux
anisotropes et hétérogénes présentent la particularité d’étre décrits par des lois qui
dépendent généralement de beaucoup plus de paramétres que les matériaux isotropes
homogénes. De nombreux essais standards différents conduisant a des champs de
contraintes homogénes sont généralement conduits pour les mesurer, ce qui rend la
procédure de caractérisation relativement lourde. Une alternative envisageable con-
siste a tenter d’exploiter des essais dits hétérogénes, c’est-a-dire tels que les champs
de contraintes en leur sein soient hétérogénes et non plus homogénes. L’intérét est
que le nombre de paramétres activés est dans ce cas a priori plus grand que dans le
cas homogéne, ce qui permet de les identifier si une procédure adaptée est disponible.
Il faut toutefois insister sur le fait qu’il n’existe généralement pas de lien simple en-
tre mesures locales de 'état cinématique et paramétres inconnus. De méme, il est
nécessaire de mesurer des champs entiers de grandeurs cinématiques (déplacements,

déformations) pour mesurer ces hétérogénéitiés.

Ce travail s’inscrit dans un tel contexte. Il consiste en fait & approfondir I'une
des méthodes disponibles pour la résolution d’un tel probléme: la Méthode des
Champs Virtuels (MCV), qui présente Pavantage d’extraire les paramétres inconnus
sans calculs itératifs dans le cas de 1’élasticité anisotrope, contrairement au recalage
par éléments finis par exemple. Cette méthode est basée sur I’écriture du principe
des travaux virtuels avec des champs virtuels particuliers. Elle a été mise en place
depuis plusieurs d’années et elle a connu depuis plusieurs développements qui ont
permis de ’amériorer. Citons par exemple 'utilisation de champs virtuels spéciaux
ou la prise en compte de la minimisation du bruit dans la définition des champs

virtuels.

Dans le présent travail, la méthode des champs virtuels est appliquée a la flexion
de plaques minces anisotropes. L’utilisation de champs virtuels décrits par sous-
domaines et 'optimisation de conditions d’essais vis-a-vis d’un bruit de mesure sont
présentés comme des points originaux du travail. Parmi les possibilités d’optimisation,

le choix de I’essai, de l'orientation des fibres, de la taille de I’éprouvette, de la lo-
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calisation des points d’appui et des efforts, de la forme de 1’éprouvette, sont autant
de parameétres a prendre en considération. L’idée est de trouver une combinaison
optimale de ces paramétres tels qu’une identification plus robuste et plus précise soit
possible, particuliérement en utilisant des données bruitées.

Les éléments discutés sont validés numériquement en utilisant des exemples
simulés de plaque mince en composites. Un cas d’identification d’une plaque com-
posite endommagée est également étudié numériquement. A la fin du travail, des
premiers résultats expérimentaux sont présentés a des fins de validation de la dé-
marche.

De facon plus détaillée, le manuscrit se compose de huit chapitres dont le contenu
est le suivant.

Le premier chapitre présente les diverses stratégies exploitant des mesures de
champs pour 'identification des paramétres constitutifs de matériaux. Les principes
fondamentaux et les principales applications sont discutés pour chacune des métho-
des.

Le deuxiéme chapitre présente la méthode des champs virtuels utilisée dans ce
travail. Le cas du probléme de la flexion de plaques minces en composites sert de
support. On y présente le formalisme général de la méthode.

Le troisiéme chapitre présente 1’effet du bruit de mesure sur la qualité de 'identifi-
cation. Un travail publié récemment dans la littérature est adapté ici au cas de la
flexion. On montre que la minimisation de I’effet du bruit aboutit & un champ virtuel
spécial unique pour chaque inconnue, ceci pour une base fonctionnelle donnée.

Le quatriéme chapitre présente une validation numérique de la procédure qui a
été programmée sous Matlab. On y discute le nombre optimum de sous-domaines
retenus pour définir les champs virtuels. Des données simulées obtenues sur une
plaque en composite verre-époxyde servent de données d’entrée. L’influence des don-
nées bruitées est également étudiée sur la robustesse de la méthode d’identification.

Le cinquiéme chapitre présente une application importante de la MCV. On mon-
tre que la méthode peut étre employée comme un outil d’évaluation de différentes
configurations d’essais, ce qui permet de comparer ces derniers. La normalisation du
critére d’évaluation par rapport a des parameétres liés au calcul (nombre de points de
mesure, surface, intensité de Peffort appliqué) est discutée. Une configuration d’essai
est également optimisée vis-a-vis du point d’application du chargement. Avec des
données simulées auxquelles on a ajouté un bruit simulée numérique, on montre que
I’amélioration obtenue en termes d’identifiabilité et de sensibilité réduite au bruit
est significative. Enfin, on s’assure que le fait de changer de matériau constitutif ne
change que trés peu la position optimale de 'effort, ce qui tend a montrer que le
résultat est bien intrinséque a la configuration d’essai.

Le sixiéme chapitre discute de I'optimisation des configurations d’essai en détails.
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L’effet de divers paramétres comme I’angle des plis, la taille de I’échantillon, le point
d’application de la charge, les points d’appuis et finalement la forme de I’échantillon
sont, étudiés séparément, puis ensemble. Pour les cas ol plusieurs paramétres sont
pris en compte simultanément, on observe la présence de minima locaux. Cette
étude permet de discriminer les paramétres influents (principalement : angle des
fibres, position des appuis et de P'effort appliqué) de ceux qui le sont moins. Enfin,
on vérifie 1a aussi que le matériau lui-méme influence peu la nature de 'optimum.

Le septiéme chapitre présente une application importante : la caractérisation
d’une plaque présentant un dommage local. Ce travail est actuellement en cours au
Department of Aerospace Engineering de I’Université de Bristol et au LMPF, lab-
oratoire situé & ’ENSAM de Chéalons-en-Champagne. Une adaptation de la MCV
avec des propriétés définies par sous-domaines est discutée. Elle est appliquée a
Iidentification simultanée des rigidités de flexion dans les deux zones séparées de la
plaque composite endommagée. Le procédé est validé numériquement en utilisant un
exemple de plaque endommagée. La taille et la position de la zone endommagée sont
connues a priori et sont utilisées comme données d’entrée pour l'identification simul-
tanée des rigidités inconnues des zones endommageées et non-endomagées. L’influence
d’un bruit de mesure est également discutée. De surcroit, on propose un point
d’application de charge placé de facon optimale pour garantir la meilleure identifia-
bilité des caractéristiques de la zone endommagée. Enfin, un procédé de localisation
de défaut est également discuté. Il faut cependant souligner que le travail présenté
dans ce chapitre est préliminaire & d’autres études possibles, comme une optimisa-
tion plus poussée de la configuration d’essai en prenant en compte notamment la
position des points d’appui. Par ailleurs, la recherche de la localisation du défaut
mériterait plus d’attention, car il faudrait pouvoir décrire de facon plus compléte ses
contours qu’avec la démarche présentée.

Le huitiéme chapitre présente finalement les premiers résultats expérimentaux
obtenus lors d’essais conduits au LMPF de 'ENSAM de Chalons-en-Champagne.
Deux séries de résultats sont comparés: les premiers obtenus dans une situation
a priori défavorable, I'autre optimisée en utilisant la procédure présentée dans les
chapitres précédents. Les résultats obtenus confirment clairement "apport prédit

par la théorie dans le deuxiéme cas.
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Abstract

The present work deals with the direct identification of bending rigidities of a thin
anisotropic composite plate. The inverse identification procedure used here is the
virtual fields method which is based on the principle of virtual work. The idea is to
determine the unknown parameters from a single test giving a unique heterogeneous
strain field. Two new aspects, namely piecewise construction of the virtual fields
and noise minimization effect are developed in the present work for a thin composite
plate bending problem. Numerical simulations illustrate the relevance of the method
and its stability with respect to noisy data. Using the developed procedure, an
optimization study of testing configurations is presented and an optimized testing
configuration is searched for with respect to different variable parameters such that
a more robust and efficient identification is possible with least sensitivity to noise.
Also, the developed approach is extended to an identification problem of damaged
composite plate. Finally the simulated work is validated with some experimental

results.

KEYWORDS: anisotropic composite materials, bending rigidities, piecewise virtual

fields method, minimization of noise effect, optimized testing configuration.
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Introduction

The present work deals with the direct identification of the bending rigidities
of thin composite plates. Composite materials are finding their ever increasing uti-
lization in various industrial applications, thanks to their light weight and at the
same time good mechanical resistance. This makes it necessary to be able to deter-
mine their mechanical characteristics more accurately and reliably. Unfortunately
it not as simple and straightforward as in the case of usual isotropic materials. For
usual isotropic materials, the mechanical characterization is based on standard tests
that generate presumably homogeneous states of stresses in tested samples of sim-
ple shapes. However for anisotropic materials or materials exhibiting multiphase
or gradient of properties, heterogeneous stress/strain fields may be obtained. The
usual method for characterizing such materials is to perform several tests to deduce
reliable average values of constitutive parameters. However, greater is the num-
ber of involved parameters, more tests are required to be performed. To overcome
these difficulties, exploitation of heterogeneous strain fields is very promising among
possible solutions for direct characterization of such materials. It is obtained when
response of most or all of the material parameters are involved in a single test. It
also permits to design mechanical tests resulting in heterogeneous fields such that
all of the material parameters are involved in the response. Thus, identification of
greater number of constitutive parameters is possible from reduced number of tests.
A drawback of such a procedure is the fact that generally no closed-form solutions are
available for the strain/stress fields. This requires a full field (non-contact) measure-
ment method to capture the displacement fields and a specific methodology (referred
to as inverse method) to relate the required parameters to the measurements made.
Thanks to the recent developments in image processing techniques using CCD cam-
eras and powerful computers, such non-contact full-field measurement techniques

are becoming more and more popular and appealing.

The present work is based on the use of so called Virtual Fields Method (VFM).
In the present case of elastic anisotropy, VFM is a non-iterative identification proce-
dure for the solution of inverse problems. The present work takes into account two

recent developments, notably the piecewise construction of the special virtual fields
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and the minimization of noise effect. With these two new aspects, a procedure is
developed for the direct identification of the unknown bending rigidities of a thin
composite plate. Another novelty of the present work is the optimization of a testing
configuration such that more robust and accurate identification is possible. The dis-
cussed topics are numerically validated using simulated examples of thin composite
plates. An identification case of a damaged composite plate is also studied numeri-
cally. In the end, first experimental results are presented that are very encouraging
for the future detailed experimental validation.

This doctoral dissertation is presented in the following eight chapters accordingly:

First chapter discusses various available computational strategies for the solution
of inverse problems. For the identification of materials constitutive parameters, this
chapter presents the methods which are based on the use of overdetermined data
or full-field measurement data. In this regard, an overview of different available
methods, their fundamental principles and applications are discussed.

Second chapter presents the identification method used in this work which is the
virtual fields method. This chapter is devoted to the theoretical development of
VFM for a case of thin composite plate bending problems. The main interest and
novelty is the piecewise construction of the special virtual fields over the specimen.
For an example of complete anisotropy in linear elasticity, the principle of virtual
work (PVW) is written with different virtual fields and a system of linear equations
is developed. Such a system of linear equations leads to the direct identification of
the unknown bending rigidities by exploiting full-field measurement data available
on the top surface of a tested specimen.

Third chapter introduces the noise effect on the developed identification system.
As the measured full-field data are always noisy, it is important to consider the noise
effect on the identification procedure. Hence any identification should be able to
appropriately process noisy data such that its adverse effects are minimized. Using
simulated noisy data, this chapter discusses the effect of noise minimization such
that a more robust identification of the bending rigidities is possible with minimum
sensitivity to the noise effect.

Fourth chapter presents a numerical validation of the identification system based
on the piecewise VFM with minimized noise effect as developed in the preceding
chapter. With the help of a numerical illustration based on bending problem of a
thin glass-epoxy composite plate, identification of the bending rigidities is achieved
using simulated noisy data. A comparison is also presented in this chapter with an
earlier study where a single polynomial expression was used to define the virtual

fields over the whole specimen.
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Fifth chapter is a further extension to the use of the developed identification
procedure. It is used as a tool to classify different given testing configurations on
account of better and most robust identifiability especially in the case of noisy data.
A comparative study of three different configurations is undertaken using simulated
noisy data. A performance based rating of these configurations is established on
account of more robust and better identification. Additionally, an optimization case
of a testing configuration is also studied. The idea is to explore an optimized position
of the force application point such that a more robust and better identification is
possible with least sensitivity to noise. A case of carbon-epoxy composite plate is
also presented in order to study the effect of using a different material on the location
of the optimized force application as noted in the case of a glass-epoxy material.

Sixth chapter presents the major part of this doctoral thesis. It discusses the
optimization of testing configurations in detail. To the best of the author’s know-
ledge, such an optimization study is among the few available works in its attempt and
treatment. The effect of various parameters like fiber angle, specimen size, location
of force application point, location of support points and finally the specimen shape
are studied independently and collectively. The idea is to find such an optimal
combination of these variable parameters such that a most robust identification is
possible with least sensitivity to noise.

Seventh chapter discusses an important application of the piecewise VFM with
minimized noise effect for an identification problem of a damaged composite plate.
This work contributes to a separate research work dealing with the local loss in
stiffness in damaged composite plates, currently under progress in the Department
of Aerospace Engineering, University of Bristol and Laboratoire de Mécanique et
Procédés de Fabrication (LMPF), ENSAM Chalons. The piecewise VEM is applied
here to an illustrative numerical example of a damaged composite plate. The basic
interest of this work is to establish a numerically validated procedure for simul-
taneous rigidity identification in the damaged and undamaged zones of a given com-
posite plate. The effect of an optimized force application point is also studied for
better and more robust identification especially of the damaged zone. Using the
piecewise VFM, this chapter also discusses a procedure for the defect localization.

Eighth chapter finally presents the first experimental results. Experiments based
on the deflectometry method for the full-field slope measurements are conducted by
the collaborative research group at LMPF, ENSAM Chalons. The experimental data
obtained are processed here to identify the bending rigidities. Experimental results
of thin carbon-epoxy composite plates are discussed here for two different types of
testing configurations. One is an optimized version of the other regarding the force
application point. This chapter briefly recalls the deflectometry method which is a

non-contact full-field slope measurement technique. These first experimental results
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on the one hand validate the identification ability of the developed piecewise virtual
fields method with minimized noise effect. On the other hand they serve to justify
the simulated expectations of more robust identification in the case of an optimized

configuration.
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Chapter 1

Identification of constitutive
mechanical properties using

heterogeneous deformation fields

1.1 Introduction

The non-contact full-field measurements techniques are becoming more and more
popular in the experimental mechanics community thanks to recent developments in
image processing techniques using CCD cameras and powerful computers. Various
techniques are available in practice such as digital image correlation [4, 5], electronic
speckle pattern interferometry [6, 7], moiré and grid methods [8, 9, 10] and defelec-
tometry [11, 2, 12]. In order to benefit the most from the available large amount of
experimental data, these experimental procedures are also gradually modified. Now
it is possible to directly obtain displacement or strain contours on the specimens
surfaces under testing. In the experimental mechanics community, characterization
of mechanical response of materials and structures from these measurements is an
important issue. The basic interest lies in the fact that using these methods, com-
plex experiments giving rise to heterogeneous deformation fields may be performed.
Such heterogeneous fields involve mechanical response of all or most of the mate-
rials constitutive parameters. Thus identification of greater number of constitutive
parameters is possible from reduced number of such tests. However identification of
parameters using such full-field measurements require some suitable procedures since
there is generally no direct link between measurements and unknown parameters.
Several strategies for the identification of constitutive parameters using the full-field
measurements data are currently under progress in different research groups at var-
ious French institutes. In the framework of a cooperative research project (GDR

2519 of CNRS), these different techniques are currently being evaluated using some
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real experimental data [13]. An overview of the different techniques used in this

regard is presented in this chapter.

1.2 Solution of inverse problems using full field data

The constitutive parameter identification problem is usually referred to as inverse

problem. This problem can be defined as follows. Let us consider a solid of any shape
Q (see Fig 1.1)

Figure 1.1: Specimen of any shape.

where S, V' and t are respectively the external surface, the volume and the thickness
of the specimen. For any point M on the specimen external surface Sy, the stress
vector T(M,n) = T is assumed to be known. n is a vector perpendicular to S
at point M. S, is the specimen external surface where the displacement field u is
prescribed: u = u. Solution of such an elastic body problem is governed by the

following three sets of equations.

e cquilibrium equations

divo= 0 in €
(1.1)

o-n= T on Sy

e kinematic compatibility

(1.2)

{ e= 3 (gradu+ gradu) in

u= ua on S,
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e constitutive equation

o= C:¢ inQ (1.3)

Here u defines the displacement vector, € the strain tensor and o the stress tensor.
In order to support a well-posed set boundary conditions the surfaces S, and Sy are
such that S, US; = 0Q and S, NSy = 0. Hooke tensor C may comprise of constant
components in case of homogeneous materials or point-dependent for heterogeneous

materials.

Direct problems

known | unknown
geometry
aon S, u, €
Ton S ¥ o
C

Table 1.1: Known and unknown parameters in case of direct problems.

Inverse problems

known unknown

geometry
T on S
u on {2 C

or

u on 0f

Table 1.2: Known and unknown parameters in case of inverse problems.

A classical continuum mechanics problem often referred to as direct problem is
shown in Table 1.1. In this case the geometry of the solid, material parameters and
boundary conditions are known whereas the displacement, strain and stress fields
are unknown. For such types of direct problems, closed-form solutions are gener-
ally not available. Hence, a numerical solution technique (usually the finite element
method) is used for solving such problems. However identification of constitutive
parameters is addressed in the present work. Such a problem is often referred to as
inverse problem. 1t is presented in Table 1.2. In these inverse problems, only the
displacement fields on 02 are known and the material properties are unknown. The
strain fields are generally obtained by differentiation of the measured displacement

fields. No closed-form solutions for this inverse problem are available in most of

-29-



the cases, so the constitutive parameters are not directly related to the measured
displacement fields and to the applied forces. So some numerical procedures suitable
for the use of full field measurements as input data must be used for solving this
problem. For this purpose several methods have been proposed in the recent past to
solve this type of inverse problems which include, the finite element model updat-
ing (FEMU), the constitutive equation gap method (CEGM), the equilibrium gap
method (EGM), the reciprocity gap method (RGM) and the virtual fields method
(VFM). All of these identification methods are based on well-known principles of
continuum mechanics.

The following section now briefly discusses these different methods one by one.

1.3 Overview of identification methods using full-
field data

1.3.1 The finite element model updating

The finite finite element model updating (FEMU) is one of the most widely used
and straightforward methods. It consists in iteratively performing a finite element
analysis such that a set of required constitutive parameters are found which result in
the best match of the computed quantities and their experimental counterparts. It
is important to note here that full-field data is not necessary for this type of analysis
as it can be effectively performed by using any kind of overdetermined data. FEMU
technique is based on performing a finite element analysis of a given problem for
which the specimen geometry, boundary conditions and loading information, are
known in advance and are used as an input. Using an initial estimated set of
unknown material parameters to be extracted, a simulated response is obtained.
This simulated result is then compared to that of experimental counterpart and the
resulting difference is noted. The idea here is to find such a set of parameters which
results in best match of the simulated and measured results in terms of minimum
difference between the two responses. A general form of such a cost function referred
to as weighted least squares estimator can be found in refs. [14, 15].

FEMU has been successfully used in the literature where full-field data mea-
sured experimentally is processed. For instance, Mauvoisin [16] identified bending
rigidities of thin anisotropic plates by using a measured deflection field at the sur-
face of bent composite and cardboard plates. However, identification could not be
performed successfully as the test configuration was not sensitive to all the bending
rigidities. In order to ensure the influence of all the bending rigidities on the plate

response, Arafeh [17, 18| later used a specially developed test design approach based
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on finite element sensitivities. Based on bending test configurations proposed by
Arafeh, experiments are performed lately on structural wood based panels [19, 20].
For the identification of viscoelastic parameters, deflection measurements were per-
formed at different times (creep test). The obtained results were found satisfactory
for the elastic parameters, whereas for the viscoelastic parameters this study pro-
vided only the preliminary results with no comparison to reference values. However,
this work remains one of the few incorporating both experimental and numerical
aspects. The FEMU has also been applied to identify the elastic-plastic behaviors
of metals [15, 21| with very promising results. In a recent work, the influence of
local effects on the identification of plate stiffness components is studied using the
full-field measurements and the FEMU [22|. In another recent example, plastic ma-
terial identification is achieved using full-field measurements and the FEMU [23].
Applications of the FEMU is also found in the field of biomechanics, for instance,
it is used for the in vivo characterization of anisotropic and non linear behavior of
human skin [24]. In a similar work, after studying the behavior of woven reinforced
composites, in vitro characterization of the orthotropic behavior of a patch of dog
skin was performed [25, 26].

Finally it may be concluded that the FEMU technique is widely used for different
types of situations where full-field measurements are used. However solution of

inverse problems through FEMU has some drawbacks:

e it is an iterative procedure and proves to be very time consuming, especially
in cases of non-linear constitutive models where iterative calculations are per-

formed for each set of material parameters.

e it requires a load distribution as an input which generally remains unknown
and only the resulting global force is measured. Hence the iterative calculations
are performed under some assumptions concerning this distribution which may

not be very close to actual experimental conditions.

e an estimated set of material parameters are used to initiate the iterative pro-

cedure which play an important role in terms of convergence time.

1.3.2 The constitutive equation gap method

The constitutive equation gap method (CEGM) is based on the constitutive equa-
tion gap which measures the distance between a given stress field p and another
stress field computed with a constitutive model and a given displacement field 9.
A well posed boundary value problem defined by Eq. (1.1,1.2,1.3), is considered
here. Let C' and S be the sets of kinematically admissible displacement fields and
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statically admissible stress fields respectively. The unknown constitutive parameters
appearing in the constitutive equation Eq. (1.3) provide a link between strains and
stresses therefore it is relevant to consider a cost function based on a notion of error
in constitutive equation [27]. Such a cost function, based on the error in constitutive
equation is defined by using the variational principles of elasticity. This concept
was however first introduced by Ladevéze and Leguillon [28] with reference to error
estimation in finite element computations. For a linearly elastic constitutive model,
a functional measuring the gap in the constitutive law i.e. the constitutive equation

gap |27, 29| between the two fields p and 19 is expressed as

F(9,p, C) = %/Q(p _Ced) C o (p— C )V (1.4)

The solution (u, o) to the boundary value problem is given as [27, 29|

(u,) =arg min F(3,p,C) and F(3,p,C)=0 (1.5)
(9,0)€CxS

Making use of the available experimental information about displacement and stress
fields, the constitutive parameters, for instance the elasticity tensor C, can now be
identified by minimization of the constitutive equation gap [30, 31| as noted in Eq.
(1.6).

C = arg rréi*n J(C*) with J(C*)= min F(d,p,C") (1.6)

(9,p)€CxS

The minimization procedure used here involves an alternate-direction search
where a partial minimization with respect to (9, p) is followed by a partial min-
imization with respect to C*. It is important to note that CEGM is applicable to
problems where an overdetermined data is available which may not be a full-field
measurement. Several studies of this kind are performed especially in the context of
modal updating from vibrational data such that the FE models agree best with their
measurements on the real structure [28, 32, 33, 34|. However full-field measurement

data may well be incorporated and used in this procedure [35, 36].

1.3.3 The equilibrium gap method

The equilibrium gap method (EGM) 37, 38] has been proposed and developed to
identify elastic fields or a damage field by making use of a measured displacement
field in €2. The approach is valid for the cases where the constitutive heterogeneity is
in the form of a scalar and isotropic damage field D(z) [39]. In this case of damage
description, the Poisson’s ratio remains constant contrary to the Lamé coefficients
which can be written as A(x) = A\g[1 — D(z)] and p(z) = po[l — D(x)] where Ay and
o are the coefficients of the undamaged material.
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As most of the measurements techniques yield data on a regular mesh of points,
it is assumed here that the displacement data is available on a regular measurement
grid. This allows to build a FEM mesh using eight-noded quadratic square elements
within plane-stain or plane-stress framework. The resulting mesh is such that the
nodes are coincident with the measuring points. Such an assumption leads to a
specific formulation where only middle nodes are considered. Now, assuming a
constant damage parameter D, for a given element e, the elementary stiffness matrix

gives

[Kme](De) = (1 - De) X [Kme()] (17)

where [K,,co] represents the elementary stiffness matrix of an undamaged element.
Similarly, the strain energy E,,. of element e is given below with {u.} representing

the nodal displacement column vector

(1 B De)

9 uet[KmeO]{ue} (18)

[Eme](De) =

The FEM equilibrium equations are now used for the identification of this dam-
age distribution. For this purpose only the midside nodes, shared by two adjacent
elements denoted as 1 and 2, are considered. In the absence of external loads at the

adjacent nodes referred to as 12, the FEM equilibrium equations write as follows

(D1, D2) =0 (1.9)

Here, E,,12(D1, Dy) = Epi(D1) + Enma(Ds), where Dy, Dy are the damage variables
in elements 1 and 2. Similarly, if the same condition is written for all the available
midside nodes, a set of linear equations is obtained where unknown damage parame-
ters are linked to the known nodal displacements. However, Eq. (1.9) is not strictly

satisfied in practice and a residual force F, is obtained which is expressed as

aEml (D/\ + a-E7’)’l2( N

F.(Dy, Dy) = D,) (1.10)

1
8u12 8U12

where ljl, D, represent trial values of the unknown damage variables. Due to
this residual the proposed method is referred to as the equilibrium gap method.
Minimization of the residuals F, lead to the eventual identification of a damage
field by using a know displacement field. The procedure can be used in other cases.
For instance, in the case of micro-electro-mechanical systems (MEMS), this method
has been recently successfully employed for simultaneous identification of elastic
properties and loading fields using the measured displacement fields [40, 41, 42, 43|.
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1.3.4 The reciprocity gap method

The reciprocity gap method (RGM) is proposed for the identification of unknown
distribution of elastic moduli using full-field measurements. It assumes that the
displacement distribution on the boundary, induced by a known applied static load,
is measurable in the form of full-field data. Let (£, #) denote the known displace-
ments and tractions on the boundary 0f) of an elastic body in domain €. From
such displacement-force boundary data, the interior distribution of the elastic ten-
sor C*(x) may be reconstructed and a reciprocity gap functional is defined from the
principle of virtual work [27, 29, 30|. A reciprocity gap functional is now defined
here with the help of an adjoint state. An adjoint state represents an elastic body
occupying the same region €2 but a distinct elastic tensor distribution C(z). Let
i denote the displacement field induced by a traction distribution ¢ on 9§ of this
adjoint state. Using the principle of virtual work, the identities for the experimental

and adjoint state are obtained and represented as

/Qe(u*):[C*—C]:e(a)dV:/ (6-7i— $-€)dS = R(C* — Csiiyu)  (111)

o

The above Eq. (1.11) defines the reciprocity gap R(C* — C;a,u). The term
reciprocity gap comes from the fact the same functional may be derived by using
Maxwell-Betti reciprocity theorem for the two states (u,u). The theorem is based
on the assumption that both the states refer to the same elasticity tensor and thus
a reciprocity gap occurs when the assumption is no longer valid [27|. Thus for any
adjoint state (u, d;), the reciprocity gap R(C* — C; 4, u) is a known function of the
experimental data (£, @), such that

R(C* = Cyi,u) =0 (Vo) (1.12)

For any given adjoint load ¢, the above Eq. (1.12) results in an independent
scalar relationship with respect to the unknown distribution C* or to the parameters
involved in its definition. Using the RGM, theoretical studies [44, 45| based on the
identification of C* have been achieved by using a linearized version of Eq. (1.11).
In such linearized inversion problems the adjoint states were chosen according to a
procedure initially proposed by Calderon [46]. The main idea of this technique is
the fact that the right hand side of Eq. (1.11) yields the spatial Fourier transform
of C*— C.

The reciprocity gap method has been extended to the identification of the flexure
rigidities for Love-Kirchhoff plates [47]. However, RGM is mainly employed for the
crack identification problems. In such applications an elastic body with known

elastic moduli C and a traction-free embedded crack defined by the open surface T'
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is considered. The corresponding inverse problem thus consists in reconstructing I’
from boundary measurements (£, ¢). Now disregarding the possibility of the crack
faces coming into mutual contact, the reciprocity gap functional of the problem can
be formulated [27, 29]. Such a reciprocity gap functional has been successfully used
for the identification of planar cracks [48, 49, 50]. These studies demonstrate that
it is possible to choose such families of adjoint states (5, d;) which permit to identify
a normal direction to the crack plane, position of this plane and the crack itself. A
variant of the approach based on instantaneous version of the reciprocity gap has

also been proposed for the case of elastodynamic measurements [51].

1.3.5 The virtual fields method

This method can be applied in cases where a full-field strain measurement is
available. Such a strain field is in fact derived from the experimental full-field dis-
placement measurements. The basic idea of the VFM lies in writing the global static
equilibrium of the tested specimen with the principle of virtual work. Considering a

plane-stress state with no body forces, the principle of virtual work writes as follows

—/cr:e*dV—i—/T-u*dA:O Vo uf, e’ K.A (1.13)
v Sy

where u* represents virtual displacement field from which the corresponding virtual
strain field €* is derived. These virtual fields are supposed to be kinematically ad-
missible. Now it is required to write the principle of virtual work with as many
different and independent virtual fields as the unknowns introduced into the con-
stitutive equations. If at least as many virtual fields as the unknown parameters
are chosen then a linear system of equations is obtained. This system provides the
unknown parameters after inversion. Since the birth of VEM [52], this approach has
then been simulated and applied to various cases of composite materials character-
ization. For instance, it has been successfully applied to bending problems either
in statics [53, 54, 55|, or in dynamics [56, 57, 58|. It has been used for in-plane
characterization [59, 60] and also for through-thickness composite characterization
both in the case of linear elastic response [61, 62, 63] and a non-liner response [64].
An important issue here is the choice and construction of virtual fields, since
these fields directly influence the degree of independence of the equations in the
linear system of equations. Also there exist an infinity of virtual fields verifying the
principle of virtual work. In previous studies, for the sake of simplicity, such fields
were manually constructed in the form of polynomials over the whole of specimen
with the only condition of its kinematic admissibility. Such an intuitive selection

was based on trial and error approach such that the different equations of the linear
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system remain sufficiently independent. The independence of the equations is in fact
directly related to the sensitivity of the identified parameters when actual noisy data
of the measured displacement field is processed. It is therefore essential to obtain

such virtual fields which lead to a set of independent equations.

This approach has been greatly improved in recent past, thanks to automatic
construction of special virtual fields [65, 66]. The novelty here is to find such virtual
fields that the coefficient of only a corresponding unknown in the linear system of
equation is one and the remaining are zero. The unknown is then directly identifiable
with the virtual work of the loading. Such virtual fields are referred to as special.
However in this case also there exists an infinite choice for selection of such special
virtual fields. This freedom has been exploited to find some more relevant special
virtual fields especially in terms of sensitivity to the noisy data. In this regard a first
strategy was proposed which reduces the effect of random noise onto the identified
parameters [67, 3]. Recently a more efficient procedure has been proposed which
results in an automatic construction of unique special virtual fields which leads to

lowest sensitivity of the identified parameters to noise [68].

Another important development is the introduction of piecewise construction
of virtual fields [69]. Instead of defining the fields by the same expression over the
whole specimen (as in earlier studies), they are defined in subregions or piecewise over
the specimen. On one hand it gives greater flexibility when a multiphase material
is considered. On the other hand it allows to construct the fields using lower-
degree polynomials as shape functions in each subregions. Recalling that when a
same polynomial expression is defined over the whole of specimen greater degree
polynomial is required which results in magnification of the adverse effects of noisy
data onto the identification of parameters. In recent examples VFM has also been
used to directly identity the damage behaviour of composite materials [70] in addition
to further extending the application in case of elasto-plastic constitutive parameter
identification [71].

With all these improvements, VEM becomes much easier to implement and reli-
able especially for composite material characterization involving the use of full-field
measurements [72]. The main advantages of the VFM lies in the fact that it is a
non-iterative procedure capable of direct identification of the unknown parameters
by using a full-field data [73]. Also, the influence of boundary conditions (i.e. the
knowledge of loading distribution over the boundary) can be avoided by choosing

such virtual fields in which the virtual work involves only the resulting forces [67].
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1.4 Conclusion

Recent advances in the sensing technology and image processing have led to the
development of various techniques to measure displacement or strain fields over a
mechanically tested specimen. This has also resulted in parallel development of
different computational strategies which enable to process the measured fields in
order to identify the materials constitutive parameters. This chapter presents these
various available computational techniques. Among the different methods studied it
is observed that most of these share a common inconvenience of iterative calculations
in addition to the use of an initial guess of the unknown parameters.

The present work is based on the virtual fields method. It permits to avoid some
of the above noted inconveniences and thus be considered as an alternative to the
classical identification methods. Taking into account the recent improvements in the
VEM notably the use of piecewise special virtual fields with minimized noise effect,
direct identification of bending rigidities of a thin composite plate is studied here.
The following chapter now discusses in detail the piecewise VFM method applied to
plate bending problems.
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Chapter 2

The piecewise virtual fields method

in plate bending problems

2.1 Introduction

The virtual fields method is based on the principle of virtual work [52|. It consists
first in writing the global static equilibrium of the specimen considering plane stress

state and no body forces as

—/a:s*dV + /T-u*dA =0 V u,e“ KA (2.1)
14 Sy

——— — ~——
Internal Virtual Work: Wi paternal Virtual Work: Wy

where:

e I/ is the volume of the specimen under study,

e S is the surface over which the global equilibrium is written, and over which
full-field measurements are assumed to be available,

e Sy is the boundary surface of the specimen,

e o is the actual stress field over surface S,

e T is the traction on the surface Sy,

e u® is a virtual displacement field, i.e. an imagined displacement field which
respects the boundary conditions, referred to as kinematically admissible (K.A.),

e ¢* is the virtual strain field derived from u*,

e ' denotes dot product between two 2nd rank tensors,

e '/ denotes dot product between two 1st rank tensors.

-39-



It is important to note that the Eq. (2.1) is valid for any K.A. virtual field. The
VFM takes advantage of this property by writing the above equation with as many
different and independent K.A. virtual fields as unknowns [52|. It will be shown
below that this leads to the direct extraction of the unknown parameters.

In the present case of plate bending with point loadings, using the theory of thin
anisotropic plates [74], Eq. (2.1) becomes

—/MfK%4+IW:0 (2.2)
S
with
M, k* n
M=|M, | , K=k |, W=> Fuw
M, k i=1
where

e M is the bending moment field on the surface 9,

e w* is the virtual deflection field, which is kinematically admissible (KA),
e K* is the virtual curvature field derived from w*,

e ;i =1,...,n are applied loading forces,

e the rule of contracted indices is used: xx — x, yy — y, xy — s

For thin plate bending, the moment-curvature relationship is written as

M, Dy Dy Dy K
M, | =| Dy, D,, D, k, (2.3)
Ms DIS Dys DSS ks

Here, the D;;’s are the unknown bending rigidities and the k;’s are the curvatures

which are second derivatives of the deflection w, as

0w 0w 0w
N L 2.4
ks 0z2 "’ Ky oy? ' ks 0zdy (2.4)

The objective of the study is to identify the bending rigidities D, Dy, Dss, Dy,

D,s and D, from the heterogeneous strain fields produced on the top surface of

a bent plate recalling that no closed form solution of the actual deflection and
curvature field is available in the general case. It is assumed here in the present
case of thin plate bending problem that the D;; are constant over the whole plate.
In Chapter 7 an identification problem is studied where the plate comprises of two
zones with different D;;. Now, substitution of M and K* in Eq. (2.2 ) gives

L(Mﬁ;+Mw;+MﬁgdA:§:Ewﬁ (2.5)
=1
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also, using Eq. (2.3) the above expression expands to

/S [(Dmkx + Dayky + Dasks) by 4 (Dayke + Dyyky + Dysks) k)
+ (Dysks + Dysky + Dysk) k;‘] dA=> " F-w; (26)
i=1

Considering the constant bending rigidities over the whole surface, and rearranging

the terms we get

Dyy | kokidA+ Dy, | kykidA+ Dy, | kkidA+ Dy | (koki + kyky) dA
S S S S
+ Dy [ (kok + k) dA+ Dy | (kyki + koky) dA =" Fp-w! (2.7)
S S i=1

Finally the above equation is written as follows

Dyolow + DyyIyy + DyoIss + Doyloy + Daglys + DysIys = > Fy-w; (2.8)
=1
where
L= [skakidA 5 Ly = [q(kky +kk}) dA
Iy = [okykidA 5 Ly= [k +kk:)dA (2.9)
Ly= [okkidA 5 I= [ (kb +kk;)dA

At this point, it is required to write the above global equilibrium equation with
some particular virtual fields. If as many virtual fields as unknown rigidities are
found, a linear system of equation is obtained. For identification purposes, six
different virtual fields are required which are represented as {w*®, k**}, where o =
a,b,c,d,e, f represent Dy,, Dy, Dy, Dy, Dyg and Dy, respectively. Finally the

system of linear equations is represented in a matrix form as follows

I, Iy, I In, In, Ij D, F;w;e
b b b b b b xb
];m ]?y ];s ]iy ]%s I?s l)yy }Q'UQ
Ie, I, IS, It IS, IS D, —~ | Fiuw*
i N Sl Sl I BT
T vy EE] xy Ts e Yy i=1 Tlui
Iy, Iy, I Ip, Ipo I, D, Flw;‘;
L ]g; ]g? [é ]g; ]g; ‘Qﬁ d L l)ys _ L IQ'UG .

Now an important issue of the VFM is the selection of these virtual fields among

infinite possibilities. Previously it has been shown that there exist certain virtual
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fields called special virtual fields [66] that render the matrix of linear system Eq.
(2.10) equal to unity

I, 10 I 10, 1o I 100000

b b b b b b

oo, o, o 010000

I, I, I, I6, IS, I 001000

Moo oo [T 00010 0 (2.11)
TT yy ss Ty s ys

I, I, I, I, IG T 000010

i, oo 0 ] o000 01|

In this case Eq. (2.10) leads to direct identification of unknown rigidities making
use of Eq. (2.11). The idea is then to use the principle of virtual work with these
special virtual fields such that five out of the total six terms in each row are zero
whereas the sixth one is equal to unity in Eq. (2.10). Thus direct determination
of the parameter is made whose coefficient is 1 in Eq. (2.11). Similarly, using six
different special virtual fields, all the six unknown parameters are identified one by
one. Finally, the linear system of Eq. (2.10) becomes

Dy Fiwi®
Dy, Fw;?
Dy | | R
= 2.12
D, ; Fwrd (212)
Dys Fiw;e
L Dys L Fi-w;'kf i

In the present section the VFM using special virtual fields is recalled [66] and
presented. Now the following section discusses one of the novelties of the present
work i.e. the piecewise construction of special virtual fields applicable to thin plate
bending problems.

2.2 Construction of the virtual fields

2.2.1 Introduction

So far it has been established that the unknown parameters can be directly iden-
tified by making use of special virtual fields or specifically special virtual deflection
fields w® (with a = a,b,¢,d, e, f), while writing external virtual work as per prin-
ciple of virtual work (refer to Eq. (2.12)). Now in order to construct such special

fields there are certain issues which are discussed below.
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2.2.2 Virtual deflection fields defined by virtual elements

Any set of independent continuous functions can be used as a basis for express-
ing and development of virtual displacement fields. Previously polynomials defined
over the whole of specimen’s geometry were effectively used [3]. The present work
introduces a piecewise construction of special virtual fields over a bent plate. This
technique was first introduced in case of membrane loadings for multimaterials [69).
Such piecewise virtual fields are referred to here as virtual elements. The idea is to
use similar shape functions as those used in the finite element method to describe
the virtual field within each element. They are finally expressed as a function of
parameters which are some generalized virtual displacements (deflection, slopes or

curvatures) at each node of a virtual mesh of the plate.

One of the advantages is the freedom to construct either one or many piecewise
virtual fields over the whole geometry of specimen. This gives an important leverage
when a multiphase material is to be characterized [69]. In these cases such separate
piecewise virtual fields are constructed for different zones having different properties
within a given specimen and their respective properties can be identified. Also,
the degree of shape function is lesser as compared to the use of polynomial defined
over the whole specimen. On account of earlier results discussed in ref. [3], it is
expected to reduce the influence of noise which is closely related to the degree of the

polynomials used for expanding the virtual fields.

It is important to note that the principle of virtual fields is valid for virtual
displacement fields which are continuous over the whole specimen. In the case of
plate bending, it means that the deflection and its derivatives (the slopes) computed
along any direction must be continuous. This latter condition is required to ensure
the continuity of the in-plane virtual displacement field according to the well known
Love-Kirchhoff assumption [74]. Such a condition is generally not verified in many
elements used in the finite element method for bending problems. As a result some
in-plane displacement components are not continuous at the boundary of the ele-
ments [75]. The idea here is to fulfill this requirement in such a way that the principle
of virtual field is strictly verified, thus avoiding any problem when this principle is
used for identification purposes. Very limited number of shape functions verify such
an in-plane displacement continuity in the case of plate bending [75]. In fact it can
be shown that four degrees of freedom (dof) must be used at each node of rect-
angular elements to fulfill this requirement: w, 8, (: %—’Z) , 0y (: g—’;) s Oy (: %).
Only the fourth dof (6,,) ensures the slope continuity in any direction. Such a con-
tinuity is not obtained when only the first three dofs are used. This type of so-called
Hermitel6 element [75] defined by four nodes with four dofs at each node is therefore

used in the present study, refer to Fig 2.1. It should be emphasized that the in-plane
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displacements are no longer continuous if the element is a parallelogram [76]. How-
ever, a triangular element ensuring slope continuity with six dof at each of the three
nodes can also be used [75, 76]. Such a triangular element is not considered in the

present work to avoid additional computational complexities.

n4d @ @n3d
W’J.
n, = 9}9.
n i T
L. ™
! ; 0,
i=1,23.4

Total nodes = 4
Total dofs =16

n@ ® n2

Figure 2.1: A quadrilateral 4 node element with 4 dofs at each node.

For notation purposes hereafter, let | col > denotes a column vector and < lin |
represents a line vector. The matrix multiplication < lin || col > leads to a scalar
and | col >< lin | results in a rectangular matrix. Now, let < f(x,y) | represent
the chosen shape function and | Y* > a vector whose components are in fact all the
nodal dofs virtual values. This vector is a priori unknown and must be determined
to completely define the virtual field. In case of one virtual element used, it is a
column vector of 1 x 16. The length of vector | Y* > is denoted by N which depends
upon the total number of virtual elements. Say, p and ¢ denote the number of virtual
elements respectively along = and y directions along the specimen. p x ¢ gives the
total number of the virtual elements which are defined in the form of a regular
mesh over a given specimen. Then length N of vector | Y* > is determined as,
N =4(p+1)(q+1). For example, in case of 1, 2 x 2 or 3 x 3 total virtual elements
defined over the specimen’s surface corresponding N is 16, 36 or 64 respectively.
Fig 2.2 illustrates the use of a total of 6 x 6 = 36 piecewise virtual elements which
are superimposed over a given specimen shape in a regular mesh form. The total
number of virtual dofs, N, in this case is 196.
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P = B virtual elements along x-direction

6 virtual elements along y-direction

—

q

Figure 2.2: An illustration of total 6 x 6 = 36 piecewise virtual elements, superim-

posed in a regular mesh form over a given specimen shape.

Now, Eq. (2.13) below represents | Y* > in case of only one virtual element,
however an assembly of such nodal dofs is required in case of more than one virtual

elements used

1V >= . (2.13)

The virtual deflection field in case of one element is written as follows

w' (z,y) = < flzy) | Y > (2.14)

Finally the unknown vector of virtual dofs, | Y* >, is determined using the equations

discussed below.
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2.2.3 Computation of virtual curvature fields

From the virtual deflection field given by Eq. (2.14), the virtual curvature fields
may be calculated as

k;(l’,y) = _83;02* = < bx(l‘ay) || Yye>
ky(wy)= %5 = <bzy | Y*> (2.15)
ki(ry) = —28% = <b(a,y) || V">

here < b,(z,y) |, < by(x,y) |and < bs(x,y) | are vectorial functions of length N and
are second derivatives of shape function as

2 xT

<hifzy)| = - L)
2 xT

<by(wy) | = —=feul (2.16)
2 xT

<hi(wy)| = —225lE0

2.2.4 Computation of integrals

In order to compute the integrals involved in Eq. (2.9), the actual curvatures are
needed. For this, a discrete slope field (6, and 6,) measured over the tested plate
at n, different points whose coordinates are represented by z, and y, is used. From
this slope field, the actual curvatures k,, k, and k, are now derived using Eq. (2.4).
In this regard, Section 8.3.4 discusses in detail the procedure to obtain the required
curvature fields from the measured slope fields on the surface of a tested plate. Now
each term of Eq. (2.9) is calculated as

(I, = [ kokidA = < B ||Y*>
y [s kykidA = <B,||Y*>
[q kskidA = < Byl Y*>

2.17
[s (kaky + kyky) dA = < By || YV* > (2.17)

o= Jg (kykt +kk:)dA = < By ||Y* >

——
S5 ST e Y S
< »

Il

\

Here, due to the discrete nature of the curvature field, the integrals are evaluated
using rectangular method. It is a simple numerical integration technique well suited
to problems when a discrete data is available in the form of a regular mesh. As in the
present case the specimen may be considered to be superimposed by a regular mesh
of identical small rectangles such that their centers correspond to the measuring

points. Thus the above integrals may be computed numerically as discrete sums.
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(B, = = i)l ki (29, Yg)i bu(Tg, Yg)i
By, = n_se ;Zefl Ky, (g, Yg)i by(2g, Yg)i
Bgs = n_Se ane:l ks, (xgv yg)i bS(xgv yg)i 218
b (2.18)

zy n_Se ; ki (Tg, Yg)i bu(Tgs Yg)i + Ky, (g, Yg)i by(Tg, Yg)i

B:z:s = n_i ; kxl (xga yg)i bx(xga yg)i + ksi (xga yg)i bs(xga yg)i
B

Ne
ys = n_i 21 kyi (%95 Yg)i by (g, Yg)i + ks, (g, Yg)i bs(Tgs Yg)i
1=

Let us now examine how to determine the vector of unknown virtual dofs, | Y* >.

2.3 Boundary conditions imposed to virtual deflec-
tion field

As the virtual deflection field is kinematically admissible it must respect the
boundary conditions (BCs). Thus for a given number of supports ng, the virtual
deflection must be zero at these locations. The BCs are represented as linear con-
straints imposed to | Y* > such that the virtual deflection fields verify the BCs at

these points of support. Such linear constraints are written as

w*(z,y), = < flz,y)||Y"> =0; with1l<i<n; (2.19)

This condition provides a first set of equations that will be used to determine | Y* >.

2.4 Constraints imposed due to special virtual fields

With reference to Eq. (2.11) six additional constraints are imposed to | Y* >.
Recalling that for a particular special virtual field only one of the I;; is equal to
unity while the remaining five are zero. Thus for each special virtual deflection field
w*® corresponds a special virtual deformation field | Y** > with a = a,b,¢,d,e

and f. For instance, the six constraints for finding D,, are written as
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(< By ||Y*> =1
<B,|lvy™> =0
< Bg||Y*> =0
<B,||Y*> =0
< By ||Y*> =0
<Byl|Y*™> =0

(2.20)

\

Similarly, by switching the position of “1” vertically downwards and replacing its
earlier position by “0” we get a new set of six constraints for special virtual deflection
field “b” and so on for the rest of the unknown rigidities. Thus for the six parameters
to be identified there are six sets of above constraints with corresponding | Y** >,
| Y > |V > | Y > | Y* > and | Y*/ > which are in fact the required

unknown virtual dofs.

2.5 Identification of unknown rigidities

Once the above six virtual dofs (| Y** >) are known, using the additional equa-
tions given below (obtained from Eq. (2.12) and Eq. (2.14)), the six unknown

bending rigidities are obtained directly as follows

;

D,, = <RI|Y*"™>

Dy, = <RI|Y">

D, = <RI||Y*™>
I . (2.21)

D,, = <RI|Y*>

D,s, = <RI|Y*™>

| Dys = <R|| Y >

where
<R|=)_F < f(x,y)] (2.22)
i=1

Here we may observe that the unknowns | Y** > comprise of 4(p + 1)(¢ +
1) components depending upon the total number of virtual elements defined over
specimen geometry as discussed earlier. Considering an exemplary case of plate
bending with three supports, only 9 equations are available (six from the use of
special virtual fields and three from BCs). This makes it an undeterminate problem
with more unknowns than equations at hand even with p = ¢ = 1. In fact the
additional equations are obtained here from the minimization of noise effect on

identified stiffnesses introduced in ref. [68]. Chapter 3 discusses this issue in detail.

-48-



2.6 Conclusion

This chapter presents the virtual fields method for the direct identification of
bending rigidities of thin anisotropic plates. Especially, it presents the adaptation
of the newly proposed piecewise construction of the virtual fields over the specimen

geometry.
The following chapter now introduces the noise effect on the identification proce-

dure and presents an optimized identification procedure that is capable of direct and
simultaneous identification of the unknown bending rigidities with least sensitivity

to noise.
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Chapter 3

Minimization of the effect of noisy
data

3.1 Introduction

It is well established and known that actual experimental data are unavoidably
noisy in practice. This noise must be accounted for during identification. Thus in the
present study also, the curvature values of the plate under loading must necessarily
contain noise. The minimization of the noise effect is used here to obtain the missing
equations as discussed in Chapter 2 and the unknown vector | Y* > will be finally
determined. The minimization is obtained using a method recently introduced, but
in the case of virtual fields defined by the same function over the whole specimen
and in the case of in-plane problems only [68]. It is adapted in the present work
for the case of piecewise virtual fields and bending problems. In actual practice,
deflectometry technique is used to measure the slope fields on the surface of specimen
with the help of a CCD camera. Such slope fields represent noisy data on account of
various noise sources originating from the light source used and from the camera used
for the acquisition of images. Camera related noise sources are generally classified
as external and intrinsic sources. External sources include for example, photon
noise, electromagnetic noise originating from the power supply to the camera and
the associated computer. However, intrinsic noise sources are related to the camera
itself, some common sources are e.g., the CCD array used to capture the image, the
different amplification stages and the built-in electronic circuits notably the analog
to digital converters. In addition, there are some posterior noise sources arising from
image treatment that is performed after the acquisition of images. Such noisy slopes
fields are first fitted using a polynomial fitting before derivating to find a curvature
field which is then used for identification of the unknown rigidities, refer to Section

8.3.4 for details. However the present numerical model makes use of a representative
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standard Gaussian white noise added directly onto the curvature fields, purely for
the reason of simplicity. In order to strictly verify the principle of virtual work using
such noisy data the noise part must be eliminated and the theoretical Eq. (2.7)

becomes

Dyy | (ky — YNg) KidA+ Dy, | (ky —vN,) kidA

S S
+ Dy | (ks —YN,) kidA+ Dy | [(ko — yNa) by + (ky —YN,) k] dA
S S
+ Dy [(km - 'YN:U) k: + (ks - fYNs) k;] dA
S
+Dys [ [(ky = YN, K + (ks — YN, k] dA =Y " Fw} (3.1)
S =1

Here N,, N, and Ny are models of experimental noise. These are supposed to be
standard Gaussian white noise (presumably having Standard Normal Distribution).
v is the standard deviation of noise. It is a positive real number and represents
measurement uncertainty. Also, it is assumed that no statistical dependence exists
between noise at two different measurement locations in addition to the noise com-
ponents itself viz. N,, N, and N; [68]. Upon rearranging the above expression and
making use of the earlier substitution Eq. (2.9), we get

Dy, {IM — 7/5le€;dA] + Dy, {Iyy - V/SNykZdA} + Dy {Iss - y/stk;‘dA}
+ Dy [Iw — /S (Nkj + Nyk3) dA] + Dy [[m — /S (N k¥ + NE?) dA]
+ Dys [Iys — 7/5 (Nyk; + Nk;) dA] = zn:Fw (3.2)
i=1
According to Wiener processes theory, NydA, NydA, NydA, can here be replaced

formally by dN,, dN,, dN; in the integrals of Eq. (3.2) [68]. This substitution leads

to

Dy, {IM — 5 / kj;dNI] +D,, [Iyy — / kZdNy] +D,, {Iss — / k;‘st]
S S S

+ Dy, [Lﬂy — / (kXdN, + k;dNy)] + D, {[m —y / (k*dN, + k;f,st)]
S S

+ Dy, [Jys —~ 7/ (k:dN, + k;st)] => Faw* (33)
S i=1
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upon further contraction it may be written as

sz (I&?l‘ - ’YJII) + Dyy (Iyy - ’YJyy) + Dss ([ss - 7‘]58) + Dzy (I - 'Yny)

+ Dy (Ins — 7 Jus) + Dys (Iys — 7 Jys) Z Fw}
where
Jow = Jok3AN, 3 o= [4 (kidN, + kidN,)
Jy = [gkidNy, ;  Jo= fs( *dN, + k*dN,) (3.5)
Js= [okidN, 5 Ty = [;(k:dN, + kidN,)

With the use of special virtual fields (see Eq. (2.11) a following system of six
equations is obtained

( Dyw (1= 7J35,) + Dy (=7 Jyy) + Dss (=7T5,) + Day (=773,
D () 4 Dy (1) = 3 Fra?

Doy (=vJ2,) + Dyy (1 =772, + Dys (—7J2,) + Day (—712,)
+ Dys (—7J%,) + Dys (—7J) = zn: Fywr

Daa (—7J52) + Dy (—7J5,) + Dss (1 =7 J5,) + Doy (—7J5,)
+ Das (—7J5,) + Dys (=7 J5,) = zn: Fyw'e
% Do (=7 J%) + Dyy (=7 JL) + Dyy (=7 JL) + Dy (1 — T2 _
+ Dy (—7J2) + Dys (=773 = zn: Fw!?
im1

Do (=7 J5) + Dy (—7J5,) + Dss (=7J5,) + Day (—7J5,)

+ Dy (1 = 7J%) + Dy (— ZF w

+ Dy (—vJL) + Dy, (1 — nyJs) = Zﬂ,w;‘f
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Now the rigidities are evaluated as

4 n
Do =Y Fiw!® + DyayJs, + DyyyJpy + DT + Dayy T,

=1

+ DIS’YJ;s + DyS’yJ;s

Dy = Fiw + Dy Ity + Dy T, + Doyl + Dy 2,

i=1
+ DysvJs + Dysy JY,

n
Dys = Z Fiwi® + Dygyd g, + Dyy’YJ;y + DosyJss + nyfngy
=1

% + DIS’YJES + DyS’ngjs

n

=1

+ Doy J2, + Dys*nyds

Dy = 3 B} + Doy s, + Dy g, + Dagy ey + Doyt s,
i=1

+ DS, + Dy JS,

Dyp = " B!+ Doyl 4 Doy + Doy Do

=1
\ + D:rsfngs + DyS’YJgfs
(3.7)

The above implicit system of equations has in fact no closed-form expression. How-
ever assuming that v is negligible in comparison to the minimum of the actual
curvatures, approximate rigidity values are obtained. The assumption of negligible

v writes [68]

v << Man(|| ke s [ Ky 1151 Fs 1) (3:8)

The approximated value of the unknown rigidities can now be expressed as
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[/ n
Duw =Y B} + Dagyprs V% + Dy ¥y + Dssira V% + Dayea V2,
=1

+ Dmsaprwfngs + Dysaprccr)/‘];s
n

Dyy = Z F;w;kb + Dmmaprzfngm + Dyyapr:cr)/‘]:lljy + Dssaprz PYJ:S + nyaprz PYJIby
i=1

+ Dmsaprwf)/t]{lgs + Dysaprccr)/‘]:lgs

Dy =Y Fiwi® + Doz Ve + Dyyaea V5, + Disapra V5 + Dyoprs 15,

Now using Eq. (2.21), Eq. (3.9) is written as
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i=1
% . + vasaprx,)/'];s + Dysaprx,)/']:lfs (39)
Day =Y Fw;" + Dagyp VTt + Dy ¥y + Dssipra VIt + Dy VI
i=1
+ Dmsaprwfyjﬁs + Dysaprccryjjs
Dyy =Y Fiw;® + Dagyp Vo0 + Dy ¥y + Disupra VI + Dy 715,
i=1
+ vasaprx,)/'];s + Dysaprx,)/']:lfs
Dys =" Fiw;” + Daygyp VL + Dy V8 + Disue V9L + Dayor 74,
i=1
\ + vasaprx,)/']i‘fs + Dysaprx,)/']gfs
From the above expression the error part may be separated as a matrix [Err]
RS O S 0 E
Vow Yy Vs oy V2 Vs
(Err] = Vew Vg Vss Vg Vas Vys (3.10)
Vo Vg vl g, v g vy,
Ve Vyy Ve vny Vi vy
IR R I FI I F D P



Dy [ < R||YV* > ] [ <R||Yge, > ]
Dyy <R[ Y*?> <R||Yz,>
Do | _ | < BIV™> + [Err] < B Yo > (3.11)
Dy, <R[V > <RI Y, >
D, <R|Y* > <RI Yy, >
| Dy | <RIV > | <RV, > |

Here, (Y**) and (Y,,) with a = a,b,¢,d, e, f, verify the special virtual field condi-
tions. However, it must be noted that the above system of equations is not explicit
as it makes use of initially approximate rigidity values. Its solution is discussed in
Section 3.2 below.

Now the respective variances (V') of the rigidities are derived using Eq. (3.9).
Recalling that the injected noise represents white noise, it implies that its mean or
Expected Value (E) is zero. Hence, mean of the rigidities E(D,,), E(D,,), E(D;s),
E(D,y),E(D,s) and E(D,) are in fact the exact values (using Eq. (2.21)) identified

without noise. Thus, for V(D,,) it writes

V(D) = E [{Dyy — B (D) }’]
—p|{ <RIV 4y <RIV > Sty <RIV > 5,
Y <RIV, > T84y <R||Yi > T8 +y <R[ Yo, > J8

aprx aprx aprx

2
+y<R| Y >J;s—<R||Y*“>H

apre

:72EH <R|| Vi, > Jo4+ <R|| Yo, >Jh+ <R[ Y, > Jg

aprx Y aprx

2
F<R||Ygm > Je 4+ <R|Yie,>J i+ <R| Y >J;s}]

aprz aprz aprz
(3.12)
similarly the other variances are written as
( V(Dy2) = E[(Diw — E(Di))?’] = 9 < Dapr | E(| N* >< N*|) | Dapra >
V(Dyy) = E[(Dyy — E(Dyy))?] = 7 < Dapre | E(| N® >< N°|) | Doprs: >
) V(D) = BlDu = B(Dw)Y) = % < Dupra | E(| N >< N[} | D >
V(Dyy) = E[(Dsy — E(Dyy))’] = 7* < Dapra | E(| N >< N ) | Dapra >
V(Dys) = E[(Dys — E(Dys))?’] = 7* < Dagra | E(| N® >< N€ ) | Dapro >
[ V(Dys) = E[(Dys — E(Dys))’l = v° < Dapra | E] N/ >< NT|)| Daprzﬂ3>13)
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or in general

V(Dy) = E[(Dij — E(Dj;))’] = v° < Dapra | E(| N >< N®|) | Dapree >

(3.14)
with
1] = xx,YY,SS,TY, TS, YS
a=ua,b,cde,f
<N =z Jyys Jiss Tay Jass Jysl
< Dagpros | = (Diprss Dapras Diprs Ditpras Dipras D)
= (SR Yona < R Yoo < R Yor0, < R Yoo, < R Yoo, < R Y0

From above it is concluded that the variance of unknown rigidities is proportional
to 7% and (n®)? is a proportionality constant as shown in ref. [68]. This implies that
the standard deviation (defined by the square root of V: Std = /V) of the rigidities

is related to the standard deviation of input noise as follows

( Std(Des) = (n°)y
Std(Dyy) = (77b)’7
Std(DSS) = (770)7
| Std(Dn) = (% (319
Std (Dys) = (n°)y
[ Std(Dys) = (nf)y

Thus it is shown that the uncertainty of identification procedure is proportional
to the uncertainty of the measurement method. Let n® be defined as sensitivity of
the VFM to a given random noise, then, the lower the value of n® the more accurate

is the identification. n® may be expressed as

-57-



(na)2 - [(DM)Q + (Dflﬁy)2 + (D:vS)Q] /S(k;a)QdA
+ww+@ﬁﬂ%ﬂﬁwwA

+ (D) + (Da)’ + (Dy)’] / (k°)2dA
° (3.16)
+ 2(Dee+ D) Day [ (k)

+ 2 (Dxx + Dss + D:vy) Dms (k;ak:a)dA
S

+ 2(Dyy + Dt D) Dy [ (5720004
S

Now making use of the discrete nature of curvature fields, the integrals here can
be evaluated by using rectangular method for the numerical integration, as described
earlier in Section 2.2.4. For this purpose a total number of n, different data points
are defined over the specimen surface whose coordinates are represented by x, and

ys- Now the above equation becomes

Ne

(77a)2 = (£)2 Z{ [(Dm)Q + (ny)2 + (Dm)z] [k;a(ﬁgv yg)i]2

i=1
(D) + (D) + (D)) [k (g i)
(D88)2 + (D:ES)Z + (Dy8)2] [k:a(ﬁgv yg)i]2
Dy + Dyy) Dy k3% (24, Yg)i k;a(xg, Yy)i
Dy + Dys + Day) Dus k3™ (g, Yg)i k3* (24, Yg)s

(3.17)

2 (Dyy + Dss + Dyy) Dy, k;a(xg, Yg)i k3 (24, yg)i}

In the above Eq. (3.17) one of the n—i comes from Eq. (3.16) whereas the other
one is due to the use of rectangular method for numerical approximation. The
additional ni depends on the type of method used for numerical integration. For
instance, it is not required in the case of numerical integration performed by the
Gauss-Legendre method as it is already taken into account in its formulation.

Here it is important to note that the absolute value of n® may not be as repre-
sentative as the relative error induced in the identified rigidities due to noisy data.
For example, a greater absolute value of n® can be of less significance (in fact mis-
leading) to a lesser absolute value of n” if D,, is much greater than D,,. So, the
criteria to be followed should rather be n°/D,, , n°/Dy, , 1°/Dss , 1%/ Day , 1°/ Das

and n// D, called here noise sensitivity indices or simply sensitivity indices, (ratio
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between sensitivity of the VFM for a given noisy data to the mean of identified

rigidity).

3.2 Optimized virtual field: Minimization of noise
effect

Finding an optimized virtual field means finding the vector of virtual dofs | Y* >
that fits to the criteria of kinematically admissible special virtual fields (see Sections
2.3 and 2.4) and at the same time minimizes n® (the effect of noisy data). Hence
leading to the most accurate identification of the unknown rigidities for a given
number of virtual elements. Here the benefit of using greater number of virtual
elements is worth noting. Larger is the space of K.A virtual fields, greater is the
opportunity of finding a unique virtual field least sensitive to noise. For this problem

of minimization it can be proved that the objective function is [68|

n*)?=1/2 <Y*| H|Y™> (3.18)

The above expression of (n®)? is in fact a condensed form of earlier expression given
in Eq. (3.17). Here, H is a semi-definite positive symmetric matrix calculated
numerically using the vectorial functions < b,(z,y) |, < by(z,y) |and < bs(z,y) |.
These are second derivatives of shape functions as shown earlier in Eq. (2.16).

Matrix H can be written as

H = Q(E)Z Ze{ [(Dfm‘)2 + (Dl‘y)2 + (DIS)Z] (| b:r(xgayg)i >< bl(xgayg)i |)

-
+ [(Dyy)? + (Day)? + (Dys)?] (| by (g, yg)i >< by(g, 9g)i )
+ [(D88)2 + (Dm)2 + (DyS)z] (1 bS(ﬁgvyg)i >< bS(xgvyg)i |
+ 2(Das + Dyy) Dy (| ba(zg,yg)i >< by(2g,Yg)i |)
+ 2(Dyg + Dss + Day) Do (| ba(29,9g)i >< bs(2g,yg)i |)

|
) (3.19)

+ 2 (Dyy + Dss + Dwy) D (1 by(xga yg)i >< bs(xg, yg)i |)}

It is recalled here that six different objective functions (%)% a = a,b,c,d,e, f
must be used to determine each of the six unknowns D,,, D,,, Dy, Dy, Dy and
D, respectively. The above problem is a minimization under constraints, as virtual

deformation field, | Y* >, must satisfy the following two equality constraints

e it should be zero at the support points as per Eq. (2.19) (see Section 2.3).
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e as the virtual field is special, | Y* > must satisfy Eq. (2.20) respectively for

each of the six unknown rigidities (see Section 2.4).

Thus, | Y* > is stationary point of the Lagrangian £*

LY=1/2 <YV H|Y" >+ <AYA|Y™>—-<AY]|Z2°> (3.20)
where
e < A% is the vector comprising of Lagrangian multiplicators,
e A is the matrix of equality constraint equations, refer to Sections 2.3 and 2.4 ,

e | Z® > reads:

(< 7%= (000....0100000)
<Z= (000....0010000)
<Z= (000....0001000)
<Z% = (000....0000100)
<Z= (000....0000010)
| <Z/|= (000....0000001)

Now, for the Lagrangian £* which depends on both | Y* > and < A%| | finding
the stationary value is equivalent to finding its saddle point. As proved in ref. [68] a
unique saddle point exists because (n®)? is a continuous convex quadratic function

in the space of virtual fields. Thus, | Y** > can be found by solving the six linear

system
0
7oA [jyes 0
: (3.21)
A 0 |AY > 0
|Z> >

Remembering the fact that the expression of H in Eq. (3.18) derived from Eq.
(3.12) already depends upon the unknown rigidities (see Eq. (3.11)), the problem be-
comes implicit and a solution cannot be directly obtained by solving the above linear

system. Therefore an iterative algorithm given below is adopted for the purpose

e iteration 0.
A random value (between 0 and 1) is assigned to each of the unknown rigidities
Dgyy, Dyy, Dys, Dy, Dyg and D, to provide initial values in H and first set of
unknown rigidities are calculated by solving the linear system.
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e iteration 1.
Now the above calculated rigidity values are again used in expression of H to

find updated rigidity values.

e iteration n.
The procedure is repeated till the relative difference of the identified values
calculated at two consecutive iterations is less than 0.1%. Numerically it has
been checked through various preliminary simulations that the convergence

criteria is attained quite rapidly at the most up to 3rd or 4th iterations.

3.3 Conclusion

This chapter studied the noise effect onto the identification procedure based on
the piecewise virtual fields method for a case of thin plate bending problem as dis-
cussed in Chapter 2. It is shown here that the minimization of noise effect results
in the automatic construction of a unique virtual field in a given basis of functions.
This unique virtual field on the one hand satisfies the condition of special virtual
field and on the other hand is least sensitive to noise. Finally, an optimized identifi-
cation procedure with minimum noise sensitivity is presented and adapted here for
simultaneous identification of the unknown bending rigidities of a thin anisotropic
plate.

The following chapter now presents a numerical validation of the optimized iden-

tification procedure with simulated composite plate bending problems.
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Chapter 4

Numerical simulations

4.1 Introduction

The optimized identification procedure developed in the present work is validated
with some numerical examples. For this purpose unidirectional orthotropic glass-
epoxy composite plates [04], with dimensions L = W = 0.1m and 1mm thickness are
simulated. Typical elastic constant values of glass-epoxy unidirectional composite
material, , = 40 GPa, F, = 10 GPa, v, = 0.3 and G,, = 4 GPa are used as
input of a FE model which provides simulated curvatures. A case of completely
anisotropic plate is also briefly presented in Section 4.4.4.

The identification procedure is programmed as a Matlab 6.5 routine while AN-
SYS 9.0 is used to obtain simulated curvature components on the specimen top
surface. A plane stress condition is assumed as the specimen is sufficiently thin.
The plate finite element model (FEM) is meshed in 48 x 48=2304 square elements of
type Shell 99. The element is defined by eight nodes and has six degrees of freedom
at each node: translations in the nodal x, y, and z directions and rotations about
the nodal x, y, and z-axes (Theory Reference, ANSYS, Inc). Worth noting that the
elements formed in the FEM will be referred to as real elements to differentiate with
virtual elements that define the virtual fields. The three curvatures at the center
of real elements obtained from the FE model are considered as input data of the
identification program.

For validation purposes, three different testing configurations plotted in Fig 4.1
are studied. All the plates have same dimensions, stacking sequence and material
properties. In addition, Config-3 is also identical to the example used in ref. [3]
and will be used for comparison purposes. In this reference, the virtual fields were
constructed with a polynomial (of 16 unknowns) defined over the whole plate ge-
ometry and the minimization of noise effect was carried out using a semi-empirical

approach (see also ref. [77]). For validation of the optimized identification procedure

-63-



and also for comparison to earlier work, simulated results for Config-3 are presented

and discussed in detail here.

>
=¥
w

Config-2

|

Config-3

>
X

Figure 4.1: The three testing configurations with L = W = 100mm and F = 100N

The major objectives of the following sections are:

e to study the influence of virtual mesh density, in order to determine the max-
imum optimum number of virtual elements to be used for better identification

and least sensitive to noisy data.

e to validate and support the fact that better identification is achieved when
piecewise virtual fields are used in comparison of polynomials used in some

earlier studies [3].

4.2 Results without noise

The present section discusses the effect of using an increasing number of virtual
elements on the identification. The idea is to determine the optimal number of
virtual elements to be used. The noise sensitivity index is used as a criterion. After
convergence verification, a mesh density of 48 x 48—=2304 real elements was used in
the FE model to provide the simulated curvatures to be processed, but a mesh of

only few virtual elements is used to limit the number of virtual degrees of freedom.
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Here, it must be noted that the boundary of real and virtual elements must

coincide with each other as shown in Fig 4.2 to avoid computational complexities.

Specimen houndary Real FE mesh Virtual elments boundaries
/ ’ S

/ T/

= 2 A

-

Figure 4.2: An illustration of a properly superimposed 4 x 4 virtual elements mesh
over a real FE mesh.

Also, it is worth noting that a typical example with 4 x4 virtual elements requires
around 3 minutes of computation time. However, a higher number of virtual elements
e.g. 20 x 20 and beyond should be avoided for memory problems during Matlab

processing and also on account of lengthy computing time (approx 40 minutes).

4.3 Influence of the virtual elements mesh density

Table 4.1 presents the results for increasing numbers of virtual elements with

respective noise sensitivity index values for Config-3.

Virtual elements | 7%°/Dy, | 1°/Dy, | 1°/Dss | 1%/ Dyy
(X1073) | (x1073) | (x1073) | (x1073)
I1x1=1 3.8 2.7 0.2 13.8
2x2=4 3.1 1.9 0.2 11.0
4x4=16 3.0 1.9 0.2 10.6
6 x6=36 3.0 1.9 0.2 10.6
8§ x 8 =064 3.0 1.9 0.2 10.5

Table 4.1: Config-3, Choice of optimum number of virtual elements.

As may be seen, the noise sensitivity indices first decrease and then remain ap-
proximately constant from 4 x 4 = 16 virtual elements onwards. Also, from the
above table and by comparing the relative magnitudes of sensitivity index for each

of the rigidity, it is evident that D, is most sensitive to noise thus most difficult to
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identify with greater accuracy followed by D,,, D,, and D, respectively. In Fig 4.3
to Fig 4.6 below, respective special virtual deflection fields for Config-3 are presented
separately for each of the rigidities with increasing numbers of virtual elements. It
may be noted that from 4 x 4 = 16 virtual elements onwards no significant change
in the shape of virtual deflection fields is observed. The perfect continuity of the

deflection at the boundary of the virtual elements is observed.

-0.05
50

20

00 00
Special virtual deflection field — Dxx Special virtual deflection field — Dyy

-3

x 10 X 10

0o
Special virtual deflection field — Dss Special virtual deflection field - Dxy

Figure 4.3: Config-3, Special virtual deflection fields using 1 virtual element.
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Special virtual deflection field — Dxx Special virtual deflection field - Dyy

x10°

0.02

00
Special virtual deflection field — Dss

0
Special virtual deflection field — Dxy

Figure 4.4: Config-3, Special virtual deflection fields using 4 x 4 = 16 virtual ele-

ments.
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RIS
e
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SSs

20X

0 o0
Special virtual deflection field — Dyy

0.02

0 0 0 0
Special virtual deflection field — Dss Special virtual deflection field — Dxy

Figure 4.5: Config-3, Special virtual deflection fields using 6 x 6 = 36 virtual ele-

ments.
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Special virtual deflection field — Dxx Special virtual deflection field — Dyy
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00
Special virtual deflection field — Dss Special virtual deflection field — Dxy

Figure 4.6: Config-3, Special virtual deflection fields using 8 x 8 = 64 virtual ele-

ments.

From above discussion and results for Config-3, it may be concluded that the
use of 4 X 4 = 16 virtual elements is optimal in terms of result accuracy and lesser
sensitivity to noise. It must be pointed out here that the same conclusion was
achieved for the other two configurations, however the corresponding results are not

reported here.

4.4 Influence of noisy data

4.4.1 Introduction

It is of prime importance to examine the stability of the procedure with respect
to noise since virtual fields are here expected to minimize this effect. To simulate the
noise effect, a Standard Gaussian white noise multiplied by a positive number ~ is
added to each of the curvature values. The maximum magnitude of v is a predefined
percentage (in the present study often taken as 5%) of the maximum of the absolute
values of the three curvatures. It should be noted that in case of unbalanced values
of the three curvatures k,, k, and k;, this value of 5% leads in fact to significant
changes and disturbances in the lowest curvature fields. This noise amplitude ~
is regularly distributed in 20 intervals. The first value v = 0 corresponds to the

identification without noise and serves as reference theoretical values given by Eq.
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(2.12) and Eq. (3.13). At each of the successive 20 values of v, identification is
made 50 times by changing the added white noise each time. Finally mean of the
identified rigidities and standard deviations of the respective rigidities are calculated
from the results of 50 iterations at each of the 20 noise levels for a given number of

virtual elements.

4.4.2 Consistency of the results

For Config-3, Fig 4.7 represents standard deviations for the identified rigidities
are plotted against v for 16 virtual elements. Slope of the straight line represents
(3.15) and (3.18) and it is
expected to find from simulations similar results as those provided by Eq. (3.18).

theoretical sensitivity values n® obtained from Egs.

o
o
N

L 02 =
& 8 4ok
015 50015 —- std-Dyy o
& k= 4
% 01 + s 3 001
3 Ty s % b
£0.05 >+ a & 0.005 n =0.0016
g N=0.0103 e
5 5,
0 5 10 15 0 5 10 15

standard deviation of input noise

-4

x 10

standard deviation of input noise

3 6 £0.03
o .
g x g
c X — —| - —|
5 x— std-Dss c —0— std-Dxy o
z 4 ; S 0.02 4 ¢
i ©
3 > %X S 4
° 3 ¥
° 2 X c ~ 0.01 d
kS N 0.05x 10 5 n'=0.0027
g |
@0 % 0
0 5 10 15 0 5 10 15

standard deviation of input noise

standard deviation of input noise

Figure 4.7: Config-3: Standard deviations of rigidities identified at increasing noise
levels (), using 4 x 4 = 16 virtual elements

From above figure, it may be concluded that standard deviations of the identified
rigidities are linear functions of v and that these standard deviation values are in
very good agreement with the straight line plotted using Eq. (3.18). This shows
that the results obtained with simulated noisy data are consistent with theoretical

expectations.

4.4.3 Comparison with some earlier results

In ref. [3|, identification was achieved using the VFM with special virtual fields.
However for virtual fields construction, a polynomial of 16 unknowns defined over the
whole geometry of plate was used, and noise minimization was roughly performed
using a semi-empirical rule (see also ref. [77]). In this section a comparison is made

using the results from optimized identification approach presented above. First,
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using only one virtual element defined over the specimen geometry, identification
is achieved. It serves to compare this optimized method with noise minimization
effect to that of ref. [3]. Use of single virtual element leads to sixteen unknowns to
completely define the field (refer to Section 2.2.2) which is the same number as in
the case of ref. [3], hence the two are directly comparable. In addition, results using
4 x 4 = 16 virtual elements are also presented which are supposed to be more robust
and leading to better identification as established above. The results are presented
in Table 4.2.

Procedure Dy, (Nm) Dy, (Nm) D, (Nm) D, (Nm)
Ref Val. 3.41 0.85 0.33 0.25

ref. 3] % var. coef 5.19 7.08 0.26 17.70

1 virtual element % var. coef 4.50 2.62 0.18 17.36

4x4=

16 virtual elements | % var. coef 3.08 1.81 0.16 8.49

Table 4.2: Config-3, comparison with earlier results [3]

From above it is seen that the present approach is better in comparison to that of
ref. [3] in terms of reduced variation coefficients (defined by the ratio between stan-
dard deviation of the distribution and the respective average rigidity) and that the
use of optimum number of virtual elements renders even lesser variation coefficient

values, as expected.
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4.4.4 Influence of plate anisotropy

This section illustrates the identification in case of complete anisotropy. For this
purpose, using Config-3, only the stacking sequence is modified to [0 = 30 90],. Such
a stacking sequence leads to an anisotropic plate in case of bending. Identification
results using 16 virtual elements are presented below in Table 4.3. Results, (Percent-
age relative error (rel. err(%)) and percentage variation coefficients (var.coef(%))),
are recorded both for the case of noiseless data and when a random white noise (y=

5% of the maximum of the three curvature values) is added.

Virtual Ref Val. D, D,, Dy, Dy, D Dy
elements | (in Nm) 292 097 052 044 033 0.12
no noise 2.91 0.97 0.52 0.43 0.33 0.12

rel. err(%) 042 -1.13 0.13 1.1} -0.45 0.58
4x4=16
5% noise 2.81 0.95 051 040 0.31 0.11
rel. err(%) -4.00 -1.39 -0.44 -9.68 -5.68 -4.61
var.coef(%) 2.19 1.82 043 6.44 3.16 5.1

Table 4.3: Config-3, Identification results for anisotropic plate

Table 4.3 shows the ability of the procedure to extract all the six unknown rigidi-
ties from a single test with a good accuracy. It is worth noting that the sensitivity
to noise of the different identified rigidities changes from one rigidity to another.
This result is directly related to the actual curvature fields which are processed and
therefore to the location of the loading and support points. It is therefore a relevant
issue to try to find an optimal testing configuration which minimizes either one of
the sensitivities or the difference between the different sensitivities. The following
chapter now discusses grading of the three testing configurations, presented in Fig

4.1, on the basis of better identifiability with minimum noise sensitivity.

4.5 Conclusion

This chapter presents a numerical validation of the piecewise virtual fields method
developed in the present work. Use of the optimum number of piecewise virtual el-
ements to define the virtual fields over a specimen is also discussed in detail. With
the help of a numerically simulated example of an thin orthotropic glass-epoxy com-
posite plate, the identification procedure is applied to extract the unknown bending

rigidities. The influence of noisy data is also studied on the robustness and accuracy

-71-



of the identification results. It also compares the improvement in terms of identifi-
ability and noise sensitivity in case of the piecewise virtual fields construction to an
earlier work where the virtual fields were constructed by using polynomial functions
defined over the whole specimen. In the end, an example of complete anisotropic
plate is also presented to demonstrate the ability of the developed method to simul-
taneously identify all the six bending rigidities.

The following chapter now discusses the use of the developed piecewise virtual
fields method as a tool to grade different testing configurations on account of better

identifiability and reduced sensitivity to noise.
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Chapter 5

Rating and classification of testing

configuration

5.1 Introduction

This chapter presents the ability of the present approach to be used as a tool for
grading of different testing configurations with reference to better identifiability. A
testing configuration which involves all the parameters in a balanced and homoge-
nized manner will lead to a more efficient global identification. Also, effect of load
application point is discussed here in order to optimize a given testing configuration
in such a way that this configuration leads to better identification with least sen-
sitiveness to noise. For these purposes, sensitivity indices, n“/D, or combination
of these are used as minimization criterion. However, it is important to note here
that this minimization criterion should first be normalized in order to compare two
different situations. The following section now discusses the normalization of the

criterion used.

5.2 Normalization of minimization criterion

For comparison purposes of different configurations, a normalized noise minimiza-
tion criterion is introduced here. Let 6* given by Eq. (5.1) represent the normalized

1

minimization criterion based on the sensitivity indices, it has a unit m™". It is nor-

malized with respect to the variable parameters, maximum deflection w,,,.;, total

number of data points n, and surface area S.

5% = 1%/ Doy X Wynaw X \/Tie X (1/5) (5.1)

This normalization results in an intrinsic criterion value with respect to the noted
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parameters, thus the two different situations in terms of these parameters become

directly comparable. The different normalization factors are justified below.

e Normalization with respect to maximum deflection, w,,,,. From the condition

of a special virtual field recalled from Eq. (2.11)

/ koktdA =1
S

it may be observed that the virtual curvatures are inversely proportional to
the applied loading since k, is proportional to the applied loading. For bet-
ter understanding, a situation may be considered where the applied load is
increased by a factor 3, consequently the real curvatures will be increased by
the same factor .

F — BF and k, — Bk,

However the above equality condition dictates the fact that the virtual curva-
tures become inversely proportional to the same factor [ such that

k, — %k;
The same is also true for any other quantity which is directly proportional
to the applied load, e.g. maximum deflection, w,,,;, which is considered in
the present study. Similarly, it may be said that the sensitivity to noise (n®)
is inversely proportional to the applied load or to the resulting w,,q., as can
be verified in Eq. (3.16). Thus for normalization, i.e. to make the sensitiv-
ity index independent of the force magnitude, it is multiplied by wpe.. By
this, an unbiased representative comparison is possible when force location or
magnitude changes for a given testing configuration or when different testing

configurations are studied.

e Normalization with respect to n.. Now the normalization with respect to the

total number of n, different data points defined over the specimen surface is
discussed. From Eq. (3.16) it is shown that for a given specimen geometry
(n®)? values are inversely proportional to n.. Thus in order to normalize with
respect to different number of data points used from one case to another, the
selection criterion should be multiplied by /n.. By this, for a same plate, two
different results using different number of data points will give same criterion

values.

e Normalization with respect to plate surface area, S. Also, from Eq. (3.16), it

may be observed that (n%)? is directly proportional to S?. In fact, one of the S

is present as a multiplicative factor in Eq. (3.16), while the other S comes from
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the surface integration performed over the surface S. Thus for an independent

comparison with respect to the plate size, criterion value should be divided by

S.

Finally with the help of numerical examples, the effect of using normalized crite-
rion values is presented. For this purpose, Table 5.1 records the normalized individ-
ual (0%) criteria values for two different cases in terms of variable force magnitude,
total number of data points and plate size. For this illustration purpose, criteria
values of Config-1 obtained by using 1 x 1 virtual element are compared to a case
when the parameters, force magnitude, total number of data points and plate size,
are changed. The values obtained in these two cases are very similar. This numerical
example illustrates the fact that, after normalization the two configurations are well

independent of the varied parameters and are directly comparable.

61) c d

o (Dy) O(Da)  O(Duy)

(D)

F=5N
n. = 48 x 48 = 2304 29.08 25.92 10.47 69.75
S = 100mm x 100mm

F =100N
n. = 60 x 60 = 3600 28.77 26.68 10.62 67.26
S = 200mm x 200mm

Table 5.1: A numerical illustration to show the normalization of the sensitivity
criteria with respect to force magnitude, total number of data points (n.) and plate

size.

Now, in order to consider the rigidities altogether, the following global cost function

is introduced

g=5"5" |3 — 6] (5.2)

a=1f>a

Finally, the testing configuration which provides the rigidity corresponding to
a with the lowest sensitivity to noise exhibits the lowest 0*. In the same way,
the testing configuration which simultaneously provides a balanced noise sensitivity
from one rigidity to another exhibits the lowest value of g. Noting that a set of
higher individual criteria values may also result in a lower g, therefore it is worth
verifying that the individual criteria values resulting in the lowest value of g are also
acceptably low.

In the following sections, using above criteria, effect of different testing config-

urations on the unknown bending rigidities is studied. The idea is to identify one
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configuration leading to more accurate rigidities which are least sensitive to noise. In
addition, optimization of a given testing configuration is also discussed with respect
to search of an optimum location for force application point, in such a way that this

optimized configuration will lead to more robust identification.

5.3 Rating of the three tested configurations

An important feature of the present approach is its capability to grade the differ-
ent testing configurations in terms of better identifiability. It is possible by compar-
ing the normalized sensitivity indices defined above for the different configurations.
Table 5.2 shows the criterion values g for the three tested configurations described
in Fig 4.1. The values are presented for 4 x 4 = 16 piecewise virtual elements using

noiseless data.

Set-ups g
Config—1 89.76
Config—2 6.72
Config—3 117.12

Table 5.2: Normalized criterion values for 4 x 4 = 16 virtual elements using noiseless
data.

Upon comparative study of the tested three configurations with reference to the
criterion g presented in the above table, Config-2 proves to be more stable, robust
and leads to better identification. The same conclusion may be derived from Fig
5.1 which presents the effect of increasing numbers of virtual elements without and
with noise (amplitude of 5% of the maximum of curvature values in this later case).

In case of noiseless data no significant effect is observed in all the three configu-
rations but it is very significant in case of noisy data. For Config-1 and Config-3 the
identified values especially D,, and D,, deteriorate very sharply at each increasing
numbers of virtual elements as can be seen in Fig 5.1. However, results remain
reasonably stable for Config-2. This feature is related to the normalized sensitivity

criterion values (g) reported in Table 5.2.

-76-



No noise With neise

e
=]

b
n

‘é‘ 3.0

: - 5\ %
— [BE+S

@ 25

o

= —B— Dy

B

o ¥
= —&— Ds==

o

o 15

= —#— Dy

b=}

E 1.0

ke

[T T T T T T T T HBagy HEERBH Mpag,,

ko]
in

TT T 71T TTT 17T 11T 71T T7TTTT17T7 TTTTTTX T TT T 1T TTTTTITK
124681216 1 246 81216 1 2 46 & 1216 1246 81216 1 246 81216 1 246 51216

o
=}

Conftg-1 Config-2 Config-3 Config-1 Config-2 Config-3

Increasing piecewise virtual fields

Figure 5.1: Grading of testing configurations: effect of increasing number of virtual

elements.

It is interesting to note that it is also related to the virtual curvature fields
obtained for configurations Config-1 and Config-2. These virtual curvature fields
are respectively plotted in Fig 5.2. It may be observed that the deterioration of
results in Config-1 especially in the case of noisy data is related to the pronounced
discontinuity or gradients in the virtual curvature fields. On the other hand the
virtual curvature fields for Config-2 are very much smoother and also the results are
better.

It is shown that the present approach not only improves the identification but
is also capable of indicating if a particular given testing configuration will lead to
a better identification, especially in case of noisy data. Among the three studied
configurations, Config-2 may be regarded as the optimum configuration, such that
it will lead to more stable and robust rigidity identification when noisy data are
processed.

One can also push forward the idea by moving the applied loading over the plate
in search of a location which leads to the minimum value of the noise sensitivity

criterion. The following section discusses this issue in detail.
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5.4 Optimization of force application point

In this section, effect of loading position is studied on the specimen and corre-
sponding identifiability. The idea is to find an optimal loading position for a given
system of support locations such that better identification may be achieved.

Taking Config-1, load F is now moved within the plate and identification is
achieved for each location. The corresponding values of 6* (normalized sensitivity
index) and g (global cost function) are noted for each point of force application.
Recalling that, a = a,b,c,d represent D,,, Dy,, D, and D,, respectively. Thus,
a thorough sensitivity scan is performed for the entire plate and the criteria values
are recorded. Fig 5.4 presents the sensitivity analysis for each of the rigidities using
the criterion 6(®) defined in Eq. (5.1). It also plots the sensitivity analysis using the
global cost function g defined in Eq. (5.2). In the first case, the testing configuration
is optimized for each of the four unknowns considered separately whereas they are
globally considered in the second case.

Using the sensitivity scans in Fig 5.4, separate load application points are found
for each of the unknown rigidity (at minimum value of §(*)). Also, a unique point
using global cost function (at minimum value of g) is found which can identify all
the rigidities with the best accuracy.

Fig 5.3 plots the different optimum load application points found from the indi-
vidual and global sensitivity scans, whereas Table 5.3 records the noise sensitivity
index values calculated at these respective optimum locations found for the noisy
data with noise equal to 5% of the amplitude of the maximum of the absolute values

of the three curvatures as used before.

B A X

Figure 5.3: Config-1, optimum force locations, I (common to: §(®, 6@ and g) and
J (common to: 6®, §().
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force location 5(e) g
Criteria : (x,y) (mm) || Dy Dy, Dss Dy
5@ 5@ o 1(46,10) 0.65 0.96 0.56 2.4 | 5.83
5), §() J(17,27) 1.44 0.27 0.38 2.88 || 8.89

Table 5.3: Noise sensitivity index values 6(®) at optimum force locations for Config-1.

It is interesting to note that the identified location using the criterion g is common
to both D,, and D,,. It must also be pointed out that the index values reported in
Table 5.3 are more balanced in linel as in line2, as expected. It may be concluded
that a single test can effectively be performed to extract all the unknown rigidities
rather than performing separate tests for each rigidity, without much loosing in
terms of result stability and accuracy. Also it is worth noting that it should be
avoided to choose a loading applied along the diagonal drawn between the two
opposite supports. Another feature is the fact that the cost function is flat over
large zones, meaning there will not be important loss of accuracy when moving the
applied loading over these zones. However, a load position in close proximity to the

supports should not be used due to little deflections thus produced.

5(0‘) g
configuration: D,y Dy, D Dy,
Config-1 6.72 2.4 192 30.24 || 89.76
Applied loading at 1(46,10) | 0.65 0.96 0.56 2.4 5.83

Table 5.4: Config-1: results before and after optimization.

Finally Table 5.4 compares the results of Config-1 in terms of noise sensitivity
index values, (™, to that of optimized configuration obtained from global criterion
g. The improvement in identification is observed in terms of accuracy and robustness
in case of optimized force application point I(46, 10).

Regarding Config-1, another important point to be noted is that an applied
loading located at the free corner of the plate (point C) is the worst situation for
D,,, Dy, and D,,. In this case the plate is under pure twisting (i.e. k, =k, =0,
ks = constant) as shown in refs. [74, 78|. D,,, D,, and D,, do not influence at
all the response of the plate in this case. Consequently they cannot be identified
whatever the identification method used. This latter loading case is often referred to
as ‘anticlastic bending’. It is interesting to note that because of the flatness of cost
function ¢¢, several locations for the applied loading could be used in practice. For

instance, it can be checked that C and J are approximately equivalent in terms of
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value of the cost function. At this latter point however, not only results are better

for Dy but it is also capable of finding other rigidities with a good accuracy too.

5.5 Effect of material

In this section effect of using a different material is considered on the sensitivity
analysis and eventual identification of an optimal force location. The idea is to study
if a change in material leads to a new optimum force location or has only a slight
effect. Fig 5.5 presents global sensitivity scan using criterion g for carbon-epoxy
composite plates with typical elastic constants as: E, = 130 GPa, E, = 10 GPa,
Vzy = 0.3 and G,y = 5 GPa. The experimental set up is the kept the same as that
of Config-1.

1400 ~

1200
960
720
480 -

240

SR
022 050.%%
SIS

Figure 5.5: Config-1, 3D image of the noise sensitivity criteria for carbon epoxy : g

The sensitivity scans for the two different materials, glass epoxy and carbon-
epoxy, represent almost the same behavior. Thus for the above studied case it may

be concluded that results are not very sensitive to the choice of material used.
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5.6 Conclusion

This chapter presents an important application of the developed piecewise vir-
tual fields method with noise minimization effect [79, 80, 81]. It is shown that the
method can be used as grading tool when different testing configurations are to be
compared. The normalization of the selection criterion based on the noise sensitivity
index is also discussed. It is important when different testing configurations are to
be compared. With the help of numerically simulated examples of three different
testing configurations it is shown that the configurations can be graded with respect
to better identifiability and least sensitivity to noise. Optimization of a given test-
ing configuration is also discussed, though it is limited to the search of an optimized
force application point only. Making use of simulated noisy data, the improvement
in terms of identifiability and reduced noise sensitivity is compared when identifica-
tion is achieved by using such an optimized force application point. An illustrative
example of a carbon-epoxy composite plate is also studied. For the studied case, it
is observed that the optimized location of a force application point remains largely
insensitive to the choice of material.

Now the following chapter discusses the optimization of testing configuration in
detail. Such that effect of different variable parameters like fiber angle, plate width,
location of force application point, location of support points and specimen shape

are studied.
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Chapter 6

Optimization of testing configuration

6.1

Introduction

In this chapter the effect of different parameters like fiber angle, plate width,

location of force application point, location of support points and specimen shape are

studied on the noise sensitivity criterion such that better identification is achieved.

In order to evaluate the gain in terms of robustness and accuracy of the results, the

different variable parameters, considered separately and also in combination are as

follows:

1.

2.

9.

10.

Angle of fiber.

Width of specimen.

. Width + angle.

Force.

Support (restricted along specimen boundary) + force.
Support (restricted along specimen boundary) + force + angle.
Support + force.

Support + force + angle.

Shape of specimen.

Shape of specimen + support + force.

The idea is to study and verify the fact that when greater number of above vari-

able parameters are considered collectively, greatest is the gain in terms of reduced

noise sensitivity.
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This is due to the fact that increasing number of degrees of freedom are available
for solving the problem. In order to compare the different situations where specimen
dimension or eventually shape is altered, normalized sensitivity criteria values §“
defined earlier in Section 5.2 are used. Recalling that, a = a,b, ¢, d represent D,,,
Dy,

given earlier in Eq. (5.1) is reported below.

Dy, and D,y respectively. For quick reference this normalized sensitivity index

0% =n%/Dy X Wnaz X /Te X (1/5)

6.1.1 Definition of global cost functions

In order to consider the effect of the rigidities altogether, four different global
cost functions are introduced here. These are noted as: g1 (sum), g2 (balanced), g3

(ratio balanced) and g4 (ratio squared balanced) and are defined as follows

4
g1 =3 |5 (6.1)
a=1

2= 336 - 5] g 62

a=1 g>a
g2
3= 6.3
93="1 (6.3)
S Y hea | (00 = 5))2
g4 = 1 (6.4)
E:a:1|6“w2

It is interesting to note that gl takes into account all the respective individual
sensitivity values by simple addition whereas ¢2 (similar to g as noted in Eq. (5.2))
considers their relative differences. Due to this a minimum ¢2 value will represent a
more balanced combination of individual sensitivity values as their respective weights
are also taken into consideration. However, as mentioned earlier in Section 5.2,
it is important to verify that the corresponding set of individual criteria values
resulting in a minimum g¢2 value are also acceptably low. Now, for both criteria,
g3 and ¢4, it may be noted that they present a ratio formulation and are slight
variants of one another. This type of cost function has earlier been used in the
literature [82]. One advantage of their utilization may be the fact that they are
independent of any sort of normalization as it is automatically taken into account
in their formulation. However, it is interesting to note that both g3 and g4 may
result in individual criteria values which are not minimal. For better understanding,
such a situation may be imagined where all the individual sensitivity values are

higher. Now the numerator in both of these criteria which is a relative difference
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will remain minimum but the denominator which is a simple addition will result in
a maximum. Finally a ratio involving a division of a minimum value by a maximum
value will lead to a even more lesser result. Thus, a minimum g3 or g4 criterion
value may correspond to a combination of maximum possible individual sensitivity
indices, which is not desirable. The present study gives an opportunity to study the
effect of these different criteria and to identify the one that is more representative.

It should be noted here that the present study makes use of only one virtual
element in order to avoid the computational complexities especially for the case when
specimen shape is optimized. In addition the identification program is modified for
the case of orthotropic plates, such that only four rigidities are identified in the fiber
direction. This gives a common reference platform when optimum fiber angle is
searched and while other parameters are made variable along with fiber angle. In
the present study, Config-1 and Config-2 described earlier in Section 4.1, are used
to study the effect of different variable parameters. These two testing configuration

are replotted in Fig 6.1.

=
>

=¥
w

Config-2

Figure 6.1: The two testing configuration used to study the effect of different variable

parameters.

Reference global and individual criteria values for Config-1 and Config-2 are
recorded in Table 6.1 and Table 6.2 respectively. This serves as reference values
when different variable parameters will be discussed and using their optimum values

new criteria values are evaluated.
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Config - 1 || Config - 2
Crt: || crt. values || crt. values
gl 26.60 6.60
g2 55.70 11.35
g3 2.10 1.72
g4 1.98 1.86

Table 6.1: Reference global criteria values for Config-1 and Config-2.

Config - 1 | Config - 2
Crt: || crt. values || crt. values
(@) 7.43 0.94
5 1.56 0.75
500 0.50 0.59
§5(d) 17.11 4.31

Table 6.2: Reference individual noise sensitivity values for Config-1 and Config-2,

6@ a =a,b,c drepresent D,,, Dy,, Dss and Dy, respectively.

Now the following section first discusses the effect of varying fiber angles in order

to identify the optimum fiber angle which will result in reduced noise sensitivity.

6.2 Optimization of fiber angle

In this section effect of changing fiber angle is studied on the rigidity identifi-
cation. Plate dimension, support and force application points remain unchanged.
Using Config-1 and Config-2, fiber angles are varied from 0° to 180° with 5° regu-
lar increments. For a given fiber angle, rigidities and associated criteria values are
calculated in the fiber direction.

Change in respective criteria values with respect to varying fiber angles are plot-
ted in Fig 6.2 and Fig 6.3 respectively for Config-1 and Config-2. It may be observed
that no unique value is found from all the criteria. However it is interesting to note
that the first two criteria, g1 and ¢2, result in the same optimum fiber angle. Sep-
arately, similar optimum fiber angles are found using criteria g3 and g4. Here it
is interesting to note the presence of two symmetry axes respectively at 45° and
135° in case of Config-1 whereas one symmetry axis is located at 90° for Config-2.
Additionally with respect to global cost functions g1, ¢2 and individual sensitivity
values 6(®), it is observed that for each fiber angle used, corresponding sensitivity

values for Config-1 are in general greater than that of Config-2.
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Figure 6.2: Config-1, Effect of varying angles on different minimization criteria values

using fixed plate dimension, supports and force points.
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Figure 6.3: Config-2, Effect of varying angles on different minimization criteria values

using a constant dimension plate, fixed supports and force points.
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On this basis it may also be said that Config-2 is comparatively better than
Config-1 and is less sensitive to noise. Table 6.3 presents the optimum fiber angle
when combined effect of all the four rigidities is considered using the global cost
functions, g1, g2, g3 and g4. Table 6.4 presents the optimum fiber angle for better
identification of separate rigidities at minimum values of §(® (sensitivity index).
The idea is to determine the optimum fiber angle for a given testing configuration

which leads to better identification with minimum sensitivity to noise.

Config - 1 Config - 2
Crt: || crt. values | angles ° || crt. values | angles °
gl 10.20 150 3.21 15
g2 15.46 150 5.27 15
g3 1.07 45 1.17 90
g4 0.93 45 0.91 90

Table 6.3: Optimum fiber angles considering combined effect of rigidities.

Config - 1 Config - 2
Crt: || crt. values | angles ° || crt. values | angles °
(@) 0.68 140 0.60 15
5 0.73 40 0.20 95
5 0.48 170 0.35 165
§(4) 3.84 150 1.97 15

Table 6.4: Optimum fiber angles separately for individual rigidities.

Config - 1 Config - 2
crt. values at | crt. values at || crt. values at | crt. values at
Crt: || 150 ° (g1, g2) | 45° (g3, 94) || 15° (g1, g2) | 90 ° (g3 , g4)
(@) 1.04 17.63 0.60 1.59
5 4.77 0.75 0.29 0.21
5() 0.55 15.61 0.34 1.39
§5(d) 3.84 18.87 1.97 2.25

Table 6.5: Comparison of individual criteria values 6(® at optimum fiber angles

found for different global criteria.

Total four different global criteria, viz. g1, g2, ¢3 and g4 are used to find the
optimum fiber angles. From the results quoted in Table 6.3 it may be observed that

-91-



the first two criteria, gl and ¢2, find the same optimum fiber angle. Separately,
similar optimum fiber angles are found using criteria g3 and g¢4.

Table 6.5 records values of individual sensitivity indices (6(®)) for respective
rigidities at these different optimum fiber angles for the two tested configurations.
From this comparative study, it is observed that the global criteria, g1 or g2 is more
efficient and results in lesser noise sensitivity indices (6(*)) especially for Config-1,
as compared to the corresponding values at optimum fiber angle found using criteria
g3 or g4. As explained earlier in Section 6.1.1, it is due to the ratio formulation
of these criteria, such that a minimum ¢3 or g4 criteria value may correspond to
a combination of maximum possible individual sensitivity indices, which is not de-
sirable. The same observation is also visible in Fig 6.2 and Fig 6.3. For example,
for the case of Config-1, in Fig 6.2(a) and Fig 6.2(b), the presence of sharp peaks
respectively at 45° and 135° may be explained on account of the higher individual
sensitivity values found at these angles in Fig 6.2(c). Contrary to this a minimum
gl or g2 criteria value corresponds to a combination of minimum possible individual
sensitivity indices. Thus, using these global criteria, best identification is possible
for all the unknown rigidities with least sensitivity to noise. Recalling that criteria
g2 is a summation of differences of rigidities, a minimum value of g2 represents a
situation where the respective weights of all the sensitivity indices corresponding to
each rigidity are more balanced. However it is worth verifying that the correspond-
ing set of individual criteria values in case of g2 are also lower than the ones used

in g1.

6.3 Optimization of specimen width

In this section effect of varying plate dimensions are studied such that plate
length is kept fixed whereas its width is varied, thus leading to a variable aspect
ratio. A constant 0° fiber angle is used. For Config-1 and Config-2, plate length
is kept fixed to 0.1m while width is varied from 0.03m to 0.15m successively with
0.01m regular increments. However, same positions of support application points (at
the plate corners) and force application point (at the center of plate) are considered
in each case.

The observed variations in respective criteria values with respect to varying
widths are plotted in Fig 6.4 and Fig 6.5 respectively for Config-1 and Config-2.
Table 6.6 presents the optimum width when combined effect of all the four rigidi-
ties is considered. Table 6.7 presents the optimum width for better identification of

separate rigidities for a fixed plate length of 0.1m and 0° fiber angle.
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Config - 1 Config - 2
Crt: || crt. values | width (mm) || crt. values | width (mm)
gl 13.65 30 5.00 50
g2 21.51 30 4.36 50
g3 1.57 40 0.87 50
g4 0.93 40 0.58 50

Table 6.6: Optimum plate widths considering combined effect of rigidities.

Config - 1 Config - 2
Crt: || crt. values | width (mm) || crt. values | width (mm)
(@) 1.57 30 0.40 60
5O 0.87 150 0.50 150
() 0.50 50 0.45 140
(@) 5.06 30 1.49 40

Table 6.7: Optimum plate widths separately for individual rigidities.

From the obtained results it may be concluded that lesser is the width as com-
pared to length better would be the results. Here it is important to note that the
slope fields obtained on top surface of the specimen are practically captured using a
camera, typically equipped with rectangular CCD array. For instance Basler A113P
camera, used in the present study for capturing experimental slope fields, is equipped
with a CDD array of 1296 x 1030 pixels, with an aspect ratio of 1.26. This limits the
use of very elongated specimen as the CCD camera is then not best suited. Hence
a rectangular specimen with aspect ratio closer to that of the CCD array is more

preferable than a very elongated one.

6.4 Optimization of specimen width and fiber angle

In this section the effect of both width and fiber angle is studied. The idea is to
identify a combination of optimum width and fiber angle for Config-1 and Config-2
for better and robust identifiability of rigidities. For this purpose identification is
achieved for the widths varying from 0.03m to 0.15m successively with 0.01m regular
increments using a given fiber angle. Also for each width, identification is achieved
for all the angles varying from 0° to 180° with 5° regular increments. Finally, that
combination of optimum width and fiber angle is identified which results in the least

values of global minimization criteria and similarly for individual criteria.
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As before, same positions of support application points (at the plate corners) and
force application point (at the center of plate) are considered in each case.

Fig 6.6 and Fig 6.7 present the contour plots using global and individual cost
functions respectively for Config-1 and Config-2. These plots record the respective
criteria values for the widths varying from 0.03m to 0.15m with 0.01m regular in-
crements and the angles varying from 0° to 180° with 5° regular increments. In
general, it may be observed that for a given configuration, the two criteria g1 and
g2 exhibit a similar pattern, and the same is separately true for ¢3 and g4. Also,
it may be observed that, both g1 and ¢2 result in comparatively less complicated
contour maps with distinct flat regions having lesser criteria values.

On the other hand, the contour maps of g3 and g4 are very uneven with sharp
fluctuations and as such no flat zones with lesser criteria values are visible. Regard-
ing the individual criteria maps in both the configurations, flat zones with lesser
respective criterion values are easily visible. Additionally, for Config-2, a symmetric

pattern is remarkable in all the plots.

Config - 1 Config - 2
Crt: || crt. values | width (mm) | angles ° || crt. values | width (mm) | angles °
gl 8.09 40 145 3.08 110 25
g2 12.17 40 145 3.70 60 D
g3 1.07 100 45 0.87 50 180
g4 0.91 60 150 0.58 50 180

Table 6.8: Optimum plate widths and angles considering combined effect of rigidities.

Config - 1 Config - 2
Crt: || crt. values | width (mm) | angles ° || crt. values | width (mm) | angles °
(@) 0.58 150 125 0.40 60 0
5 0.61 60 50 0.17 130 40
500 0.42 150 150 0.35 100 165
§(4) 2.95 150 140 1.49 40 0

Table 6.9: Optimum plate widths and angles separately for individual rigidities.

Table 6.8 records the optimum combination of width and fiber angle for Config-
1 and Config-2 based on the global minimization criteria. Table 6.9 records the
optimum combination based on the individual minimization criterion for each of
the rigidities. From above results, it is observed that for better and more robust
identification elongated specimens sizes are preferred choice. Similar conclusion was

also observed earlier in Section 6.3. However as explained earlier in Section 6.3,
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from experimental point of view where a CCD camera is used to capture the full

field data, use of very elongated specimens is not recommended.

6.5 Optimization of force application point

This section presents the effect of location of load application point when it is
moved from one position to another. The detailed search procedure for an optimized
force application point is already discussed in Section 5.4. The present case only
differs on account of using one virtual element in addition to an identification of
the four orthotropic rigidities along the fiber directions instead of six. This leads
to different noise sensitivity criteria values compared to their counterparts found in
Section 5.4. Hence, the program is launched again with four unknowns instead of
six and corresponding values of global and individual cost functions in addition to
the location of optimum force application point are recorded here in Table 6.10 and

Table 6.11 respectively.

Config - 1 Config - 2
Crt: || crt. values | F, (mm) | F, (mm) || crt. values | F, (mm) | F, (mm)
gl 5.19 37.5 8.3 4.76 58.3 41.6
g2 6.68 60.4 4.2 8.54 58.3 41.6
g3 1.19 37.5 4.2 1.63 18.7 4.2
g4 1.02 43.7 4.2 1.46 12.5 97.9
Table 6.10: Optimum location of force application point considering combined effect
of rigidities.
Config - 1 Config - 2
Crt: || crt. values | F, (mm) | F, (mm) || crt. values | F, (mm) | F, (mm)
(@ 0.53 64.5 4.2 0.71 58.3 41.6
5 0.31 16.6 31.2 0.34 4.1 85.4
() 0.35 6.2 77.1 0.26 29.1 27.1
5@ 1.85 66.6 2.1 3.12 58.3 41.6

Table 6.11: Optimum location of force application point separately for individual

rigidities.

From above results it is observed that the use of optimal load application point
leads to considerable reduction in noise sensitivity values. However it is observed that
different global criteria result in different optimum locations. For Config-1 it may be

said that they are more or less close to each other but not in case of Config-2. Table
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Config - 1 Config - 2

Crt: || g1 g2 g3 g4 gl g2 g3 g4
@) 110.55 | 0.55 | 0.57 | 0.58 || 0.71 [ 0.71 | 1.06 | 0.95
1.09 | 215 | 24 | 245 0.63 | 0.63 | 1.74 | 1.80
0.44 1 0.55 ] 0.69 | 0.68 || 0.29 | 0.29 | 0.29 | 0.29
4 |3.11]224 242|233 3.12|3.12 | 3.83 | 3.68

Table 6.12: Comparison of individual criteria values §( at optimum force locations

found for different global criteria.

6.12 records individual sensitivity values of respective rigidities found at the optimum
force application points using global cost functions. A similar pattern is observed
as before in Table 6.5. Thus, it may be said that global criteria g1 and ¢2 are
more performing as they are related to lesser individual sensitivity values. Contrary
to this, minimum values of g3 and g4 are related to a combination of somewhat
higher individual sensitivity values. Recalling that the criterion g2 is a summation
of differences of rigidities. Hence a minimum value represents a situation where the
respective weights of all the sensitivity indices corresponding to each rigidity are
more balanced. This makes it most suitable choice as a global optimization criteria
based on noise minimization which is able to identify one optimal situation for best
possible identification of all the unknown rigidities.

Now the following section further extends the optimization scope. It discusses the
effect of optimized fiber angle, support locations and force application point in order
to study the combined effect of all these variable parameters on the noise sensitivity
values. For the following study Config-1 is used as reference testing configuration

whereas global criterion g2 is used as the selection criterion.

6.6 Optimization of support points, force point and

fiber angle for fixed specimen shape

6.6.1 Introduction

This section now discusses the effect of different variable parameters viz. support
positions, force application point and fiber angle. For this study Config-1 serves as a
reference and starting point. To be noted that for all the studies to follow, optimum
parameter values are found using the global minimization criterion g2. The idea is to
find optimum values of these parameters in addition to verifying the fact that better

identification is possible with increasing number of optimized variables. For this
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purpose using the optimized criteria values, percentage reductions in comparison to
the reference values for Config-1 as noted in Table 6.1 and Table 6.2, are evaluated.
In this regard, Table 6.13 summarizes the results of the criteria values along with the
% reductions obtained for the different optimization cases undertaken in an orderly

way as listed in Section 6.1.

Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 5@ 5®) 500 5@
Ref values || 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - . B} )

1. Angle 15.46 | 1.04 4.77 0.55 | 3.84
72.24 | 85.98 | -204.93 | -9.38 | 77.55

2. Width 21.51 | 1.57 6.52 0.51 | 5.06
61.59 | 78.87 | -817.15 | -1.80 | 70.43

3. Width + angle || 12.17 | 0.78 3.83 0.49 | 2.97
78.15 | 89.25 | -144.80 | 1.30 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 | 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

Table 6.13: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

6.6.2 Optimization procedure

This section presents the procedure to select a successively improved location
of variable parameters. For this purpose, Fig 6.8 illustrates the search method
used for finding the optimized positions for variable parameters. It has a total of
eight variable parameters, representing positions in x and y directions for three
supports and one force point. Also it contains a real mesh grid as used in Ansys
for simulation purposes and the resulting pitch size. Pitch depends on the mesh
size used, denser is the mesh grid smaller is the pitch size. The intersection points
of vertical and horizontal lines represent allowable possible positions where these
variable parameters can be placed.

Now to start the search procedure, first keeping all the variable parameters lo-
cation unchanged, identification is achieved and the selection criterion value ¢2 is
noted. Now one of the parameters is taken and its location is changed by giving a
predefined displacement, referred to as step respectively in +x direction and iden-
tification is achieved along with recording the new criterion value of g2. The step
size may be taken equal to the pitch or its factor (e.g. twice or four times of the

pitch size). In a similar manner, the same original location is given displacements
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Figure 6.8: An illustration to describe the search method for new successively opti-

mized locations.

respectively in —z, +y and —y directions separately. At all these new locations
identification is achieved one after another and ¢2 value is noted. Finally for this
parameter total five different values of g2 are available among which the least value
is identified and corresponding location is retained, which is represented in the illus-
tration by ). This new location will now be used afterwards for this tested variable
parameter for subsequent loop of optimum search. Same procedure is now applied
to the remaining three variable parameters and subsequent new locations are found
for each of them one after another. This complete loop for four parameters as used
in this example is referred to as first iteration. Finally at the end of first iteration,
four new locations are available respectively for the four parameters which now serve
as a starting point for the subsequent second iteration. This procedure is continued
till the relative difference of criteria values for each variable parameter separately
becomes less than or equal to 0.1%.

It is important to note that in order to save computational time, the step size
which is the starting incremental displacement may be taken initially as some factor
of the pitch (e.g. twice or four times of the pitch size). However, at the attainment
of above limiting condition the step size is reduced to the pitch size and the search

procedure is continued. In fact, this refinement helps to find the minimum with
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a greater resolution accuracy. Now when this limiting condition of 0.1% is again
achieved separately for each of the variable parameter then the optimization pro-
cedure is stopped and resulting optimum positions are noted. If two searches are
performed with different initial step sizes, for example in one case it is taken equal
to four times while in other it is kept twice of the pitch, it would be interesting to
note the final results. If different results are obtained in these two searches, it may
be linked to the existence of more than one local minima.

Now first in the following section, using a constant 0° fiber angle, support and
force points are optimized. However the support points are restricted to move only

along the specimen boundary.

6.6.3 Supports (restricted to specimen boundary) and force

points

This section discusses the optimal positioning of support and force points for
a given specimen shape and size such that best possible identification is achieved
with minimum noise sensitivity. To be noted that a constant 0° fiber angle is used
and support points are only allowed to be placed along the specimen boundary.
Initially using Config-1 which serves as a starting point, reference criterion value,
g2, is obtained along with individual sensitivity indices for respective rigidities. Now
in a systematic manner defined before, all the variable parameters are moved and
identification is achieved and criterion value ¢2 is determined such that optimum
locations are found.

Optimization is achieved by using a step size equal to four times the pitch.
Moreover, to check if there exist several local minima, additional results using a step
size equivalent to twice the pitch is also presented. The two optimum configurations
thus found are plotted in Fig 6.9 along with all the intermittent points before arriving
at the final optimum configuration. It also plots the successive criteria values and
it can be observed that at each new set of locations it decreases till it becomes
stationary which represents the optimum combination of variable parameters. To
give an idea of calculation time such a procedure approximately takes two to three
hours on a standard Pentium4 computer with 1GB Ram. For the case of step size
equal to four times the pitch, Table 6.14 records the global minimization criterion
value, ¢2, and the respective individual sensitivity indices 6(®), whereas Table 6.15
records coordinates of the optimum support and force locations. Also, results for
the case of step size equal to twice the pitch are presented in Table 6.16 and Table
6.17 respectively.
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Sensitivity index values for an optimized Config-1
Crt: g2 §@  5® §() 5@
final values | 2.49 030 0.74 0.66 0.99
% reduction | 95.58 96.01 65.91 -32.831 94.19

Table 6.14: Sensitivity index values for an optimized Config-1: optimum supports

(restricted to specimen boundary) and force application point, step = 4 x pitch.

Optimum supports and force locations
S1 S2 S3 F

X (mm) | 0 100 19 46

y (mm) | 19 23 100 25

Table 6.15: Coordinates of optimum supports (restricted to specimen boundary)

and force locations for the optimized Config-1, refer Table 6.14.

Sensitivity index values for an optimized Config-1
Crt: g2 s & s 5@
final values | 239 0.31 094 052 1.05
% reduction | 95.70  95.84 39.91 -3.51 93.85

Table 6.16: Sensitivity index values for an optimized Config-1: optimum supports

(restricted to specimen boundary) and force application point, step = 2 x pitch.

It is important to note that the use of two different initial step sizes resulted in
two different final optimum combinations of variable parameters, hence it may be
concluded that there exist local minimum for optimum combinations of the variable
parameters. It is worth noting that the final g2 values in both the cases are in close
vicinity, it may be said that the cost functions are probably very flat. In both cases
it is important to note that the two lower supports (S1 and S2) and the force point
fall more or less on a same horizontal level. In both cases all three support points
are largely found at similar locations however the force is somewhat shifted to right
side in the case when 2 x pitch is used. However, an increase in sensitivity values for
Dy, is observed in both the cases, but considering the fact that the reference initial
value is itself small in comparison to others, this increase is not very significant. In
future works, it would be interesting to use such an optimization scheme, e.g. genetic

algorithm, which is capable of searching the unique global minimum solution.
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Optimum supports and force locations
S1 S2  S3 F

X (mm) | 0 100 30 63

y (mm) | 13 21 100 25

Table 6.17: Coordinates of optimum supports (restricted to specimen boundary)
and force locations for the optimized Config-1, refer Table 6.16.

Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §(a) 50 50 §5(d)
Ref values 55.70 | 7.43 1.56 0.50 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | 77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle ]_2]_7 078 383 049 297
78.15 | 89.25 | -144.80 | 1.30 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 65.91 | -82.31 | 94.91

Table 6.18: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

From the comparative study of the results recorded in Table 6.18, it is observed
that with optimized support and force application points, a significant reduction
is achieved in noise minimization criterion g2 and respective individual sensitivity

indices, with an exception in the case of D,.
Now the following section discusses optimization when fiber angle is also conside-

red as a variable parameter. The idea is to study if this additional freedom results

in further decrease in the minimization criterion values.
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6.6.4 Supports (restricted to specimen boundary), force point

and fiber angle

This section discusses the effect of adding an extra variable parameter i.e, fiber
angle for the case studied in Section 6.6.3. The idea is to study its effect on the
minimization criterion value ¢g2 and respectively on the individual sensitivity in-
dices for each rigidity. Using a step size equal to 4 x pitch, for each of the fiber
angle varying from 0° to 180° with 5° regular increments final optimum supports
(restricted to specimen boundary only) and force application points are found. At
final optimized positions using increasing fiber angles, corresponding criteria values,
g2 are noted along with sensitivity indices for individual rigidities. These minimum

criteria values g2 with increasing fiber angles are plotted in Fig 6.10.
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Figure 6.10: Config-1: Search of optimum fiber angle with optimized supports (re-
stricted to specimen boundary) and force point

From Fig 6.10, it may be observed that for the two different fiber angles, 20°
and 70°, same minimum ¢2 value is obtained. Also it is interesting to note the two
symmetry axes respectively at 45° and 135°. By noting the variation of g2 values
from one angle to another, it is observed that it varies within a very small range.
Therefore, it may be said that the effect of angle optimization is not very significant.
Fig 6.11 plots the final optimum configurations, showing optimized support points
(restricted to specimen boundary) and force application point for the two optimum
fiber angles, 20° and 70° respectively. These two configurations are in fact mirror
images with respect to a symmetrical axis at 45°.
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Figure 6.11: Optimized Config-1 with two optimum fiber angles resulting in similar

criterion values, ¢2; optimum supports (restricted to specimen boundary) and force

points.
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The criteria values obtained for these optimum configurations are presented in
Table 6.19 whereas the Table 6.20 records the coordinates of supports and force
points, for the optimum configurations found with 20° and 70° fiber angle respec-

tively.

Sensitivity index values for an optimized Config-1

Identical values for the two optimum fiber angles, 20° and 70°

Crt: g2 5(a) 5®) 500 5@
final values 1.83 0.22 0.39 0.50 0.83
% reduction | 96.71 96.99 75.12 -0.73 95.12

Table 6.19: Optimized Config-1: Similar sensitivity index values for two different
optimum fiber angles, 20° and 70°, resulting in optimum supports (restricted to
specimen boundary) and force application point, step = 4 X pitch.

Optimum supports and force locations

for 20° optimum fiber angle || for 70° optimum fiber angle
S1 S2 S3 F S1 S2 S3 F

x (mm) | 0 100 8 17 17 100 50 25

y (mm) [ 17 50 100 25 0 8 100 17

Table 6.20: Optimized Config-1: Coordinates of optimum supports (restricted to
specimen boundary) and force locations for the the two optimum fiber angles 20°
and 70°, refer Table 6.19.

By comparing the results quoted in Table 6.21, it may be observed that the
sensitivity values are slightly lessened overall, however a significant improvement is
achieved for 6(° which is the sensitivity index corresponding to rigidity Dy,. Now it
is only 0.73% in excess to the reference value as compared to 32.31% earlier. Finally,
it may be said that the additional variable parameter of fiber angle results in further

decrease of sensitivity indices but the overall influence remains insignificant.
Now the following section discusses optimization when an additional freedom

is given to the system by allowing support points to be placed within the plate.
Initially 0° fiber angle is used for this study.
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Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §5(e) 5 5 5
Ref values 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | T77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle ]_2]_7 078 383 049 297
78.15 | 89.25 | -144.80 | 1.830 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 | 65.91 | -32.31 | 94.91

6. Support (restricted) ]_83 022 039 050 083
+ force + angle 96 71 9699 7512 '0 73 9512

Table 6.21: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

6.6.5 Supports and force points

This section now discusses the effect of adding an extra freedom to the case stud-
ied earlier in Section 6.6.3. As before, Config-1 with 0° fiber angle serves as starting
point, except that support points are now allowed to be placed within the specimen
area contrary to the earlier case when they were restricted only to the specimen
boundary. Optimization is performed by using a step size equal to 4 x pitch and
the resulting optimum configuration is plotted in Fig 6.12. Table 6.22 records the
global minimization criterion value, g2, and the respective individual sensitivity in-
dices 0(®, whereas Table 6.23 records coordinates of the optimum supports and force
locations.

Sensitivity index values for an optimized Config-1
Crt: g2 s@ b 5@ 5@
final values 1.69 024 025 026 0.80
% reduction | 96.96 96.82 84.22 }8.04 95.33

Table 6.22: Sensitivity index values for an optimized Config-1: optimum supports
and force application point, step = 4 X pitch.
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Figure 6.12: Optimized Config-1 with optimum supports and force points.

Optimum supports and force locations
S1 S2 S3 F

X (mm) | 8 100 48 25

y (mm) [ 27 23 100 31

Table 6.23: Coordinates of optimum support and force locations for the optimized
Config-1, refer Table 6.22.

A comparison of results quoted in Table 6.24 shows an overall improvement
particularly with reference to case no. 5. Specially for 5, which is the individual
sensitivity index for D,g, a significant improvement is noted. Now it is reduced by
48% whereas it was earlier found to be increased by 32.31% in comparison to the
reference value. Similarly for 6¢) representing D,,, a 84.22% reduction is observed
as compared to earlier 65.91%. Also, the final positions are consistent with the fact
that the three supports are found far away from each other on the extremities of the
specimen thus resulting in larger deflections for a given load.

Now the following section discusses the effect of setting fiber angle also as a

variable parameter for the system studied above.
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Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §5(e) 5 5 5
Ref values 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | T77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle ]_2]_7 078 383 049 297
78.15 | 89.25 | -144.80 | 1.830 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 | 65.91 | -32.31 | 94.91

6. Support (restricted) ]_83 022 039 050 083
+ force + angle 96 71 9699 7512 '0 73 9512

7. Support + force 169 024 025 026 080
96.96 | 96.82 | 84.22 48.04 | 95.33

Table 6.24: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

6.6.6 Supports, force point and fiber angle

For the present study, same system as in Section 6.6.5 is used with the only
addition that the fiber angle is now also treated as a variable parameter. The effect
of this additional parameter on the final optimized configuration and corresponding
sensitivity indices is discussed here. Using initial step size equal to 4 x pitch, final
optimum configurations are obtained for the fiber angles varying from 0° to 180°. For
each angle used the resulting minimized final criterion value g2 is noted along with
respective individual sensitivity indices. Fig 6.14 plots these final criterion values,
g2, corresponding to the final optimized configuration achieved at each increasing
angle. In Fig 6.14, it is interesting to observe a pattern as before in Fig 6.10. Here
also, a same minimum g2 value is obtained for two different fiber angles 5° and 85°,
in addition to the existence of two symmetry axes respectively at 45° and 135°. Fig
6.13 plots the final optimum configurations, showing optimized support points and
force application point for these two optimum fiber angles. Table 6.25 records the

criteria values corresponding to the final optimized configurations.
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(b) Optimized Config-1 using 85° fiber angle

Figure 6.13: Optimized Config-1 with two optimum fiber angles resulting

in similar

criterion values, ¢2; optimum supports and force points.
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Figure 6.14: Config-1: Search of optimum fiber angle with optimized supports and

force point

These two configurations are in fact mirror images with respect to a symmetry
axis at 45°. Table 6.26 records the supports and force points coordinates for the two

optimum configurations found with 5° and 85° fiber angle respectively.

Sensitivity index values for an optimized Config-1

Identical values for the two optimum fiber angles, 5° and 85°

Crt: g2 5@ 5®) 5 5
final values 1.67 0.19 0.37 0.36 0.69
% reduction | 97.00 97.37 76.10 27.58 95.97

Table 6.25: Optimized Config-1: Similar sensitivity index values for two different op-
timum fiber angles, 5° and 85°, resulting in optimum supports and force application

point, step = 4 X pitch.

To observe the effect of using fiber angle as a variable parameter, above results
are compared to those of Section 6.6.5. The comparative results of all the cases stud-
ied are recorded in Table 6.27. Upon comparing the latest results especially with
reference to case 7, only a very slight improvement is observed in criterion value, g2,
from 96.96% to 97.00%. Although, the use of an additional variable parameter is
justified though the gain is very minimal and insignificant. For respective individual

rigidities marginal improvement is also observed for rigidities D,, and D,,, however
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Optimum supports and force locations

for 5° optimum fiber angle || for 85° optimum fiber angle
S1 S2 S3 F S1 S22 S3 F

X (mm) | 8 69 17 40 21 100 29 27

y (mm) [ 21 29 100 27 8 17 69 40

Table 6.26: Optimized Config-1: Coordinates of optimum support and force loca-
tions for the the two optimum fiber angles 5° and 85°, refer Table 6.25.

Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §5(e) 5 5 5
Ref values 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | 77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle 12.17 | 0.78 3.83 0.49 2.97
78.15 | 89.25 | -144.80 | 1.830 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.653 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 | 65.91 | -32.31 | 94.91

6. Support (restricted) ]_83 022 039 050 083
+ force + angle 96 71 9699 7512 '0 73 9512

7. Support + force 169 024 025 026 080
96.96 | 96.82 | 84.22 | 48.04 | 95.33

8. Support + force ]_67 0]_9 037 036 069
+ angle 97.00 | 97.37 | 76.10 27.58 | 95.97

Table 6.27: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

results for D,, and D,, are not as good as before. It may be explained by recalling
that the criterion ¢2 considers the relative differences of the individual sensitivi-
ties. Due to this a minimum ¢2 value represents a more balanced combination of
individual sensitivities. However, there may be situations where individually higher
criterion values result in a minimum ¢2 value, such as in the present case. But,
considering that these individual sensitivity values are still significantly low, these
are acceptable.
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Finally, it can be argued that there is no significant gain by using fiber angle as
a variable parameter to the case when it was fixed to 0°, additionally it is found
less efficient for individual rigidities D,, and Dj,, hence the earlier configuration
with fixed fiber angle at 0° is more efficient and is most capable to identify all the

rigidities with least noise sensitivity.

Now the following section discusses the effect on noise sensitivity criterion when
specimen shape is also optimized along with location of supports and force applica-

tion points.

6.7 Optimization of specimen shape, supports and

force point

This section now discusses the shape optimization along with supports and force
application points with fixed fiber angle at 0°. For the purpose of shape optimization,
specimen geometry is defined by a spline passing through 8 interpolation points as

shown in Fig 6.15.

F1=53

® s

p-s1

F3i=52

Figure 6.15: An irregular shaped specimen formed by a spline passing through eight

points.

It is important to note here that in the present study support points are restricted
to specimen boundary. Hence the required number of supports are attributed to

corresponding interpolation points at respective positions. Thus among the total
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eight interpolation points, three points are used to define both the shape and support
locations whereas the remaining five points are solely defining the specimen shape.
Before discussing the specimen shape optimization, following section first describes

discretization of an irregular shaped specimen.

6.7.1 Discretization of an irregular shape specimen
6.7.1.1 Introduction

It is important to note that up till now the specimen represented a regular shape
and hence during simulation using Ansys a regular meshing was easily possible. But
in the case when shape points are allowed to move, an irregular shaped specimen is
likely to be obtained whose regular meshing is not possible using functions available
in Ansys package. To overcome this difficulty and to obtain a regular mesh for an
irregular shaped specimen, a special discretization procedure developed by Mathias
[83, 1] during his PhD work regarding composite patches is adapted here. The

discretization procedure is briefly recalled blow.

6.7.1.2 Procedure

B7 Shinnom

Fl

P3
Pz P4

(&) (k)

_L{_LJ_

L
|

L1
[

(© ()

Figure 6.16: An illustration of discretization procedure [1].

The procedure is illustrated in Fig 6.16 and is as follows:

e an irregular shaped surface defined by the above mentioned eight interpolation
points is created by using the Ansys SPLINE function, Fig 6.16(a).
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e two square plates, called here discretizing plates are created. These are placed
exactly on top of each other with a predefined separating distance in between.
On these plates a required regular mesh density can be easily imposed. Now
the irregular surface which is needed to be meshed in a regular pattern is

placed in between these two discretizing plates, Fig 6.16(b).

e the regular mesh imposed on these discretizing plates is now projected on this

irregular surface, Fig 6.16(c).

e finally all the discrete mesh areas found enclosed within the spline are retained
thus resulting in a discretized irregular shape specimen with a regular mesh

pattern.

However it is worth mentioning that this discretizing procedure is comparatively
lengthy and takes approximately 3 minutes compared to normal meshing operation
which hardly takes a couple of seconds. Thus the total simulation time for an
irregular shaped specimen is considerably greater than that of a regular shaped

specimen.

6.7.1.3 Limitations

It is important to note that the boundary of discretizing plates serves to limit
the irregular shaped surface as it is not allowed to pass this limit. Hence if an inter-
polation point reaches this limit, it is stopped and cannot proceed further outside
the discretizing plate dimension. In fact this is important in restricting the evolving
shape not to be elongated only in one direction. As otherwise it will result in a overly
elongated shape which is not very suitable for experimental purposes especially with
reference to the use of CCD camera, as already discussed in Section 6.3.

Additionally, it is important to discuss here an inherent procedural limitation
when two interpolation points come very close to each other. This results in a
crossed spline with a loop and the further advancement of the simulation routine
is programmed to be terminated at this point. This situation represents an end to
the ongoing search for optimization. Though by using a different step size afresh
or by changing the initial point locations, this situation may be avoided due to the

presence of local minima as observed in earlier results.

6.7.1.4 Definition of starting reference configuration

For the purpose of present shape optimization, a configuration similar to Config-
1 in terms of supports and load locations serves as a starting point. However con-

sidering the significant computation time especially to obtain a regular discretized
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surface, the specimen size in Config-1 is reduced by half to get 0.05m x 0.05m square
specimen plate. Fig 6.17 plots the shape of this reduced specimen size using a con-
tinuous spline passing through the eight interpolation points. Worth mentioning
that this size reduction is already taken care in the criterion value when it is nor-
malized with respect to specimen area, refer Eq. (5.1). Thus, the criterion values
resulting from this reduced specimen shape are therefore directly comparable to the

respective values for the reference Config-1.

D (0,0.1) C(0.1,0.1)

(0.25, 0.75) B6

P7=53 ¢ P5

P8

P1=51 P3=82
{0.25, 0.25) P2 (0.75, 0.25)

A0 X B (0.1,0)

Figure 6.17: Figure to illustrate starting configuration to be used for shape opti-

mization.

It is important to recall that the boundary of the discretizing plates, described
earlier in Section 6.7.1.2, serves to limit the evolving shape not to be elongated
only in one direction. For this purpose, if an interpolation point reaches this limit,
it is stopped and cannot proceed further outside the discretizing plate dimension.
The present example uses the two square discretizing plates of 0.1m x 0.1m such
that the starting close to square specimen shape may well be accommodated within
these plates. This leaves sufficient space for the interpolation points to look around
in search of optimal location without coming closer to the limiting zone too early.

Now the following sections discuss two optimization examples of Config-1 using
constant 0° fiber angle, initially when the force application point and three interpo-
lation points defining supports are kept fixed while the remaining five interpolation
points defining plate geometry are free to move and are optimized. Later a com-
plete optimization of all the eight interpolation points and force application point
is presented. For these examples a real mesh size of 60 x 60 with step size equal to
3x pitch is used. This in fact gives more flexibility to search around for optimum

locations before coming too close to the limiting discretizing plate and also to each
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other, thus resulting in a crossed spline where the search stops.

The following section now discusses a shape optimization case with fixed supports

and force application points.

6.7.2 Optimization of specimen shape using fixed supports

and force points

This section presents shape optimization of Config-1. Initially in this section the
shape is optimized by using as variable parameters only the five interpolation points
purely defining the specimen geometry. The remaining three interpolation points
which also define the three simple supports and the force application point are fixed
constant. Same optimization procedure described before in Section 6.6 is used to
find a new successive location for each of the interpolation points to define a new
geometry of specimen shape till a final optimized shape is achieved. Fig 6.18 plots
the final optimum configuration, showing optimized points which define the specimen
geometry with fixed supports and force application points. It also plots the final
optimum shape formed by a spline passing through these eight interpolations points
along with its discretized shape. Table 6.28 presents the final results obtained for
such an optimization. It is important to note that due to the discritizing procedure,
it was rather lengthy operation and took about 9 hrs to arrive at final optimum

shape on a standard Pentium4 computer with 1GB Ram.

Sensitivity index values for an optimized Config-1
Crt: g2  s@  s® s 5@
final values | 1595 1.83 0.59 0.27  5.17
% reduction | 68.58 74.91 59.12 38.49 66.42

Table 6.28: Shape optimization Config-1: Sensitivity index values for optimized

shape using fixed supports and force application point.

By comparing with the results recorded in Table 6.29, it is observed that the
final shape obtained using fixed supports and force application point is not very
interesting in terms of percentage reduction in noise sensitivity criterion value, g2
and also for the individual rigidities. Much greater reductions were observed in
earlier sections for the cases when shape was fixed and only supports and force
points were optimized as summarized in the Table 6.29. This may be attributed to
the fact that the support and force application points in the present case were kept
fixed. Also it would be interesting to compare with the following case where these

are optimized also.
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(a) Shape optimization Config-1: fixed supports and force application point.
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(b) Shape optimization Config-1: Spline passing through eight interpolation points

and its discretization.

Figure 6.18: Shape optimization of Config-1 using fixed supports and force applica-
tion point.
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Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §5(e) 5 5 5
Ref values 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | T77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle ]_2]_7 078 383 049 297
78.15 | 89.25 | -144.80 | 1.830 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 | 65.91 | -32.31 | 94.91

6. Support (restricted) ]_83 022 039 050 083
+ force + angle 96 71 9699 7512 '0 73 9512

7. Support + force 169 024 025 026 080
96.96 | 96.82 | 84.22 48.04 | 95.33

8. Support + force ]_67 0]_9 037 036 069
+ angle 97.00 | 97.37 | 76.10 27.58 | 95.97

9. Shape 15.95 | 1.83 0.59 0.27 5.17
68.58 | 74.91 | 59.12 | 38.49 | 66.42

Table 6.29: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6(®) for the different optimization cases as listed in Section 6.1.

However, on account of the observed results, it may be said that the effect of only
shape shape optimization is not very interesting in terms of reduced noise sensitivity.
The following section now presents an example of shape optimization where all
the eight interpolation points defining specimen geometry and force application is
optimized. The idea is to study the improvements in terms of noise sensitivity

reduction.

6.7.3 Complete shape optimization of a specimen

This section finally presents a complete shape optimization of Config-1 with
0° fiber angle, where all the eight interpolation points defining specimen shape are
treated as variable parameters in addition to a ninth variable that is force application
point. Remembering here that the three supports are attached to respective three

interpolation points and are thus restricted on the specimen boundary.
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(b) Complete shape optimization Config-1: Spline passing through eight

interpolation points and its discretization.

Figure 6.19: Complete shape optimization of Config-1 with optimized eight interpo-

lation points and force application point.
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Sensitivity index values for an optimized Config-1
Crt: g2 §@  5® §() 5@
final values 1.89  0.29  0.57 0.57 0.90
% reduction | 96.27 96.04 60.34 -29.31 94.15

Table 6.30: Complete shape optimization Config-1: Sensitivity index values for

optimized shape.

Similar procedure as before is used to find a successive optimized shape staring
from Config-1 such that a final optimized shape is identified. At this final shape
either the criterion value remains unchanged or the difference is less than or equal
to 0.1% to precedent one. Fig 6.19 plots the final optimum configuration, showing
the optimized eight interpolation points which define the specimen geometry and the
force application point. It also plots, the final optimum shape formed by a spline
passing through these eight optimized interpolations points along with its discretized
shape. Table 6.30 presents the final results obtained for such an optimization. It is

worth noting that this illustration took 23hrs to arrive at final optimum shape.

Now for the present case of complete shape optimization a considerable reduction
in criterion values, g2 is observed in comparison to the results quoted in Table 6.31
especially for the case no.9, where support and force points were kept fixed. However
no improvement is noted when compared to the earlier cases, for instance, case no.6
and case no.7 where shape was fixed as to that of Config-1 and only supports and
force points and additionally the fiber angle were optimized respectively. Sensitivity
results of §(9) representing D, is now found to be increased by 29.31% whereas for

above mentioned cases they were significantly reduced by 48.04% and 27.58%.

Though this shape optimization may be extended further by setting fiber angle
also as a variable parameter in addition to separately defining interpolation and
support points contrary to present case when they represent only one variable pa-
rameter. These enrichments are not undertaken in the present work. However,
considering the increased level of simulation complexities due to an irregular shape
and the required processing time, it is interesting to discuss the actual advantage
and eventual benefit in terms of reduced sensitivity to noise for an optimized spec-
imen shape. As noted above there is no significant gain or improvement hence use
of such an optimized shape may not be justified. Also, most importantly from prac-
tical point of view it is very difficult to obtain such a special shaped specimen by
cutting a composite plate to a given irregular shape. Finally it may be argued that
use of a fixed shape square specimen as Config-1 with optimized supports and force

application points is more preferable.
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Comparison of the criteria values and % reduction

for the different optimization cases

Cases g2 §5(e) 5 5 5
Ref values 55.70 | 7.43 1.56 0.50 | 17.11
Config-1 - - - - -
1. Angle 15.46 | 1.04 4.77 0.55 3.84
72.24 | 85.98 | -204.93 | -9.38 | T77.55
2. Width 21.51 | 1.57 6.52 0.51 5.06

61.39 | 78.87 | -317.15 | -1.80 | 70.43

3. Width + angle ]_2]_7 078 383 049 297
78.15 | 89.25 | -144.80 | 1.830 | 82.63

4. Force 6.68 | 0.55 2.15 0.55 2.24
88.00 | 92.63 | -37.24 | -9.58 | 86.90

5. Support (restricted) 249 030 074 066 099
+ force 95.53 | 96.01 | 65.91 | -32.31 | 94.91

6. Support (restricted) ]_83 022 039 050 083
+ force + angle 96 71 9699 7512 '0 73 9512

7. Support + force 169 024 025 026 080
96.96 | 96.82 | 84.22 | 48.04 | 95.33

8. Support + force ]_67 0]_9 037 036 069
+ angle 97.00 | 97.37 | 76.10 27.58 | 95.97

9. Shape 15.95 | 1.83 0.59 0.27 5.17
68.58 | 74.91 | 59.12 | 38.49 | 66.42

10. Shape + support 189 029 057 057 090
+ force 96.27 | 96.04 | 60.34 | -29.31 | 94.15

Table 6.31: A successive comparison of the reference global (¢2) and individual

sensitivity criteria (6() for the different optimization cases as listed in Section 6.1.

6.8 Effect of material

In order to study the effect of using a different material on the optimization
result, an illustrative example using a carbon-epoxy composite with typical elastic
constants (quoted earlier in Section 5.5) is presented here. For this purpose, an
optimization case similar to case no. 5, discussed earlier in Section 6.6.3 is studied.
It is selected on account of the observed significant % reductions in addition to the
comparative simplicity from other other cases. The idea is to study the effect of
using a different material on the optimized supports (restricted along the specimen
boundary) and force locations using a constant 0° fiber angle. For an initial step
size equal to four times the pitch, Fig 6.20 plots the final optimum configuration. It

is compared to the corresponding case of a glass-epoxy plate presented in Fig 6.9(a).

From the respective figures for the two different materials, it is interesting to
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Figure 6.20: Carbon-epoxy composite plate, Optimized Config-1 with optimum sup-
ports (restricted to the plate boundary) and force points.

observe a very similar final optimum placement of the support and force application
points. Similar conclusion my be drawn in terms of % reduction by comparing the
results quoted in Table 6.32 to that of the corresponding case no.5 in Table 6.31.

Sensitivity index values for an optimized Config-1
Crt: g2 5@ 5® 500 5@
Ref values 13295 1535 1.14 0.83 40.42
final values 3.16 034 093 050 1.25
% reduction | 97.62  97.79 18.77 40.43 96.89

Table 6.32: Carbon-epoxy composite plate, sensitivity index values for an optimized
Config-1: optimum supports (restricted to specimen boundary) and force application
point, step = 4 X pitch.

Thus it may be concluded that for the above studied example the material has
no apparent effect on the final optimum positions when both the supports and force

application points are optimized.
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6.9 Conclusion

In this chapter optimization of a testing configuration is presented and discussed
in detail. Effect of different parameters like fiber angle, plate width, location of
force application point, location of support points and specimen shape are studied
on the noise sensitivity criterion. All these parameters are considered separately and
also in combination so as to evaluate the gain in terms of robustness and accuracy
of the results. In this regard, Fig 6.21 presents a comparison of all the different

optimizations achieved using separate or a combination of variable parameters in

terms of noise sensitivity criterion value with reference to initial Config-1.
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{ % reduction w.r.t ref value, 55.70) _g e
50 + ——— Width
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Figure 6.21: A comparative performance graph of all the optimizations studied using
various parameters.

This graphs validates the point that when greater number of variable parameters
are considered collectively, greatest is the gain in terms of reduced noise sensitivity
leading to more robust identification. From this comparative study it may be ob-
served that greatest gain in terms of percentage reduction of reference criterion value
is achieved for case no. 8 which represents a combination of optimized supports (free

to be placed within the specimen boundary), force application point and fiber angle.
However, percentage reductions obtained for cases 5, 6, 7 and 10, are also more or

less of the same order and do not exhibit significant differences.
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Now in order to identify one best optimum combination of parameters it is impor-
tant to consider its performance but also ease of its implementation especially from
a practical point of view. On this basis an optimization based on specimen shape
along with support and force application points (case no. 10) is not a very evident
choice. Also from experimental point of view it is reasonably difficult to obtain an
irregular shaped specimen. Now, among the remaining solutions an important con-
sideration may be the placement of the optimized support locations. It is quite likely
that due to limitations in experimental setup, it is difficult to perform experiments
with configurations where supports are to be placed within the specimen and not
on the boundary, hence such situations (e.g. case no. 7 and case no. 8) should be
avoided. Now, from experimental point of view the last two optimization proposals
(cases no. 5 and case no. 6) are equally executable. In both of these, an optimized
force application point along with optimized support points are proposed, but the
supports are restricted to be placed on the specimen boundary. However the former
uses a composite specimen where fibers are oriented along 0° whereas in the later
case they are at an optimized angle (20°). Finally case no. 5, optimized supports re-
stricted to specimen boundary, optimized force application point and constant fiber
angle along 0°, may be regarded as the better optimization proposal in terms of the
equally good performance (a reduction of 95.53% against the maximum 97%) and
ease of experimental execution.

It may be concluded that this chapter presents a detailed numerical study where
effect of different variable parameters on the better identifiability with minimum
noise sensitivity is investigated. The present study is one of the few of its kind
where effect of different variable parameters are studied in an effort to optimize a
given testing configuration. The effect of different parameters both separately and in
combination is studied. The presence of several minima for a combination of variable
parameters is also observed. It would be interesting in future to further enrich the
optimization algorithm by using for example, genetic algorithms such that a unique
global minimum is identified in cases of prevailing local minima as observed in the
present work. After a comparative study of the different optimization cases, such a
case is identified which on the one hand results in significant reduction of the noise
sensitivity criterion and on the other hand is easily applicable from practical point
of view. With an illustrative example by using a different testing material, it is also
observed here that for the studied case there is as such no effect of using a different
material on the final optimized configuration.

In future, it would be interesting to experimentally validate the optimization pro-
posals presented and identified in this chapter especially the ones which are more
performing and also easily applicable. In this regard Chapter 8 later presents the

first experimental results where the effect of using an optimized force application
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point is experimentally evaluated especially in the context of the resulting minimized

noise sensitivity on the identification results.

The following chapter now discusses an application of the piecewise virtual fields
method. An adaptation of the method is presented for a composite plate with two
separate zones of different properties. The idea is to simultaneously identify the set

of the different rigidities in the two separate zones.
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Chapter 7

An application of piecewise VFM.:
Identification of a damaged

composite plate

7.1 Introduction

This chapter presents an important application of the piecewise VEM. In the
previous chapters, bending rigidities are assumed to be constant over the whole
plate, this assumption is not considered here. The present work deals with the
simultaneous identification of the unknown bending rigidities in two distinct zones
having different material properties, for a given composite plate. It presents an
adaptation of the identification procedure developed earlier in Chapter 2 for the
case when the bending rigidities are no more constant over the whole plate. The
present work is in fact a contribution to a separate research work conducted by J.H.
Kim, jointly supervised by F. Pierron and M.R. Wisnom respectively from LMPF,
ENSAM Chalons, France and Department of Aerospace Engineering, University of
Bristol, GB. The research topic is the identification of the local stiffness reduction
of a damaged composite plate using the virtual fields method. Such a stiffness
reduction is normally observed in case of composite panels. It may be due to a
delamination damage caused by an impact or by some manufacturing defects. Such
defected panels are prone to premature failure especially in compression loading due
to local buckling effects. Thus it is necessary to locate and quantitatively asses the
damage criticality for safe working of the concerned component. References [84, 85|

fall under the scope of this collaborative work.
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With reference to a defect zone, several studies for example, infrared thermog-
raphy [86], ultrasonic scanning [87], shearography [88], Lamb waves [89], acoustic
emission [90], are published in the literature. All of these techniques mainly deal
with defect localization and not with the measurement of in situ damaged stiffnesses.
Though, there exit some studies related to measurement in change of eigenfrequen-
cies [91] for instance, but it is a global indicator and is not sensitive to a local change
in stiffness. To the best of author’s knowledge, the present study is the first attempt
to measure the local loss in stiffness with the VFM. Some other methods were al-
ready used for this purpose such as the CEGM and EGP, refer to Section 1.3.2 and
Section 1.3.3 respectively.

The major objectives of the present work are

e to simultaneously identify the plate rigidity in both undamaged and damaged

zones with a prior knowledge of the damaged zone location.

e to propose an optimized force application point such that more robust and

accurate identification is possible, especially for the damaged zone.

e to apply the piecewise VFM for defect zone localization in a damaged plate

and extraction of the damaged zone coordinates.

The adaptations and the methodology used for the above outlined objectives are
accordingly discussed here. These are also numerically validated through a simulated
example of a damaged composite plate. The simulated damaged composite plate

used in the present work is first described in the following section.

7.2 Damaged composite plate description

As per supplied specifications and testing configuration from the fellow collab-
orators, an example of a damaged composite plate with induced delamination is
studied here. It represents a 300mm x 200mm rectangular unidirectional carbon-
epoxy composite plate, with 1.68mm thickness. It consists in 6 unidirectional layers
with constant thickness of 0.28mm each. The plate contains a delamination defect
of 50mm x 50mm in size at a given location. The plate is simply supported at three
corners and a vertically downward load F of 20N is applied at the center of plate

i.e. at point C, refer Fig 7.1.
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Figure 7.1: A composite plate with simulated delamination effect, loading and

boundary conditions.

For the present numerical study, the damaged plate is modeled using ANSYS
9.0 package. The plate finite element model is meshed in 120 x 80 regular square
elements of type Shell 99. To numerically simulate the damage zone within the plate,
comparatively lesser engineering constant values are assigned for the layers properties
contained in this defect zone. This represents an induced defect to simulate the
delamination effect. Let A represents the elastic mechanical properties of the layers
outside the defect zone whereas B for the layers which are compromised. These
respective lamina properties are quoted in Table 7.1. However in an actual scenario,
such an induced defect to simulate a delamination may be achieved by cutting few
predefined intermittent laminate layers around the contour of the defect region. This
results in reduced laminate strength and stiffnesses within the defect zone. Fig 7.2
shows the two types of laminate sequence respectively for undamaged and damaged
zones. The corresponding reference rigidity values for these two zones are recorded in
Table 7.2. Here it is interesting to note that approximately a constant 25% reduction
is obtained in all the damaged zones stiffnesses. The following section now presents
the ability of the piecewise VFM to simultaneously identify the bending rigidities

separately for the damaged and undamaged zones.
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A B
(Undamaged) | (Damaged)
E.. 140GPa 140 MPa
By, 10GPa 10MPa
E,, 10GPa 10MPa
NUgy 0.3 0.3
Ny, 0.3 0.3
Ny, 0.45 0.45
Gy 5GPa 5MPa
Gy 5GPa S5MPa
Gy, 3.44GPa 3.44MPa
Density | 1477kg/m?* | 147Tkg/m?

Table 7.1: Lamina properties used for modeling undamaged and damaged zones.

Undamaged Damaged

A A

|2 P PP
» o> | D

Figure 7.2: Laminate sequence in the undamaged and damaged zones.

Bending rigidities | Undamaged | Damaged
(Nm) zone zone
D,, 55.68 41.26
Dy, 3.98 2.95
D 1.98 1.46
Dy, 1.19 0.88

Table 7.2: Reference rigidity values for undamaged and damaged zones.
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7.3 Simultaneous identification of rigidities in dam-

aged and undamaged zones

7.3.1 Introduction

This section presents the adaptation of piecewise VFM when identification is
required for plates with separate zones of different properties. For this purpose
a case of a damaged composite plate described in Section 7.2 is treated here. It
is worth noting that the damaged zone location and size is assumed to be known
in advance. It is shown here that making use of the piecewise VFM, simultaneous
identification in damaged and undamaged zones is effectively achieved. This enables
to evaluate the local loss in stiffness due to delamination. Influence of noisy data
onto the identification is also studied here in order to measure the robustness and

accuracy of the results. The adaptation of the VFM is now discussed below.

7.3.2 Adaptation of the piecewise VFM for a case of damaged

composite plate

For the present identification problem of a damaged plate involving two zones
with different rigidities, the principle of virtual work as discussed in Section 2.1
is rewritten for these two zones separately. The global static equilibrium of the
specimen is now written by separately considering the contribution of internal virtual

work for undamaged and damaged zones. Thus the earlier Eq.(2.1) becomes

- /a:s*dV - /a:s*dV +/T-u*dA:0 V ut, et KA (7.1)

Vi V2 Sy
——— N—_——— N _
Undamaged zone:W;  Damaged zone:W; 147

where, V1 and V2 are the respective volumes for the undamaged and damaged zones.
Let D° and D represent the respective rigidities in undamaged and damaged zones,
then upon developing for the case of plate bending the above equilibrium equation

becomes

undamaged zone

(D;xlm + D;, I, + D3I, + D3 Iy + Dy Iy + D;slys)
+ (DI I, + D;ylyy + DI I, + D;ylxy + DI I, + D;slys)

- Rewr (12)
=1

damaged zone
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Hence for the direct and simultaneous identification of these unknown rigidities, it
is required to find a total number of twelve special virtual fields. These special virtual
fields are obtained in a similar manner using piecewise VFM with noise minimization
effect as discussed in detail in Chapter 2 and Chapter 3 respectively. Also for the
damaged plate having zones with different properties, matrices A and H, as used in
Eq. (3.21), are required to be calculated separately for these corresponding zones.
Due to this reason, the coordinates of the damaged zone should be known in advance,
which are used here as input. The main idea here is the piecewise construction of
the virtual fields separately over the damaged and undamaged zones. Worth noting
that for the damaged plate, the virtual elements are chosen in such a way that the
damaged zone is perfectly superimposed by either one or a combination of virtual

elements and no virtual element is shared by the two different zones.

Now simultaneous identification of damaged and undamaged zone is possible.
First using noiseless data, identification is achieved and effect of increasing virtual
mesh density is studied in order to identify the optimum number of virtual elements
to be used. To measure the result accuracy and robustness, influence of noisy data
is also studied on the identification results. For this purpose, as described earlier
in Section 4.4.1 a copy of Standard Gaussian white noise is added to the simulated
data and standard deviations of identified rigidities both in damaged and undamaged
zones are found separately. These are then compared to theoretical expected values
to verify the consistency of simulated results as discussed earlier in Section 4.4.2.

Finally, the variation coefficients (defined by the ratio between standard devi-
ation of the distribution and the respective average rigidity) are calculated. For
a given testing configuration, this gives an idea about identifiability of respective
rigidities with respect to noise sensitivity, lesser are the values, minimum is the

noise sensitivity.

The identification procedure presented above is numerically validated in the fol-

lowing section for the case of a given damaged composite plate.

7.3.3 Numerical validation: Rigidity identification in dam-

aged and undamaged zones

This section presents a numerical validation of the adapted piecewise VFM as
discussed in Section 7.3.2 for simultaneous identification of zones having different
properties. The procedure is applied to an example of the plate described in Section
7.2. Simulated data of the damaged composite plate using ANSYS 9.0 package is

processed here.
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7.3.3.1 Allowable combination of virtual elements

For the present case of damaged plate, such a combination of same sized virtual
elements is allowed which ensures that the damaged zone is perfectly superimposed
by either one or a combination of such same sized virtual elements and no virtual
element is shared by the two different zones. Additionally, as discussed earlier in
Section 4.2, it is also important to ensure that the boundary of real and virtual
elements must coincide with each other. Now, making use of the known defect zone
coordinates, it is required to find such an allowable combination of virtual elements.
Considering the known coordinates of the defect zone and the size of given plate,
which is meshed in 120 x 80 real elements, it is evident to use minimum 6x8 virtual
elements as shown in Fig 7.3. Such a combination leads to the virtual elements of
same size and ensures that the virtual element boundary is coincident to the real

finite element and also that no virtual element is common to the two different zones.

Fig to illustrate the use of 6x8 virtual elments over the damaged plate
200 F i T T T T &

1751 x|

150 -
Damaged zone

75 : -

50~ x|

251~ X

50 100 150 200 250 300

Figure 7.3: Figure to illustrate the minimum allowable use of same sized 6x8 virtual

elements over the studied damaged plate

In fact 6x8 virtual elements ensure two virtual elements, of same dimension,
over the damaged zone. However other allowable combinations may be 12x16 and
24x40 virtual elements which will ensure that the damaged zone is properly cov-
ered by 4 and 10 virtual elements respectively. Identification using these allowable

combination of virtual elements are presented in the following section.

7.3.3.2 Identification results without noise

Using noiseless data, simultaneous identification results for damaged and undam-
aged zones are presented in this section. Identification is achieved using allowable
combinations of 6x8, 12x16 and 24x40 virtual elements. However, combinations re-

sulting in even more greater number of virtual elements within the damaged zone
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could not be tested due to memory limitations while computation. Identified rigidity

values found separately for undamaged and damaged zones, are presented in Table
7.3.

Undamaged Zone Damaged Zone
Ref values D,, Dy, Dy D, Dy, Dy, Dy, D,, time
(N-m) 55.68 3.98 1.98 1.19 || 41.26 2.95 1.46 0.88

6 x 8 VE 55.77 398 198 1.21 || 42.18 3.06 1.49 0.49 9 sec
% rel. err 0.15 0.12 0.03 1.09 || 2.22 3.94 2.07 -44.77 -

12x 16 VE || 55.76 3.98 1.98 1.20 || 41.83 3.04 1.49 0.68 32 sec
% rel. err 0.14 0.11 0.03 0.96 1.38 3.05 1.87 -23.44 -

24 x40 VE || 5546 398 197 1.19 || 41.52 3.00 149 0.64 31 mn
% rel. err -0.58  0.12 -0.09 -0.36 | 0.63 1.86 1.95 -27.49 -

Table 7.3: Identification results of damaged plate without noise.

Table 7.3 records the identification results without noise and shows the capability
of piecewise VFM, such that all the unknown rigidities in two separate zones are
simultaneously identified. However it is observed that D,, in the damaged zone
is poorly identified in all cases. Here it is important to note the small size of the
damaged zone, it is only about 4% of the plate total area. It is related to a reduced
influence on the plate overall response under loading. Also, this may be related to
the fact that for the identification purpose, only 400 simulated measuring points
are available for the small sized damage zone, which is very less and insignificant as
compared to the available 9200 simulated measuring points for rest of undamaged
zone. All these factors may contribute to the difficulty in identification of rigidities
within the damaged zone. The following section now discusses the influence of noisy

data on the rigidity identification.

7.3.3.3 Influence of noisy data

This section now discusses the effect of noisy data on the identification procedure
to examine the robustness of the procedure and the accuracy of the results. Due to
computational reasons 6x8 virtual elements are used to study the noise effect. As
already described in Section 4.4.1, a Standard Gaussian white noise, 7, equivalent
to 5% of the maximum of the absolute values of the three curvatures is used to
simulate the noise effect. It is regularly distributed in 6 intervals. The first value

~v = 0 corresponds to the identification without noise. Now, identification is achieved
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Figure 7.4: Standard deviations of mean rigidities identified at increasing noise levels

(), using 6x8 virtual elements with load applied at point C.

50 times at each of the successive 6 values of v which will be used to find the standard
deviation at a given noise level.

To check the consistency of the simulated results using noisy data, as earlier
discussed in Section 4.4.2, standard deviations of identified rigidities are compared
to that of the theoretical expectations. These are obtained using the same procedure
as in Chapter 4 where undamaged plates are considered. For this purpose, standard
deviations of the identified rigidities separately for undamaged and damaged zones
are plotted against v in Fig 7.4. From this figure, for the undamaged zone, it may
be concluded that standard deviations of the identified mean rigidities are linear
functions of v, as expected, and that these standard deviation values are in good
agreement with the straight line plotted using Eq.(3.18). Also, for the damaged zone
they are also fairly acceptable except for some greater variations in case of D,, and
D,,. As mentioned before, this is probably related to the relatively smaller size of
the damaged zone and the availability of very few measuring points in the damaged
zone for identification as compared to the rest of undamaged zone. Moreover, the
localization of the loading and the supports is not optimized in this case. For the
two zones it may be concluded that the results obtained with simulated noisy data
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Undamaged Zone Damaged Zone
Ref Val. D,, Dy, Dg D,, D,, D,, Dy, Dy,
(in Nm) 55.68 3.98  1.98 1.19 41.26 295 146 0.88

no noise 95.77 398  1.98 1.21 4218  3.06  1.49 0.49
rel. err(%) | 0.15 0.12  0.03  1.09 2.22 3.94  2.07  -44.77

5% noise 51.40 3.95 1.95 0.84 28.06  3.00 1.46 -0.11
rel. err(%) | -7.69 -0.60 -1.21 -29.44 | -31.99 1.69 0.02 -112.5}
var.coef(%) | 8.14  0.92  0.55 17.69 || 32.46 /3.98 28.98 357.06

Table 7.4: Damaged plate: Identification results using 6x8 virtual elements with
noisy data.

are consistent with theoretical expectations. However, it is interesting to observe
that, for the undamaged zone, standard deviations for all the rigidities are slightly
greater than the expected theoretical values, whereas for the damaged zones for all
the identified rigidities, they are all lower than the expected theoretical values.

Finally, the variation coefficients are calculated from the results of 50 iterations.
These are presented in Table 7.4 for undamaged and damaged zones respectively. It
may be concluded that for the undamaged zone the rigidities are fairly stable to the
noisy data except a comparatively higher deviation for D,,. However, especially for
the damaged zone, it is evident that the identified rigidities are very much sensitive to
noise and particularly Dy, is extremely sensitive. This may be a justification for poor
identification of D,, even in the case of noiseless data, refer to Table 7.3. As discussed
earlier, this may be related to the small size of the damaged zone in addition to the
very few measuring points available over this small zone in comparison to the larger
undamaged zone. All these factors contribute to the difficulty in identification of
rigidities within this zone.

On account of the observations made earlier in Section 5.4, such a sensitivity
to noise may be due to the fact that the loading position is not optimized as it is
found on the diagonal formed between the two supports. Now to further extend the
idea, such a testing configuration may be searched which results in more robust and
accurate identification with least sensitiveness to noise especially for the damaged
zone. This issue of optimum testing configuration is now discussed in the following

section.
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7.4 Optimization of force application point

7.4.1 Introduction

For a given system of boundary conditions, the effect of loading position is studied
here on the identification results, especially for the better identifiability of damaged
zone. The idea is to find such an optimal load position which leads to a more robust
identification with reduced sensitivity to noise. The detailed procedure is already

discussed in Section 5.4.

7.4.2 Optimized force application point

For a quick reference of the damaged zone location, Fig 7.5 replots the testing
configuration with three corner supports (S1, S2 and S3) for the given damaged
composite plate. In order to find an optimized load application point, the applied
load F is now moved within the plate and identification is achieved at each location.
Thus, a thorough sensitivity scan is performed for the entire plate. For the identified
damaged zone rigidities D' at each point of force application, the corresponding
values of the individual sensitivity values, 6% (refer to Eq. (5.1)) and global cost
function g (refer to Eq. (5.2)) are noted. These respective sensitivity scans are
plotted in Fig 7.6 and Fig 7.7. In the first case, testing configuration is optimized for
each of the four unknowns considered separately whereas they are globally considered
in the second case.

From these sensitivity scans it can be observed that there are very significant
variations in sensitivity values over most of the plate surface. To compare with a
plate without a damaged zone, Fig 7.8 presents a sensitivity analysis based on global
criterion g for a composite plate with exactly the same specifications as that of the
studied damaged plate except that no damage is induced in this plate. The two scans
presented in Fig 7.7 and Fig 7.8 respectively for a damaged and undamaged plate are
now compared. It is evident that in case of an undamaged plate it is more regular
with no drastic variations from one point to other. However, for damaged plate
it is very variable. Using the sensitivity scans in Fig 7.6, separate load application
points are found for each of the unknown damaged zone rigidity (at minimum values
of 6(@). Also a unique point using global cost function (at minimum values of g)
is found from Fig 7.7 which can identify all the damaged zone rigidities with best
accuracy and robustness. These respective optimum loading positions denoted as
1, J, K are shown in Fig 7.9. However it is worth noting that for the flat regions
observed in the scans, an applied loading can be placed within this region, though
the sensitivity value is not minimum but acceptable. Table 7.5 records the noise

sensitivity index values for the above found optimum load application points.
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Figure 7.5: A composite plate with simulated delamination effect and boundary

conditions.
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Figure 7.9: Damaged composite plate showing optimum force application points.
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force location 5@ % 1073
Criteria : | (x,;y) (mm) | Df, D! DI D},

5@ [(132.5,12.5) || 13.2 19.5 35.0 198.1
60 5@ | J(32.587.5) || 21.7 0.9 9.3 329
69 g K(32.5,97.5) || 224 1.0 104 31.6

Table 7.5: Noise sensitivity index values at optimum force locations for better iden-

tification of damaged zone properties.

It is interesting to note here that the results for locations J and K are approx-
imately equivalent. Hence the location K using the criterion g can be regarded as
the optimum loading point capable of extracting all the rigidities of the damaged
zone with least possible noise sensitivity. To verify the consistency of results using
noisy data at the optimum location K, standard deviations of the identified mean
rigidities for both the zones are plotted against the theoretical values and they are
found to be in good agreement, refer Fig 7.10. With reference to earlier observation
regarding Fig 7.4, it is interesting to note in Fig 7.10 that the standard deviations
for the undamaged zone are now well balanced and are in very good agreement
to the expected theoretical values. Similarly, improvement is also observed for the

damaged zone.

5@ x 1073

Undamaged Zone Damaged Zone
force applied at: D;, D,, Dg Dy, D, D;Sy D, D;y

center C(150, 100) | 85 2.3 1.4 54 || 172.1 137.5 91.2 3879.0
K(32.5, 97.5) 1.9 0.2 03 53 | 224 1.0 104 31.6

Table 7.6: Noise sensitivity index values before and after optimization.

Table 7.6 presents the results of noise sensitivity index values for both the dam-
aged and undamaged zones in the cases of unoptimized (loading case in Fig 7.1)
and optimized load locations. For the damaged zone, at the optimum point K also,
except for Dyy the sensitivity values are fairly high but significantly lower in com-
parison to the case when load was applied at point C', the center of plate. Noting the
fact that optimum point K is based on the global criterion g which considers only
the damaged zone rigidities, however, it also leads to more robust and better iden-
tification for the undamaged zone also. Finally it may be concluded that, with the
help of only one test using the optimum point K all the rigidities both in damaged

and undamaged zones are identifiable.
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7.5 Localization of defect

7.5.1 Introduction

This section presents the ability of the piecewise VEM used for the localization
of a defect zone. The present numerical study may be regarded as an initial attempt
in an effort to develop a defect localization procedure. For this reason, a reference
damaged plate is considered here such that the size and exact location of the defect
zone is known in advance. Now with the procedure developed here, defect localiza-
tion is performed and the localized defect is compared to the actual induced defect.
This helps to assess the efficiency with which a defect is localized. This study may be
regarded as a confidence building exercise such that the same approach may later be
applied with confidence to a case where no prior knowledge of the defect is available.

The present study makes use of the same damaged plate as described in Section
7.2 and plotted in Fig 7.1. Remembering that the defect zone in fact represents
a delamination within a given composite plate. Here it is assumed that all the
damaged zone rigidities with respect to that of the undamaged zone are reduced
by a same constant reduction factor. A constant reduction of approximately 25%
is observed in all the damaged zones stiffnesses, refer Table 7.2. The adaptation of
piecewise VFM is now discussed which enables to plot a stiffness reduction map for

the damaged plate and thus defect localization is possible.

7.5.2 Principle and methodology of defect localization

Noting that all the rigidities in the defect zone are degraded with a constant
reduction factor with respect to the properties found outside the defect zone. Thus
the idea here is to use a suitable polynomial function and to plot a 2D stiffness
reduction map. Now, on this map the stiffness reduction zone may be localized and
this zone is in fact the damaged zone. For the purpose of defect zone localization a

stiffness reduction parametrization is used which is written as [84]

D' = D°{1+p(x/L,y/W)} (7.3)

Here, D' is the bending stiffness tensor of the damaged zone while D° is that of
the undamaged area. However, here it is assumed that undamaged zone rigidities,
D¢ are equivalent to homogenized or averaged plate rigidities. p represents a poly-
nomial function of the normalized in-plane coordinates x/L and y/W, L and W are
the composite plate length and width respectively. This polynomial may be inter-
preted as stiffness reduction coefficient whose value should be less than one in the

damaged zone. Hence by evaluating this polynomial function for the damaged plate,
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the zone with values less than unity may be identified which is in fact the damaged

zone. For the defect localization following stepwise approach is undertaken:

e initially the homogenized or averaged stiffnesses, D°, of the damaged plate are
identified. They will be later used as an input to find the unknown coefficients

of polynomials.

e using the same earlier Eq. (2.7), the piecewise VFM is adapted to plot stiffness
reduction map. For this, the unknown rigidities are respectively replaced by
using the polynomial function given in Eq. (7.3) and the coefficients of the
polynomial are the unknowns to be determined. The system of equations is
developed as before using piecewise VEM and noise minimization effect (see
Chapter 2). In this case, as many special virtual fields as the number of
unknown coefficients, are required. Finally, the unknown coefficients of poly-
nomials are identified. They are then used to draw the 2D stiffness reduction

map.

e the stiffness reduction map is now processed to localize the defect zone closest
possible to the actual defect. This is an approximate and repetitive process.
Recalling that the size and location of the actual square shaped defect present
in the composite plate, is assumed to be known a priori. In fact the map is
filtered in such a way that only the zone containing values less than unity
(equal to a predefined fraction of unity i.e. reduction factor) is isolated and is
enclosed with a box. The dimension of this box (of the resulting four corners)
is then compared to the actual damage dimension and relative error is noted.
Now, respective relative errors are evaluated for increasing reduction factors
such that a particular reduction factor value is found which results in mini-
mum relative error of the localized zone. The coordinates associated with this
reduction factor represent the localized defect. However, such an approach is
found limited to a case where only a regular shape (e.g. square or rectangular)

defect may be localized.

It is important to note here that a reduction map may be obtained by using a
given polynomial order and number of virtual elements. Therefore, before processing
any reduction map it is essential to establish its optimality in terms of polynomial

order and virtual elements used, this issue is discussed in the following section.
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7.5.3 Search for an optimum stiffness reduction map

This section presents the search for an optimized stiffness reduction map, which
is obtained by using optimum polynomial order and number of virtual elements. It
is important to note that a higher order polynomial is advantageous as it is more ca-
pable of detecting the variations. However, greater is the polynomial order, greater
are the unknown coefficients in addition to the increased numerical errors. Similarly,
use of more virtual elements is advantageous but after a particular optimum com-
bination of virtual elements there is no significant gain in using even more virtual
elements, as illustrated in Section 4.3. Hence it is required to find a sufficiently high
order polynomial to be used with an optimum number of virtual elements which is
capable of mapping the stiffness reduction over the damaged plate.

Recalling that for the present case of damaged plate a constant stiffness reduction
factor is induced in the damaged zone. Thus for this reference damaged plate for
which the defect size and location is assumed to be known in advance, a reference
stiffness reduction map may be constructed. In this reference map, a constant value
of a predefined reduction factor is assigned to all the measuring points within the
damaged zone where as unity to the rest of the plate.

Now, polynomials with increasing orders are tested with increasing number of
piecewise virtual elements and the stiffness reduction maps are obtained. The ob-
tained stiffness reduction maps are then compared to the reference map and residual
values A are found in each case. This residual value, A, is in fact a quadratic dis-
tance estimator defined by Eq. (7.4). For a given polynomial order and number
of piecewise virtual elements used, it is evaluated by considering all the polynomial
function values at n. different points whose coordinates are given by z, and y, over
the plate

Ne

A= Z{ (poly.value — ref.value)’ /ref.valueQ} (7.4)

i=1 Uzg,yg)

In fact it is also appropriate to conduct such residual analysis separately for
damaged and undamaged zone. For increasing polynomial order and virtual elements
combination, damaged zone analysis gives an idea about better detection of defect
zone, whereas the undamaged zone analysis is able to detect if the values outside
defect zone are detected closer to unity as expected, thus it gives an idea of incurred
deterioration. An optimum stiffness reduction map is the one which has a good
compromise between these two zones for which the optimum order polynomial and
number of virtual elements are identified.

Now the stiffness reduction map obtained from this optimum combination is

processed as described before for detecting the defect zone and extracting its coor-
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dinates closest to that of the reference damaged zone. This also gives an idea of
the accuracy with which a known defect may be located. The following section now

presents a numerical validation of the defect localization method.

7.5.4 Validation: Defect localization

For the studied case of damaged plate where an approximate 25% constant stiff-
ness reduction is induced in the damaged zone, a reference stiffness reduction map
is constructed. In this reference map, a constant value of 0.75 is assigned to all the
measuring points within the damaged zone whereas unity to the rest of the plate.
Now, polynomials with increasing orders (from 2"? to maximum up to 8" order are
tested with increasing number of piecewise virtual elements, such that for a given
polynomial order separate stiffness reduction maps are accordingly obtained by us-
ing combinations of 4 x 4, 8 x 8, 10 x 10 and 20 x 20 virtual elements. Fig 7.11
plots the reference 2D stiffness reduction map for the damaged composite plate,
such that a constant value of 0.75 and 1 are respectively imposed on the damaged
and undamaged zone. For illustration purposes, it also plots some other exemplary
stiffness reduction maps which are obtained by using the different combinations of

polynomial order and virtual elements.

Ref sfiffness reduction map 1 2" order polynomial with 4x4 virtual elements
200
200
0.95
125 . 0.9 125
: 0.85
75 75
0.8
0.75

50 100 150 200 250 300 50 100 150 200 250 300

Optimum Combination
5" order polynomial with 4x4 virtual elements
200

39 order polynomial with 8x8 virtual elements
200

125 125

75 .
75
50 100 150 200 250 300 50 100 150 200 250 300
h . . .
7" order polynomial with 4x4 virtual elements 8™ order polynomial with 10x10 virtual elements
200 200
125 125
75 : ‘ 75
0 . :
0
50 100 150 200 250 300 50 100 150 200 250 300

Figure 7.11: Stiffness reduction maps for different polynomial orders and virtual

elements.
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The obtained stiffness reduction maps are compared to that of the reference map
and residual values A, defined in Eq. (7.4), are found in each case separately for dam-
aged an undamaged zones. These are plotted respectively in Fig 7.12. Additionally,
Fig 7.13 presents the residual value analysis when complete plate is considered.

From Fig 7.12(a) for the residual value analysis of damaged zone, it may be
concluded that a 7" order polynomial results in minimum values. Also, regarding
number of virtual element no significant gain is observed by using more and more
elements, hence use of 4x4 virtual elements can be concluded to be sufficient. Con-
trary to this, from Fig 7.12(b) for the undamaged zone, it is evident that the use of
5% order polynomial with 4 x 4 virtual elements is allowable as beyond that the re-
sults are sharply deteriorating. Thus finally for the defect localization, combination
of 5" order polynomial with 4x4 virtual elements may be identified as an optimum
combination for the studied case. This combination is thus effectively capable of
locating the defect zone with minimum deterioration in the undamaged zone. The
same conclusion is also evident when the residual value analysis of the whole plate
is considered in Fig 7.13.

Damaged and undamged zones combined
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Figure 7.13: Residual value plotted for the whole plate.

From the obtained stiffness reduction maps, it is interesting to note that the
defect zone is clearly visible and a fairly good idea of its size and location is possible.
However, it is now required to precisely locate the defect zone in comparison to the

actual defect. For this purpose, making use of the optimum stiffness reduction map
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in comparison to the reference map, the defect zone is isolated. As discussed earlier
in Section 7.5.2, a box is constructed around the localized defect zone. Initially,
with the points with reduction factor equal to 0.75 only, a box is constructed and
the resulting box coordinates are evaluated. These coordinates are compared to
the reference square shaped defect with known locations. The resulting relative
percentage difference of each corner of the box is noted. Now in a systematic manner
the allowable reduction factor is slightly reduced and a comparatively bigger size box
is constructed with more points enclosed within it. Again, the percentage difference
of each of the resulting corner of the box is evaluated and compared to the reference
square shaped defect. For the present case of damaged plate, a box constructed by
using a reduction factor of 0.69 results in minimum relative difference with respect
to the reference square shaped defect. The final filtered stiffness reduction map with
an isolated defect zone closest to reference defect is presented in Fig 7.14 along with
reference and optimum stiffness reduction maps. Table 7.7 records the identified
coordinates of the box constructed around the isolated defect zone in comparison to

actual defect zone coordinates.

1
Ref stiffness reduction map  gptimum stiffness reduction map Defect zone localization
200 200 200 0.95
0.9
125 . 125 - 125 .
75 75 - 75 : 0.85
0 e 0 0.8
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
0.75

Figure 7.14: Extraction of approximate defect zone coordinates using optimum stiff-
ness reduction map. Approximate defect zone is constructed with a reduction factor
of 0.69 instead of 0.75 for the actual zone.

Coordinates of localized defect zone

(in IIIIII) Tinitial -'L.final Yinitial yfinal Length Wldth

Ref 50 100 75 125 50 50
Detected 43.7 963 71.2 1238  52.6 52.6
rel. err(%) | -12.5 -3.75 -5 -1 5 5

Table 7.7: Comparison of the localized defect zone to the actual induced defect.

From above results it may be concluded that the above discussed adaptation of

the piecewise VEM method is effectively capable of detecting the defect zone with
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a fairly good resolution. However, in the present studied case the actual defect was
known in advance. It gives a fairly good idea of approximate defect size and its
location. Additionally with a trivial method, the defect zone coordinates are also
extracted which are found to be in good agreement with the reference induced defect

whose size and location was known in advance.

7.6 Conclusion

This chapter presents an important application of the piecewise VFM. It is a con-
tribution in the framework of a separate research work dealing with the assessment
of local loss in stiffness in damaged composite plates using the VEM. This research
work is conducted by J.H. Kim at LMPF, ENSAM Chalons. The composite plate
specifications are supplied by LMPF and it contains an induced damage, simulating
a delamination effect, of a known size and location.

In the present work, an adaptation of the piecewise VFM is discussed for simul-
taneous identification of bending rigidities in two separate zones of the damaged
composite plate. The procedure is numerically validated using a simulated exam-
ple of the damaged plate. With the knowledge of damage zone location, which is
assumed to be known a priori and is used as an input, simultaneous identification
of the unknown bending rigidities of damaged and undamaged zones is achieved.
Both for the cases of noiseless and noisy data, the identification is achieved and
the accuracy and robustness of the results is discussed. In addition, an optimized
force application point is also proposed. It is shown that more robust and accurate
identification is possible for both damaged and undamaged zones at this optimum
force location. A defect localization procedure based on the piecewise VFEM is also
discussed in the present work. However it represents a preliminary work, where an
already known defect is localized. It enables one to evaluate the effectiveness of the
localization effort with reference to the known defect. At this stage, the objective of
the present collaborative work is achieved and a numerically validated identification
system capable of determining local loss in stiffness is developed. Future works may
include the experimental validation of the identification and the defect localization
procedure discussed here. In this regard, it would be interesting to study the ef-
fect of varying defect zone properties and its location. Also, it would be interesting
to study the effect of optimized support locations in addition to optimized force
application point.

Following chapter now presents the first experimental results, it serves to pre-

liminary validate the simulated expectations earlier observed in Chapter 5.
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Chapter 8

Experimental results

8.1 Introduction

This chapter presents preliminary experimental validation of betterment in ro-
bustness and accuracy of results when a testing configuration with optimized force
application point is used with piecewise virtual fields method and noise minimization
effect. The experiments based on deflectometry technique [11] are performed by J.H.
Kim, a Ph.D. student at LMPF, ENSAM Chalons. The following section describes
this full-field optical measurement technique employed to identify bending rigidities
of anisotropic plates. Then, experimental results of a testing configuration with op-
timized force application point is discussed. Improvement in terms of identifiability,
robustness and accuracy of results is illustrated by comparing experimental results
of a non-optimized to that of an optimized testing configuration. The basic interest
is to study and evaluate the betterment in terms of identification results accuracy
and reduced sensitivity to noise as observed after simulation study. The prelimi-
nary results presented here only verify the numerical results discussed in Section 5.4
for a case of optimized force application point. Additional experiments should be

performed in the future to verify the other results discussed in detail in Chapter 6.

8.2 Deflectometry

8.2.1 Introduction

Deflectometry [11, 2, 12] is a full-field optical measurement technique to measure
slope fields onto the surface of a bent plate. Deflectometry may be regarded as a low-
cost, easy to implement and a more practical method which relies on the measured
full-field heterogeneous slope fields for simultaneous extraction of thin plate bending

rigidities from a single test. Worth noting that the interest of measuring slope over
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deflection is that only one differentiation is required to obtain the curvatures which
are directly related to the strain in the framework of Love-Kirchhoff thin plate
theory. This technique has been successfully used and validated in case of plate

bending [2, 12|. Basic principles of this technique are recalled below.

8.2.2 Principle

Deflectometry is based on the laws of specular light reflection. This technique
requires a reflective specimen surface such that image of a reference grating on this
reflective surface is visible. It consists in observing the image of this reference grating
on the surface of the tested specimen and to process the change of phase caused by
a local rotation. Phase measurement of this grating image before and after loading
provides slope fields over the tested plate. A digital camera is used to capture
images of the reference grating before and after loading. The images are stored in a
computer. These are then processed to obtain the required slope fields by means of
an appropriate software called Frangyne developed by Surrel [92]. Frangyne is suited
to detect very small variations of the grating pitch caused by surface deformation.
Now this measured slope field is derived to get actual curvature fields over the plate
surface which are then used as an input to VFM for extraction of plate bending
rigidities.

For the present case of quasi-planer plates, basic working principle of deflectom-
etry is presented in Fig 8.1(a). AA’represents a reference cross-lined grating which
can be obtained by plotting dark lines on a white background with a given pitch
noted p. The plate top surface is made highly reflective (mirror like) either by sur-
face treatment or by applying some reflective coating. The camera placed behind the
grating, observes the grating image on the plates surface through a hole. Reference
grating and the specimen plate are separated by a distance h.

Now with the use of a suspended mass for instance to apply the loading, out-of-
plane displacement and slope variation are observed. Thus for a deformed plate, the
reflected ray from point M captured by the camera comes from a slightly shifted
point () instead of point P in case of an undeformed plate. To be noted here
that out-of-plane displacement of point M affects the displaced position of point
. However, when this shift remains negligibly small in comparison to h, as in the
present case of quasi-planer plates, main effect is that of the slope variation with
minimum position dependence. In this configuration a local change in slope a, at
point M is easily related to the displacement of grid image. In fact for a plane
reflecting object the grid image is symmetric to the grid with respect to the object.
Hence if a local rotation of the object surface is considered at point M then the grid

image is rotated about M by an angle of 2¢,,. Point 2, normal projection of M on
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Figure 8.1: Principle of deflectometry applicable to bent plates [2].

the grid image, will be moved to Q" and the corresponding displacement of grid image
u, can be evaluated as: u, = Q€ = 2ha,. Making use of the cross-lined grating,
separate information in the two in-plane directions are realized simultaneously and
the two slope components, o, and o, are measured. Now phase detection is achieved
by analyzing the reference grating image using spatial phase-stepping [93|. Ratio
between detected phase and local slope variation is defined as sensitivity, s, which is
evaluated directly as: s = 4mh/p [12]. Resolution o,, also called detection level can
be obtained from amount of noise o4 in the phase measurement as: o, = 04/s. Noise
amount in the phase can be experimentally evaluated by subtracting two consecutive
independent measurements made for a given testing configuration without changing

any parameter |2, 12].

8.3 Experimental results

8.3.1 Set-up parameters

A grating of pitch p = 2mm printed using a plotter is used. A 1296 x 1030 CCD
Basler A113P camera is used to record the images with an objective lens of AF
NIKKOR having 28 — 105mm focal length. The size of recorded images is 11572861
pixels, with 6 pixels per grid period. Using a metallic tape meter, distance h between
the grid and plate surface is measured to be 125¢m 4+ 1mm. Sensitivity s is found to
be 785 using the relation s = 4wh/p. This corresponds to a sensitivity of 7.85 radians

phase per milliradian of slope. For the studied setup, phase noise, o4, equivalent
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to 1.11x10~* radians is evaluated experimentally. It is evaluated by the standard
deviation of the phase fields obtained by subtracting two consecutive images of
the plate at rest. The mechanical setup to perform experiments is presented in
Fig 8.2 along with separate enlarged photos to demonstrate the support and force

application mechanisms.

A general view of

the experime

- A

ntal setup
TW

Reference grating

Light source

Camera

Specimen plate

plate mounted with Figure howin force
three support points application mechanism

Figure 8.2: A general view of the deflectometry set-up.

A light source is used here to illuminate the grating panel whose reflection is
visible on the specimen surface. This reflection is in fact captured by a mounted
CCD camera which observes the specimen plate through a hole in the grating panel.
The composite specimen plate is supported by using specially designed point grips
which give simple support conditions. A screw driven rod mounted with a load cell

is used to apply a 5N load in the present experimental work.

8.3.2 Specimen preparation

For experimental validation, unidirectional 7300/914 carbon epoxy laminated
composite plates [0g], are tested. Typical elastic constants values for this composite
material can be found in refs. [94, 95|. Rectangular laminated composite specimens

of 190mm x 140mm, 2.68mm thick are fabricated with fibers oriented along x-asis.
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In order to have a reflective specimen surface such that image of a reference
grating is visible, the plates to be tested are coated with a special epoxy resin
coating Surf Clear manufactured by SICOMIN. For this purpose, the epoxy resin
and hardener mixture is applied on top of a pre-cleaned specimen surface and curing
is achieved at room temperatures for 3 to 4 days. Detailed procedure for coating is
presented in ref. [95]. Finally after curing, a required reflective surface is obtained
on top of the specimen surface. This special coating, of less than 0.1mm thickness,
gives a very glossy, colourless and transparent surface finish on top of the specimen
thus making it sufficiently reflecting (mirror-like). Fig 8.3 compares a specimen
surface without any coating to that of a coated specimen plate of same material. A
significant improvement in terms of reflectivity may be noted by observing a sharp
image of a ceiling light onto the surface of coated plate (right) to that of a blurred

image in case of untreated surface (left).

Specimen surface Specimen surface
without coating with reflective coating

Figure 8.3: Specimen top surface without and with reflective coating.

8.3.3 Tested configurations

As discussed earlier, the objective of this present work is to provide the first
experimental results for preliminary validation of the improvement in robustness
and accuracy of results by comparing a less performing called bad configuration
hereafter to that a proposed optimum one, as discussed in Section 5.4. For this
purpose the piecewise VFM with noise minimization effect, developed in the present
work, is used to identify bending rigidities of a thin composite plate. In the present
preliminary experimental validation work, effect of only optimized force application
point is studied. Thus, for the present case of rectangular plates instead of the
square plates used earlier in Chapter 5, the same method as discussed earlier in

Section 5.4 is used. For this purpose, keeping support locations similar to that of
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Config-1 (refer Fig 4.1) and F= 5N, sensitivity scan of the global cost function g
given by Eq. 5.2, for a simulated experimental plate is performed.

Worth recalling here that a force application point corresponding to the mini-
mum value of this global cost function represents a situation where the noise effect
of all the rigidities is more balanced from one rigidity to another. For this analy-
sis identification program capable of simultaneously identifying all the six bending
rigidities and a combination of total 4z4 piecewise virtual elements is used. For the
present case of simulated experimental plate, Fig 8.4 plots the 3D image of the noise

sensitivity criterion g and the contour plot.

g
[
8]
o
o

Noise sensitivity criterion value,

Figure 8.4: Sensitivity scan for the experimental plate using global noise minimiza-

tion criterion, g.

As noted before in Section 5.4, greater noise sensitivity criterion values are ob-
served for the load positions along the diagonal drawn between the two opposite
supports, whereas comparatively lesser values with somewhat flat surface is observed
near the lower left support. From this sensitivity scan, two different load positions
are identified to be tested experimentally. One is in the middle of the plate on the
diagonal drawn between the two opposite supports, this configuration is called as
“bad configuration”. The other one is found at the location where sensitivity value
is minimum, this configuration is called as an “optimum configuration”. These two

configurations are respectively depicted in Fig 8.5.
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Figure 8.5: The two different configurations experimentally validated, F= 5N.

For these two configurations simulated results of noise sensitivity index values
using noisy data are evaluated. For this purpose, a Standard Gaussian white noise
(equal to 5% of the amplitude of the maximum of the absolute values of the three
curvatures) is added to the simulated curvature results which are then used for the
identification. Total 50 such independent identifications are achieved each time us-
ing a different random copy of the added noise. Table 8.1 compares the results of
bad configuration in terms of noise sensitivity index values, §(®, to that of opti-
mized configuration obtained from global criterion g. Also the respective global cost
function values, g, are recorded to give an idea of the reduction in noise sensitivity

criterion for the two different configurations.

configuration: | Dy, Dy, Dss Dy,

Bad 10.0 2.6 2.1 58.9 ]| 178.0
Optimum 06 12 08 1.9 4.4

Table 8.1: Simulated results of noise sensitivity index values, 6(®, for bad and

optimum configuration.

The betterment in identification is obvious in terms of accuracy and robustness
in case of optimized configuration as the respective sensitivity index values are more
balanced and reduced. Hence for optimum configuration we get a more balanced
distribution of noise sensitivity index values from one rigidity to another. Now it is
required to experimentally characterize these plates and study noise sensitivity for
these different testing configurations using actual data. For each configuration total
21 independent tests are performed and identification is achieved. Noise sensitivity
index values of the identified rigidities are calculated for the different configurations.

It is expected to observe similar results as obtained from simulated study. The
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experimental results are presented and discussed in the following section.

8.3.4 Experimental results and discussion

Using deflectometry method with the experimental setup described above, bend-
ing tests on the composite plates are performed. Using a constant F= 5N, two
different types of testing configurations, bad and optimum as shown in Fig 8.5, are
tested separately. For each of the configurations total 21 tests are performed inde-
pendently. Each test comprises of capturing undeformed and deformed grid images
through the use of given CCD camera. Using Frangyne, phase maps are computed
from these grid images. A phase substraction of initial and deformed phase maps
directly produces wrapped phase maps related to slope fields, ¢, and ¢,. Such phase
maps typically produce data in the form of fringe patterns with modulo 27. Using
Frangyne, these wrapped phase maps are then unwrapped. Frangyne uses an un-
wrapping algorithm where a multiple of 27 is either added or substracted locally to
construct a continuous slope field. A typical example of wrapped and unwrapped
phase maps of the slope fields for these configurations are shown in Fig 8.6. In these
maps some missing data zones are also visible, which account for the hole through
which camera sees the plate.

These slope fields may be now differentiated to obtain the required curvature
fields to be used later in the identification program. But before differentiation, it is
important to note here that the differentiation is very sensitive to noise and some
sort of prior spatial smoothing is necessary to perform. For this purpose, the slope
maps are fitted by polynomials which proves to be efficient especially in the present
case where spatial frequencies of the signal (slope maps having low frequency) and
the noise (high frequency) are well separated. This polynomial fitting also takes
into account the missing data in the center of plate or some irregularities present at
the edges. In order to find an appropriate degree polynomial for closest possible fit,
fitted maps with increasing order of polynomials are compared to the actual phase
maps and a RMS study to note the residuals is performed. The results of such a
residual analysis are presented in Fig 8.7.

From residual value analysis as presented in Fig 8.7 it may be observed that
for polynomials 9 th to 16 th degree approximately similar residuals are obtained.
Another important aspect is the time required for this fitting operation, as greater
is the polynomial order more closer is the fit but greater time is also required.
Approximate time required for a 9, 14 and 16 th order polynomials were found to
be around 1, 3 and 10 minutes on a standard Pentium4 computer with 1GB Ram.
Here, 14 th order polynomial is selected as a better compromise to be used for fitting

of the measured slope maps, considering that comparatively lesser residual values
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Figure 8.6: Wrapped, unwrapped (m™!) and fitted phase maps (m '), using 14th
order polynomial fitting, of the slope fields ¢, and ¢,.

were observed in addition to a reasonable processing time. An example of fitted
phase maps is presented in Fig 8.6. Finally differentiation of such polynomial fitted
slope map is performed to obtain the curvatures fields which are used as an input
to the developed piecewise virtual fields method for rigidity identification. For this
purpose the built-in numerical differentiation function called gradient of the Matlab
package is used.

Now from the 21 independent set of experiments performed for the two config-
urations, identification results are achieved and noise sensitivity index values for
the respective rigidities are evaluated. Experimental results are presented in Table
8.2 and Table 8.3. The average rigidity values recorded in Table 8.2 are very much
similar to the values found at LMPF with the same plate.
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Figure 8.7: Residual analysis with increasing polynomial order.

Average rigidity values in N.m

configuration: | D,, Dy, Dg D,,

Bad 1388 9.9 4.7 4.0
Optimum 142.5 10.7 6.2 2.3

Table 8.2: Experimental results of the average rigidity values identified in case of

bad and optimum configuration using the measured experimental data.

configuration: || Dy, Dy, Dy, Dy,

Bad 45.4 38.1 37.0 119.5 || 254.6
Optimum 3.4 42 3.7 4.0 2.5

Table 8.3: Experimental results of noise sensitivity index values for bad and optimum

configuration using the measured experimental data.

From a noise sensitivity point of view which is the main purpose of this study, the
experimental results recorded in Table 8.3 are in a good qualitative agreement with
simulated expectations recorded in Table 8.1. By comparison of above experimental
results it may be observed that in case of bad configuration, rigidity D,, is the most
sensitive to noise and has a significantly greater sensitivity value in comparison to
the respective values for other rigidities. But in case of optimum configuration,
very balanced sensitivity values of same order are obtained for all the rigidities.
As explained earlier, the cost function used for finding an optimum force location
takes into account the noise effect on all the rigidities. Thus it finds an optimal

load position where noise effect on all the individual rigidities is minimized and
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is of the same order. Fig 8.8 presents identification results of the performed 21
separate experiments both for bad and optimum configurations. It gives an idea
of the dispersion of the identified rigidity values obtained for bad and optimum

configurations.
Bad configuration Optimum configuration
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Figure 8.8: Identification results of the performed 21 separate experiments both for

bad and optimum configurations.

It is worth recalling that a constant force of 5N is used in both the two situations
for some experimental reason. Global cost function ¢ is normalized with respect to
the maximum deflection and this maximum deflection is presently much smaller in
the optimum configuration than in the bad one because the same force is used in both
cases (12.5 times smaller according to FE simulations). This explains the fact that a
lesser scatter is not observed in case of optimum configuration. Increasing the applied
force in case of optimum configuration so as to reach the same maximum deflection
as in the bad configuration would lead to a reduction of this scatter, as explained
in Section 5.2. This phenomenon was also verified with numerical simulations. In
future works, it would be interesting to experimentally verify the betterment in
scatter by using a greater applied force resulting in a greater maximum deflection.
Finally, it can be said that the performed experiments using two configurations to
study the effect of optimized force application point is illustrated in true spirits of

the expectations as proposed by simulations.
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8.4 Conclusion

In this chapter an initial experimental validation of the proposed improvement in
terms of lesser noise sensitivity on the rigidities is presented by studying a bad and
an optimum configuration. In the present work an optimized testing configuration
is successfully validated which takes into account the reduced noise sensitivity effect
on all the rigidities. The idea is to experimentally validate the simulated results,
that in case of the optimum configuration in contrast to the bad configuration, noise
sensitivity effect is more balanced. This work represents an initial and preliminary
experimental validation. The obtained results are very promising and encouraging to
perform and validate experimentally in detail the different optimization proposals,
discussed earlier in Chapter 6, involving the various optimized parameters like fiber

angle, specimen size, load application points and force application point.
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Conclusions and perspectives

Conclusions

The present work deals with the characterization of mechanical properties of
composite materials which find there ever increasing utilization in various industrial
applications. The so-called virtual fields method is used for the direct determination
of bending rigidities of thin anisotropic composite plates. An identification method
is developed and presented in detail with description of the piecewise construction
of the special virtual fields and minimization of the noise effect. A comparison with
reference to an earlier study is discussed to illustrate that better and more robust
identification is possible using this new proposed approach.

Three different testing configurations are numerically studied and it is shown
that the approach enables to grade them with respect to better identifiability based
on a noise minimization criterion. Using the same noise minimization criterion a
detailed study of an optimized testing configuration is presented. Effect of different
variable parameters, like fiber angle, specimen size, supports and force application
points and specimen shape are studied onto the rigidity identification. Effect of
these different parameters is considered separately and also in combination onto the
numerically simulated examples of composite plates. Presence of more than one local
minima is also observed when a combined effect of different variable parameters is
studied. Finally, it is observed that an optimum combination of force and support
point locations results in a significantly reduced criterion value.

Additionally, as a contribution to the ongoing separate research work at LMPF,
ENSAM Chalons, dealing with the assessment of local loss in stiffness in damaged
composite panels, the present work discusses an important application of the piece-
wise virtual fields method. It is shown that the method is effectively capable for an
identification problem of a damaged composite plate. Using a simulated example of
damaged composite plate, an adaptation of the method is presented which is used

to simultaneously identify the bending rigidities separately for the damaged and
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undamaged zones.

In the end, first experimental results of the identification of bending rigidities of
a thin undamaged carbon-epoxy composite plate, for a so called bad and optimum
configuration with respect to the location of force application point is presented.
The results are encouraging and are in good agreement with the expected simulated
results, with respect to the observed reduced noise sensitivity in case of optimum

configuration.

Perspectives

In future works, it would be necessary to undertake a detailed experimental val-
idation of the identification procedure in addition to the investigation of different
optimized configurations. It is important to assess both quantitatively and quali-
tatively the improvement observed using the piecewise construction of the special
virtual fields. Also, it is required to study the actual reduced noise sensitivity ob-
served for different optimization proposals especially for the ones which result in
significant reductions and are easily executable from an experimental point of view.

When the combined effect of different variable parameters are studied on the
optimized testing configuration, the observed presence of local minima invites to
study the issue in greater details using a more sophisticated optimization procedure,
for instance genetic algorithms. It would be interesting to study the combined effect
of all the contributing parameters such that a unique optimum combination is found
which results in the best and most accurate identifiability with least sensitivity to
noise. Also, it would be interesting to experimentally validate the problem of a
damage plate identification especially with reference to the use of an optimum load
application point for better identification of the damage zone. Another important
perspective is the detailed numerical and experimental study regarding application

of the piecewise virtual fields method for characterization of multi phase materials.
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