Skip to Main content Skip to Navigation

Estimateurs d'erreur a posteriori pour des problèmes dynamiques

Abstract : In a first part, we introduce an a posteriori estimator for a nonconforming finite element approximation of the heat equation in R^d, d=2,3, using Backward Euler's scheme. For this discretization, we derive a residual indicator based on the jumps of the normal and tangential derivatives of the nonconforming approximation and a time residual based on the jump of broken gradients at each time step. Lower and upper bounds form the main results. We confirm the efficiency and reliability of these estimators. In a second part, we present an a posteriori estimator for the time dependent Stokes problem in R^d, d=2 or 3 Our analysis covers nonconforming finite element approximation (Crouzeix-Raviart's element). We derive an indicator which uses a spatial and time residual. Numerical experiments confirm the theoretical predictions and show the usefulness of these estimators on adaptive mesh refinement .
Document type :
Complete list of metadatas
Contributor : Nadir Soualem <>
Submitted on : Friday, June 22, 2007 - 6:32:47 PM
Last modification on : Friday, November 13, 2020 - 8:44:12 AM
Long-term archiving on: : Thursday, April 8, 2010 - 6:16:36 PM



  • HAL Id : tel-00156845, version 1



Nadir Soualem. Estimateurs d'erreur a posteriori pour des problèmes dynamiques. Mathématiques [math]. Université de Valenciennes et du Hainaut-Cambresis, 2007. Français. ⟨tel-00156845⟩



Record views


Files downloads