Habilitation à Diriger des Recherches

« De la neurochirurgie guidée par l’image, au processus neurochirurgical assisté par la connaissance et l’information »

Pierre JANNIN

Faculté de Médecine
Université de Rennes 1

Soutenue le 14 Octobre 2005 devant le jury composé de

Pr. J.M. Scarabin, Université de Rennes, Président
Pr. L. Joskowicz, Université de Jérusalem, Rapporteur
Pr. P. Mercier, Université d’Angers, Rapporteur
Dr. J. Rousseau, Université de Lille, Rapporteur
Pr. P. Cinquin, Université de Grenoble, Examinateur
Dr. B. Gibaud, Université de Rennes, Examinateur
Pr. H. Lemke, Université de Berlin, Examinateur
Kirche in Murnau,
Kandinsky, 1910
Plan

1. Introduction
 1.1 État de l’art
 1.2 Contributions au domaine
 1.3 Références bibliographiques orientées traitement d’images médicales

2. Chapitre 2
 2.1 État de l’art
 2.2 Contribution au domaine : Modélisation des procédures neurochirurgicales
 2.3 Références bibliographiques

3. Chapitre 3
 3.1 Introduction
 3.2 L’approche Observations-Connaissances
 3.3 Références bibliographiques

4. Chapitre 4
 4.1 État de l’art
 4.2 Contributions au domaine
 4.3 Discussion et perspectives
 4.4 Références bibliographiques

5. Chapitre 5
 5.1 Perspectives à court terme
 5.2 Perspectives à moyen terme
 5.3 Perspectives à long terme
 5.4 Références bibliographiques

Conclusion

Annexe 1 : Publications de l’auteur
Remerciements

Notre vision du monde, nos modestes contributions, ce que nous sommes aujourd’hui : rien ne se fait jamais seul. C’est pourquoi ces remerciements s’imposent dès le début.

Je tiens d’abord à remercier les membres du jury de cette HDR. Merci au Pr. Jean-Marie Scarabin, neurochirurgien au CHU de Rennes et Directeur du Laboratoire d’Anatomie, pour m’avoir fait l’honneur de présider le jury et pour toutes ces années de travail où il m’a communiqué la passion du domaine et les moyens de la réaliser. Merci au Dr. Jean Rousseau, du CHU de Lille et Directeur de l’unité Inserm U703, d’avoir accepté de rapporter ces travaux, mais aussi de m’avoir aidé et fait confiance en maintes occasions importantes. Merci au Pr. Philippe Mercier, Chef du service de Neurochirurgie du CHU d’Angers et Directeur du Laboratoire d’Anatomie, d’avoir consenti à ce travail de rapporteur. Merci au Pr. Léo Joskowicz de l’Université de Jérusalem et Directeur du Laboratoire CAS-MIP, d’avoir assumé de rapporter ces travaux, mais aussi pour tous les riches moments, professionnels ou amicaux, passés ensemble. Merci au Pr. Philippe Cinquin, de l’Université de Grenoble, d’avoir accepté de participer à ce jury et pour nos rencontres riches en échange. Merci au Pr. Heinz Lemke, de Université de Berlin et de l’institut de recherches ICCAS de Leipzig, fondateur et organisateur de la conférence Computer Assisted Radiology and Surgery (CARS), de m’avoir fait le plaisir de figurer parmi ce jury, mais aussi pour l’amitié et la confiance qu’il m’accorde. Merci au Dr. B. Gibaud, Chargé de recherche INSERM, pour sa participation à ce jury, mais aussi pour sa patience infinie, sa rigueur, son écoute et sa confiance, autant d’éléments qui ont été déterminants dans la qualité de mon environnement de travail. Toutes ces personnes que j’admire, j’ai la chance de pouvoir les considérer comme des amis. Je ne serais pas ici sans leurs aides respectives.

Je tiens aussi à remercier ceux qui m’ont accompagné, conseillé ou aidé dans ces travaux de recherche au sein du laboratoire IDM (anciennement SIM et nouvellement Visages) de la Faculté de Médecine de Rennes. Je commencerai par les doctorants, ceux que j’ai co-encadrés et qui m’ont tant apporté. Dans l’ordre chronologique, merci à Christophe Grova et Oliver Fleig avec qui nous avons construit, merci à Bérengère Aubert-Broche et Mélanie Raimbault avec qui nous avons solidifié et à Perrine Paul avec qui nous confirmons. Merci aux nombreux neurochirurgiens du service du CHU de Rennes pour leur participation précieuse et indispensable tout au long de ces recherches et, plus particulièrement, au Pr., et ami, Xavier Morandi. Merci aux collègues, chercheurs de l’INRIA, avec lesquels nous bâtissons, en ce moment, une équipe de recherche de qualité et promise. Merci aux neurologues, radiologues, physiciens de médecine nucléaire et neurophysiologistes qui ont été présents tout au long de mes recherches. Merci aussi à Chantal Le Rossignol qui en a, par magie, rendu plus faciles toutes les démarches administratives.

Enfin, il est indispensable d’associer à ces remerciements les personnes qui, par leur présence près de moi, m’apportent la force d’avancer, de progresser et d’apprendre. Ma famille et plus particulièrement mes enfants, Pablo et Leslie, qui me montrent tous les jours ce qu’aider veut dire. Mes amis qui me donnent inspiration et liberté. Enfin, merci à Audrey Guiller, ma compagne, pour ses conseils, ses relectures, mais, par-dessus tout, pour son amour infiniment précieux et à laquelle un autre document de 150 pages pourrait être consacré.

Merci à vous tous.
Avant propos

J’ai volontairement omis, dans ce document, un nombre important de mes travaux de recherche, notamment ceux concernant l’imagerie fonctionnelle cérébrale et les travaux antérieurs à 1996 qui ne sont pas directement liés au sujet de ce document.

Dans le texte, les références à mes propres publications seront différenciées des références extérieures (e.g., [P_12]) et sont listées dans l’Annexe 1, les références liées au traitement d’images médicales et surtout à la fusion sont, elles aussi, différenciées des autres références (e.g., [TT_12]). Les références seront listées à la fin de chaque chapitre.
Introduction

La totalité des services français de neurochirurgie est aujourd’hui équipée de systèmes de neuronavigation. Ces systèmes de chirurgie guidée par l’image permettent le lien direct entre le patient, en salle d’opération, et ses images pré opératoires ; c’est-à-dire que le neurochirurgien, en salle d’opération et à tout instant, connaît, à partir d’un point désigné sur le patient par un outil, le point correspondant dans ses images d’IRM ou de Scanner X. Ceci est possible grâce à des localisateurs tridimensionnels et des logiciels de recalage d’images. Les bénéfices de tels systèmes pour le patient ont déjà été montrés. Ils rendent notamment la chirurgie plus sûre et moins invasive.

Il est important de considérer le concept de chirurgie guidée par l’image comme un processus qui ne se réduit pas à la seule étape de réalisation du geste chirurgical. Depuis près d’une dizaine d’années, il existe un consensus sur l’importance de l’étape de préparation pour anticiper la réalisation du geste. Ce processus peut aussi inclure des étapes de choix de la stratégie chirurgicale, de simulation ou de répétition du geste et de suivi post opératoire du patient. Chaque étape de ce processus se fonde sur des observations liées au patient, comme ses images pré opératoires, sur des connaissances génériques explicites, comme des livres ou des atlas numériques d’anatomie, et sur des connaissances implicites résultant de l’expérience du chirurgien. Malgré cela, dans les systèmes actuels de chirurgie guidée par l’image, la seule information explicite utilisée est, le plus souvent, réduite à une simple imagerie anatomique. Alors que si l’on introduisait dans ces systèmes les images multimodales du patient, on prendrait mieux en compte la complexité anatomique, physiologique et métabolique des structures cérébrales. Sans compter que dans ces systèmes, la préparation de la procédure chirurgicale se réduit principalement à la définition de la cible et d’une trajectoire d’accès rectiligne. Si l’on considérait la procédure comme une succession d’étapes et d’actions, on permettrait au neurochirurgien de mieux préparer et, donc, de mieux réaliser son geste. Son savoir-faire implicite pourrait être explicité. Enfin, ces systèmes ne tiennent pas compte des déformations anatomoiques intras opératoires dues, notamment, au geste chirurgical. Ainsi, les images pré opératoires du patient deviennent rapidement obsolètes et ne correspondent plus à la réalité anatomique du patient.

Il existe donc un fossé entre la chirurgie telle qu’elle est vue par ces systèmes et la réalité chirurgicale. C’est ce fossé que je cherche à combler.

La méthodologie de recherche que j’ai utilisée suit une approche itérative, où l’application clinique est centrale. A partir des connaissances médicales, les spécifications d’un nouveau projet sont définies. Ces spécifications entraînent le développement de nouvelles méthodes et leur implantation par le biais d’un prototype d’application. Ce prototype permet, grâce à
une utilisation pré clinique, d’évaluer ces méthodes. Cette implémentation et cette phase d’utilisation autorisent aussi un retour vers la méthode, pour vérifier la pertinence des choix réalisés et pour contribuer à son amélioration. Enfin, cette boucle permet une validation des connaissances initiales et un possible enrichissement de celles-ci. Les objectifs de mes recherches sont donc, à la fois, l’élaboration de nouveaux systèmes d’intérêt thérapeutique et la génération de nouvelles connaissances chirurgicales.

Ce document aborde trois domaines principaux : la neurochirurgie guidée par l’image, la neurochirurgie guidée par l’information et la validation des outils de traitement d’images médicales en chirurgie guidée par l’image. Pour chacun de ces domaines, je présenterai le contexte et l’état de l’art, les contributions personnelles apportées au domaine et ses perspectives d’évolution.

Dans le deuxième chapitre, je présenterai le concept récent de chirurgie guidée par l’information, qui s’appuie sur une formalisation du processus chirurgical et des connaissances associées. Nous verrons que ce processus peut être étudié selon différents angles, chaque angle d’étude correspondant à un objectif applicatif précis. Je présenterai une méthodologie complète permettant supervision et apprentissage par : 1) la prise en compte, dans le processus de chirurgie guidée par l’image multimodale, de certaines connaissances implicites du chirurgien, notamment liées à son expertise chirurgicale, en les rendant explicites, et 2) la génération de connaissances sur la chirurgie.

Les deux premiers chapitres démontrent comment il peut être intéressant de faire coopérer images et connaissances. Dans le troisième chapitre, nous proposerons d’appliquer ce concept de coopération entre observations et connaissances au contexte des déformations anatomiques intra opératoires. Nous montrerons la complexité de ce phénomène, et de ses causes, et les limites des méthodes présentées dans la littérature. Nous décrirons succinctement comment ce concept pourra être appliqué dans le cadre d’un projet de recherche qui débute.

Dans le quatrième chapitre, j’insisterai sur l’importance de la validation des outils de traitement d’images en chirurgie guidée par l’image. J’introduirai la terminologie et la méthodologie liées à la validation principalement technique des outils de traitement d’images, en soulignant le besoin de standardisation. Je présenterai mes contributions au domaine : la définition d’une méthodologie standardisée pour la validation des méthodes de recalage d’images médicales, basée sur la comparaison avec une référence.

Je terminerai, dans le cinquième chapitre, par une ébauche de description des évolutions à court et à long terme de la chirurgie, s’inspirant des réflexions et résultats des chapitres précédents.
1.1 État de l’art

1.1.1 Introduction

Commençons avec des définitions...

De nombreux termes sont utilisés pour définir le processus chirurgical qui s’appuie sur des outils informatiques et des informations numériques. On parle de chirurgie assistée ou aidée par ordinateur, de GMCAO, de chirurgie guidée par l’image ou encore de chirurgie basée sur la navigation 3D.

La chirurgie assistée par ordinateur (ChAO) est un terme général qui inclut toute application qui a pour objectif l’aide et l’automatisation du processus chirurgical grâce aux outils informatiques (matériels et logiciels) et aux informations numériques, comme les images médicales du patient. Le terme français de Gestes Médico-Chirurgicaux Assistés par Ordinateur (GMCAO) est aussi utilisé dans ce cas [31]. La thérapie assistée par ordinateur étend ce terme à la thérapie, dont la chirurgie fait partie.

La chirurgie guidée par l’image (ChGI) fait partie du domaine de la chirurgie assistée par ordinateur, elle donne une place prépondérante à l’image. Malgré cette différence, les outils et techniques utilisés, ainsi que les problématiques, sont souvent les mêmes : l’image occupant dans les deux cas un rôle central. Il serait plus juste de parler de chirurgie assistée par l’image. Le terme de guidage peut laisser entendre un aspect actif dans l’aide apportée par l’image alors qu’elle n’est souvent qu’une information apportée au chirurgien pour l’aider dans sa procédure. Néanmoins, nous garderons ce terme plus usuel de chirurgie guidée par l’image.

La chirurgie basée sur la navigation 3D1 fait partie du domaine de la chirurgie guidée par l’image. Apuzzo et al. [39] définissent ce type de chirurgie par analogie avec la navigation maritime. Le but de la navigation est de guider, de façon passive, le navire (respectivement, le chirurgien) sur la mer (resp., dans le patient) pour atteindre une destination connue à l’avance (resp., la zone lésionnelle). Pour préparer le voyage, le navigateur utilise une cartographie précise de la zone à parcourir (resp., les images médicales du patient). Puis pendant le voyage, le navigateur calcule la position de son navire sur la carte par triangulation avec un compas et en utilisant des amers, comme un phare ou un château d’eau pour la navigation de jour, et les étoiles pour la navigation de nuit2. La seule restriction dans cette analogie réside dans le fait que l’anatomie du patient change pendant l’opération rendant difficile la navigation basée sur les seules cartes disponibles avant l’opération.

La neurochirurgie est une discipline médicale et une spécialité chirurgicale qui se définit par la gestion opératoire et non opératoire (c’est à dire la prévention, le diagnostic, l’évaluation, le traitement, le soin critique, et la réadaptation) des désordres des systèmes nerveux centraux,

1 Aussi appelée neuronavigation, pour la neurochirurgie
2 ou en utilisant simplement un GPS
périphériques, et autonomes, y compris les structures porteuses et vasculaires; l'évaluation et le traitement des processus pathologiques qui modifient la fonction ou l'activité du système nerveux, y compris l'hypophyse; et la gestion opératoire et non opératoire de la douleur. La neurochirurgie inclut le traitement de l'adulte et de l’enfant présentant des désordres du système nerveux: désordres du cerveau, des méninges, du crâne, et de leur approvisionnement en sang, y compris les artères carotides et vertébrales extra craniales; désordres de la glande pituitaire; désordres du cordon médullaire, des méninges, et de la colonne vertébrale, et désordres des nerfs crâniens et spinaux. Les travaux relatés dans ce document portent plus particulièrement sur la neurochirurgie des lésions intra parenchymateuses.

Pourquoi la neurochirurgie ?

La neurochirurgie a toujours été en avance par rapport aux autres spécialités chirurgicales en termes de méthodes et d’outils. Ceci est vrai pour l’utilisation des techniques d’imagerie dans le processus chirurgical de même que pour l’utilisation des développements qui ont suivi : la visualisation tridimensionnelle, l’imagerie multimodalité et le recalage d’images, les atlas anatomiques mis en relation avec le patient, le lien entre le patient et ses images grâce aux outils de localisation 3D, les systèmes robotiques, etc. Ceci peut être expliqué par certaines caractéristiques principales des structures cérébrales. Leur complexité spatiale, la présence d’un important réseau vasculaire et la dualité anatomie-fonction font que l’imagerie multimodale tridimensionnelle apporte une plus-value directe et indiscutable. De plus, le cerveau est circonscrit dans la « boîte » crânienne, organe rigide et clos, ce qui facilite son imagerie pré opératoire, contrairement au cœur ou aux structures molles. La neurochirurgie a été la première spécialité chirurgicale concernée par la chirurgie guidée par l’image et les acteurs industriels ont développé les premiers systèmes de ChGI pour la neurochirurgie.

L’importance de l’image en chirurgie

Dès le développement des techniques d’imagerie, les images, qu’elles soient numériques ou analogiques, ont été utilisées pour aider au diagnostic et à la préparation et à la réalisation de gestes chirurgicaux. Avant celles-ci, le diagnostic s’effectuait à partir de corrélations entre la sémiologie et l’histoire clinique du patient, d’une part, et des connaissances génériques, d’autre part. La préparation de l’intervention chirurgicale se basait principalement sur des dessins ou atlas, témoins des connaissances des chirurgiens ou anatomistes, et sur l’expertise du chirurgien. Pour la réalisation du geste, le chirurgien s’appuyait, là aussi, sur son expertise, et, tout au long de la procédure, sur la reconnaissance de repères anatomiques visibles à l’œil nu pour s’orienter et atteindre la cible. L’image numérique a apporté la possibilité de lire dans le corps du patient de manière non invasive. Les méthodes de traitement et d’analyse d’images ont notamment permis d’extraire des images les contours des structures anatomiques (on parle de segmentation d’images), de souligner des informations difficilement visibles à l’œil nu, grâce aux méthodes d’analyse d’images, de mettre en correspondance géométrique les différentes sources d’images médicales (on parle de recalage d’images) et de représenter ces images de manière la plus réaliste possible (on parle de visualisation tridimensionnelle). L’étape suivante a consisté à mettre en œuvre des méthodes pour permettre un lien géométrique direct entre le patient et les outils chirurgicaux, et ses images. La chirurgie guidée par l’image permet de fournir au chirurgien une information qui n’est pas visible à l’œil nu et des moyens pour rendre cette information quantifiable et donc objective.

http://www.acgme.org/
Nous commencerons ce document par une présentation des méthodes de traitement d’images médicales, et plus particulièrement du recalage et de la fusion d’images, méthodes centrales en neurochirurgie guidée par l’image. Comprendre ces méthodes, leurs possibilités, mais aussi leurs faiblesses et limites, permet de mieux comprendre les enjeux et problèmes liés à la neurochirurgie guidée par l’image.

1.1.2 Les images médicales et leurs traitements

1.1.2.1 La diversité des données médicales

Le processus de perception-décision-action en médecine, et notamment en chirurgie, s’appuie sur de nombreuses informations: mesures (comme des images ou des signaux), localisations (comme la position du patient, des outils chirurgicaux, des robots ou des imageurs - voir le chapitre 1.1.3.5.1), connaissances a priori (comme des bases de données de cas cliniques ou des modèles anatomiques ou physiologiques), mais aussi observations cliniques, résultats d’analyse, de consultations, films vidéo ou histoire clinique du patient. Dans ce premier chapitre, nous nous focaliserons particulièrement sur les images et localisations. Il est commun de distinguer deux principaux types d’images: les images anatomiques et les images fonctionnelles. Les sources d’images (appelées aussi modalités) qui fournissent des informations anatomiques génèrent des représentations de la morphologie de régions anatomiques spécifiques (parties osseuses, système nerveux central, tissus mous, cœur, etc.) basées sur leurs propriétés physiques telles que la densité des tissus (ce qui est le cas des modalités basées sur la transmission de rayons X comme la radiologie conventionnelle, le Scanner X ou CT, ou l’imagerie portale, par exemple), la densité d’atomes d’hydrogène (mesurée par l’imagerie par résonance magnétique ou IRM) ou les propriétés acoustiques des tissus (détectée en échographie). Des agents de contraste peuvent être utilisés pour mettre en valeur certaines parties de l’anatomie comme le réseau vasculaire (dans le cas d’angiographie par résonance magnétique ou d’angiographie X, par exemple). Les modalités fonctionnelles fournissent une information liée à une fonction spécifique d’un organe vivant. Certaines d’entre elles explorent un processus métabolique comme la perfusion (cérébrale ou cardiaque, par exemple) mesurée par l’imagerie de perfusion par résonance magnétique (IRMp), l’imagerie de perfusion par CT (Perfusion CT), la tomographie par émission mono-phononique (TEMP) et la tomographie par émission de positons (TEP). D’autres processus métaboliques peuvent aussi être explorés comme la consommation de glucose mesurée en TEP ou le degré d’oxygénation du sang mesuré en imagerie fonctionnelle par résonance magnétique (IRMf). D’autres modalités fonctionnelles explorent, sous la forme de signaux, la composante biomagnétique ou bioélectrique de tels phénomènes, comme l’Electrocardiographie ou ECG, l’Electromyographie ou EMG, l’Electroencéphalographie ou EEG, la Magnétoencéphalographie ou MEG, l’Electrocorticographie ou EcoG, ou la Stéréo Electroencéphalographie ou SEEG. Dans le cas de la TEMP ou de la TEP, les propriétés d’un processus métabolique sont explorées grâce à l’utilisation de produits ou de molécules spécifiques (eau, glucose, par exemple) dont les effets sont suivis dans le corps par le biais de traceurs radioactifs (comme le Technétium 99 ou l’iode 131). L’échographie 2D ou 3D (appelée aussi ultrasons) s’appuie sur les propriétés acoustiques des tissus et image l’écho du signal ultrasons envoyé par impulsions électriques. L’IRM de diffusion donne sous forme tensorielle une information sur la direction des fibres nerveuses.

Ces différentes modalités possèdent des résolutions différentes, tant au niveau spatial, temporel qu’en terme de contraste. Bien sûr, cette liste de modalités n’est pas exhaustive, mais elle reflète la diversité et l’aspect complémentaire des informations que génèrent celles-ci (Figure 1.1.1).
1.1.2.2 Reconstruction d’images

Il est souvent nécessaire de faire suivre l’acquisition des images par une étape de reconstruction. Par reconstruction, il est commun d’entendre la mise sous une forme intelligible ou compréhensible des résultats de l’acquisition. Elle consiste principalement à exprimer les mesures résultantes de l’acquisition sous une forme spatiale : point 3D, image 2D ou volume 3D. Cette phase peut être intrinsèque au processus d’acquisition et transparente pour le clinicien, comme dans le cas de l’IRM ou du scanner CT, ou explicite et maîtrisée, comme dans le cas de la médecine nucléaire ou de la MEG. Lors de cette étape, il est possible d’associer des outils de restauration d’images qui ont pour principal but d’améliorer la qualité des mesures en corrigeant des biais, des distorsions ou des inhomogénéités liés au processus d’acquisition. En IRM, il peut s’agir de corrections d’inhomogénéités du champ magnétique, ou de corrections de distorsions. En médecine nucléaire, les images peuvent être corrigées en atténuation, en diffusion ou de l’effet de volume partiel. Les choix des méthodes de reconstruction ainsi que l’application ou non de méthodes de correction ou de restauration peuvent avoir un impact important sur la qualité des traitements et analyses réalisés sur les images. Par exemple, il a été montré qu’en médecine nucléaire la correction en atténuation des images TEMP améliorait significativement la qualité du recalage entre IRM et TEMP alors que la correction en diffusion semblait la dégrader [TT_22]. De même, il a été montré que la correction des inhomogénéités de champ en IRM facilite la segmentation des images [TT_23].

1.1.2.3 Analyse d’images

Certains types d’images nécessitent une étape supplémentaire d’analyse avant de pouvoir être interprétables par le clinicien. Cette étape a pour objectif principal d’augmenter le rapport signal sur bruit dans les images et d’aider à l’extraction d’information. En IRM fonctionnelle, par exemple, le signal mesuré est censé correspondre à la réponse hémodynamique provoquée par une stimulation. La faible intensité de ce signal nécessite, pour être identifiable, l’acquisition successive de plusieurs séquences d’images correspondant 1) à la répétition du même signal d’activation et 2) à des périodes d’inactivité. Le traitement et l’analyse simultanées de ces images de repos et d’activité permettent de mettre en évidence ces zones d’activité fonctionnelle cérébrale correspondant à la stimulation. Les méthodes utilisées combinent, notamment, analyse statistique et mise en correspondance du signal avec des modèles de réponses hémodynamiques. Les méthodes d’analyse peuvent aussi permettre une...
analyse quantitative, relative ou absolue, des images. En médecine nucléaire, la quantification, principalement relative en TEMP et absolue en TEP, est réalisée par des méthodes d’analyse d’images. Ces méthodes se basent sur une comparaison entre les images du patient et des images de sujets sains, sur une comparaison entre hémisphère sain et hémisphère pathologique, ou sur une comparaison entre structures supposées saines et structures supposées pathologiques. Ces comparaisons peuvent nécessiter une mise en correspondance entre différents types d’images : mise en correspondance entre les images d’un patient et les images de sujets sains, mise en correspondance entre image fonctionnelle et images anatomiques ou mise en correspondance avec des modèles anatomiques ou fonctionnelles. En IRM de perfusion ou dans le cas d’images dynamiques en TEP, le décours temporel des intensités des pixels des images est comparé à un modèle temporel a priori du signal.

La segmentation d’images a pour objectif d’identifier, dans les images, les pixels ou voxels appartenant à une région particulière [TT_90],[TT_81]. Cette région peut correspondre à une structure anatomique, pathologique ou fonctionnelle. Les méthodes utilisées se basent sur les propriétés iconiques des structures à identifier, c’est à dire liées aux intensités des pixels ou voxels, ou sur les propriétés géométriques de ces structures. Ces propriétés correspondent à des a priori sur les structures à segmenter et peuvent être implicites ou explicites. Cette étape de segmentation est importante en chirurgie guidée par l’image car elle permet la description de la forme tridimensionnelle des structures et de leur localisation notamment pour aider le chirurgien à préparer et à réaliser une procédure chirurgicale (Figure 1.1.2).
1.1.2.4 Techniques de fusion de données en imagerie médicale

1.1.2.4.1 Introduction

La complexité des phénomènes biologiques est telle qu’elle ne peut pas être explicitée par une seule technique d’exploration. Ainsi, la fusion de différentes sources d’information provenant de l’étude des propriétés du corps humain à l’aide de techniques d’exploration est un composant naturel et à part entière de la pratique médicale. La nature complémentaire des techniques d’exploration existantes (que nous appellerons par la suite modalités) aide le clinicien, dans un contexte pathologique, à affiner son diagnostic, à préparer et à réaliser les procédures thérapeutiques ou, dans un contexte de recherche, à mieux comprendre et à mieux connaître le vivant. Avant le développement des outils de mise en correspondance assistée par ordinateur, la fusion de données était réalisée par une simple mise en correspondance mentale des données, s’appuyant sur des structures communes à celles-ci et facilement identifiables. Puis, le développement de nouveaux systèmes d’imagerie médicale numérique, de réseaux de communication et de stations de travail de plus en plus performantes a rendu possible ou a facilité, non seulement la visualisation des images, mais aussi leur transfert et leur traitement. Ces vingt dernières années, des méthodes de traitement d’images ont été développées pour permettre une mise en correspondance assistée par ordinateur de ces données. Ces méthodes ont modifié le processus de fusion et son utilisation, passant d’un processus de fusion mental ou manuel à un processus de fusion assisté par ordinateur plus précis, plus visuel, plus quantitatif et, de ce fait, plus objectif. Ces nouvelles possibilités, liées à la fusion de données, ont contribué au développement de la chirurgie guidée par l’image. Dans ce chapitre, nous présentons les méthodes liées à la fusion de données médicales et principalement au recalage d’images. Ces méthodes sont centrales en chirurgie guidée par l’image et surtout quand les images sont multimodales. Ces images doivent être mises en correspondance entre elles, mais doivent aussi être mises en correspondance avec le patient dans la salle d’opération. Dans le processus chirurgical, il peut être important de confronter les images d’un patient avec celles d’autres patients ou avec des images de référence. Exprimer ces images dans un repère standardisé peut aussi faciliter la lecture et la compréhension de celles-ci. Enfin, le phénomène des déformations anatomiques intra opératoires dues au geste chirurgical peut nécessiter la correction et la déformation des images pré opératoires en utilisant des méthodes de recalage non linéaire.

Similarités / dissimilarités

De manière générale, la fusion de données a pour but l’intégration de différentes sources d’information pour aider à la décision. Dans ce document, nous limiterons l’étude de la fusion de données à la mise en correspondance de différentes images, mesures ou localisations d’un phénomène physique ou physiologique concernant une ou plusieurs entités physiques considérées comme similaires par le clinicien. Par « similaires », nous entendons que les

4 Cette section est extraite d’une publication de l’auteur faisant un état de l’art du domaine [P_16].

5 Dans ce contexte, il est intéressant de noter que le développement de nouvelles modalités médicales n’a pas conduit au remplacement des anciennes et que, de manière évidente, il n’y a pas de modalité qui offre au clinicien toutes les informations possibles.

6 Pour une revue exhaustive des articles sur les méthodes ou les applications en fusion d’images médicales, nous conseillons au lecteur de consulter les articles suivants: [TT_1], [TT_2], [TT_3], [TT_4], [TT_5].
différentes mesures correspondent à une même région anatomique ou que les mesures concernent un modèle anatomique commun.

La problématique posée par la fusion de données résulte de la présence de ces « dissimilarités » entre les données qu’on cherche à mettre en correspondance. De telles « dissimilarités » peuvent provenir de différentes conditions d’acquisition et/ou de différentes propriétés mesurées et/ou de différents sujets étudiés. Ces « dissimilarités » correspondent, d’une part, à de l’information pertinente que nous souhaitons mettre en valeur, via les méthodes de fusion de données (comme, par exemple, la nature complémentaire des données). Elles correspondent, d’autre part, à des variations dans les mesures que nous souhaitons compenser en utilisant les méthodes de recalage. Ces variations peuvent être de nature géométrique et/ou relatives aux intensités des images. L’enjeu de la fusion de données est de gérer cette ambivalence entre les « dissimilarités » à corriger et celles à extraire ou à mettre en valeur.

1.1.2.4.2 Les applications médicales de la fusion de données

Elles peuvent être classifiées en quatre catégories principales : la fusion intra sujet et intra modalité, la fusion intra sujet et inter modalité, la fusion inter sujet et la fusion sujet et modalités.

La fusion intra sujet et intra modalité concerne la fusion entre différents jeux de données provenant d’une même modalité pour un sujet. A cette catégorie correspondent trois principaux objectifs cliniques : (1) le suivi dans le temps de modifications dans l’anatomie du patient, (2) la comparaison de différents états et (3) l’imagerie par soustraction.

La fusion intra sujet et inter modalité concerne la fusion entre des données multimodalité d’un même sujet. Aucune modalité d’imagerie médicale ne permet d’explorer toutes les structures anatomiques ou de fournir, à la fois, des informations anatomiques et fonctionnelles à la plus haute résolution spatiale et temporelle. Cette deuxième catégorie d’applications permet de profiter de la nature complémentaire des différentes modalités d’imagerie et pour différentes zones anatomiques (tête, cœur [TT_78], poitrine [TT_9], thorax [TT_10], foie ou abdomen [TT_11], reins, rachis [TT_12], pelvis, fond d’œil [TT_14], etc.). L’étape de pré planning en chirurgie guidée par l’image (section 1.1.3.1) ainsi que l’étape de contrôle post opératoire (section 1.1.3.6) s’appuient sur ce type de fusion.

La fusion inter sujet et intra ou inter modalité concerne la fusion entre des données mono ou multimodalité concernant des sujets différents. Les applications principales de cette catégorie sont liées à l’étude de la variabilité anatomique ou fonctionnelle au sein d’une population de sujets (sujets sains ou patients). Ce type de recalage permet de construire des modèles moyens (appelés templates) [TT_27], de comparer les données d’un sujet à un atlas ou à un « template », de comparer, via un « template », des données concernant des sujets différents appartenant à une même population ou, enfin, de comparer deux populations de sujets [TT_29].

La fusion sujet et modalités concerne la fusion entre l’espace du sujet réel et les données images. Globalement, elle concerne la mise en correspondance géométrique entre le sujet réel, les outils (comme les outils chirurgicaux, les systèmes robotiques ou les systèmes d’imagerie interventionnelle) et des images ou mesures pré ou intra opératoires. L’étape de réalisation du geste chirurgical guidée par l’image (section 1.1.3.5) s’appuie sur ce type de fusion.

Cette distinction est justifiée par le besoin éventuel de fusionner des données provenant de sujets ou de patients différents. Dans ce cas, les instances des structures anatomiques ne sont pas les mêmes mais nous supposons qu’il existe des invariants entre ces données. Dans le cas de la mise en correspondance d’acquisitions IRM provenant de différents sujets, la forme globale des cerveaux est supposée similaire malgré la présence de « dissimilarités » anatomiques locales.
1.1.2.4.3 Les méthodes liées à la fusion de données

La fusion de données nécessite des méthodes de recalage, de visualisation, d’interaction et d’analyse. Les méthodes de recalage sont définies par un paradigme et des méthodes de calcul. Le paradigme comprend : 1) une information similaire ou homologue qui est supposée exister dans les jeux de données à recaler et 2) un modèle de transformation adapté aux différences géométriques ou aux différences d’intensité entre les données. Ces deux éléments sont choisis en fonction de l’application clinique concernée. La méthode de calcul cherche à optimiser une fonction de coût qui quantifie le degré de similarité des informations homologues à travers la transformation. La méthode de calcul peut aussi comprendre une phase d’identification, au sein des jeux de données, des informations homologues utilisées pour le recalage. Dans certains cas, la transformation peut être calculée analytiquement à partir d’hypothèses (comme l’absence de mouvement du sujet entre les acquisitions, ou la connaissance, ou la calibration, de la géométrie du système d’acquisition, par exemple). Dans la majorité des cas, la transformation doit être calculée à partir de peu d’informations et conduit donc au calcul d’une approximation des variations réelles. Malgré tout, cette approximation peut être suffisante en fonction de l’application clinique concernée ou des objectifs cliniques fixés. Il apparaît donc que, pour une application clinique donnée, différentes méthodes de fusion de données peuvent être utilisées en fonction des hypothèses avancées et du niveau d’approximation souhaité.

1.1.2.4.3.1 Recalage

Le recalage consiste à calculer une transformation entre deux jeux de données pour compenser des variations spatiales ou d’intensité dues, par exemple, à l’utilisation de systèmes d’acquisition différents ou à des différences de conditions ou de géométrie d’acquisition. Par la suite, et dans cet article, nous nous focaliserons sur les méthodes de recalage qui cherchent à compenser les variations spatiales.

Une méthode de recalage nécessite la définition d’un espace de recherche, d’un espace des paramètres, d’une métrique de similarité et d’une stratégie de recherche [TT_5]. L’espace de recherche et l’espace des paramètres sont liés au paradigme du recalage, décrit plus haut. L’espace de recherche est défini par la classe de transformation qui modélise les variations entre les données, et l’espace des paramètres est défini par les informations homologues entre les données à recaler. La métrique de similarité et la stratégie de recherche sont liées aux méthodes de calcul. La métrique de similarité, ou fonction de coût, fournit une mesure sur la « qualité » de la mise en correspondance d’un ensemble de structures homologues, pour une transformation donnée. La stratégie de recherche correspond notamment au choix d’une méthode d’optimisation, utilisée pour calculer la meilleure mise en correspondance au sens de la métrique de similarité. En d’autres termes, le recalage entre deux jeux de données consiste en l’optimisation d’un critère de similarité mesuré sur les informations homologues extraites des données. La transformation calculée peut alors être appliquée aux jeux de données dans leur totalité. Ainsi, à chaque point du premier jeu de données est associé un point correspondant dans l’autre jeu de données. Il faut remarquer que la transformation calculée n’est pas nécessairement bijective.
1.1.2.4.3.1.1 Repères géométriques

Dans le processus de recalage, la définition précise des différents repères géométriques servant de support aux transformations est une première étape indispensable. Traditionnellement, trois repères géométriques sont définis : un repère lié aux données, un repère lié au sujet et un repère appelé « mondial ». Le repère lié aux données est basé sur la grille de pixels ou de voxels. Le repère lié au sujet est généralement centré par rapport aux données et utilise une métrique millimétrique standard, calculée à partir de la taille du pixel ou du voxel fournie par le système d’acquisition d’images. Enfin, le repère « mondial » est la combinaison du repère sujet et d’informations liées à la position et à l’orientation du sujet pendant l’acquisition. Ces informations sont généralement fournies par les systèmes d’acquisition, elles sont stockées avec les images et permettent d’initialiser la procédure de recalage. D’autres repères peuvent être définis en fonction des contextes applicatifs (repère lié à un cadre de stéréotaxie, repère anatomique de Talairach [34], repère du localisateur 3D, etc.).

1.1.2.4.3.1.2 L’information homologue

L’information homologue correspond à une information extraite des données à recalser et sur laquelle est basée la recherche de la transformation géométrique optimale au sens d’une métrique de similarité. L’information homologue peut être classifiée par sa dimension : 0 D (point), 1 D (contour), 2 D (surface), 3 D (volume) ou n D (hyper surface) et par la dimension de son espace d’évolution : 2 D (image, surface ou projection), 3 D (volume, hyper surface) ou n D (hyper surface) avec ou sans une dimension temporelle supplémentaire [TT_33]. L’information homologue est aussi fréquemment classifiée par son type, notamment extrinsèque versus intrinsèque. Les méthodes de recalage basées sur une information homologue extrinsèque utilisent des objets artificiels liés au sujet et conçus pour être facilement identifiables dans les images. Par conséquent, ces méthodes nécessitent un protocole particulier d’acquisition d’images. Parmi ces méthodes, les techniques invasives utilisent, notamment, des marqueurs osseux vissés directement dans les structures osseuses du patient ou des cadres de stéréotaxie. Les techniques non invasives utilisent, par exemple, des marqueurs adhésifs collés sur la peau du patient.

Les méthodes utilisant de l’information de nature intrinsèque utilisent différentes caractéristiques anatomiques, géométriques ou des caractéristiques liées à l’intensité des pixels (ou voxels) de l’image entière (ou du volume entier). Les caractéristiques anatomiques peuvent être des points anatomiques connus (par exemple, commissure antérieure et commissure postérieure dans le cas d’images cérébrales [TT_34]), des lignes ou des surfaces anatomiques remarquables (surface de la peau, surface des ventricules, sillons corticaux [TT_35], etc.) ou enfin des volumes anatomiques (cerveau, structures osseuses, vaisseaux, etc.). Les caractéristiques géométriques ou primitives géométriques consistent en des points, lignes, surfaces ou volumes qui ne correspondent pas directement à des structures anatomiques mais à des caractéristiques calculées à partir des images (gradients, extremum local de courbures [TT_36], lignes de crêtes [TT_37], etc.).

Le calcul d’une information homologue intrinsèque basée intensité (appelée aussi approche iconique) peut s’appuyer sur les intensités de l’image ou du volume (distribution de probabilité, mesures statistiques [TT_56], modes de variation d’une entité estimés à partir d’une analyse statistique [TT_87], ANIMAL [TT_43], mesures de flot optique [TT_44], méthode des « démons » [TT_45], décompositions sur des bases de fonctions qui modélisent les variations spatiales ou d’intensité [TT_31], etc.) ou sur les intensités pondérées par la localisation du pixel ou du voxel (axes principaux, moments d’inertie, etc.). Dans le cas des méthodes basées sur l’information mutuelle [TT_54][TT_55], l’information homologue est la
distribution de probabilité empirique des intensités de l’image ou du volume et la fonction de coût est l’information mutuelle qui quantifie la dépendance statistique entre ces distributions.

1.1.2.4.3.1.3 Les transformations géométriques
Les transformations géométriques modélisent les variations géométriques qu’on cherche à compenser entre les données à recaler. Ces transformations peuvent être caractérisées par leur nature (rigide, affine ou non linéaire) et par leur domaine d’application (local ou global).

Les transformations géométriques modélisent les variations géométriques qu’on cherche à compenser entre les données à recaler. Ces transformations peuvent être caractérisées par leur nature (rigide, affine ou non linéaire) et par leur domaine d’application (local ou global).

Les transformations linéaires sont utilisées quand des connaissances a priori sur les données sont disponibles, justifiant les hypothèses de linéarité des variations spatiales (conditions d’acquisition, propriétés de rigidité des objets, etc.). L’utilisation de ce type de transformations permet de simplifier le problème du recalage. Les transformations affines permettent de prendre en compte une grande partie des distorsions spatiales usuelles, car elles peuvent représenter la combinaison de N translations (vecteur b), N rotations, N facteurs d’échelle et N facteurs de torsion. Une transformation rigide est un sous-ensemble des transformations affines et est composée de translations, de rotations et d’un facteur d’échelle le plus souvent isotrope. Une transformation linéaire globale est uniformément appliquée à l’ensemble du volume (dans le cas du recalage de volumes), alors qu’une transformation linéaire locale est définie sur un sous-ensemble du volume.

Les transformations non linéaires modélisent des variations spatiales complexes. Parmi celles-ci, les transformations projectives sont un cas particulier utilisé quand les données sont projetées via un système idéal d’acquisition d’images [TT_5][TT_38] et où une dimension, ou plus, est perdue lors de cette transformation. Ce type de transformation est principalement rencontré dans des problèmes de recalage 3D/2D.

Les transformations non linéaires peuvent être modélisées soit par une simple fonction non linéaire (fonction paramétrique) définie sur l’ensemble du volume (dans le cas de transformations 3D), soit par des déformations locales non linéaires. Ces dernières sont mieux adaptées à des variations complexes et peuvent être estimées à l’aide de champs denses de déformation où un vecteur de déplacement local est associé à chaque nœud d’une grille définie sur les données. Ces transformations sont généralement définies à l’aide d’un terme lié aux données (correspondant à une mesure de similarité entre les nœuds) et un terme de régularisation qui assure la régularité spatiale de la transformation [TT_33]. Des méthodes d’interpolation sont utilisées pour calculer le champ de déformation sur la totalité du volume et/ou localement en chaque nœud de la grille, permettant d’assurer la régularisation du champ. Dans le cas d’informations homologues de type point, la régularisation est effectuée par des techniques d’interpolation basées sur des fonctions de base radiale [TT_39]. Dans le cas d’informations homologues de type surfaces, la régularisation est obtenue par l’utilisation de modèles élastiques mécaniques [TT_40], de déformations de type super quadriques [TT_41] ou splines [TT_42]. Dans le cas d’informations homologues basées sur des mesures de similitude locale, les schémas de régularisation peuvent être fondés sur des propriétés mécaniques [TT_46][TT_47] (comme l’élasticité, la plasticité ou la viscosité) ou de type fluide [TT_48][TT_49].

1.1.2.4.3.1.4 Fonctions de coût ou mesures de similarité
La fonction de coût correspond à un critère objectif, utilisé pour estimer la qualité du recalage pour une transformation donnée. Elle est définie en fonction de l’information homologue et du type de la transformation à estimer, c’est à dire en fonction de l’espace des paramètres et de l’espace de recherche. En utilisant le formalisme défini par Brown [TT_5], la fonction de
coût définit une métrique de similarité grâce à laquelle est mesurée la qualité de l’estimation de la transformation, en fonction d’un espace de paramètres et d’un espace de recherche. On peut distinguer deux principales familles de fonctions de coût : celles basées sur des distances euclidiennes et celles basées sur des mesures de similarité statistique.

Lorsque l’information homologue est de nature extrinsèque aux données, la fonction de coût correspond souvent à une estimation de distance euclidienne moyenne. Le problème de la mise en correspondance de points de type marqueurs externes ou références anatomiques est généralement formulé par une approche de type moindres carrés. Quand les structures homologues sont plus complexes, d’autres critères de distance sont utilisés comme la méthode du « chapeau » [TT_51] ou des transformées en distance comme la distance de chanfrein [TT_50]. La distance euclidienne entre points est calculée dans un espace continu alors que la distance de chanfrein est calculée sur une grille discrète et dans un espace discret. Ces méthodes ont prouvé leur efficacité et leur robustesse dans le recalage multimodalité intra-sujet en utilisant, par exemple, la surface de la peau comme information homologue, celle-ci étant facilement identifiable dans les images IRM, CT ou TEP et suffisante pour contraindre le calcul d’une transformation rigide.

Quand le recalage est basé sur une information homologue qui utilise la distribution des intensités de l’image, des critères s’appuyant sur des mesures statistiques de similarité sont utilisés. Ces critères posent généralement des hypothèses sur la nature de la dépendance statistique entre les données à recaler. Par exemple, le coefficient de corrélation mesure une dépendance linéaire entre les distributions en intensité des données, tandis que le rapport de corrélation mesure une dépendance fonctionnelle [TT_52]. Le critère dit de Woods [TT_53] est basé sur une hypothèse d’uniformité : une région d’intensité homogène dans un jeu de données correspond à une région d’intensité également homogène dans l’autre jeu de données. Enfin, l’information mutuelle [TT_54][TT_55] mesure une dépendance statistique entre les données sans aucune hypothèse liée à la nature de cette dépendance. Ainsi, le choix d’une mesure statistique de similarité dépendra des connaissances a priori disponibles sur la relation entre les données [TT_56].

Les méthodes basées sur les mesures de similarité travaillent sur les intensités de l’image et sont, par conséquent, sensibles aux méthodes d’interpolation utilisées pour calculer les valeurs du signal dans les données cible [TT_58]. La plupart des critères de similarité décrits ci-dessus sont estimés via des histogrammes joints, nécessitant l’utilisation de méthodes d’interpolation comme le plus proche voisin, l’interpolation tri-linéaire ou l’interpolation par volume partiel [TT_54].

Un inconvénient majeur des méthodes basées similarité est qu’elles sont basées sur des hypothèses d’anatomie ou de physiologie normale. Ces méthodes peuvent donc échouer quand des régions anormales sont rencontrées dans un seul des deux volumes à recaler (tumeurs en IRM ou CT, foyers épileptogènes en TEMP ictal, IRM post opératoire, etc.). Dans ce cas, une des solutions peut consister en l’utilisation d’estimateurs robustes [TT_60] associés à ces mesures de similarité pour rejeter les régions aberrantes à trop forte « dissimilarité » [TT_44][TT_61].

1.1.2.4.3.1.5 Méthodes d’optimisation

La stratégie de recherche consiste en la définition d’une méthode qui permet de calculer la mise en correspondance optimale entre des jeux de données, i.e. qui permet de calculer la meilleure transformation au sens de la métrique de similarité mesurée entre les informations homologues. En fonction des hypothèses ou des contraintes, le problème de l’optimisation peut avoir une solution analytique (solution des moindres carrés) ou peut nécessiter l’utilisation de méthodes itératives. De nombreuses méthodes existent dans la littérature.
Le choix d’une méthode d’optimisation est un choix algorithmique qui dépend de la fonction de coût et de ses propriétés mathématiques, plus que du contexte clinique. Dans le contexte des problèmes de recalage d’images médicales, il est possible de distinguer différents types de méthodes d’optimisation : les approches quadratiques ou semi, les approches stochastiques ou basées statistiques, les approches structurelles et les approches heuristiques [TT_33].

De plus, il peut être intéressant d’associer à la méthode d’optimisation une stratégie d’optimisation pour résoudre les problèmes classiques liés à l’optimisation : éviter les extrema locaux et/ou réduire le temps de calcul. Pour cela, des stratégies de type multi-résolution ou multi-échelle peuvent être utilisées, permettant de travailler à des résolutions croissantes pour une meilleure mise en correspondance à chaque résolution. Parmi la définition d’une stratégie d’optimisation, on peut trouver l’initialisation de la recherche avec une solution adaptée, l’adaptation des contraintes (i.e. informations homologues) durant le processus d’optimisation ou l’utilisation combinée de plusieurs méthodes d’optimisation.

1.1.2.4.3.2 Outils de mise en correspondance et d’analyse

Une fois les données recalées, c’est à dire, une fois la transformation calculée, il est possible de connaître, pour chaque point d’un jeu de données, les coordonnées géométriques du point correspondant dans l’autre jeu de données 8. Pour pouvoir exploiter efficacement les résultats du recalage, il est nécessaire de développer des outils de visualisation et d’interaction adaptés aux applications cliniques et permettant la mise en correspondance et son interprétation qualitative. D’autres types d’outils plus spécifiques d’analyse peuvent aussi être nécessaires pour permettre une exploitation plus précise des résultats, pour permettre une interprétation quantitative ou pour mettre en évidence des propriétés indéetectables visuellement.

1.1.2.4.3.2.1 Visualisation et interaction

Comme nous l’avons déjà souligné, les techniques de fusion de données permettent d’automatiser la mise en correspondance et offrent un accès visuel aux résultats du recalage des images. Deux approches principales sont utilisées pour la visualisation des résultats du recalage: l’approche dite « superposition visuelle » et l’approche dite « curseur 3D » [P_36].

Le principe de l’approche dite « superposition visuelle » est de calculer et de visualiser une image qui contient l’information des différents jeux de données recalés entre eux (Figures 1.1.3, 1.1.4 et 1.1.5). Dans une première solution, les données multimodales sont superposées point à point au sein d’une seule image. Cette superposition peut être réalisée par une opération arithmétique sur les intensités des pixels ou des voxels (permettant la transparence par exemple), par codage de couleurs ou codage par spectres [TT_64][TT_65][TT_66], ou encore par visualisation basée sur des opérateurs de logique floue [TT_67]. En 2D, des techniques comme le remplacement des valeurs peuvent aussi être utilisées (comme une fenêtre déplacée par l’utilisateur dans laquelle les valeurs des pixels d’un jeu de données sont remplacées par les valeurs de l’autre jeu de données, ou la visualisation en échiquier 2D, ou encore le calcul d’un volume mixte où sont extraits des volumes les pixels appartenant aux structures pertinentes). L’approche « superposition visuelle » nécessite le calcul de nouveaux jeux de données par ré-échantillonnage des données d’origine, via la transformation géométrique calculée par le recalage.

8 Cette transformation n’est pas toujours bijective.
L’approche « curseur 3D » permet de mettre en correspondance plusieurs jeux de données en partageant un curseur entre des modules de visualisation synchronisés (Figure 1.1.6). Un événement souris dans une image correspond à la désignation d’un point dans les données affichées par le module. Les coordonnées de ce point sont envoyées aux autres modules de visualisation, transformées selon les transformations géométriques calculées par le recalage, provoquant l’affichage des images contenant le point correspondant [P_36][TT_69].

L’approche « superposition visuelle » facilite l’appréhension de l’information liée à la mise en correspondance de données multimodales, notamment par réalignement global des jeux de données dans un espace commun. L’approche curseur autorise la visualisation et donc la mise en correspondance d’un nombre non limité de jeux de données. Cette approche ne nécessite pas obligatoirement le réalignement des données (ou ré-échantillonnage). Mais si ce réalignement n’est pas réalisé, la mise en correspondance est limitée à la région autour du
curseur. Ces approches sont évidemment complémentaires ; elles doivent donc être choisies en fonction des objectifs cliniques.

1.1.2.4.3.2.2 Outils d’analyse

Les outils de visualisation et d’interaction permettent une interprétation visuelle et, par conséquent, une analyse qualitative des résultats du processus de fusion de données. Certaines applications ont besoin d’aller au-delà de l’aspect qualitatif, vers une analyse quantitative des résultats de la fusion. Ainsi, les résultats du processus de mise en corrélation peuvent servir d’entrées à des traitements supplémentaires, dont voici quelques exemples : 1) l’analyse des variations d’intensité entre des données (par exemple, la soustraction de données TEMP inter-ictale/inter-ictale pour la mise en évidence des zones liées aux crises d’épilepsie [TT_70][TT_72]), 2) l’analyse statistique effectuée sur des jeux de données recalés pour, par exemple, des études de variabilité anatomique interindividuelle [TT_74] ou des études de cartographie fonctionnelle cérébrale intrasujet, intra ou inter-modalité [TT_75], 3) la segmentation d’images (comme la segmentation basée atlas ou classification multi-spectrale en IRM [TT_71]), 4) la reconstruction d’images (comme la localisation de dipôles de courant en MEG à partir de mesures de champs magnétiques externes et contrainte à la matière grise corticale extraite d’examen IRM anatomique ou la localisation contrainte à des zones d’activation pré-déterminées à partir d’examen IRM [TT_73]).

Cette étape de « post-recalage » peut aussi inclure des dispositifs d’aide à la décision, grâce notamment à des outils d’analyse statistique [TT_75], à l’utilisation de connaissances a priori [TT_76], à l’utilisation d’outils de segmentation ou de classification par logique floue [TT_77] et avec la connexion locale ou distante avec des bases de données cliniques [TT_78] complétées ou non par l’utilisation de techniques issues du domaine de l’intelligence artificielle.

1.1.2.4.4 Discussion

Les méthodes de recalage basées sur le calcul d’une transformation géométrique linéaire sont, aujourd’hui, arrivées à maturité, mais les hypothèses qui justifient leur utilisation ne sont pas toujours vérifiées. Les transformations élastiques permettent de modéliser de façon plus réaliste certains phénomènes rencontrés, comme la distorsion des images due à l’acquisition, le mouvement du sujet lors de l’acquisition ou les déformations anatomiques durant la chirurgie. Mais les méthodes de recalage calculant ces transformations non linéaires soulèvent encore certains problèmes méthodologiques. Le recalage non linéaire n’est pas du « morphing ». Cela signifie qu’un recalage non linéaire ne doit calculer que les variations géométriques ou d’intensité qui doivent être compensées à partir de connaissances a priori (correspondant à un modèle explicite des informations homologues) sans altérer les variations correspondant à l’information qui est attendue en résultat du processus de fusion [TT_35],[TT_63]. Les améliorations des modèles et leur implémentation font partie des enjeux concernant ce type de fusion de données. Comme pour le recalage non linéaire, la procédure entière de fusion de données peut être améliorée par l’injection de connaissances a priori, comme des modèles réalistes anatomiques ou métaboliques.

Enfin, de la même façon que des standards ont été développés pour l’échange de dossiers médicaux et d’images médicales (DICOM [TT_89]), l’échange d’informations liées à la fusion de données (comme les transformations calculées, les méthodes ou les structures homologues utilisées) entre des équipements provenant de constructeurs différents nécessiterait d’être standardisé. Ceci est en cours de développement avec l’introduction dans le standard DICOM d’une partie adaptée au stockage des informations concernant le recalage d’images (part 10). La fusion de données médicales multimodalités intra-sujet semble avoir atteint aujourd’hui un premier niveau de maturité et un déploiement à grande échelle de ces
outils peut être facilité par la disponibilité de tels standards et par la mise en œuvre de procédures de validation rigoureuses. Ce dernier point sera l’objet du Chapitre 4.

L’utilisation de nombreuses sources d’informations complémentaires est inhérente à de nombreux processus cliniques, ce qui explique pourquoi les approches de fusion de données étaient utilisées avant même le développement d’outils de fusion de données assistée par ordinateur. Depuis, de nombreuses méthodes ont été définies et implémentées pour assister et automatiser les processus de fusion de données et pour rendre ces processus plus précis et plus objectifs. Ces méthodes sont centrées en neurochirurgie guidée par l’image, que ce soit pour mettre en correspondance des images anatomiques et des images fonctionnelles, pour mettre en correspondance le patient en salle d’opération avec ses images pré opératoires, ou, par exemple, pour mettre en correspondance les images intra opératoires avec les images pré opératoires.

Après cette présentation indispensable des outils et méthodes liés à l’imagerie médicale, nous allons rentrer dans le cœur du sujet de ce document. Nous présenterons, dans les sections suivantes, le processus de chirurgie guidée par l’image et les différentes étapes qui le composent.
1.1.3 Principe du processus chirurgical guidé par l’image

La chirurgie guidée par l’image (ChGI) est un processus qui n’est pas réduit à la seule étape de réalisation du geste chirurgical. Ce processus peut inclure, une fois l’importance d’une intervention chirurgicale démontrée, les étapes de pré planning, du choix de la stratégie chirurgicale, de préparation du geste, de simulation ou de répétition du geste, de sa réalisation et du suivi post opératoire du patient (Figure 1.1.7). Depuis peu, il est commun de considérer ce processus sous l’angle d’un système péri opératoire (du grec péri qui signifie « autour de »). Nous reviendrons sur cette notion dans la section 1.1.4. Chacune de ces étapes utilise des images du patient concerné par la chirurgie. Cela exclut donc les procédures chirurgicales réalisées à partir de données génériques seules (comme des connaissances ou des atlas anatomiques) si elles n’ont pas été mises en correspondance avec le patient, adaptées ou modifiées en fonction de son cas particulier. Dans le cadre de ce document, nous nous limiterons principalement à ce domaine de la ChGI. Cela explique pourquoi nous faisons une place importante à l’image.

Dans un premier temps, nous présenterons les différentes étapes de ce processus et, pour chacune d’entre elles, nous définirons leur principe, les entrées/sorties, les traitements et soulignerons certaines limites actuelles. Il est clair que cette décomposition est celle d’un processus idéal et complet. Les applications de la chirurgie guidée par l’image ne comprennent pas ou ne nécessitent pas obligatoirement toutes ces étapes, ceci est notamment vrai pour des chirurgies en urgence. De même, certaines étapes sont réalisées de manière implicite par le chirurgien. De plus, les frontières entre ces différentes étapes ne sont pas toujours très nettes, la simulation peut parfois être limitée à la visualisation 3D des images réalisée lors de l’étape de préparation. Enfin, je ne prétends pas, dans cette décomposition, les définitions, les exemples et les paramètres associés, être d’une totale exhaustivité. Cette décomposition est une vision du domaine résultant d’une expérience personnelle sûrement limitée. Dans un deuxième temps, je reviendrai sur certaines caractéristiques générales de ce type de chirurgie, comme les informations et les acteurs mis en jeu, les principales applications et les bénéfices attendus pour le patient.
1.1.3.1 Pré planning

Principe : L’étape de pré planning consiste à étudier le dossier du patient, demander les examens cliniques pertinents, dont l’acquisition d’images ou de signaux, récupérer ces informations, les traiter, les recalquer, les segmenter en fonction des besoins. De manière générale, c’est dans cette étape que les informations nécessaires à la préparation et à la réalisation du geste chirurgical sont acquises, traitées et rassemblées. Cette étape est principalement radiologique, néanmoins, le choix des examens est le plus souvent dicté par le chirurgien en se basant sur son expérience, sur une première interprétation du cas clinique et sur des hypothèses.
Entrées : Dossier clinique du patient
Sorties : Examens radiologiques mis en correspondance, structures segmentées, zones fonctionnelles identifiées, etc.
Paramètres utilisés : Acquisition de données multimodales, hypothèses, etc.
Méthodes et outils utilisés : Outils de traitement et d’analyse d’images et de signaux : recalage d’images multimodales, segmentation, reconstruction et analyse, etc.
Discussion : L’amélioration de cette étape dépend principalement du développement de nouvelles sources d’imagerie ou de nouveaux protocoles et de nouvelles méthodes de traitement et d’analyse d’images. Il reste encore beaucoup à faire autour de l’imagerie anatomique, fonctionnelle et physiopathologique. Le chirurgien reste toujours demandeur de nouvelles informations sur le patient et sa pathologie : suivi de fibres neuronales et visualisation des voies neuronales, meilleure caractérisation des lésions tumorales, localisation de zones fonctionnelles, etc. Chaque nouvelle information pourra enrichir un peu plus le processus de chirurgie guidée par l’image.

1.1.3.2 Choix de la stratégie chirurgicale

Principe : En fonction des informations récoltées, le chirurgien va choisir, lors de cette étape, la stratégie chirurgicale à réaliser. Il peut avoir besoin d’un complément d’informations pour vérifier l’hypothèse initiale. Ce complément d’information peut nécessiter de revenir à l’étape précédente dans le cas de nouveaux examens radiologiques, par exemple. Il peut aussi entraîner la réalisation d’un geste chirurgical, comme une biopsie ou une implantation d’électrodes de SEEG. Le chirurgien peut aussi considérer qu’il possède suffisamment d’informations convergentes et passer à l’étape suivante. Enfin, sa décision peut consister à arrêter le processus chirurgical car l’intervention est trop risquée ou car sa préférence va vers une radio- ou une chimiothérapie. Le choix de la stratégie se base sur l’expertise du chirurgien, qui inclut notamment son expérience chirurgicale, les données acquises pendant sa formation, un échange avec des collègues ou experts, et des données bibliographiques.

Entrées : Résultats des traitements et des analyses des images, signaux, etc.
Sorties : Stratégie chirurgicale non formalisée
Paramètres utilisés : Jugement personnel à partir de données non formelles (livres, connaissances, échanges verbaux ou écrits, etc.)
Méthodes et outils utilisés : Peu aujourd’hui
Discussion : Aujourd’hui, cette étape n’est pas prise en compte par les systèmes de chirurgie guidée par l’image, ni, en général, par les systèmes de chirurgie assistée par ordinateur. C’est une étape qui n’est pas assistée par ordinateur. L’expérience du chirurgien, les échanges avec des collègues et une veille bibliographique sont des éléments qui participent à cette prise de décision. Nous verrons par la suite qu’il serait intéressant d’utiliser, dans cette étape cruciale, des systèmes d’aide à la décision.

1.1.3.3 Préparation du geste

Principe : La stratégie chirurgicale à réaliser a été choisie. Cette étape de préparation consiste à définir, de manière la plus précise possible, la procédure qui sera effectivement réalisée, que nous appellerons par la suite le scénario chirurgical. Cela correspond à identifier les étapes clés de la procédure ainsi que les données qui seront nécessaires en salle d’opération. Ces données représentées sous forme d’entités-image tridimensionnelles doivent pouvoir représenter :
- la (ou les) zone cible sur laquelle porte l’intervention (à « biopsier » ou à enlever, par exemple),
• les **zones à éviter** lors de l’intervention, comme des vaisseaux, des zones fonctionnelles saines ou des structures anatomiques,
• les **zones de référence**, principalement des structures anatomiques, qui permettront de se repérer à certains moments du geste, comme un sillon cortical ou une partie d’un ventricule,
• la (ou les) **trajectoire** à suivre pour accéder à la zone cible (ou aux zones cible).

Le définition de ce scénario peut se construire progressivement lors des étapes précédentes. Par exemple, le chirurgien a déjà une idée précise des zones cible et à éviter lorsqu’il demande l’acquisition d’images. Dans tous les cas, l’étape du planning permettra d’affiner la connaissance et la localisation de ces structures, parfois confirmant, parfois infirmant les hypothèses émises par le chirurgien.

En**trées** : Résultats des traitements et des analyses des images et des signaux, décision thérapeutique, etc.

Sorties : Scénario chirurgical, le plus souvent réduit, aujourd’hui, au contour de la lésion et à une trajectoire rectiligne censée modéliser un chemin vers la lésion

Paramètres utilisés : Données non formelles (livres, connaissances, échanges verbaux ou écrits, etc.)

Méthodes et outils utilisés : Outils de visualisation 3D et d’interaction

Discussion : Préparer la procédure chirurgicale signifie, en théorie, la définition complète de ses étapes-clés et donc ce que l’on peut appeler un scénario chirurgical. Dans les systèmes actuels de chirurgie guidée par l’image, la préparation de la procédure chirurgicale se limite principalement à la définition de la cible et de la trajectoire d’accès rectiligne alors que cette procédure est un ensemble complexe d’étapes et d’actions. De plus, l’information utilisée consiste, le plus souvent, en une simple imagerie monomodale.

1.1.3.4 Simulation ou répétition du geste

Principe : Actuellement, cette étape consiste principalement à jouer mentalement le geste, permettant au neurochirurgien de se mettre en condition et d’imaginer les problèmes qu’il pourrait rencontrer. Cette simulation mentale peut être réalisée à l’aide de la visualisation 3D interactive d’une scène ou d’un modèle tridimensionnel complet du patient incluant les principales informations multimodales (morphologiques et physiologiques) du patient et sélectionnées durant la phase de préparation [66,67,68,69].

Théoriquement une étape de simulation devrait comprendre : 1) l’accès au rendu photoréaliste des informations pré opératoires 3D, 2) la possibilité d’une interaction réelle avec ce modèle 3D, 3) tout en suivant le scénario chirurgical choisi pendant l’étape de préparation [25]. Cette étape permettrait principalement au chirurgien et à son équipe de se familiariser avec le scénario chirurgical avant sa réalisation, par exemple en intégrant bien les relations spatiales entre cerveau éloquent, cerveau sain et structures pathologiques. Cette étape de simulation devrait aussi permettre de valider ou de remettre en cause le planning et donc de modifier le scénario chirurgical choisi. Le résultat de cette étape pourrait consister en un document papier ou électronique (appelé document de planning) qui explicite sous des formes diverses les éléments définis dans l’étape de planning et validés dans l’étape de simulation : images brutes, surfaces 3D segmentées, liste descriptive des étapes, paramètres de réglage d’un cadre de stéréotaxie, etc. Comme nous le soulignerons dans le **Erreur ! Source du renvoi introuvable.**, dans le cas où la simulation serait suffisamment réelle et modéliserait de façon parfaite le geste chirurgical et ses effets, cette étape pourrait conduire à évaluer et à émettre un pronostic du résultat thérapeutique.
L’endoscopie et la laparoscopie sont, dans la littérature, les principales applications actuelles des systèmes de simulation réaliste [64,74,75,76]. Ceci s’explique par les contraintes tridimensionnelles intrinsèques à ces procédures : les outils (limités en nombre et en complexité, avec un nombre faible de degré de liberté) se déplacent via une ouverture restreinte pour effectuer des actions géométriquement simples, dont les modélisations sont relativement faciles à réaliser en comparaison à des chirurgies à ciel ouvert. Il y a, de plus, peu d’interactions entre les outils et les tissus. L’étape de simulation consiste en une simulation du geste chirurgical utilisant les données du patient, en cela elle met en jeu les mêmes outils matériels et logiciels nécessaires à une simulation pour l’enseignement. Par contre, le réalisme de la visualisation et de l’interaction n’est pas fondamental pour la simulation basée patient, contrairement à la simulation à but pédagogique.

Entrées : Entités ou informations image sélectionnées, scénario chirurgical, etc.
Sorties : Scénario chirurgical validé
Paramètres utilisés : Jugement personnel à partir de données non formelles (livres, connaissances, échanges verbaux ou écrits, etc.)
Méthodes et outils utilisés : Outils de visualisation 3D et d’interaction, dont les interfaces « haptiques » et les systèmes de réalité virtuelle, etc.

Discussion : Cette étape est aujourd’hui inexistante en neurochirurgie. Principalement à cause de la difficulté de modéliser de façon réaliste la neurochirurgie à ciel ouvert et toutes ses actions et interactions possibles. Les problèmes liés au développement d’outils pour une simulation réaliste de la procédure neurochirurgicale sont nombreux. La visualisation doit inclure un rendu photo-réaliste des surfaces, ainsi qu’un rendu volumique 3D temps réel des structures, et utiliser des systèmes de réalité virtuelle pour l’affichage [40,65,66]. Des interfaces « haptiques » adaptées aux outils chirurgicaux utilisés doivent être développées, permettant le retour, vers l’utilisateur, d’informations sensorielles liées à l’action sur le modèle 3D. Les propriétés visuelles et biomécaniques des tissus doivent être modélisées de façon réaliste, afin de permettre une interaction réaliste entre les outils virtuels du chirurgien et les scènes 3D [18]. La modélisation du flux sanguin et du liquide cérébro-spinal est aussi nécessaire au réalisme de la simulation neurochirurgicale. Enfin, une meilleure connaissance des processus cognitifs du chirurgien (actions, décisions) et leur modélisation complètent ce paysage déjà complexe [25]. Malgré tout, des premiers prototypes d’application de simulation neurochirurgicale apparaissent, principalement à but didactique [40]. Ces premiers systèmes s’appuient sur des simplifications importantes pour réduire complexité et temps de calcul. Certaines hypothèses sont réalisistes : faible volume de tissu exposé, manipulations lentes et déplacements faibles des structures ; d’autres le sont moins, comme l’homogénéité des propriétés physiques du parenchyme (ce qui est vrai pour le parenchyme normal uniquement) ou l’effet négligeable des autres structures anatomiques sur la simulation.

1.1.3.5 Réalisation
C’est l’étape clé du processus puisqu’elle consiste à réaliser le geste chirurgical. Cette étape se base sur toutes les informations définies et collectées et sur les choix réalisés lors des étapes précédentes.

Aspects matériels

Il est commun de classifier les systèmes de chirurgie assistée par ordinateur utilisés dans cette étape en fonction de leur degré de passivité dans la réalisation du geste. L’équipe du TIMC-

9 Et non interfaces “hépatiques”… lu dans le commentaire de Patrick Kelly page 496 dans [25]
GMCAO de Grenoble distingue trois types de matériels : les systèmes passifs, actifs et semi actifs [31]. Nous proposons une classification inspirée de leur travail \(^{10}\).

Les **systèmes passifs** consistent à offrir au chirurgien en salle d’opération les informations provenant des étapes précédentes (préparation et simulation) et présentée sous une forme sensorielle (visuelle, sonore, sensitive, etc.). Ces informations proviennent de la stratégie chirurgicale définie dans les étapes précédentes (images du patient, structures 3D sélectionnées, étapes du geste chirurgical, modèle du volet osseux, trajectoire d’accès, etc.). Ces systèmes laissent toute liberté au chirurgien dans la réalisation du geste. Ils ne font que proposer ou soumettre une information.

Les **systèmes semi-actifs** fournissent une aide physique au guidage et pas seulement une aide informationnelle. On distingue, dans cette catégorie, différents types d’aide physique : le guide mécanique, la contrainte physique, le modèle. Les guides mécaniques permettent généralement de déplacer un outil vers une position et selon une orientation définie lors de la préparation et/ou de la simulation. Reste au chirurgien à réaliser le geste à partir de cette position et orientation de l’outil. Les systèmes à contrainte physique, appelés aussi systèmes synergie, permettent de limiter volontairement les possibilités de déplacement d’un outil chirurgical [74,75,43]. Le chirurgien et le système tiennent tous deux l’outil, mais seul le chirurgien est responsable du contrôle final de l’outil. Dans ce cas, le système aide le chirurgien à ne pas s’éloigner de la stratégie établie. Enfin, il est possible de réaliser des véritables modèles 3D d’une information du scénario chirurgical (en utilisant, par exemple, des techniques de stéréolithographie). Ces modèles sont positionnés sur le patient et servent de guides lors de l’intervention [41].

Enfin, les **systèmes actifs** sont chargés, de manière totalement autonome, de la réalisation d’une partie de la procédure chirurgicale. Cette dernière catégorie regroupe les systèmes robotiques traditionnels motorisés, dont le système ROBODOC [38] est un exemple. Les systèmes robotiques permettent d’augmenter la dextérité naturelle du chirurgien et de mettre en place des nouvelles procédures chirurgicales. Ceci est notamment le cas quand le geste s’appuie sur des informations image à un niveau de détail qui ne peut être manipulé par la main du chirurgien sans l’aide d’un tel système.

Même si cette classification permet une distinction intéressante des systèmes de chirurgie assistée par ordinateur utilisés lors de l’étape de réalisation du geste, elle n’est pas totalement satisfaisante. Prenons l’exemple des systèmes stéréotaxiques, avec ou sans cadre et robotisés ou non. Ce type de systèmes est difficile à classifier entre semi-actifs et actifs. Troccaz et al. [31] les positionnent dans la catégorie semi-actifs car c’est au chirurgien de faire réaliser l’ouverture et de faire pénétrer la sonde à biopsie le long de la trajectoire rectiligne du porte outil. Mais si l’on prend en compte que même la profondeur de pénétration de la sonde a été calculée lors des étapes de préparation et simulation, le chirurgien ne fait qu’appliquer strictement les choix définis précédemment, cette étape pouvant être facilement robotisée [20]. Dans ce cas, il est vrai que le système n’est pas réellement actif, mais l’utilisation par le chirurgien de l’information provenant des étapes de préparation et/ou de simulation le rapproche des systèmes actifs en tant que responsables à part entière de la réalisation de la procédure ou d’une de ses sous parties.

Comme cela a été précédemment souligné, cette classification est adaptée au domaine de la chirurgie assistée par ordinateur. Détailons un peu plus le cas qui nous intéresse, celui de la chirurgie guidée par l’image au sens où nous l’avons défini et les caractéristiques de son étape de réalisation. Cette étape permet principalement, après mise en correspondance géométrique

\(^{10}\) Ils proposent aussi une décomposition intéressante fondée sur l’interaction homme/machine qui différencie : faire, faire faire, faire ensemble et laisser faire.
des repères liés au patient et aux images, de visualiser, de manière interactive et en salle d’opération, la localisation dans les images du patient d’un point désigné sur l’anatomie du patient. Dans cette définition rapide, on retrouve les principales caractéristiques : la localisation 3D, la mise en correspondance entre le patient et ses images, la visualisation et l’interactivité.

1.1.3.5.1 Localisation 3D

La principale idée en chirurgie guidée par l’image est l’utilisation de systèmes permettant de localiser, dans l’espace tridimensionnel réel, les coordonnées d’un point. Ces systèmes sont généralement appelés **localisateurs 3D**. Différents types de localisateurs ont été développés, qui se distinguent par la technologie employée : localisateur mécanique, optique, sonore, magnétique, GPS, etc. Ils permettent ainsi de localiser le patient mais aussi les outils chirurgicaux, un endoscope ou un microscope chirurgical, par exemple.

Les **localisateurs mécaniques** sont une famille à part des localisateurs [71]. En effet, certains systèmes semi-actifs, voire actifs, peuvent avoir une fonction de localisation. Généralement ils consistent en un bras disposant de six degrés de liberté, portant un outil et dont chacune des articulations est encodée. Sa manipulation n’est pas simple et le risque de déformation (par flexion, lors de l’application d’une force trop importante) entraîne une insécurité des résultats.

Tout autre système de localisation possède une composante matérielle qui consiste en des émetteurs actifs ou passifs positionnés sur un ou des outils chirurgicaux et des récepteurs actifs ou passifs qui détectent la position 1D ou 2D des émetteurs, et une composante logicielle qui calcule la position 3D des émetteurs à l’aide des positions 1D ou 2D.

Les **localisateurs optiques** [73] : les émetteurs peuvent être actifs comme des diodes électroluminescentes dont la fréquence est repérée par trois caméras linéaires infrarouges 1D ou deux caméras 2D, ou passifs. Les émetteurs passifs peuvent consister en des formes géométriques caractéristiques reconnues par des caméras travaillant dans le visible.

Les **localisateurs ultrasonores** consistent à fixer un émetteur d’ultrasons sur l’outil, puis de mesurer le temps de parcours de ces ultrasons pour pouvoir calculer la position de l’outil. Ils sont très influencables par diverses variables environnementales telles que l’inhomogénéité de l’air et les mouvements des masses d’air.

Les **localisateurs électromagnétiques** [72] sont très sensibles à la présence d’objets métalliques dans l’environnement du localisateur ou des émetteurs.

Les **localisateurs de surface** s’appuient sur une mesure 3D de la surface du champ opéra­toire calculée à l’aide de techniques de stéréoscopie appliquées sur des images vidéos du champ opéra­toire ou sur un balayage laser de ce champ [4,5].

1.1.3.5.2 Mise en correspondance images-patient

La mise en correspondance géométrique entre un patient et ses images, ou entre un outil et les images, fait partie des applications de fusion entre sujet et modalités telles qu’elles ont été définies dans la section 1.1.2.4.2 et met en jeu les techniques de recalage qui ont été expliquées en détail dans le chapitre 0. Les principaux paradigmes du recalage dans ce contexte sont :

- la transformation géométrique recherchée : rigide ou non linéaire,
- les structures homologues qui peuvent être des points appelés aussi fiduciaires et correspondants à des marqueurs collés sur la peau, à des marqueurs osseux fixés, ou à des points anatomiques caractéristiques, des surfaces (comme un nuage de points scanant la surface d’un objet anatomique caractéristique : peau, vertèbre, etc.) ou des volumes provenant d’IRM interventionnelle ou d’échographie 3D, par exemple.
1.1.3.5.3 Visualisation et interaction

Les approches utilisées pour visualiser les informations du scénario chirurgical en salle opératoire peuvent être décrites en fonction : de l’information partagée entre les données pré opératoires et le patient (théoriquement : un point, un contour, une image, une surface ou un volume), de la représentation graphique utilisée pour visualiser cette information (graphiques, texture, transparence, codage de couleur, etc.), de l’espace de projection et de visualisation cible (dans les images pré opératoires, directement sur le patient, dans une image vidéo du monde réel, ou dans un système de vision du monde réel et du matériel utilisé pour la visualisation (écran d’ordinateur, casque de réalité virtuelle, microscope, etc.) [41]. Dans notre contexte de chirurgie guidée par l’image, la plupart des combinaisons ont été mises en œuvre.

Il existe différentes manières de désigner l’information à partager entre données pré opératoires et patient. Quand cette information se limite à un point, ce qui est le cas le plus fréquent, ce point est le plus souvent désigné par le bout d’un pointeur, le bout d’un outil chirurgical ou le point focal d’un microscope localisé. Dans ce cas, c’est la position de ce point dans les images pré opératoires qui sera calculée et présentée au chirurgien. Ce point peut aussi être présenté sous la forme d’un curseur 3D, dans une scène elle aussi 3D.

L’information partagée peut aussi consister en une surface : comme la surface reconstruite à partir d’images stéréoscopiques, à partir d’une grille ou d’un contour de lésion et projetée par un laser sur le patient [4, 37]. Dans ce cas, les surfaces seront fusionnées dans une même scène. Enfin, l’information peut consister en un volume provenant, par exemple, d’imagerie interventionnelle IRM ou d’échographie 3D.

1.1.3.5.4 Imagerie intra opératoire ou imagerie interventionnelle

L’acquisition d’images intra opératoires ou interventionnelles est motivée soit par l’obligation d’acquérir des informations sur le patient en absence d’images pré opératoires, soit pour mettre à jour la connaissance que le neurochirurgien a de l’anatomie du patient, notamment dans le cas de déformations anatomiques intra opératoires. Ces acquisitions se font en salle d’opération pendant la réalisation de la procédure chirurgicale.

Le principe de l’IRM interventionnelle est d’optimiser les protocoles d’acquisition d’images par résonance magnétique pour permettre une acquisition quasi-temps réel (Figure 1.1.9). Si l’aimant de l’appareil est fermé, les gestes chirurgicaux sont effectués en dehors de l’aimant, l’IRM permet alors des contrôles successifs (Figure 1.1.10). Si l’on utilise un aimant ouvert horizontalement ou verticalement (Figures 1.1.8, 1.1.11, 1.1.12 et 1.1.13), l’intervention chirurgicale se déroule en continu dans l’appareil.

Figure 1.1.8 : Le système Signa SPD (0,5 Tesla) de type « beignet » de la société General Electric Medical Systems. Le chirurgien a accès au champ opératoire par l’espace compris entre les deux anneaux de l’appareil (image de droite).
Figure 1.1.9 : Images coronales et axiales d’IRM interventionnelle.

Figure 1.1.10 : Le système Magnetom de la société Siemens\(^{11}\) utilisé avec les systèmes de neuronavigation de la société Brainlab\(^{12}\).

Figure 1.1.11 : Le système Magnetom Open (0.2 Tesla) de la société Siemens.

Figure 1.1.12 : Le système Airis Mate (0.2 Tesla) de la société Hitachi\(^{13}\).

Figure 1.1.13 : Le système Polestar N20 (0.15 Tesla) de la société Odin Medical Technologies\(^{14}\) utilisé avec les systèmes de neuronavigation de la société Medtronic SNT.

L’intérêt principal de ces systèmes est de fournir rapidement une image intra opératoire de qualité. La plupart des protocoles IRM sont aussi utilisables sur ce type de machine (T1, T2, DP, FLAIR, notamment). Il est donc possible d’imager l’anatomie du patient pendant le déroulement de l’intervention et de permettre une chirurgie plus complète et moins invasive. Les principales limites de ces systèmes sont liées à la qualité des images, à son coût d’achat, mais aussi au coût lié à son installation et à son utilisation : tout le matériel présent dans la salle d’opération doit être amagnétique et la salle d’opération doit être installée dans une cage de Faraday permettant d’isoler des interférences électriques externes (Table 1.1).

\(^{11}\) http://www.kgu.de/zrad/Diagnostik/institut_mrtopen.shtml
\(^{12}\) http://www.brainlab.com
\(^{13}\) http://www.hitachi-medical.com.sg/products/airisMate.htm
\(^{14}\) http://www.odinmed.com/
L’imagerie échographique a retrouvé une place perdue dans la salle d’opération. La qualité des images obtenues, la rapidité d’acquisition, les nouvelles possibilités d’images tridimensionnelles et son faible coût ont fait une nouvelle place importante à cette modalité d’imagerie en salle d’opération (Figure 1.1.14).

Figure 1.1.14 : Images échographiques 2D acquises pendant une intervention neurochirurgicale et montrant les sillons corticaux (image de gauche) et la zone tumorale (image de droite).

Un système de « fluoroscopie » ou appareil de radioscopie est un appareil qui sert à produire, en direct et sur un écran fluorescent, l’image d’un corps interposé entre cet écran et une source de rayonnement X (Figure 1.1.15). Ce type de système est particulièrement utilisé en chirurgie orthopédique, et notamment pour la chirurgie de la vertèbre [17] (Figure 1.1.16), du rachis, du genou ou pelvienne pour identifier les structures osseuses.

Figure 1.1.15 : Le système FluoroNav de la société Medtronic SNT.
Figure 1.1.16 : Images fluoroscopiques pour l’aide à l’insertion de vis pédiculaires.

L’angiographie interventionnelle est utilisée en neuroradiologie interventionnelle pour la visualisation des vaisseaux sanguins et artères. Cette imagerie permet de guider l’insertion de systèmes pour l’occlusion mécanique dans le cas d’anévrismes artériels ou de malformations artério-veineuses cérébrales, par exemple (Figure 1.1.17).

Figure 1.1.17 : Angiographie en neuroradiologie interventionnelle. Occlusion d’un anévrisme par un « stent » (têtes de flèches sur l’image B de gauche et image du milieu) et un « coil » (flèche sur l’image B de gauche et image de droite) [1,3].
L’endoscopie permet de visualiser l'intérieur d'une cavité du corps, comme les poumons, les ventricules ou l'intestin. Pour cela, on utilise un petit tube flexible, orientable, contenant des fibres optiques ou ayant une petite caméra vidéo à son extrémité. L'image transmise est alors visible dans un oeillet sous le bout du tube ou diffusée via un moniteur sur un écran vidéo.

Le principe du scanner X interventionnel a aussi été mis en œuvre et utilisé en clinique, notamment en radiologie interventionnelle. Le problème principal de cette technique est l’exposition du patient et du personnel médical aux radiations.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echographie</td>
<td>Facile d’accès, Pas de radiation</td>
<td>Résolutions spatiale et en contraste</td>
</tr>
<tr>
<td></td>
<td>Coût faible, Temps-réal</td>
<td>variables</td>
</tr>
<tr>
<td></td>
<td>Accès au patient aisé</td>
<td>Mauvaise imagerie des structures osseuses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>et des espaces remplis d’air</td>
</tr>
<tr>
<td>Fluoroscopie</td>
<td>Temps-réal</td>
<td>Radiations ionisantes, Simple projection</td>
</tr>
<tr>
<td></td>
<td>Imagerie des structures osseuses</td>
<td>Mauvaise résolution des tissus mous</td>
</tr>
<tr>
<td>Scanner X</td>
<td>Excellente résolution spatiale et temporelle</td>
<td>Capacité multiplan limitée</td>
</tr>
<tr>
<td></td>
<td>Possibilité de gestes stéréotaxiques</td>
<td>Insensible à la température, Accès au</td>
</tr>
<tr>
<td></td>
<td></td>
<td>patient limité, Radiations ionisantes</td>
</tr>
<tr>
<td>IRM (aimant fermé)</td>
<td>Excellente résolution des tissus mous</td>
<td>Coût élevé</td>
</tr>
<tr>
<td></td>
<td>Sensible au flux, à la diffusion et à la</td>
<td>Pas d’accès au patient pendant l’acquisition</td>
</tr>
<tr>
<td></td>
<td>température</td>
<td></td>
</tr>
<tr>
<td>IRM (aimant ouvert)</td>
<td>Accès au patient, Imagerie multiplan</td>
<td>Coût élevé</td>
</tr>
<tr>
<td></td>
<td>Bonne résolution des tissus mous</td>
<td>Disponibilité</td>
</tr>
<tr>
<td></td>
<td>Sensible à la température</td>
<td>Valeur du champ magnétique limitée</td>
</tr>
<tr>
<td></td>
<td>Pas de radiations ionisantes</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1 : Comparaison des différentes techniques d’imagerie interventionnelle d’après [15].

Il faut ajouter aux images intra opératoires possibles les vues réelles du patient (comme les images vues à travers les oculaires du microscope ou les images de caméras situées en salle d’opération) qui peuvent être utilisées comme une source d’information intéressante (voir les travaux présentés dans la Section 1.2.3.3). Nous pouvons aussi citer d’autres sources d’informations non-image qui peuvent être acquises en salle d’opération comme les stimulations corticales ou les examens histologiques extemporanés.

Les limites actuelles des modalités d’imagerie interventionnelle sont notamment liées à la qualité des images, aux problèmes d’interaction et de lourdeur liés à la procédure supplémentaire d’acquisition d’images, à leur intégration dans les systèmes d’archivage et de communication d’images installés dans les hôpitaux (appelés systèmes PACS), et aux besoins d’adapter les outils de recalage et de segmentation à ces nouvelles images [19]. De nouvelles modalités d’imagerie interventionnelle voient le jour dont la valeur ajoutée reste à démontrer dans notre contexte, comme l’imagerie optique ou la spectroscopie, par exemple.

1.1.3.5.5 La robotique neurochirurgicale

En neurochirurgie, les systèmes robotiques sont assez peu présents. Ils ont été principalement utilisés pour des procédures stéréotaxiques (biopsies ou implantation d’électrodes profondes en SEEG [20]). Au regard de la complexité de certains gestes neurochirurgicaux notamment ceux réalisés à ciel ouvert, il est difficile d’imaginer des systèmes robotiques pouvant intervenir dans tous les types de gestes. Il est plus crédible d’imaginer deux types d’outils pouvant être utilisés dans ce contexte : des outils de type semi-actifs qui peuvent réduire le
tremblement de la main du chirurgien pour des gestes de microchirurgie ou des outils de type écarteurs ou assistants chirurgicaux réalisant des actions très simples.

Les robots stéréotaxiques sont principalement utilisés pour le placement de sonde linéaire : sonde à biopsie ou électrodes. Citons les deux principaux systèmes. Le système Neuromate de la société « Integrated Surgical Systems » est un système robotisé à bras articulé à 5 axes développé en France en 1985 (Figure 1.1.18). Il est destiné au positionnement stéréotaxique d'un porte-instrument utilisant les instruments classiques de neurochirurgie stéréotaxique [20]. Le système MARS de la société « Mazor Surgical Technologies Ltd » a été développé en Israël au début des années 2000 (Figure 1.1.19). Ce robot a 6 degrés de liberté. Il est fixé directement sur la tête du patient, ne pèse que 150 grammes et mesure 7 centimètres de haut. Il peut soutenir des forces de quelques kilogrammes. Pour un état de l’art dans ce domaine, citons [14,33,34,35].

1.1.3.5.6 Sortie

Aujourd’hui, les données en sortie de cette étape de réalisation de la procédure chirurgicale consistent en des documents multimédia non organisés (vidéos, photographies) et en une mémorisation de la procédure qui sera utilisée pour rédiger le compte rendu post opératoire. Il serait intéressant que les systèmes de chirurgie guidée par l'image puissent générer un document opératoire qui reprend les différentes étapes réalisées, les incidents éventuels, et les résultats des étapes. Ce document pourrait comprendre des données multimédia associées aux étapes, événements ou résultats, comme des photographies, des résultats d’analyses ou des images interventionnelles, par exemple. Ce document pourrait se présenter sous la forme d’un document papier ou d’un document électronique généré automatiquement, qui pourrait être une première initialisation du compte-rendu post opératoire. Il serait aussi

15 http://www.robodoc.com/eng/neuromate.html
16 http://www.mazorst.com
intéressant de pouvoir conserver l’expérience acquise pendant la prise en charge chirurgicale du patient.

1.1.3.5.7 Résumé
Entrees : Données de toutes les étapes précédentes
Sortie : Documents opératoires
Paramètres utilisés : Outils, assistants, images intra opératoires, signaux intra opératoires, etc.
Méthodes et outils utilisés : Systèmes actifs, passifs ou semi-actifs, outils de traitement et d’analyse d’images : recalage images-patient, recalage images pré et intra opératoires, systèmes robotiques, etc.

1.1.3.5.8 Discussion
C’est dans cette étape que se sont concentrés la plupart des efforts de recherche et développement en chirurgie guidée par l’image ou assistée par ordinateur. Il est vrai que cette étape est l’objectif principal de tout le processus. Malgré tout, elle n’est qu’une étape du processus. Il a été notamment démontré l’importance de la préparation du geste sur la qualité de cette réalisation [66,67,68,69].

Il est important que, pendant cette étape, les systèmes de chirurgie guidée par l’image tiennent mieux compte de la réalité du geste chirurgical, que ce soit pour les aspects de déformations anatomiques intra opératoires (nous reviendrons sur ce point dans le Chapitre 3) ou pour les aspects ergonomiques des systèmes. Les neurochirurgiens sont nombreux à souligner la faiblesse de l’interaction homme/machine, notamment dans la visualisation intra opératoire des images pré opératoires. Nous proposerons une nouvelle approche dans la section 1.2.3.

1.1.3.6 Période post opératoire
Principe : Certaines interventions nécessitent un suivi post opératoire pour vérifier leur bonne réalisation. La résection de la zone tumorale est-elle complète ? La localisation des électrodes implantées est-elle conforme à la planification ? Quel est le bilan fonctionnel du patient et les zones fonctionnelles saines ont-elles été respectées durant la chirurgie ? Ces différents contrôles peuvent avoir besoin de l’acquisition de données supplémentaires (notamment des images) dont leur mise en correspondance avec les données pré ou intra opératoires peut être souhaitable pour faciliter la comparaison. Le suivi peut aussi demander un contrôle continu sur une période temporelle importante. Suivi et contrôle peuvent apporter des éléments pour la validation clinique de l’intervention. En vérifiant la pertinence des hypothèses émises lors des différentes prises de décision (diagnostique, pronostic, choix de la thérapie, choix de la stratégie chirurgicale, etc.), le chirurgien peut valider sa compétence, mettre à jour des bases de données de cas cliniques et faire profiter de son expérience. Il est évident que cela nécessite un contrôle standardisé des résultats cliniques et une honnêteté professionnelle pas toujours facile à mettre en œuvre [32].

Dans cette période post opératoire, un compte-rendu est rédigé, destiné principalement au médecin traitant. Il reprend les éléments principaux de l’histoire clinique du patient, les examens cliniques réalisés en période pré opératoire et les conclusions associées à ces examens, la description des étapes principales de la procédure chirurgicale réalisée et certaines observations intra opératoires ainsi que la description de la période post opératoire du patient.

Entrees : Résultats des étapes précédentes.
Sorties : Résultat post opératoire, compte-rendu post opératoire
Paramètres utilisés : Examens cliniques, acquisition de données multimodales
Méthodes et outils utilisés : Outils de traitement et d’analyse d’images et de signaux
Discussion : Nous reviendrons sur ce point dans la section suivante et dans le Chapitre 2. Néanmoins, nous pouvons d’ores et déjà souligner les faibles possibilités de traçabilité ou de stockage des résultats opératoires et donc l’absence d’outils permettant une analyse et une validation des choix et des procédures réalisées. Soulignons aussi le manque d’outils d’aide ou d’automatisation pour la génération des comptes-rendus post opératoires.

1.1.4 Notion de système péri opératoire

Comme nous venons de voir, la chirurgie guidée par l’image est un processus complet qui s’étale de la prise de décision thérapeutique jusqu’au suivi post opératoire. Dans la définition de systèmes de chirurgie assistée par ordinateur, on a eu, ces dernières années, trop souvent tendance à résumer la chirurgie à quelques étapes proches de sa réalisation. Une tendance actuelle se dessine qui prend en compte le concept de systèmes péri opératoires. La notion de systèmes péri opératoires inclut tout système intervenant dans la prise en charge du patient à partir de points physiques et temporels disparates (en général, leur lieu d’habitation), à travers la salle d’opération, jusqu’à un point physique et temporel où les futurs événements liés au patient n’ont pas d’impact sur les actions liées à la salle d’opération [21] (Figure 1.1.20). Le temps péri opératoire commence donc, pour un patient donné, par la décision de réaliser une procédure chirurgicale jusqu’à la fin de la période post opératoire. Il est commun de distinguer la description grossière de ce processus global de la description fine des étapes pré, intra et pré opératoires « proches ». On entend par ce terme de proximité les étapes concernées par ce rapport, telles qu’elles ont été décrites dans les paragraphes précédents.

Figure 1.1.20 : Exemple de vision péri opératoire en chirurgie [21].

Les motivations pour aborder la chirurgie guidée par l’image ouassistée par ordinateur sous cet angle péri opératoire sont nombreuses. Sandberg et al. [21] expliquent certaines mises en
place difficiles des nouveaux systèmes de ChGI par une faible prise en compte des implications liées à l’insertion d’un nouveau système dans la globalité du processus péri opératoire. Ils soulignent aussi la faible optimisation du processus lié à une mauvaise communication des données ou informations entre ses différents composants ou à des redondances d’informations. Ils vont jusqu’à justifier bon nombre d’accidents chirurgicaux par cette mauvaise gestion des informations. Il est donc un enjeu fort de la chirurgie guidée par l’image, pour la sécurité même des patients et l’optimisation des ressources humaines, matérielles et financières, d’intégrer dans la définition de nouveaux systèmes de chirurgie assistée par ordinateur cette notion de systèmes péri opératoires. Nous reviendrons plus en détail sur ce point dans la section 2.1.3.

Nous avons aussi souligné que les systèmes de chirurgie guidée par l’image sous-estiment l’importance de la traçabilité tout au long du processus chirurgical. La prise en compte de la notion de systèmes péri opératoires devrait sensibiliser un peu plus les concepteurs et les utilisateurs de tels systèmes à l’importance de conserver traces, non seulement des informations acquises tout au long du processus, mais aussi des choix et des actions réalisées. Tracer permet de revenir sur ce qui a été réalisé, d’étudier les raisons du succès ou de l’échec, de comparer, de conserver une connaissance, une trace de l’expérience qui pourra enrichir la totalité des connaissances et aider les cas suivants. Tracer peut aider à valider ou simplement à mieux comprendre ou à mieux expliquer.

1.1.5 Les informations

La neurochirurgie est, par la nature même de l’organe visé (principalement, le cerveau), une spécialité chirurgicale dont l’exercice nécessite des informations multiples et notamment des images anatomiques mais aussi fonctionnelles, métaboliques ou pathologiques. De plus en plus, la neurochirurgie guidée par l’image fait intervenir un ensemble important d’informations que l’on peut distinguer de la manière suivante : les observations liées au patient et les connaissances génériques explicites ou implicites. Les observations liées au patient incluent notamment les images et signaux, des analyses ou des interviews cliniques (principalement décrites dans la section 1.1.2.1). Parmi ces informations, certaines sont acquises avant l’intervention (imagerie pré opératoire) et certaines sont acquises pendant l’intervention (imagerie intra opératoire). Associées à ces observations, le processus chirurgical a aussi besoin de s’appuyer sur des données ou connaissances génériques. Ces connaissances génériques peuvent être explicites (comme des livres ou des atlas numériques d’anatomie) ou implicites résultant de son expérience. Cet aspect sera abordé en profondeur dans le Chapitre 2.

1.1.6 Les acteurs

Dans ce processus péri opératoire, de nombreux acteurs interviennent : radiologues (ils acquièrent, interprètent et fournissent les images), anatomo-pathologistes (ils fournissent des analyses de pièces pathologiques provenant de biopsies), neurochirurgiens (ils sont assistant pendant l’intervention ou intervenant principal), anesthésistes (ils sont présents à la préparation et pendant l’intervention chirurgicale), infirmières (de chambres ou de bloc opératoires), instrumentistes (ils préparent et sélectionnent les instruments chirurgicaux avant et pendant l’intervention), ingénieurs (ils suivent l’utilisation des systèmes informatiques avant, pendant et après l’intervention). Cette liste non exhaustive montre la diversité des compétences mises en jeu dans le processus chirurgical. En rapport avec les limitations soulignées dans le paragraphe sur les systèmes péri opératoires, un manque de communication et d’échange clairs entre les différents acteurs est dommageable pour tout le processus. Le besoin d’une organisation et de groupes de travail péri opératoires est souhaitable.
1.1.7 Les principales applications de la neurochirurgie guidée par l’image

Les systèmes de neurochirurgie guidée par l’image sont principalement utilisés pour préparer la craniotomie, localiser des tumeurs profondes, pour réaliser des biopsies stéréotaxiques, en neurochirurgie fonctionnelle (implantations d’électrodes profondes de SEEG ou de Parkinson), et pour la chirurgie de la base du crâne et des lésions en zones fonctionnelles éloquantes. Ils sont aussi utilisés en neuroradiologie interventionnelle, en radiothérapie, et pour aider à la réalisation de gestes endoscopiques (voir l’article de revue général [36]). Dans la partie de l’orthopédie proche de la neurochirurgie, les principales applications concernent notamment l’insertion de vis pédiculaires.

1.1.8 Bénéfices pour le patient

Comme il sera présenté dans la section Erreur ! Source du renvoi introuvable., la validation d’une technologie s’étend d’une étude des performances techniques jusqu’à une étude de son impact socio-économique, en passant notamment par les études de plus-value pour le patient et de rapport coût/efficacité. La littérature est féconde sur l’étude des performances techniques de la chirurgie guidée par l’image, en terme de précision notamment (voir le Chapitre 4). Par contre, l’évaluation de la plus-value pour le patient et la réduction des coûts sont des études plus rares car aussi plus difficiles à mettre en œuvre. En effet, une telle étude devrait théoriquement être effectuée en aveugle, grâce à des méthodes de type « cas-témoins » où, pour des populations homogènes, certains cas sont réalisés avec la technique et d’autres sans, permettant ainsi la comparaison des coûts et des résultats cliniques. Ce schéma est difficile à mettre en œuvre du simple fait qu’un chirurgien ne peut pas se permettre de ne pas utiliser une technologie, qui lui paraît bénéfique, sur un sous-ensemble de patients pour une simple motivation de recherche clinique. De plus, il reste difficile d’accéder aux résultats cliniques sur une période courte pour la raison suivante : certaines techniques n’ont pas le recul suffisant, en terme de nombres d’interventions, pour permettre de juger. Juger le bénéfice sur la santé du patient implique un suivi du patient dans le temps sur de longues périodes.

17 La neurochirurgie est étonnamment absente des spécialités chirurgicales étudiées.
du nombre de complications post-opératoires sévères, réduction du temps d’hospitalisation global et réduction du coût total de la prise en charge. Les limites de cette étude sont les suivantes. Le faible nombre de cas étudiés et la relative homogénéité des populations étudiées relativisent la valeur des tests statistiques, de plus, la réduction du temps d’hospitalisation et du coût total de la prise en charge dépend fortement de la réduction du nombre de complications post-opératoires sévères qui, elle, ne passe que de 14% de cas à 6% de cas avec l’utilisation d’un système de neuronavigation. Enfin, les cas cliniques opérés sans système de neuronavigation sont des cas rétrospectifs. Malgré tout, la démarche est intéressante et il n’est pas sûr qu’elle puisse être renouvelée. En effet, la plupart, voire la totalité, des services de neurochirurgie sont aujourd’hui équipés de tels systèmes et sont difficilement disposés à désigner un sous-ensemble de patients ne pouvant bénéficier de leurs avantages. Deux autres études « cas-témoin » peuvent être citées : 68 glioblastomes opérés avec neuronavigation dont 52 appariés à un groupe témoin rétrospectif [44], 42 lésions cérébrales dans le cortex moteur primaire opérés avec neuronavigation et électrophysiologie dont 28 appariés à un groupe témoin rétrospectif [45]. D’autres études sont rapportées mais consistent principalement en des études de cas cliniques et ne proposent donc pas de comparaison avec, versus sans, la technique, seule façon de réellement étudier l’impact clinique d’une nouvelle méthode. Dans le contexte de la chirurgie du rachis, on peut citer deux études phares pour l’évaluation de la neuronavigation pour aider la pose de vis pédiculaires [46,47]. Ces deux études prospectives se fondent sur une comparaison cas-témoin pour, respectivement, 32 et 41 patients. Les deux études mettent des résultats comparables avec, versus sans, neuronavigation.

Malgré les précautions précédentes relatives au manque de données chiffrées pour estimer la plus-value clinique apportée par les systèmes de chirurgie guidée par l’image, ceux-ci apportent des solutions à certains des objectifs cliniques généraux liés à l’évolution des techniques chirurgicales.

Ces techniques ont pour but principal de réduire l’invasion du geste chirurgical grâce à :

- l’optimisation de la taille du volet osseux et de la craniotomie en général,
- et l’identification intra-opératoire de la zone à atteindre et des zones sensibles à éviter.

Elles permettent donc :

- un accès plus sûr et plus rapide à la zone lésionnelle cible,
- la réalisation d’exérèses, les plus complètes possibles,
- le respect des zones fonctionnelles et anatomiques saines,
- et la réduction des risques infectieux.

Les conséquences plus générales sont donc :

- la réduction de la morbidité fonctionnelle,
- la réduction de la mortalité,
- l’amélioration de la qualité de vie post-opératoire du patient,
- la réduction des durées de l’intervention, des durées de séjours en soins intensifs post-opératoires et des durées d’hospitalisation en général,
- et donc la réduction des coûts économiques.

Les critères quantitatifs principalement utilisés sont :

- le pourcentage de résection,
- la durée de la préparation,
- la durée de la chirurgie,
• la durée de survie,
• le taux de mortalité,
• la dégradation neurologique,
• des indices de recouvrement fonctionnel (index de Karnofsky18, par exemple),
• et le taux de complications post opératoires.

En chirurgie du rachis, il est possible d’utiliser :
• le taux de perforation pédiculaire,
• la perte sanguine,
• et le temps opératoire de sous parties de la procédure (insertion de la vis, par exemple).

1.1.9 Repères historiques de la neurochirurgie

Il n’est pas dans le but de ce paragraphe de fournir un historique complet de la neurochirurgie. En quelques lignes et en s’inspirant de Liu et al. [24], il est possible de distinguer les étapes principales de l’évolution de la neurochirurgie, dont les premières traces remontent à plus de 12.000 années avant JC : 1) à partir de 10.000 av JC : définition des premiers outils et des premières compétences pour permettre une intervention invasive dans les structures crâniennes, 2) de 500 av JC jusqu’au XVIIe siècle : définition et connaissance du substrat anatomique, amélioration des outils et des méthodes pour l’accès et la manipulation du système nerveux central, 3) XVIIe et XIXe siècles : émergence d’une science chirurgicale et du concept de système nerveux fonctionnel, 4) XIXe siècle : développement de l’anesthésie, 5) fin du XIXe siècle : développement du concept et des pratiques liées à l’antisepsie et à l’aïsepsie, 6) fin du XIXe siècle, début du XXe siècle : émergence du concept de salle d’opération, 7) début du XXe siècle : émergence de l’invasion minimale avec l’introduction du microscope opératoire et des techniques de magnification, 8) milieu du XXe siècle : expansion des outils chirurgicaux et des techniques chirurgicales, 9) quarante dernières années : importance de l’imagerie dans la procédure chirurgicale. Dans les années 1960, l’imagerie s’est imposée comme un outil diagnostique puissant. Puis les chirurgiens ont réalisé certaines procédures dans les salles de radiologie. Puis, avec le développement des systèmes stéréotaxiques, l’image a servi à la préparation du geste chirurgical et est entrée dans les départements de neurochirurgie. Dans les années 90, l’image est entrée dans les salles d’opération avec l’introduction des systèmes de neuronavigation, puis ce sont les « imageurs » eux-mêmes qui sont entrés dans les salles d’opération pour une imagerie intra opératoire.

1.1.10 Etat actuel du marché

Le paysage de la chirurgie guidée par l’image a beaucoup évolué ces dernières années. Il fut un temps où de nombreux constructeurs se lançaient dans l’aventure, aussi bien en robotique médicale, qu’en neuronavigation. Depuis peu, le nombre de solutions commercialisées s’est réduit. Citons les industriels les plus présents sur le marché (au jour où ce document est écrit) : Medtronic SNT, Radionics, Brainlab, Compass International, Centerpulse (anciennement Sulzermedica) / Orthosoft, Ohio Medical, Precision implants, VTI, Aesculap, Praxim, z-kat Stryker.

Le logiciel libre en chirurgie guidée par l’image

Le phénomène du logiciel libre (appelé aussi « open source ») commence aussi à émerger dans notre domaine. Il existe, depuis quelques années, des logiciels libres adaptés au

18 http://www.oncoprof.net/Generale2000/g06_Classification/sch00_etatgeneral/sch00_eg01.html (FR) et http://www.hospicepatients.org/karnofsky.html (GB)
traitement d’images médicales. Le plus connu et peut être le premier (VTK pour *Visualisation ToolKit*19) était à l’origine orienté visualisation 3D de surfaces. Il s’est par la suite enrichi de fonctionnalités liées à la visualisation d’autres types de données 3D (dont les données volumiques) et à la gestion de données graphiques. Le succès de cet environnement a réellement été exponentiel. Suivant la même approche, le même groupe de personnes (devenu la société Kitware20) a été à l’origine de la mise en place de l’environnement ITK (pour *Insight Segmentation and Registration Toolkit*21) sponsorisé par la « *National Library of Medecine* » (NLM). La motivation originelle de la NLM était de fournir avec les données libres du « *visible human*22 » des logiciels libres, eux aussi, pour la visualisation et l’analyse de ces données. ITK est donc un environnement logiciel orienté objet et incluant des structures de données et des fonctions de base en traitement d’images médicales et plus particulièrement en recalage et en segmentation d’images. Là aussi, le succès a été progressif. D’autres initiatives similaires peuvent être citées comme MITK23 qui se base aussi sur ITK et VTK et qui peut être considéré comme une extension de ces environnements. Le lecteur pourra se référer au site Internet suivant qui liste les environnements logiciels libres ou les logiciels gratuits en imagerie médicale24. Une initiative récente propose de mettre en place un environnement de type logiciel libre, à partir des environnements ITK et VTK, pour faciliter le développement, ou du moins, le prototypage de nouveaux systèmes de chirurgie guidée par l’image par les laboratoires de recherche. Cet environnement appelé IGSTK25 (pour *Image Guided Surgery ToolKit*) doit contenir les objets et fonctions de base de tels systèmes, comme la connexion avec les modèles de localisateurs 3D les plus courants et les fonctions de recalage images-patient. La notion de temps réel doit être prise en compte ainsi que l’obligation d’une approche qualité logicielle facilitant l’utilisation en salle d’opération d’applications développées à partir de cet environnement. L’objectif d’IGSTK est d’éviter à chaque laboratoire de recherche le développement de ces fonctions de base indispensables et donc permettre à ces laboratoires de se focaliser sur l’innovation.

1.1.11 Conclusion

Cet état de l’art a principalement souligné que les systèmes de chirurgie guidée par l’image, utilisés actuellement en routine clinique, ne tiennent pas assez en compte la réalité de la neurochirurgie. Le chirurgien a besoin d’un ensemble d’images multimodales pour la prise en compte de la complexité anatomique, physiologique et métabolique des structures cérébrales. Malgré cela, dans les systèmes actuels, la seule information explicite utilisée est, le plus souvent, réduite à une simple imagerie anatomique. La procédure chirurgicale est une succession d’étapes et d’actions réalisées avec différents outils et selon différentes techniques. Malgré cela, dans ces systèmes, l’étape de préparation de la procédure chirurgicale réduit, le plus souvent, le geste chirurgical à la définition d’une cible et d’une trajectoire d’accès rectiligne. Dans l’étape de réalisation du geste, les images pré opératoires, présentées en salle d’opération, ne sont pas corrigées pour tenir compte des déformations anatomiques intra opératoires. Il n’existe pas, dans le processus actuel de chirurgie guidée par l’image, d’outils d’aide à la décision chirurgicale, ni de véritables étapes de simulation. L’objectif principal de mes recherches se situe là dans le besoin de minimiser cette discordance entre le geste

19 http://www.vtk.org
20 http://www.kitware.com
21 http://www.itk.org
23 http://mbi.dkfz-heidelberg.de/mitk/
25 http://www.igstk.org
opératoire vu par ces systèmes et la réalité chirurgicale, en rendant explicites les étapes et les informations aujourd'hui implicites.
1.2 Contributions au domaine

1.2.1 Introduction
Depuis plus d’une dizaine d’années, j’ai porté mes efforts de recherche vers cette thématique de neurochirurgie guidée par l’image. Initialement, la motivation provenait des besoins exprimés par le professeur Jean-Marie Scarabin, responsable alors de l’équipe de recherche dans laquelle j’étais inséré. Ces besoins concernaient principalement le « planning thérapeutique assisté par ordinateur » dont les applications principales étaient la chirurgie stéréotaxique et la chirurgie de l’épilepsie26. Ainsi, mes premiers travaux ont concerné la réalisation de biopsies stéréotaxiques avec cadre, à partir d’une imagerie multimodale (IRM et CT) 3D [P_40] et pilotant, dans un deuxième temps, un robot médical (Neuromate) pour le déplacement de la sonde à biopsie. Un réseau de Pétri avait été utilisé pour modéliser la séquentialité de la procédure de biopsie stéréotaxique. La dernière étape de la préparation de la procédure consistait à parcourir, sur l’image 3D CT ou IRM, les structures ou voxels et leurs voisins traversés par la sonde à biopsie pour valider la trajectoire choisie. Les différentes étapes ainsi que les coordonnées des points cible et d’entrée, les traitements réalisés sur les images (recalage, fenêtrage, segmentation) étaient tracées et sauvegardées dans un fichier lié au patient et rejouées à volonté avant ou après l’intervention. Profitant des nombreuses sources d’images numériques anatomiques et fonctionnelles, présentes sur le site hospitalier de Rennes, et en s’appuyant sur le développement et l’intégration de méthodes de recalage et de segmentation d’images, j’ai introduit le principe de neuronavigation multimodale et multi-informationnelle (qui sera présenté dans la section 1.2.2) [P_9,P_10,P_11,P_29,P_35]. Tel que nous l’avons mis en œuvre, ce type de neuronavigation distingue clairement les étapes de pré planning, de préparation, de simulation et de réalisation du geste. A partir des limites soulignées lors de l’évaluation clinique de ce système sur plus de 50 patients, j’ai travaillé sur l’optimisation de la présentation des informations pré opératoires en salle d’opération (qui fera l’objet de la section 1.2.3) [P_2,P_19,P_34] et de leur gestion (qui sera un des objectifs des travaux présentés dans le Chapitre 2) [P_6,P_17,P_20,P_23,P_30,P_31].

1.2.2 Neuronavigation multimodalité et multi-informationnelle

1.2.2.1 Objectif
Le principe de la neuronavigation multimodalité et multi-informationnelle [P_11] est de permettre au neurochirurgien l’accès, en salle d’opération, à des entités anatomiques et fonctionnelles, extraites d’une imagerie pré opératoire multimodalité et sélectionnées pendant la phase de préparation du geste chirurgical. Comme nous l’avons souligné dans les sections précédentes, l’objectif principal du traitement chirurgical de patients avec des lésions intracrâniennes situées en régions éloignées est de réaliser une exérèse complète de la zone lésionnelle tout en préservant le tissu cérébral anatomiquement et fonctionnellement sain. Ainsi, pour minimiser les déficits neurologiques liés à l’acte chirurgical, le chirurgien doit maîtriser l’anatomie et l’organisation fonctionnelle des régions voisines de la lésion. Pour cela, le chirurgien a aujourd’hui accès à une imagerie pré opératoire et multimodale (anatomique et fonctionnelle) du patient à partir de laquelle il peut déterminer la ou les zones cible, les zones anatomiques ou fonctionnelles à éviter, les zones qui serviront de repère durant la réalisation du geste et, enfin, la ou les trajectoires

26 Jean Marie Scarabin avait été l’élève du Professeur Talairach, père de la chirurgie stéréotaxique et chirurgien de l’épilepsie.
d’accès aux zones cible. Une des limites principales des systèmes de neuronavigation utilisés en neurochirurgie étaient de ne prendre en compte qu’une seule modalité d’imagerie, en général anatomique. Quelques travaux relataient des approches multimodales qui se réduisaient souvent à une seule modalité supplémentaire [56,57,58,59]. Dans ce travail, nous avons offert au chirurgien les informations multimodales dans les phases de préparation et de réalisation de la procédure chirurgicale.

1.2.2.2 Matériels et méthodes

Acquisition : Les modalités pré opératoires acquises diffèrent selon le cas clinique à opérer. Pour les cavernomes, méningiomes, tumeurs de haut et bas grade, les examens réalisés sont les suivants: Imagerie par Résonance Magnétique 3D pondérée en T1 (IRM), Imagerie Fonctionnelle par Résonance Magnétique (IRMf) et Magnétoencéphalographie (MEG), selon des paradigmes d’activation moteurs, somesthésiques et/ou langage, choisis en fonction de la localisation de la zone lésionnelle. Dans le cadre de la chirurgie de l’épilepsie vient se rajouter une exploration fonctionnelle de la région pathologique par Imagerie de Perfusion par Résonance Magnétique (IRMp) et par Tomographie par Émission Mono Photonique (TEMP) ictale et interictale.

Etape de pré planning : Cette étape consiste à mettre les différents jeux de données dans un même repère géométrique puis à extraire les informations pertinentes de chaque jeu de données. Les jeux de données multimodales (IRMf, MEG, TEMP et IRMp) sont recalés avec l’examen IRM anatomique 3D. Le recalage entre MEG et IRM anatomique est réalisé par minimisation (méthode d’optimisation dite de Powell) de la distance de chanfrein (fonction de coût) entre la surface de la peau extraite de l’IRM et un nuage de points (structures homologues) acquis sur la peau du patient pendant l’examen MEG grâce à un localisateur 3D magnétique [48]. Les recalages entre IRMf et IRM, entre IRMp et IRM et entre TEMP et IRM sont réalisés par minimisation (méthode de Powell) de l’information mutuelle avec une approche multi-résolution.

Les informations, considérées comme pertinentes par le chirurgien pour préparer et aider à la réalisation du geste chirurgical, sont extraites ou segmentées à partir des jeux de données : volumes d’intérêt en IRMf, sources d’activité en MEG, sillons corticaux et contours des zones lésionnelles et de structures anatomiques en IRM anatomique, et volumes d’intérêt en TEMP ou en IRM de perfusion. La surface corticale et la surface de la peau sont segmentées à partir de l’IRM anatomique en utilisant des opérateurs de morphologie mathématique. Des méthodes de classification sont utilisées pour la segmentation de la matière blanche, de la matière grise et des ventricules [49]. Les sillons corticaux sont segmentés à partir de l’IRM anatomique par une méthode fondée sur l’analyse de courbure et sur l’utilisation de contours actifs [50]. Cette méthode permet de représenter un sillon cortical par sa surface médiane. Les surfaces des zones lésionnelles sont segmentées à partir de l’IRM soit par l’utilisation d’opérateurs de morphologie mathématique, soit manuellement. Les informations extraites des données de TEMP ictale ou inter ictale sont extraites par une méthode de calcul d’asymétrie [P_26]. Les sources d’activité sélectionnées en MEG ainsi que les régions détectées en IRMf sont représentées par une liste de points.

Etape de préparation du geste : Dans cette étape, le chirurgien sélectionne, parmi toutes ces données, celles qui caractérisent le mieux l’environnement anatomo-fonctionnel de la zone opératoire (Figure 1.2.1). Les sillons sélectionnés correspondent soit à une trajectoire d’accès à la zone lésionnelle (comme dans le cas des cavernomes), soit à une limite de résection chirurgicale (comme dans le cas des tumeurs de bas grade ou des cortectomies), soit sont proches de la zone lésionnelle et constituent des repères anatomo-fonctionnels (par exemple,
le sillon central). Seules les informations fonctionnelles situées à moins de 1.5 cm du bord de la zone lésionnelle sont sélectionnées. Toutes ces différentes entités sélectionnées sont transformées en surfaces 3D (format VTK) et décrites dans le repère géométrique de l’IRM 3D anatomique. Les surfaces des entités sélectionnées sont sauvegardées dans un fichier unique. Ce fichier est ensuite envoyé vers la station de neuronavigation et inclus aux données du patient.

Etape de simulation du geste : Cette étape consiste pour le neurochirurgien en une visualisation 3D et interactive de la scène 3D ainsi construite (Figure 1.2.2). Il vérifie la configuration spatiale des différentes informations, et se représente mentalement le geste qu’il va réaliser.

Etape de réalisation du geste : La phase de réalisation met en jeu un système de neuronavigation avec une fonctionnalité de réalité augmentée, permettant la superposition des données virtuelles pré opératoires dans le champ visuel du chirurgien pendant l’intervention, à travers les oculaires du microscope chirurgical (Figure 1.2.3). La mise en correspondance entre les images IRM pré opératoires et le patient lui-même en salle opératoire est réalisée avec le pointeur du système de localisation 3D. Après cette mise en correspondance, le système de neuronavigation que nous avons utilisé (Surgical Microscope Navigator / Carl Zeiss Oberkochen-Allemagne puis StealthStation / Medtronic SNT-USA) permet la localisation tridimensionnelle d’un pointeur par rapport aux images pré opératoires et la projection de graphiques dans l’oculaire droit du microscope chirurgical. Ces graphiques consistent en sections bidimensionnelles des surfaces des objets 3D présélectionnés (sections correspondant à l’intersection entre la surface 3D des objets et le plan focal du microscope). Les données graphiques relatives aux entités multimodales sélectionnées sont donc accessibles sous deux formes différentes : soit dans les oculaires du microscope lorsque le plan focal intersecte une des surfaces 3D des entités, soit sur la station image du neuronavigateur, affichées dans les plans de coupe de l’IRM ou dans la vue 3D de l’IRM. Pour détecter et corriger tout changement accidentel de position du patient ou du système de localisation 3D, une croix équipée de diodes électroluminescentes est fixée rigidement sur la têtière et détectée par le localisateur 3D.

1.2.2.3 **Résultats**

Ce système de neuronavigation multimodalité a été utilisé à ce jour pour plus d’une centaine d’interventions pour des patients présentant différentes pathologies : cavernomes, méningiomes, tumeurs de bas et haut grade et cortectomies.

Cas clinique : Sur ce patient de 53 ans, un examen IRM indique l’existence d’un cavernome situé au fond du sillon central (Figure 1.2.1). Des examens MEG (motricité et somesthésie) et IRMf (motricité) sont réalisés et montrent des résultats concordants. Une IRM anatomique 3D est acquise la veille de la chirurgie avec 8 marqueurs positionnés sur la peau du patient et servant au recalage entre images pré opératoires et patient. La chirurgie est réalisée trois mois après le premier examen IRM. Une petite craniotomie pariétale droite a été réalisée, centrée sur les informations anatomiques et fonctionnelles visualisées dans les oculaires du microscope. La dure-mère a été ouverte et le sillon central a été identifié avec le pointeur du système de neuronavigation. Une approche trans-sulcale a été utilisée pour accéder au cavernome à travers la partie supérieure du sillon central (Figure 1.2.2). Le chirurgien a réalisé une dissection précise d’une profondeur de 2.5 cm tout en préservant les structures vasculaires affleurant le sillon (Figure 1.2.3).
Figure 1.2.1 : Etape de préparation : Visualisation volumique de la surface corticale extraite de l’IRM, des sillons corticaux extraits et des données fonctionnelles (IRMf : jaune, MEG : violet et orange) (Patient LH).

Figure 1.2.2 : Vues 3D utilisées pendant l’étape de simulation montrant les entités sélectionnées et envoyées vers le système de neuronavigation. Sillons : pré central en vert et central en bleu. Informations fonctionnelles : IRMf moteur en jaune, MEG moteur et MEG somesthésique en orange et rose. Cavernome en rouge. (Patient LH).

Figure 1.2.3 : Etape de réalisation : Vues du champ opératoire à travers les oculaires du microscope. Les graphiques en vert correspondent aux données sélectionnées (sillons pré central (PreCS) et central (CS), information IRMf moteur et cavernome), affichées à deux moments de l’intervention : repérage cortical (gauche) et approche trans-sulcale vers le cavernome (droite). L’image de droite montre l’utilisation du sillon central comme guide d’accès au cavernome. (Patient LH).
1.2.2.4 Discussion et Perspectives

Les avantages cliniques de ce système de neuronavigation multimodalité sont principalement liés à l’accès aux informations sulcales et fonctionnelles lors de la préparation et la réalisation de la procédure chirurgicale. La participation du chirurgien à la segmentation et la sélection des sillons lui permet d’intégrer la cartographie sulcale du site chirurgical. Notre approche permet d’aider le chirurgien à reconnaître plus facilement les sillons sélectionnés une fois la dure-mère ouverte, notamment dans le cas de petits volets de craniotomie. L’identification et la visualisation des sillons permettent de guider le chirurgien vers la lésion. Les sillons sont utilisés ici, soit pour aider à localiser la lésion, soit en tant que trajectoire courbe menant à la lésion [60,61]. De plus, quand la lésion est une zone tumorale de haut ou bas grade, les sillons peuvent servir de limites de résection chirurgicale. Quant à l’identification des zones fonctionnelles lors de la chirurgie, elle permet de souligner les zones à éviter et peut conforter la localisation de certains repères anatomiques (sillon central, par exemple). Naturellement, l’affichage des contours de la zone lésionnelle optimise son accès et sa résection. De façon générale, la neuronavigation multimodalité permet de mieux atteindre (plus facilement et à moindre risque) la zone lésionnelle, de mieux définir les limites de la résection et d’éviter les régions fonctionnelles (motrices, somesthésiques, ou langage, selon les cas cliniques concernés) [P_9].

Le système de neuronavigation que nous avons utilisé offre la possibilité de visualiser les images pré opératoires dans les oculaires du microscope chirurgical pendant l’intervention en temps réel et à l’échelle 1 (Figure 1.2.3). Ces informations, qui consistent en des graphiques monoscopiques, monochromes et bidimensionnelles, se superposent à la vision du champ opératoire, consistant ce que l’on appelle couramment la réalité augmentée. Cette fonctionnalité, telle qu’elle est mise en œuvre dans notre système, a d’importantes limites dont la difficulté d’appréhender la forme 3D globale du sillon, la difficulté dans certaines situations de différencier les contours superposés et l’obligation de modifier la mise au point du microscope pour faire apparaître les contours, au détriment parfois de la netteté de la vue opératoire. Dans les sections suivantes, nous proposerons une nouvelle approche de visualisation pour répondre à ces problèmes.

La précision de notre solution est limitée par la déformation anatomique intra opératoire due à l’acte chirurgical. Selon la localisation et la taille de la zone opératoire, cette déformation peut rendre rapidement obsolète l’information anatomique de planning. Il peut donc être nécessaire de quantifier, voire de modéliser, ces déformations à l’aide d’une imagerie intra opératoire pour modifier les informations pré opératoires en fonction des déformations calculées (nous reviendrons sur ce point dans le Chapitre 3). Malgré tout, les sillons superposés constituent, pendant la procédure chirurgicale, des repères anatomiques qui peuvent aider le chirurgien à appréhender la région opérée, en dépit de ces déformations.

Le système d’analyse et de fusion de données multimodales proposé facilite la préparation et la mise en œuvre de l’intervention, en explicitant une véritable cartographie anatomo-fonctionnelle de la région à opérer. La neuronavigation multimodalité est une solution ouverte qui peut intégrer, en fonction des besoins cliniques, de nouvelles modalités (imagerie vasculaire, TEP, tractographie enIRM de diffusion, par exemple). Ce système est appelé multi-informationnel car, similaires, toute nouvelle information, qu’il est possible d’extraire des images et représentée à l’aide de surfaces 3D, peut être intégrée dans ce système.
1.2.3 Virtualité augmentée

1.2.3.1 Introduction

Dans les travaux précédents liés à la définition d’une neuronavigation multimodalité, nous avons souligné les limites de la visualisation des données pré opératoires en salle d'opération sous la forme de contours bidimensionnels affichés dans les oculaires du microscope chirurgical : 1) les contours sont 2D et monochromes, rendant difficiles la distinction entre les différentes entités image multimodales et l’appréhension d’une information qui est, à la base, tridimensionnelle, et 2) tous ces contours peuvent gêner la vision réelle du champ opératoire. Liu et al. [30] parlent d’un accroissement exponentiel de l’information que doit intégrer le neurochirurgien pendant une intervention et soulignent l’importance d’optimiser et d’adapter, voire de simplifier, la présentation et la communication de cette information au neurochirurgien dans une forme utile et intelligible. Pour optimiser la présentation de l’information, nous proposons deux approches originales. La première, que nous présenterons dans cette section, concerne le concept de virtualité augmentée permettant la visualisation conjointe des données pré et intra opératoires dans un espace virtuel. Le Chapitre 2 proposera une autre approche pour cette optimisation de l’interface homme-machine, notamment par la sélection des entités image à visualiser en fonction de leur rôle dans l’étape chirurgicale courante.

La visualisation intra opératoire de données pré opératoires reste un problème ouvert. Des systèmes de visualisation de type réalité augmentée (RA) ont été proposés. Certains systèmes de neuronavigation, comme celui utilisé dans les sections précédentes, visualisent des informations provenant d’une imagerie pré opératoire sous la forme de contours affichés dans l’oculaire droit du microscope chirurgical [12]. La réalité augmentée 3D a été mise en œuvre mais seulement pour visualiser la surface 3D de la zone lésionnelle cible [70]. Dans [13], les images 3D pré opératoires sont projetées de façon stéréoscopique dans un microscope fixé sur la tête du chirurgien. Dans [26], des images échographiques 2D sont superposées à la vision du patient grâce à un miroir semi-transparent. Dans [27], la même approche est utilisée pour visualiser des images 3D de façon stéréoscopique. Une autre approche est de superposer les images pré opératoires 3D dans les images vidéo 2D du patient et de visualiser le résultat sur un écran extérieur au champ opératoire. Dans [28,51,52], des surfaces 3D segmentées de l’IRM ou du scanner X sont superposées à la vidéo temps réel du champ opératoire (Figure 1.2.4). Ces approches nécessitent, pour la calibration du système, la projection d’une lumière structurée sur le champ opératoire. La principale limite des approches de type réalité augmentée est que l’image résultante est contrainte par la pose du système de vision. De plus, pour certaines de ces approches, l’extension à des images multimodales entraîne une surcharge d’informations dans le champ visuel du chirurgien.

Figure 1.2.4 : Visualisation de type réalité augmentée à travers une vidéo du champ opératoire. À gauche : projection de la lumière structurée pour la calibration, au milieu, superposition de la surface de la peau, à droite, superposition d’images multimodales [28,52].

Nous avons introduit deux solutions pour la mise en œuvre de ce concept. La première consiste en l’acquisition d’une seule image 2D du champ opératoire. Une technique de lancer de rayon permet d’associer, à chaque pixel de cette image, un voxel de la surface corticale extraite d’une IRM 3D. La deuxième approche consiste en l’acquisition de deux images stéréoscopiques du champ opératoire vu à travers les oculaires d’un microscope chirurgical. Les techniques de reconstruction stéréoscopique permettent de calculer une surface 3D à partir de ces images qui sera directement visualisée avec les images pré opératoires, en profitant des possibilités d’un système de neuronavigation.

1.2.3.2 Approche 2D [P_13,P_38]

Cette approche était principalement motivée par le fait que la vue de l’anatomie dans le champ opératoire est plus complexe que les rendus 3D volumiques ou surfaciques réalisés à partir d’une imagerie pré opératoire. Cela est dû à l’environnement opératoire (outils, compresses, draps, etc.), à la taille restreinte du volet opératoire et aux structures anatomiques qui ne sont pas toujours présentes dans les images pré opératoires (vaisseaux, sang, dure-mère, crane, etc.). En superposant l’image réelle de ces structures avec les scènes 3D numériques, le chirurgien intègre mieux les liens spatiaux entre images réelles et virtuelles.

1.2.3.2.1 Principe

Le principe de cette approche est de plaquer une image 2D du champ opératoire, prise avec un appareil photographique numérique standard, sur les images virtuelles correspondant à la surface corticale segmentée à partir d’un volume IRM, la coordonnée de profondeur de l’image 2D étant récupérée sur les images virtuelles par une technique dite de « lancer de rayon contraint ».

La méthode se décompose en plusieurs étapes : 1) calibration de l’appareil photographique (qui permet le calcul des paramètres intrinsèques du système de vision), 2) segmentation de la surface corticale, 3) recalage 3D-2D (qui permet le calcul des paramètres extrinsèques), 4) lancer de rayon contraint, et 5) visualisation.

Soit \(I_r\) la photographie, \(V_v\), le volume des données IRM, \(I_v\), l’image correspondant au rendu de surface de \(V_v\) et \(I_{vr}\), l’image finale contenant la projection de \(I_r\) dans l’image \(I_v\) (Figures 1.2.5 et 1.2.6).

1.2.3.2.2 Matériels et méthodes

Acquisition et calibration : La photographie (de taille 1532*1024 pixels) est prise par le neurochirurgien avec un appareil photographique numérique standard (Kodak DCS 400) dans la salle opératoire sans consigne particulière. Le chirurgien sélectionne manuellement, sur l’image 2D, la région d’intérêt montrant la surface corticale réelle dans le champ opératoire. L’examen pré opératoire consiste en une IRM 3D (124*256*256, 1.4 mm) pondérée en T1 et
réalisée sur une Signa 1.5 T de General Electric Medical Systems. La surface du cerveau est segmentée à partir des données IRM en utilisant des techniques de morphologie mathématique. La géométrie d’acquisition est approchée par une projection conique. Les paramètres intrinsèques de l’appareil photographique sont calculés grâce à une procédure de calibration réalisée sur un fantôme, pour différentes distances entre l’appareil et le fantôme. Nos résultats ont montré que l’étape de calibration n’était pas nécessaire pour des distances importantes entre appareil et objet. Les informations du fabricant de l’appareil sont utilisées dans ce cas. Ces paramètres sont utilisés comme contraintes dans l’étape de recalage.

Recalage 3D-2D : La matrice, permettant d’associer à tout point 2D de l’image \(Ir \) un point 3D de \(Vv \), est calculée grâce à une approche basée mise en correspondance de points. Le volume \(Vv \) est mis dans une position initiale proche de l’orientation de la prise de vue 2D. Une dizaine de points correspondants et caractéristiques sont choisis respectivement dans \(Ir \) et dans \(Vv \). Grâce à l’utilisation des paramètres intrinsèques, seuls 6 paramètres doivent être calculés. La fonction de coût utilisée est la distance euclidienne et la minimisation est réalisée avec la méthode de Newton-Raphson.

Reconstruction : Une méthode originale s’appuyant sur un lancer de rayon contraint a été développée pour calculer l’information 3D de l’image \(Ir \), sans l’utilisation de système d’acquisition 3D. Des rayons sont lancés virtuellement vers le volume \(Vv \) à travers les nœuds d’une grille définie sur \(Ir \). Les coordonnées du premier point 3D atteint par un rayon (qui appartient donc à la surface du cerveau segmentée) sont affectées au nœud correspondant. L’image \(Ir \) devient donc une surface constituée de polygones 3D. L’équation des rayons est calculée à partir de la matrice 3D-2D. Les premiers et derniers points du rayon sont les intersections du rayon avec une boîte englobant le cerveau segmenté.

Visualisation : Une image \(Iv \), correspondant à la projection du volume \(Vv \) selon un vecteur d’observation sur un plan image, est calculée. Puis, une image \(Ivr \) est calculée correspondant à la projection, selon le même vecteur d’observation, de la surface 3D associée à \(Ir \). Enfin, l’image finale est calculée par sommation pondérée, permettant la simulation de transparence, entre \(Ivr \) et \(Iv \) (Figure 1.2.6).

1.2.3.2.3 Discussion

Ce travail a permis d’introduire un concept original de superposition des images préopératoires et intra-opératoires dans l’espace virtuel que nous avons appelé virtualité augmentée. La méthode utilisée a des limites qui restreignent son utilisation. La principale concerne la phase de recalage 3D-2D basée sur la mise en correspondance de points caractéristiques désignés manuellement par le neurochirurgien sur les images 2D (\(Ir \)) et sur le
volume 3D (V_v). Il n’est pas toujours facile de trouver un nombre suffisant de points équivalents et l’automatisation de cette tâche n’est pas non plus facile. De plus, la méthode supposée que l’image I_r et le volume V_v représentent les mêmes structures anatomiques. Enfin, l’image I_r est acquise par le neurochirurgien avec un appareil photographique qui ne fait pas partie des outils ou matériaux classiquement utilisés et disponibles en salle d’opération. Pour toutes ces raisons, une approche originale a été introduite dans le cadre d’une thèse de troisième cycle (O. Fleig) [P_34] et optimisée et validée dans le cadre d’une deuxième thèse de troisième cycle (P. Paul) [P_2,P_19,P_22].

1.2.3.3 Approche stéréoscopique [P_2,P_19,P_22,P_34]

Le système que nous proposons ici permet de créer des scènes de virtualité augmentée 3D pour la neurochirurgie guidée par l’image multimodale. Une scène de virtualité augmentée 3D inclut une surface 3D du champ opératoire reconstruite à partir d’une paire de vues stéréoscopiques acquises à travers le microscope chirurgical, et des surfaces 3D générées à partir des images multimodales pré opératoires du patient. Nous décrivons dans cette section les matériels et les méthodes mis en œuvre, ainsi que les résultats d’une étude d’évaluation des performances à l’aide d’un fantôme physique.

1.2.3.3.1 Matériels et méthodes

Acquisition : Une paire de caméras CCD est fixée sur un microscope chirurgical (Figure 1.2.7). Un système de neuronavigation localise pointeur et microscope grâce à des diodes qui y sont fixées (Figure 1.2.8). Les caméras sont reliées à une carte d’acquisition vidéo couleur. Les images droite et gauche sont sélectionnées grâce à un sélecteur piloté par le port parallèle du PC (Figure 1.2.9). Les paramètres de la position du microscope sont transférés du système de navigation vers le PC via un port série.

Figure 1.2.7 : Le système vidéo 3D compact S2 de ZEISS installé sur la tête du microscope chirurgical et contenant la paire de caméras CCD.

Figure 1.2.8 : Vue du système de virtualité augmentée en salle d’opération pendant les tests d’évaluation de performances. De droite à gauche : l’ordinateur extérieur visualisant les scènes de VA 3D, la station de neuronavigation, le microscope. Derrière le microscope, le localisateur 3D et sur la table le crane sec utilisé comme fantôme physique lors des tests.
Calibration: Pour reconstruire la surface 3D à partir de deux images stéréoscopiques, il faut trouver les points correspondants entre les deux images. La prise en compte de la géométrie épipolaire permet de simplifier cette recherche [6,7]. La géométrie épipolaire est définie ainsi : tout point d’une ligne épipolaire de l’image gauche se projette dans une ligne épipolaire correspondante dans l’image droite. La matrice fondamentale permet de calculer la correspondance entre épipolaires et donc, pour tout point d’une image de calculer l’épipolaire correspondante dans l’autre image. Ainsi, la recherche du point correspondant dans l’autre image se limite à la recherche dans l’épipolaire correspondante. Pour tout couple de paramètres (zoom, focale) du microscope, une matrice fondamentale est calculée dans l’étape de calibration. Ce calcul est réalisé par : 1) une mise en correspondance par relaxation de points caractéristiques extraits automatiquement d’images de calibration à l’aide d’opérateurs de courbure et 2) la résolution par la méthode des moindres carrés appliquée à huit paires de points correspondants. L’utilisation de plusieurs couples d’images permet de minimiser l’instabilité numérique relative au calcul de la matrice.

Rectification et carte de disparité: A l’aide de la matrice fondamentale, les paires d’images sont rectifiées de telle sorte que des lignes épipolaires soient parallèles à l’axe des abscisses [7,9]. Après rectification, pour chaque point des images gauches, le point correspondant dans l’autre image se situe sur la ligne épipolaire de même ordonnée. Celui-ci est recherché par comparaison des valeurs des luminances lues dans les images en utilisant un critère dit de la somme normalisée des différences au carré de moyenne nulle (ZNSSD):
\[ZNSSD_{x,y}(d) = -\frac{\sum_{i,j}(I_l'(x+i, y+j) - I_r'(x+i+d, y+j))^2}{\sqrt{\sum_{i,j} I_r'(x+i+d, y+j)^2}}\]

où \(d\) représente la disparité, \(I' = I(x, y) - \bar{I}(x, y)\), avec \(I(x, y)\) qui représente la valeur de l’intensité au point de l’image de coordonnées \((x, y)\) et \(\bar{I}(x, y)\) la valeur moyenne de l’intensité dans une fenêtre de corrélation de taille \((2w + 1) \times (2h + 1)\). Les indices \(l\) et \(r\) représentent respectivement les images gauche et droite rectifiées. De plus, \(-w \leq i \leq w\) et \(-h \leq j \leq h\) avec \(i, j \in \mathbb{Z}\). Si cette valeur est inférieure à un seuil, le point correspondant est considéré comme candidat à la mise en corrépondance. La différence des valeurs en abscisse des deux points est appelée disparité. D’autres contraintes sont utilisées pour rendre plus robuste cette étape comme l’ordre des points et l’intervalle de recherche. Enfin, un filtre médian et une érosion sont appliqués pour éliminer certains faux positifs. Les dérivées de cette carte de disparité sont calculées et lissées à l’aide d’un filtre adapté (Figure 1.2.10).

Reconstruction : La surface 3D est reconstruite à partir de la carte de disparité, les disparités importantes correspondant aux points les plus près de l’observateur. La conservation de l’isotropie est assurée par l’utilisation de la matrice fondamentale et des résultats de la calibration du microscope. (Figure 1.2.11)

Visualisation de type virtualité augmentée : La position du microscope, dans le repère lié au patient et détectée par le localisateur du système de neuronavigation, est connue pour chaque couple d’images. Ainsi, il est possible d’exprimer directement la surface 3D reconstruite dans le repère géométrique lié aux images pré opératoires par composition de transformations géométriques (Figure 1.2.12).

![Composition des transformations géométriques entre images stéréoscopiques et images pré opératoires du patient.](image)
1.2.3.3.2 Validation

Une procédure a été mise en œuvre pour évaluer les performances de cette approche [P, 22]. La procédure est décrite en utilisant le formalisme de description des méthodes de validation présenté dans la section 4.2.1.

L’objectif est d’évaluer les performances du système sur un fantôme physique, un crane sec. Trois procédures d’évaluation des performances ont été réalisées, toutes basées sur la comparaison des résultats de la méthode avec une référence qui permet l’accès à une approximation de la vérité terrain. Les trois procédures se diffèrent par le type de la référence utilisée. La distance entre les surfaces reconstruites et des surfaces de référence nous sert de mesure pour l’évaluation des performances. L’influence de certains paramètres d’entrée est également évaluée.

Données de validation (D): Les données ont été acquises sur un crane sec. Pour chaque combinaison des paramètres de validation, 25 paires d’images ont été acquises et reconstruites. 300 paires d’images ont été acquises selon différents points de vue couvrant la partie faciale du crane sec.

Paramètres de validation (P): L’influence de certains paramètres, liés aux images acquises en salle d’opération, est étudiée par une analyse de variance :
- le type du champ opératoire : brillant ou mat,
- la luminosité mesurée par histogramme : faible, moyenne, forte,
- la valeur de la focale du microscope : minimale, maximale.

Référence (TGS): Les deux premières procédures (FIDSCAN et LOCSCAN) utilisent, comme référence, la surface 3D du crane segmentée à partir d’images Scanner X acquises sur le fantôme, surface recalée rigidement dans le repère du neuronavigateur grâce à une méthode de recalage basée points et utilisant huit marqueurs fixes sur le fantôme (procédure appelée FIDSCAN) ou grâce à une méthode de recalage basée points et surface (procédure appelée LOCSCAN) supposée être plus précise. La troisième référence consiste en un nuage de 2 000 points acquis avec le pointeur du système de neuronavigation en balayant la surface du fantôme en position opératoire (procédure appelée LOCCLould). Ainsi, surfaces reconstruites et références sont exprimées dans le même repère géométrique : celui du système de neuronavigation. Pour FIDSCAN, l’erreur de recalage à une cible (Target Registration Error définie dans la section 4.1.4.3.2) est calculée pour tous les points de la surface.

Métrique de validation (FC): La métrique utilisée était la même pour les trois procédures : la distance calculée par l’algorithme d’Iterative Closest Point (ICP) qui estime la distance euclidienne (en mm) entre chaque sommet de la surface reconstruite (plus de 30 000 sommets par surface) et le sommet le plus proche dans la surface de référence.

Indices de qualité (OQ): Les valeurs de médiane, d’écart type et de maximum de distance ont été calculées. Un taux de succès a aussi été estimé comme le pourcentage de points reconstruits correctement par rapport au nombre total de points. Un point est considéré comme reconstruit correctement si la distance avec la référence est inférieure à la pire des médianes calculées sur les 25 paires d’images correspondant à une combinaison de paramètres de validation.
1.2.3.3 Résultats

Figure 1.2.13 : Exemple de visualisation de type virtualité augmentée. Sont visibles dans cette scène 3D, les images pré opératoires (surface corticale en rose et sillons corticaux extraits de l’IRM et IRMf représentée par des sphères rouges) et la surface 3D reconstruite du champ opératoire.

Premiers tests cliniques : Le système a été utilisé pour quatre patients (Figure 1.2.13). La résolution des images stéréoscopiques est de 768*576 pixels représentant des champs opératoires de 7 à 12 cm. Les erreurs liées au calcul de la matrice fondamentale ont été estimées à environ un pixel. Les valeurs $w = h = 5$ ont été choisies, pour une fenêtre de 11 pixels.

Validation sur fantôme : Pour la procédure FIDSCAN, la valeur moyenne de la médiane est de 1.88 mm ± 0.65mm. Pour la procédure LOCSCAN, la valeur moyenne de la médiane est de 1.41 mm ± 0.65mm. Pour la procédure LOCCLOUD, cette valeur est de l’ordre de 1 mm. Pour ces trois procédures, le taux de succès est de l’ordre de 55% et l’écart type est de l’ordre du millimètre.

1.2.3.3.4 Discussion et conclusion

Les différences de performances entre les trois procédures FIDSCAN, LOCSCAN et LOCCLOUD montrent l’influence du recalage. Le recalage basé points et surfaces étant plus précis que le recalage basé points seulement [62], les performances sont naturellement améliorées. La procédure LOCCLOUD ne tient pas compte des erreurs introduites par le recalage images-patient et donc sont représentatives des erreurs induites par la procédure de reconstruction (incluant la calibration). Par contre, l’objectif étant bien de mettre en correspondance la surface reconstruite avec les images pré opératoires pour une visualisation de type virtualité augmentée, les performances des deux autres procédures sont représentatives de l’erreur globale de la solution. Dans ce cas, on se rend compte que les performances totales de la méthode présentée ici sont de l’ordre des performances du recalage images-patient. On a pu remarquer aussi que les valeurs de focales ont une influence statistiquement significative sur les performances. En comparaison avec l’approche de Sun et al. [42], notre méthode respecte les déformations locales où leur méthode approche la surface reconstruite par un modèle sphérique.

Parmi les limites de notre validation, il faut souligner que celle-ci s’est réalisée sur un fantôme et n’est donc pas significative des performances sur données cliniques. Malgré tout, nous avons évalué les performances sur des données cliniques d’un patient, en comparant des reconstructions stéréoscopiques effectuées sur la surface de la peau du patient avec une surface extraite d’images IRM. Les résultats étaient de 3.25 mm. ± 1.58 mm. Pour trois patients sans référence disponible, les taux de reconstruction étaient de l’ordre de 50%.
1.2.3.4 Discussion

Une nouvelle approche de visualisation à évaluer et à comparer

Nous avons démontré la faisabilité de la méthode permettant d’utiliser les images stéréoscopiques vues à travers les binoculaires d’un microscope chirurgical pour reconstruire une surface 3D du champ opératoire dans le repère des images pré-opératoires. Cela, sans l’addition de matériel supplémentaire. Nous avons montré que cette approche, utilisée dans un système de neuronavigation où le microscope chirurgical est suivi par un localisateur 3D, permet un nouveau type de visualisation appelé « virtualité augmentée ». Cette visualisation permet d’afficher dans un monde de synthèse, ou virtuel, les images 3D pré-opératoires et multimodales. Ce type de visualisation peut être amélioré par l’utilisation de nouveaux systèmes d’affichage (grand écran, casque de réalité virtuelle, etc.) et par la contrainte de la rotation de cette scène virtuelle par l’axe optique du microscope. Cette approche semble complémentaire des autres modes de visualisation intra-opératoire de données pré-opératoires que sont la réalité augmentée 2D et 3D et la virtualité augmentée 2D (Table 1.2). Les avantages et inconvénients de chaque mode de visualisation doivent aujourd’hui être estimés (Figure 1.2.14). Un des principaux avantages de la virtualité augmentée 3D est que le point de vue n’est pas limité par la pose du système de vision contrairement à la réalité augmentée. De plus, elle permet de bien comprendre les relations spatiales tridimensionnelles complexes entre les images 3D multimodales préopératoires et le champ opératoire. Les structures voisines, la profondeur des informations affichées sont par exemple plus faciles à interpréter. Avec ce système, le neurochirurgien et l’équipe clinique en salle peuvent interagir librement avec la scène 3D. De ce fait, il peut constituer un outil d’apprentissage intéressant pour l’équipe clinique présente pendant la chirurgie. Par contre, la réalité augmentée n’entraîne pas de déconnexion visuelle entre le chirurgien et le champ opératoire. Pour cela, nous pensons que ces deux techniques sont complémentaires et doivent être utilisées en parallèle.

<table>
<thead>
<tr>
<th>Données virtuelles</th>
<th>Données réelles</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA3D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconstruction stéréoscopique du champ opératoire.</td>
</tr>
<tr>
<td>RA3D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Position du pointeur.</td>
</tr>
<tr>
<td>VA2D</td>
<td></td>
</tr>
<tr>
<td>RA2D</td>
<td></td>
</tr>
<tr>
<td>Contours 2D ou surfaces 2D des objets 3D construits à l’aide des images pré-opératoires.</td>
<td>Vidéo du champ opératoire.</td>
</tr>
</tbody>
</table>

Table 1.2: Description des informations visualisées dans les différents modes de visualisation intra-opératoire de données pré-opératoires. VA : virtualité augmentée, RA : réalité augmentée.
Une nouvelle imagerie intra opératoire

Les valeurs de précision mesurées lors des études de performances permettent d’envisager l’utilisation de cette information surfacique intra opératoire pour détecter et quantifier les déformations de la surface corticale [4,5,42]. Cette quantification pourrait servir à mettre à jour les informations ou images pré opératoires concernant des structures proches de la surface (comme les sillons et les informations fonctionnelles, par exemple). Pour les structures profondes, il a été montré que leur déformation ne peut pas être prédite à partir des déformations en surface [16]. Dans ce cas, une information volumique est nécessaire (échographie 3D ou IRM interventionnelle, par exemple), la détection en surface pouvant servir ici de contraintes dans le calcul du champ de déformation 3D. Nous reviendrons sur ces points dans le Chapitre 3.

A cette vision et ces travaux très orientés image, nous avons rapidement ressenti le besoin d’associer une approche orientée connaissances chirurgicales pour tendre vers une approche globale de neurochirurgie guidée par l’information. Ce sera l’objectif du chapitre suivant.
1.3 Références bibliographiques orientées traitement d’images médicales

[TT_22] Grova C., Simulations réalistes de données de tomographie d’émission monophotonique TEMP pour l’évaluation de méthodes de recalage TEMP/IRM utilisant des mesures statistiques de similarités : application
1999, IRISA, Université de Rennes 1.

Multimodality image registration by maximisation of mutual information, Medical Image Analysis, 1999, 3(4): 373–386.

1.4 Références bibliographiques orientées chirurgie

Revue du domaine :

1. http://radiology.emory.edu/INR/cases/Aneurysm/inr_cases_aneurysm.htm
La chirurgie guidée par l’information est un concept très récent. Il se fonde sur l’hypothèse suivante : « Il faut mieux comprendre le processus chirurgical, les informations et connaissances mises en jeu pour pouvoir l’améliorer ». Ce concept a pour objectif de développer une nouvelle génération de systèmes de chirurgie assistée par ordinateur qui s’appuie sur cette formalisation du processus chirurgical. Nous le verrons dans ce chapitre, comprendre le processus chirurgical, c’est comprendre nombreuses de ses facettes. C’est étudier ce processus selon différents angles, chaque angle d’étude correspondant à un objectif applicatif précis. Le processus chirurgical peut être abordé sous les aspects suivants :

- péri opératoires: nomenclature, flux d’actions dès l’entrée à l’hôpital, flux de données et d’images,
- pré opératoires: processus décisionnel pour le choix de la stratégie chirurgicale, connaissances anatomiques, fonctionnelles ou pathologiques,
- intra opératoires: principales actions constituant le geste chirurgical, description spatiale des gestes du chirurgien, interaction entre systèmes,
- post opératoires: contrôle et bilan chirurgical post opératoires, …

Toutes les étapes du processus chirurgical peuvent être étudiées ensemble ou séparément. Chaque étude peut se réaliser à des niveaux de précision ou de granularité différents. Chaque étude peut se focaliser sur les acteurs, sur les tâches, sur les systèmes, sur les changements d’états ou sur les informations et connaissances mises en jeu. Une vision statique ou dynamique peut être choisie. Dans la section suivante concernant l’état de l’art de ce domaine, j’ai cherché à regrouper ces différents aspects et à montrer l’enjeu mais aussi la complexité du travail à réaliser. La complémentarité des études devient vite évidente et le besoin de collaboration entre équipes est indispensable dans cet effort de modélisation des connaissances et des processus. Cet effort doit donc être interdisciplinaire et international [47].

Les difficultés liées à ce type d’approche sont nombreuses. Difficultés méthodologiques dues au fait que l’on cherche à rendre explicites et formelles des informations aujourd’hui implicites, voire intuitives. Et difficultés liées à la haute variabilité des informations et des processus médicaux.

2.1 Etat de l’art

Le besoin de systèmes de chirurgie assistée par ordinateur s’appuyant sur une formalisation du processus chirurgical a été souligné dans quelques articles prospectifs. Le besoin de modèles dérivés de la modélisation comportementale et de l’analyse de tâches a été clairement mis en évidence lors de la conception de systèmes de simulation chirurgicale [1,2]. La valeur ajoutée des modèles de procédures chirurgicales a aussi été soulignée pour des systèmes robotisés [3,4,5] ou pour les interventions à invasion minimale [6]. Mais, jusqu’à ces toutes dernières années, peu de travaux concrets ont été menés autour de ce problème. Les approches existantes peuvent être distinguées par leur objectif et divisées en 3 grandes familles : les
approches à finalité documentaire, les approches qui ont pour but l’aide direct à la réalisation du geste chirurgical et les approches à but d’optimisation du flux d’actions péri opératoires.

2.1.1 Objectif : documentation et nomenclature

Les travaux appartenant à cette famille se sont attachés à proposer un cadre permettant la description des procédures chirurgicales, dans un but principal d’aide à la nomenclature. La démarche suivie s’appuie sur la définition d’un modèle de description incluant objets et relations entre objets. Ces modèles consistent en la définition d’une ontologie\(^{27}\) du domaine concerné.

2.1.1.1 Standard de codification CEN/ENV 1828

De 1995 à 2001, le groupe de travail « Terminologies et représentation de connaissances » du Comité Européen de Normalisation (CEN) n° 251 a travaillé sur la définition d'un standard de codification appelé « Structure pour la classification et le codage des interventions chirurgicales » \([16]\) (Figure 2.1.1). Ce standard vise à normaliser les appellations des procédures chirurgicales (tous domaines chirurgicaux confondus), pour obtenir un vocabulaire international commun. Ce vocabulaire commun a pour objectif de faciliter la communication, les remboursements sociaux et le travail scientifique au sein de la communauté européenne.

![Figure 2.1.1 : Modèle de description des procédures chirurgicales CEN/ENV 1828](image)

2.1.1.2 GASP : Galen Schema for Surgical Procedure

Le projet GALEN (acronyme pour Generalised Architecture for Languages, Encyclopedias and Nomenclatures in medicine), inspiré du standard CEN/ENV 1828, est né de la volonté grandissante du domaine médical d’avoir une représentation stable des concepts médicaux que les diverses applications utilisées doivent manipuler et stocker. Le projet GALEN a ensuite été poursuivi sous le nom de projet « Galen-In-Use », et depuis 1999, sous la forme du projet « OpenGalen »\(^{28}\). Le but du projet est de proposer un modèle de référence commun pour les concepts médicaux servant d’interface entre les différentes nomenclatures. Une partie de l’équipe du projet GALEN s’est intéressée au développement d’une représentation conceptuelle pour la description des procédures chirurgicales et qui consiste en un schéma

\(^{27}\) Une ontologie est une théorie du contenu dont le but est de clarifier la structure de la connaissance d’un domaine. Elle permet de décrire les faits du domaine ainsi que les assertions sur ce domaine \([9]\). \(^{28}\) http://www.opengalen.org/
 appelé GASP, extension de GALEN aux procédures chirurgicales (Figure 2.1.2). L'objectif est de pouvoir générer automatiquement des noms de procédures chirurgicales en n'importe quel langage européen, à partir de cette représentation conceptuelle.

Figure 2.1.2 : Schéma GALEN étendu pour les procédures chirurgicales (GASP).

Avec une approche et des objectifs similaires, UMLS [54] et MAOUSSC29 sont des projets ayant pour objectif l'aide à la représentation du langage médical et de sa terminologie dans un contexte chirurgical pour normaliser et partager l’information médicale.

Ces approches à finalité documentaire n’ont clairement pas pour objectif d’améliorer les différentes étapes de la chirurgie assistée par ordinateur, au sens opérationnel correspondant aux objectifs de mes travaux de recherche. Néanmoins, il est intéressant de les citer car la démarche suivie entraîne la conception d’une ontology, étape initiale et indispensable de la méthodologie que nous présenterons dans la section 2.2.

2.1.2 Objectif : aide directe à la réalisation du geste chirurgical

L’objectif principal est de comprendre et de formaliser le comportement du chirurgien dans un but d’aide opératoire direct. Il existe peu de travaux dans la littérature sur ce domaine pourtant vaste. Malgré tout, ces dernières années, la communauté scientifique et médicale liée à la chirurgie assistée par ordinateur a commencé à se sensibiliser à cette approche.

Le comportement du chirurgien, tel qu’il est entendu ici, doit être considéré au sens large. C’est plutôt la procédure chirurgicale qui est étudiée comme un système complet, incluant acteurs humains et matériels, actions-interactions et informations (Figure 2.1.3). Cette chirurgie peut être étudiée à différentes échelles spatiales et temporelles. La description peut être réalisée à une échelle hautement symbolique jusqu’à une échelle numérique et microscopique. Evidemment ces différents niveaux d’étude sont, là encore, complémentaires.

29 http://www.med.univ-rennes1.fr/plaq/cristal/MAOUSSC.html

des gestes concernés. Ce qui est modélisé ici est la gestuelle du chirurgien dans le cadre de procédures microchirurgicales standardisées et simples.

Munchenberg et al. [4,5] introduisent un système permettant la construction d’une base de données de procédures chirurgicales dans le contexte de la chirurgie maxillo-faciale. Un graphe d’instructions représentant la procédure chirurgicale est créé (c’est à dire instancié à partir d’un modèle générique) pendant l’étape de préparation. Ce graphe est consulté pendant la chirurgie, validé après la chirurgie et inclus dans la base de données.

D’autres groupes étudient l’aspect spatial du geste du chirurgien avec pour objectif d’assister certaines parties de ce geste par des systèmes robotiques. L’équipe du Pr. Maresceaux à Strasbourg cherche à décrire et donc modéliser l’étape de suture en chirurgie laparoscopique à l’aide de modèles mathématiques [39]. L’équipe du Pr. Fracastoro à Vérone (Italie), avec des objectifs similaires concernant l’étape de suture, décrivent la chirurgie comme un « système hybride » comportant un aspect continu et dynamique et un aspect discret enchaînant états et actions. Ils préconisent l’utilisation d’automates hybrides pour modéliser ces systèmes. [40]

2.1.3 Objectif : optimisation de processus péri opératoires

Cette vague récente s’attache à la vision péri opératoire de la chirurgie, avec pour principaux objectifs la réduction des coûts de la santé et des risques d’erreurs médicales par l’optimisation des flux d’information et de travail ou « workflow ». L’approche est simple : pour optimiser les flux, il faut les comprendre et donc les modéliser. Ces travaux sont souvent liés à une réflexion sur la salle d’opération du futur où flux d’informations, nouvelles technologies et acteurs doivent cohabiter.

Que reproche-t-on aujourd’hui au processus péri opératoire notamment lors de l’utilisation de systèmes de chirurgie assistée par ordinateur ?

Les problèmes concernent à la fois les acteurs humains et matériels. Il est souligné notamment le peu de coordination et d’échanges entre techniciens et personnel hospitalier, des niveaux de compétences et de formation disparates parmi le personnel, une indisponibilité du chirurgien, une information et préparation du patient inappropriée et le manque de mesures incitatives. Sur l’aspect systèmes, certaines études montrent les redondances dans le processus et les faiblesses ergonomiques des matériels et des interfaces homme/machine présentant des informations. Les synchronisations entre étapes, entre équipements ou entre personnels ne sont pas facilitées. Le processus péri opératoire inclut les départements de radiologie, de chirurgie et d’anatomo-pathologie, met en jeu chirurgiens, radiologues, anesthésistes, informaticiens et ingénieurs. Les systèmes ne s’adaptent pas aux différences entre personnel. Le processus péri opératoire utilise des informations multiples de plus en plus nombreuses.
sous forme de texte, d’images, de signaux, de vidéos, de sons. Les systèmes ne fournissent que peu d’outils permettant aux acteurs humains de naviguer à travers toutes ces informations multimédia et d’en extraire les plus pertinentes. Toutes ces déficiences peuvent avoir des répercussions négatives sur le coût du processus et sur sa sécurité [41].

Qu’est-il proposé aujourd’hui pour remédier à ces problèmes ?

Parmi les rares références disponibles, Sandberg 33 propose d’étudier le processus péri opératoire pour l'optimiser sous des critères principalement temporels [53]. Il se focalise sur le temps hors intervention. Il identifie le flux des actions, le présente sous une forme graphique (Figures 2.1.4 et 2.1.5) et cherche l’optimisation. Il propose une optimisation basée sur la parallélisation du flux des actions. Mis en place en 2002, il montre que les temps non opératoires peuvent être réduits de 50% grâce à cette approche. Il argumente aussi que cette étude et cette optimisation permettent de réduire la variabilité temporelle.

![Figure 2.1.4 : Représentation graphique temporelle d’un flux d’actions pour une chirurgie [53].](image)

30 http://www.or2020.org
31 http://www.radnet.ucla.edu/Arrowhead2004/
32 http://www.iccas.de
33 Il est intéressant de noter que W. Sandberg n’a aucune publication sur ce sujet indexée Medline, malgré les nombreuses interventions en conférences qu’il a réalisées. Serait-il difficile de publier sur ce sujet ?
A cette étude se rajoute le développement d’un environnement permettant de suivre en temps réel l’exécution de ce flux d’actions. Pour cela, un système visualise en temps réel différentes informations liées à ce flux, dont la position des acteurs dans les services hospitaliers prévenant, par exemple, de l’entrée du patient en salle d’opération ou de la sortie du chirurgien de la salle. Les positions sont captées par un système IPS (*Indoor Positioning System*) et le trafic peut être optimisé grâce à cette information.

D’autres équipes identifient des flux d’actions liés à une procédure particulière. Cette identification leur sert principalement pour souligner les faiblesses de la procédure. Steven C. Horii du département de Radiologie de l’Université de Pennsylvania étudie le flux d’actions lors d’acquisitions échographiques intra opératoires [48]. E. Siegel, professeur à l’Université de Maryland et radiologue, liste 49 étapes lors d’une procédure d’angiographie à finalité diagnostique [49]. L’identification des flux d’actions fournit une information importante lors d’études d’ergonomie en salle d’opération. La complexité des salles d’opération s’accroît avec la présence de nouveaux systèmes robotiques, de navigation ou d’imagerie interventionnelle. Il est donc important de concevoir une salle d’opération du futur qui offre au chirurgien et à son équipe une facilité de travail mais aussi d’accès aux images, informations et outils disponibles. Ainsi, certains architectes s’appuient aussi sur une connaissance du flux d’actions pour spécifier et définir la salle d’opération du futur [50].

Une des limites soulignées concerne l’interopérabilité des systèmes mis en jeu dans le flux d’actions péri opératoires. Pour cela, des discussions ont été initiées par le Pr. H. Lemke de l’Université TUB de Berlin pour réfléchir à l’extension du standard DICOM dans le domaine de la chirurgie [51]. Un groupe de travail (WG 24 « *Dicom in Surgery* ») a été créé pour étudier la possibilité d’utiliser la norme DICOM pour le stockage et le partage de certaines informations liées à la chirurgie. Une autre direction consiste à étudier la définition de profils...
d’intégration chirurgicaux suivant les recommandations de l’initiative IHE34 (Integrating the Health Care Entreprise) qui a pour but de faciliter l’échange d’informations entre systèmes médicaux.

Ces initiatives sont intéressantes et, pour la grande majorité d’entre elles, très récentes. Elles souffrent ainsi de leur manque de maturité. Les études se limitent, la plupart du temps, à une liste des besoins qui justifient une telle approche et à la plus value qu’elle apporterait. La méthodologie est décrite de manière floue ou pas décrite du tout. On ne sait pas comment sont construits ces diagrammes de flux, s’ils sont représentatifs d’un consensus ou d’un cas particulier. Si consensus il y a, comment ce consensus a été construit. Les méthodes et les formalisations utilisées sont ad hoc. Aucune ontologie n’est définie, ce qui fait que le travail de définition de flux d’actions ne peut pas être facilement étendu à d’autres domaines ou partagé entre plusieurs équipes. De nombreux biais méthodologiques jalonnent ces études. Elles appartiennent au domaine de la modélisation de connaissances et une méthodologie scientifique et rigoureuse se doit d’être utilisée. Notamment pour rendre crédible ces approches aux yeux des communautés concernées : chirurgiens, institutionnels et organismes de certification. Enfin, dû au caractère récent de ces travaux, ces approches de modélisation n’ont peu ou pas été implantées au sein de systèmes de chirurgie assistée par ordinateur. Il est, de ce fait, difficile de juger la plus value apportée par ces approches.

Dans la section suivante, nous proposerons une méthodologie pour la modélisation des procédures neurochirurgicales ou, plus précisément, de la représentation mentale et macroscopique de la réalisation du geste chirurgical par le neurochirurgien. Nous présenterons les différentes étapes de cette méthodologie, de la création d’une ontologie, jusqu’à l’extraction de connaissances et l’utilisation d’une formalisation de l’ontologie pour définir des logiciels de planning chirurgical.

34 http://www.ihe.net
2.2 Contribution au domaine : Modélisation des procédures neurochirurgicales

2.2.1 Objectif

Dans le chapitre précédent, j’ai amélioré les phases de préparation et de réalisation par l’ajout d’images pré opératoires multimodales. L’objectif de mes travaux, dans le cadre de la chirurgie guidée par l’information, est d’ajouter au processus chirurgical certaines connaissances implicites du chirurgien liées à son expertise chirurgicale en les rendant explicites.

\[\text{En quoi consistent ces connaissances chirurgicales ?}\]

Ces connaissances sont nombreuses et diverses. Elles portent à la fois sur l’anatomie, la physiologie, la physiopathologie, mais aussi sur la gestuelle chirurgicale. Dans les travaux suivants, nous avons considéré que la connaissance chirurgicale portait sur le choix d’une stratégie chirurgicale à partir d’informations cliniques sur le patient, et sur la préparation et la réalisation de cette stratégie. Cette connaissance chirurgicale peut être acquise à partir de deux sources différentes :

- les cas chirurgicaux et procédures réalisés par le chirurgien : sa propre expérience,
- un consensus provenant d’écoles chirurgicales ou d’experts reconnus et exprimés par le biais de la littérature chirurgicale ou de la formation du chirurgien auprès d’un « maître » ou « senior ».

Cette connaissance est aujourd’hui implicite et intuitive et il est difficile pour les ingénieurs de comprendre la logique et le savoir-faire chirurgical. De même qu’il est difficile pour le chirurgien de les expliquer. L’objectif de mes travaux dans ce domaine est de permettre de rendre explicite et formelle cette connaissance chirurgicale. La démarche proposée a pour but d’améliorer la chirurgie grâce à des systèmes de chirurgie assistée par ordinateur qui s’appuient sur cette connaissance chirurgicale formalisée : « Mieux comprendre le processus chirurgical pour l’améliorer ». Nous avons donc cherché à modéliser les étapes chirurgicales et leur enchaînement lors de la chirurgie. Ce travail a été réalisé dans le cadre d’un D.E.A. et d’une thèse de troisième cycle (M. Raimbault) [P_6,P_17,P_20,P_23,P_30,P_31,P_33,P_56].

\[\text{En quoi la modélisation et la formalisation des connaissances chirurgicales peuvent-elles améliorer la chirurgie assistée par ordinateur ?}\]

La formalisation des connaissances chirurgicales peut avoir un impact à tous les niveaux du processus chirurgical. Elle peut améliorer le processus d’aide à la décision chirurgicale par l’assistance au choix de la meilleure stratégie chirurgicale, en se référant soit à des cas chirurgicaux antérieurs et similaires, soit à des consensus ou scénarii chirurgicaux type. Elle permet une véritable simulation de la procédure chirurgicale lors d’une étape d’« entraînement ». Elle peut permettre aux systèmes de chirurgie guidée par l’image, lors de la phase de réalisation, d’améliorer les interactions homme/machine. En effet, si ces systèmes possèdent une connaissance explicite de la procédure à réaliser, les interactions peuvent être anticipées et optimisées. Par exemple, les paramètres de visualisation des images pré ou intra opératoires peuvent être adaptées à l’action chirurgicale en cours. Cette formalisation permet aussi de tendre vers des approches « qualité » où le chirurgien pourra prouver qu’il se conforme à un consensus ou à des guides de « bonne pratique ». De plus, la formalisation des procédures chirurgicales peut permettre le développement d’outils d’apprentissage de la
chirurgie. Enfin, cette formalisation, on le verra plus tard dans ce chapitre, peut faciliter la génération progressive de nouvelles connaissances chirurgicales.

Nous proposons la méthodologie suivante :

En préambule à toute approche de modélisation de connaissances, il est important :

1. de définir l’objectif de la modélisation,
2. et de définir le domaine d’étude que nous chercherons à modéliser.

Puis, il faut :

3. Définir une ontologie du domaine concerné,
4. Décrire l’expérience chirurgicale ou le consensus à l’aide de cette ontologie,
5. Extraire des connaissances à partir des descriptions,
6. Utiliser les connaissances dans le développement de nouveaux systèmes de chirurgie assistée par ordinateur.

2.2.2 Construction de l’ontologie des procédures neurochirurgicales

La construction de l’ontologie [9] est une étape indispensable à tous travaux de modélisation. Cette ontologie permet de décrire objets et relations constituant notre domaine d’étude. La construction de cette ontologie n’est pas facile, et cela pour plusieurs raisons. Il est difficile de s’assurer de l’exhaustivité ou de la complétude de l’ontologie créée. Il est difficile de valider l’ontologie, ses relations et ses cardinalités. L’ontologie sera utilisée ici pour décrire des cas chirurgicaux ou des scénarii chirurgicaux standards. Elle doit donc être consensuelle. De ce fait sa définition doit se faire à un niveau international. Nous proposons une ontologie de notre domaine d’étude et une méthodologie pour la construire [P_6,P_23,P_30,P_31,P_33].

Méthodologie de construction de l’ontologie : Pour construire cette ontologie, nous nous sommes inspirés des techniques liées à la modélisation comportementale et plus particulièrement celles liées à la construction de systèmes dits cognitifs [52]. Le processus de construction de l’ontologie comprend les étapes suivantes :

1. Identifier le domaine à modéliser,
2. Extraire de ce domaine les concepts et leurs relations,
3. Choisir un formalisme pour représenter concepts et relations,
4. Implémenter ce formalisme dans un prototype,
5. Tester ce prototype.

Une des caractéristiques importantes de cette méthodologie est son caractère itératif. A partir des résultats des tests, il est possible de remettre en question les niveaux précédents, soit par réajustement du prototype (retour au point 4), soit par modification du formalisme choisi (retour au point 3), soit par reformulation des concepts et relations extraits (retour au point 2), soit même par reformulation du domaine d’étude (retour au point 1).

2.2.2.1 Identification du domaine à modéliser

Dans ce travail, nous cherchons à construire une ontologie nous permettant de décrire les éléments clés composant la procédure chirurgicale, ainsi que les données associées au

35 L’étape 2 peut être considéré comme faisant partie de l’étape 3.
contexte chirurgical. Dans notre cas, ce contexte inclut des gestes, des outils et des données multimodales. Travaillant sur la chirurgie guidée par l’image, nous avons naturellement fait une place importante aux données images pré ou intra opératoires et à leur rôle dans la chirurgie. Nous cherchons aussi à faire coïncider notre description structurée de la procédure chirurgicale avec la représentation mentale que les neurochirurgiens ont de cette procédure. Nous avons restreint notre domaine d’étude à trois types de procédures qui peuvent bénéficier de la neuronavigation multimodale et multi informationnelle présentée dans le chapitre précédent : la chirurgie des tumeurs intra parenchymateuses supratentorielles (CTIP), la chirurgie des cavernomes supratentoriels (CCS) et les amygdalo-hippocampectomies sélectives pour les épilepsies partielles pharmaco-résistantes (AHS).

2.2.2.2 Extraction des concepts et relations – Création de l’ontologie

Pour cette extraction, nous avons demandé à trois neurochirurgiens du service de neurochirurgie du CHU de Rennes de décrire des procédures. Deux types de descriptions ont été demandées : des descriptions appelées « génériques », c'est-à-dire se référant à des procédures standardisées et exprimées comme une généralisation de plusieurs cas cliniques (2 CTIP, 2 CCS et 2 AHS), ou des descriptions spécifiques, i.e., dérivées de l'analyse de 14 cas chirurgicaux, étudiés durant la chirurgie (2 CTIP) et après la chirurgie à l'aide de vidéoscasses (6 CTIP, 3 CCS et 3 AHS). Ces descriptions ont été recueillies sur papier libre au fur et à mesure des conversations. Ces conversations se sont déroulées en suivant la méthode de la pensée à voix haute, en petit comité (un neurochirurgien et un ou deux intervieweurs) et pendant des réunions d'environ deux heures à raison d'une réunion par semaine pendant deux mois.

Principe de l’ontologie retenu : La procédure chirurgicale se décompose en une séquence d'étapes principales définissant le scénario chirurgical. Les étapes planifiées sont distinguées des étapes réalisées. Chaque étape est définie par une action qui peut être caractérisée par un modèle graphique et des attributs. Chaque étape contient une liste de structures sur lesquelles porte l’action. Chaque structure peut être représentée par une entité image extraite des images multimodales pré opératoires (anatomiques et/ou fonctionnelles). Le rôle de chaque entité image dans une étape est identifié à partir d'une liste de valeurs prédéfinies : zone cible (tumeurs, malformations, etc.), zone à éviter (zones fonctionnelles à haut risque, vaisseaux, etc.), zone de référence (sillons corticaux, vaisseaux, commissures antérieure et postérieure, etc.) ou approche chirurgicale (par exemple, un sillon utilisé comme une trajectoire vers la cible).

2.2.2.3 Formalisation

Nous avons choisi d’utiliser une modélisation basée objet et le formalisme UML (Unified Modeling Language) pour représenter notre ontologie. Nous avons utilisé un diagramme de classe UML [7] qui décrit concepts et relations de notre ontologie. Cette ontologie a aussi été représentée en utilisant un formalisme de système de gestion de bases de données relationnelles (SGBDR) : PostGreSQL.

2.2.2.4 Implémentation du formalisme

Implémentation 1 : Des formulaires papier ont été élaborés à partir du modèle (Figure 2.2.1).

Implémentation 2 : Nous avons développé une application logicielle de planning chirurgical, basée sur le modèle générique (Figure 2.2.2). Ce logiciel permet, pour chaque procédure, de définir le nombre adapté d'étapes. Puis, pour chaque étape, le chirurgien saisit l'action
correspondante à l'étape, ainsi que les entités pertinentes sélectionnées parmi les entités images tridimensionnelles (surfaces tridimensionnelles générées dans l’étape de planning, à partir des données pré opératoires du patient). Le chirurgien affecte ensuite à chaque entité un rôle au sein de cette étape. Le logiciel permet de sauvegarder la procédure chirurgicale ainsi décomposée sous une forme structurée dans un fichier XML36 (Extensible Markup Language) défini par une DTD (Document Type Definition). Des paramètres de visualisation (comme la couleur ou la transparence) peuvent être attribués à chaque entité de chaque étape. Une scène, incluant toutes les entités tridimensionnelles sélectionnées, est générée et stockée pour chaque étape, également sous forme de fichier XML et de fichiers en format VTK37 (Visualization ToolKit), selon l'orientation et le point de vue désirés par le neurochirurgien, et correspondants à la vue de son futur champ opératoire. Le chirurgien peut ainsi revoir la procédure étape par étape et la visualiser en affichant chaque scène tridimensionnelle soit pendant l’étape de préparation de la procédure chirurgicale, soit pendant l’étape de réalisation (Figure 2.2.2).

2.2.2.5 Tests

La phase de tests a consisté en l’instanciation du modèle à l’aide des deux implémentations. Cette phase nous a permis de valider et d’affiner notre modèle et sa formalisation sur de nouveaux cas chirurgicaux.

Implémentation 1 : Des formulaires papier, élaborés à partir du modèle, ont été remplis par des neurochirurgiens pour 26 cas chirurgicaux. Pour diminuer la subjectivité des résultats, quatre neurochirurgiens différents ont participé à l’étude.

Implémentation 2 : L’application de planning a été utilisée pour décrire de façon rétrospective 150 cas chirurgicaux et de façon prospective pour 12 cas chirurgicaux. Pour les cas prospectifs, l’application a été utilisée au bloc opératoire pour afficher la procédure telle qu’elle a été prévue en pré opératoire (correspondant à une liste des étapes planifiées) et a permis au neurochirurgien de consulter les scènes tridimensionnelles telles qu’ils les avaient envisagées. A partir de ces informations, le geste chirurgical réalisé, tel qu’il s’est réellement

36 http://www.w3.org/XML/
37 http://www.vtk.org

Figure 2.2.1 : Une fiche du formulaire papier décrivant une étape d’une procédure chirurgicale (Patient CG).

Figure 2.2.2 : Interface de l’application logicielle.
déroulé au bloc opératoire, a été renseigné et sauvegardé (sous la forme d’une liste des étapes réalisées). Les modifications concernant les scènes (comme la suppression d'entités finalement jugées inutiles ou la modification des paramètres de visualisation) ont été également sauvegardées. L’instanciation rétrospective s’est basée sur la lecture des comptes-rendus post opératoires des cas chirurgicaux.

2.2.2.6 **Résultats**

L’ontologie :

Les concepts et relations principaux sont les suivants. La procédure chirurgicale (*SurgicalProcedure*) concerne une ou plusieurs cibles (*Target*) et se décompose en une ou plusieurs étapes (*Step*) ordonnées. Ces étapes sont différenciées selon qu’il s’agit d’étapes définies en pré opératoire (*PlannedStep*), ou d’étapes réalisées lors de la chirurgie (*RealizedStep*). Cette différenciation permet de distinguer le geste planifié du geste réalisé (suppression d’une étape prévue, ajout d’une étape imprévue, etc.). Chaque étape concerne une liste de structures (*StructureList*) sur lesquelles porte l’action. Dans le cadre de la chirurgie guidée par l'image, ces structures peuvent être représentées par des entités images (*ImageEntity*), correspondant à des entités tridimensionnelles (points, volumes, surfaces, etc.) extraites des données pré opératoires, anatomiques ou fonctionnelles.

Une cible (*Target*) peut être visualisée par l'intermédiaire d'une entité image (*ImageEntity*). Chaque cible a des caractéristiques telles que sa taille (*Size*), sa forme (*Shape*), son amplitude (*Amplitude*), et est située au sein de l'hémisphère droit et/ou de l'hémisphère gauche (*Side*). Plus précisément, une cible peut être localisée dans une ou plusieurs structures anatomiques (*AnatInstConcept*), telles qu'un sillon, un gyrus ou un lobe. Une cible est représentée par une caractérisation pathologique (*PathoInstConcept*), telle qu'un cavernome, un gliome ou une zone épileptogène.

Une étape (*Step*) consiste à réaliser une action unique (*Action*), qui agit sur une ou plusieurs structures anatomiques, fonctionnelles ou pathologiques (*Structure*), et est caractérisée par un modèle d'action (*ActionModel*), et peut nécessiter un ou plusieurs attributs d'action (*ActionAttribute*). Un modèle d'action (*ActionModel*) peut être, par exemple, une représentation graphique de l'action à réaliser, comme les contours limitant une craniotomie, ou le tracé d'une trajectoire vers un cavernome. Un attribut d'action apporte plus de détails sur l'action, comme les outils chirurgicaux employés, la forme de l'incision ou la position du patient.

Une étape (*Step*) comporte une liste structures (*StructureList*), contenant toutes les structures (*Structure*) anatomiques, fonctionnelles ou pathologiques sur lesquelles porte la réalisation de cette étape chirurgicale. Chaque structure est caractérisée par le rôle (*Role*) qu'elle joue dans l'étape considérée : zone cible, zone à éviter, zone repère ou trajectoire.

Le modèle introduit une distinction entre les structures anatomiques, pathologiques et fonctionnelles spécifiques au patient (*InstantiatedConcept*, utilisé comme *AnatInstConcept*, *PathoInstConcept* et *FunctInstConcept*) et les concepts généraux anatomiques, pathologiques et fonctionnels (*CanonicalConcept*, utilisé comme *AnatCanConcept*, *PathoCanConcept* et *FunctCanConcept*) correspondants, qui renvoient vers des connaissances générales [8].

De plus, une étape réalisée (*RealizedStep*) se voit attacher une liste d'incidents (*Incident*), non prévus lors de la préparation de cette étape et modifiant le déroulement de l'intervention chirurgicale, ainsi qu’un ou plusieurs documents multimédias (*MultiMedDoc*) acquis pendant l’intervention.

L’ontologie formalisée : La figure 2.2.3 présente le modèle générique sous forme de diagramme de classe UML.
Tests : L’instanciation de cas chirurgicaux en prospectif et en rétrospectif nous a permis de valider et d’améliorer notre modèle. Trois versions successives du modèle ont été définies. La dernière version est présentée dans la figure 2.2.3.

2.2.2.7 Discussion
Comme nous l’avons déjà souligné, la construction d’une ontologie est une étape nécessaire avant toute formalisation de connaissances. Elle n’est que rarement prise en compte dans les travaux ayant un objectif d’amélioration des systèmes de chirurgie guidée par l’image. Cette approche initiale nous a permis de proposer une ontologie pour la description fonctionnelle et macroscopique des procédures neurochirurgicales.

Interopérabilité : Grâce à l’ontologie proposée et au modèle, la sémantique et le rôle assignés aux données images, dans le contexte précédemment défini des craniotomies guidées par l’image, peuvent être explicites, ce qui est primordial pour un partage d’information réussi entre les différents logiciels utilisés pour préparer et réaliser la procédure neurochirurgicale. Cet aspect de notre travail peut se comparer aux travaux menés sur la conception de terminologies médicales, en particulier les travaux de codification des procédures chirurgicales [15,16,17,18].

Choix du formalisme : Différents formalismes peuvent être utilisés pour représenter une ontologie. Le choix du formalisme est guidé à la fois par l’ontologie elle-même, ce que l’on cherche à représenter, et par l’application cible, ce que l’on va en faire. Nous avons choisi le langage UML et les diagrammes de classes. Ce choix peut nous être reproché, à cause de certaines limites d’UML, mais il a été motivé par les caractéristiques de l’ontologie à formaliser et reste bien adapté à notre cas. La tendance actuelle est de se tourner vers des
langages de représentation de type « Web Ontology Language » (OWL)\(^{38}\) reconnus par le W3C\(^{39}\) et qui offre une richesse de formalisation, notamment la possibilité de définir des règles. Néanmoins, OWL n’est pas vraiment adapté à la représentation de scénarii ou de flux d’actions. La “Workflow Management Coalition” (WFMC) propose un formalisme pour la représentation de « workflow ». D’autres proposent d’utiliser les réseaux de Pétri ou les représentations de type « topic maps ».

Limites de notre approche : De nombreux biais peuvent exister dans la méthodologie utilisée pour la construction de l’ontologie : nombre faible d’experts mis en jeu, nombre faible de cas étudiés, … Dans notre cas, seules trois familles de procédures ont été étudiées. Seuls quatre neurochirurgiens ont décrit ces procédures. Ces quatre neurochirurgiens font partie du même service et du même hôpital. Les procédures ont été décrites par les chirurgiens qui les ont réalisées. Ils ont pu, de ce fait, oublier inconsciemment des éléments importants. Différentes visions de la procédure peuvent aussi être décrites par le chirurgien : la procédure telle qu’elle a été réellement réalisée avec les informations disponibles ou la procédure idéale telle que l’on souhaiterait la réaliser avec toutes les informations pertinentes. Le premier cas renseigne sur la pratique actuelle, le deuxième permet de faire évoluer les techniques en soulignant les besoins en information ou outils. La validation de l’ontologie résultante est aussi problématique. Comment peut-on être sûr que le domaine à modéliser est totalement couvert par l’ontologie (complétude) ? Comment peut-on être sûr des valeurs des cardinalités des relations (exactitude) ? La méthodologie itérative que nous avons utilisée permet de minimiser les erreurs et de maximiser la qualité de l’ontologie par convergence. Malgré tout, une ontologie se veut un standard et une approche multicentrique est évidemment nécessaire. Cette approche devra permettre de confronter le modèle à d’autres pratiques chirurgicales et à d’autres écoles de chirurgie, et d’enrichir les cas instanciés pour limiter les variabilités.

2.2.3 Description de l’expérience chirurgicale ou du consensus à l’aide de l’ontologie

Un des objectifs de nos travaux est de pouvoir définir des scénarii chirurgicaux type correspondant à des « workflows chirurgicaux intra opératoires ». La définition de tels scénarii peut aider notamment :

- à choisir la stratégie chirurgicale, par référence au scénario probable, similaire ou proche,
- à anticiper de manière formelle la procédure pour optimiser les interfaces homme/machine des systèmes de chirurgie assistée par ordinateur,
- mais aussi à définir de nouveaux outils pédagogiques pour l’enseignement de la chirurgie.

Il y a deux principales approches pour définir ces scénarii. Dans le cas de procédures chirurgicales standards, c’est à dire, avec une faible variabilité inter patient et inter chirurgien, des experts-chirurgiens ou des comités d’experts peuvent décrire ces procédures à l’aide de formalismes pré définis. Dans le cas de procédures chirurgicales avec une importante variabilité inter patient et inter chirurgien, le consensus n’est pas facile.

Les travaux que nous avons réalisés s’intéressent au deuxième cas. La chirurgie des tumeurs intra parenchymateuses supratentorielles que nous avons principalement étudiée est une

\(^{38}\) http://www.w3.org/TR/owl-features/

\(^{39}\) http://www.w3.org/
chirurgie avec une forte variabilité inter patient mais aussi inter chirurgien. L’approche par
définition directe d’un consensus chirurgical ne peut pas s’appliquer dans ce cas. Il faut mettre
en place une autre approche qui se base sur l’extraction de ces scénario à partir de cas
chirurgicaux décrits avec l’ontologie formalisée.

Matériels et méthodes

Pour la description des cas chirurgicaux, nous avons utilisé l’application logicielle développée
pour l’implémentation 2 (voir section précédente) et développé une deuxième application
logicielle basée sur les technologies de l’Internet, indépendante de la plate-forme
informatique utilisée. Cette deuxième application appelée DBSurg (Figure 2.2.4) a été
développée en PHP40 et sauve les résultats dans une base de données relationnelles
PostgreSQL41 et sous la forme de fichiers XML. Près de 200 cas chirurgicaux ont été saisis
deux façons différentes. En prospectif, pour près de 30 cas chirurgicaux, le neurochirurgien
a décrit la vision pré opératoire de la procédure chirurgicale et a associé, à chaque étape, des
scènes 3D multimodales comme celles présentées dans la section 1.2.2. Puis, il a visualisé ce
scénario chirurgical pendant l’opération et a saisi, de nouveau et pendant l’opération, le
scénario effectivement réalisé. En rétrospectif, les cas (près de 170) ont été saisis à partir de
comptes-rendus post opératoires sous contrôle du neurochirurgien pendant des séances de
travail. Ces données décrivent le déroulement de procédures chirurgicales réalisées sur un
groupe de patients opérés au service de neurochirurgie de l’Hôpital Pontchaillou de Rennes,

Figure 2.2.4: Le logiciel DBSurg permettant la description de cas chirurgicaux.

Discussion

L’utilisation prospective des logiciels nous a permis de mettre en place une nouvelle approche
pour la préparation et la réalisation des procédures de neurochirurgie guidée par l’image.
Nous l’avons souligné dans le Chapitre 1 : l’amélioration des systèmes de chirurgie guidée par
l'image passe, notamment, par une meilleure utilisation et organisation des données
multimodales, par la préparation de la procédure chirurgicale dans sa globalité et par l'ajout
de l'étape de simulation fondée sur les données du patient. Nous pensons que l’approche
proposée apporte une aide précieuse pour ces trois points.

40 http://www.php.net/
41 http://www.postgresql.org/
En renseignant le modèle pour des cas cliniques prospectifs avant l’intervention, le chirurgien doit expliciter la décomposition de la globalité de sa procédure en plusieurs étapes principales et pour chacune d’elles, l’action correspondante et ses attributs. Ainsi, cette phase de préparation prend réellement en compte la totalité de l’intervention. De plus, l’association des entités image importantes à chaque étape et leur visualisation au sein d’une scène 3D permettent au chirurgien de jouer mentalement la procédure et ses instants clés. Il anticipe les points de vue opératoires et les structures clé qui seront rencontrées. Lors de la réalisation de la procédure et pour chaque étape chirurgicale, le logiciel développé affiche les entités image sélectionnées. Ainsi, ne seront affichées que les images ou entités jugées pertinentes pour la réalisation de l’étape. Pour chaque entité image, des paramètres de visualisation différents peuvent être affectés en fonction du rôle de l’entité au sein de l’étape, comme la couleur ou la transparence pour différencier zones cible, zones de référence ou zones à éviter.

La majorité des travaux effectués sur la simulation des procédures chirurgicales s’est concentrée sur le rendu réaliste des tissus ou la simulation de la réalité biomécanique plutôt que sur la compréhension des procédures. Cependant, le besoin de modèles dérivés de la modélisation comportementale et de l’analyse de tâches a été clairement mis en évidence lors de la conception de systèmes de simulation chirurgicale [10,11,45,46]. Des modèles des procédures, tels que celui proposé ici, peuvent répondre à ces besoins.

2.2.4 Extraction de connaissances à partir de la description des cas chirurgicaux

L’hypothèse sur laquelle se base cette étape est double : il existe des invariants dans les scénarii chirurgicaux à l’intérieur de sous-ensembles de cas chirurgicaux et la distinction de ces sous-ensembles dépend de variables liées au patient. L’objectif de cette étape est donc de pouvoir, à partir d’une base de cas chirurgicaux, extraire ces invariants de façon non-supervisée. Cela nous permettra la prédiction de scénarii chirurgicaux ou, du moins, de parties de ces scénarii, à partir de certaines variables liées au patient. En d’autres termes, nous avons cherché à prédire les valeurs de certaines classes de notre modèle à partir de valeurs de certaines autres classes du modèle. Pour cela, nous avons distingué d’abord les variables dites prédictives des variables à prédire. Puis, nous avons transformé nos données pour les mettre sous une représentation dite plate. Enfin, nous avons proposé l’utilisation de plusieurs méthodes d’extraction de connaissances. Cette approche est illustrée par deux applications : 1) l’étude du positionnement du patient en salle d’opération en fonction de la localisation de la zone lésionnelle et 2) la classification des variables prédicitives suivie d’une étude manuelle des valeurs des variables à prédire de chacune des classes trouvées pour la recherche d’invariants dans les procédures réalisées [P_17,P_20].

2.2.4.1 Distinction des variables prédicitives et à prédire

Les cas chirurgicaux contenus dans la base de données sont décrits par les différentes classes du modèle générique. Chacune de ces classes correspond à une variable qu’il est possible d’étudier. Nous avons distingué les variables prédicitives des variables à prédire de la manière suivante. Les variables prédicitives correspondent aux classes du modèle générique décrivant le cas chirurgical, et sont représentées en rouge dans la figure 2.2.5. Ces classes ou variables contiennent notamment les informations sur le patient, le type de procédure chirurgicale, la nature pathologique de la zone tumorale, la localisation de cette zone (lobe, gyrus), sa profondeur et l’hémisphère dans lequel elle est située. Ces variables sont connues avant la réalisation de la procédure chirurgicale. Les variables à prédire correspondent aux classes du modèle générique décrivant le déroulement de la procédure chirurgicale, et sont représentées
en bleu dans la figure 2.2.6. Ces classes contiennent notamment les informations sur les différentes étapes réalisées, les actions correspondantes ainsi que les attributs et modèles d'action et les structures anatomiques, pathologiques ou fonctionnelles dont la connaissance a été jugée nécessaire pour réaliser l'étape en question. Les valeurs de ces variables ne sont connues qu'une fois la procédure chirurgicale réalisée. Ce sont ces valeurs que nous cherchons à prédire à partir de la connaissance des variables prédictives.

2.2.4.2 Transformation des données

Les données : Nous avons utilisé une base de cas chirurgicaux constituée de la description de 170 cas de chirurgies de tumeurs supratentoriales. De cette base de cas, nous avons exclu 11 cas dont la faible fréquence perturbait les résultats et ceci malgré leur pertinence probable. Ont été exclus : les patients gauchers (3 individus), les patients dont les tumeurs sont bilatérales (2 individus), les patients dont la procédure visait plus d'une cible pathologique (3 individus), les patients présentant une étape d'approche trans-sulcale (1 individu), et les patients présentant deux étapes d'approche trans-gyrale successives (2 individus). Après exclusion de ces cas chirurgicaux, notre échantillon comportait 159 individus.

Transformation des données : La grande majorité des algorithmes actuels d'extraction de connaissances nécessite en entrée des données sous forme de représentation plate. Une représentation plate est un tableau à deux entrées qui se présente de la façon suivante : sur les colonnes les variables à étudier, sur les lignes les individus. Les données sur lesquelles se porte notre travail sont structurées et hiérarchiques et sont donc considérées comme complexes par la communauté de l'ECD. Nous avons donc réalisé deux études mettant en jeu des variables prédictives et à prédire où la transformation en représentation plate ne posait pas de difficulté majeure.

2.2.4.3 Extraction de connaissances à partir de données

2.2.4.3.1 Etude 1 : Positionnement du patient en salle d'opération en fonction de la localisation de la zone tumorale

Le positionnement du patient est une problématique récurrente très importante en neurochirurgie [44]. Cette position doit être choisie avant l'intervention, afin d'obtenir le meilleur angle de visibilité de la région d'intérêt et de minimiser la déformation cérébrale intra opératoire en tenant compte des contraintes anesthésiques. Des discussions avec les neurochirurgiens et une étude manuelle préalable nous ont indiqué que le positionnement dépend de la localisation de la tumeur. Pour cette étude, nous avons utilisé un logiciel de
prédiction par construction d’arbres décisionnels (Classification and Regression Tree :

cart42). Cette technique de prédiction se caractérise par la définition de trois opérateurs.
L’opérateur 1 permet de décider si un nœud donné est terminal, c’est-à-dire décider si le nœud
est une feuille. L’opérateur 2 permet de sélectionner le type de test à associer au neud.
L’opérateur 3 permet d’affecter une classe à une feuille.

L’objectif est de construire un arbre minimisant l’erreur de classification. L’erreur de
classification se définit comme étant le pourcentage d’éléments qui sont attribués à une classe,
donc à une classe erronée. En différant un ensemble de construction et un ensemble de
test, il est possible de calculer les erreurs de classification sur ces deux ensembles et une
matrice de confusion qui détaille les erreurs de classification sur l’ensemble de test.

Nous avons donc construit l’arbre de décision nous permettant de prédire le positionnement
du patient à partir de la localisation de la tumeur, au niveau du lobe. Les éléments de notre
ensemble sont les cas chirurgicaux décrits par les attributs LobeTemporal, LobeParietal,
LobeOccipital et LobeFrontal. Nous avons utilisé le logiciel cart, avec un échantillon
d’apprentissage composé de 106 cas chirurgicaux, et un ensemble de test composé de 53 cas
chirurgicaux. L’arbre de décision obtenu est illustré par la figure 2.2.7.

Les règles de décision correspondantes sont les suivantes:
- Si LobeParietal = No Et LobeOccipital = No Et LobeFrontal = No Alors Dorsal.
- Si LobeParietal = No Et LobeOccipital = No Et LobeFrontal = Yes Alors Dorsal.
- Si LobeParietal = No Et LobeOccipital = Yes Alors Ventral.
- Si LobeParietal = Yes Alors Lateral.

L’erreur de classification calculée sur l’ensemble d’apprentissage est de 18% et de 20% sur
l’ensemble de test. La matrice de confusion calculée sur l’ensemble de test est la suivante,
avec en abscisse, les valeurs réelles, en ordonnée, les valeurs prédites et, dans chaque case, le
nombre de cas cliniques :

<table>
<thead>
<tr>
<th></th>
<th>Dorsal</th>
<th>Latéral</th>
<th>Ventral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal</td>
<td>28</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Latéral</td>
<td>9</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Ventral</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

42 CART : http://www.salford-systems.com/
Les résultats montrent qu’il y a bien un lien entre localisation de la zone lésionnelle et position opératoire du patient. Les erreurs de classification importantes soulignent aussi le besoin de décrire de manière plus fine la localisation de la lésion et la position opératoire, à un niveau gyrus et non plus lobe pour la localisation et à l’aide d’angles pour la position.

2.2.4.3.2 Etude 2 : Classification des cas chirurgicaux en fonction des variables prédictives

Pour cette deuxième étude, nous avons cherché à calculer le nombre de classes présentes dans notre échantillon de 159 cas chirurgicaux. Pour cela, nous avons utilisé une classification par l’algorithme des K-means en ne considérant que les variables prédictives. Nous avons intégré les variables à prédire en tant que variables illustratives. Nous avons obtenu un dendrogramme qui nous indique qu’il est possible de partitionner notre échantillon en 2, 3, 4, 6 ou 9 classes. Nous avons ensuite utilisé une classification ascendante hiérarchique en fixant à 6 le nombre de classes que l’on désire obtenir. La répartition des individus dans chaque classe est détaillée dans le tableau suivant (Table 2.1). Pour chaque classe, on donne l’effectif et les variables prédictives les plus représentatives. Par variable représentative de la classe, on entend le couple (variable, valeur) pour lequel le pourcentage d’apparition dans la classe est sensiblement plus élevé que pour l’échantillon global. Les variables en italique sont les variables à prédire et n’ont qu’un rôle illustratif.

Les résultats montrent qu’il est possible de classifier les procédures chirurgicales et que, dans ces classes, il existe une invariance de certaines variables à prédire, comme la forme de l’incision ou la position opératoire.
Tableau 2.1: Répartition des individus dans les 6 classes obtenues après classification. Les colonnes « % Classe » et « % Echantillon » indiquent les pourcentages des individus dans la classe (respectivement dans l’échantillon global) qui vérifient la valeur indiquée dans la première colonne « Variable ». Le nombre de cas chirurgicaux appartenant à chaque classe est indiqué (effectif).

2.2.4.4 Discussion sur les travaux réalisés

L’utilisation de techniques d’Extraction de Connaissances dans le domaine de la chirurgie telle que nous l’avons réalisée ici est une approche originale qui demande à être poursuivie. Les travaux sont préliminaires et les résultats évidents et connus. Malgré tout, ces résultats ont été générés de façon non supervisée. L’approche utilisée ici peut être facilement étendue à l’extraction d’autres connaissances chirurgicales. Les deux études utilisent deux méthodes différentes et abordent deux points complémentaires : la prédiction de paramètres concernant la procédure chirurgicale à partir de paramètres liés au patient et la classification de procédures chirurgicales. Les deux approches tendent à souligner les invariances qui peuvent exister dans certains scénarios chirurgicaux ou dans certaines parties de ces scénarios.

Les limites de nos travaux

Les limites principales de nos travaux se situent principalement dans le faible nombre d’échantillons utilisés qui peut remettre en cause la représentativité de nos données. C’est pour cette raison que nous avons réduit le champ de nos études. Pour la même raison, les cas chirurgicaux ne concernant que trois neurochirurgiens, les résultats ne peuvent être représentatifs que de la pratique chirurgicale de ces trois neurochirurgiens. Une des raisons...
Les principaux facteurs qui expliquent le faible nombre d’échantillons est le temps nécessaire à la saisie des informations. En effet, la génération de connaissances à partir de descriptions de cas chirurgicaux suppose aujourd’hui la saisie de ces informations par un opérateur humain, de préférence le neurochirurgien. Cette procédure se rajoute à toutes les tâches à réaliser par le neurochirurgien. Si l’on souhaite enrichir les bases de cas chirurgicaux de manière continue et en suivant le schéma de la Figure 2.2.8, il est nécessaire de prévoir l’automatisation de la saisie des informations. On le sait, le coût opérateur est élevé. Cette saisie automatique doit donc être prise en compte par les systèmes de chirurgie assistée par ordinateur, en relation avec les systèmes d’information radiologique (SIR) et les systèmes d’information hospitalière (SIH). Vers la définition de systèmes d’information chirurgicale (SIC).

La transformation de nos données structurées en données plates reste un problème ouvert. Cette transformation introduit une perte d’information. Cette transformation peut aussi introduire un biais : les colonnes du tableau représentant les variables décrivant les individus doivent être indépendantes entre elles. Or, les données structurées sont liées entre elles par des relations hiérarchiques, elles ne sont donc pas indépendantes.

Parmi les questions ouvertes, il faut aussi citer l’utilisation d’autres stratégies d’ECD. Il serait intéressant, par exemple, d’effectuer une double classification en parallèle des variables prédictives et des variables à prédire avec la méthode utilisée dans la section précédente et de croiser ensuite les résultats. On comparerait ainsi si l’appartenance d’un individu à une classe obtenue par classification selon les variables prédictives (c’est-à-dire une classe de profil-type de cas chirurgical) implique son appartenance à une classe particulière obtenue par classification selon les variables à prédire (c’est-à-dire une classe de description de la procédure chirurgicale).

Implémentation du concept pour des systèmes de chirurgie guidée par l’information

Ces connaissances générées par classification ou par prédiction peuvent avoir plusieurs utilisations possibles. Elles peuvent avoir une finalité purement cognitive ou une finalité appllicative (Figure 2.2.8). Pour ce dernier cas, on peut par exemple chercher à extraire de la base de cas chirurgicaux le cas chirurgical le plus proche du cas qui nous intéresse. La description du cas extrait servirait alors d’exemple pour prédire et instancier la description du cas courant. On peut aussi chercher à extraire de la base de cas chirurgicaux un squelette de description de la procédure chirurgicale qui serait une « moyenne » des cas les plus proches du patient courant. Ce squelette servirait alors de base de départ pour l’instanciation du cas courant. Enfin, on peut chercher à classer le cas courant dans la base de cas chirurgicaux. Le modèle-type de la classe dans laquelle le cas a été classifié sert alors de base à l’instanciation du déroulement de la procédure chirurgicale.
Figure 2.2.8: Utilisation de l’approche dans le « workflow » chirurgical.

Afin de pouvoir mettre en place ces applications, il est nécessaire de définir des « modèles de famille » de procédures chirurgicales, qui représentent un certain type de procédure chirurgicale, avec l’inclusion d’office, par exemple, des étapes attendues et des entités images associées à ce type de procédure. Ces modèles décrivent, pour un certain n-uplet de valeurs des différentes variables prédictives, quelles sont les valeurs prises par les variables à prédire. Par exemple, il serait possible de définir le modèle de la famille des « Exérèses de tumeur de taille [TumorAmplitude] située dans l’hémisphère [TumorSide] et dans le lobe [TumorLobe] pour un patient dont la latéralisation est [PatientLateralisation] ».

De plus, nous pouvons aussi envisager de définir des « modèles d’étape ». Ces modèles permettent de représenter les connaissances que nous avons acquises concernant le déroulement d’une étape en particulier. Ces modèles permettraient de représenter l’interdépendance des variables à prédire.

Où sont stockées ces informations ?

Les informations manipulées sont de deux ordres : connaissances générées par ces systèmes de type ECD et cas chirurgicaux décrits à l’aide d’une ontologie commune. Quand elles ont été générées à partir de bases de données internationales, exhaustives et représentatives, les connaissances pourraient être stockées dans des entrepôts de données gérés par des sociétés médicales et chirurgicales et accessibles à la communauté médicale ? Ces connaissances pourraient aussi être générées à partir de bases de cas plus modestes. Elles seraient, dans ce cas, représentatives d’une pratique individuelle ou liée à un service de chirurgie. Ces connaissances pourraient être stockées localement. De la même manière, les cas chirurgicaux peuvent être le reflet de la pratique internationale, nourris et accessibles par la communauté médicale internationale ou le reflet d’une pratique individuelle. L’implémentation de ce partage de connaissances et de données peut s’appuyer sur des approches centralisées ou, au contraire, distribuées [42].
2.2.5 Discussion

Nous avons proposé une méthodologie globale pour une chirurgie guidée par la connaissance ou par l’information. Cette méthodologie inclut la définition d’une ontologie, la mise en place d’outils pour le recueil d’information et d’outils pour l’extraction de connaissances. Nous avons montré comment cette approche pouvait être intégrée dans le processus de chirurgie assistée par ordinateur, notamment pour aider la préparation et la réalisation de procédures neurochirurgicales guidée par une imagerie multimodale. Nous avons aussi montré comment cette approche a double objectif : supervision et apprentissage. Supervision en s’appuyant sur la structuration de la description de la procédure chirurgicale pour aider à l’échange d’information et au choix de paramètres d’interaction et de visualisation. Mais aussi apprentissage et génération de nouvelles connaissances. La figure 2.2.8 souligne bien l’aspect dynamique de l’approche.

Extension de l’approche de modélisation

Evidemment, tous les résultats sont très préliminaires et ne font que soulever de nouvelles questions. La procédure chirurgicale que nous avons modélisée se limite au comportement du chirurgien seul. Ne faut-il pas inclure dans cette modélisation d’autres acteurs ? Nous considérons dans notre modèle la procédure chirurgicale comme une liste d’actions macroscopiques (une dizaine d’étapes et une action par étape). Ne serait-il pas intéressant de reconsidérer le niveau de granularité de notre description ? De la description des mouvements spatiaux des mains et outils jusqu’à une vision péri opératoire du processus chirurgical. A quelle résolution spatiale et temporelle devons nous décrire cette procédure ? Toutes les informations sont porteuses de connaissances et peuvent à des niveaux différents améliorer le processus chirurgical. Ainsi, l’approche que nous proposons peut s’appliquer à ces différents niveaux de description. Que ce soient des descriptions symboliques ou numériques, pour la position d’outils, le suivi de déformations anatomiques intra opératoires ou les interactions homme/machine, par exemple, il sera nécessaire de définir une ontologie, de la formaliser, de l’utiliser pour acquérir des informations ou cas chirurgicaux, puis d’utiliser des méthodes statistiques ou d’ECD pour extraire des invariants ou des connaissances de ces cas. Ces connaissances permettront enfin d’optimiser les systèmes sur l’aspect étudié.

Enfin, le problème de l’évaluation de la plus-value apportée par une telle approche reste ouvert. On peut se réfugier derrière le concept d’« evidence based medecine ». On peut aussi chercher des critères facilement quantifiables qui montrent l’intérêt de l’approche. Certaines équipes montrent comment l’utilisation de systèmes s’appuyant sur des workflows chirurgicaux peut réduire les temps opératoires et non opératoires [43]. Nous reviendrons en détail, dans le chapitre suivant, sur le problème de la validation et la méthodologie présentée dans ce chapitre pourra être, en partie, appliquée ici.

Evidemment, vu l’importance du travail à réaliser et le besoin de consensus, ces travaux doivent être réalisés à un niveau multi centrique, international et multi disciplinaire.

43 Mais n’est-ce pas le propre de la recherche ?
Quelques réflexions sur les aspects éthiques de cette approche

En formalisant la connaissance et l’expérience du neurochirurgien et en injectant cette connaissance dans les systèmes de chirurgie guidée par l’image, ne prive-t-on pas le chirurgien de son savoir et donc d’une partie de son pouvoir ? De la même façon que le développement de systèmes robotisés peut priver le chirurgien de ses compétences manuelles. N’y a-t-il pas un risque de confier ces outils à des mains non expertes, sous prétexte de prise en compte de la connaissance et de l’expertise ? Jusqu’à quel niveau de confiance le chirurgien peut baser son intervention sur ces informations ? Le consensus résiste-t-il à la forte variabilité inter individuelle ? L’approche basée sur le rapprochement de cas chirurgicaux tient-elle bien en compte la totalité des paramètres qui expliquent cette variabilité ? Pour toutes ces raisons, n’y a-t-il pas un risque de rejet de cette technologie par les principaux intéressés que sont les chirurgiens ? Ces questions soulignent l’importance d’avancer pas à pas, en associant les chirurgiens à ces recherches, à chaque étape et dès le début. Enfin, il est intéressant de souligner que ce type d’approche peut faciliter la diffusion de la connaissance au plus grand nombre et, rêvons, indépendamment de critères ou de bénéfices économiques à court terme.
2.3 Références bibliographiques

28. http://www.acrobot.co.uk/

30 http://www.robdoc.com/eng/index.html

45 Spicer MA, Apuzzo MLJ, Virtual Reality Surgery: Neurosurgery and the Contemporary Landscape; Neurosurgery, March 2003, Volume 52, Number 3; p. 489-497.

Chapitre 3 Illustration de la démarche Observations-Connaissances dans le cas du problème des déformations anatomiques intra opératoires

3.1 Introduction

La démarche proposée dans les deux précédents chapitres de ce document consiste à mettre en jeu observations et connaissances dans un contexte applicatif. Dans les travaux présentés dans ces chapitres, cette démarche est appliquée au processus neurochirurgical assisté par l’imagerie multimodale. Les observations sont les images pré opératoires et les connaissances sont liées à la modélisation des procédures chirurgicales. Je présenterai, dans ce chapitre, comment cette démarche sera appliquée aux déformations anatomiques intra opératoires dans le cadre d’un projet de recherche qui débute.

Les déformations anatomiques intra opératoires

Nous avons abordé rapidement, dans la section 1.1.3.5, l’importance du problème des déformations anatomiques intra opératoires en neurochirurgie guidée par l’image. La neurochirurgie possède des caractéristiques propres qui rendent particulière sa réalisation à l’aide de systèmes de ChGI. Le cerveau est circonscrit dans la « boîte » crânienne, organe rigide et clos, ce qui facilite son imagerie pré opératoire, contrairement au cœur ou aux structures molles. Mais, lors de la réalisation du geste neurochirurgical, l’anatomie, la physiologie et les fonctions cérébrales du patient se modifient et évoluent en fonction du temps. Cela bouleverse les connaissances génériques du chirurgien ou sa vision pré opératoire du patient. Les hypothèses qui régissaient la mise en correspondance entre le patient en salle d’opération et ses images pré opératoires ne sont plus valides (hypothèses de transformation rigide, notamment). L’information anatomo-fonctionnelle pré opératoire ne correspond plus à la réalité anatomique du patient.

Un phénomène complexe

Le phénomène de la modification de l’anatomie du patient lors de la réalisation du geste chirurgical est intrinsèque à la procédure chirurgicale, elle-même. Cette modification peut prendre différentes formes (comme le déplacement ou la disparition de matière) et provenir de différentes causes. Une fois le volet osseux réalisé, la dure-mère et l’arachnoïde ouvertes, l’anatomie corticale se déforme : la surface corticale se déplace soit en expansion, soit s’affaisse. Cela est dû à deux raisons principales : la perte de liquide cérébro-spinal lors de l’ouverture de la dure-mère et la modification de la pression intracrânienne. Ce déplacement, appelé « brain shift », a été mesuré grâce à différentes techniques dont l’acquisition d’images IRM intra opératoires. Son amplitude peut souvent dépasser le centimètre [1,2,3]. Puis, lors de l’accès à la zone lésionnelle, l’écarterment des structures corticales déplace certaines structures anatomiques et peut détruire les faisceaux corticaux. Enfin, l’étape de résection chirurgicale
entraîne notamment une disparition de matière lésionnelle qui modifie de manière importante l’anatomie. On le voit bien, la déformation anatomique intra opératoire est un phénomène spatio-temporel.

Imagerie intra opératoire seule ou imagerie pré opératoire remise à jour ?

Le chirurgien a besoin, tout au long de l’intervention, d’identifier les structures anatomiques, pathologiques et fonctionnelles sur lesquelles il opère et les répercussions de ses actions sur l’anatomie et la physiologie du patient. Pour cela, il a besoin de s’appuyer sur une information précise. Il est possible d’envisager deux façons principales de fournir au chirurgien cette information pendant l’opération. Une première : cette information sur le patient pourrait être acquise dans le contexte opératoire et en temps réel. Cette solution est difficile pour plusieurs raisons. Elle suppose la possibilité d’acquérir certaines informations qui nécessitent aujourd’hui un temps d’acquisition et de traitement important, incompatible avec les contraintes opératoires. Mais cette solution suppose aussi l’absence de préparation chirurgicale qui reste une étape importante pour le choix de la stratégie. Pour ces raisons, le neurochirurgien aborde généralement le problème de manière différente en se basant sur des images pré opératoires. Ces images sont ensuite mises en correspondance avec le patient en salle d’opération. Dans ce cas, l’imagerie utilisée par le neurochirurgien pour se repérer correspond à l’état pré opératoire du patient, et non à son état intra opératoire.

Remise à jour des images pré opératoires

Il est donc nécessaire de mettre à jour les images pré opératoires en fonction de ces déformations. Cette mise à jour nécessite l’estimation de la déformation indiquant, pour les voxels des images préopératoires, leur localisation intra opératoire. Pour parvenir à cette mise à jour, les étapes suivantes sont nécessaires : détecter ces déformations, les quantifier, les appliquer aux images pré opératoires et visualiser le phénomène.

Détection des déformations : Les déformations apparaissent tout le long de la procédure chirurgicale avec une ampleur variée. Certaines de ces déformations, de par leur relative faiblesse en amplitude, n’ont que peu d’impact sur la localisation des informations pré opératoires. En effet, nous l’avons vu précédemment, le neurochirurgien base la réalisation de sa procédure sur la visualisation de structures d’intérêt extraites des images pré opératoires (zones cible, structures à éviter, structures de repère ou « landmarks »). Ce sont les nouvelles positions de ces structures qui intéressent le chirurgien, plus que les nouvelles positions de tous les voxels des images pré opératoires. Il peut être donc important de détecter la présence des déformations et leur impact sur la localisation de ces structures d’intérêt avant d’aller plus loin dans le processus de remise à jour. Si les structures d’intérêt ne sont pas touchées par le phénomène de déformation ou simplement de manière minime (reste à quantifier ce que cela veut dire), il n’est pas nécessaire de procéder aux étapes suivantes. Cette détection peut être mise en œuvre avec des outils et informations permettant un suivi en temps réel. La détection peut nécessiter une quantification initiale.

Quantification des déformations : Dans la littérature, il est classique de distinguer les méthodes basées sur un recalage non linéaire entre images pré et intra opératoires du patient, les méthodes basées sur l’utilisation d’un modèle biomécanique des structures anatomiques ou pathologiques et les méthodes basées sur des modèles de prédiction de la déformation [12,21,22,23]. Les méthodes se caractérisent aussi par les hypothèses liées au choix des modèles sous jacents.
La déformation, et donc le modèle de la déformation, peuvent être calculés lors d’un recalage non linéaire entre images pré opératoires du patient et données intra opératoires. Ces dernières peuvent être de natures différentes: des images interventionnelles (voir la section 1.1.3.5.4), comme l’IRM interventionnelle [1] ou l’échographie [6,20], ou des informations appelées directes, comme l’acquisition de la surface corticale réelle à l’aide de lasers [15], d’images stéréoscopiques [16,17] ou d’un simple balayage de cette surface à l’aide d’un pointeur localisé. Dans ce cas, ces méthodes sont caractérisées selon la classification présentée dans la section 1.1.2.4.3.1. Les hypothèses, sur lesquelles elles se basent, varient selon le type des transformations géométriques non linéaires à estimer. Si les déformations sont estimées par des fonctions non linéaires globales ou locales, les hypothèses sont fortes et liées à la nature de la fonction qui impose une nature de déformation. Si les déformations sont estimées par des champs 3D de déformations (voir la section 1.1.2.4.3.1.3), les hypothèses sur le type des déformations sont faibles, ce qui peut rendre, de ce fait, difficile le calcul de ces déformations.

Des modèles (ou lois) d’élasticité interprètent ces paramètres pour définir le comportement biomécanique d’un matériau élastique sous l’effet de forces : modèles de St. Venant-Kirchhoff, de Yeoh, ou de Mooney-Rivlin, qui intègrent la non-linéarité géométrique et qui s’appliquent à une classe de matériaux hyper-élastiques. Enfin, la résolution numérique du problème est réalisée par des méthodes telles que la méthode des éléments finis, qui permet de décrire le comportement d’un corps qui se déforme ou se déplace sous l’influence de contraintes externes. Le volume d’intérêt est découpé en un maillage d'éléments volumiques. A l'intérieur de chaque élément, les champs de forces et de déplacements sont approximés par des fonctions d'interpolation continues et tenant compte de conditions aux limites. Ces conditions peuvent être liées à la rigidité de la boîte crânienne ou de la faux cérébrale, par exemple. Des contraintes supplémentaires peuvent être associées à ces conditions : contraintes provenant d’observations intra opératoires comme la surface 3D du cerveau reconstruite à partir d’images stéréoscopiques [17] ou d’un balayage laser de la surface [4]. Ces méthodes peuvent aussi être adaptées pour prendre en compte les changements de topologie comme le cisaillement, par exemple, ou la disparition de matière [5]. Les hypothèses sont fortes dans ce type de méthodes, à la fois sur les propriétés des tissus, sur les lois de déformation, sur les conditions aux limites et sur les contraintes imposées. Elles rendent le calcul plus facile mais supposent leur réalisme, qui n’est pas toujours démontré.

44 Le lecteur pourra se référer à [7,13] pour des présentations plus approfondies et didactiques du domaine.

Les méthodes qui semblent émerger cherchent à combiner ces différentes approches en contraignant, par exemple, le recalage non linéaire par des modèles biomécaniques de déformation ou en initialisant le recalage grâce aux modèles prédictifs, ou encore, en profitant d’informations intra opératoires pour l’adaptation des modèles biomécaniques aux images pré opératoires du patient.

Application des déformations estimées : Les informations pré opératoires sont ensuite mises à jour en fonction des déformations, par simple application de la transformation estimée. Il a déjà été souligné dans les paragraphes précédents que ce sont les nouvelles positions de structures d’intérêt qui sont importantes pour le chirurgien, plus que les nouvelles positions de tous les voxels des images pré opératoires. Il n’est donc pas obligatoire de remettre à jour l’intégralité des volumes des images pré opératoires. Remettre à jour la position de points ou surfaces d’intérêt peut suffire.

Visualisation des déformations : Cette visualisation peut s’effectuer par le réaffichage simple des images ou informations pré opératoires. Il peut aussi être intéressant de fournir au chirurgien un moyen visuel lui permettant d’apprécier l’importance de ces déformations, comme la visualisation conjointe des images avant et après correction ou la visualisation des directions de la déformation.

Les problèmes théoriques sont nombreux : recalage non linéaire entre images intra opératoires et images pré opératoires, prise en compte des nombreux paramètres influençant les déformations, suivi en temps réel des déformations, difficulté de la validation, etc. Les solutions proposées à ce jour ne sont pas satisfaisantes. Cela est dû, par exemple, au coût du matériel pour l’IRM interventionnelle, à la précision des modèles numériques biomécaniques, ou au réalisme des hypothèses. Les problèmes applicatifs sont aussi nombreux : à quels moments de la procédure faut-il réaliser les acquisitions intra opératoires et à quelle fréquence ? A-t-on besoin d’une information 3D à chaque mise à jour ?, etc.
3.2 L’approche Observations/Connaissances

Pour résoudre ce problème complexe, je propose une approche basée observations et connaissances: connaissances sous la forme de modèles numériques et symboliques et observations principalement sous la forme d’images interventionnelles de surface et d’informations de suivi de la chirurgie (Figure 3.1). Cette approche fait partie intégrante d’un thème de recherche du Projet/Unité INSERM/INRIA appelée Visages/U746, thème qui regroupe chercheurs, étudiants en doctorat et chirurgiens, notamment : P. Hellier (chargé de recherches à l’INRIA) qui travaille sur l’échographie 3D en tant qu’imagerie intra opératoire et sur le recalage non linéaire, spécialement entre IRM pré opératoire et échographie 3D et X. Morandi (professeur et neurochirurgien au CHU de Rennes) qui prend en charge les aspects médicaux du projet (compréhension des phénomènes, évaluation des techniques proposées et spécification des recherches).

Figure 3.1 : L’approche observations-connaissances appliquée à la résolution du problème des déformations intra opératoires.

L’approche que je cherche à introduire s’appuie donc sur le concept d’une collaboration entre observations et connaissances pré et intra opératoires. Les objectifs sont doubles : 1) mieux appréhender le phénomène avec la définition de nouvelles sources d’informations intra opératoires multimodales adaptées et en suivant l’approche multimodale introduite dans le Chapitre 1, et 2) mieux comprendre le phénomène avec l’utilisation de l’approche de modélisation introduite dans le Chapitre 2. Les aspects importants à prendre en compte sont les suivants : tenir compte de la complexité spatio-temporelle du phénomène, proposer des solutions adaptées au besoin clinique et peu coûteuses en maximisant leurs performances en terme de précision, et prendre en compte l’aspect ergonomique des systèmes en se situant dans le contexte péri opératoire complexe.
3.2.1 Définition et recueil d’observations intra opératoires

Nous chercherons ici à définir les informations intra opératoires pertinentes à acquérir. Elles peuvent être de plusieurs ordres : informations sur le suivi direct ou indirect du phénomène de déformation et informations de suivi de la gestuelle du chirurgien.

Les informations de suivi direct du phénomène de déformation consisteront en une imagerie multimodale. Nous travaillerons principalement sur l’utilisation des images vidéo provenant du microscope chirurgical. Ces images seront utilisées sous leur forme 2D originelle pour un suivi et une détection temps réel d’événements. Elles seront aussi utilisées sous la forme de surfaces 3D reconstruites grâce aux méthodes de vision stéréoscopique telles que nous les avons mises en œuvre et validées (voir la section 1.2.3.3 et la Figure 3.2). L’utilisation de cette double information 2D et 3D devrait faciliter une approche temps réel. Ce travail est en cours dans le cadre d’une thèse de troisième cycle (P. Paul) et en collaboration avec la société Medtronic SNT.

Figure 3.2 : Reconstruction de la surface du cortex avant et après ouverture de l’arachnoïde. En rouge (images du haut) et en gris (images du bas) est affichée la surface de la zone tumorale segmentée à partir d’images IRM anatomiques T1. La différence entre les images gauches et droites souligne l’effet de déformations anatomiques intra opératoires appréhendé par la reconstruction 3D de la surface.

Les informations de suivi indirect du phénomène de déformation seront définies à partir des résultats de l’approche de modélisation des connaissances qui identifiera les paramètres influençant ou expliquant le phénomène (voir la section suivante). Les mécanismes de recueil de ces informations devront être compatibles avec les contraintes de la salle d’opération et fournir des informations suffisamment précises et non ambiguës pour pouvoir être utilisées dans la résolution numérique du problème. Par exemple, la position du patient, l’orientation du vecteur de gravité dans le repère lié au patient ou la position et forme 3D du volet de la craniotomie sont des informations pouvant être facilement recueillies pendant la chirurgie. Elles devraient permettre d’aider à la prise en compte de l’aspect gravitationnel des phénomènes de déformation et de fournir certaines conditions aux limites. Certaines autres informations ne seront acquises que dans un but d’apprentissage, comme la pression artérielle ou la quantité d’agent hyper osmolaire injecté par les anesthésistes.

Le deuxième type d’informations acquises en salle d’opération concerne le suivi des aspects dynamiques du geste. Pour nourrir et adapter les modèles numériques au cas chirurgical en
cours, il est nécessaire de suivre les actions qui ont un effet sur la modification de l’anatomie. Au niveau macroscopique, il doit être possible de connaître, à tout instant, le type d’action que le chirurgien est en train de réaliser : ouverture du volet osseux, ouverture de la dure mère, accès à la zone cible, résection de la zone cible, … Cette connaissance fournit, elle aussi, une information importante au système concernant le type de modification anatomique attendu. Au niveau microscopique, le suivi des positions des outils chirurgicaux, du microscope chirurgical, et donc de leurs trajectoires, voire les mesures de forces appliquées sur les outils, devraient permettre, là encore, de fournir au système des contraintes importantes.

3.2.2 Modélisation et utilisation des connaissances

En complément de ces informations numériques, j’ai démontré dans le Chapitre 2 l’intérêt de prendre en compte de manière formelle les connaissances associées à un domaine d’étude. Notre domaine concerne ici les déformations anatomiques liées à la réalisation du geste chirurgical. Ainsi, les connaissances numériques et symboliques liées au domaine peuvent concerner, à la fois, l’action, les conséquences de l’action et les objets sur lesquels porte l’action. L’action relève de la description de la procédure chirurgicale, les conséquences de l’action relèvent du phénomène de déformation et les objets sur lesquels porte l’action sont directement liées aux structures anatomiques, fonctionnelles et pathologiques déformées ou non (Figure 3.3).

<table>
<thead>
<tr>
<th>Action</th>
<th>Niveau procédure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procédure chirurgicale</td>
<td></td>
</tr>
<tr>
<td>Comportement macroscopique du chirurgien</td>
<td>Niveau tache</td>
</tr>
<tr>
<td>Comportement microscopique du chirurgien</td>
<td>Niveau suivi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conséquences de l’action</th>
<th>Niveau physique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phénomène de déformation</td>
<td></td>
</tr>
<tr>
<td>Modèle de déformation</td>
<td>Niveau numérique</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objets sur lesquels porte l’action</th>
<th>Niveau structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures anatomiques, fonctionnelles et pathologiques</td>
<td></td>
</tr>
<tr>
<td>Propriétés biomécaniques des structures</td>
<td>Niveau mécanique</td>
</tr>
<tr>
<td>Voxels</td>
<td>Niveau numérique</td>
</tr>
</tbody>
</table>

Figure 3.3: Les éléments génériques liés à notre domaine d’intérêt et décrits de manière hiérarchique.

La modélisation de toutes ces connaissances est un énorme chantier. Il est cependant possible de s’appuyer sur des travaux existants pour certains de ces points. La modélisation et la formalisation des connaissances génériques et symboliques liées aux structures anatomiques, fonctionnelles et pathologiques est un domaine de recherche existant. Certains de ces points sont abordés au sein du laboratoire IDM/Visages par B. Gibaud [18]. La modélisation des aspects microscopiques ou spatiaux du comportement du chirurgien pourrait être appréhendée par l’analyse des informations de suivi des aspects dynamiques du geste telles qu’elles ont été présentées dans la section précédente. La modélisation de la procédure chirurgicale, vue sous l’angle des actions du neurochirurgien, est un aspect original de mes travaux de recherches présentés dans la section 2.2. Les résultats de ces travaux peuvent être directement utilisés dans ce projet. Ce modèle devra être reconsidéré pour tenir compte des objectifs de ce projet.

Il reste enfin à étudier le phénomène de déformation vu sous l’angle physique et biologique. La modélisation des propriétés biomécaniques des structures et des modèles géométriques des déformations doit s’inspirer de la littérature présentée dans l’introduction, ce domaine faisant l’objet de nombreuses recherches. La modélisation du phénomène de déformation suivant une
approche symbolique liée aux connaissances sur le domaine est une approche complémentaire et originale. Cette étude doit suivre la méthodologie introduite dans la section 2.2 : l’identification du domaine à modéliser par une revue de la littérature et des entrevues avec des experts, l’extraction des concepts et relations du domaine pour créer une ontologie, la formalisation de cette ontologie, l’implémentation du modèle créé dans une application de recueil de données et les tests pour une validation itérative (Table 3.1).

<table>
<thead>
<tr>
<th>Parameters related to patient</th>
<th>Correlation(s)</th>
<th>Type</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical type</td>
<td>lesion.type</td>
<td>qualitative</td>
<td>resection, biopsy, electrodes placing, hippocampectomy, etc...</td>
</tr>
<tr>
<td>Patient age</td>
<td>none</td>
<td>quantitative</td>
<td>time (in years)</td>
</tr>
<tr>
<td>Lesion.type</td>
<td>none</td>
<td>qualitative</td>
<td>cavernoma, tumor, etc...</td>
</tr>
<tr>
<td>Lesion.localization.lobe</td>
<td>none</td>
<td>qualitative</td>
<td>frontal, parietal, etc...</td>
</tr>
<tr>
<td>Lesion.localization.zone</td>
<td>none</td>
<td>qualitative</td>
<td>gyrus, sulcus, etc...</td>
</tr>
<tr>
<td>Lesion.shape</td>
<td>none</td>
<td>qualitative</td>
<td>oval, round</td>
</tr>
<tr>
<td>Lesion.size</td>
<td>none</td>
<td>quantitative</td>
<td>volume, axis length</td>
</tr>
<tr>
<td>Oedema</td>
<td>lesion.type, steroid injection</td>
<td>qualitative</td>
<td>arbitrary edema scale</td>
</tr>
<tr>
<td>Cerebral atrophy</td>
<td>patient age</td>
<td>qualitative</td>
<td>arbitrary atrophy scale</td>
</tr>
<tr>
<td>Chiari malformation</td>
<td>none</td>
<td>qualitative</td>
<td>Chiari I, II, III, IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters related to surgical planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioning.body</td>
</tr>
<tr>
<td>Positioning.head</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters describing operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical step</td>
</tr>
<tr>
<td>Surgical step duration</td>
</tr>
<tr>
<td>Surgical tool</td>
</tr>
<tr>
<td>Craniotomy.localization</td>
</tr>
<tr>
<td>Craniotomy.size</td>
</tr>
<tr>
<td>Ventricular system opening</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physiological parameters</th>
<th>Correlation(s)</th>
<th>Type</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue swelling</td>
<td>edema, use of hyperosmolar agent and time after injection</td>
<td>volumetric</td>
<td>qualitative, quantitative</td>
</tr>
<tr>
<td>Arterial partial pressure of CO2</td>
<td>artificial ventilation</td>
<td>quantitative</td>
<td>partial pressure</td>
</tr>
<tr>
<td>Elasticity of the cerebral arterial system</td>
<td>patient age, atherosclerosis, edema</td>
<td>qualitative</td>
<td>Young modulus</td>
</tr>
<tr>
<td>Steroid.type</td>
<td>edema</td>
<td>qualitative</td>
<td>molecule name</td>
</tr>
<tr>
<td>Steroid.quantity</td>
<td>edema</td>
<td>quantitative</td>
<td>volume</td>
</tr>
<tr>
<td>Hyperosmolar agent</td>
<td>none</td>
<td>qualitative, quantitative</td>
<td>molecule name, injected volume, time after injection, agent osmolarity</td>
</tr>
<tr>
<td>Loss of cerebro-spinal fluid</td>
<td>natural loss, decrease of CSF production, subarachnoid space drainage and aspiration</td>
<td>quantitative</td>
<td>volume</td>
</tr>
<tr>
<td>Cerebral blood volume</td>
<td>arterial partial pressure of CO2, patient positioning, systemic blood pressure, hemorrhage, colloid, crystalloid or blood transfusion</td>
<td>quantitative</td>
<td>volume</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters from biomechanical models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young modulus</td>
</tr>
<tr>
<td>Poisson ratio</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
</tr>
<tr>
<td>Saturation coefficient</td>
</tr>
<tr>
<td>Density</td>
</tr>
<tr>
<td>Lamé constants</td>
</tr>
</tbody>
</table>

Table 3.1 : Résultats préliminaires des deux premières phases d’identification et de conceptualisation des paramètres liés aux déformations anatômiques intra opératoires [19].
Contraintes numériques, supervision, apprentissage et prédiction

Evidemment, une fois ces connaissances modélisées et formalisées, il faut mettre en place des mécanismes d’adaptation de ces connaissances au cas chirurgical concerné, grâce aux informations intra opératoires acquises. Il faut, de plus, être capable de traduire les connaissances symboliques, qu’elles soient génériques ou instanciées, en contraintes numériques utilisables directement par les algorithmes de quantification des déformations.

Il faut souligner la complexité de systèmes s’appuyant sur une imagerie intra opératoire multimodale. Pour pallier cette complexité, les descriptions a priori de la procédure chirurgicale se basant sur le modèle de la procédure pourraient faciliter le pilotage et la supervision de ces systèmes complexes. Ces descriptions pourraient aussi proposer des modèles de déformation correspondant à des types d’étapes chirurgicales (ouverture de l’arachnoïde, accès à la zone lésionnelle, résection, …). Elles apporteraient ainsi aux systèmes une information formelle importante sur l’action en cours. Elles pourraient donc permettre l’optimisation de ces systèmes, sous un point de vue gestion des données et des tâches, donc sous un point de vue de « workflow ».

Un des points intéressants de la démarche proposée dans la section 2.2 est la possibilité d’extraction de connaissances à partir des données (section 2.2.4). Ce principe, associant apprentissage et prédiction, pourrait être utilisé sur les données numériques et symboliques. L’analyse statistique ou descriptive des données numériques liées aux déformations estimées, et récoltées lors de cas chirurgicaux et en continu, devrait nous permettre dans un premier temps, d’identifier les paramètres qui influent les déformations et de quelles manières, puis, dans un deuxième temps, de proposer des modèles prédicifs de déformation. Cette analyse numérique combinée à l’analyse des données symboliques devrait faciliter la compréhension du phénomène des déformations anatomiques et donc d’enrichir les connaissances sur ce phénomène. A plus long terme, cette meilleure compréhension pourrait permettre d’optimiser les gestes neurochirurgicaux. Les conséquences sur l’amélioration de la qualité de la prise en charge chirurgicale sont importantes.

3.2.3 Validation

Il n’est pas possible de passer sous silence les difficultés liées à la validation de ces approches de quantification des déformations. Comment pouvons-nous vérifier la vérité de la déformation calculée ? Sachant que de son calcul dépend le déplacement des informations pré opératoires et donc la modification du geste chirurgical. Il sera donc nécessaire de mettre en place des procédures rigoureuses de validation, dans des conditions expérimentales réalistes, mais aussi dans des conditions cliniques où l’information remise à jour ne sera pas utilisée par le neurochirurgien.
3.3 Références bibliographiques

Chapitre 4 Validation des méthodes de traitement d’images en chirurgie guidée par l’image

4.1 État de l’art

Dans ce chapitre, je présenterais ma vision de la problématique de la validation des méthodes de traitement d’images, principalement dans le contexte de la chirurgie guidée par l’image. Cette vision s’est construite à partir des expériences relatées dans les chapitres précédents, à partir de réunions (sessions scientifiques, groupes de travail, tutorial) organisées lors de conférences internationales [P_15,P_25], mais aussi à partir d’un travail d’étude des procédures de validation en recalage d’images médicales. Ce travail sera présenté dans la section 4.2.1.

4.1.1 Introduction

Les nombreuses conférences dédiées à la chirurgie guidée par l’image ont souligné, ces dernières années, l’importance de la validation de ces systèmes en se basant sur une méthodologie commune et rigoureuse [1,2,3,4,5,6]. Les méthodes de traitement d’images ayant un rôle important dans ces systèmes, la performance des systèmes de chirurgie guidée par l’image dépend fortement de la performance de ces méthodes. Pour insister à nouveau sur la sensibilisation de la communauté scientifique et médicale au problème de la validation, il est intéressant de noter qu’aujourd’hui la grande majorité des publications dans des revues internationales à comité de lecture, portant sur le développement de nouvelles méthodes de traitement d’images médicales ou de nouvelles solutions en ChGI, incluent une section sur la validation, ce qui était plutôt rare dans le passé.

De manière très générale, le principal objectif de la validation est d’étudier certaines caractéristiques liées à la qualité d’un système pour accroître sa qualité et améliorer la satisfaction de l’utilisateur et du concepteur. La validation peut intervenir à la fois rétrospectivement et prospectivement durant le cycle de vie et de développement du système.

Validation, vérification ou évaluation ?

Quel terme doit-on utiliser ? Même si la distinction n’est pas toujours évidente, il est possible de définir les concepts suivants. Dans l’ingénierie, la vérification se distingue de la validation comme suit. La vérification est la confirmation à travers la fourniture d’évidences objectives que les spécifications ont été remplies. [53]. Cela revient à confirmer que le système a été construit conformément à ses spécifications. Confirmer que le système a été construit correctement. La vérification est réalisée à, et entre, chaque étape du cycle de développement du produit. La validation est la confirmation à travers la fourniture d’évidences objectives que les besoins liés à une utilisation spécifique prévue ont été remplis. [53]. Cela revient à

45 Même si beaucoup des concepts présentés ici restent valides dans un contexte de validation plus général.
46 http://www.fda.gov/cdrh/comp/ (Design Control Guidance for Medical Manufacturers)
confirmer que le système remplit bien les fonctions pour lesquelles il a été construit. Confirmer que le bon système a été construit. En pratique, la validation peut être réalisée à la fois pendant et à la fin du cycle de développement du produit. [54].

Dans le domaine du développement logiciel, on distingue aussi le terme d’évaluation. L’évaluation consiste à confirmer que le système est accepté par l’utilisateur final et performant pour un objectif précis. Confirmer que le système est utile. Le terme de “Test” est aussi utilisé avec une signification équivalente. On peut souligner que la distinction entre Validation et Evaluation dépend du sens associé à la notion de « bon système ». Un « bon système » a un sens différent en fonction de l’interlocuteur auquel on s’adresse.

Dans ce document, l’emphase sera mise sur la validation et l’évaluation. Nous nous intéressons plus particulièrement au fait qu’un nouveau système répond aux besoins des médecins et qu’il apporte une plus value à l’acte médical. Due à la frontière fine entre validation et évaluation et pour faciliter la lecture, nous utiliserons dans ce document le terme de validation pour désigner validation et évaluation.

Diversité de la validation

La validation concerne tous les acteurs mis en jeu dans le développement et l’utilisation d’un système de ChGI. Leurs attentes sont parfois différentes, parfois se rejoignent. Le chercheur qui conçoit une nouvelle méthode ou l’ingénieur qui développe un nouveau système est intéressé par la vérification et la validation. Il cherchera à répondre à des questions comme :

- Est-ce que les résultats ou sorties de mon système sont correct ?
- Est-ce que mon système est robuste à des cas que je n’ai pas prévu ?
- Y a-t-il des « bugs » dans mon système ?
- Quelles sont les performances de mon système par rapport aux autres systèmes de fonctionnalité équivalente ?, etc.

Le clinicien, utilisateur de cette nouvelle méthode, sera intéressé par la validation et surtout par l’évaluation. Il cherchera plutôt à savoir :

- Est-ce que le système est fiable ?
- Quelle est la précision au bout de mon outil ?
- Jusqu’à quel point puis-je me fier à l’information apportée par le système ?
- Est-ce que le système améliore la santé et la qualité de vie de mes patients ?
- Est-ce que le système rend mon travail de routine plus facile ?
- Quel est le meilleur système disponible ?, etc.

Les services financiers des hôpitaux ou cliniques ou les financeurs en général, qui paient le système et financent la pratique médicale, seront plus intéressé par l’évaluation. Ils voudront savoir :

- Est-ce que le système fait diminuer les coûts et les temps d’hospitalisation, et les temps opératoires ?
- A fonctionnalités équivalentes, quel est le système le moins cher ?, etc.

Enfin les organismes d’accréditation seront aussi plus intéressés par l’évaluation. Ils chercheront à savoir si, dans le cas d’essais cliniques à large échelle, multi-site et en aveugle, le système est performant. Enfin, les fabricants du système s’intéresseront aux trois aspects.

Validation technique, clinique ou socio-économique ?

Ces six niveaux d’évaluation incluent l’étude :
1. des performances techniques,
2. de la précision diagnostique,
3. de l’impact sur le diagnostic,
4. de l’impact thérapeutique (*i.e.*, influence de la technique sur le choix et la réalisation du traitement),
5. du résultat clinique sur le patient (*i.e.*, amélioration de la santé du patient),
6. de l’impact sur la société.

Illustrons ces niveaux d’évaluation dans le cas du développement d’une nouvelle méthode de traitement d’images permettant la détection de zones considérées comme liées au foyer épileptogène ou aux zones irritatives en chirurgie de l’épilepsie par étude d’asymétrie sur des images de TEMP [P.3, P.7]. Le niveau 1 consiste à démontrer, par expérience et tests, que la méthode détecte bien des zones asymétriques dans les images TEMP. Le niveau 2 consiste à étudier la sensibilité et la spécificité liées à la détection en utilisant des images simulées. Le niveau 3 consiste à déterminer si la nouvelle information fournit par cette méthode modifie ou pas le jugement du neurologue. Le niveau 4 consiste à déterminer si cette nouvelle information a eu un impact sur la gestion chirurgicale de l’épilepsie. Le niveau 5 consiste à estimer si cette information a permis une amélioration du devenir clinique post-opératoire du patient. Enfin le niveau 6 consiste à étudier les rapports coût-efficacité de cette nouvelle approche.

Avant sa mise sur le marché, un système médical doit être approuvé par un organisme et des autorités compétentes : FDA aux USA, AFSSAPS en France, TÜV en Allemagne, MDA au Royaume Uni, etc. Pour la FDA, les critères de validation dérivent du besoin de prouver que le système est sûr et efficace. Si un système de fonctionnalités équivalentes existe déjà sur le marché ou a déjà été approuvé, la FDA valide le système à partir des preuves de performances équivalentes (procédure appelée 510K). Dans le cas contraire (nouveau système et nouvelles fonctionnalités), parmi les critères de validation, une procédure appelée Pre Market Approval (PMA) est nécessaire et consiste à réaliser des essais cliniques pour une indication spécifique. Dans ce cas, le standard consiste à réaliser des d’essais cliniques à large échelle, multi-site et en aveugle, une procédure coûteuse en temps et en argent.
Ces différents niveaux d’évaluation soulignent une autre dimension de la complexité et de la diversité de la validation. Une étude d’évaluation ou de validation ne doit considérer qu’un niveau d’évaluation à la fois, mais une validation complète doit théoriquement inclure une étude séparée de tous ces niveaux.

Pommert et al. [27] étudient les deux premiers niveaux d’évaluation dans le cadre de la visualisation tridimensionnelle d’images médicales. Le niveau 1 (*technical image quality*) correspond à étudier combien l’image 3D calculée dévie de l’image idéale de la scène 3D. Le niveau 2 (*diagnostic image quality*) correspond à l’étude de la communication de l’information, via l’image, à un observateur (Figure 4.1.1). En ChGI, le niveau 1 correspond à l’étude de la faisabilité technique, le niveau 2 à l’étude de la précision du système sur des zones anatomiques ou pathologiques pertinentes, les niveaux 3 à 6 restant approximativement les mêmes.

![Figure 4.1.1: Validation de la visualisation 3D en imagerie médicale [27]. Étude des niveaux d’évaluation 1 et 2.](image)

Dans ce chapitre et dans les études sur la validation qui suivent, nous nous focaliserons principalement sur les deux premiers niveaux. Les autres intéressent aussi les systèmes de ChGI et doivent être étudiés, mais ils nécessitent des compétences particulières qui sont hors du contexte de ce rapport, principalement orienté ingénierie.

La validation dans le cycle de conception et de vie du produit

La *Global Harmonization Task Force (GHTF)*47, organisme international de normalisation, souligne la complexité de la validation d’un appareillage médical comme suit. « La validation d’un système doit être réalisée à différentes étapes de son cycle de vie. Les différents types de validation sont distingués en fonction de leur apparition temporelle et selon qu’ils concernent la définition et la conception d’un produit, son transfert vers la production ou sa sortie pour distribution. L’appareillage, vu de façon générique, peut être validé, ainsi que son processus de fabrication, le produit unitaire, qui est une instance de l’appareillage, son installation sur site, son côté opérationnel, etc. »

Ainsi, Balci définit un véritable cycle de vie de la validation associé au cycle de développement des applications de modélisation et de simulation [56] (Figure 4.1.2). Pour chacune des étapes, il propose les métriques associées. L’approche est intéressante et souligne une nouvelle fois la complexité de la validation. Dans ce document, nous nous intéressons aux dernières étapes (6 et 7) correspondant à l’évaluation des résultats « bruts » et des résultats « présentés à l’utilisateur ».

Figure 4.1.2: Les étapes de validation associées au cycle de vie d’un système de simulation selon [56]

Que permet la validation ?

On le voit donc, les intérêts de la validation sont multiples. La validation permet de montrer les caractéristiques intrinsèques d’un système ou d’une méthode. Elle permet d’évaluer ses performances et limites. Elle permet aussi de clarifier les contextes ou applications cliniques potentiels où le système, ou la méthode, peut être utile. Enfin, elle peut aussi démontrer la valeur ajoutée clinique et estimer l’impact social ou économique. La validation peut ainsi faciliter le travail de vérification de la conformité entre un système et des besoins cliniques. Malgré tout, la comparaison de systèmes nécessite l’utilisation de procédures de validation standardisées. Nous reviendrons plus tard sur ce dernier point.

Quelles sont les spécificités de la chirurgie guidée par l’image pour la validation ?

Nous avons vu dans les sections précédentes que le processus de ChGI met en jeu un workflow complexe qui comprend de nombreux logiciels et matériels où les méthodes de traitement d’images médicales ont une place importante, comme la segmentation, le recalage, la visualisation ou la calibration. Chaque composant est une source potentielle d’erreur, construisant ainsi un véritable flux d’erreurs (Figure 4.1.3). Les performances des systèmes sont ainsi très dépendantes des performances de chacune des méthodes utilisées. Ainsi, la validation d’un système de ChGI doit inclure à la fois l’étude des performances et de la validité du système global et l’étude de la propagation des erreurs tout au long du processus de ChGI.

Nous l’avons déjà souligné dans la section 1.1.8, la validation clinique d’un système de chirurgie guidée par l’image, ou plus généralement d’un système de chirurgie assistée par ordinateur, est difficile à mettre en œuvre sous la forme traditionnellement attendue d’essais cliniques à large échelle, multi-site et en aveugle (large scale multi site randomized clinical trials). Il y a deux raisons à cela. La première vient du caractère récent de ces technologies. La deuxième raison vient du problème éthique lié à la randomisation [25]. La validation clinique d’un nouveau système de ChGI, telle qu’elle est généralement demandée par les organismes d’accréditation (FDA aux Etats Unis, CE en Europe), nécessite de comparer les résultats des procédures chirurgicales réalisées avec le système, avec celles réalisées sans l’aide du système. Ainsi, il est de la responsabilité du chirurgien de choisir de façon aléatoire quels seront les patients qui pourront bénéficier d’une technologie supposée leur apporter un bénéfice direct, et ceux qui ne bénéficieront pas de cette technique. Ce problème reste un vrai dilemme pour le médecin, soucieux avant tout du bien être du patient. C’est notamment pour
ces raisons qu’il est plus facile de mener une procédure qui étudie la validité technique d’un système que de valider cliniquement celui-ci.

Dans ce chapitre, nous nous focaliserons sur ce premier type d’études. Nous introduirons la problématique de la validation, principalement limitée à la validation des procédures de traitement d’images médicales utilisées dans les systèmes de chirurgie guidée par l’image. Tout au long de ce chapitre, il apparaîtra évident au lecteur que certaines définitions, certains concepts sont applicables à la validation des systèmes de ChGI dans leur globalité.

La validation est un processus.

Selon Goodman [7], la **validation d’une technologie de la santé** (*health care technology assessment*), qui est un élément d’une démarche qualité, consiste en un processus d’examen ou d’évaluation et de diffusion des propriétés, effets et/ou impacts d’une technologie médicale. Goodman divise ce processus en étapes : 1) identifier le contexte de validation, 2) spécifier clairement l’objectif de la validation, 3) déterminer le lieu de la validation, 4) récupérer les connaissances disponibles et les évidences sur le sujet, 5) acquérir de nouvelles données, 6) interpréter les résultats et l’évidence associée, 7) synthétiser les résultats et l’évidence associée, 8) formuler les découvertes et recommandations, 9) diffuser les découvertes et recommandations, et 10) mesurer l’impact. La validation d’un système de ChGI est un cas particulier de la validation d’une technologie de la santé.

Selon la *GHTF*, le **processus de validation d’un système médical** contient les étapes suivantes : 1) planifier l’approche et définir les besoins, 2) identifier et décrire le système à valider, 3) spécifier les paramètres et les sorties attendues du système à valider, 4) choisir les méthodes et outils pour la validation, 5) créer des protocoles de validation, 6) définir les critères objectifs et mesurables et les critères subjectifs, définir les critères qui permettent des rejets des mesures non conformes, et définir les méthodes statistiques pour la collecte des données et leurs analyses, et 7) réaliser la procédure de validation et documenter les résultats. [55].
4.1.2 Les critères de validation

La validation nécessite le calcul ou l’estimation de critères. Comme nous l’avons souligné dans les paragraphes précédents, il existe différents types de validation, différents niveaux d’évaluation et différentes étapes dans la vie d’un système concernées par la validation. Cette diversité se retrouve dans les critères à étudier. La littérature est assez abondante sur la définition de critères d’évaluation en médecine. Les termes et les classifications utilisés ne sont pas toujours convergents et il est donc assez difficile d’extraire un consensus sur ces notions très générales. Malgré tout, il est possible de distinguer ces critères de validation en fonction des différents types de propriétés étudiées.

Dans le contexte de la vérification de la qualité d’une étude basée sur l’analyse de mesures, différentes propriétés sur les mesures doivent être examinées : la validité et la fiabilité des mesures et de l’analyse [28]. Parmi les critères de validité, on distingue les critères suivants :

- la validité logique (logical validity ou face validity) : Est-ce que la mesure correspond bien à ce que l’on cherche ou à ce que l’on attend d’elle ?
- la validité du contenu (content validity) : Est-ce que la mesure est représentative de ce que l’on cherche à mesurer ? ou est ce que les mesures couvrent bien le domaine ?
- la validité avec critère (criterion validity) : Est-ce que la mesure peut être validée grâce à des critères ou à une vérité ?, qui inclut :
 o la validité concurrente (concurrent validity) : Est-ce que la mesure est cohérente si elle est acquise grâce à d’autres méthodes ?
 o la validité prédictive (predictive validity) : Est-ce que la mesure peut être prédictive de performance ?
- et la validité de construction (construct validity) : Est-ce qu’une mesure inférée à partir d’autres informations est correctement construite ?

La fiabilité consiste principalement à étudier la consistance ou la répétabilité des mesures dans des conditions exactement semblables ou similaires. Goodman définit la fiabilité comme « la capacité d’un système à obtenir un même résultat quand une observation est répétée sur une même population ».

Dans le contexte des essais cliniques, il est commun de distinguer validité interne et externe [28]. L’étude de la validité interne consiste à vérifier l’absence de biais dans les mesures ou leur précision. La validité externe concerne l’applicabilité ou la généricité des mesures. Tous ces termes peuvent être aussi appliqués à l’évaluation de la qualité de données.

Dans le contexte de la chirurgie guidée par l’image, nous cherchons à valider une méthode qui fournit un résultat ou un système qui réalise une action. Dans notre problématique de validation, nous cherchons à valider ce résultat ou cette action. Les principaux critères de validation étudiés en ChGI sont les suivants : la précision qui est un critère de validité interne, la robustesse, critère de validité externe, la consistance, résolution et « répétabilité », critères de fiabilité. D’autres critères peuvent être étudiés comme l’efficacité, ou la détection de fautes.

4.1.2.1 Précision

Goodman [7] définit la précision (en anglais : accuracy) comme le « degré selon lequel une mesure est vraie ou correcte ». Pour chaque échantillon de données expérimentales, la précision locale correspond à la différence entre les valeurs observées ou calculées et les valeurs théoriques, supposées être connues à partir d’une vérité terrain. Cette différence est généralement appelée erreur locale (en anglais, le terme de discrepancy est utilisé). Sous des
hypothèses spécifiques, une valeur globale de la précision peut être calculée, pour la totalité des données, à partir d’une combinaison de valeurs locales de la précision. La notion de précision nécessite la connaissance d’une référence, base à la comparaison.

4.1.2.2 Robustesse
Une méthode est dite robuste (en anglais : robustness) si elle fournit des résultats fiables et de façon constante. La robustesse d’une méthode se réfère aux performances de cette méthode en présence de facteurs perturbateurs dus, par exemple, à la variabilité intrinsèque des données (comme la variabilité anatomique ou physiologique inter individuelle), au bruit, aux données pathologiques (comme la présence d’une lésion), ou à des artéfacts, etc. La robustesse d’une méthode ou d’un système peut être vérifiée par l’étude de son comportement suite à l’injection, dans les données, de facteurs perturbateurs simulés. La robustesse peut aussi être étudiée en exécutant la méthode sur un nombre important de données ou d’origines diverses et qui entrent dans le contexte clinique défini.

4.1.2.3 Résolution
La résolution (en anglais : Precision) d’un processus est liée à la valeur minimale de l’erreur systématique que l’on peut attendre de ce processus, i.e., la valeur de la fluctuation aléatoire dans les mesures réalisées par le système. La résolution est intrinsèque au processus. Cette valeur est généralement exprimée dans l’espace des paramètres. En recalage d’images, la résolution de l’étape de définition des structures homologues peut être liée à la résolution de la désignation manuelle des structures ou à la procédure de segmentation. La résolution d’une méthode de recalage est liée à la variation minimale, suivant les paramètres de la transformation, que la méthode est capable de détecter. La résolution de l’étape de visualisation est une combinaison entre la résolution de l’image, de l’œil et de l’écran de l’ordinateur. En appliquant une variation spécifique en entrée de la procédure à valider, on cherche à vérifier la capacité du système à la détecter. Contrairement à la précision, l’étude de la résolution et de la robustesse ne nécessite pas de vérité terrain.

4.1.2.4 Consistance
La consistance (en anglais : Consistency), appelée aussi circuit fermé, est un critère principalement étudié en recalage d’images [9,10,11], par l’étude des effets de la composition de n transformations géométriques (ou du recalage composé entre n modalités) qui forment un circuit: $T_{n1} \circ \ldots \circ T_{23} \circ T_{12}$ (Figure 4.1.4). La consistance est une mesure de la différence entre la composition et l’identité. Le calcul de ce critère ne nécessite pas de vérité terrain. Les limites de cette approche sont les suivantes. Il est difficile de s’assurer qu’il n’y a pas de propagation d’erreurs dans le cas de données équivalentes. Dans le cas de données ou de modalités différentes, il n’y a aucune raison pour que les erreurs soient équivalentes, de même nature certes, mais d’amplitude sûrement différente. Globalement, la consistance ne préjuge en rien de la précision de la méthode. Elle n’est qu’une caractéristique de cette méthode.
D’autres critères, inspirés des techniques d’évaluation algorithmique, peuvent être étudiés : la détection de fautes, la complexité et le temps de calcul, la vérification du code, les preuves algorithmiques, etc.

4.1.2.5 Complexité et temps de calcul

La complexité et le temps de calcul sont des caractéristiques d’une méthode et de son implémentation. La complexité algorithmique peut être déterminée analytiquement et a un impact direct sur le temps de calcul. La complexité fonctionnelle peut être liée à la durée ou à la difficulté ressentie par l’opérateur lors de l’utilisation d’une méthode ou d’un système. Son évaluation fait intervenir, en plus des temps de traitement, à la fois des aspects d’interaction homme-machine et des aspects d’intégration dans le contexte clinique. Prenons l’exemple du recalage d’images. Juger la complexité fonctionnelle d’une méthode de recalage consiste en l’étude des points suivants : l’existence d’opérations de pré traitement des données, la présence de choix de seuils pour l’utilisateur, la méthode utilisée pour définir les structures homologues, le besoin d’initialisation du recalage et la définition de critères d’arrêt. Le degré d’automatisation d’une méthode de recalage est un aspect important de sa complexité fonctionnelle. Les méthodes automatiques ne nécessitent que le choix, par l’opérateur, des données à recaler. Les méthodes semi-automatiques nécessitent, de la part de l’utilisateur, une initialisation de la transformation géométrique et/ou une désignation manuelle des structures homologues et/ou une vérification manuelle des résultats. Les méthodes manuelles ou interactives mettent en jeu un processus totalement manuel de la part de l’utilisateur. Dans la plupart des méthodes, il y a un compromis entre le degré d’automatisation, la rapidité d’exécution, la précision et la résolution. Par exemple, certaines méthodes pourraient bénéficier d’une intervention de l’utilisateur, en initialisant le processus avec des valeurs raisonnables ou en contrôlant les directions de recherche ou encore en rejetant des solutions aberrantes à un niveau de résolution faible, permettant ainsi une meilleure convergence de l’algorithme d’optimisation.

L’impact de la complexité et du temps de calcul d’une méthode sera différent selon les contextes cliniques. Par exemple, durant la préparation d’un geste chirurgical, le chirurgien préférera un recalage moins rapide, mais plus automatique alors que pendant la réalisation du geste, il aura besoin de procédures plus rapides et surtout plus contrôlées.
4.1.2.6 Critères applicatifs

Ce que nous appelons critères applicatifs correspond principalement aux critères étudiés dans les niveaux d’évaluation 5 et 6. Parmi ces critères, on retrouve le rapport coût/efficacité, les facteurs liés aux résultats cliniques (indice de guérison, indices fonctionnelles, etc.), le degré d’acceptation de la technique par le patient, les temps d’hospitalisation en hôpital ou en unité de soins intensifs, etc.

4.1.3 Référence, Gold standard et vérité terrain

Les notions de gold, bronze ou fuzzy standard et de vérité terrain sont souvent rencontrés dans la littérature. Nous distinguons ces termes de la façon suivante. La vérité terrain peut être vue comme un terme conceptuel relatif à la connaissance de la vérité pure concernant une question ou un fait spécifique. Le Gold Standard (GS) est la concrétisation de la vérité terrain. Le GS fournit un accès concret à la vérité terrain et peut être considéré comme une référence à laquelle on se confrontera pour la validation. Dans le cas où le GS ne serait qu’une estimation grossière de la vérité terrain, on parlera de bronze ou fuzzy Standard, pour insister sur le côté approximation de la vérité.

Comme exemples, pour le recalage d’images, la vérité terrain est l’exacte transformation géométrique entre les données à recaler, pour la segmentation de structures anatomiques, ce sont les véritables contours de la structure, définis dans le monde réel et non dans les images.

4.1.4 Méthodologie de la validation

Dans cette section, nous présenterons les principales approches pour la mise en œuvre d’une procédure de validation. Nous nous limiterons principalement aux procédures portant sur les deux premiers niveaux d’évaluation, comme définis par Fryback et al., à la validation des méthodes de traitement d’images et aux systèmes de chirurgie guidée par l’image, et à l’étude des critères de validité logique. Les illustrations et exemples porteront donc sur cet ensemble. Nous distinguerons les procédures de validation fondées sur la comparaison des mesures, des résultats ou d’une action, avec une référence et les procédures où aucune référence n’est calculée ou disponible. Il est nécessaire de remarquer que, par la définition même de la précision, une procédure de validation sans référence ne permet pas de statuer sur la précision d’une méthode ou d’un système. Nous étudierons plus en détail la validation fondée sur la comparaison avec une référence. Nous distinguerons les points importants pour définir et conduire une telle validation, en sachant pertinemment que notre présentation ne sera pas exhaustive, tellement la problématique de la validation est large. Dans le chapitre 4.2.1, la validation des procédures de recalage d’images sera étudiée en détail. Dans ce contexte restreint, nous essayerons de définir un modèle qui représente de façon exhaustive la procédure. Une approche similaire devrait être suivie pour tendre vers une exhaustivité dans les autres contextes de validation et pour toute méthode de traitement d’images. Néanmoins, nous verrons dans ce chapitre 4.2.1 que le modèle présenté semble assez bien adapté aux autres méthodes de traitement d’images médicales.

Conformément à la définition de Goodman, les deux premières étapes d’un processus de validation consistent à :

1. identifier le contexte de validation,
2. spécifier clairement l’objectif de la validation.

et parfois leur distinction est un peu « fuzzy », elle aussi
Ces deux étapes sont essentielles pour permettre à un processus de validation de répondre aux attentes des utilisateurs. Sans contexte de validation explicite, il n’est pas possible de prouver quoi que ce soit. Sans objectif de validation spécifique, on parle d’évaluation de performances et non de validation. Nous verrons, dans le chapitre 4.2.1.3, comment définir un contexte et un objectif de validation.

Le point suivant consiste à :

3. spécifier le ou les critères de validation qui seront étudiés.

Ces critères ont été présentés au-dessus.

Puis, il est nécessaire de :

4. définir les métriques de validation.

Les métriques de validation permettent de quantifier les critères de validation. Elles sont choisies ou définies en fonction de leur capacité à répondre à l’objectif clinique de la validation.

A partir d’une hypothèse ou d’un objectif de validation émis dans le contexte de validation pour étudier un critère de validation à un niveau d’évaluation donné, la méthode ou le système à valider sera utilisé sur les données de validation et avec les paramètres de validation. Ce qui implique de définir à l’avance :

5. les données de validation,

6. les paramètres de validation.

4.1.4.1 Données de validation

Les données utilisées pour la validation conditionnent la méthode de validation à adopter. Ainsi, leur choix est important.

Il est possible de distinguer 6 familles de données de validation :

- Les simulations numériques,
- Les simulations réalistes,
- Les fantômes physiques,
- Les cadavres,
- Les données cliniques,
- Les données de référence.

Donnons, pour chacune d’elles, avantages, inconvénients et quelques exemples.

Les simulations numériques : Généralement, les données obtenues à partir de simulations numériques sont de pures simulations mathématiques basées sur des modèles ou des informations a priori (Figures 4.1.5 et 4.1.6). Elles permettent théoriquement de contrôler tout type de paramètres, comme la transformation géométrique ou le niveau de bruit. Ici, la vérité terrain est directement accessible car elle est intrinsèque à la construction des données. Le problème majeur de ce type de données est leur faible réalisme. Elles peuvent être très peu représentatives de la réalité clinique. De plus, il peut exister des dépendances fonctionnelles entre les modèles utilisés pour simuler les données et les modèles (ou hypothèses) sous-jacents à la méthode de traitement d’images étudiée. Avec ce type de données, l’influence d’un paramètre lié aux données sur les performances du système peut être sous ou sur évaluée. Malgré tout, une étude préliminaire et théorique des performances d’un algorithme ou une étude de robustesse d’une méthode utilisera plutôt des simulations numériques pour contrôler au mieux les conditions d’expérimentation. Ces données peuvent aussi être très
utiles quand la vérité terrain ne peut être approchée par d’autres types de données. Les simulations numériques sont aussi très utiles dans les phases de développement et d’intégration d’un système.

Les simulations numériques réalistes : Les avantages forts, liés à l’accès à la vérité terrain, ajoutés aux inconvénients du faible réalisme des données simulées ont poussé au développement de simulations numériques réalistes. Elles sont distinguées les unes des autres par la complexité du processus de simulation. Pour les simulations numériques réalistes, le processus complet d’acquisition et de génération des données est simulé. Pour cela, il est souvent nécessaire de construire un modèle de l’organe à imager (modèle physiologique et/ou anatomique et/ou pathologique) à partir duquel la simulation de l’acquisition et de la génération va opérer. Deux exemples illustrent cette démarche : la simulation d’IRM T1, T2 et DP [31] (Figure 4.1.7) et la simulation de données de médecine nucléaire (TEMP et TEP) à partir de modèles anatomiques et de perfusion, avec les techniques de Monte Carlo [P.5] (Figure 4.1.8). Pour ajouter au réalisme des simulations, les modèles sont souvent générés à partir de données cliniques.

Les avantages des simulations réalistes sont les mêmes que ceux des simulations classiques. Ici, comme pour les simulations numériques, la vérité terrain est directement accessible car elle est intrinsèque à la construction des données et l’influence de paramètres sur les performances de la méthode peut être facilement étudiée. Mais, de plus, dans ce cas, le réalisme est nettement amélioré. Les inconvénients liés aux dépendances fonctionnelles restent présents. Malgré l’effort porté sur l’amélioration du réalisme, la plupart de ces simulations souffrent encore aujourd’hui d’un réalisme limité, du, par exemple, à la non prise en compte de la variabilité rencontrée dans des situations cliniques. Cette variabilité n’est pas toujours présente dans les modèles, ni dans les processus de simulation. Quand ces données peuvent être générées, elles restent, malgré tout, une excellente solution pour la validation et on peut prévoir que de nombreux efforts seront réalisés dans cette direction, dans les années à venir.

49 http://www.bic.mni.mcgill.ca/~taly/IGNS.html
Les fantômes physiques : Cela concerne les données acquises à partir d’examens réalisés sur des fantômes physiques plus ou moins réalistes. Cette solution permet de prendre compte les conditions réelles d’acquisition, tout en contrôlant l’objet imager (Figure 4.1.9). Les inconvénients principaux sont les suivants. Dans ce cas, la vérité terrain est estimée et le gold standard est intrinsèque au protocole d’expérimentation (grâce, par exemple, à la connaissance des caractéristiques géométriques du fantôme ou à la présence de marqueurs). De plus, il existe peu de fantômes réalistes ; ceux-ci simulent rarement différentes propriétés physiques. On préfèrera utiliser des fantômes physiques lorsque le contexte de validation concerne des aspects liés notamment à la physique d’acquisition.

Les cadavres : L’acquisition de données sur des cadavres peut être utilisée pour la validation. Cela permet d’avoir accès à des données réalistes. Par contre, là aussi, la vérité terrain ne peut être qu’estimée grâce à des protocoles d’acquisition ou d’expérimentation dédiés. De part leur propre nature, ces données ne permettent pas l’accès à de l’information métabolique ou fonctionnelle.

Les données cliniques : Dans tous les cas, la validation d’un système doit passer par l’utilisation de données cliniques réelles. Cela permet de tenir compte des spécificités du contexte clinique, comme la présence de pathologie ou d’artéfacts, ou de bougé lors de l’acquisition. Dans ce cas, le réalisme des données est optimal. Par contre, la vérité terrain est difficilement accessible. La référence peut, au mieux, être estimée à partir de protocoles dédiés dans le cas de données prospectives. Dans le cas de données rétrospectives provenant de la routine clinique, il est possible qu’aucune référence ne soit disponible.

Les données de référence : On appelle « données de référence », des données accessibles à la communauté scientifique, dont la qualité et la représentativité ont été prouvées (Table 4.1) [16]. Elles résultent, le plus souvent, d’un projet de recherche multicentrique et reflètent un consensus. Elles peuvent donc servir de références pour la validation. Selon les cas, elles peuvent être des simulations, des acquisitions sur fantômes ou des données cliniques. L’accès

Figure 4.1.7 : Simulation numérique réaliste d’images de différents protocoles IRM [31].

Figure 4.1.8 : Simulation numérique réaliste d’images TEMP à partir d’images IRM [P_5].

Les cadavres : L’acquisition de données sur des cadavres peut être utilisée pour la validation. Cela permet d’avoir accès à des données réalistes. Par contre, là aussi, la vérité terrain ne peut être qu’estimée grâce à des protocoles d’acquisition ou d’expérimentation dédiés. De part leur propre nature, ces données ne permettent pas l’accès à de l’information métabolique ou fonctionnelle.

Les données cliniques : Dans tous les cas, la validation d’un système doit passer par l’utilisation de données cliniques réelles. Cela permet de tenir compte des spécificités du contexte clinique, comme la présence de pathologie ou d’artéfacts, ou de bougé lors de l’acquisition. Dans ce cas, le réalisme des données est optimal. Par contre, la vérité terrain est difficilement accessible. La référence peut, au mieux, être estimée à partir de protocoles dédiés dans le cas de données prospectives. Dans le cas de données rétrospectives provenant de la routine clinique, il est possible qu’aucune référence ne soit disponible.

Les données de référence : On appelle « données de référence », des données accessibles à la communauté scientifique, dont la qualité et la représentativité ont été prouvées (Table 4.1) [16]. Elles résultent, le plus souvent, d’un projet de recherche multicentrique et reflètent un consensus. Elles peuvent donc servir de références pour la validation. Selon les cas, elles peuvent être des simulations, des acquisitions sur fantômes ou des données cliniques. L’accès
à la vérité terrain dépendra donc de leur type. Ces données de référence facilitent la comparaison des résultats des procédures de validation (RREP Vanderbilt Project50 [21], Visible Human51, BrainWeb, \textit{etc.}). Le National Institute of Health aux USA suit de près et finance certaines de ces initiatives. L’enjeu est de pouvoir accélérer le processus d’accréditation de systèmes en imagerie médicale, notamment des systèmes de diagnostic assisté par ordinateur. Un autre enjeu est de réduire les coûts de ce processus, dont le recueil de données et leurs annotations par des experts. Un autre enjeu de taille de ces bases de données d’images est de faciliter à moyen terme l’accréditation de nouveaux produits pharmaceutiques. Les difficultés liées à la mise en place de telles bases de données d’images de référence sont les suivantes. Il est nécessaire d’y inclure des cas cliniques difficiles ou rares (comme des cas pathologiques) permettant de tester la validité externe d’un système ou d’une méthode. De plus, ces données ou ces bases de données doivent être régulièrement complétées et mises à jour pour tenir compte de nouvelles modalités, de nouveaux protocoles d’imagerie et de nouvelles applications cliniques. Ces bases de données doivent aussi inclure les informations liées aux patients, comme ses caractéristiques (âge, sexe, \textit{etc.}), les caractéristiques de la pathologie, et le dossier clinique. Enfin, la validation clinique nécessite des données cliniques adaptées aux conditions locales. De ce fait, la disponibilité de données cliniques de référence pour la validation restera difficile tant que les différences entre systèmes d’imagerie ne seront pas quantifiées ou normalisées [13,22].

<table>
<thead>
<tr>
<th>Nom</th>
<th>Objectif</th>
<th>Données orientées clinique</th>
<th>Accès</th>
<th>Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-MIAS (Mammographic Image Analysis Society)</td>
<td>Développement, tests et comparaison d’algorithmes pour un diagnostic précoce du cancer du sein</td>
<td>Public</td>
<td>http://petra.essex.ac.uk/info/mias.html</td>
<td></td>
</tr>
<tr>
<td>MEDIREC (Medical Image Reference Center)</td>
<td>Images de référence pour le cancer et les maladies cardio-vasculaires</td>
<td>Public</td>
<td>http://www.mediarec.ncc.go.jp</td>
<td></td>
</tr>
</tbody>
</table>

Données orientées traitement d’images

<table>
<thead>
<tr>
<th>Nom</th>
<th>Objectif</th>
<th>Données orientées clinique</th>
<th>Accès</th>
<th>Adresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>LONI Image Database (Laboratory of Neuro Imaging)</td>
<td>Développement et tests d’algorithmes pour l’exploration fonctionnelle cérébrale</td>
<td>Privé</td>
<td>http://www.loni.ucla.edu/Research/Databases</td>
<td></td>
</tr>
<tr>
<td>BIRN (Biomedical Informatics Research Network)</td>
<td>Développement et tests d’algorithmes de traitement et d’analyse d’images cérébrales</td>
<td>Sur demande</td>
<td>http://www.nbirn.net/</td>
<td></td>
</tr>
<tr>
<td>BrainWeb (MNI)</td>
<td>Simulation de différents protocoles d’IRM cérébrale pour l’évaluation d’algorithmes de segmentation, notamment de lésions en SEP</td>
<td>Public</td>
<td>http://www.bic.mni.mcgill.ca/brainweb/</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>Cartes de probabilité d’appartenance aux structures anatomiques cérébrales</td>
<td>Sur demande</td>
<td>http://www.bic.mni.mcgill.ca/</td>
<td></td>
</tr>
<tr>
<td>TruthCube</td>
<td>Simulation d’images hémoplasies</td>
<td>Public</td>
<td>http://www.medicalism.org/truthcube/</td>
<td></td>
</tr>
<tr>
<td>The Retrospective Image Registration Evaluation Project</td>
<td>Données cliniques pour l’évaluation de recalage rigide multimodale (CT, IRM, TEP) d’images cérébrales</td>
<td>Sur demande</td>
<td>http://www.vuse.vanderbilt.edu/~image/registration/</td>
<td></td>
</tr>
<tr>
<td>The Zubal’s Phantom</td>
<td>Segmentation manuelle d’images CT et IRM du thorax et de la tête</td>
<td>Sur demande</td>
<td>http://noodle.med.yale.edu/zubal/</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1 : Quelques exemples de base de données de référence d’images médicales.

50 http://www.vuse.vanderbilt.edu/~image/registration/
51 http://www.nlm.nih.gov/research/visible/visible_human.html
Comme on peut le ressentir, ces six familles de données de validation sont complémentaires et il existe un compromis entre le réalisme des données utilisées pour la validation et la facilité d’accès à la vérité terrain. Ainsi, une procédure complète de validation nécessite, en théorie, l’utilisation de données de chaque type, aussi bien pour le développement et l’optimisation d’une méthode ou d’un système que pour sa validation clinique. Dans tous les cas, le but à atteindre étant la validation clinique, il sera indispensable de passer par l’utilisation de données cliniques.

Pour conclure sur les données de validation, il est intéressant de remarquer que les conditions expérimentales selon lesquelles les données de validation ont été acquises détermineront si elles peuvent être utilisées pour des études d’évaluation de l’efficacité pratique d’un système ou d’une méthode (effectiveness : plus-value de l’utilisation d’une technologie pour un problème spécifique sous des conditions de routine) ou pour des études plus restreintes de l’efficacité théorique (efficacy : plus-value de l’utilisation d’une technologie pour un problème spécifique sous des conditions idéales) [7].

4.1.4.2 Paramètres de la validation

Les paramètres d’entrée de la validation sont généralement des paramètres dont on souhaite étudier l’influence sur les performances de la méthode ou du système. Il est possible de distinguer les paramètres liés aux données de validation et ceux liés à la méthode à valider. Les paramètres liés aux données de validation sont des paramètres utilisés pour générer ou perturber les données de validation, comme les paramètres des simulations numériques, et les paramètres liés à des hypothèses cliniques sur les données, comme la présence ou la simulation de régions pathologiques. Les paramètres liés à la méthode peuvent être des valeurs de configuration de la méthode, des choix de pré traitement ou des choix de composants de la méthode. Les paramètres de validation sont discriminants pour la caractérisation de l’objectif et du critère de validation.

Une fois les données et les paramètres de validation spécifiés, deux approches sont possibles : la validation fondée sur la comparaison avec une référence et la validation sans référence.

4.1.4.3 Validation fondée sur la comparaison avec une référence

La figure 4.1.10 présente le processus de validation fondée sur la comparaison à une référence. Les données et les paramètres de validation sont utilisés comme entrées de la méthode à valider et par la fonction qui calcule la vérité terrain. Les deux types de calcul peuvent introduire des incertitudes dont il faut tenir compte dans la comparaison. Les résultats de la méthode et la référence calculée sont éventuellement transformés pour être comparables et comparés. Les résultats transformés sont comparés à la référence transformée grâce à une métrique de validation (ou métrique de comparaison) permettant de quantifier la « distance » à la référence. Des indices de qualité sont calculés sur les résultats de la comparaison. Puis ces indices sont confrontés à l’hypothèse de validation grâce à une analyse statistique. Le résultat de cette analyse fournit le résultat final de la validation : le rejet ou non de l’hypothèse.
Détaillons les étapes principales de ce processus.

4.1.4.3.1 Référence : Calcul ou estimation de la vérité terrain

Dans ce type de validation, on suppose pouvoir :

7. **calculer ou estimer une référence** qui est considérée comme représentative de la vérité terrain.

Cette référence peut être provenir :

- d’une déduction ou d’une estimation numérique de la solution vraie, basée sur des expériences, des simulations ou l’examen des propriétés mathématiques ou statistiques de la solution, comme dans le cas de simulations numériques ou de données acquises sur des fantômes,
- des résultats d’une méthode considérée comme référence. Dans ce cas, on considère qu’il existe une méthode qui a prouvé sa valeur et elle servira de référence. Il est aussi possible de combiner les résultats de plusieurs méthodes ou de plusieurs expériences pour calculer un résultat « moyen » qui servira de référence.
- d’une solution basée expert qui s’appuie sur des *a priori* ou hypothèses concernant la solution.

Dans tous ces cas, il sera indispensable d’être attentif à l’incertitude liée à la référence. Cette référence peut ne fournir qu’une valeur approximative de la vérité terrain et les résultats de la comparaison peuvent être très affectés ou biaisés par la faible confiance associée à la véracité de la référence.

Il est intéressant de citer quelques travaux récents qui cherchent à extraire, par une approche statistique, une référence fiable à partir d’une série de références approximatives. Cette approche a été introduite dans le contexte de la segmentation d’images médicales où la référence provient de segmentations manuelles effectuées par des experts [42]. Cette approche permet simultanément d’estimer la qualité de chaque segmentation d’expert. Ce type d’approche peut aussi être utilisé à partir de résultats de différentes méthodes de segmentation, permettant le choix de la meilleure d’entre elles ou de manière plus générale pour extraire une solution optimale d’un ensemble de mesures. Cette même équipe a utilisée...
cette approche pour étudier la reproductibilité de la localisation de zones fonctionnelles cérébrales en IRM fonctionnelle [51].

4.1.4.3.2 Comparaison des résultats avec la référence

Pour comparer les résultats de la méthode avec la référence, il faut :

8. définir le format de l'information sur laquelle le critère va être estimé,
9. quantifier le critère de validation à l'aide d’une métrique de comparaison ou de validation,
10. calculer un indice de qualité sur les résultats de la comparaison.

La comparaison peut être réalisée directement entre les résultats de la méthode et la référence. Cependant, il est généralement plus intéressant de fournir au clinicien des valeurs plus significatives (au sens de valeurs parlantes) : comparaison sur des structures anatomiques pertinentes, comparaison sur des paramètres locaux ou globaux, etc. Parfois, les résultats de la méthode et la référence ne sont pas comparables directement. Dans ces deux cas, une étape de normalisation est nécessaire avant la comparaison. Cette étape peut consister en une tâche de détection, de localisation ou de quantification. Le résultat sera respectivement une valeur binaire, discrète ou continue.

En utilisant le vocabulaire lié à la validation du recalage d’images, la métrique de validation calcule une divergence (discrepancy [15]) entre les résultats et la référence normalisés. Différents opérateurs peuvent être utilisés pour calculer cette divergence. Ces opérateurs seront choisis en fonction du critère de validation, en fonction du format des informations à comparer et en fonction de leur adéquation à l’objectif de la validation. Dans le cas de la validation de méthodes de recalage d’images médicales, si les données sont des points, l’erreur de recalage au sens des moindres carrés sur une cible (Target Registration Error [23]) pourra servir de métrique. Si les données sont des volumes, des taux de recouvrement pourront servir de métrique. Enfin, si les données sont des paramètres géométriques, les erreurs de rotation et translation seront utilisées. Dans le cas de la validation de méthodes de segmentation d’images médicales, si les données sont des paramètres, des taux de recouvrement pourront, là aussi, servir de métrique associé ou non à des taux de spécificité, de sensibilité et des courbes ROC [33], ou des tests de Kappa [37], ou avec un coefficient de similarité dit de Dice [57]. Si les données sont des surfaces, des distances de type distance de Hausdorff peuvent être utilisées [31]. D’autres opérateurs peuvent être utilisés pour la segmentation comme la position ou le nombre d’objets mal segmentés ou les valeurs de paramètres calculées sur les objets segmentés [32]. Selon l’approche choisie, différents types de divergences peuvent résulter de cette étape. La divergence intrinsèque reflète les propriétés de la distribution de divergence calculées localement dans des conditions où paramètres et données sont fixes. La divergence globale correspond à étudier la variabilité de divergences intrinsèques selon différentes conditions d’expérimentation : 1) application de la méthode ou du système sur les mêmes données mais en variant les paramètres de validation, 2) application de la méthode ou du système sur des données et des paramètres différents. Il est important de faire attention que les résultats ou mesures ne sont pas dépendants de l’opérateur, notamment dans le cas de critères subjectifs.

Enfin, des méthodes statistiques standard sont utilisées pour caractériser les propriétés des distributions des divergences et calculer un indice de qualité comme la médiane ou l’écart type. Des valeurs de spécificité, de sensibilité ou d’aires sous les courbes ROC [33] (AUC) peuvent aussi servir d’indices de qualité.
4.1.4.3.3 Vérification de l’hypothèse de la validation

Finalement, la ou les valeurs de l’indice de qualité sont comparées à une valeur attendue ou à un modèle a priori défini dans l’hypothèse de validation. Cette comparaison peut être :

11. un simple test sur un seuil ou un test d’hypothèse statistique.

Quelques conseils intéressants et pratiques pour le choix des opérateurs de test statistique peuvent être trouvés dans [48] et [49].

4.1.4.3.4 Résumé

Pour mettre en œuvre une procédure de validation basée sur la comparaison avec une référence, il est nécessaire de spécifier les paramètres suivants :

- Le contexte clinique de la validation,
- L’objectif de la validation,
- Le nombre et les caractéristiques des données de validation,
- La référence (son type et son format),
- La méthode pour calculer la référence,
- La ou les fonctions de normalisation,
- Les entrées de la comparaison
- La métrique de comparaison,
- Le type de la divergence calculée (intrinsèque, globale, intra ou inter méthodes),
- La ou les indices de qualité,
- Le ou les tests statistiques.

Il est important de considérer la notion de référence sous deux aspects : la justesse de la référence et son réalisme clinique. Ainsi, il est nécessaire d’étudier le niveau de confiance qui peut être accordé à la référence et, si possible, de quantifier l’erreur liée à l’estimation de la vérité terrain par la référence. De plus, il faut vérifier le réalisme des données de validation au sens du contexte clinique dans lequel se situe la validation. Il faut aussi vérifier la cohérence entre les données de validation et l’objectif de la validation. L’objectif de validation contient, dans sa définition, un critère de validation à étudier. La métrique de validation est définie en fonction de ce critère. Par conséquent, la métrique de validation doit être choisie en fonction de sa capacité à répondre à l’objectif de validation.

4.1.4.3.5 Approches dites de validation croisée

L’objectif de ces approches est double : trouver les paramètres de la méthode (paramètres d’initialisation ou composants de la méthode) qui permettent les meilleures performances et étudier l’influence des données de validation ou des données d’apprentissage sur les performances de la méthode. Pour cela, il existe deux principales implémentations de la validation croisée : la méthode « moitié-moitié » et la méthode « leave-one-out » généralisée sous le terme de validation croisée à n entrées (Figure 4.1.11). Pour ces deux méthodes, la première étape consiste à différentier les données d’apprentissage utilisées pour la sélection des paramètres et les données de test utilisées pour l’évaluation des performances. Puis ces approches consistent à comparer les résultats quand on fait varier ces ensembles. Dans le mode « moitié-moitié », on divise les données en deux sous ensembles et on compare les performances en inter-changeant ces sous ensembles. Dans le mode « leave-one-out », le processus est répété autant de fois qu’il y a de jeux de données en divisant chaque fois les données en deux sous ensembles : un sous ensemble de test avec seulement un jeu de données et un sous ensemble d’apprentissage avec les données restantes. L’intérêt de ces approches réside dans la possibilité d’étudier les influences des données sur les performances.
Ces approches sont particulièrement utiles quand les méthodes à valider dépendent d’une phase d’apprentissage sur données. Nous soulignerons, par la suite, le danger d’utiliser ces méthodes sans référence. Dans ce cas, les performances calculées ou estimées ne sont que relatives et sont difficilement interprétables cliniquement.

Figure 4.1.11 : Méthode de validation croisée. De gauche à droite, l’approche « moitié-moitié », l’approche « leave-one-out » et l’approche validation croisée à n entrées [50].

4.1.4.4 Validation sans référence explicite

Comme il a été souligné précédemment, dans certains contextes de validation (comme la validation sur des données cliniques rétrospectives, par exemple), il n’est pas possible d’accéder à la vérité terrain, ou l’erreur liée à l’estimation de la vérité terrain par la référence introduit un biais trop important dans le calcul de divergence. Dans ce cas, certaines méthodes ont été proposées pour l’évaluation de performances de systèmes ou de méthodes sans recours à une référence explicite. Ces méthodes se basent généralement sur l’étude d’une propriété liée au comportement de la méthode. De part sa propre définition, la précision ne peut pas être étudiée par ce type d’approche. En recalage d’images, une approche possible est d’étudier le comportement de la méthode dans le cas de circuit fermé, ou boucles de recalage, appelé aussi consistance. En segmentation d’images, il est possible d’utiliser la propriété de conservation de l’uniformité intra-région ou le contraste inter région comme métriques de validation [32].

D’autres approches ont été proposées, fondées sur une analyse statistique des résultats de la méthode, soit pour la comparaison de méthodes sans référence pour des mesures cliniques [43], soit par combinaison d’information multimodales pour de l’imagerie quantitative [20], soit par l’utilisation d’intervalles de confiance [44], soit par l’étude des propriétés de la loi de distribution des résultats par répétabilité. Enfin, certaines méthodes de traitement d’images permettent l’estimation de la qualité du résultat simultanément à son calcul [52].

Les limites principales de ce type d’approches sont les suivantes. Les méthodes de validation sans référence explicite s’appuient sur des hypothèses fortes qui sont souvent difficiles à vérifier. De plus, il est difficile, dans le cas de ces méthodes, de définir un objectif de validation avec un sens clinique.

4.1.4.5 Vérification pendant l’utilisation clinique

La validation, telle que nous l’avons présentée ci-dessus, ne caractérise que les performances d’une méthode dans des conditions expérimentales contrôlées. Ce type de validation ne garantit pas un comportement correct de la méthode lors de chaque utilisation clinique. Ainsi, idéalement et pour toute utilisation clinique, les cliniciens doivent vérifier les résultats de chaque étape d’une procédure et, explicitement et séparément, valider ces résultats. Malgré tout, il peut ne pas être facile, pour un médecin, de définir des critères objectifs qui motivent sa décision d’accepter ou de refuser un résultat.
Par exemple, en neuronavigation, le chirurgien peut vérifier le recalage entre le patient et les images pré-opératoires en pointant, sur le patient, des points anatomiques facilement identifiables et en contrôlant les localisations correspondantes dans les images. De telles procédures de contrôle peuvent permettre de détecter les cas où une solution mathématiquement correcte a été trouvée mais qui s’avère anatomiquement fausse (dans le cas, par exemple, de la détection d’un optimum local). Ceci peut être réalisé en visualisant les images fusionnées avec des outils comme ceux décrits au paragraphe 1.1.2.4.3.2.1.

Idéalement, et tout au long du processus de chirurgie guidée par l’image, les systèmes et méthodes devraient intégrer visuellement les valeurs de résolution et de précision pour rappeler explicitement à l’utilisateur le niveau de confiance qu’il peut attendre du système. Par exemple, une représentation floue de la fusion ou d’une zone de confiance pourrait être utilisée à la place d’une simple localisation [34].

4.1.5 Premières conclusions

La validation des systèmes de chirurgie guidée par l’image et de ses composants de traitement d’images se base, encore aujourd’hui, principalement, sur des méthodologies « maison » ad hoc. Par conséquent, il est parfois difficile de comparer les performances de différents systèmes, voire de comprendre la significativité des résultats. Le lien entre les performances évaluées et les attentes médicales n’est pas toujours réalisé. Pour illustration, les compagnies réalisant et commercialisant les systèmes de neuronavigation ont très longtemps clamé une précision sub-millimétrique, intuitivement irréaliste. Cette précision était en fait calculée sur les fiduciaires ou points servant au recalage image-patient (Fiducial Registration Error). Il a été prouvé expérimentalement et mathématiquement que cette précision calculée ne correspond pas à la précision attendue sur le reste du volume (Target Registration Error), qui est de l’ordre du millimètre [23]. Encore aujourd’hui, les précisions affichées par ces systèmes ne correspondent pas exactement à la théorie de l’erreur du recalage à la cible.

Ainsi, nous avons souligné le besoin d’une terminologie et d’une méthodologie de validation standardisées. Les procédures de validation doivent, elles aussi, être comparées et validées. Ces avancées permettront de définir des protocoles de validation standardisés et acceptés par la communauté scientifique. Ces points feront l’objet de la section suivante.

52 Une erreur classique est d’utiliser, pour cela, les marqueurs ou les structures homologues qui ont déjà été utilisés pour le recalage.
4.2 Contributions au domaine

4.2.1 Définition d’un cadre de formalisation pour les procédures de validation, fondées sur la comparaison avec une référence, en recalage rigide d’images médicales

4.2.1.1 Introduction
Dans le chapitre précédent, nous avons souligné l’importance de la validation et de la définition de protocoles standardisés. La standardisation de la terminologie et de la méthodologie liées à la validation est nécessaire (mais pas suffisante53) pour permettre la comparaison des procédures de validation. De plus cette standardisation peut être utile dans le contexte d’une approche qualité. Une première étape pour cette standardisation est la modélisation des procédures de validation [4,14].

Les incertitudes ou erreurs des procédures de recalage d’images médicales peuvent avoir des origines diverses liées à la qualité des images (comme la distorsion géométrique ou les effets de volume partiel), à la variabilité intrinsèque dans les données (comme les mouvements possibles du patient pendant l’acquisition ou la déformation anatomique intra opératoire) et au processus de recalage lui-même (comme les erreurs commises lors de l’identification ou la segmentation des structures homologues appelées « Erreur de Localisation des Fiduciaires » ou Fiducial Localization Error: FLE) [35]. Le processus de recalage n’est rarement utilisé seul mais dans le contexte d’applications ou de systèmes plus larges (comme la chirurgie guidée par l’image). Ainsi, ces erreurs peuvent avoir un impact important sur la performance globale de ces systèmes et leur étude est importante. La littérature est abondante sur le sujet du recalage d’images médicales et de nombreuses études sur la précision des méthodes ont été présentées54. Les procédures de validation sont, majoritairement, fondées sur la comparaison avec une référence. Cependant, la description des procédures de validation est, le plus souvent, obscure ce qui ne permet pas de comprendre clairement les résultats et donc les performances réelles des méthodes de recalage. De plus, il est impossible de comparer ces performances entre différentes méthodes de recalage ou de validation.

Dans cette étude non publiée à ce jour, nous avons proposé un cadre de travail pour modéliser les procédures de validation des méthodes de recalage d’images, validation fondée sur la comparaison avec une référence. L’objectif principal de cette approche est d’introduire un formalisme de description des procédures de validation, pour faciliter leur compréhension et leur documentation. Ceci est une condition nécessaire à la comparaison des résultats de différentes procédures de validation et méthodes de recalage. Le résultat principal de cette étude est un modèle décrivant les composants principaux d’une procédure de validation et leurs relations. Ce modèle a été construit à partir d’une analyse de la littérature, puis validé en instanciant ce modèle avec 36 études de validation décrites dans des publications de revues ou de conférences internationales et choisies dans deux domaines particuliers. Le premier domaine est lié au recalage d’images cérébrales de médecine nucléaire (TEMP et TEP) principalement fondé sur l’utilisation de mesures de similarité statistique. Le deuxième domaine est lié au recalage entre images et patient dans le contexte de neurochirurgie guidée par l’image. Enfin, dans la discussion, nous soulignerons les caractéristiques principales des

53 Nous reviendrons sur ce point dans la discussion de ce chapitre.
études de validation que nous avons instanciées avec le modèle et nous comparons notre modèle avec deux approches similaires proposées dans le cadre plus général des procédures de validation des méthodes de traitement d’images médicales.

Pour bien comprendre et décrire de façon formelle une procédure de validation d’une méthode de recalage d’images, il est nécessaire de caractériser et de formaliser, bien sûr, la procédure de validation, elle-même, mais aussi la méthode de recalage d’images et l’objectif de la validation.

4.2.1.2 Caractérisation des méthodes de recalage d’images
Comme il a été souligné dans le chapitre 1.1.2.4.3.1, une méthode de recalage F_M peut être caractérisée par ses principaux composants :

1. le type de la transformation géométrique recherchée T,
2. les structures homologues,
3. la fonction de coût (et optionnellement la méthode d’interpolation utilisée pour l’estimation du coût),
4. la méthode d’optimisation,
5. et la stratégie d’optimisation.

4.2.1.3 Caractérisation de l’objectif de validation
Les deux premières étapes de la validation d’une technologie de la santé (health care technology assessment) décrites par Goodman [7] consistent à définir précisément le sujet de l’évaluation (que nous appelons le contexte de la validation) et l’objectif de la validation.

De la même façon que le développement de nouveaux outils de traitement d’images pour l’imagerie médicale nécessite une forte prise en compte du contexte clinique, la validation de ces nouveaux outils doit être réalisée en fonction de ce contexte clinique. La formalisation du contexte clinique, présentée comme la nécessité d’une « compréhension profonde du domaine » [5] ou comme le besoin de « modélisation des conditions cliniques » [14], n’est pas une tâche aisée mais est essentielle en regard de la pertinence clinique. Le contexte clinique est discriminant pour la description d’une procédure de validation. Il n’est pas imaginaire de chercher une formalisation générique convenant à tout contexte clinique. Dans le contexte précis de la validation de méthodes de segmentation, Udupa et al. [36] proposent de décrire simplement le contexte clinique avec trois lettres $\langle A,B,P \rangle$; A décrit la tâche qui nécessite l’utilisation d’une méthode de segmentation, comme l’estimation du volume de tumeurs, B décrit la partie du corps imagée, comme le cerveau, et P décrit le protocole d’imagerie, comme l’imagerie IRM FLAIR avec ses paramètres d’acquisition.

L’objectif de la validation peut être considéré comme une hypothèse que le résultat de la procédure de validation devra permettre de confirmer ou de rejeter. Le contexte clinique, ainsi que le critère de validation, font partie des caractéristiques de l’objectif de validation. Buvat et al. [13] définissent le but de la validation comme étant l’évaluation d’une méthode à un niveau d’évaluation donné, et l’hypothèse de la validation, comme la projection de ce but dans un contexte clinique, défini comme « l’environnement dans lequel la méthode doit être évaluée ».

Nous avons défini une description standardisée de l’objectif, comme suit. L’objectif de validation s’adresse à un niveau d’évaluation (L) et s’effectue dans un contexte clinique spécifique (C). L’objectif doit spécifier les données utilisées par la méthode (D) et leurs caractéristiques intrinsèques (comme les modalités d’imagerie, la résolution spatiale, ou les dimensions des images), les hypothèses cliniques associées aux données ou aux patients.
concernés (dont les hypothèses sur l’anatomie, la physiologie ou la pathologie) (A) et le critère de validation à étudier (VC). Puis, l’objectif doit proposer un test d’hypothèse (T) pour comparer une valeur du critère de validation, estimée par la métrique de validation (M) sur une information (I) extraite des données, à une valeur ou à un modèle attendu (V).

Ainsi, l’objectif ou l’hypothèse de validation peut être formalisé de la manière suivante :

« Dans un contexte de validation défini par L et C, la méthode F_M, appliquée aux données D sachant A, est capable de fournir des résultats de validation, estimant le critère VC grâce à M et calculés sur I, cohérent quand il est comparé à V en utilisant le test T. »

Illustrons avec deux exemples d’objectifs de validation.
- « Dans le contexte clinique de la chirurgie guidée par l’image pour la biopsie d’une lésion corticale (C) et pour une étude de l’efficacité technique (L) du recalage (niveau 1 d’évaluation), une méthode de recalage particulière, basée sur la mise en correspondance de points pris sur la surface de la peau dans l’espace physique lié au patient avec un modèle surfacique de la peau extrait d’un volume CT Scan (D) avec injection de produit de contraste (en supposant que la lésion prenne le contraste (A)), est capable de recaler avec une précision (VC) (évaluée en calculant l’erreur RMS (M) sur des points à l’intérieur du cerveau (I)) significativement meilleure (T) que la précision attendue par le clinicien (V). »
- « Dans le contexte de l’épilepsie temporale (C) et pour une étude de l’efficacité technique (L) du recalage (niveau 1 d’évaluation), une méthode de recalage particulière, basée sur des mesures de similarité statistique, est capable de recaler des images d’IRM 3D pondérées en T1 (D) avec une résolution spatiale de 2 mm et sans signal pathologique (A) à des images TEMP ictales (avec une résolution spatiale autour de 12 mm. et avec des zones hyper ou hypo intenses) avec une précision (VC) (évaluée en calculant l’erreur RMS (M) sur des points à l’intérieur du cerveau (I)) significativement meilleure (T) que la résolution spatiale de l’imagerie TEMP (V). » [P_21]

4.2.1.4 Modélisation des procédures de validation de recalage d’images, fondée sur la comparaison avec une référence

Pour définir un modèle des procédures de validation, nous avons suivi la méthodologie utilisée dans le chapitre 2.2 pour modéliser les connaissances liées à un domaine :
- Identification : Collecte des données par une revue de la littérature du domaine et des discussions avec des experts,
- Conceptualisation : Création d’une ontologie du domaine par l’analyse des données et l’extraction manuelle des composants et de leurs relations,
- Formalisation : Choix d’un formalisme pour représenter cette ontologie,
- Implémentation : Développement d’outils et d’applications,

Ainsi, dans notre domaine qui concerne la validation des méthodes de recalage rigide d’images médicales, fondée sur la comparaison avec une référence, nous avons défini une ontologie construite à partir d’une étude de la littérature et d’échanges en interne au laboratoire et confrontés à des avis d’experts lors de conférences internationales (sessions dédiées et tutorial). Cette ontologie a été représentée par un diagramme UML et une base de données SQL. Cette ontologie a été validée en instanciant le modèle sur 36 publications internationales représentatives et sélectionnées dans deux domaines (domaine 1 : recalage...
d’images cérébrales de médecine nucléaire fondé sur l’utilisation de mesures de similarité statistique et domaine 2 : recalage entre images et patient dans le contexte de neurochirurgie guidée par l’image). Puis des outils ont été développés permettant la consultation d’une base de données bibliographiques à partir des caractéristiques des procédures de validation. Des outils sont aussi fournis pour compléter la base de données avec de nouvelles références bibliographiques.

4.2.1.4.1 Ontologie

Les principaux concepts et relations d’une procédure de validation d’une méthode de recalage d’images fondée sur la comparaison avec une référence sont les suivants (voir aussi la section 4.1.4.3).

Soient des données et des paramètres de validation, soit T la transformation géométrique théorique que la méthode de recalage (F_M) doit estimer, T correspondant à la vérité terrain et n’étant pas généralement pas directement accessible, la méthode de recalage F_M à valider calcule une estimation \hat{T}_M de la vérité terrain T.

Soit F_{GS} une méthode choisie pour estimer la vérité terrain de façon « plus précise » que F_M, la méthode F_{GS} permet de calculer la référence $\hat{\theta}_{GS}$ (estimation de θ_{GS}) à laquelle les résultats de F_M seront comparés. Cette comparaison se fait en utilisant la fonction de comparaison $F_C = \| \|$ qui estime une divergence $O_C = \| \hat{\theta}_T, \hat{\theta}_{GS} \|$. Les deux méthodes F_M et F_{GS} introduisent des erreurs qui peuvent être définies respectivement par $E_M = \| \hat{T}_M, T \|$ et $E_{GS} = \| \hat{T}_{GS}, T \|$. La méthode F_{GS} est généralement choisie pour être la plus précise possible; idéalement $E_{GS} << E_M$. Dans la plupart des cas E_M et E_{GS} sont inconnues, comme l’est T. Dans ce cas, des estimateurs \hat{E}_M et \hat{E}_{GS} peuvent être proposés. Dans les autres cas (comme, par exemple pour des simulations numériques), $\hat{T}_{GS} = T$ et $\hat{E}_{GS} = E_{GS} = 0$. Des propriétés de la distribution des divergences (O_C) (e.g. moyenne, médiane, écart-type) peuvent servir d’indices de qualité O_{QI}, aussi appelés “figures de mérite”. Enfin, le résultat de la validation consistera à confronter O_{QI} avec le modèle V exprimé dans l’objectif de la validation.

4.2.1.4.2 Formalisme de l’ontologie

Une procédure de validation peut être décrite par :

- D_I: Données de validation,
- P_I: Paramètres de validation,
- F_M: Méthode de recalage d’images à valider,
- \hat{T}_M: Transformation géométrique calculée par F_M,
- \hat{E}_M: Erreur dans le calcul de \hat{T}_M par F_M,
- F_{NTM}: Fonction qui transforme \hat{T}_M pour la comparaison avec la référence,
- F_{NEM}: Fonction qui transforme \hat{E}_M pour la comparaison avec la référence,
- \hat{E}_{NM}: Erreur normalisée,
- \hat{T}_{NM}: Résultats normalisés,
- F_{GS}: Fonction qui calcule ou estime la référence à partir de D_I et/ou P_I,
- \hat{T}_{GS}: Référence,
- \hat{E}_{GS} : Erreur dans le calcul de \hat{T}_{GS} par F_{GS}
- F_{NTGS} : Fonction qui transforme \hat{T}_{GS} pour la comparaison,
- F_{NEGS} : Fonction qui transforme \hat{E}_{GS} pour la comparaison,
- \hat{T}_{NGS} : Référence normalisée,
- \hat{E}_{NGS} : Erreur normalisée,
- F_{C} : Métrique de validation qui compare \hat{T}_{NM} et \hat{T}_{NGS},
- O_{C} : Divergence calculée par F_{C},
- F_{QI} : Fonction qui calcule un indice de qualité à partir de O_{C},
- O_{QI} : Indice de qualité,
- V_{QI} : Valeur ou modèle a priori exprimé dans l’hypothèse de validation,
- F_{H} : Test d’hypothèse (i.e., comparaison de O_{QI} et V_{QI}),
- R_{H} : Résultat du test d’hypothèse.

Cette description peut être formalisée par l’équation suivante (eq. 1) ou par le modèle graphique présenté dans la Figure 4.2.1. Nous avons aussi décrit cette ontologie à l’aide d’une base de données SQL.

![Figure 4.2.1](image)

Figure 4.2.1 : Représentation graphique du modèle des procédures de validation.

\[
R_{H} = F_{H} (V_{QI}, F_{QI} (F_{C} (F_{NTM} (F_{M} (D_{I}, P_{I}))),
F_{NEM} (F_{M} (D_{I}, P_{I}))),
F_{NTGS} (F_{GS} (D_{I}, P_{I}))),
F_{NEGS} (F_{GS} (D_{I}, P_{I}))))
\]
(eq. 1)

4.2.1.4.3 Instanciation du modèle
Le modèle a été instancié sur 36 références bibliographiques (26 articles du domaine 1 et 10 articles du domaine 2) portant sur le recalage rigide d’images médicales et incluant une étude de validation (Table 4.2). Ces instanciations avaient un double but : vérifier l’exhaustivité du
modèle, et donc valider le modèle, et affiner ce modèle dans le cas de divergences. Les références bibliographiques ont été sélectionnées soit parce qu’elles introduisaient une nouvelle méthode de recalage, soit parce qu’elles possédaient une méthodologie originale pour la validation, soit parce qu’elles étaient caractéristiques d’une famille de méthode de validation. Néanmoins, cette sélection ne peut pas être considérée comme exhaustive, ni représentative. Volontairement, nous avons exclu les études de validation utilisant des critères de validation suivants : temps de calcul ou complexité fonctionnelle, nombre de maxima locaux et allure de la fonction de coût au voisinage de la solution.

Données de validation
Simulations, fantômes, données cliniques prospectives, rétrospectives, Données de référence (Vanderbilt).

Paramètres de validation
Données : paramètres des simulations, valeurs initiales de transformations géométriques, simulation de régions pathologiques ; Méthode : initialisation du recalage, pré-segmentation, pré-filtrage, et correction des distorsions géométriques ou des inhomogénéités de champ, méthode ou stratégie d’optimisation, fonction de coût.

Fonction qui calcule ou estime la référence
Recalage utilisant un cadre de stéréotaxie ou des fiduciaires, identification de fiduciaires, contrôle de la position du patient pendant l’acquisition, observation visuelle des résultats par experts, méthode de recalage de référence, transformation géométrique calculée par l’analyse d’une série d’expériences.

Rapport de normalisation
Recalage utilisant un cadre de stéréotaxie ou des fiduciaires, identification de fiduciaires, contrôle de la position du patient pendant l’acquisition, observation visuelle des résultats par experts, méthode de recalage de référence, transformation géométrique calculée par l’analyse d’une série d’expériences.

Test d’hypothèse
Test appareillé, tests non paramétriques : test de Wilkoxon ou test signé, test de Kolmogorov, analyse de la variance.

Table 4.2 : Les différentes valeurs rencontrées dans les références bibliographiques étudiées.

4.2.1.4.4 Outils et application
Il a été mis en œuvre des outils permettant la construction d’une base de données bibliographiques des articles sur le recalage d’images médicales, incluant une étude de validation. Il est possible d’insérer une nouvelle référence grâce à la description, fondée sur le modèle proposé ici, des procédures de validation. Il est aussi possible de définir des requêtes sur cette base de données utilisant, comme critères, les composants du modèle et des valeurs par défaut. Ainsi, il est possible de récupérer, par exemple, la liste des références des articles, inclus dans la base de données qui utilisent les données du projet de l’Université de Vanderbilt comme données de validation (Figure 4.2.2) et dont les méthodes de recalage utilisent l’information mutuelle comme fonction de coût. Ces outils sont disponibles à l’adresse suivante : http://idm.univ-rennes1.fr/VMIP/model.
4.2.1.5 Discussion et Perspectives

4.2.1.5.1 Commentaires sur les tables

Le modèle n’a pas été remis en cause lors de son instanciation pour les 36 papiers sélectionnés. Son utilisation s’est montrée intéressante pour la compréhension et la classification des différentes approches de validation.

La plupart des articles étudiés incluent plusieurs études de validation utilisant différentes données de validation et différentes métriques de validation en fonction des données. Peu d’entre elles définissent clairement un objectif de la validation. L’objectif, quand il existe, est technique et est, la plupart du temps, implicite. Cela peut être expliqué par la difficulté de définir des valeurs attendues (V) et qui ont un sens clinique pertinent, comme cela a été suggéré dans [39].

Concernant la procédure de validation, il n’y a évidemment pas de méthode idéale et, d’ailleurs, le but de cette étude n’était pas de trouver une telle méthode. Il n’y a aucune méthode étudiée qui contient tous les composants de notre modèle. Le modèle proposé est une union des composants et fonctions rencontrés dans cette étude. Certains des composants sont optionnels, d’autres dépendent fortement de l’approche choisie (ceci est le cas notamment pour les fonctions de normalisation: F_{NTM}, F_{NEM}, F_{NTGS}, F_{NEGS}).

Concernant les données de validation, il est intéressant de noter que le projet « Retrospective Registration Evaluation Project (RREP) » de l’Université de Vanderbilt [21] a eu un impact fort sur la validation des méthodes de recalage d’images médicales. De nombreuses études de validation utilisent les données de ce projet. L’approche unique et multi centrique de ce projet a permis de comparer les résultats de différentes méthodes de recalage, la validation étant réalisée avec les mêmes données et les mêmes métriques de validation et contrôlées par le groupe de Vanderbilt [55]. Comme il n’y a pas d’images TEMP disponibles parmi les données de ce projet, la plupart des études de validation de recalage d’images TEMP comparant la méthode à valider avec une autre méthode de recalage considérée comme référence, ou compare la transformation géométrique calculée avec une transformation géométrique moyenne. Dans ces dernières, l’évaluation est difficile car la référence est elle même sujette à incertitude, les résultats sont de ce fait très relatifs. L’extension du projet RREP, vers de

http://www.vuse.vanderbilt.edu/~image/registration/
nouvelles modalités ou de nouveaux protocoles et vers la prise en compte de différentes pathologies ou différents contextes cliniques, est une solution possible, tout comme l’utilisation de simulations numériques réalistes.

Concernant la référence, les erreurs \hat{E}_{GS} liées à son estimation sont rarement quantifiées et prises en compte dans l’évaluation finale. West et al. [21] et Maurer et al. [39] prédisent une erreur (TRE) associée à leur référence en utilisant l’erreur liée à la localisation des fiduciaires (FLE), inférée de l’erreur de recalage des fiduciaires (FRE). Dans certaines études, l’erreur associée à l’estimation de la référence \hat{E}_{GS} semble importante et seulement faiblement inférieure à l’erreur du recalage \hat{E}_M, ce qui rend inutilisables les résultats de l’évaluation.

Les tests statistiques d’hypothèses sont principalement utilisés pour comparer les performances de différentes méthodes de recalage ou de différentes étapes de traitement. Il y a peu d’articles qui définissent une hypothèse de validation et encore moins qui rejettent ou non cette hypothèse en utilisant des tests statistiques.

4.2.1.5.2 Comparaison avec la littérature

Même si l’on peut percevoir dans la communauté scientifique des besoins de standardisation dans la description et la réalisation de procédures de validation, il y a peu de travaux équivalents à notre approche. Citons deux publications en conférences scientifiques qui ont essayé de décrire le processus d’évaluation de méthodes de traitement d’images médicales, de façon rigoureuse.

Dans la première publication de Yoo et al. [14], seul la procédure de validation est modélisée, pas de description du contexte clinique, de l’objectif de validation ou des caractéristiques de la méthode à valider. Le modèle simple proposé limite les données de validation aux données du projet du Visible Human de la National Library of Medicine. Il distingue clairement les étapes concernant le calcul de la référence (F_{GS}) et la méthode à valider (F_M). Les sorties des deux fonctions correspondent à \hat{T}_{GS} et \hat{T}_M, respectivement. Une tâche de notation automatique inclut, dans une seule étape, les fonctions F_C et F_{QI} proposées dans notre modèle. Il nous semble important de distinguer ces deux étapes, de calcul des divergences entre le résultat de la méthode et la référence, et de calcul de l’indice de qualité sur ces divergences. Enfin, l’analyse statistique à la fin du processus de validation est analogue à notre test d’hypothèse (F_H). Il apparaît que notre modèle est plus générique concernant les données de validation, le calcul de la référence et la dernière étape liée à l’analyse statistique. Dans notre modèle, nous soulignons l’importance de la prise en compte de l’erreur liée à l’estimation de la référence dans la comparaison. Nous spécifions une phase de normalisation (F_{NTM} et F_{NTGS}) qui permet de fournir des divergences dans un format plus informatif pour le clinicien et correspondant à une réalité applicative. Tous ces points n’apparaissent pas dans le modèle de Yoo.

L’approche de modélisation des procédures d’évaluation, qui s’applique principalement aux méthodes d’analyse d’images médicales (détectio et quantification), proposée par Buvat et al. [13] est intéressante à plusieurs points. Cette publication est organisée comme un guide d’aide à la mise en œuvre des procédures de validation, insistant notamment sur les biais possibles tout au long du processus. Dans un premier temps, ils proposent une formalisation de l’objectif de validation. Puis, le modèle du processus de validation distingue une étape transformant les données de sortie de la méthode dans un format adapté à la comparaison.
Leur modèle inclut les contraintes entre composants et identifie les composants sans degré de liberté (les composants entièrement dépendants des autres composants du modèle). Mais les erreurs ne sont pas modélisées et l’estimation ou le calcul de la référence n’est pas explicitement modélisé. Comme pour le modèle de Yoo, ce modèle ne distingue pas le calcul de la divergence du calcul de l’indice de qualité.

Une autre approche est intéressante à citer. Elle est plus éloignée, que les deux précédentes, sur le modèle résultant, mais est plus proche de notre démarche globale. Un groupe d’experts, regroupant scientifiques et responsables des principales publications scientifiques internationales en médecine, s’est penché sur le problème de l’évaluation des technologies médicales dans le contexte de la précision diagnostique. Ils ont défini un standard pour décrire les approches d’évaluation dans ce domaine : STARD : Standard for Reporting of Diagnostic Accuracy. Leur méthodologie est équivalente à celle proposée ici. Après une revue de la littérature, ils ont proposé une ontologie de leur domaine formalisé par un Flowchart (Figure 4.2.3). L’outil principal, déduct de leur modèle, consiste en une check list (Figure 4.2.4) à utiliser pour décrire une procédure de validation, soit du coté du développeur, soit du coté du relecteur [38].

4.2.1.5.3 Perspectives

Dans cette étude, nous proposons un modèle des procédures de validation des méthodes de recalage d’images médicales. Ce modèle a pour but de faciliter la description de ces procédures, leur diffusion et la comparaison des résultats grâce à une terminologie commune. Nous avons proposé un cadre pour décrire et documenter les procédures de validation, et non une méthode pour réaliser la validation.

Une des limites principales de ce travail concerne sa restriction à l’étude et à l’instanciation de 36 papiers sélectionnés dans deux domaines restreints liés au recalage d’images. Il est clair...
que nous devons vérifier la pertinence de notre modèle pour d’autres publications. Il serait aussi intéressant d’étendre notre approche à la validation des méthodes de recalage non linéaire, où la vérité terrain est plus difficile à estimer que dans le cas de recalage rigide. Ce modèle a été défini pour des procédures de validation concernant l’étude de l’efficacité technique des méthodes de recalage d’images. Il faudrait aussi vérifier que notre modèle reste correct et utile dans le cas de procédures de validation qui ont pour objectif de prouver la plus-value clinique apportée par les méthodes de recalage d’images (niveaux d’évaluation > 2) où la vérité terrain est le plus souvent apportée par la connaissance des cliniciens ou par une analyse de bases de données. Nous sommes convaincus qu’une approche similaire devrait être utile pour la validation de toute méthode de traitement et d’analyse d’images médicales (segmentation, détection, quantification, etc.). L’adaptation de ce modèle à ce cadre plus général devrait être vérifiée. En améliorant la méthodologie de validation des outils de traitement d’images, nous pouvons contribuer à améliorer la confiance que les cliniciens peuvent avoir dans ces nouvelles technologies et faciliter leur transfert de la recherche vers l’industrie et la clinique.

4.2.2 Validation de méthodes de traitement d’images

Le cadre proposé pour la description des procédures de validation de méthodes de recalage d’images, fondée sur la comparaison avec une référence, a été utilisé dans plusieurs projets de recherche où une phase de validation a été réalisée. Ce cadre a permis la description formalisée des procédures de validation dans les publications relatives à ces projets [P_7,P_21,P_22,P_28]. Mais plus encore, il s’est avéré utile pour la définition et la mise en œuvre de ces procédures, que ce soit pour la définition du contexte applicatif, de l’objectif de validation ou de la méthodologie de validation.

Ainsi, dans le contexte du recalage d’images TEMP/IRM, une procédure de validation s’appuyant sur des simulations TEMP réalistes à partir d’IRM anatomoques a été mise en œuvre [P_21]. Ces principales caractéristiques sont pour les D_I, l’utilisation de simulations réalistes, pour les P_I, l’étude des performances en fonction des valeurs initiales de transformations géométriques, de la simulation de régions pathologiques, et de la fonction de coût, pour la F_{GS} : l’identité car les simulations permettent de contrôler la transformation, pour le \tilde{F}_{GS} : les paramètres d’une transformation géométrique. L’erreur \tilde{E}_{GS} est nulle. F_{NTM} et F_{NTGS} consistent à transformer les coordonnées de points caractéristiques. F_C consiste à calculer la TRE correspondant à une divergence O_C intrinsèque et globale intra méthode. Les indices de qualité O_{Qi} calculés sont la moyenne, l’écart type, et les 90e quantiles de la distribution de l’erreur au sens des moindres carrés. Les tests statistiques F_H utilisés sont le t-test et le F-test.

Le modèle de description a aussi été utilisé pour la validation de méthodes de traitement et d’analyse d’images autres que le recalage. Dans les deux cas, il a montré sa pertinence. Pour l’étude des performances d’une méthode de détection d’asymétries cérébrales fonctionnelles en TEMP s’appuyant, là aussi, sur des simulations réalistes de données TEMP à partir d’IRM [P_7], la méthodologie de validation a les caractéristiques suivantes : pour les D_I; l’utilisation de simulations réalistes, pour les P_I; l’étude des performances en fonction de régions pathologiques simulées, et de l’extension et de l’amplitude de ces régions, pour la F_{GS}: le processus de simulation, pour le \tilde{F}_{GS} : les régions simulées. F_C consiste à tracer des courbes ROC à partir de taux de recouvrement. La divergence O_C calculée est intrinsèque et globale intra méthode. O_{Qi} consiste à calculer l’aire sous la courbe (AUC). F_H est le test de Wilcoxon.
La validation de la méthode présentée dans le chapitre 1.2.3.3 a aussi été réalisée et décrite en s’appuyant sur le modèle proposé. Ces caractéristiques sont présentées au chapitre 1.2.3.3.2.

Enfin, à l’occasion d’un projet RNTS sur le développement d’une plate forme logicielle d’imagerie pour l’épilepsie, nous avons utilisé le modèle développé pour mettre en œuvre une procédure de validation multi site de logiciels de recalage d’images de médecine nucléaire (TEMP et TEP) avec une imagerie par résonance magnétique. Cette validation a permis de souligner les méthodes de recalage les plus performantes (parmi plus d’une quinzaine de fonctions de coût et cinq méthodes d’optimisation) et de vérifier que certaines de ces méthodes répondaient bien aux exigences cliniques spécifiées dans les objectifs de validation et dans un contexte clinique lié à l’épilepsie.
4.3 Discussion et perspectives

Nous avons montré que l’utilisation du modèle décrivant une méthodologie de validation de méthodes de traitement et d’analyse d’images médicales, fondée sur la comparaison avec une référence, est utile *a posteriori* pour expliciter les procédures de validation, mais aussi *a priori* pour aider à sa spécification et à sa mise en œuvre.

De la formalisation à la standardisation

La caractérisation et la formalisation des procédures de validation peuvent aider leur standardisation. Il est possible de distinguer trois étapes pour cette standardisation. L’étude décrite au-dessus concerne la première étape. En décrivant une procédure de validation avec le modèle proposé, les développeurs permettent une meilleure compréhension de la procédure de validation et de ses résultats. Aucune valeur ou fonction par défaut n’est demandée pour cette première étape. Elle n’assure en rien de la qualité de la méthode de validation. Les deuxièmes et troisièmes étapes sont prospectives et concernent des comités de standardisation. La deuxième étape pourrait imposer l’utilisation de fonctions, paramètres ou données prédéfinies, comme des métriques de validation reconnues par la communauté scientifique (comme la TRE) ou des données de validation partagées (comme les données du projet de Vanderbilt). Cette étape permettrait de s’assurer de la qualité de la méthode de validation et de comparer les résultats avec la littérature et dans le cadre de méta analyses, mais elle ne permettrait pas de s’assurer de la qualité de la méthode de recalage validée. La deuxième étape nécessite le suivi de la première. La troisième étape nécessite la seconde et a pour but de vérifier la qualité de la méthode de recalage, selon un objectif clinique précis. Cela obligerait la définition d’hypothèses de validation standardisées avec des valeurs ou modèles attendus adaptés aux contextes cliniques.

Le flux d’erreurs dans un flux d’actions

Dans le cas de processus complexes de traitement d’images, certains travaux ont proposé des méthodes pour essayer d’étudier la propagation des erreurs le long de ce processus [45]. En chirurgie guidée par l’image, il peut être intéressant de comprendre comment les erreurs s’accumulent ou se compensent le long de ce processus [46,47]. Autour de ce problème ouvert où peu de choses ont été réalisées, citons quelques travaux très préliminaires. L’étude des propagations des erreurs peut être réalisée selon trois approches : par études expérimentales [40,41], par simulation mathématique [9] ou par approche statistique inspirée des méthodes utilisées en « évaluation de la sûreté logicielle ». Une des applications de cette dernière approche pourrait être la prédiction d’erreurs globales et l’influence des erreurs locales d’un composant du processus sur les performances globales. A plus long terme, cette prédiction pourrait être utilisée en routine clinique où la vérité terrain est absente, mais aussi en phase de conception d’un nouveau système de chirurgie guidée par l’image.

L’analyse de risque

Les méthodes liées à l’analyse de risque n’ont jusqu’à aujourd’hui que peu été utilisées dans notre domaine. Elles permettent de démontrer que les risques potentiels liés à l’utilisation d’un système sont acceptables par rapport à la valeur ajoutée apportée au patient [30]. Cette analyse de risque doit être réalisée avant la conception d’un nouveau système. Cette analyse est itérative et comprend l’identification des dangers potentiels, l’estimation des risques liés à
ces dangers, l’estimation du degré d’acceptabilité des risques et la définition d’actions réduisant ces risques.

Validation et évaluation en routine clinique

Il est nécessaire de se pencher sur l’interprétation clinique des résultats des procédures de validation. Celles-ci fournissent des informations sur les performances des méthodes, dans des conditions d’expérimentation contrôlées. Dans ce contexte, il est nécessaire d’utiliser des métriques de validation adaptées aux besoins cliniques, d’étudier la signification clinique des résultats de la validation et, enfin, de définir des valeurs ou des seuils attendus par les cliniciens dans des applications ou des contextes cliniques précis. Enfin, il est important pour les cliniciens de connaître les performances réelles d’un système pendant une utilisation clinique de routine. Les systèmes et méthodes liés à la ChGI fournissent au clinicien une information supplémentaire (comme les images fusionnées ou les images pré opératoires pendant la chirurgie, par exemple) pour aider à une prise de décision ou à la réalisation d’une action. Il serait nécessaire d’ajouter aussi une information permettant au clinicien d’apprécier, en continu et en temps réel, la fiabilité du système sur le cas clinique en cours et, par exemple, sur des structures anatomiques essentielles, par le calcul ou la prédiction des divergences. Ces avancées permettront une meilleure compréhension et interprétation des performances des systèmes de ChGI et de leurs composants de traitement d’images.

Un immense terrain en construction

Nous l’avons vu tout au long de ce chapitre, la validation des outils de traitement d’images pour la chirurgie guidée par l’image reste un domaine où beaucoup reste à faire. Dans le cadre d’une réunion de travail lors d’une conférence internationale (CARS 2005 à Berlin), j’ai essayé d’initier une liste des besoins restant encore inassouvis dans ce domaine [29], principalement pour la mise en place de bases de données d’images de référence. Évidemment, cette liste n’est pas exhaustive et sa construction reste en cours. Les points abordés ont été divisés en quatre catégories principales liées aux données, aux méthodes, aux acteurs et à la mise en œuvre.

Concernant les données, il faut souligner qu’elles ne se limitent pas aux images mais incluent notamment les annotations et informations liées aux images et les informations liées au patient. Sur ce point, la principale remarque concerne l’harmonisation des données, avec le besoin de développement de standards liés à leur acquisition, à leur format et à leur transfert. L’importance de la constitution de bases de données d’images de référence reste un point central. Cela nécessite notamment la sélection d’images dans la routine clinique pour leur intégration dans de telles bases de données et la vérification de la qualité de ces images. La taille de ces bases de données ainsi que leur évolution sont aussi des points critiques.

Concernant les méthodes, il est souligné le besoin de nouvelles méthodes pour la validation et la prédiction: prédiction du devenir à long terme du patient ou prédiction des performances d’un système lors de son utilisation clinique. La qualité de la référence utilisée pour la validation est un point critique. Il est donc nécessaire d’identifier les applications où cette référence est parfaitement maîtrisée et de qualité et où les performances attendues sont connues. Ce sont sur ces applications cibles que les premiers efforts doivent se concentrer. Il est important d’associer des outils mathématiques permettant de répondre à des besoins particuliers concernant la validation. Ces besoins sont, notamment, la définition de méthodes permettant l’estimation des performances d’une méthode sans référence explicite et la
prévision de ces performances, soit pour des méthodes simples d’analyse et de traitement d’images médicales, soit pour des processus complexes enchaînant plusieurs modules de traitement et d’analyse d’images, comme c’est le cas pour les systèmes de chirurgie guidée par l’image. Toujours sur l’aspect qualité de la référence, il est important de mettre au point des méthodes permettant l’extraction du consensus à partir de références provenant d’experts. Enfin, le besoin de standardisation se fait aussi ressentir. Standardisation des méthodes de traitement d’images, des méthodes de validation et d’annotation.

Les acteurs mis en jeu dans les processus de validation sont à la fois les fournisseurs de données, les patients et les utilisateurs des données qui effectuent la validation des méthodes. Les fournisseurs de données doivent être incités et motivés. Le respect des informations liées aux patients doit être pris en compte. Les patients doivent être consentants à une telle utilisation de leurs images. Les aspects contractuels de ces points doivent être rigoureusement abordés.

La mise en œuvre d’infrastructures ou de plates-formes dédiées à la validation des applications cibles identifiées semble nécessaire. Le financement de ces plates-formes doit provenir d’un partenariat privé-public. La mise en place de centres réels ou virtuels et de groupes de travail doit permettre la maintenance et l’organisation de telles plates-formes. Les méthodes de génie logiciel doivent être utilisées pour permettre interopérabilité, réutilisabilité et une démarche qualité facilitant les certifications. Enfin, il est important de sensibiliser les différentes communautés concernées (chercheurs, industriels, organismes publics et cliniciens) et de communiquer les résultats obtenus.

Comme il a été souligné dans ce document, la chirurgie guidée par l’image est un processus complexe enchaînant notamment prises de décision, traitements d’images et actions chirurgicales manuelles ou assistées. Chaque composant de ce processus est une potentielle source d’erreurs. Les attentes du chirurgien en terme de précision varient selon les composants. L’approche modélisation présentée dans la section 2.2 offre un cadre permettant la description formalisée de ce processus : à la fois sur l’aspect flux d’actions et sur l’aspect enchaînement d’actions chirurgicales pendant la chirurgie. Ainsi, il pourrait être intéressant d’associer à ces modèles, à ces descriptions, une information sur la précision requise par le chirurgien en chacun des atomes qui composent ces modèles. Par exemple, lors de la réalisation d’une procédure neurochirurgicale guidée par l’image, la précision requise dans l’affichage des images pré opératoires varie selon l’action chirurgicale en cours, selon la structure représentée par ces images et son rôle (cible, à éviter, de référence). Il peut être donc intéressant d’associer au processus de validation une vision formalisée de la procédure chirurgicale.
4.4 Références bibliographiques

De nombreux auteurs se sont risqués à imaginer la chirurgie du futur. Généralement, les différentes visions se fondent sur des idées clé qui diffèrent. Certains se focalisent sur l’évolution technologique logicielle ou matérielle, certains se focalisent sur la réalisation de la chirurgie, d’autres ont des visions intégrant les systèmes péri opératoires, d’autres devinent une dérive progressive du geste chirurgical classique vers une thérapie de moins en moins invasive et de plus en plus précoce (par traitements pharmaceutiques, par exemple). Il est clair que cette vision dépend fortement de l’échéance de prédiction. Distinguons trois échéances : court, moyen et long terme. N’étant pas devin mais simple chercheur, je ne saurais donner des valeurs précises en nombre d’années à ces trois termes, ni des prédictions inéluctables.56

5.1 Perspectives à court terme : vers un processus chirurgical guidé par une information multimodale incluant images et connaissances

Liu et al [1] listent les principales directions dans l’évolution de la salle d’opération neurochirurgicale :
1. la spécialisation de l’environnement opératoire en fonction des procédures chirurgicales réalisées,
2. l’introduction de systèmes robotiques,
3. l’incorporation de senseurs dans les outils opératoires pour le monitoring anatomo-fonctionnel (pour acquérir de l’information structurelle et physiologique à jour sur le patient),
4. l’amélioration des méthodes d’analyse, de traitement et de présentation de l’information disponible, dont le développement de systèmes de visualisation adaptés,
5. le développement d’outils de simulation temps réel du geste chirurgical avant sa réalisation et d’outils de simulation pour l’enseignement.

À la liste présentée par Liu et al qui concerne principalement l’étape de réalisation, il me paraît important d’ajouter :
6. la prise en compte des différentes étapes du processus chirurgical,
7. l’introduction de nouvelles informations formalisées,
8. la définition d’outils d’aide à la décision thérapeutique,
9. la définition d’outils d’aide au choix de la stratégie chirurgicale,
10. le développement d’outils pour la visualisation, la détection et la quantification des déformations ou modifications anatomo-fonctionnelles intra opératoires et la mise à jour correspondante des informations pré opératoires,
11. et l’attention continuelle qui doit être portée sur la validation des nouveaux systèmes développés.

À ce constat, deux visions complémentaires des systèmes de la chirurgie du futur coexistent. Une première parle du concept de « Predictive Medicine ». Une deuxième parle de systèmes « Surgical Knowledge Inside ».

56 Je le regrette moi aussi.
5.1.1 Le concept de « médecine prédictive »

Selon Satava et al. [11] et Taylor et al. [4], la « médecine prédictive » du futur, grâce à l’émergence de nouvelles modalités d’imagerie et aux techniques de fusion d’images multimodales, inclura la création d’un « clone » virtuel du patient modélisant ses propriétés anatomiques et physiologiques à partir de ces données multimodalités. Ce « clone » virtuel pourra être utilisé tout au long du processus chirurgical assisté par l’image. A cette notion de clone virtuel est associée la notion d’évaluation de la stratégie chirurgicale avant sa réalisation. Comment pouvons-nous interpréter cette vision sur les aspects d’imagerie et de processus chirurgical qui nous concernent ?

Imagerie : Pour toutes les différentes étapes du processus chirurgical (pré planning, planning, simulation, réalisation, suivi et contrôle post opératoire), le chirurgien tirera bénéfice du développement de nouvelles sources d’imagerie, qu’elles soient anatomiques ou fonctionnelles, et de nouvelles techniques de traitement et d’analyse d’images. Le développement de techniques de segmentation d’images robustes et plus précises permettra de mieux caractériser les zones d’intérêt, aussi bien sur les images pré opératoires pour faciliter préparation et simulation, que sur les images intra opératoires pour repérer les structures déplacées. Des méthodes robustes de recalage non linéaire sont nécessaires pour la mise à jour des images pré opératoires en fonction de données intra opératoires.

Simulation : Nous avons distingué la simulation pour l’enseignement de la simulation basée patient qui fait partie de la phase de préparation du geste. Dans la simulation basée patient, il est important de prendre en compte l’environnement opératoire (outils et opérateurs) et d’ anticiper le plus possible les différences possibles entre pré et intra opératoire. Ces différences peuvent consister en des incidents, ou en des différences entre l’anatomie du patient en salle d’opération et celle appréhendée par l’imagerie pré opératoire. La réalisation du geste peut aussi dépendre de données acquises en salle d’opération qu’il faut anticiper, par exemple, des stimulations corticales, une angiographie X ou une analyse histologique extemporanée.

Pronostic chirurgical : Dans les phases pré opératoires, l’évaluation quantitative des différentes stratégies thérapeutiques possibles devrait être réalisée et être utilisée pour pronostiquer le résultat clinique de ces stratégies. Cette évaluation doit aider au choix de la meilleure stratégie chirurgicale [2]. Ce pronostic doit être réalisé et affiné tout au long de ces phases. Il doit inclure une prévision du résultat de la chirurgie : qualité de l’exérèse, amélioration fonctionnelle, diminution de la souffrance, absence de complications, coût, etc. Cette évaluation du pronostic est fortement dépendante du patient et de sa pathologie, évidemment, mais aussi du chirurgien et de son environnement.

Réalisation : Dans un premier temps, les principales limites de la réalisation de la procédure chirurgicale assistée par l’image concernent les aspects de déformations anatomiques intra opératoires. Nous avons proposé dans le Chapitre 3 une approche observations-connaissances qui permettrait la résolution de ce problème. Nous avons aussi souligné le travail qu’il reste à faire autour de la visualisation et de l’interaction avec ces systèmes de chirurgie guidée par l’image. La virtualité augmentée, telle qu’elle a été proposée dans ce document, est une solution intéressante qu’il reste à adapter et à valider pour la visualisation conjointe d’images pré et intra opératoires. Il est aussi évident qu’un effort important reste à faire au niveau des interactions homme-machine de ces systèmes de ChGI. Des études d’ergonomie [3], trop rares à mon goût, soulignent des faiblesses importantes dans l’ergonomie de ces systèmes,
nécessitant, pour la plupart du temps, un opérateur spécialisé pour manipuler ces systèmes (voire un ingénieur) alors qu’ils sont conçus pour le chirurgien.

Processus péri opératoire : On le voit bien, il est important de prendre en compte la globalité du processus péri opératoire. La chirurgie ne peut pas être réduite à la seule étape de réalisation du geste, telle qu’elle est considérée aujourd’hui par la majorité des systèmes de chirurgie guidée par l’image. Il est donc nécessaire de bien étudier ce processus ou ce workflow, en comprendre les limites et faiblesses actuelles et apporter des solutions qui optimisent la globalité de ce processus [9]. Dans cette définition de workflow, il faut s’inspirer des travaux réalisés ces dernières années autour de la radiologie numérique, de la communication d’images et des systèmes d’information radiologique et hospitalière. Certains travaux préliminaires soulignent l’importance de s’appuyer sur des standards facilitant l’interopérabilité entre systèmes, comme IHE avec la définition de profils d’intégration en chirurgie [8].

5.1.2 Vers des systèmes estampillés « Surgical Knowledge Inside »

Nous avons souligné que la préparation et la réalisation d’une procédure chirurgicale se basaient sur des connaissances liées au patient, sur des connaissances génériques explicites et sur des connaissances implicites. Jusqu’à aujourd’hui, ces étapes ont été principalement améliorées par l’ajout d’images pré opératoires multimodales du patient. Quelques systèmes introduisent des connaissances génériques explicites comme des atlas anatomiques numériques pour la définition de cibles opératoires [5]. Il est nécessaire d’ajouter à ces informations une modélisation explicite de l’expertise chirurgicale. Nous avons proposé une telle approche dans le Chapitre 2. Pour les étapes de décision thérapeutique et de choix de la stratégie chirurgicale, la formalisation des processus décisionnels et des informations utilisées peut aider, automatiser et rationaliser les prises de décision. L’accès à des bases de cas cliniques décrits selon un formalisme commun et standardisé offre au chirurgien une information principalement disponible aujourd’hui sous une forme papier ou mentale. L’utilisation de techniques d’extraction de connaissances (ECD) à partir de ces bases de données, telle que nous l’avons présenté dans la section 2.2.4, pourrait permettre de définir des scénarii chirurgicaux type, représentant de manière consensuelle l’expertise chirurgicale.

Ces scénarii pourraient permettre de définir des guidelines favorisant la démarche qualité [6] et augmentant la rationalisation de la pratique chirurgicale. Certaines guidelines, dans le cas de procédures chirurgicales précises, ont déjà été définis et ont prouvé leur intérêt dans le cadre des procédures juridiques touchant à la responsabilité du chirurgien lors d’un accident. Ce phénomène est décrit comme un fléau par les neurochirurgiens américains dont les poursuites juridiques, dont ils font l’objet, ont augmenté en 2001 de 14% et représentent, tous domaines médicaux confondus, 200 milliards de dollars annuels pour les coûts d’avocat et 40 milliards de dollars annuels pour les plaignants. En conséquence, les primes d’assurance des neurochirurgiens ont augmenté dans un quart des états américains de plus de 50% en deux ans.

57 Integrating the Healthcare Entreprise
et de plus de 25% dans la moitié des états [6]. En vérifiant que la procédure qui a été réalisée correspond bien à celle qui a été préparée, qui elle-même correspond à un consensus de la communauté chirurgicale pour des cas cliniques équivalents, le chirurgien se protège et prouve qu’il a réalisé la meilleure procédure possible selon les connaissances courantes. Ces scénarios pourraient être à la fois un outil intéressant pour l’enseignement de la chirurgie qui est aujourd’hui principalement fondée sur un apprentissage sur le terrain58, mais aussi une réponse au besoin de modèles comportementaux en simulation, un outil de contrôle de la qualité de la démarche et un outil pour la traçabilité chirurgicale. En salle d’opération, suivre le modèle planifié, c’est aussi permettre à un système informatique de savoir à tout moment quelle étape est en train de réaliser le chirurgien, permettant de proposer des fonctionnalités adaptées. Identifier et tracer les différences entre geste planifié et geste réalisé permet d’améliorer les connaissances sur les risques et incidents potentiels ou sur la particularité d’un cas clinique et donc de faire bénéficier les cas suivants de cette nouvelle information. Un exemple, qui n’est qu’une vision prospective de cette approche dans un contexte de gestion des informations en anesthésie et très orienté « informatique médicale », est donné par J. Gage [7]. Il explique comment, dans un système idéal, les informations médicales concernant un patient et accessible sous forme numérique seraient chargées localement et envoyées à un système centralisé (un entrepôt de données). Puis, ces informations liées au patient seraient comparées avec les autres cas disponibles dans l’entrepôt de données. Ces scénarios pourraient être à la fois un outil intéressant pour l’enseignement de la chirurgie qui est aujourd’hui principalement fondée sur un apprentissage sur le terrain, mais aussi une réponse au besoin de modèles comportementaux en simulation, un outil de contrôle de la qualité de la démarche et un outil pour la traçabilité chirurgicale. En salle d’opération, suivre le modèle planifié, c’est aussi permettre à un système informatique de savoir à tout moment quelle étape est en train de réaliser le chirurgien, permettant de proposer des fonctionnalités adaptées. Identifier et tracer les différences entre geste planifié et geste réalisé permet d’améliorer les connaissances sur les risques et incidents potentiels ou sur la particularité d’un cas clinique et donc de faire bénéficier les cas suivants de cette nouvelle information. Un exemple, qui n’est qu’une vision prospective de cette approche dans un contexte de gestion des informations en anesthésie et très orienté « informatique médicale », est donné par J. Gage [7]. Il explique comment, dans un système idéal, les informations médicales concernant un patient et accessible sous forme numérique seraient chargées localement et envoyées à un système centralisé (un entrepôt de données). Puis, ces informations liées au patient seraient comparées avec les autres cas disponibles dans l’entrepôt de données. Les cas similaires au sens de variables pré déterminées (pathologie, procédure opératoire, etc.) seraient récupérés ainsi que les informations associées contenant les caractéristiques de la procédure d’anesthésie utilisée pour ces cas (l’analogue à un moteur de recherche de type Google est citée). L’anesthésiste se baserait sur des cas pour préparer l’anesthésie du patient concerné. Les informations intra et post opératoires concernant l’anesthésie de ce cas seraient sauvegardées et envoyées à l’entrepôt de données pour enrichir les cas cliniques disponibles. Une approche semblable est imaginaire pour notre contexte d’aide à la décision thérapeutique et au choix de la stratégie chirurgicale, en se basant sur le modèle proposé au chapitre 2.2 comme syntagme commune de représentation de l’information et sur des techniques d’ECD pour rechercher les cas similaires. Cette vision s’appuie donc sur une formalisation des expertises chirurgicales. Dans un projet de Réseau d’Excellence Européen, Philippe Cinquin parlait de systèmes avec « Surgeon Inside » en analogie avec « Intel Inside ». Dans un rapport du TATC sur la chirurgie du futur, on parle de systèmes avec « Knowledge Inside » [8], ces termes laissant entendre l’amélioration dont pourraient bénéficier les systèmes grâce à l’utilisation de connaissances. Ces termes sont aussi significatifs d’une deuxième génération de systèmes.

5.2 Perspectives à moyen terme : vers une séparation de l’espace et du temps entre l’action du chirurgien et l’exécution sur le patient

Un point de vue de P. Cregan [10] oppose la chirurgie traditionnelle à la chirurgie assistée par ordinateur de demain, de la façon suivante. La chirurgie traditionnelle consiste en une relation ou un contact direct entre le chirurgien et le patient (« d’homme à homme ») où, vu du coté du chirurgien, les informations sensorielles (entrées) sont directement perçues et les actions mécaniques (sorties) sont réalisées manuellement à l’aide d’outils chirurgicaux (Figure 5.2.1). La chirurgie assistée par ordinateur consiste, elle, en l’insertion d’outils informatiques matériels ou logiciels entre le patient et le chirurgien (Figure 5.2.2). De ce fait, le lien direct

58 La méthode de Halsted (1852-1922) pour l’enseignement de la chirurgie se basait sur le principe suivant : « regarde, fait et enseigne ».

152
entre le patient et le chirurgien est rompu, que ce soit au niveau spatial (télé-chirurgie à distance) ou temporel (réalisation d’un geste chirurgical dont toutes les actions ont été définies et enregistrées avant l’intervention). Il faut aussi ajouter que ces translations dans l’espace et dans le temps peuvent aussi être accompagnées d’un changement d’échelles spatiales et temporelles. Le chirurgien peut agir dans une résolution macroscopique et ces actions sont exécutées à une échelle microscopique. Le chirurgien peut aussi effectuer une action pendant une durée quelconque qui sera accélérée lors de son exécution. Les entrées et sorties passent par un format électronique, une transcription électronique. Les informations sensorielles sont converties ou traduites en un format électronique, puis analysées et traitées. Les résultats numériques sont ensuite transmis au chirurgien dans un format intelligible pour lui. Dans le sens inverse, les réponses et actions mécaniques du chirurgien sont, elles aussi, traduites en un format électronique, puis analysées et traitées avant d’être transmises puis exécutées sur le patient.

Le schéma proposé, où le chirurgien est immergé dans un monde virtuel complet dans lequel il peut préparer et réaliser son intervention, est aujourd’hui malgré tout assez difficile à imaginer pour tous les gestes de la neurochirurgie. Il est concevable pour des procédures chirurgicales simples et bien contraintes (comme l’endoscopie, la laparoscopie, la ventriculostomie ou la biopsie) mais plus difficilement pour des chirurgies à ciel ouvert.

5.3 Perspectives à long terme : La chirurgie : jusqu’à quand ?

Dans les réflexions sur l’avenir de la neurochirurgie à long terme, s’opposent plusieurs visions. L’une d’elles s’appuie sur les évolutions technologiques de miniaturisation et parie sur l’intervention croissante des nanotechnologies dans la chirurgie, avec une médecine et une chirurgie cellulaires et moléculaires [1]. L’autre met l’accent sur le diagnostic précoce et systématique grâce à l’imagerie pour anticiper les pathologies et les traiter avant tout dommage corporel (commentaires de P. Kelly dans [1]). A encore plus long terme, une dernière souligne la progression des traitements génétiques et fait penser à un traitement de plus en plus précoce des maladies.

La question clé, sous-entendue par l’évolution des thérapies, concerne l’avenir du geste chirurgical. Mis à part les chirurgies liées à des traumatismes accidentels et les chirurgies de prothèse, restera-t-il des pathologies nécessitant une réelle intervention chirurgicale et qui n’ont pas pu être anticipées et guéries avant leur développement ? La neurochirurgie restera-t-elle cette spécialité reine en médecine basée sur des connaissances et compétences multiples, implicites et explicites ? Ou ne deviendra-t-elle pas qu’une simple thérapie, parmi beaucoup d’autres, utilisée en dernier recours, en urgence, par défaut, quand plus aucune technique non-invasive n’est capable de répondre au problème ?
5.4 Références bibliographiques

Conclusion

Dans les travaux de recherche que j’ai menés et qui sont présentés dans ce document, j’ai proposé des solutions allant dans le sens d’une chirurgie qui s’appuie sur des observations et des connaissances. Ce que l’on pourrait appeler une chirurgie guidée par l’information. Je me suis plus particulièrement focalisé sur les aspects d’imagerie, de prise en compte formelle de connaissances et de validation. Les principaux résultats des travaux que j’ai conduits incluent la définition d’une neuronavigation multimodale, l’optimisation de la présentation de ces informations multimodales en salle d’opération par le concept de virtualité augmentée, la création d’un modèle générique permettant la description des procédures neurochirurgicales et la génération de connaissances, la définition d’une méthodologie pour la prise en compte des déformations anatomiques intra opératoires et la proposition d’une terminologie et d’une méthodologie standardisées pour la validation des méthodes de traitement d’images en chirurgie guidée par l’image. J’ai aussi insisté sur le fait que la neurochirurgie guidée par l’image ne se réduit pas à la seule phase de réalisation de la procédure chirurgicale. Elle met en jeu un véritable flux de travail, de données, de compétences et de connaissances, à la fois explicites et implicites, qui, finalement, doivent être intégrées pour aider à la décision et à l’action du chirurgien. On parlera alors de processus chirurgical assisté par l’information. Enrichir l’information utilisée dans chacune des étapes de ce processus et automatiser certaines étapes, aujourd’hui manuelles ou non formalisées, font partie des challenges de ce domaine. Cela veut dire enrichir les informations liées au patient et rendre explicite et disponible sous forme numérique certaines connaissances aujourd’hui implicites. Certaines tâches de décision dans ce processus nécessitent aussi d’être formalisées et assistées. Une meilleure interaction et coopération entre l’utilisateur et le système sont nécessaires pour l’optimisation du processus. Cela inclut des outils adaptés pour la présentation de l’information et une connaissance, de la part des systèmes de neurochirurgie guidée par l’image, de certains processus cognitifs du chirurgien. Cette maîtrise des aspects ergonomiques des systèmes, alliée à une recherche de solutions peu onéreuses et libres, permet la diffusion des technologies présentées à une échelle internationale. Enfin, il est important de maîtriser les performances de ces systèmes, aussi bien au niveau de chaque composant du processus qu’au niveau du processus global. Il est fondamental d’instaurer une confiance des chirurgiens dans les systèmes proposés à l’aide de véritables outils fiables de prédiction de performances ou d’erreurs, dont les valeurs sont présentées au chirurgien, et sous une forme explicite, tout au long du processus. Mieux connaître les performances, c’est aussi mieux les maîtriser et c’est améliorer les bénéfices cliniques de ces systèmes pour le patient et pour la société. Dans ce document, nous avons montré comment ce travail a été initié et comment il doit être poursuivi. Cet effort doit permettre d’améliorer les systèmes de chirurgie assistée par ordinateur mais aussi d’enrichir les connaissances sur la chirurgie et son environnement. Une meilleure compréhension de la chirurgie permettra aussi de l’optimiser.

La chirurgie assistée par des connaissances et des outils robotiques est la prochaine forme de la chirurgie. Les systèmes utilisés ne remplacent pas le chirurgien mais l’assistent dans des tâches difficiles, atteignant les limites des capacités intellectuelles et physiques de l’homme.

Des gestes de moins en moins invasifs, réalisés à partir d’informations de plus en plus nombreuses, grâce à une succession d’actions de plus en plus assistées.

Pour une médecine optimale et pour tous.
La main de Dieu, Rodin, 1896
http://www.musee-rodin.fr/
• Publications originales dans des revues à comité de lecture,

• Publications de revue dans des revues à comité de lecture

• Publications effectuées dans le cadre de congrès internationaux (articles longs),

