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Introduction

DNA hairpins are molecules made of a single strand of DNA which has two com-
plementary sequences of bases at its two ends. As a result the ends tend to bind
to each other to form a short piece of double stranded DNA, called the stem of the
hairpin. The remaining part of the strand makes a loop as shown on Fig. ().
DNA hairpins have a dual interest. First they play important roles in biology

Figure 1: schematic representation of a DNA hairpin configuration [IJ].

such as the regulation of gene expression during transcription [2]. Second, hairpins
provide a model system to study the self-assembly process that leads to the for-
mation of the famous DNA double helix. This self-assembly can occur in solutions
that contain a sufficient concentration of two complementary DNA species. But the
process is complex because the complementary strands must first find each other
in solution and then assemble. In a hairpin, the two parts that have to assemble
are already attached to each other. Therefore the process leading to their assembly
is simpler. Moreover, as explained later in the manuscript hairpins can be studied
very precisely in experiments using some fluorescent dyes [3]. As a result accurate
experimental results on the assembly-dis-assembly of the stem can be collected |4} B
The goal of our study is to propose a suitable model for the equilibrium statistical
physics and kinetics of the closing and opening of DNA hairpins. As DNA hair-
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Introduction

pins are fairly simple biological molecules, their self-assembly in solution is a more
tractable problem than either protein folding or DNA double helix formation and one
can isolate more easily a plausible reaction coordinate, which is the end-to-end dis-
tance. In particular when one compares their assembly to protein folding, one could
think that this task has already been completed. This is not the case. Of course
some studies have been performed [0 [7], and we shall review them in Chap. 2, but
they are phenomenological and rely on many empirical parameters which are diffi-
cult to evaluate quantitatively and have to be fitted on experimental results. The
difficulties are not restricted to the theoretical level. Even the experiments raise
puzzling questions because the studies of Libchaber and coworkers [4] disagree on
some fundamental points with the measurements of Wallace et al. [§] and Ansari [6].
All experiments agree qualitatively on the equilibrium thermodynamics properties.
The melting temperature 7T, decreases with the length of the loop and T}, is lower
for a poly(A) than for a poly(T) loop. Discrepancies appear in the kinetic studies.
While all agree that the activation energy for the opening is positive and does not
depend on the loop, different experiments disagree on the properties of the closing.
Libchaber and coworkers measure a small positive activation energy of closing but
Wallace and Ansari find instead a negative activation for closing. A careful analysis
shows that the contradiction may be only apparent. First the experiments of Ansari
et al [[[] are made with very short loop (only 4 thymine bases T,) and a stem of
6 base-pairs while Libchaber and coworkers [4] consider much longer loops (Ti5 to
T3p) and a shorter stem (5 base-pairs). The experiments of Wallace et al consider
hairpins which are similar to those studied by Libchaber and collaborators (Agzg
loop, and 5 base-pairs in the stem) but they have varied the solvent. In pure water
their activation energy for closing is mostly negative (in the highest range of the
temperature domain that has been investigated) but it becomes slightly positive at
the lowest temperatures (275K). With a solvent containing MGCl, (20.107% mol/1)
the activation energy is weakly positive in the whole temperature range which has
been studied. In their analysis of the discrepancies between their measurements and
those of the group of Libchaber, Ansari et al. invoke the possible role of misfolded
loops. They could play a dominant role in the low temperature range (where positive
activation energies are found by Wallace; similarly all experiments of the Libchaber
group are performed significantly below T, where traps by misfolded loops could
play a role). Wallace et al. assign the non-Arrhenius behavior that they observe to
intrachain interactions within the loop (the breaking of AA stacking interactions in
the loop).

All these studies show that although rather complete set of data on DNA hairpins
is available, those data are far from being properly understood. The studies by
Ansari et al. [, 6], are able to reach a reasonable fit of the experiments but at the
expense of a complex loop model which includes a phenomenological cooperativity
parameter [1].

Our aim in this work is to examine to what extend statistical physics can describe
the properties of DNA hairpins in terms of a basic model with the minimal amount
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of ad-hoc assumptions and parameters that can be related to the interaction energies
between the elements that make the structure of the hairpin. We will of course have
to make some limitations, as discussed in this manuscript, but this kind of approach
can be fruitful for understanding some properties of DNA hairpins. For instance we
shall see in Chap. 5 that a positive activation energy for closing can be found even
for a simple loop model.

The first model that we have developed is a two dimensional lattice model with
two parameters only [9]. We model the favourable interaction between complemen-
tary bases by a parameter d, and introduce a parameter of flexibility € to take into
account the rigidity of the strands. We show that we can reproduce qualitatively
some experimental results and we report on the role of the mismatches on the ther-
modynamics and the kinetics of this system by comparing two models one with
mismatches, the other without. This first model reveals its limits when quantitative
results are sought in particular because the entropy of the system is not properly
described. So we have developed an another model, based on the same idea as the
first one but some what more sophisticated. We divide the system into two parts,
the loop and the stem. We apply for the loop the theory of polymers and for the
stem we introduce the base pairing and stacking interactions following the work of
Peyrard, Bishop, Dauxois and Theodorakopoulos [I{, [[T], which has been successful
in describing many aspects of DNA denaturation. Our approach involves only fun-
damental entities relating either to the single-strand structure (polymer rigidity) or
to H-bond and stacking interactions. The thermodynamics can be determined using
the standard results of the statistical mechanics of systems in equilibrium between
two limit states and the kinetics can also be addressed within the framework of the
reaction rate theory for systems where it is possible to isolate a reaction coordinate.
We will show in this work that the model of the single strand that forms the loop
is crucial to reproduce properly the experimental properties of hairpins. In other
words hairpins are very sensitive systems to test simple models of single stranded
DNA. The interest of the development of such models is not only academic because
single stranded DNA is closely related to RNA, which plays a very important role
in biology, in particular because it can adopt complex configurations which often
include hairpins.

The first chapter of this thesis gives some general backgrounds around the DNA
molecule and DNA hairpins. It also presents briefly the previous works around the
thermal denaturation of DNA. The second chapter presents a review of some ex-
perimental studies dealing with the problem of the self-assembly of single strands
of DNA. It also gives a brief review of the problem of protein folding. The third
chapter deals with the different polymer models commonly used to model single
chains and that we have used for the modelling of the loop part of DNA hairpins.
Finally, the fourth and the fifth chapters introduce and discuss the two models that
we have developed in order to study the thermodynamics and the kinetics of DNA
hairpins.

xiil






Part 1

DNA molecule and Single-Stranded
DNA






Chapter 1

The DNA molecule and Single
Stranded DNA, Hairpins

Contents

1.1 The DNA molecule

Desoxyribonucleic acid (DNA) is the molecule which contains all the genetic infor-
mation inside nucleotide sequences called genes. This molecule was found at the
beginning of 20" century [T2], but its structure has only been precised in the middle
of the century by Watson and Crick [I3]. DNA is inside the core of each cell in sev-
eral forms. For example during the mitose which is the cell division, DNA adopts
the chromosomal form whereas for the rest of the time, the molecule is in the inter-
phasic form. The genetic code stored in DNA is expressed during complex processes
such as transcription and replication. It is important to notice that more than one
meter of DNA is compacted in the nucleus of each cell which has a diameter of 1077

m. Therefore DNA in the cell is not a linear molecule.
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1.1.1 DNA structure and conformation

DNA is a very long helicoidal polymer composed of two chains which are twisted
around each other. Each chain consists of nucleotides linked by covalent bonds. In
the name desoxyribonucleic acid we find nucleic acid and desoxyribose. DNA is a
nucleic acid because this molecule is in the core of each cell and is an acid according
to Bronstéd. More precisely, in the DNA molecule, monomers of each chain are
desoxyribonucleotides. Two of them are purines: Adenosine and Guanosine formed
by a five-atom cycle plus a six-atom cycle. The other two are pyrimidines: Cytosine
and Thymine formed by a single cycle of six atoms. A desoxyribonucleotide is
composed of three molecular parts:

e a cyclic sugar of five carbon atoms (desoxyribose)

e a purine base: Adenine or Guanine or a pyrimidine: Cytosine or Thymine

e and a phosphate linked to the sugar by a phosphoester bond.

The sequences of single bonds between successive nucleotides give a flexibility to
the backbone because the rotation around a single bond is quite easy. However the
helicoidal configuration of the DNA restricts these rotations.
Each base is linked to the sugar-phosphate backbone, by a covalent bond (N-
glycosidic bond) and the two nucleotidic chains are linked together by hydrogen
bonds. These hydrogen bonds only exist between complementary bases called base-
pairs: Guanine-Cytosine(G-C) and Adenine-Thymine(A-T). Therefore the double
helix which has a complementary structure contains the same information in the
two strands twisted around each other. Finally the sites where the bases are at-
tached to the backbones are not exactly opposite on a diameter of the section, so
that the helicoidal structure of the DNA presents a minor and a major groove,
Using the abbreviation of the bases one can easily describe any nucleotide sequence,
which is also called the primary structure. The genetic information is stored in the
primary sequence. The sequence is written in the direction from 5-end to the 3’-end
of the sugar phosphate backbone where 5" and 3’ label two particular carbon atoms
of the sugar 5~ ACCGGTTA-3’OH as shown in Fig. (.TJ), or simply, ACCGGTTA
(which is different from the opposite sequence, ATTGGCCA) [I4]. In the native
form, each strand is coupled into a duplex or double helix with its complementary
strands.
Figure (C2)) gives some dimensions of the DNA components, Fig.(3) shows the
double helix according to Crick and Watson and Fig. ([C4]) presents the pairing
between complementary bases.

There are several conformations of the DNA double helix. The more character-
istic structures are called A,B and Z. A and B forms are right-handed helices which
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turn around their axis counter-clockwise. The difference between these structures
is the position of the bases around the axis of the helix and the inclination of the
plateau formed by the bases with this axis. In the B helix, the plateaus of the bases
is tilted by approximately fifteen degrees with respect to the helix axis. Moreover
each base-pair turns about thirty six degrees around the helix axis compared to the
previous base-pair. Thus, ten base-pairs are needed to get one full rotation. The
B configuration is stable for approximately 92 % of relative humidity. While the A
form is stable for approximately 75 % of relative humidity and needs the presence
of counter ions such as sodium or potassium. A-T sequences are prone to the B
configuration. The distance between base-pairs along the helix axis is 0.34 nm for B
configuration and it is not very different for the A form. Another important form is
the Z configuration which is a left-handed helix. In this configuration the monomer
of the helicoidal chain is the dinucleotide and not the nucleotide. Moreover there are
no large grooves and the backbone sugar-phosphate “zigzags” on the periphery of
the helix. This conformation only exists in particular conditions: high salt concen-
trations, methylation of cytosines. Alternate sequences of purines and pyrimidines
have a higher tendency to adopt the Z configuration. Figure ([LH) gives an idealized
representation of the A,B and Z configurations.

Figure 1.5: A,B and Z form of the DNA double helix [12)].



1.1 The DNA molecule

1.1.2 DNA properties

The stability of DNA results from various interactions between atoms or groups of
atoms of the molecule and interactions with the solvent, as for instance electrostatic
interactions between cations such as magnesium and phosphates. Studies of the
DNA |26], [T5] reveal that its stability is essentially due to two types of interaction
between the bases:

e Interaction between complementary bases: hydrogen bonds link the cycles of
the two bases forming a pair

e Stacking interaction between base-pairs which are due to hydrophobic inter-
actions and overlap of the m-electrons of the base plateaus

Finally it is important to note that the stacking interaction also exits between con-
secutive bases of the same chain and is very important in the case of single stranded
DNA as we will show in the next sections.

1.1.2.1 Replication and Transcription

DNA is involved in two major events in biology: transcription and replication [T4].
For these to occur the DNA double helix has to be untwisted or curved. The tran-
scription is the copy of DNA into a messenger RNA that tells to the cell how to make
a protein. DNA only unwinds over a short region, say 15-20 base-pairs, when mak-
ing RNA. The bubble of unpaired bases can travel along the DNA very rapidly, at
about 100 base-pairs per second. When DNA is copied into RNA, a copying enzyme
called RNA polymerase attaches itself to one of the two DNA strands and carries
out the process of copying DNA into RNA according to the rules of Watson-Crick
pairing. There is one difference between RNA and DNA: the Thymine of DNA is
replaced by the Uracil in RNA. Using the process called translation, the nucleotidic
sequence of the RNA is read by group of three nucleotides, named triplets. Each
triplet corresponds to a particular amino acid and sequences of amino acids deter-
mine the proteins synthesized by the cell.

The replication is the process by which DNA is copied into another DNA molecule
just before a single cell divides into two cells. During this process the DNA double
helix has to open completely and an enzyme called DNA polymerase carries out
the process of copying DNA into DNA. Figures ([CH) and (L) give a schematic
representation of replication and transcription of DNA.

1.1.2.2 Melting of DNA

The two strands of a DNA molecule can be dissociated into single polydeoxyri-
bonucleotide strands (the process is also called denaturation or melting) by heat.
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replication of DNA [I6]. transcription of DNA [17].

It occurs because of the breaking of the hydrogen bonds between complementary
bases and the disruption of the base stacking. Knowing how denaturation proceeds
is important for understanding DNA replication and manipulations of DNA in lab-
oratory. Besides the denaturation due to a temperature increase, the separation of
the strands can also be caused by a number of physical factors such as change in salt
concentration, pH or other factors. Melting of DNA by heat is a standard method
for preparing "single-stranded DNA" (ssDNA).

The denaturation of DNA occurs over a narrow temperature range and causes a
number of physical changes. For instance, the ultraviolet absorption at 260 nm
increases. The simplest characterization of DNA denaturation is via the melting
temperature, T),, the temperature at which half the melting has taken place. T,,
depends on DNA length, sequence, ionic environment, pH, etc. Because GC-pairs
are linked by three hydrogen bonds, while AT-pairs only have two, the temperature
at which a particular DNA molecule "melts" usually will increase with higher per-
centage of GC-pairs. The relationship between melting temperature (7,,) and GC
content for long DNA can be approximately described:

T =69°+ 0.41 x %(G + C). (1.1)



1.1 The DNA molecule

This equation emphasizes that GC-pairs are more stable than AT-pairs but it over-
simplifies the phenomenon. As the ordered regions of stacked base-pairs in the DNA
duplex are disrupted, the UV absorbance increases. This difference in absorbance
between the duplex and single strand states is due to an effect called hypochromicity.
Hypochromicity (meaning "less color") is the result of nearest neighbor base-pair
interactions. When the DNA is in the duplex state (dsDNA), interactions between
base-pairs decrease the UV absorbance relative to that of single strands. When the
DNA is in the single strand state the interactions are much weaker, due to the de-
creased proximity, and the UV absorbance is higher than that in the duplex state.
The profile of UV absorbance versus temperature is called a melting curve; the mid-
point of the transition determines the melting temperature, 7},. The dependence
of the melting temperature, 7,,, on the salt concentration can be analyzed to yield
quantitative thermodynamic data including AH, AG and AS for the transition
from duplex to single stranded DNA. Alternatively, one can get this information by
analyzing the whole melting curve.

Thermodynamic analyses of this type are done extensively in biochemistry research
labs as well as in physics labs [I8, 19, 20] particularly those involved in nucleic
acid structure determination. In addition to providing important information about
the conformational properties of either DNA or RNA sequences (mismatched base-
pairs and loops have distinct effects on melting properties), thermodynamic data for
DNA are also important for several basic biochemical applications. For example,
information about T}, can be used to determine the minimum length of a oligonu-
cleotide probe needed to form a stable double helix with a target gene at a particular
temperature. Figure ([L8) gives a example of a melting curve.
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Figure 1.8: Melting curves example. The solution conditions were 10 nM sodium
phosphate, pH 7.0, 1.0 M sodium chloride and a strand concentration of 2uM. The
duplex sequences are GCAAAGAC/GTCTTTGC, GCATAGAC/GTCTATGC, GCAGA-
GAC/GTCTCTGC, and GCACAGAC/GTCTGTGC, with melting temperature of 33.7,
30.6, 35.7, and 38.5 °C, respectively [I§].
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1.1.3 DNA melting models

DNA melting can be viewed as a phase transition in a one-dimensional system and
it has attracted the attention of theoreticians for the last fifty years. Various models
have been developed to study the opening of the double helix and its fluctuational
opening. We introduce some of them in this section because they provide a basis
for a model for the stem of the hairpin.

1.1.3.1 Microscopic model

This model may appear the most natural at a first sight because it describes the
molecule at the atomic scale. It includes all the interactions between the atoms
of the macromolecule and must take into account the geometric constraints in the
three dimensional space. In this model different types of interactions have to be
considered: electrostatic, Van der Waals, angular and dihedral energies. Biophysi-
cists use this type of models in particular to study the dynamics of proteins [21].
The common expressions for the interactions are the following:

e potential describing the stretching of covalent bonds kpenq(r —70)? where kpong
is a constant, r the bond length and ry the equilibrium length;

e potential of angular rigidity: k;(# — 6p)?, where k; is constant and 6 is the
polar angle between two consecutive bonds and 6, the equilibrium value;

e potential of torsion( rotation around simple bonds): k,(1 + cos ¢), where k, is
a fixed parameter and ¢ is the rotational angle around a bond;

e Lennard-Jones potential: 4e[(2)'? — (2)%] for non-bonding interactions

One can easily imagine that this type of calculation needs a very long cpu-time in
numerical simulations. And such a detailed study may not be relevant to study large
DNA conformational changes. Indeed, the fast microscopic displacements of atoms
are not responsible of physical properties of the molecule at mesoscale. We will
come back to this point in the second part of this thesis. While microscopic models
can be useful to observe the dynamics of the molecule for a short time scale, they
cannot be applied to study the melting transition itself, which is a collective effect
involving long segments of DNA on time scales which are beyond the possibilities of
the present computers. This is even more obvious if one thinks that useful results
for the melting can only be provided by the statistics of many individual events and
not from a single molecular dynamics trajectory.

1.1.3.2 Poland and Scheraga model

The Poland-Scheraga model takes a completely opposite approach because it tries
to use the simplest possible description of the molecule. It was introduced in 1966

10



1.1 The DNA molecule

by Poland and Scheraga [23, 24]. The model is built upon an original idea by
Zimm [25]. The model consists of an alternating sequence (chain) of ordered and
unordered states (loops), which represent denaturing DNA in terms of a sequence of
double-stranded and single-stranded regions. In the original model [25], the base is
assumed to exist in any of three states, bounded in the helix, unbound in free chains
or in unbound sequences between two helicoidal portions. The helicoidal (ordered)
sequences are energetically favoured over the unbound states and the contribution of
the other two states is included in some phenomenological parameters. The nucle-
ation of an ordered (helicoidal) region ( a low-probability event controlled by a coop-
erativity factor [25]), is followed by helix growth, a high probability event controlled
by the statistical weight w of the ordered (helicoidal) state. Figure ([CJ) illustrates
the Poland-Scheraga model schematically. The question which is addressed is the

VRN -
1111111 111
NS

Figure 1.9: Schematic representation of the Poland-Scheraga model.

possible first order phase transition in one dimensional system. Indeed, experiments
around melting of DNA suggest that the transition is first order [26].
For such a simple model one can compute the partition function Z and the fraction
of ordered states in a chain of N base-pairs given by

p— LO0nZ (1.2)

NOlnw

where w is the statistical weight of an ordered state, which is not at the end of the or-
dered sequence. A phase transition occurs if # has a discontinuity with temperature.
But this one-dimensional model would not have a phase transition unless additional
ingredients are included. In fact the most delicate aspect of these Ising-like model
lies in the evaluation of the entropy of a loop. It must be explicitly included because
the model is not rich enough to describe all the configurations of an open region
since it uses a simple two-state variable. Poland and Scheraga asserted that the
statistical weight of a denaturated sequence of length [ is given by the change in
entropy due to the added configurations arising from a loop of length 2. This has
the general form efl for large [, where s is the entropy gain for the opening of a
single base-pair. As shown by Poland and Scheraga, the value of the exponent c is
crucial. No phase transition should occur for ¢ < 1 and a first order transition arises
if c > 2. If 1 < ¢ <2 a phase transition of higher order should occur, although @ is
continuous at the transition. They find that ¢ = d/2 for ideal random walks, where
d is the dimension, there is thus no transition at d < 2 (¢ < 1) and a continuous

11
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transition for 2 < d <4 (1 < ¢ < 2).
Fisher [27] has derived the entropy of the denaturated loops modelled as self-avoiding
walks. Within this approach, the denaturation transition of DNA is continuous both
in two and three dimensions. Indeed, He finds ¢ = 1.46 for d = 2 and ¢ =~ 1.75 for
d = 3. The transition is thus sharper, but still continuous, in three dimensions.
The proper calculation of ¢ turns out to be a very difficult problem which has only
been solved recently. Kafri et al [28] and have shown that the DNA denaturation
transition could be first order if the effects of excluded volume interaction inside
the loop and with the rest of the chain is taken into account. Assuming that the
entropy is still given by the expression showed below, they evaluate the exponent ¢
by considering the entropy of a loop of length 2/ embedded in a chain of length 2L.
Figure (CIM) gives a representation of a such configuration.

They find a lower entropy yielding a larger value of the exponent ¢ ~ 2.115 which

Vlie Vs V3 oV1

Figure 1.10: Topology of the loop embedded in a chain. The vertices V; correspond to
the separation between bound and unbound states.

gives a first order phase transition in dimension 3.

Finally Blossey and Carlon [29] propose a reparametrizing of the helix nucleation
parameters, reanalysing the data including the works of Kafri et al.

Besides the need of many parameters, these models are not adapted to short DNA
segments and moreover they cannot describe intermediate states between closed and
fully open. For instance one aspect which is missing is the actual distance between
the strands. For hairpins this is also the distance between the two ends of the loop.
This distance is very important to determine the properties of the loop. This is why
we have chosen a model which includes this distance.

1.1.3.3 PBD model

This model was introduced by Peyrard and Bishop in 1989 [I0] and was improved
with Dauxois in 1993 [TT, B2]. In this approach the molecule is supposed to be
linear in one dimension, and its helicity is not taken into account. Each base-pair is
represented by its stretching y and has a mass m. The idea in this approach is to use
a potential at the scale of the base. Hydrogen bonds between complementary bases
are modelled by a Morse potential and the coupling between consecutive base-pairs
is either harmonic or nonlinear. In this last case the coupling constant depends
on the state of the two base-pairs which interact. The displacements along the
molecule are not considered because they are much weaker than transverse ones.

12



1.1 The DNA molecule

We will come back to this model in much more details in the second part of this
thesis. The Hamiltonian of the system is given by (L3])

H = Z[ + W(Yn, yn1) +V(yn)] (1.3)

where:

— o dyn
pn_mdt

W(yna yn—l) - % [1 + pe—a(yn—i-yn—l)} (yn - yn—l)2

V(ya) = D (e7 = 1)%,

with, y, which is the stretching of the base-pair and K, p, o, D and a which are
positive constants. Figure ([LIIl) shows the different interaction potentials in the
chain.

n-1 n n+1

V(yn ) W(y, ,

Figure 1.11: Peyrard-Bishop model for DNA.

1.1.3.4 Helicoidal Model

In order to be more realistic, Simona Cocco during her PhD [33] with Michel Peyrard,
and Maria Barbi developed a DNA helicoidal model |34} 35]. This model incorporates
the helicity of the molecule |25, B6]. Figure ([LI2) shows a schematic representation
of the model. This approach, like the previous model uses a Morse potential (V},) for
hydrogen bonds as well as a stacking interaction (V;). Moreover there is a potential
(V) which represents the longitudinal vibration of the molecule which is coupled to
the stretching of the base-pairs because the backbone is assumed to be rigid. Indeed,
to take into account the helicity there is one more degree of freedom compared to
the Peyrard-Bishop and Dauxois model. With the notations of Fig. (LIZ), the
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expressions of the potentials are:

Vi (Pry Tn1) = D (e_“(T”_R) — 1)2
Voratr) = B Wm0 (5, (1.4)

‘/b(rn7'rn—17 hn) =K (hn - H>2 ;

with £, b, R, K and H which are positive parameters. This model is more complete

Figure 1.12: DNA Helicoidal Model [33)].

than the PBD model and it is not necessary to introduce such a complexity for the
case of DNA hairpins because we are considering only very short stems. Taking into
account the helicity is important for long DNA molecules where torsional energy
can build up. For a short stem it can be easily released at the free end and therefore
it is not essential for the physics of the system.

1.2 Single stranded DNA

1.2.1 How to get it?

A single stranded DNA is one of the two nucleotidic chains of the double helix. In
principle it is not difficult to get a ssDNA. Single stranded DNA can be produced
experimentally by rapidly cooling heat-denatured DNA. Heating causes the strands
to separate and rapid cooling prevents renaturation. Bases in ssDNA also seem to
stack to give helicity to the chain. There is a lot of research [37, B8] to characterize
the stacking of bases in ssDNA. In DNA the stacking interaction between base-
pairs is “a priori” different from the case of ssDNA at least for the intensity of the
interaction. Figure ([LI3)) gives a schematic representation of a ssDNA. The interest

14



1.2 Single stranded DNA

of ssDNA also lies on its strong analogy with RNA which plays a large role in biology.

ssDNA DNA
Deoxyribonucleic acid

Figure 1.13: Schematic representation of ssDNA.

1.2.2 Why is it interesting to study ssDNA and their hairpin
form?

ssDNA can form hairpin-loop configurations which are very interesting structures
for physicists and biologists [A1), B9, A0]. As explained in the introduction, DNA
hairpins are short nucleotide strands which have, in their two terminating regions,
complementary bases which can therefore self assemble to form a short double helix
called the stem of the hairpin. They can exist in two states, the open and the closed
state, and fluctuate between the two, being mostly closed at low temperature and
mostly open at high temperature. For biologists, regions of DNA molecule where
hairpin formation is possible, are believed to play a key role in DNA transposition
and in global regulation of gene expression [2]. Moreover loop formation is a first
step in the folding of the RNA molecule [I4] and also serve as interaction sites for
proteins [42]. DNA hairpins may provide very sensitive probes for short DNA se-
quences [3]: a loop which is complementary to a sequence to recognise can self
assemble with it. It is proposed as an alternative to the DNA-chips [44]. This
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prevents the hairpin from closing and it is detected by fluorescence. The hairpin
configuration can be adopted by the molecular beacons which are single stranded
oligonucleotide comprising a probe sequence embedded within complementary se-
quences that form the stem part of the hairpin. A fluorophore is covalently attached
to one end of the oligonucleotide, and a quencher is covalently attached to the other
end. In the absence of target, the stem of the hairpin holds the fluorophore so close
to the quencher that fluorescence does not occur. When this probe binds to its
target, the rigidity of the probe-target duplex forces the stem to unwind, causing
the separation of the fluorophore and the quencher and the restoration of the fluo-
rescence. This allows the detection of probe-target.

For the physicists hairpins provide a very simple system to study the self assem-
bly of DNA with two pieces of strand which are maintained in the vicinity of each
other for the assembly. Physical applications of DNA hairpins are beginning to be
considered. One remarkable example is the use of DNA hairpins to make memory
chips for computers [45]. These systems use the fluorophore/quencher method that
we present in the next chapter to detect the opening of the hairpins and use a local
laser heating to cause their opening. To construct a memory, transitions between
bistable states are generally required. The bistable states correspond to a written
state and an unwritten state, respectively. The transition between bistable states is
realized by molecular reactions bases on hairpin DNA. DNA molecular memory is
composed of two types of DNA: a hairpin DNA and a linear DNA. The hairpin acts
as a memory molecule with a memory address, the linear DNA as a data molecule
with an address tag of the memory. Figure ([CI4]) gives a schematic representation
of such molecules. The loop region of memory DNA has a memory adress, which is

(8) Memory DNA (b) Data DNA
Sequence:S . ¢ AGTG Tg SI-GACAOGGQS{GAATTWT
SLTMAFGGACACGGT AG s :L%
SWNHM!&TC C:‘E S“'“ﬁ“* (C) Datarcomplementary DNA
LA 5-TGCAGTGTAAGCAACTATTGTCTCCGTGTC-3'

Sequence:S TarrA™ / [address)

Sequence:L Sequence:F

Figure 1.14: Schematic representation of the memory DNA and the data DNA [43]. (a)
Memory DNA: a fluorescent dye TAMRA is attached to the 5’-end and its quencher Dabcyl
is attached to the 3’-end. (b) Data DNA: a data DNA has a complementary base sequence
of the loop and the 3’-stem of the memory DNA. (c¢) Data-complementary DNA: a data-
complementary base sequences of S and L, respectively.

recognized by the data DNA. The address tag part of the data DNA is composed of a
complementary base sequence of the loop and the 3’-stem of the memory DNA. This
memory exploits a hybridization reaction between the hairpin DNA and the linear
DNA in memory addressing. Writing data on the memory is to make the linear
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1.2 Single stranded DNA

DNA hybridize with the hairpin DNA. The hairpin DNA changes from a closed to
an open structure when the data is written on the memory. In practice the writing
operation follows a serie of operations: heating up a solution of memory DNA and
data DNA from room temperature T (—25°C) to the writing temperature Ty then
cooling it down from Ty to Tg. At Ty the data DNA hybridizes with the memory
DNA because the memory DNA opens and the memory-data DNA duplex is stable.
Erasing data from the memory is to separate the linear DNA from the hairpin DNA.
The hairpin DNA returns to the closed configuration when the data is erased from
the memory through a series of operations: heating up the solution from T to the
erasing temperature T and cooling it down quickly from Tg to Tr. The duplex of
memory DNA and data DNA is completely dissociated at Tg. The quick cooling
allows the memory DNA to close so that the data DNA can no longer access to the
memory DNA. Figures (CIH) and (CIG) gives a schematic view of the written and
the erasing process. The molecular reactions for addressing of a large amount of

T=TR T=Iw

II State I
i Otﬁm Contents
_ — Data DNA

<——1—Memory DNA

M State I
emission
l%e'of fluorescence
State I

%

Figure 1.15: Schematic representation of the writing process [45]. It is composed of the
heating from Tg (room temperature) to Ty (writing temperature) then cooling from Ty
to Tg.

DNA molecular memories based on hybridization between the address part of hair-
pin DNA and the address tag of linear DNA proceed in parallel so that massively
parallel addressing of a huge memory space will be possible in principle. There are
some problems and the most important one is that the data are not completely
erased during the erasing procedure which is due to the fact that the cooling rate
of erasing is not fast enough to separate the memory DNA and the data DNA.

Figure (CI7) gives a schematic representation of hairpin-loop configuration for a
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State I

free energy

A . . State I
global minimum quick“Cooling

C}mrnmmma_%.
State II

T=Tr

Figure 1.16: Schematic representation of the erasing process [44]. It is composed of the
heating from Tg (room temperature) to Tk (erasing temperature) then cooling quickly from
Tr to Tg.

RNA (for ssDNA Uracile is replaced by Thymine). Modelling the fluctuations of

Hal:’pln
7
%

Figure 1.17: Schematic representation of RNA loop.

a hairpin is more challenging than modelling the thermal denaturation of DNA for
two reasons:
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e the self assembly of a structure is not simply the reverse process of its opening
because the elements must find each other in space and then orient properly
with respect to each other, before actually assembling in a final stage which is
the only stage of the process which can be viewed as the reverse of the breaking;

e the time scales for the assembly can be very long (hundred of us for instance),
i.e. many orders of magnitude longer than the typical time scale of the micro-
scopic dynamics of a macromolecule [46].
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Chapter 2

Review of experimental properties of
DNA hairpins.
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In this section we review some of the known experimental results [49, b0] of DNA
hairpins and their analysis by the authors of the experiments. This will give us hints
on the ingredients required to design a model and experimental facts against which
this model can be tested.

2.1 Bulk fluorescence

2.1.1 Fluorescence Resonance Energy Transfer

Fluorescence Resonance Energy Transfer (FRET) is a powerful technique for charac-
terizing distance-dependent interactions at a molecular scale [3]. It is one of the few
tools available that is able to measure intermolecular and intramolecular distance
interactions both in-vivo and in-vitro.

FRET involves the excitation of a donor fluorophore by incident light within its
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Review of experimental properties of DNA hairpins.

absorption spectrum. This radiative absorption elevates the donor fluorophore to a
higher-energy excited state that would normally decay (return to the ground state)
radiatively with a characteristic emission spectrum. If, however, another fluorophore
molecule (the acceptor) exists in proximity to the donor with its energy state charac-
terized by an absorption spectrum that overlaps the emission spectrum of the donor,
then the possibility of non-radiative energy transfer between donor and acceptor ex-
ists. The radiationless energy transfer described above is mediated by dipole-dipole
interactions (Van der Waals forces) between the donor and acceptor fluorophore
molecules that vary as the inverse 6th power of distance between the two molecules.
The rate of energy transfer from donor to acceptor, kg, is approximately [47]:

kp ~ Kp (%)6 (2.1)

where kp is the radiative decay rate of the donor fluorophore, or inverse of the
fluorescence emission lifetime in the absence of the acceptor fluorophore (typically
1-50 ns), r is the distance between the two molecules, and rg is the “Forster distance”
that characterizes the 50 % efficiency point of the energy transfer. The FRET
efficiency depends on the sixth power [47] of the distance between the two dye
molecules:

Pt (2.2)

6
1+(%)

FRET is suited to measuring changes in distance on the order of the Forster distance,
which is typically 20 to 90 A. This length scale is far below the Rayleigh-criterion
resolution limit of an optical microscope (typically 2500 A for visible light at high
numerical aperture), thus illustrating the power of FRET for measuring extremely
small distance interactions.

As an example, Fig. (Z1]) shows the overlap of the cyan fluorescent protein (CFP)
emission spectrum and the yellow fluorescent protein (YFP) absorption spectrum;
this pair supports a strong FRET interaction. After energy transfer occurs from
donor to acceptor, the acceptor fluorophore is excited to its fluorescence emission
state. Because the observed rate of fluorescence emission from the acceptor is rate-
limited by energy transfer from donor to acceptor, the quantitative measurement
of FRET emission can therefore provide an inferred measurement of distance using
the equation above. Accurate FRET determination generally involves comparison
of the donor and donor-acceptor fluorescence emission intensities in samples with
and without the acceptor present. A ratio measurement is necessary because, as
Fig. (1)) demonstrates, there is typically overlap between the donor and acceptor
emission spectra, thus making it difficult to determine with a single measurement
exactly what fraction of the fluorescence measured with an acceptor emission fil-
ter derives from only the acceptor. Fluorescence lifetime measurements provide
more direct results for the energy transfer rate, are not susceptible to concentra-
tion variations, and can be made using time domain or phase modulation lifetime
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Figure 2.1: Donor and acceptor absorption and emission spectra [3].

measurement techniques. These types of measurement can also provide information
regarding conformational changes due to molecular interactions.

This technique was used by the group of Libchaber [4] and others [48] to study DNA
hairpin-loops and their conformational fluctuations. We present the thermodynamic
results obtained by the group of Libchaber in the next section.

2.1.2 Fluorescence Bulk measurements
2.1.2.1 Measurement principle

DNA hairpin-loops are supposed to be in equilibrium between two states: the open
state and the closed state. This equilibrium is characterized by an equilibrium
constant and rates of opening and closing. In a more complex view one can imagine
a transition state between the closed and the open configuration. Figure (22)) gives
a schematic representation of the equilibrium. In the experiments carried by the

Figure 2.2: Schematic representation of the two states [4.

group of Libchaber, they used molecular beacons which are oligonucleotides capable
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of forming a hairpin loop with a fluorophore and a quencher attached to the two
ends of the stem. The conformational state is directly reported by its fluorescence
according to the FRET principle: in the closed state the fluorophore is quenched by
the quencher and the molecule is not fluorescent; in the open state the fluorophore
and the quencher are far apart and the beacon is fluorescent. The sequences of the
DNA hairpin-loop under study were 5'-CCCAA-(N),,-TTGGG-3" with varying loop
being alternatively (T)12, (T)16, (T)30, or (A)e;. By monitoring the fluorescence I
as a function of the temperature T they can deduce the normalized fluorescence:

I(T) -1,

A7) = = (23)

where I is the fluorescence of the open beacons and I, is the fluorescence of the
closed beacons. This quantity measures the percentage of open hairpins at a given
temperature. Then the equilibrium constant is given by

)
- ()

It is linked to chemical rates of opening and closing which are essential to deal with
the conformational fluctuations of the structure (kinetics).

k(T)
k()

The derivation of Eq. (23) is presented in Chap. 4

K(T) (2.4)

K(T) : (2.5)

2.1.2.2 Results

The first interesting result is the shape of the melting curves and the dependence
of the melting temperature with the length and the nature of the sequence of the
loop. The melting temperature T}, of the structure is defined as the temperature
where closing and opening rates are equal, i.e. K(T,,) =1 or f = 0.5. Figure (Z3)
compares melting curves for a series of poly(A) and poly(T) hairpins. We can notice
two important points. First, for poly(A) and poly(T), the melting temperature de-
creases with the length of the loop and the decay is most significant for Poly(A). One
possibility is that the entropic effect produces constraints or forces at the beginning
of the stem and induces the opening of the molecule. We will discuss more precisely
the relation between the loop length and 7}, in Chap. 5 where we analyse the re-
sults of our model. Second for a same length of the loop the melting temperature is
higher for poly(T) than poly(A). The authors argue that the base stacking is at the
origin of the difference from poly(A) to poly(T). Therefore the modelling of stacking
interaction in the loop or at least the rigidity of the loop is therefore very important
because it seems to explain how the sequence of ssDNA can affects the properties of
hairpins. In order to be more precise these authors performed experiments to find
the kinetic properties of DNA hairpins using Fluorescence Correlation Spectroscopy.
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Figure 2.3: Normalized melting curves. Loop lengths(number of bases) are described
by the symbols, o—8, O0—12, x =12, A—16, +—21, and &—230. Data are fit with a
single equilibrium mass action law [4)

2.2 Fluorescence Correlation Spectroscopy (FCS): Ki-
netics

The idea is to measure the auto-correlation function which reflects the fluctuations
of the emitted fluorescence. The problem is that the sources of fluctuations in
fluorescence are the diffusion of molecules in and out of the sampling volume and
the opening and closing of the secondary structure. Therefore two independent
measurements were performed:

1. measurements of the auto-correlation function of the molecular beacons Gpeacon
which contains both diffusion and kinetics contributions.

2. Measurements of the auto-correlation function G.gpnirol from a sample for which
the correlation function consists of the diffusion contribution only. The ratio
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of the two function gives the kinetics part and is linked to the sum of the
kinetic rates k_ and k..

The theoretical form of the auto-correlation function Gyeacon 18 @ product of a diffu-
sion term and kinetic term [4]:

(L(O)I(t)) — (1(0))”
(1(0))?
— de—(h_-i-k_)t
- Gcontrol (1 + f ) . (26)

Gbeacon -

Therefore fitting the ratio Gpeacon/Geontrol gives access to the sum of the rates. Then
using the fluorescence bulk measurements £_ and £k, can be deduced.

2.2.1 Experimental protocol

A laser beam is focused onto the sample with an objective lens and the emitted light
is collected through the same objective. It is then focused onto 25 pum diameter
pinhole. Then the beam is divided in two by a beam-splitter cube and focused onto

are fed onto a correlator and the cross-correlation of the excited light is collected.
Figure (Z4)) gives a schematic drawing of the experimental setup.

CORR

Figure 2.4: Schematic drawing of the experimental setup. S, sample; OB, objective
lens; DM, dichroic mirror; NF, notch filter; PH, pinhole; BS, beam-splitter; APD,
Avalanche photo-counting detector; CORR, correlator. [

2.2.2 Results

Figure () gives the evolution of the rates of opening and closing versus tempera-
ture for different loop lengths.
Figure (Z8) gives the evolution of the rates with temperature for the same loop
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Figure 2.5:  Arrhenius plots of the opening rates (open symbols) and the closing
rates (filled symbols) of beacons with different loop lengths: (T)s (circles), (T)g
(squares), (T)y; (diamonds), and (T)s (triangles). The lines are exponential fits to
the data [4].

length but with a different loop sequence, (A)y; and (T)g;. First of all, rates of
opening and closing seem to follow an Arrhenius law. Indeed, the fitting of the ex-
perimental points with an exponential k(T") = kgexp(—E,/RT) is consistent with
such a law. Therefore the activation energies of opening and closing could be de-
duced. In a first approximation the opening rate is not affected by the length and
the nature of the loop. Consequently, the opening seems to be governed by the stem
only: strength of the base-pairs and stacking interactions in the double helix part.
This first evidence is very important for the modelling and we will come back to
this point for quantitative comparison of the experimental and theoretical results.
Second, the activation energy of closing for poly(T) is not affected by the length of
the loop. Nevertheless the rate of closing is lower for bigger loops according to the
increase of the loop entropy. Indeed bigger loops generates a bigger phase space and
the meeting of the two ends of the ssDNA take more time. This indicates that the
free energy of a poly(T) loop is mostly entropic and the base stacking does not seem
to be very important in this case. Nevertheless, Fig. (Zf]) shows that the activation
energies of closing for poly(A) and poly(T) are very different and the activation
energy of poly(A) is bigger than for poly(T). So, in poly(A) there is an additional
enthalpic term due to the base stacking (perhaps also due to a bigger excluded vol-
ume in poly(A)).

Figure (7)) shows the evolution of the activation energy of closing with the loop
lengths for poly(A) and poly(T). In a first approximation the author of the study
consider that the enthalpy of poly(T) does not depend on the loop length (—0.1
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Figure 2.6: Comparison of the opening rates (opening symbols) and the closing
rates (filled symbols) for the beacons with loops of equal length but with different
sequence: (T)y (circles) and (A)y (squares). The lines are exponential fits to the
data [4].

AH_ [keal mol™]

Figure 2.7:  Closing enthalpy vs loop lengths (number of bases) of (o) poly(A) and
(o) poly(T) |31].

kcal.mol™!. base™!) but for poly(A) AH, increases with increasing loop length(+0.5
kcal.mol~!.base™t). This confirms two key points:

1. the loop sequence dependence of the closing properties;

2. a free energy mostly entropic for poly(T) but with an additional enthalpic
term for poly(A).
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According to the Libchaber’s group the energetic barrier of closing comes from a
distortion of the loop and a nucleation of the first base-pair in the stem while the
linearity of AH, with loop length in poly(A) reflects the base stacking energy in
ssDNA.

All these results will help us in the design of a model for ssDNA. They give us ideas
of the physical ingredients necessary to the modelling: hydrogen bonds + stacking
interaction for the stem and rigidity + base stacking in the loop.

2.3 Static Absorbance measurements

Another type of measurement that can be used for hairpins is the common ab-
sorbance technique. We present briefly this technique as well as some results that
can be found in the literature [49] in particular the results of Kuznetsov et al [6].
We also present in this section an interesting model developed by Kuznetsov et al
which is in good agreement with absorbance results.

2.3.1 Experiment

As explained in Chap. 1, a DNA molecule is composed of nucleic acids which absorb
UV light around 265 nm. This absorption depends on the composition and the
structure of nucleic acids. The absorbance measurement is based on the Beer-
Lambert law:

A=elc (2.7)

Where € is the molecular absorption coefficient, [ the distance of sample traversed
by the UV-light and ¢ the concentration of the system in the sample. The change
of absorbance is directly proportional to the amount of substance which absorbs
UV-light. Figure (Z])) gives a schematic representation of a possible experimental
method to measure absorbance. For DNA the closed and open forms have very dif-

l.ens Slit

&5

Light source

Galvanometer

Ml roe h romator

Sample

Figure 2.8: Schematic representation of a spectrophotometer [6].
ferent absorption coefficients. Natural DNA, i.e. closed DNA, has a small value of €

while single strands, or more precisely unstacked bases, have a much higher €. There-
fore the opening of the stem of hairpins leads to a strong increase in absorbance. In
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their experiments, in order to increase the sensitivity of the detection, Kuznetsov et
al, use a modified form of DNA. They change the base A in the base-pair A-T by
2-aminopurine (2AP), a fluorescent analog of the Adenine which absorbs at 266 nm
and 330 nm. When the base-pair is formed there is no absorbance, so in the closed
state a hairpin does not absorb.

2.3.2 Analysis

In order to analyse their experiments, Kuznetsov et al introduce a very simple model
for the hairpin which has some similarities with the models that we discuss in details
in the next chapter.

The model [6] is based on the simple one dimensional Ising model that we presented
in Chap. 1 [23| (called also Poland and Scheraga model) but with the improvement
brought by Benight and coworkers [26]: the introduction of nearest-neighbor se-
quence dependence in the stacking interaction. Of course this model is only valid
for the stem. For the loop they used the wormlike chain model [oI, 52| which we
will present in more detail in the next chapter. To describe the partition function of
the system they need three parameters: s;, the statistical weight for each base-pair;
o, the cooperativity parameter and wj,p(n), the end-loop weighting function for a
loop consisting of n bases. The statistical weight corresponding to each base-pair
formation, s;, depends on the type of base-pair A-T or G-C and interactions with
its neighbors, and includes the stability from hydrogen bonding as well as stacking
interactions:

AG;

s; =€ BT (2.8)

where

0Gi—1; +0G; i1
5 )

AH and AS are the enthalpy and the entropy change, respectively, associated with
base-pair formation. 0G;;+; are enthalpies associated to stacking interactions. The
stacking interaction as well as base-pair formation are directly included in enthalpies
and they do not deal with potential of interactions which could explain the physical
origin of such phenomena. The cooperativity is associated with the junction between
an intact and broken base-pair, and it depends on the specific type of base-pairs at
the junction. The form of the cooperativity parameter is the following:

5G4
Oii+1 = <O'>% e QR;l, (210)

where (o) is the average of the ten different stacking interactions and the value is
taken according to Wartell and Benight’s works [26]. The base-pair at the junction
between the stem and the loop is always intact in their modelling (of course not in
the coil state) therefore the end-loop weighting function wjep,(n) is proportional to
the probability of forming a loop with n bases (the end-to-end distance is therefore
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fixed):
3 \3

Wiop(N) = (27rb2) V9(n)0io0p(n), (2.11)
where n is the number of bases in the loop, b = 2P is the statistical segment length
(Kuhn’s length), V. is a characteristic reaction volume within which the bases at
the two ends of the loop can form hydrogen bonds, 0,0,(n) models the stabilizing
interactions of the bases within the loop and between the loop and the stem, and
finally g(n) is the probability of forming a loop with n bases. Figure (Z) gives a
schematic representation of some microstates of the model and the corresponding
statistical weights are given in Eq. (Z12)

I—

\ ]

Figure 2.9: Schematic representation of some microstates of the Kuznetsov et al
model. [6]

Zq = <O’>% (ﬂ SZ'> Wioop(N)

=1
N
Zp = 012 (H Si) wloop(N) (212)
1=2
L Ns—2
Ze = <0’>§ (H Si) wloop(N +4)
=1

To fit the abosorbance measurements they derive the fraction of intact base-pairs
summed over all the microstates, 6;(7):

0,(T) = Z %Q?T) (2.13)
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where Q(T') is obtained by summing the statistical weights of all microstates {j}
and n; is the number of intact base-pairs in the j* microstate.
The absorbance melting profiles at 266 nm can be expressed as :

A(T) = 0(T)[ Ay (T) — AL(T)] + AL(T), (2.14)

where Ay (T) and AL(T) are the limiting baselines at high and low temperature,
respectively and 6(7') is the net fraction of broken base-pairs which is calculated

from Eq. [ZI3) as
O(T)=1—-06,(T).

We only give one result that shows that, with appropriate parameters, the model is
in good agreement with the experimental results. Figure (ZI0) shows the melting
profiles of 5'-CGGATAA(Ty)TTATCCG-3’ with different value of N and the fits

using the model presented below. The most important weaknesses of this model are

1.00 } - ' asda I
)
E
B 6T
>
0.75 54l
]
2.

0.50

T

0 10 20 30
Loop size (n)

0.25

Fraction of broken base-pairs

DOOF---vvvrree- - S MQENERTT

20 40 60 80
Temperature (°C)

Figure 2.10: Fits to the equilibrium melting profiles. The symbols are normalized
absorbance: o, N=4; B, N=8; A, N=12; the lines are the fraction of broken base-
pairs. AG,ep is the free energy of forming a loop closed by an A-T base-pair and is
obtained by the model: red and black curve is the test of different 0., [6].

the following:

1. the stem does not contain enough degrees of freedom and the end-to-end dis-
tance of the loop is fixed.

2. This model is too phenomenological. Its parameters are hard to connect with
properties of DNA hairpins. The stacking is directly included in an enthalpic
term and in the parameter o.

32



Chapter 3

Review of some polymer and protein
models

Contents
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For hairpins the properties of the loop are important. In this chapter we review
some polymer models [63] that could be used to describe the loop. Another aspect
of our study is the formation of the hairpin, i.e. the folding of the single strand
of DNA to form the stem. This process is qualitatively similar to the folding of
proteins in their biologically active configuration. This is why, in this chapter, we
also give a brief review of protein folding theory.

3.1 Polymer theory

3.1.1 Introduction

Since the birth of the interdisciplinary studies approximately fifty years ago, poly-
mer theory has known a high development for its application in chemical technology
as well as, of course, in biology. Indeed macromolecules play a key role in molecular
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biology with DNA, RNA and proteins. As one can imagine, polymers have complex
properties due to their interaction both inside the molecule and with the environ-
ment, i.e. with the solvent and other identical molecules. In this chapter we will
concentrate our attention on the equilibrium properties of polymers presenting three
different models: the freely jointed chain, the freely rotating chain and finally the
Kratky-Porod chain ( or worm like chain) [54]. Dynamical properties of polymer in
solution will not be considered in this thesis [53, b5| because they are not necessary
for our purpose.

3.1.2 Freely jointed chain

The freely jointed chain (FJC) is the simplest model for a single polymer in solution.
Each monomer occupies a point in three or two dimensional space. The conformation
of the FJC is represented by the set of N+1 position vectors {R,} = (Ro...Rn)
defining the position of the nodes in space. We can also define the bond vectors that
connect together these monomers {r,} = (r;...ry), with

r, = Rn — Rn—l; (31)
forn—1...N.

/.

ri

Figure 3.1: Freely jointed chain.

To construct a probabilistic model for the polymer, we say that the node n must
be at a distance b from the node n — 1, and each direction in space has the same
probability. Therefore the distribution for the bond vector with, a constant length
b, is the following:

B(r) = 4;()25(\1'\ ). (3.2)
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This distribution is normalized to unity

/ drd(r) = 1. (3.3)

Since the bond vectors r,, are independent of each other,

B(r;,r;) = B(r;)D(r;). (3.4)

so that the joint probability distribution can be factored into single bond vector
probability distribution. For a chain of N bond vectors, the distribution function is
written as

U({r,}) = [[ o). (3.5)

Note that this is an unphysical model for a polymer since it allows two monomers to
be arbitrarily close to each other: there is no “excluded volume” interaction between
any two monomers. Note also that constructing the polymer chain with N bonds is
equivalent to a random walk of N steps, which is the other name of this model.

3.1.2.1 End-to-end vector
We are interested in certain properties of this model. First, we want to know the
properties of the end-to-end distance of the polymer.

N
R=Ry-Ro=) 1, (3.6)

n=1
To define its statistical properties, we would like to know the moments of this quan-
tity, in particular (R) and (R?). First, (R) = SN (r,) = 0 because

n=1

(r,) = /rn@(rn)drn = 0. (3.7)

There is no preferred direction for any bond, so that the average is zero. Second,

(R),
(R?) = <Z iv: r; - ri>

(R*) = Z (i - 1))
(R?) =D _(Imi) + > fri-vy)
i=1 i#j=1
(R*) = Nb*. (3.8)
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All of the cross terms vanish because the distribution of the individual bonds are
statistically independent. There are N remaining terms, each of them giving a factor

2. Also, note that this implies that /(R - R) = R = v/Nb, i.e. that the root mean

square end-to-end distance of a polymer grows as v/ N.

3.1.2.2 End-to-end vector distribution

We now consider the statistical distribution of the end-to-end vector of the FJC
model. The probability distribution function G(R) of the end-to-end vector is cal-
culated using the distribution of the bonds:

- /drl/dr2~--/drN(5 (R— érn> U({r,}), (3.9)

which is rewritten using the integral representation of the delta function as

G(R) = (271) / ({r,) /exp (—z’k (R - Zrn>> dkHdrj

n=1

G(R) = —lkRH —— 5 (|r| = b) e™™dr,, | dk. (3.10)
( A b

It is possible to evaluate the integral within the parentheses for each n using polar
coordinates with k pointing along the z direction. We get

/ L 5 (e — b) ey, — SRR (3.11)
0

Amh? kb

Using Eq. (BI0), the expression (BI0) becomes

GR) = (271r)3 /e—“"R (Siz—:b)]vdk. (3.12)

So far the calculation is exact for all N. To proceed, we need to make an approxima-
tion to evaluate the integral. We are interested in large N, since we are interested
in long polymer chains. One can check that limy . (sin kb/kb)Y = 0 for all kb > 0.
So the dominant part of the integral comes from the small values of kb. Therefore
we can use the fact that

sin kb (kb)2 (kb)2
~1— ~ — . 1
PR eXp( 6 (8.13)
The distribution now becomes
1 . 2,2
G(R) = o / e kR k. (3.14)
T
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The integral over k is a standard Gaussian integral [57] which gives us

3
3 2 3R?
G(R) = (m) e 202N, (315)

We can notice that the probability distribution for the vector R only depends on
its length R and is Gaussian. Moreover the distribution (BIZ) has the unrealistic
feature that ||R|| can be larger than the maximum extended length Nb of the chain
which is due to the approximation made in the calculations. Finally we can express
the probability distribution of the end-to-end distance R using

G(R)dR = P(R)dR. (3.16)

Therefore, replacing b by [,

2 3 2 3R2
— R%2,/Z T22N 1
P(R)=R \/; <2l2N) e . (3.17)

Figure (B2) gives a representation of P(R) for different value of N and a fixed value
of I=6 A which approximately is the interbase distance in ssDNA.

0,05

— N=12
— N=21
0,04~ — N=30

0,03— -

P(R)

0,02 — -

0,01 —

R

Figure 3.2: Probability distribution of the end to end distance of a freely jointed chain.

3.1.3 Freely rotating chain

A more realistic model to describe chains without long-range-interactions is the
freely rotating chain (FRC) [h6]. A drawing of a freely rotating chain is shown in
Fig. (B3)). The angle @ is fixed for each segment; but each segment can freely rotate
along the ¢ degree of freedom. The distribution function for the end-to-end vector

37



Review of some polymer and protein models

Figure 3.3: Freely rotating chain.

R, is not known for the discrete case but for very long chain this distribution tends
to a Gaussian function. Nevertheless with numerical simulation it is quite easy to
get this distribution. It is interesting to derive <R2> of such a chain in order to
introduce the notion of persistence length [54].

3.1.3.1 End-to-end vector

We can write back the expression of <R2> as

(R?) = > (x]) +222 Tiij) (3.18)

Thus a recursion relation is needed to calculate (r; - r;1;). The relationship is derived
by successively projecting each vector r; onto the unit vector along the direction of
the previous two vectors of the chain r;_; and r;_5. Therefore

sin ¢2
l

where ¢ is the azimuthal rotation angle of the ith bond vector relative to the previous
one. It follows that

r; = —coso;r;_ o+ cosf (1 +cosp;)r; g+ ri_o X T;_q, (3.19)

r; T o =1 ((3052 0 — sin® 6 cos 9252') ) (3.20)
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The second term in Eq. (B20) averages to zero (integration over the azimuthal
angle). Therefore
(r; 1T;_5) = [*cos? 0, (3.21)

which can be generalized as

(ti - xip;) = (cos O 7 (ripjo1 - riyy) = *(cos 0)

=23, (3.22)

where A = —[/Incos@ is defined as the correlation length. Putting Eq. (B22)
into Eq. (BI8)) and after some standard algebraic manipulations, we obtain

1+ cosf 200881—(C038)N
2 N2 3
== - . .2

<R > ! (1 — cos N (1 - cos 8)2 (3:23)

We clearly see that when N becomes large Eq. (B23)) simplifies into

1+ cos@

2\ A2
<R>_Nl 1—cosf’

(3.24)
which shows that, as in the case of the FJC, the end-to-end distance scales as v/ N.
As Eq. (BZ0)) shows, the bonds are correlated and the chain is said to have “stiffness”.
To characterize how stiff the chain is, we have to find the “memory” of the chain.
Let us suppose that the first segment of the chain points in the direction uy. We
ask, how does the end-to-end vector of the chain R, correlate with the original
orientation, uy? If R is on average along the same direction as the original, the
chain is very stiff. If not, it is more flexible. Thus, it is natural to evaluate

Rowg = (R )
1
7

M=

(R-ug) = (ry-r)

=1

N
(R - uy) :lz (cos )"~
=1

1 — (cos0)N
R - =]—— 3.25
(R - uo) 1 —cost ( )
In the limit of a long chain (only large N),
l
li R- =, = — 3.26
N (R-wp) =1, 1 —cosf’ (3-26)

where [, is called the persistence length of the chain. This describes the stiffness in
the chain because it describes how long the orientation of the chain persists through
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its length. Clearly, the smaller @ is, the stiffer the chain will be. A #-value of zero
corresponds to a completely rigid rod [B5]. It is interesting to look at the continuum
limit defined by | — 0, N — oo, NI — L which is constant and § — 0. We can

write Eq (B22) as
(ro-ry) = *(cos )

(ro-ry) = I*exp (NIn (cos ))

(ro-rn) =l2eXp (N (cos@—l—wju...))

_ 2 (1—cosf) (1—cosh)’
(ro-ry) =1"exp (—Nl( l + 5 _|_>>

Nl
(ro-ry) ~ exp 7 (3.27)
P

which shows that the persistence length corresponds to the correlation length of the
chain in the continuum limit approximation only.

3.1.3.2 End-to-end vector distribution

It is not possible to derive an exact expression for the end-to-end vector distribution
for all R and all N. Nevertheless as Eq. (B24)) shows, the end-to-end distance
scales with v/N for large N. Therefore we can expect, according to the central limit
theorem that the probability distribution of the end-to-end vector to be Gaussian.
In Ref. [54] it is shown that, in such a limit, the characteristic function, which is the
Fourier transform of the probability distribution, is Gaussian:

k* 1+ cosf
K(k)=exp— | —NP——|. 3.28
(k) = exp (6 1—(3088) (3.28)
Therefore the probability distribution G(R) also is Gaussian for large N:
1 )
GR) = K(k)e ™ Rdk
®) = o [ Kk
1 R’
GR)= ——Fexp——7, (3.29)
8(wa% )2 doy
where 0% = NTF% is the gyration radius of the polymer in such a limit.
Therefore the end-to-end probability distribution is
1 1 (R\® -&
P(R) = 47R*G(R) = ——— (—) e % (3.30)
Qﬁ ON ON

In practice we have to know when the approximation of large N is valid. For that
we have compared the real probability of the FRC simulated numerically and the
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3.1 Polymer theory

Gaussian approximation. Figure (B4]) gives the comparison for two different values
of the polar angle and for different values of the number of monomers. The length
of one monomer is fixed to 6 A, which is the appropriate value for a DNA strand.

(a) (b)

01 T T T T T T T T T T T
— N=10, Numerical calculation 4 005~ — N=10, Numerical calculation N
— N=20, Numerical calculation — N=20, Numerical calculation
0,08 N=50, Numerical calculation - [ N=50, Numerical calculation
— N=10, Gaussian approximation 0041 — N=10, Gau&agn approx!ma!on B
N=20, Gaussian approximation 4 : N=20, Gaum_aﬂ approx!ma!on
— N=50, Gaussian approximation L — N=50, Gaussian approximation
0,06 — ) -
. 003 .
z [
T x
0,04 -
0,02 — -
0021~ * 001} _
0 . | . | ! N . o ‘ | . . | ;
0 10 20 30 40 50 60 0 50 100 150 200
R R

Figure 3.4: Probability distribution of the Freely Rotating Chain for two values of
0, (a): 6—120°; (b): 0—45° and comparison with the Gaussian approximation. The
length of one monomer is fixed to 6 A.

First of all, P(R) is not Gaussian for all N and for all §. Indeed for a small
value of 6§ and N=10-20, the Gaussian approximation is not correct because the
Gaussian approximation allows R to be larger than N[ and it is physically not
possible. Nevertheless for bigger values of N like 50 the Gaussian approximation is
better and in these conditions we can use such an approximation.

Second, for a large value of #, the limit of large N is rapidly reached. Indeed for
N—=10 the probability distribution is approximately Gaussian and the greater N,
the best is the Gaussian approximation. Therefore the validity of the large N limit
depends on 6. If 8 is large, the limit is reached rapidly but if  is small, bigger values
of N are needed.

We now understand why it is very difficult to derive an exact expression of the
end-to-end distance probability distribution for all N.

3.1.4 Kratky-Porod chain
3.1.4.1 An exact calculation of Py(r)

We consider the chain described by the Hamiltonian

H=—¢ (I‘j ‘T — l2) s (331)
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where [ is the length of the segment. If we define X; =r;/l, which is a unit vector

N-1
H = €l2 Z (X] . Xj+1 — 1) . (332)

j=1
The partition function of the chain is given by

N-1

Iy = /dQl...dQN | ] G (3.33)

J=1

with b = €l?/kgT and ; is the solid angle variation associated with a change of
orientation of vector X;. This system is formally analogous to a one-dimensional
Heisenberg chain in zero field studied in [58]. Using polar coordinates, 611, ¢;i1
referred to X, as the polar axis, the integrals separate yielding

N-1 T 2T
ZN - /dQI / / €bcos‘9j+1 sin ‘9j+1dt9j+1d¢j+1 €_b(N_1)
j=1 Y0i+1=0 ¢ +1=0
b —b N1
Zy = 4 {%%]
—b . h b N-—1
Zy = (4m)N [%} . (3.34)

Or if we introduce the modified Bessel function of zeroth order io(b) = sinhb/b,
Zy = (4m)™ [ebip(h)] V"

A similar approach can be used to compute the correlation functions which give us
the persistence length.

Cr = (Xj - Xjpn) = (X1 - Xppa) (3.35)

by setting j = 1 without loss of generality
1
Cr = Z—/dQle/nge_bxl'XQ.../koe_ka—l'ka
N

/koHXHle—ka.XkH/ko+2€_bX’““'X’““ X X

/ dQpn_je EN-1 XN 5 o= (N-Db (3.36)

The integrals over .5...Qx_1 simplify with the corresponding integrals in Zy.
Moreover we can use the relation for unit vectors

/de+1Xj+1€_ij.Xj+l = 47T7:1(b)Xj, (337)
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where
bcosh b — sinh b

b2 ’
which can again be obtained by direct integration in polar angles [57].
This allows us to get an expression of Cj by integrations which involve successively

X1, Xg, -..X1. Each one gives a factor i;(b).
The result is

in(b) =

(3.38)

Cr = (X - Xpp) = (il(b))k. (3.39)

Cp = (Xy - Xppy) = e/l (3.40)

we obtain the persistence length as

é ~ B;EZ;] — I (cothb - %) . (3.41)

It is interesting to notice that, in the limit of large b (e large or low temperature 7T')
we get

l, = ! b= 1x L (3.42)

" nfeothb— 1] T T kpT! '
which is the result obtained with the worm like chain model [51], i.e. the continuum
limit of the Kratky-Porod chain.
As explained in Chap. 5 to model the statistical physics of DNA hairpins, we need
the probability distribution function of the polymer Py(R), which makes up the
hairpin. For the Kratky-Porod chain its calculation is much more complex than for
a Gaussian chain. Even in the continuum limit (WLC model) the exact expression is
not known. An approximate expression has been obtained by Wilhem and Frey [29].
It reads

(n—1/2)
47TR2 2f Z <o R/L)3/2 P [_n (1- R/L)

H2< n—1/2 ) (3.43)
x(1— R/L)

where I = NI is the total length of the polymer, x = €l3/kgTL is the rigidity
coefficient of the WLC.

In the case of the discrete Kratky-Porod chain the calculation is even harder and
the probability distribution Py(R) is not known analytically. However a compu-
tationally efficient method for its accurate numerical calculation has recently been

Py (R) = 47 R? X
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proposed by N. Theodorakopoulos [60]. As we use this method in our numerical cal-
culations, we give the calculation in Appendix A. The Fourier transform of Py(R)
is expressed as a matrix element of the N*" product of a matrix F as

Py(a) = (FY)y, (3.44)

where the elements Fj; of the semi-infinite matrix I’ are expressed as a finite sum of
Bessel functions. (See Appendix A for their expression).

In practice the size of the matrix I’ has to be truncated to a finite /,,,,,. For a semi-
flexible chain L >> [, (for instance N = 11 segments and a persistence length of 2
segments) I, —2 or 3 produces results which can hardly be distinguished from the
exact results produced by Monte Carlo simulations. For rigid chains L/l, = O(1),
for instance for N = 10 and a persistence length of 5 segments, [, = 4 is necessary
to get a good agreement with Monte Carlo simulations. These small values of [,,4,
provide a rather efficient numerical method to compute Py (R) for the Kratky-Porod
chain.

3.1.4.2 Effective Gaussian approach

In spite of its efficiency and the moderate values of [,,,, which are required, the
calculation of Py(R) for a Kratky-Porod chain may become quite long when we
want to scan a large number of temperatures to obtain a curve for the opening as
a function of temperature. This is why it is useful to have a faster approximate
calculation.

One possibility is to use an effective Gaussian approximation which has a double
interest

1. it is faster than the complete Kratky-Porod calculation;

2. for Gaussian chain we know an exact expression for the conditional probability
function S(r|R) which enters into our hairpin calculation ( the S function is
presented in the next section).

The idea is to approximate Py(R) by the expression for a Gaussian chain that
would lead to the persistence length that we calculated for the Kratky-Porod chain
Eq. (B42). This is can be done with

1 1 R 2 2 /452
G e B —R?/40%; 4
Py(R) = N ( N) e , (3.45)

with oy = %Xl2 and y = % The corresponding conditional probability is

given by Eq. (B58) which exactly verifies Eq. (B:20).
Figure (BH) compares the effective Gaussian approximation to the Kratky-Porod

expression. In the case L/l,—5.9 the effective Gaussian approximation is rough (but
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Figure 3.5: Comparison of the effective Gaussian probability distribution function
and the exact expression for N—10 and N—32. The parameters are T—300 K and
€=0.0015 eV.A=2.The black curve corresponds to the effective Gaussian function.
Left:N= 10 and right:N= 32

nevertheless better than the WLC expression of Wilhem and Frey), but for L/[,=19
one can notice that the effective Gaussian approximation becomes very good. There-
fore, in our hairpin calculation for small values of N we use the full discrete KP
distribution and for higher values of N we use the effective Gaussian approxima-
tion. Moreover in the case of the Kratky-Porod chain, in any case for our hairpin
calculation we have to use for S(r|R) the Gaussian form.

In order to determine to what extend this approximation modifies the denaturation
curves for hairpins (the calculation of such curves is given in Chap. 5) we have com-
pared such curves for the two expressions P (R) and PET(R) as shown in Fig. (B1).
The difference between the two models for the loop are only perceptible for the short-
est and fairly rigid loops (N = 12, €=0.0022 eV.A~2 giving l,=15.4 A or L/1,=4.66).
For larger loops (N = 24, i.e. L/l,—9.32) the denaturation curves computed with
P$(R) or PEP(R) can hardly be distinguished.

3.1.5 Growth of a polymer chain

Let us consider an effective Gaussian chain with a given number of monomers /N, and
an end-to-end distance vector R. Its end-to-end distance probability distribution is
given by Eq. (B30). We introduce at this stage a new variable defined as

N2
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Figure 3.6: Comparison between the melting curves obtained with the effective
Gaussian and the exact expression of the probability distribution function for N—12
and N—24. The parameters are (see chapter 5 for their signification) D—0.090 eV,
k—0.025eV.A2 a—6.9 A=Y, §—0.35, p—2.0 and e—0.0022 eV.A~2. The black curve
corresponds to the calculation with the Effective Gaussian. Left: N=12 and right:
N=24.

We immediately see that

x = 1 (FJC)

X = st (FRC) (3.47)
_ licothb—1/b

X = Temernp (KP),

if we use an approximate description for the FRC and the KP model. Suppose that
the chain grows by the addition of one monomer at each end. Let the additional
segments at the two ends be represented by the vectors Ay, A,, respectively. The
new end-to-end distance vector would then be r = R+ A; — A,. The unnormalized
probability for the growth at each end by a vector A; will be proportional to

2
_314a]

¢ T (3.48)

We would like to derive the function S(r|R) such as S(r|R)dr is the conditional
probability that, if the end-to-end distance of the polymer chain of N monomers
is equal to R, the end-to-end distance of a chain of N 4+ 2 monomers, i.e. where
one monomer have been added at each end, will be in the range (r,r + dr). It is
normalized to unity

/ drS(r|R)=1 VR. (3.49)
0
Furthermore, it satisfies

/ T ARPy(R)S(r|R) = Pyao(r) i, N, (3.50)
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by definition. We shall see in Chap. 5 that this conditional probability is useful to
calculate the partition function of a DNA hairpin.
The function S(r|R) is defined by

S(r|R) = /dQ /dA1 /dA2e A R—A 4+ Ay, (3.50)
where 7 = 2’:(,)1 and A is a normalization factor. The first integral is over all orienta-
tions of the vector r, and the other two are meant over all space. The normalization
constant will be specified at the end of the calculation. The r? factor appears be-
cause we only want the norm of r to fall in the specific range. The integral over A,
can be done trivially. Abbreviating r — R = p, we obtain

Ry = A2 [0, [ da,a? d =L 3.52
S(r|R) L :
where A

= f;Al. (3.53)

We are omitting a 27 factor from integration over the azimuthal angle of A; because
this only changes the normalization. Performing the dyu integration, we get

S(r|R) = Ar? /dQ —e 72 / dA1Ae”  sinh <2p2A)7 (3.54)
T

where we have again omitted constant factors to be fixed by normalization.
Using the definite integral

[eS) b 1 9
J(a,b) = / dx ze™" sinhbr = — (EQ) ela, (3.55)
0 2a \ a
we can do the integration over Ay. Reintroducing p =r — R
'r2 2_ r
S(r|R) = Ar? / T = (3.56)
where now R
r.

= 3.57
= (3:57)

Finally, performing the integration over d¢, and using Eq. (B49) that fixes the
constant A, we get

S(r|R) = ( k ) %Sl nh (BTR) P (3.58)

(2 2x[?

One can show, that the function S(r|R) satisfies Eq. (BA0) with Py(R) given by
Eq. (B30) but it is slightly tedious. This equation assumes that Py(R) is Gaussian.
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As we discussed above it is not always the case. Since we intend to use the conditional
probability S(r|R) in our hairpin calculations, it is useful to examine the error that
it introduces when it is applied to a polymer which is not Gaussian such as the FRC
or the KP chain. Let us compare Py.(r) given by the exact polymer model and
its value obtained with (BA20) where Py(R) is also described by the exact polymer
model (FRC of KP). As we can see, for small values of N, the calculation of
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Figure 3.7: Comparison of Pyo(r) obtained using Eq. (320) and the real form with
the FRC. The length of one monomer is fixed to 6 A, and 45°. The black curve
represents Py(r), the red curve is for the exact Pyo(r) and the blue one is obtained
using Eq. (320). Left: N=12 and right: N=30.
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Figure 3.8: Comparison of Py,2(r) obtained using Eq. (320) and the real form with
the KP chain. The length of one monomer is fixed to 6 Aand e=0.0020 eV.A~2. The
black curve represents Py(r), the red curve is for the exact Pyyo(r) and the blue
one is obtained using Eq. ([B0). Left: N =12 and Right: N = 30.

Pno(r) using Eq. (BA0) is not correct because Py(r) is not Gaussian. Nevertheless
for N = 30 the “growth” of the polymer is correctly reproduced by the S function. In
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a more general way, we can say that better the Gaussian approximation for Py(r),
the better the result obtained by Eq. (B20), which is of course natural since (B:50)
is exact in the Gaussian case.

3.2 Protein models

3.2.1 Protein folding

The formation of a DNA hairpin from a single strand of DNA is qualitatively sim-
ilar to the folding of the amino-acid chain of a protein. The particular amino-acid
sequence (or "primary structure") of a protein predisposes it to fold into its native
conformation or conformations [61]. Many proteins do so spontaneously during or
after their synthesis inside cells. While these macromolecules may be seen as "folding
themselves," in fact their folding depends a great deal on the characteristics of their
surrounding solution, including the identity of the primary solvent (either water or
lipid inside cells), the concentration of salts, the temperature, and molecular chaper-
ones. For the most part, scientists have been able to study many identical molecules
folding together. It appears that in transitioning to the native state, a given amino
acid sequence always takes roughly the same route and proceeds through roughly
the same number of fundamental intermediates.

The essential fact of folding, however, remains that the amino acid sequence of each
protein contains the information that specifies both the native structure and the
pathway to attain that state: folding is a spontaneous process. The passage of the
folded state is mainly guided by Van der Waals forces and entropic contributions to
the Gibbs free energy: an increase in entropy is achieved by moving the hydrophobic
parts of the protein inwards, and the hydrophilic ones outwards [62]. During the
folding process, the number of hydrogen bonds does not change appreciably, because
for every internal hydrogen bond in the protein, a hydrogen bond of the unfolded
protein with the aqueous medium has to be broken.

The entire duration of the folding process varies dramatically depending on the
protein of interest. The slowest folding proteins require many minutes or hours to
fold, primarily due to steric hindrances. However, small proteins, with lengths of a
hundred or so amino acids, typically fold on time scales of milliseconds. The very
fastest known protein folding reactions are complete within a few microseconds.
The Levinthal paradox, proposed by Levinthal in 1969 [2T], states that, if a protein
were to fold by sequentially sampling all possible conformations, it would take an
astronomical amount of time to do so, even if the conformations were sampled at
a rapid rate (on the nanosecond or picosecond scale). Based upon the observation
that proteins fold much faster than this, Levinthal then proposed that a random
conformational search does not occur in folding, and the protein must, therefore,
fold by following a pre-determined path.

Folding and unfolding rates also depend on environment conditions like temperature,
solvent viscosity, pH and more. The folding process can also be slowed down (and
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the unfolding sped up) by applying mechanical forces, as revealed by single-molecule
experiments.

The study of protein folding has been greatly advanced, in recent years by the de-
velopment of fast, time-resolved techniques [63]. These are experimental methods
for rapidly triggering the folding of a sample of unfolded protein, and then observing
the resulting dynamics. Fast techniques in widespread use include ultrafast mixing
of solutions, photochemical methods, and laser temperature jump spectroscopy. For
DNA hairpins the formation of the hairpin is similar to the folding, but, thanks to
the use of FRET we have seen that the kinetics can be measured.

The protein folding phenomenon was largely an experimental endeavor until the
groundbreaking formulation of the Energy Landscape theory by Bryngelson and
Wolynes in the late 1980’s [64]. The theory introduced the principle of minimal
frustration, which asserts that evolutionary selection has designed the amino acid
sequences of natural proteins so that interactions between side chains largely favor
the molecule’s acquisition of the folded state. Interactions that do not favor fold-
ing are selected against, although some residual frustration is expected to exist. A
consequence of these evolutionarily designed sequences is that proteins are generally
thought to have globally "funneled energy landscapes" (coined by Onuchic) that are
largely directed towards the native state. This "folding funnel" landscape allows
the protein to fold to the native state through any of a large number of pathways
and intermediates, rather than being restricted to a single mechanism. The theory
is supported by computational simulations [67], [68] of model proteins and has been
used to improve methods for protein structure prediction and design. Ab initio tech-
niques for computational protein structure prediction employ simulations of protein
folding to determine the protein’s final folded shape.

3.2.2 Lattice models

Lattice proteins are highly simplified computer models of proteins [66], [69] which
are used to investigate protein folding. Because proteins are such large molecules,
containing hundreds or thousands of atoms, it is not possible with current technol-
ogy to simulate more than a few microseconds of their behaviour in all-atom detail.
Hence real proteins cannot be folded on a computer. Lattice proteins [65)], however,
are simplified in two ways: the amino acids are modelled as single "beads" rather
than modelling every atom, and the beads are restricted to a rigid (usually cubic)
lattice. This simplification means they can fold to their energy minima in a time
quick enough to be simulated. Lattice proteins are made to resemble real proteins
by introducing an energy function, a set of conditions which specify the energy of
interaction between neighbouring beads, usually taken to be those occupying adja-
cent lattice sites. The energy function mimics the interactions between amino acids
in real proteins, which include steric, hydrophobic and hydrogen bonding effects.
The beads are divided into types, and the energy function specifies the interactions
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depending on the bead type, just as different types of amino acid interact differ-
ently. Lattice protein models were studied in the last seventies to gain a deeper
understanding of the Levinthal paradox. The main advantage of lattice models over
more detailed ones is that in many cases their whole conformational space can be
examined. However, even for such simple models the number of possible conforma-
tions is growing very quickly as the size of the polymer increases. For example, on
the square lattice, a 18-mer has 5808335 different conformations unrelated by sym-
metries. Simply enumerating them is tricky in the above case, while in the 49-mer
case it is out of reach (there are &~ 10?° of them). However as shown by Go [70] and
his collaborators, starting form a random conformation, the 49-mer can reach its
ground state, that, is its lowest energy configuration, within a few thousands steps
of a Monte Carlo simulation, as long as the energy surface is defined as follows.
First, the lowest energy, compact 7x7 conformation, is chosen a priori. Figure (B.3)
gives a schematic representation of the compact conformation of the 49-mer on the
square lattice. Then, for all pairs of monomers which are close neighbours in this

Figure 3.9: A compact conformation of the 49-mer on the square lattice [Z]]].

configurations, the contact energy is assumed to be attractive, while for all others
it is not. So, when the ground-state is at the bottom of a deep funnel on the energy
surface, then it is quite easy for a flexible polymer to find its way and reach it trough
a random search biased by the average energy gradient. However, even if the funnel
picture is nowadays the preferred view for understanding the folding process, there
is no indication that protein energy surfaces are as funneled and as deep as in the
Go model.

Another popular lattice models, the HP model, features just two bead types - hy-
drophobic (H) and polar (P) - and mimics the hydrophobic effect by specifying a
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negative (favourable) interaction between H beads [2T]. For any sequence in any
particular structure, an energy can be rapidly calculated from the energy function.
For the simple HP model, this is simply an enumeration of all the contacts between
H residues that are adjacent in the structure, but not in the chain.

Most researchers consider a lattice protein sequence protein-like only if it possesses
a single structure with an energetic state lower than in any other structure. This is
the energetic ground state, or native state. The relative positions of the beads in the
native state constitute the lattice protein’s tertiary structure. By varying the energy
function and the bead sequence of the chain (the primary structure), effects on the
native state structure and the kinetics (rate) of folding can be explored, and this
may provide insights into the folding of real proteins. In particular, lattice models
have been used to investigate the energy landscapes of proteins, i.e. the variation of
their internal free energy as a function of conformation.
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Chapter 4

A two dimensional lattice model
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4.1 Self assembly of DNA hairpins

4.1.1 Model

As we explained in Chap. 2, a fluorophore and a quencher can be used to monitor
the two limiting conformations of ssDNA. We propose here a very simple model
which allows us to describe such an equilibrium. Our hairpin model is inspired
by the lattice models which have been used to study protein folding [65]. Tt is a
lattice model so that only discrete motions are allowed, thus it cannot describe the
true dynamics of the hairpin. Instead we use a Monte-Carlo dynamics where the
moves are discrete and determined by their probability at the temperature of the
simulation, depending on their energy cost or gain. To carry such a calculation
we only have to specify the energy of the model in each configuration. As a first
approach to this problem we decided to choose the simplest underlying lattice, a
planar square lattice. This choice of model restricts the number of accessible states
with respect to a more complex three-dimensional lattice, but, as discussed below, it
introduces some limitations on the ability of the model to describe actual hairpins.
The energy of the DNA strand is assumed to depend on two terms only, a bending
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A two dimensional lattice model

Figure 4.1: Two configurations of the hairpin model in a lattice. The DNA strand
is indicated by the thick line on the lattice. The hydrogen bonds are marked by the
thick bonds connecting two points of the stand, and the shaded corners represent
the bending energy contributions. The left case corresponds to the perfect closing,
while the right figure shows an example of a mismatched partial closing.

energy which appears when two consecutive segments are at some angle, and the
energy of the base-pairs which can form in the stem. The total number of nucleotides
in the DNA strand is denoted by N. The number of nucleotides which can form
the stem is denoted by ng. In order to specify the kind of pairing allowed in the
stem, each nucleotide of the stem, denoted by index j is affected of a “type” ¢;. Only
two nucleotides having the same “type” are allowed to form a base-pair by hydrogen
bonding. Thus, rather that actually specifying the type of a base (A,T,G,C) we
specify the type of pairing that it can form. The energy of the model is written as

ns  Ns

E = nAEA+%;Z::Ie(j,j’) (4.1)
€(j,j,) - 5(t] - tj/)é(djj/ - 1)@(])@(]/)EHB(t])7 (42)

where

e n 4 is the number of angles in the DNA strand on the lattice, and Ey is a pos-
itive model parameter giving the energy costs of a bent. In some calculations,
E 4 may be different for a bent in the stem or in the loop.

e ¢(j,7') is the pairing energy between nucleotides j and j' of the stem. The
factor 0(t; — t;/) enforces the condition that the two nucleotides should be of
the same “type”, d(d;;; — 1) indicates that the pairing is only possible if the
two nucleotides are adjacent on the lattice. The factors a(j) and a(j’) are
equal to 1 only if the nucleotide is available for pairing, i.e. if it is not already
involved in another pair. Otherwise the pairing is not formed and they are
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4.1 Self assembly of DNA hairpins

set to 0. They are necessary because some geometries of the chain could put
a nucleotide in a position adjacent to two sites occupied by nucleotides of the
same type. Finally Eyp(t;) is the pairing energy for nucleotides of type t;. It
is a negative quantity, which means that the pairing is favourable because it
lowers the energy of the hairpin.

We studied this model using Monte Carlo simulations in the same spirit as the
studies performed on lattice models of proteins, i.e. we generate a random walk of the
DNA chain on the lattice with the condition that the system should be in thermal
equilibrium at temperature 7. A configuration of energy E must therefore have a
probability proportional to exp(—FE/T), where T is measured in units of energy. If
the moves are selected in order to stay as close as possible to the actual motion of a
polymer in a fluid, the method can even be used to study dynamical effects with a
fictitious time scale which is simply given by the number of Monte Carlo steps [72].
For this reason we selected only local motions of the chain. On the two-dimensional
square lattice, there are only three such motions: the change of the angle between
the two segments at one end of the chain, the flipping of a corner of a lattice
cell with respect to the diagonal of the cell and a crank mechanism. Figure ([2)
gives a representation of these displacements. If it does not lead to a clash with

(a) (b) (c)

~
-
~

_______

Figure 4.2: three possible motions: (a), flipping of a corner of a lattice cell with
respect to the diagonal of the cell; (b) crank mechanism; (c), change of the angle
between the two segments at one end of the chain.

another part of the chain, an attempted motion is accepted with probability P =
minjexp(—AE/T), 1], where AE = E, — E; is the difference between the energy
after and before the move, using a standard Metropolis algorithm.

4.1.2 Metropolis-Monte Carlo scheme

We are interested in the thermodynamics and the kinetics of the system, and we stud-
ied them with the Monte Carlo-Metropolis scheme [72]. This technique is frequently
used for equilibrium properties nevertheless we also use it for kinetics assuming that
local displacements give a dynamic with time scales proportional to reality. When
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A two dimensional lattice model

we are interested in the statistical properties, we have to determine the partition
function of the system, which is in the discrete case:

7 = Zexp(—ﬂU(i)), (4.3)

where the sum is over all the configuration of the system. In practice, the number
of configuration in too large and it not possible to determine this sum numerically.
We have the same problem for the calculation of integrals in the continuous case.
Therefore we need specific methods to estimate these integrals. Monte Carlo al-
gorithm consists in replacing the calculation of an integral by a discrete sum over
points which are judiciously distributed. Indeed, one does not have to calculate the
value of the integral where the integrand is negligible. Thus, we can determine in
a reasonable number of step the value of the integral. Let us come back to the
problem of statistical mechanics. We assume that we fix the temperature to 7. We
are often interested in the determination of averages quantities such as:

_ X Aiep(=6U)

(4) Z

. (4.4)

In Eq. (E4) we can see:
—BU;
P = %Zﬁ)' (4.5)

This quantity defines the probability of the configuration of energy U; at equilibrium.
If we can generate configurations with this weight, then the average of A will be
estimated by

(A) ~ NLZA (4.6)

So with the Monte Carlo method we can estimate the average of A if we can generate
configurations with the equilibrium probability. Therefore, the problem consists in
determining a method that generates a stochastic dynamic in order to get the equi-
librium distribution. Then, the averages will simply be done by the relation ().
In 1953, to generate such a stochastic dynamics, Metropolis, Rosenbluth and Teller,
proposed a method based on the detailed balance relation (in the canonical ensemble
and at equilibrium):

W — i)Pf = Wi — )P, (4.7)
where W (i — j) is a transition probability of the state i to the state j and Pf is the
equilibrium probability of the state ¢ which is given by Eq. (@3). We can rewrite
relation () as:

B _WU =1 _ swm-ve) (4.8)
Pje W(Z — ])
Therefore the system will converge to the equilibrium state if at each transition of
a state i to a state j the transition probabilities obey the relation (). We only
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have to find a simple expression for the transition probability W. The choice of
Metropolis et al which gives the Monte Carlo-Metropolis algorithm is the following:

Wi —j) = { iLB(U(j)—U(i))7 gg% _ g(z:) > 0. (49)

A possible algorithm to implement it is:

1. We generate a state j from state ¢ using a deterministic rule or a random
process

2. We calculate AU = U(j) — U(i).

3. e If AU <0, then W(i — j) = 1 and we keep the new state j.

o If AU > 0, then W (i — j) = e P2V and we pick a number 7 randomly
in the interval [0,1]. We keep the state j if 7 < e AU or we reject it if
not.

4. We come back to the beginning of the procedure in 1.

Using this scheme, the system reaches its equilibrium state after a number of step
that is difficult to estimate “a priori”. In practice the number of steps is chosen large
enough to observe steady state values of the observed quantities averaged over a
large number of individual steps. After that, we repeat the procedure with a different
initial condition and another set of random numbers to get averages or equilibrium
probability distributions from different realizations. Finally new algorithms based on
Monte Carlo scheme [73] have been introduced to allow the study of bigger systems.

4.2 Equilibrium properties of the opening-closing
transition

4.2.1 The transition in the absence of mismatch

Let us consider first the equilibrium properties of DNA hairpins in the simple case
when they can only close with a correct matching of the bases in the stem. This
would be the case if the base sequence in the stem forbids any mismatch. In order
to compare with experimental results [4] we considered the case of a stem having
5 base-pairs (ns = 5). Since there are only 4 types of bases, at least one has to
appear twice in the stem. Thus the Watson-Crick pairing rules allow at least one
mismatched pairing, but it may be very unfavourable because, if it occurred, the
other bases of the stem would not be paired and may even experience some steric
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hindrance. In the model it is easy to strictly forbid any mismatched closing by us-
ing a sequence t; = {1,2,3,4,5} where all base-pairs have different types. Besides
this condition, in our calculations we gave same energy Exp = —1 to all types of
base-pairs. This value sets the energy scale, and thus the temperature scale. With
these parameters, the model does not attempt to mimic any real DNA hairpin, but
it is designed to stay as simple as possible in order to exhibit the basic mechanisms
that govern the hairpin properties.

Figure (3] shows the variation of the number of hydrogen-bonded base-pairs ver-

0 oN = 50
x N = 40
oN = 30

aN =20

<N Hb>

Figure 4.3: Variation versus temperature of the number of hydrogen-bonded pairs
in the stem for hairpins of different lengths N, in the absence of mismatches.

sus temperature for chains having different numbers N of nucleotides. The number
of nucleotides in the loop is N — 10 since the stem is always made of two segments
of 5 nucleotides. In these calculations, the bending energy F, has been set to
E4 = 0.02, and it has the same value along the whole DNA strand. The results
have been obtained with different initial conditions: we start either from a closed
hairpin or a random coil. Each point in the figure is an average of 100 calculations
with different sets of random numbers to generate the initial conditions and the
stochastic motions of the chains on the lattice, each calculation involving between
4108 and 810® Monte Carlo steps (depending on temperature and chain length).
The first 2107 steps are discarded in the analysis to allow the model to equilibrating
to the selected temperature. For T" > 0.15 a good equilibration is achieved, while
results at lower temperatures show some dependence on the initial conditions be-
cause an equilibrium state has not been reached. This is why they are not shown in
Fig. ([£3).

As expected, when temperature increases we observe a fairly sharp decrease of the
number of hydrogen-bonded base-pairs. It corresponds to the opening of the hair-
pin, which occurs over a temperature range of about 0.2 energy units, around the
so-called “melting temperature” T, ~ 0.35, which is well below to the temperature
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4.2 Equilibrium properties of the opening-closing transition

T = 1 corresponding to the binding energy of a base-pair. This indicates that the
entropy gain provided by the opening of the hairpin contributes to lower the free
energy barrier for opening. Increasing the length of the loop lowers T;,,, in agreement
with the experiments [4]. It also makes the transition sharper, which is not observed
in the experiments.
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Figure 4.4: Effect of the rigidity of the loop on the opening of the hairpin: variation
versus temperature of the number of hydrogen-bonded pairs in the stem for loops
with different bending energies /4 = 0.02 and 0.60, in the absence of mismatches.
In the stem the bending energy has been set to £y = 0.02 for both calculations.
The two sets of points for E4 = 0.6 (crosses and squares) have been obtained in
two independent calculations, with different sets of temperatures and different initial
conditions. The crosses show results obtained with a closed hairpin initial condition,
while the squares have been obtained with random initial conditions. Fach point on
this figure is an averaging over 100 sets of initial conditions and random numbers.

The role of the rigidity of the loop can be tested by changing the value of the
bending energy E4 for all the bends in the loop, without changing its value in the
stem. Figure (L)) shows that a more rigid loop leads to an opening at lower temper-
ature, in agreement with the experimental observations [4]. However the variation
of T,, given by the model appears to very small, and moreover, as discussed below,
the effect of the rigidity of the loop on the thermodynamics of the hairpin is not
correctly described in our model. This points out some limitations of the simplified
model, although a quantitative comparison with the experiments is difficult because,
in the experiments, the rigidity was varied by changing the bases from T to A. The
larger purine bases A are assumed to give a higher rigidity to the strand but this
could only be related to the variation of E4 by extensive all-atom numerical simula-
tions [I]. Moreover, the role of base stacking in the loop is certainly more complex
than the simple change of the rigidity of the chain that our simplified model can
describe.
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4.2.2 Role of the mismatches

One feature of DNA hairpins is that, unless they have a specifically designed se-
quence, they may close with a wrong pairing in the stem (see figure ({1I)). These
imperfect, mismatched, closings have a higher energy that the perfectly closed hair-
pin, but they can be very long-lived.
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Figure 4.5: Comparison of melting curves with and without mismatches. The mean
value (d) of the distance between the first and last nucleotide is plotted versus
temperature. The chain has N = 20 nucleotides, with Eyg = —1 for all base-pairs of
the stem, E, = 0.02. The squares show data without mismatch (t; = {1,2,3,4,5}),
while the circles and crosses show data with mismatches (t; = {1,1,1,1,1}). In this
case two sets of calculations have been performed. The circles have been obtained
with 8 102 Monte Carlo steps, while the crosses involve only 4108 Monte Carlo steps.
For T > 0.25 the two sets give identical results, but, at low T, a smaller number of
Monte-Caro steps slightly affects the results.

They affect the opening-closing transition as shown in Fig. (E0)) which compares
the melting curves in the presence and in the absence of mismatches. In order to
allow mismatches, the sequence of bases of the stem has been set to ¢; = {1,1,1,1, 1},
i.e. all base-pairs are of the same type so that many mismatched pairings are possible,
with 1,2,3,4 hydrogen-bonded base-pairs. In this case we show the mean value (d)
of the distance between the first and last nucleotide of the chain rather than the
number of hydrogen-bonded stem base pairs because (d) provides a more complete
picture of the configuration of the hairpin.

On Fig. (E3), the case without mismatch shows a smooth melting curve, similar
to the results of Fig. (E3)). In the low temperature domain where the hairpin is
closed, (d) is larger than the value (d) = 1 that could be expected from a static
image of the closed hairpin because there are fluctuations. They are particularly
important at the free end of the stem, as schematised on Fig. (E0).

When mismatches are allowed, the curve (d(7T)) shows a fairly sharp kink around
T = 0.215, and then an increase, qualitatively similar to cases without mismatch,
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4.3 Kinetics of the opening and closing

but occurring however more smoothly and at higher temperature. The kink, which
corresponds to a jump of (d) of about one unit, is due to the formation of a mis-
matched closing where only 4 base-pairs of the stem are formed (Fig. (), right
part). As temperature is raised further, the number of paired bases in the stem
keeps decreasing, but, as there are many more possibilities for binding than in the
no-mismatch case, the opening of the hairpin is more gradual.

L

Figure 4.6: Schematic plot of the fluctuations of the free end of the chain in a
perfectly closed state (left) and in a mismatched state (right).

4.3 Kinetics of the opening and closing

Up to now we spoke of the opening transition of the hairpin as if the hairpin should
be closed at low T" and open at high T'. It is actually more complex because, in a
small system like the hairpin, a phase transition between two states does not exist.
Actually we always have a equilibrium between the open form O and the closed form

C

C g O, (4.10)
ket
which can be studied like a chemical equilibrium rather than a phase transition.
At low T the equilibrium is displaced towards closing and at high T it is displaced
towards opening.

This suggests that the methods of chemical kinetics can be used to analyse the
dynamics of the fluctuations of the hairpin. Let us consider that the hairpin is a
two-state system. This is obviously an approximation which becomes very crude
when mismatches are allowed since, in this case, the hairpin can also exist in some
intermediate states where it is incompletely closed. In the absence of mismatch, the
two-state picture is a satisfactory approximation, as shown in Fig. (). This figure
shows the histogram of the distance d between the two ends of the chains, and the
histogram of the number of hydrogen-bonded base-pairs at temperature 7" = 0.36 for
a model without mismatch with N = 50. This temperature is close to the melting
temperature T;, for this model, and the histograms clearly show the coexistence of
two populations of states: (i) an open state, where there are no hydrogen-bonded
pairs in the stem, which corresponds to the hump for d > 5 on Fig. [ a), (ii) a
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closed state corresponding to the sharp maximum for d < 4 in Fig. (EE}a) and to
the existence of 2 to 5 hydrogen-bonded base-pairs in Fig ([E1-b) (with a maximum
at 4, due to the opening fluctuations at the end of the stem as discussed above and
schematised in Fig. (EH), left).
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Figure 4.7: Normalised histograms of the distance d between the two ends of the
chain (a), and number of hydrogen bonds (b) for a hairpin with N = 50 and no
mismatches, at temperature T' = 0.36. This temperature is close to the opening
temperature T,, of this hairpin. Model parameters Eygp = —1, E, = 0.02. The
histograms show the coexistence of two populations: one population of completely
open hairpins (large values of d and 0 hydrogen bonds) and a population of closed
hairpins in which some of the hydrogen bonds are formed, the highest probability
being with 4 hydrogen bonds formed.

The two-state picture allows us to write standard kinetic equations for the pop-
ulations [C] and [O] of the closed and open states as

% = —ko[C] + kalO] (4.11)
% = +k,[C] — ku[O] , (4.12)

where k, and k. are the kinetic constants for the opening and closing events respec-
tively. This system has the solution

00]{? _ Cok’ 1

C(t) = —22 = (kotha)t O 4.13
C1(0) = bk _Cole (113
where C is the value of [C] at time ¢t = 0. This shows that, if we start from a pop-

ulation of closed hairpins, we expect it to decay exponentially with a characteristic
time 7 = 1/(k, + ke) until an equilibrium is reached with

O] ko _
@_E_K“ (4.14)
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4.3 Kinetics of the opening and closing

where K, is the equilibrium constant.

Therefore, if we follow the evolution of the population of closed hairpins in a
Monte Carlo simulation which starts from Cj closed configurations, we can deter-
mine separately 7 (from the decay of the closed population) and K, from the final
equilibrium state, so that we can determine the kinetic constants for opening and
closing, given by

K.

1+ K,

1
fy = ~ 415
L= (4.15)

10710710710 10 1077 1076 107°

N —

Figure 4.8: Arrhenius plot of the kinetic constants k,, (open symbols) and k., (closed
symbols) versus 1/T for a model without mismatch, N = 50, Eyp = —1, E, = 0.02.
The time unit is a Monte Carlo step. The lines are least square fits of the points
(full lines for opening state defined by d > 4, and dashed lines for opening defined
by the absence of hydrogen bonded base pairs).

Figure (L8] shows the results of such an analysis for a case without mismatches.
The open/closed state of the chain was measured with two different criteria: from
the distance d between the two ends (a value d > 4 is considered as an open state)
or from the number of hydrogen-bonded base-pairs (an open state must not have
any bound base-pair). Both give very similar results, in agreement with the above
discussion of Fig. () which shows that both criteria can be used to separate
between the open and closed states. When they are plotted in logarithmic scale
versus 1/T, the kinetic constants are well fitted by straight lines, which allows us to
define activation energies E, and E,; for the opening and closing events by

ko = Kpe Bo/T |y = Kye B/ (4.16)

The fits of Fig. (L8)) give E, = 6.3 and E, = 2.5. Figure (.8]) is very similar to the
figures showing k, and k. which can be obtained experimentally [4] (see figure (2.5)).
The experiments also find an opening activation energy much larger than the closing
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energy. The experimental ratio F,/E, is even larger than the ratio that we derive
from our model. Owing to the simplicity of the model, it would be meaningless to
try to adjust parameters to get the experimental ratio. What is more interesting
is the meaning of this result £, > E,, which can be related to the need to break
the hydrogen bonds linking the base-pairs to open the hairpin, while the kinetic of
the closing is dominated by entropic effects because it occurs when the two sides of
the stem managed to reach the correct spatial position after a random walk in the
configuration space.

Experiments show that the opening kinetics is almost insensitive to the length
of the loop, while the closing slows down significantly when the length of the loop
increases (k. decreases) while its activation energy does not depend on the length
of the loop. The model confirms that the activation energies do not vary when we
change N, but it only finds a very small variation of k. as a function of N, contrary
to the experiments. This points out one of its severe limitations: the entropy of
the loop is not sufficiently well described when its motions are constrained on a
two-dimensional square lattice. This limitation also appears when we study the
effect of the rigidity of the loop. As noticed above, the effect is very small and to
obtain some noticeable influence of the rigidity, we have to increase the bending
energy very significantly, for instance up to E4 = 0.6 (figure E4l). In this case
the activations energies become E, = 5.5 and F, = 2.5, i.e. the opening activation
energy is reduced by about 12 % and the closing energy is only weakly affected, while
the experiments found a large increase of the closing activation energy and almost no
change for F, . This shows that, for this study, our model does not correctly describe
the experiment. Besides an incorrect description of entropic effects in the model,
that we already mentioned above, other phenomena could enter, and particularly
a possible role of the mismatches in the experimental sequence. While the model
strictly forbids mismatches, in the experiments, changing the bases in the loop from
A to T modifies the possible mismatches.

As one could expect, the kinetics of the hairpin fluctuations is strongly affected by
the presence of mismatches. The two-state approach is no longer valid. Mismatched
states are open if we define them in terms of the distance between the ends but still
show many hydrogen-bonded base-pairs. Although the time evolution of the closed
states is no longer a simple exponential decay, an approximate fit by an exponential
gives the order of magnitude of the characteristic time 7. Figure ({3) shows the
values of 7 determined with two definitions of an open state: (i) a state where the
distance of the two ends of the chain is d > 2, (ii) a state where all the hydrogen
bonds linking the bases in the stem have been broken. Figure (X)) shows that the
lifetime of closed hairpins defined according to these criteria vary by several orders of
magnitude. This is not surprising because a hairpin which is closed in a mismatched
state may be counted for open for the first criterion (d > 2) but closed with respect
to the second one since some of its base-pairs are hydrogen bonded. In this case the
above analysis to calculate k, and k. loses its meaning.
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Figure 4.9:  Logarithmic plot of the characteristic time for opening T versus 1/T
for a case with mismatches. The squares (fitted by the full line) correspond to a
definition of the opening from the distance of the two ends (d > 2) and the crosses
(titted by the dashed line) define opening by the absence of any hydrogen-bonded
base-pair. The time unit is a Monte Carlo step.

The role of the mismatches in the experimental studies of molecular beacons
[4] has not been investigated so that we cannot compare the results of the model
with experimental data. Although the sequence used in [37] could in principle allow
wrong closing, there were certainly much less likely than in our study where all
base-pairs of the stem are the same. Moreover, studies using a fluorophore and a
quencher are only probing the distance d between the ends of the chain, so that they
are not sensitive to wrong closings. For such a study the hairpin is still a two-state
system.
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Chapter 5

PBD-Polymer model for DNA
Hairpins
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5.1 Presentation of the model

The previous model shows some weaknesses especially on the modelling of the en-
tropy of the system. So we have developed an off lattice model that still is a highly
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PBD-Polymer model for DNA Hairpins

simplified model but is nevertheless much richer, in particular regarding the mod-
elling of the loop, which plays a large role in the properties of DNA hairpins. A
simple view of DNA hairpins can consider them as a single short polymer with hy-
drogen bonds as well as base-pair stacking between the two ends of the chain. So
the idea is to combine models of polymers with the PBD-model for the double helix.
Our model is based in this point of view. We have chosen to divide the model of
the hairpin in two parts:

e the loop formed by a sequence of identical bases which is treated as a simple
polymer, in practice made of a single type of base, A or T.

e The stem which is an extension of the two ends of the loop (with a poly-
mer behaviour) but with additional interactions according to the pairing of
complementary monomers or bases (given by the PBD-model).

In practice we construct our model beginning from the simplest loop which is a
sequence of A or T-bases, i.e. an homogeneous polymer. The loop is modelled by a
polymer chain in three dimensions. One major question of our study is what is the
appropriate model for the loop? We will examine it in detail in this chapter but at
this level, we can already make some comments that set the framework of our study.
We have tested the three different polymer models that we have presented in the
Chap. 3. The FJC is the simplest but we can expect it to be oversimplified because
the experiments show that the stacking interaction of the bases inside the loop is
important regarding the physical properties of the hairpin. Fixing the value of 6 in
the FRC could perhaps model in some sense the stacking interaction and the rigidity
even if the rotation around the bond is free because, as we have shown in Chap. 3,
the value of 6 determines the persistence length of the chain, i.e. its rigidity. Thus
this model deserves an investigation. The Kratky-Porod model which seems to be a
good model for the modelling of long DNA chains could be a good candidate for the
loop because it includes a parameter which represents the rigidity of the chain. The
question is to know whether this model remains correct for single chain where the
persistence length is very different from that of double stranded DNA for which it
was experimentally tested, and for short chains less than ten times the persistence
length.

As we are interested in a very short stem, it is not necessary to take into account
the helicity of the DNA molecule [33|, [34]. As for the previous model, the goal is to
find thermodynamics and kinetics properties of this system [37], [4]. Before doing
that, we will study separately a short stem in order to see the difference with the
infinite case and it will also give us the qualitative properties of this part on the
complete system. Figure (B]) gives a schematic representation of the model.
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N=10

Figure 5.1: Plot of the model to define some notations. Index m=1---M will be used
for the stem base-pairs. Index n—1...N+1 will be used for the bases in the loop. Note we
have 2M+N-1 bases in total. The variables y,, are the stretching of the base pairs y,, = 0
means that the distance between the bases is d—10A, which is the value that we use for
the equilibrium distance of bases in a pair. The variable r will be used for the variation of
the distance between the two bases at the end of the hairpin, i.e. r=y;+d. The variable R
is the distance between the two ends of the loop. Therefore R—yp;-+d.

5.2 Study of the stem

In this part we study the stem with the condition that the two strands are confined
because we must keep in mind that we have the loop which limits their separation.
In practice we will impose this condition through the potential V(y). In order to
illustrate the transfer integral method we have chosen a very simple version of the
PBD-model which allows analytical calculations. Figure (B2) gives a schematic
representation of the model of the stem.

coupling

—\VVNV-CAANN-O
' 1 vnl tPotentiaI V(y) IR
OMOW—O—W—O

I
I
un T Harmonic

Figure 5.2: Schematic representation of the stem.

The characteristics of the stem are the following:

e The displacements along the chain are not considered because their amplitude
is much smaller than the perpendicular ones [32]. The transverse displacements
are represented by wu, and v, for the two bases.
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e The coupling between two consecutive bases is harmonic.

e To model the combined effect of the hydrogen bond, the repulsive part of the
phosphate as well as the effect of the solvent, we put an effective potential. The
PBD-model uses a Morse potential. In this section we use a simpler square
potential shown on Fig. (B3). It has qualitatively the shape that we can
expect for the interaction within a base-pair of the stem. The well describes
the binding of the bases. The plateau corresponds to the open state. But the
bases are confined to a finite distance by the loop. This effect is described by
the infinite barrier at distance L.

V(y)

\

-D

Figure 5.3: Schematic representation of the potential V(y) where y is the stretching of the
hydrogen bonds between the bases. The infinite wall at y—0 means that the bases cannot
overlap, while the infinite wall at y=L comes from the maximum separation of the strands,
limited by the length of the loop.

Therefore, the Hamiltonian of the model is:

1 1
H=>)" [§m (1in? +00n%) + 5K [(n — Un—1)? + (Vn = Va1)?] +V (1 — v,) |

(5.1)
where the three terms represent the kinetic energy of the transverse vibrations, the
potential energy of the chain and the bonds connecting bases in pairs, respectively.
m is the mass of a base and K, the spring constant. This Hamiltonian can be used
for various calculations [T0], [I1], [T9] but here we are interested in the statistical
mechanics only. It is convenient to introduce new variables z,, and ¥, linked to u,
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5.2 Study of the stem

and v, by:

The Hamiltonian takes the following form:

= Z[ mei 2+ LK (@, — 2,0 ]+Z{ M+ 5K (o = s | +V(32)

H=H,+H,. (5.2)

We immediately see that the Hamiltonian is divided in two parts: H, describes the
harmonic center of mass motion and H, contains all the anharmonicities expressed
in V(y,). In the next section, we will focus our attention on H, only because it is
this part of the Hamiltonian that contains the physics of the hairpin opening because
it is the variable y,, that describes the opening or the closing of a base-pair.

5.2.1 Partition function

In statistical physics, if we are able to derive the partition function of a system, then
we get all the thermodynamic quantities. The problem is that we must sum over
all the configurations and it is generally impossible. That’s why numerical approx-
imations like Monte Carlo Metropolis scheme or other more sophisticated methods
are sometimes used [(2]. Here we present an exact analytical calculation of the
partition function for a finite homogeneous stem. In the case of a non homogeneous
stem numerical calculation are necessary [[Z1].

The partition function that we have to calculate is the following:

N

i=1

The momentum part in the partition function gives:

2mm 2
Lsp = | ——
57)

To go further in the calculation, we introduce the eigenfunctions and eigenvalues of
the non symmetric transfer integral operator:

/ dyi_ 1”0 VW) Ry, ) — o=Porpfi(y,) (5.4)
/dyi_le_ﬁ(}g{(yi_yi1)2+V(yi1)>¢£(yi_1) _ €—ﬁ€k¢£(yi)7 (5_5)
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with:
[ vttt =1 (5.6)
S 6Ey)ok () = d(a —y) (5.7
o (y) = ™o (y). (5.8)

Now it is convenient to use the identity:

/dré(r ) =1,

Therefore we can introduce this integral in the partition function without changing
anything:

N
Zs - Zsp / deie_ﬁ[zi'v V(yi)+2fi3 %(yi_yifl)z]

/dy1/dr 5(7"—yl)e_ﬁ(v(yl)""%(yQ_yl)Q)'

Using Eq. (5.7), we get:

Zs = ZSP/dTZ¢kR /dez Vit ELs 5 ivin)’]
k

/dyle—ﬁ(\/(yl)+2(yz—y1)2)¢£(yl> ‘

[

~
e Pkl (yz)

Then we can perform the same integration over the variables ys to yy_1:
L=y 3 e o [arsfe) [ e 00k,

Finally using Eq. (5.8) we get the following expression for the partition function:

e () o o] e

Thus if we are able to find the eigenstates and the eigenvalues of the transfer integral
operator, we can compute the thermodynamic quantities such as the free energy, the
entropy and the heat capacity.
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5.2 Study of the stem

5.2.2 Transfer integral in the continuum medium approxima-
tion

If we use the continuum medium approximation it is possible to get the eigenfunc-
tions and the eigenvalues that we need. Due to the Gaussian function in the transfer
integral operator exp (—(BK (y; — vi_1)?/2), the kernel takes very small values except
in the vicinity of y;. Consequently we can perform a Taylor expansion of ¢f(y;_ ;)
around y; and then integrate over y; i:

“B(E (g —yr )2 )
e_ﬁek@f(yi) _ /dyi—le 6(2(?/2 Yi—1) +V(yz))¢]§(yi_l)
— e—ﬂV(yi)/dyi_le—ﬁ%(yi—yi—1)2¢k3(yi_1)

— VW) /dyi_le—ﬁg(yi—yil)z {qka(yZ)—f—

oy} 1 ¢

2 dy?

2oR [ —2
—BV(y) | 4R K
= (y){¢k(yz)+0+§d2 (7)
2m L 1
3K QﬂKdy

2 1 d?
o) =00 [T (i) ofy)

Y

(w—%—f+~}
9 n
+- }¢(%)

_ 6—ﬂV(yi)

BK
Indeed, we recognize the expansion of an exponential. Putting e = ﬁln (g—f),
o= 25+K and Ej, = ¢, — e we get the following Schrédinger equation:
o (y
POy y)otty) = Bl (5.10)

dy?

Consequently finding the eigenfunctions and eigenvalues is equivalent to solving
a Schrodinger equation for a particle in the potential V' (y). The solution of this
equation is quite easy to derive and we will only give the result here. We must
consider two cases, one for Ej, < 0 and the other for £y > 0.

Bound states: -D < E < 0 In the solution of the Schrodinger equation in
the book of Peyrard and Dauxois [74] with a similar potential, but without the
restriction y<L., we see that a localized ground state exists only under a temperature
T = 2“\/27 In our case L 2 100a, which means that the constraint y<L does not
change quahta‘rlvely the resul‘rs, although the system now has a discrete spectrum
for all E. When the particle is in the well, it lies in a localized ground state, which
exists for T' < T,,, with T,,, = T)>°.
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One can show that the ground state has the following form:

Aosink‘oy 0§y§a>

o (y) = , (5.11)
Aoﬁsinhpo(L—a) a<y<L.

With k2 = Z£20 and p2 = —£2. One must be careful for the normalisation. Indeed

the correct normalisation is given by the Eq. (5.6). So that we have:

L — sinkoacosk }
— = a — sin kya cos kpa
A2 o 0 0 0
.2
k L —
S o cothpy (I —a) — — p(;( %) (5.12)
Po sinh® po (L — a)
The eigenvalue Ej is solution of the equation :
ko
tan kga = —— tanh py (L — a). (5.13)

Po

In practice we solve this equation numerically.

Extended states: E>0 As the potential V(y) goes to infinity for y > L, we get
a infinite but discrete number of eigenfunctions. Indeed, the confining aspect of the
potential leads to a quantization of the eigenvalues. In this case, the eigenfunctions
are given by :

Ay sinkpy 0<y<a,
o (y) = o (5.14)
n%smkn@—a) a<y<L.

With k2 = £2£E» and k2 = £2. The condition of normalisation gives the A, :

1 e 8P
A_% = o [kna — sin k,a cos k:na]
Sm]if"“ [cot k(L =) = = f;ljf (; ?a) (5.15)
And the eigenvalues are given by :
tan k,a = —%tank; (L —a). (5.16)

n

In this case we also find the solutions numerically. Figures (&) and (E3) give some
eigenfunctions for 7' < T}, and the evolution versus temperature of the eigenstates
corresponding to the lowest eigenvalues versus temperature.
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=)

0.5 - —

Figure 5.4: Representation of eigenfunctions.
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Figure 5.5: Evolution of the eigenvalues as a function of temperature.

Now we have the eigenfunctions and eigenvalues necessary to compute the partition
function of the stem.

5.2.3 Results

Free energy and Entropy Using the expression of the partition function and
the relation F(T) = —kyT'In Z,; we can compute the total free energy of the stem.
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F(T)

Figure 5.6: Free energy of a finite stem.The parameters are the following: D—4; a—0.1,
K=6 and N=5 in arbitrary units

And the derivative of the free energy determines the evolution of the entropy of the

system with temperature.

Figure 5.7: Temperature variation of the entropy of the stem. The parameters are the
following: D=4, a—0.1, K—6 and N—5 in arbitrary units
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5.2 Study of the stem

The graphic of the entropy does not show a transition because there is no discon-
tinuity or angular point in the free energy. The entropy grows continuously with
the temperature but there is nevertheless a temperature range in which the entropy
increases faster. It corresponds to the temperature domain in which the system
changes form closed to open. Instead of a transition, for the finite system that we
consider here, we can expect the coexistence of closed and open state with a gradual
shift from a mostly closed to a mostly open situation. To verify this hypothesis we
can select a “reaction coordinate” and compute the free energy versus this coordi-
nate. For the hairpin the appropriate coordinate is r, the stretching of the base-pair
that terminates the hairpin. This parameter is appropriate because it is related
to the experiments that use FRET to detect the variation of distance between a
fluorophore and a quencher.

Free energy as a function of » Let us calculate this new quantity which will
be very important for the study of the hairpin. We must calculate the partition
function for a given r. The derivation is quite similar to the previous calculation.
So we have to integrate e ##s over all the variables of the stem excepted the first
variable y;. That is equivalent to integrating over the first variable y; but putting
also a delta function §(r — y;). Therefore the partition function is given by:

N
Z(r) = Zy, / [ dyse?B=" V@i Gy / diyr5(r—yp )e PV @+ @-)?)
=2

Then we perform the same calculation as for Z introducing the eigenstates of the
transfer integral operator and finally we get:

Z(r) = (%Tm)% ije‘ﬁ(N‘”ékaﬁkR(f’)/dycb;f(y)‘ (5.17)

In practice the summation over k is truncated to the 100 lowest values of € because
the other contributions are negligible. Consequently we can easily compute the free
energy landscape Fyr(r) = —kyTInZ,,. Figure (8) gives the evolution of the free
energy landscape of the stem as a function of temperature.

We get a free energy with a well for a small value of r, which represents the closed
configuration, and a large plateau for higher value of » which represents the open
configurations. The fact that we have a plateau comes from the form of the poten-
tial V(y). The shape of the free energy F'(r) indicates that only one state is really
stable, the closed state. But due to the large plateau, states with large r will also
be populated at any temperature. And when T increases their weight will increase
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Figure 5.8: Free energy landscape for different temperature.

because the depth of the well corresponding to the closed state decreases. There-
fore the free energy F'(r) shows that the stem opens gradually when temperature
increases. However for the stem alone we cannot speak of a transition since only one
stable state exists. The expression of Z(r) allows us to compute the mean value of
r versus 1, which is a measure of the opening of the double stranded DNA. Notice
that the value of (r) involves the summation over all eigenstates (in practice 100).
On the contrary in the limit N — oo the sum is dominated by the lowest eigenvalue
€o. It is interesting to evaluate the influence of the excited states ¢, (K > 0) on the
mean distance of the first base-pair (r). The expression of (r) is given by

_ [drrZy(r)

(r) = TarZi(r) (5.18)

Figure (B29) shows (r) calculated with respectively 1 term (¢p only), 2, 5, 10 terms
in the summation.

With one term we note sharp rise of (r) while the transition appears smoother
when we include additional terms. This is because the summation restricted to the
lowest, term corresponds to the thermodynamic limit for which a true transition
would exist (at least in the limit L — oo) while the introduction of the extra
terms allow us to properly take into account the finite size of the stem. The simple
square potential that we have chosen is convenient for this study because we can
get the eigenfunctions of the transfer operator in an analytic form. For . — oo and
the Morse potential of the PBD-model an analytical expression exists (but is very
tedious to manipulate and leads to numerical difficulties) but for a finite L, only
the numerical approach would have been possible if we had not chosen the simple
square potential.
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06 0,7 08

Figure 5.9: Influence of the excited states on the mean distance of the first base-pair.
The parameters are D=4, a—0.1, L=10 and K=6 in arbitrary units. e: one term; L1: two
terms; ©: five terms and /A: ten terms in the summation.

To conclude, we have seen that the study of a finite stem requires several eigenstates
and with the simple version of the PBD-model it is quite easy to calculate them.
Nevertheless, we know that to be more realistic we have to use the complete version
of the PBD-model that we have presented in Chap. 1 with a non linear stacking
and a Morse potential. Indeed, the work on the DNA molecule has shown that
the stacking is more important when two consecutive base-pairs are closed than one
intact and the other broken. To take this into account the PBD-model includes a non
linear stacking given by W in Eq. (L3). Moreover the potential which characterises
hydrogen bonds is the Morse potential. The coupling in the Hamiltonian of the
stem given by Eq. ([2) (without the H,) is now replaced by Eq. (L3). In the
case of the complete model we cannot use the transfer integral method because it
is difficult to find all the eigenstates and eigenvalues of the transfer operator. A
numerical calculation of the eigenstates could be possible but, even this approach is
technically difficult due to overflows and numerical accuracy problems. Moreover,
the approximation of continuous media is not correct for small chains as it is shown
in Ref. [32]. For these reasons we have used a direct numerical integration of the
partition function for the complete system. We present our calculation in the next
section.

5.3 The complete system

Now we can come back to the problem of the hairpin. The goal is to find the
partition function of the system in order to get the free energy landscape. With
this quantity we will be able to find thermodynamics and kinetics properties and
compare them to the experimental ones.
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5.3.1 Partition function

As experiments probe the opening of hairpins by using a fluorophore/quencher sys-
tem which is sensitive to the distance between the ends of the hairpin, it is useful
to compute the partition function of the system for a given distance r between the
two ends of the chain as we did for the stem in the previous section. Therefore we
introduce a delta function in the calculation of the partition function as we have
done for the stem only. In order to see how we construct our partition function let’s
begin by a system without stacking interaction and hydrogen bonds, i.e a polymer
alone.

First of all the partition function for a given end-to-end distance r); = R is linked
to the end-to-end probability distribution

Pt — J v dans (|25 il = rar) 2 50— iy
i T Ty daye-PGan) 7

(5.19)

Where N is the number of monomers, {ay}, the generic variables of the loop and
Hy, the Hamiltonian of the loop. In order to build the partition function of the
hairpin we shall start from the reduced partition function of the loop made of N
monomers Zy(ry), where rys is the distance between the ends of the loop which
is also the distance between the two bases making the last base-pair of the stem,
which is at the end of the loop (see Fig. (5.1)). Then we shall extend the loop by
adding the segments forming the stem. In a first step let us ignore the stacking and
Morse potential interactions which are specific to the stem and only consider the
polymer made by the DNA strand. When we add one base-pair to the stem we add
two segments to the polymer. The extended loop with N + 2 monomers has now
the distance rj;_; between its ends. So that its restricted partition function is

Zna(ry-1) = Prnia(rv—1)ZiYs- (5.20)

But the probability Py a(ra/—1) can be expressed as a function of Py(ry) if we
introduce the conditional probability S(p'|p) that if a polymer has the distance p
between its ends, the polymer with two additional monomers has the distance p/
between its ends as schematized on Fig. (&10).

Figure 5.10: Schematic representation of the growth of the polymer.
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This conditional probability function can in principle be calculated if we have a
model for the polymer. We have shown in Chap. 3 how it can be obtained for an
effective Gaussian model.

With this function we can express Py o(r) in term of Py(R) as

Pxsa(e) = [ dpS(e/1p)Px(p) (5.21)

or, in the context of our calculation

PN+2(TM_1) = /d’f’MS(TM_1|’/’M)PN(TM), (522)

which gives the reduced partition function for a stem with two base-pairs as

Znyo(rm—1) = Z?\?iz/dTMS(TM—ﬂTM)PN(TM). (5.23)

The same process can be repeated if we add the third base-pair in the stem. From

ZN+4(7”M—2) = PN+4(TM—2)ZJt\(;i-4

= 7\ / dra—1S(rar—alrar—1) Pa(ra—1), (5.24)

we get

Insalra ) = 20, / drar 1 diae S(raralrar ) S(rar ) Pa(rar). (5.25)

We can continue the process until we have added (M — 1) base-pairs to the one that
is next to the loop, in order to get the complete stem, with M base-pairs, which
corresponds to the total of (N + 2(M — 1)) monomers in the polymer forming the
hairpin.

We get the reduced partition function

+ oo M

ZNyo(m-1) = Zf\?fﬂ(M—l)/ dTH S(ri—alri) Pn(rar)- (5.26)
0 i=2
Up to now we have ignored the contribution of the Morse potential and stacking
interaction. Let us now examine how it enters.
Consider again the loop alone with its terminal base-pair. Due to the Morse potential
V(rar), the probability Py (r3;) must be multiplied by eV ("), Its reduced partition

function is then
Zn(rar) = e PV Py (ra) Z5E (5.27)

When we add one base-pair, i.e. two monomers we add one stacking interaction
W (rp—1,7a) and one Morse potential V(ryr). So that Eq. (22Z0) becomes

Znia(rv-1) = Z3',

e—ﬁV(er)/drM e AW -1tV Sy |ra) Py (rar).  (5.28)
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This shows that, in our previous calculation we can formally replace S(r;_1|r;) by
S(’l“i_l"l“i) — S(’f’l’_1|’f’i) exXp (—5 (V(TZ) + W(’l“i_l, ’I“Z))) s (529)

and multiply the final result by the e #" term corresponding to the base-pair clos-
ing the system. Therefore the reduced partition function of the hairpin with the
interactions in the stem is finally given by

Z(r) :Zloop(N+2(M—1))e_ﬁV(T1) X

+oo M M
/ [ dri [T S(riealrie VoWl py (ry), (5.30)
0 =2 i=2

where r; = y; + d according to the notations of Fig. (&l). Note also that » = r; and
R = r)s in these notations. V and W have the following expressions

V(r;) =D [(exp (—a(r; — d)) — 1% — 1],
(5.31)
W(ri,riv1) = % 1+ pexp (=6 (r; +1i-1 — 2d))] (r; — ri_1)2 )

5.3.2 Free Energy and Entropy

It is interesting to see the form of the total free energy as well as the entropy of the
system. The free energy is given by

F(T) = —kpTnZ, (5.32)
where Z is obtained by integrating Z(r) over r

Z = [ drZ(r). (5.33)
And the entropy S(7T') is given by the first derivative of F
OF
T)=——. 5.34
S(r) =2 (5.34)

Of course the expressions of F' and S depend on the model of the loop we are using
through Py(R). However the behavior of the temperature evolution of F' and S stays
qualitatively the same for different loop models. Figure (E211]) gives the evolution
of F(T) and S(T') with temperature for the FRC model and without the growth of
the polymer (S=1).

We can see a change of the slope in the free energy around 310 K which could be
defined as the melting temperature. The entropy profile shows a sharp increase when
the system goes from the closed state to the open one by increasing the temperature.
To be more precise we have to derive melting curves as well as rates of opening and
closing for different parameters of the model and different loop models. Before doing
that we present the derivation of the rates of opening and closing in the case of an
equilibrium between the open and the closed state with a transition state between
the two.
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Figure 5.11: Example of free energy profile and entropy with the FRC model for
the loop. The parameters of the stem are: D=0.107 eV, k=0.025 eV.A‘Q, a=6.9 A_l,
0 =0.35, p=2>5,0 =45° and N-21. Left: Free energy. Right: Entropy calculated

by S(T) = 3¢

5.3.3 Kinetics: theoretical predictions

In order to study the kinetics of the opening-closing fluctuations, we view them from
the point of view of a chemical equilibrium between two states (C closed, O open)
separated by a transition state (T) as schematized on Fig. (212))
kq ko
B B
Ce=— T =0
k1 —2
Figure 5.12: Chemical equilibrium.

-1,1

12

13-

F(n

14

-15

r

Figure 5.13: Example of a free energy profile obtained with S =1 and a loop modeled by
the FRC. The parameters are the following: D—0.107 €V, k—0.025 eV.A=2 o 6.9 A~1,
0=0.35, p=5, 6=45° and N=21.

Here ki, k_1, ko and k_5 designate the kinetic constants. Let us denote by C with
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indices C, T, O the concentrations of the different species. Therefore we have

Co=—kCo+k_1Cr
Cp = — (k_y + k) Cp + k1 Ce 4 k_5Co (5.35)
Co = —k_5Cp + koCr.

We then assume that the concentration of the transition state stays constant. This
is the quasi-stationary state approximation:

Cp=0. (5.36)
Then we get
k1Cco + k_2Co
Cr = . 0.37
g ki + ks (5.37)

Now if we insert Eq. (i31) in (B33) we get

. k1Co + k_2Co
Co=—-kCoc+Ek_
C 1“C 1 k_l i kz
kiko k_1k_o
S L G LS L W
koi+ky © ko ks ©
CC = —k?fCC + k,Co, (5.38)

where k¢ and k;, are the rates of opening and closing, respectively, we would like
to derive. The assumption (E30) amounts to assuming k_; + ko >> k;, kg, which
means that the stationary state for 7" is reached because the time scales for going
in and out of the transition state are shorter than the time scales to open or close.
Moreover

Ce+Co =0, (5.39)
and at the equilibrium Co = Cp = 0, so that

Ce ky kik_o

L . 5.40
Co ki k_iko (5.40)
Finally we obtain
0,1, Ceo, -
kit :k11+CTOk_; (5.41)
C
k= kb =2k (5.42)
Cr
The ratio in Eq. (5280) is given by thermodynamics
Ce Z
L _zZ< (5.43)
Co Zo
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5.3 The complete system

The opening-closing of a hairpin is a complex process involving many degrees of
freedom but in the spirit of our equilibrium thermodynamics calculation, it is natural
to introduce a reaction coordinate r, which is the distance between the ends of the
hairpin.

In this spirit, we can consider that the system is evolving on a one-dimensional free
energy surface, which has the qualitative shape shown in Fig. (13). The closed and
open states are minimum of this surface F(r) and the transition state corresponds
to the maximum. We can select the origin so that the transition state is at r = 0.
In term of the free energy F(r) the partition functions for the closed and the open
states are

0
Zc :/ dre=PF) (5.44)
Zo :/ dre PEO), (5.45)
0

and the kinetics of the opening-closing fluctuations is an evolution on this free energy
surface, which can be described by a Fokker-Planck formalism. Therefore we have
to derive the expression of k1 and k_5 to get the rates of opening and closing.

To do that we suppose that the system diffuses on the one dimensional effective
potential and we would like to know the mean passage time [5] for the system
which is in one of the two wells to go in the other one through the barrier. If we call
P(r) the probability distribution, i.e. P(r)dr is the probability of the system to be
in the range [r,r 4 dr], it obeys to the usual Fokker-Planck equation:

{ jr) = —DE}) (22 + BF'P]. (5.46)

We assume some boundary conditions associated to our problem:

e Reflecting boundary also to the left: r — —oo: lim,_, o, j(r,t) = 0V ¢. In
practice we use a hard core at r=9.7 A

e Absorbing boundary in 7 = et J(Tmaz, t) = AP (Fmae, t) with A — +o0
which means that once it has passes the maximum the system evolves to the
second minimum.

The mean first passage time is given by [[76]

“+oo Tmax
S / dt / drP(r.1). (5.47)
0 —00

First of all let’s integrate Eq. (B46) over r:

"oP(rt)
/Tdr——](r,t),

— o0
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so that s P(r ¢
j(rmax>t) = AP(rma:z:;t) = _/ é? >d7“ (548)
Using Eq. (B46]), we also get
OP(r,t) oP
=D — + [BF'P
[m o ()b,+ﬁ }
= D(r')eﬁpa— (e’ P). (5.49)

or'
Now we can integrate (E.29) over 7/

Tmazx a Tmaz d,r,/ aP(R/ )
1= BF — - Il S
/R dr or’ (6 P) /R D(r")e=8F /OOdR ot

T'maz dr’ aP(R/ )
ﬁF(Tma:r)P s ) — ﬂF(R)P R.t :/ 7/ dRF——""7 (550
e (7’ i ) € ( ) ) " D(T,)e_ﬁF . at ( )

Putting Eq. (248)) in Eq. (B20)

e PrY rmesOP(R',t)
P(R7 t) - m/\ dR T
_ fmaz dr’ OP(R',t)
AE(R) —_— dR ——~ 0.0l
6 /R e I
and putting
o~ BF(X)
po(R) =

JIme dRe=PF()
with [77"*" po(R) dR =1, we get

Py rmer AP(R,
P(R,t) = ﬁﬁf—A/ dR—%rl

rmes ! ,OP(R',1)
PO(R)/R W/_oodRT' (5.52)

Now let us integrate Eq. (B52)) over R and ¢t which is exactly the definition of 7 that
we are looking for

T_/ ﬁ/mURPRt

[ P
APO(Tmaz) /—oo dy (y’ )

J(::“I<txf%(aﬂ jcrnmm 15(;?;%2;3-J(i;)dylj(y,o) (5.53)

T =
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where we have assumed that lim; o P(y,t) =0V y. At £t =0 let us assume that

the system is at the thermodynamic equilibrium, so that P(y,0) =

1 Tmax Tmax
- P Py
T AP (P +/_oo de O(x)/x Po / dyFo(

1 Tmax Tmax
= P H
ot / d Py () / drH(r)

—00

= m + /Tmm dxPy(x) /Tmm drH(r)O(r — x)

—00 — o0

1 Tmax T
= H P
AP () —l—/_oo drH (r) /_OO dxPy(x)

_ W +/: drm /_;dyPo@) /Oo
et s ([ ),

where O(x) is the Heaviside function. Finally, taking A — 400, we get

T = fr:(l)n D(r) Po(r ]2(T>

= [ dzPy(x).

Now we can apply the expression of 7 to our special case

rT ]2
kit =100 = / dr—o(g) ,
—eo D(r) By (r)

with .
lo(r) = [ daP{"(a),
and 5P
PO(F)(T) = ¢ YVor<rp.
Zc

We also need the expression of k5

B e’} ]2 r
o [ B
T D(r)Fy~"(r)
with -
lo(r) = [ deR”(a),
and .
PO(O)(’/’) _ ¢ Y or>rp.
Zo

Py(y), then

(5.54)

(5.55)

(5.56)

(5.57)
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Therefore
rT ]2 7 00 ]2
kil = / dr—C(fC)) o dr—O(Q)
o D(VPY(r)  ZoJr  D(r)Py(r)
"T dr I%(r) * dr I%(r
P / _0—+/ dr 15(r)
e ( o Zo D) PO () Jre Zo Dr)PO(r)
+00 ,BF(T‘)]Q(T>
A=z £ - .
k; C/_oo T py (5.58)
with
ffoo dxe_gi(z) Yor<rp
I(r)= (5.59)
f:oo da:e_?;(z) Y r>rp.

Finally k, ' = g—gkgl In order to avoid numerical problems during integrations we
transform Eq. (08 as

400 e—ﬁF(r)J2(,r,>
kil =27 dr—————2 5.60
S N o o0
with
I dx%;”m Vor<rp
J(r)= (5.61)
fjoo dx%;m)) Y r > rp.

5.4 Case of S=1

In order to get a first idea of the behavior of the hairpin, it is convenient to start
from a zeroth-order approximation in which the stem and the loop are decoupled in
the calculation. This can be obtained if we set S =1 in the general expression (5.29).
This approximation simply replaces e #V () by e‘ﬁV(TM)PN(rM) in the expression
for the stem alone. Strictly speaking this is not correct because the transformation
gives an expression of Z(r) which does not have the expected dimension for a reduced
partition function. We nevertheless introduce this approximation as a preparation
for the discussion of the complete calculation of Section 5, keeping in mind that it
can only give the general behavior of Z(r), up to a factor. In this case, the reduced
partition function is given by

M-1

Z(r) = e "0 / H dri/drMPN(T’M)T(T’M —d,rp—1) - T(re,r —d), (5.62)
where T'(r;, ;1) = exp (=B [V (r;) + W(ri,r;i_1)]) and U(r) = V(r — d).
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5.4 Case of S=1

5.4.1 Thermodynamics

The free energy landscape F(r) = —kT'In Z(r), with Z(r) defined by (5.54) has
the shape plotted in Fig. (13-

It is interesting to compare this figure to Fig. (5.9) for the stem alone. In the
presence of the loop besides, the deep minimum around r=10 A, we have a second
minimum for large values of r. One can understand its presence in term of the
entropy of the loop. The idea is similar to rubber elasticity. When the loop is
stretched it can only occupy a small number of conformations and thus has a lower
entropy. When 7 increases the loop can access many configurations and its entropy
increases, hence decreasing the free energy. But whatever the loop model, too low
values of r also lead to a penalty in free energy. For the Kratky-Porod chain model
the penalty is energetic, while for the FRC very low values of r again reduce the
number of configurations or are even not accessible. This explains why, when r
decreases below ry the free energy raises gain to a maximum for » = r, before the
large drop at r = ry which is due to the large energy gain when the hydrogen bonds
in the stem are formed.

This shape of the curve F(r) justifies the image of the two-state system that we
have used for the kinetics. Those states are the closed state for » ~ r; and the open
state for r &~ ry. In the view of a chemical equilibrium between the two states, one
can define an equilibrium constant

Po

Keg= -

(5.63)

Where, Py, and Ps are the probabilities to be open or closed, respectively. We
define the probabilities by

“+oo
drZ(r
Po = 7‘[7100 ( ), (5.64)
fo drZ(r)
and Po + Py = 1. The parameter r, is the value of the reaction coordinate at

the maximum of the free energy (transition state) between the two wells which
corresponds to the open and the closed state. Then the melting curves which are
equivalent to the normalized fluorescence measured in the experiments are given by
Pp. Indeed, we have

K Po

eq P
= = = P. 5.65
1 +Keq 1 T I]z_g O ( )

S

Let us now give a first qualitative view of the properties of the hairpin as a function
of the model parameters. A more quantitative picture will be given for S # 1 but
this first approach is useful to get an idea of the separate influence of the loop and
stem.
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5.4.1.1 Role of the loop

FRC model First of all we propose to compare the melting curve obtained for
a stem of five base-pairs and with and without loop to see its effect. Figure (514
gives such a comparison.

041 -

02 —

| | | | | | | | | |
50 300 350 400 450 500 550
Temperature

Figure 5.14: Melting curve obtained for a stem of five base-pairs with and without a loop.
The loop is described by the FRC model. The black curve corresponds to the stem alone.

We see that the stem tends to open at lower temperatures in presence of the loop
which is due to the additional entropy brought by the loop. Therefore T, is smaller
for the hairpin than for a stem alone. Moreover the transition is a bit sharper in
the case of the hairpin but this is not a strong effect. The results are summarized
in the next table

AP
Tm ETm
stem 350 | 3.9
stem-+loop | 325 | 3.1

where we indicate the melting temperature and the quantity %Tm which is a di-
mensionless measure of the slope at T,,, multiplied by T}, to get a dimensionless
quantity. It measures the width of the transition.

In order to study the effect of the loop in more details, we now present the results
obtained by varying the properties of the loop. Figure (EI0) and (BI6) give the
melting curves for different loop lengths as well as the evolution of T, for two dif-
ferent fixed angles . First of all, for the two values of # the melting temperature
T,, decreases with the loop length. The decrease is most important for 6 = 60°. T,,
varies from 350 K to 323 K for N going from 12 to 30 but for § = 45°, AT,,=15
K only. Secondly, for the same value of the loop length, T}, decreases with decreas-

ing 6. Theses results are in qualitative agreement with some of the experimental
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results. Indeed T, is smaller for Poly(A) than Poly(T) for the same loop length.
The stacking interaction which is expected to be more important in the case of A-
sequence is equivalent to smaller values of # because it maintains the chain more
rigid. Moreover, the larger the loop length, the larger the entropy, which tends to
destabilize the hairpin configuration. However the model is not fully satisfactory
because the observed variation AT, of the melting temperature is larger for poly
(A) than poly(T) which is not the results given by the model. We must also notice
that the width of the transition given by the model is about 100 K which is much
larger than in the experiments.

1—— . . . . : X : 3% ‘ : : : :
o—o N=12 L — Fit-T_=330-0.84N
08— N=16 7 2 -
N=21 L |
A—aA N=30
320
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04— —
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o A T IS N Y IS RS MO MU 200 . | . I . | .
260 280 300 320 340 360 380 400 420 440 10 15 20 25 30
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Figure 5.15: Melting curves with the FRC model: § = 45°. The parameters of the
stem are: D—0.107 €V, k—0.025 eV.A"2, o 69 A~', 6 = 0.35, p = 5, 0 = 45°. Left:
Melting profiles, o: N=12; (J: N=16; ¢: N=21; /A: N=3(0. Right: evolution of the melting
temperature with N. o: theoretical results, line: linear fitting.

360 . . . . : . : .
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Figure 5.16: Melting curves with the FRC model: § = 60°. The parameters of the
stem are: D—0.107 €V, k0.025 eV.A"2, o 69 A~', 6§ = 0.35, p = 5, 0 = 60°. Left:
Melting profiles, o: N=12; (J: N=16; ¢: N=21; /A: N=3(0. Right: evolution of the melting
temperature with N. o: theoretical results, red line: linear fitting.
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Discrete Kratky-Porod chain If we change the model of the loop, it is inter-
esting to see the change in the thermodynamics. Let us now consider the discrete
version of the Kratky-Porod chain as we presented in Chap. 3 which includes an
additional energetic contribution in the probability distribution of the end-to-end
distance. Figures (BI7) and (BIX)) give the melting profiles and the melting tem-
perature T,, for different loop lengths and for two different values of the rigidity
parameter e.

1
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310~ o —
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%0 260 280 300 320 340 360 360 400 420 440 20— I 0 A S
Tem, peratu re N

Figure 5.17: Melting curves with the Kratky-Porod chain: e=0.0019 eV.A=2. The pa-
rameters of the stem are: D—0.102 eV, k—0.025 eV.A_2, a=6.9 A_l, 6 = 0.35 p =25,
€=0.0019 eV.A~2. Left: Melting profiles, o: N=12; [1: N=16; ¢: N=21; A\: N=30. Right:
evolution of the melting temperature with N. o: theoretical results, line: linear fitting.
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Figure 5.18: Melting curves with the Kratky-Porod chain ¢ 0.0040 eV.A=2. The pa-
rameters of the stem are: D=0.107 eV, k=0.025 eV.A"2, a=6.9 A~!, § = 0.35, p = 5,
€0.0040 eV. A2 Left: Melting profiles, o: N—12; 0: N—16; o: N-21; A: N-30. Right:
evolution of the melting temperature with N. o: theoretical results.

For ¢ 0.0019.eV.A~2 we find the correct tendency: T, decreases with the length
of the loop as in the case of the FRC and the experiments. T,, varies from 325 K
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to 299 K for N going from 12 to 30 which is comparable to the experimental re-
sults. However for e=0.0040 eV.A‘Q, we obtain something quite surprising because
the evolution of T), as a function of N is not monotonous. Indeed, for N going
from 12 to 21 T,, increases and for N higher than 21 it decreases. As € is large,
the probability to form small loops, which are necessary to form hydrogen bonds in
the stem, is very small. Consequently the phase space corresponding to the closed
configuration is smaller. But when we increase the number of monomers in the loop,
even if € is large, the tendency to get a closed loop is higher, which allows the for-
mation of base-pairs in the stem. To see this effect, Fig. (EI9) gives the end-to-end
probability distribution of the Kratky-Porod chain for different loop lengths and for
two different values of e.

For €=0.0019 eV.A~2, near the equilibrium distance of the hydrogen bonds (10 A

01
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Probability distribution
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10
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Figure 5.19: Plot of the probability distribution of the Kratky-Porod chain. Left:T—330
K, €=0.0019 eV.A~2; black: N=12; red: N=16; green: N=21; blue: N=30. Right: T=275
K, ¢ 0.0040 eV.A~2; black: N-12; red: N 16; green: N=21; blue: N=30

approximately), for smaller N we get a larger end-to-end probability that tends to
stabilize the hairpin configuration. On the contrary, for the case of e—0.0040 ¢V.A 2
there is an inversion of this phenomenon for N < 21. For N < 21, reducing N re-
duces the value of the end-to-end probability distribution for small R, whereas for
N > 21, reducing N increases the end-to-end probability distribution at R small.
That explains the evolution of T, as a function of N.

5.4.1.2 Role of the stem

Let us now study the effect of the stem parameters on the properties of the hair-
pins. Figure (20) gives the evolution of the melting curves with the change of D
and k, and Fig. (2Z1) shows the same quantity but with the change of a and p.
First when we increase the value of D, which is the depth of the Morse potential,
the closed conformation is more stable and the transition to the open state takes
place at higher temperatures as expected because the thermal fluctuations must be

95



PBD-Polymer model for DNA Hairpins

large enough to allow the system to overcome the free energy barrier represented
in Fig. (E12). Second, when we change the value of k, we affect the rigidity of the
stem and the larger k, the larger the rigidity. Then, as for the stem alone, the closed
configuration is more stable for larger values of k£ and the equilibrium is shifted to
higher temperatures. Only the kinetic results will tell us if this evolution should be
attributed to entropic or energetic effects. The value of p has a small effect on the
melting profiles because we consider short stems such as the five base-pairs stem.
This is different from the effect of p on the double stranded DNA. For long double
helices large values of p lead to a large entropy increase when some regions are on
the plateau of the Morse potential, and thereby lead to a sharper transition. Finally
we see that the bigger the width of the Morse potential (small values of a), the larger
the melting temperature 7,,. When we increase the width of the Morse potential,
we also increase the width of the first well of the free energy landscape which repre-
sent the closed configuration. Thus the closed conformation is more stable and the
system again needs more thermal fluctuations to open. In fact we find qualitatively
the same influence of the parameters on T}, as in the long dsDNA with a square
potential and a linear stacking: T,, ~ @. To finish with this part we also give the

1 ‘ I ‘ 1

o—o d=009 &V
5 d=0.107 &V
08l d=0.130 eV i 08l

06—

04l

400 300
Temperature Temperature

Figure 5.20: Effect of D and k on the melting curve. The parameters are the follow-
ing: a=6.9 A1 5 = 0.35, p =5, 0 = 60°, N=21. Left: Effect of d, k=0.025 eV.A"2;
o: D=0.09 eV; 0: D—0.107 eV; o: D=0.13 €V. Right: Effect of k, D=0.107 €V; e
k=0.013 eV.A72; 0 k=0.025 eV.A"2; o k=0.050 eV.A~2,

influence of € as well as the influence of D on the melting profiles with the Kratky-
Porod chain in Fig. (222). For the influence of D we get the same dependence as
in the FRC case. Moreover, the effect of € is comparable to the effect of 6 in FRC,
the bigger the value of €, the smaller T},,. Therefore when we increase the rigidity,
the hairpin is subjected to forces from the loop part which tend to destabilize it.

5.4.2 Kinetics

Let us discuss the kinetic results for the two models of the loop that we studied.
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Figure 5.21: Effect of a and p on the melting curve. The parameters are the following:
D=0.107 eV, k=0.025 eV.A"2, a=6.9 A~1, § = 0.35, 0 = 60°. Left: Effect of a, e:
a40A7" ;0 a 5A7 0 o 6.9 A1 Right: Effect of p, ®: p=2; 0: p-—5; 0: p—10.
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Figure 5.22: Effect of ¢ and D on the melting profiles. ~ The parameters are:
k=0.025 eV.A"2, a=6.9 A7', § = 035, p = 5, N=21. Left: D=0.102 €V; e:
€0.0010 eV.A=2 ; 0: € 0.0019 eV.A=2 ; o: ¢ 0.0040 eV.A~2 . Right: €0.0019 eV.A72; e:
D=0.09 eV; O: D=0.102 eV; ¢: D=0.13 eV

5.4.2.1 FRC model

The effects of the length of the loop and of the # angle of the FRC model are shown
on Fig. (23)) which displays the kinetic constants k,, and k. versus temperature
in a semi-logarithmic plot.

The main points which appear on the curves are the followings

1. the variation of both constants is linear on this plot, showing that they obey
Arrhenius laws

_ Eop _ Ecl
kop = e *5T and ky ~ e *5T. (5.66)
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Figure 5.23: Rates of opening and closing with the FRC model in an Arrhenius plot.
Open and closed symbols represent the rates of opening and closing, respectively. The
parameters are: D=0.107 eV, k=0.025 eV.A"2, a=6.9 A=, § = 0.35, p = 5. Left:0 = 45°;
o: N—12; [0: N—16; o: N—21; /A: N—30. Right: N—21; black: 6 = 45°, red:0 = 60°

2. Changing the loop parameters (loop length N and 6 angle of the FRC model)
does not affect the kinetics of the opening. This means that the opening is
only determined by the stem in this model.

3. The opening activation energy F,, is positive, i.e. the transition state has a
higher energy than the closed one, in agreement with the experiments. This is
consistent with point (2) because E,, can be viewed as the energy necessary
to break the base-pairing in the stem.

4. The closing activation energy is negative. This implies that the energy of the
transition state is lower than the energy of the open state. There is nevertheless
a free energy barrier for closing, but it can only come from entropy effects.
Going from the open to the transition state leads to an energy gain, which
must be attributed to the stem because the freely rotating chain model of the
loop has no energetic contribution. This is confirmed by the independence
of the slope E, from the change of the loop parameters N or . But the
entropy of the open state is much higher than the entropy of the transition
state because the open loop can explore a much larger domain of the phase
space.

Fig. (B23)) shows that longer loops lead to longer closing times (smaller k). This
is consistent with the entropic role of the loop. Longer loop lengths increase the
phase space accessible to the system and the time that it needs to explore this phase
space before reaching the transition state. The role of # can also be understood in
the same framework. When we increase # the loop is less constrained when it forms
the transition state. It can form this closed state in more manners than when 6 is
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lower, i.e. it has a higher entropy at the transition state. As a result the closing rate
is higher for larger values of 6. The variation of k,, and k. with other parameters
confirms the conclusions that we have drawn from the study of N and 6.

As shown in Fig. (24)) a variation of D and k has little effect on the closing rate
because closing is mostly controlled by the entropy of the loop. On the contrary

0018

1e-06

1&082':

1000/T 1000/T

Figure 5.24: Effect of D and k on the kinetics with the FRC model in an Arrhenius
plot. Open and closed symbols represent the rates of opening and closing, respectively.
The parameters are: o 6.9 A=, § = 0.35, p = 5, N-21. Left: k 0.025 eV.A"2; e:
D=0.009 eV; O: D=0.107 eV; o: D=0.130 eV. Right: D=0.107 €V; o: k=0.013 eV.A~2; [I:
k-0.025 eV.A"2; 0: k0.050 eV.A~2

the variation of D and k significantly influences the opening which is controlled by
the stem. Raising D increases the depth of the free energy well associated to the
closed state. Therefore it increases E,, and slows down the opening. Changing k
we notice only a very small effect on F,,. This seems surprising because k enters
into an energetic term in the stem and therefore we would expect it to play a role
in the opening. We will come back to this point in the complete calculation (S # 1)
but we can anticipate on this discussion by noticing that the coupling along the
DNA strand is weak. Most of the energetic contribution lies in the Morse potential,
i.e. in the contribution of D. But k has nevertheless an entropic role. Increasing k
decreases the opening rate. This can be understood because the opening of the stem
gives more freedom to its components to fluctuate. Therefore there is an entropy
gain. This entropy gain is smaller when k increases because the relative motions of
the elements of the stem are more constrained. This explains why opening is slower
for larger k.

5.4.2.2 Discrete Kratky-Porod chain

Figures (228) and (B26]) show the kinetic results for the Kratky-Porod model of
the loop. They confirm and complete the analysis that we made from the FRC
model. As for the FRC model we see that a change of the parameters of the loop
mainly affects closing (Fig. E220)). The main difference is that the closing activation
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Figure 5.25: Rates of opening and closing with the Kratky-Porod chain in an Arrhenius
plot. Open and closed symbols represent the rates of opening and closing, respectively.
The parameters are: D=0.102 eV, k=0.025 eV.A"2, a=6.9 A=, § = 0.35, p = 5. Left:
variations as a function of the loop size N, ¢0.0019 eV.A=2 ; o: N-12; O: N 16; o:
N=21; A: N=30 Right: for a fixed loop size , N=21 variations as a function of the loop
rigidity; e: € 0.0010 eV.A=2; O: € 0.0019 eV.A"2; o: ¢ 0.0040 eV.A~2

energy is now positive, in agreement with some experimental results. This can
be understood because, due to the e-term in the Hamiltonian of the Kratky-Porod
chain, there is now an energetic cost for closing. Increasing € costs more energy for
closing (k. decreases). The effect of € is however more subtle because, as shown on
Fig. (&23)) the Arrhenius plots for different values of € show almost parallel curves.
This indicates that E, is not simply proportional to e. The closing rate is still
strongly affected by entropic effects, which also depend on e. Therefore the rigidity
parameter plays a double role, i.e. an enthalpic and an entropic effect. The last
point is very interesting because it shows that the Kratky-Porod chain could be a
good candidate for the modelling of the loop, i.e. it could allow the differencing of
poly(T) and poly(A) as the experiments point out.

Finally, Fig. (B26) gives the variation of the kinetic rates as a function of D and k
with the Kratky-Porod chain. The effects are exactly the same as in the FRC case
and we arrive at the same conclusion that the stem only affects the physics of the
opening.

This first part allows us to understand qualitatively the effects of the different pa-
rameters of the model.

5.5 Complete calculation: S # 1

We now use the complete calculation of the partition function. The calculation of
the partition function involves therefore the conditional probability S(r|R) that,
if a polymer of N segments has the distance R between its ends, the polymer of
N + 2 segments has the end-to-end distance r. This function should depend on the
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1606 F

Figure 5.26: Effect of D and k on the kinetics with the Kratky-Porod chain in an Ar-
rhenius plot. Open and closed symbols represent the rates of opening and closing, respec-
tively. The parameters are: o 6.9 A=, 6§ = 0.35, p =5, € = 0.0019 V.72, N 21. Left:
k=0.025 eV.A72; o: D=0.09 eV; O D=0.102 eV; ©: D=0.130 eV. Right: k=0.025 eV.A~2;
o k 0.013eV.A2;0: k 0.025eV.A"2 ; 0: k0.050 eV.A~2.

polymer model but we can only get its analytical expression in the case of a Gaussian
polymer. We have discussed this point in Section (3.1.5) and we have shown that
we can evaluate S(r|R) with an effective Gaussian model which provides a good
approximation for the FRC and the Kratky-Porod polymer models. In this section
we use this effective Gaussian approximation of S(r|R) and we examine in a more
quantitative way the various points that we discussed in the previous section.

5.5.1 Thermodynamics
5.5.1.1 FRC model

First of all, it is interesting to look at the difference between the case S =1 and the
complete calculation which couples the loop and the stem in the polymer model.
Figure (E27) shows that there is not a big difference between the two calculations.
Although the case of S #1 adds entropy in stem, the confinement of the part of the
polymer making the stem by the Morse potential and stacking interaction does not
allow large fluctuations within the stem as soon as at least one base-pair is made.
This particularly true for a short stem. Taking into account the conditional proba-
bility S(r|R) is important for the internal consistency of the calculation but it only
brings small quantitative changes in the results. Including S(r|R) properly, as we
do in this section, would probably become more important for hairpins with a very
long stem (20 base-pairs or more) because it would be able to form open bubbles
with a large entropy. The next table gives the width of the melting curve, measured
by 22T, defined in Section (5.4.1.1), and compares it with the experimental value

AT
for poly(T).
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Figure 5.27: Comparison of the melting curves with S =1 and S #1 and with the FRC
model: § = 60°. The parameters of the stem are: D—0.107 eV, k- 0.025 eV.A=2, o 6.9 A~
0 =0.35, p =5, 0 = 60°. The black colour is for the case of S =1. Left: Melting profiles,
o: N=12; 0: N=30. Right: evolution of the melting temperature as a function of N. o:
S #1, square: S =1.

N [S=1, 2T, [ S#1, 2LT,, [ Exp, Poly(T)

' AT-™ ' AT-™
12 3.6 3.7 11
16 3.7 3.8 11
21 3.7 3.8 11
30 3.9 4.0 11

We can notice that the introduction of S(r|R) in the calculation has a very small
effect on the width. Whatever the theoretical approach, the calculation gives a
width of the melting curves which is significantly higher than the experiments. It is
one important weakness of our calculation and we will come back to this point in
the discussion of our work. Using the FRC model we have adjusted our parameters
in order to compare the results given by the model and the experimental ones in
a quantitative way. We have used the following approach to chose the parameters
and study the validity of the model. We use the experimental results for poly(T) as
the reference. We look for the parameter set that give the best fit of these results
as a function of the loop size N. Then we consider the case of poly(A). In this
case, as all stem parameters have been fixed by the poly(T) study, we only have
one free parameter (0 or €, depending on the polymer model). Figure (B28)) shows
melting curves obtained with two different sets of parameters. Both give the melting
temperature found in experiments for a poly(T) loop of 12 bases. The difference
lies in the variation of T}, as a function of the loop length N and this difference
allows us to choose the optimal set of parameters as shown in Fig. (B29). Indeed
the best fit of the black curve which represents the experimental results for poly(T)
is provided by the red curve obtained with D=0.112 eV, §=50°, k=0.025 eV.A~2,
o 69A°1 5 035and p 5.
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Figure 5.28: Melting curves equivalent to poly(T) with the FRC model. The parameters
of the stem are:k=0.025 eV.A"2, a=6.9 A=, § = 0.35, p = 5. Left: Melting profiles,
D=0.112 eV, 8 = 50°,0: N—=12: [0: N—16; o: N=21; A: N—30. Right: melting profiles,
D=0.119 €V, 0 = 45°; o: N=12; [: N=16; ¢: N=21; A: N=30.
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Figure 5.29: Variation of T, as a function of the loop length N for different sets of param-
eters. o: experimental results for poly(T); O: D=0.112 eV, k=0.025 eV.A"2, a=6.9 A—1,
6§ =035 p=05,0=>500 D 0119V, k- 0.025 eV.A2 o 69 A~!, § =0.35, p =5,
0 = 45°; A: D=0.100 eV, k=0.025 ¢V.A"2, a=6.9 A=1, § = 0.35, p=5, 0 = 64°

Once these parameters have been fixed let us consider the poly(A) case. For
the FRC model we can only select 8. As mentioned before the stacking interaction
is larger in the case of a poly(A) loop, and we model that by a decrease of 6. As
for the case S = 1, this leads to a lowering of T}, in agreement with experiments.
Figure (B230) gives the results obtained with §-48° and the same stem parameters
as for the poly(T) case. We also show the comparison of the melting temperature
variation as a function of N with the experimental results.

We can see that we are able to reproduce quantitatively the variation of 7T, as a
function of the loop length for poly(A) putting 6 = 48°. T, varies from 326 K for
N—=12 to 304 K for N—30 in agreement with experimental results. Nevertheless the
width of the transition stays to large as the next table shows. Between experiments
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Figure 5.30: Melting curves equivalent to poly(A) with the FRC model. The parameters
of the stem are: D=0.112 €V, k=0.025 eV.A"2, a=6.9 A=1, § = 0.35, p = 5, § = 48°. Left:
Melting profiles, o: N—12; [1: N—16; ¢: N=21; /A: N—30. Right: evolution of the melting
temperature with N. black: theoretical results, red: experimental data.

and our calculation we a have a difference of a factor two for the poly(A) case and
a factor three for the poly(T) case. The question is to understand why we get such
a difference and if we can do something to improve this aspect. To help us in this
discussion we present in the next section the same study with the Krakty-Porod
chain model.

N | 0 =50°, 22T, | 0 =48>, 2ET,, | Poly(T) | Poly(A)
12 3.6 3.7 11 9
16 3.7 3.8 11 8.5
21 3.7 3.8 11 8.5
30 3.9 4.0 11 7.5

To complete the study with the FRC model for the loop, we give the evolution
of T,, and of the width of the transition as a function of D, a and k, the depth
of the Morse potential, the width of the Morse potential and the rigidity of the
stem, respectively. Figure (B31]) shows the variation of T, as a function of D.
We can notice that 7), increases linearly with D. In the case of a single very
long stem treated in the approximation of continuum media, one can find that T,,
increases with the square root of D using the PBD-model. To properly describe
the experimental properties of hairpins we must use a small value of the coupling
constant k. This is consistent with the experimental observations on DNA which
show that a single base-pair can break without breaking the neighbours. This means
that the continuum limit approximation is not valid for DNA. Most of the energy
when the stem opens comes from the pairing of the bases and this is why 7;,, depends
linearly on D. The discreteness of the stem is very important and it is why we have
not used the transfer integral method presented at the beginning of the chapter.
Moreover, the kinetic results for S =1 confirm that the activation energy of opening
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Figure 5.31: Effect of the depth of the Morse potential on the melting profiles with the
FRC modelling. The parameters of the stem are: k=0.025 eV.A_z, a=6.9 A_l, 6 = 0.35,
p =5, 0 = 50° and N—21. Left: Melting profiles, o: D—0.08 eV; O0: D—0.09 eV; o:
D=0.10 eV; A: D=0.11 eV, x: D=0.12 eV. Right: evolution of the melting temperature
with D. black e: theoretical results, red line: linear fitting.

only comes from D and not from k. Therefore it is not surprising to find such a
linear dependence of T,, with D. Nevertheless, as the next table shows, the width
of the transition is not significantly affected by the variation of D.

D (eV) | S#1, 22T,
0.08 3.5
0.09 3.9
0.10 3.8
0.11 3.8
0.12 3.9

This shows us that the depth of the Morse potential serves as the fitting of the
melting temperature by changing the depth of the first well of the reduced free
energy only. Let us now examine the effect of the width of the Morse potential
on the thermodynamics presented in Fig. (B32)). As in the case S =1, the larger
a, the smaller the melting temperature 7,,. The region that represents the closed
configuration in the free energy profile is reduced when we increase o. Although it is
more difficult to overcome the barrier between the closed and the open state (kinetic
effects), the equilibrium is nevertheless displaced to the open state with the increase
of a because the volume of the phase space corresponding to a closed state decreases.
Moreover the width of the transition is slightly affected by the change of « and as
one can expect the smaller the width of the Morse potential, the smaller the width
of the transition.
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Figure 5.32: Effect of the width of the Morse potential on the melting profiles with the
FRC model. The parameters of the stem are: D—0.112 eV, k—0.025 eV.A=2, § = 0.35,
p =5, 0 = 50° and N=21. Left: Melting profiles, o: a=4.0 A=; O: a=5.0 A~; o
a—6.0 A=1; A: a—7.5 A=, Right: evolution of the melting temperature with c.

a (A [ S#£1, &LT,
4 3.4
D 3.9
6 3.8
7.5 4.1

Finally, Fig. (33]) gives the evolution of the melting profiles as a function of k.
When we increase k we also increase the melting temperature 7}, but we slightly
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Figure 5.33: Effect of the rigidity of the stem on the melting profiles with the FRC
model. The parameters of the stem are: D=0.112 eV, a=6.9 A~!, § = 0.35, p = b,
0 = 50° and N-21. Left: Melting profiles, o: k—0.010 eV.A=2; O: k 0.020 eV.A~2;
o: k—0.040 eV.A=2; A: k—0.060 eV.A=2. Right: evolution of the melting temperature
with k.

decrease the width of the transition from the closed to the open state. The closed
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configuration is stabilized by the cooperative effects which are more important when
k increases. As the stem is composed of five base-pairs only, the effect of k is less
important than in the case of a very long stem. Indeed in the case of a very long
stem, in the approximation of continuous medium, 7' & vk but here the dependence
is weaker.

k(eV.A2) | S #£1, £ET,,
0.01 4.1
0.020 4
0.040 3.8
0.06 3.7

As for the case S =1, we now present the thermodynamics obtained with the Kratky-
Porod chain. As mentioned before, this polymer model presents the advantage of
having an explicit energetic term in the probability distribution.

5.5.1.2 Discrete Kratky-Porod model

It is interesting to see the effect of the S function in the case of the Kratky-Porod
chain for the loop. Figure (B34)) gives the comparison of the two calculations. In
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Figure 5.34: Comparison of the melting curves with S =1 and S #1 and with the
Kratky-Porod model: ¢ = 0.0019 eV.A=2 .The parameters of the stem are: D—=0.102 eV,
k0.025 eV.A"2, o 69 A=, § = 0.35, p = 5. The black color is for the case of S =1.
Left: Melting profiles, o: N=12; [1: N=30. Right: evolution of the melting temperature
as a function of N. o: S #1, 0: § =1. The curves correspond to a linear fitting.

the case of the KP model, the effect of the S function is more important than for
the FRC polymer. Indeed, T), changes from 325 K to 312 K for N—12 when we
introduce the S function. We cannot say that it is only due to entropic effects
because the KP chain contains energetic contributions, but we can say that the
S function tends to destabilize the closed configuration. The next table gives the
change of the width of the transition with and without the S function.
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N |S=1,22T,|S+#1, 22T,

12 3.3 3.2
30 4.1 3.7

As we can see, the width of the transition seems to be slightly larger in the presence
of the S function but the change is not significant enough to allow a quantitative
comparison with experiments. Moreover we have seen that the evolution of T}, as
a function of N is not monotonous for €=0.0040 eV.A~2. It is interesting now to
see what happens when we put the S function. To give a quantitative compari-
son, Fig. (E30) shows the evolution of 7,,(S = 1, N) — T,,(S = 1, N = 12) and
Twn(S# 1,N)—T,(S# 1,N =12) as a function of N.

10 ‘ ‘

O—© Without S
G—8 With S

0 I I I
10 15 20 25 30

Figure 5.35: Variation of T, as a function of N with and without the S function. The
black curve represents Ty, (S =1, N) — T,,,(S = 1, N = 12) and the red one is for T,,(S #
1,N) — T(S # 1, N = 12).

We can notice that we get the same tendency with and without the S function.
The maximum of the curve stays around N=21 which shows us that the growth
of the loop inside the stem represented by the S function has no effect on this
maximum. Therefore this maximum is only governed by the evolution of the end-
to-end probability distribution with N.

As we have done before we now give the comparison of the experimental results
with our model in the case of the KP modelling for the loop in order to determine
which is the best loop model. Figure (B30) shows the melting curves obtained
for €=0.0018 eV.A~2 which corresponds to a persistence length equal to 12.3 A
The right graphic gives the comparison of the evolution of 7}, as a function of N
obtained experimentally for the poly(T) and obtained in our simulation. We can
see that our results are in semi-quantitative agreement with the experiments since
T,, varies from 333 K for N=12 to 305 K for N=30 which is comparable to the
experimental case where T,, goes from 332 K to 314 K for the same variation of
N. Our main problem stays in the width of the transition which is really too large
compared to the experiments as shown in the next table.
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Figure 5.36: Melting curves equivalent to poly(T) with the KP model. The parameters
of the stem are: D—=0.107 eV, k=0.025 eV.A2, a=6.9 A~!, § = 0.35, p =25 € =
0.0018 eV.A=2. Left: Melting profiles, ®: N—12; : N—16; o: N-21; A: N-30. Right:
evolution of the melting temperature as a function of N. black: theoretical results, red:
experimental data.

N | e 0.0018 eV.A72 2L, | Poly(T), &ET,

P AT M P ATm
12 3.2 11
16 3.4 11
21 3.45 11
30 3.8 11

The parameter € represents the rigidity of the chain as mentioned before. The rigidity
for the poly(A) loops is larger than the poly(T) because the stacking interaction is
most important with A-bases. Therefore in order to model the difference between
poly(T) and poly(A) we have increased the value of € and we have adjusted our
value to get T,, which agree with experiments. Figure (B37) gives the melting
curves obtained with ¢=0.00195 eV.A~2 which corresponds to a persistence length
equal to 13.5 A. We can see that T}, goes from 327 K for N—12 to 300 K for N—30
which is comparable to the experimental result where AT, is equal to 22 K for the
same variation of N and with T}, equal to 326 K for N=12. Nevertheless we still
find larger transitions than the experimental case as shown in the next table.

N | e=0.00195 V.A2, 227, [ Poly(A), 22T,

P AT-™ P AT-™
12 3.25 9
16 3.45 8.5
21 3.6 8.5
30 3.8 7.5

One can notice that to model the difference between poly(T) and poly(A) we do not
need to significantly change the value of the persistence length. We will come back
to this point in the discussion section after the presentation of the kinetic results.

To complete this part we give the evolution of the melting profiles with the change
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Figure 5.37: Melting curves equivalent to poly(T) with the KP model. The parameters
of the stem are: D—=0.107 eV, k=0.025 eV.A"2, a=6.9 A=, § = 0.35, p =25, e =
0.00195 eV.A~2. Left: Melting profiles, o: N-—12; 0: N-16; o: N-21; \: N-30. Right:
evolution of the melting temperature as a function of N. black: theoretical results, red:
experimental data.

of D. Figure (B38)) shows such an evolution. We find a linear evolution, as for the
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Figure 5.38: Effect of the depth of the Morse potential on the melting profiles with the
KP model. The parameters of the stem are: k=0.025 eV.A2, a=6.9 A=1, § = 0.35, p =209,
€0.0018 eV.A=2 and N-21. Left: Melting profiles, o: D—0.08 eV; O: D 0.09 eV; o:
D=0.10 ¢V; \: D=0.11 eV, x: D=0.12 eV. Right: evolution of the melting temperature
with D. black o: theoretical results, red line: linear fitting.

FRC loop model which is not really surprising. Moreover, as the next table shows,
the width of the transition is not significantly affected by the variation of D.
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D (eV) | S #1, 22T,
0.08 3.4
0.09 33
0.10 3.5
0.11 3.4
0.12 3.4

After dealing with the thermodynamics of the model we propose to study the kinetics
and compare our results to the experimental ones.

5.5.2 Kinetics
5.5.2.1 FRC model

Let us first compare the kinetic result obtained with and without S in one particular
case to see if there is a significant difference. Figure (239) gives such a comparison.
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Figure 5.39: Comparison of the kinetic rates with and without S with the FRC model in
an Arrhenius plot. Open and closed symbols represent the rates of opening and closing,
respectively. The parameters are the following: D—0.107 eV, k—0.025 VA2 o 69A°1
6=0.35, p=5, 0 = 60° and N=21. Black: S =1. Red: S #1.

As we can show there is no perceptible difference between the two calculations. Even
if the case S =1 is conceptually not satisfactory, it gives quite correct results. As
discussed for the FRC case, this comes from the fact that the stem is confined by
the Morse potential, so that the effect of the polymer part in the stem is small.
Let us now compare the kinetics obtained by the model and the experiments. The
parameters have been selected by the thermodynamic studies so that we cannot do
any fitting at this level.

Figure (E40) gives the rates of opening and closing for different loop lengths and
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Figure 5.40: Rates of opening and closing with the FRC model in an Arrhenius plot.
Open and closed symbols represent the rates of closing and opening, respectively. The
parameters are: D—0.112 eV, k—0.025 eV.A=2 o 6.9 A=, 6§ = 0.35, p = 5. Left: 6 = 50°;
o: N=12; [0: N=16; o: N=21; A: N=30. Right: N=21, black: 6 = 50°, red:0 = 48°

for # = 50° and 48°. For the FRC model it is not possible to do a quantitative
comparison of the theoretical results and the experimental ones, because, firstly we
get negative activation energies for closing which is not the case of experiments and
secondly we have a factor approximately three between the activation energy of
opening obtained with our model and obtained in the experiments. Moreover the
kinetics is only marginally modified when 6 is varied in the range which correctly
models the difference between poly(A) and poly(T) in the thermodynamics. How-
ever, as in the experiments, the increase of the loop length tends to decrease the
rate of closing and it does not affect the rate of opening. As mentioned before when
we increase the loop length, the available phase space is then bigger, therefore the
hairpin takes more time to close.

The theoretical results as well as the experimental ones concerning the kinetics with
the FRC model are summarized in the next table.

E,,, model | £, model | E,,, exp | Ey, exp

Poly (T) 115 -0.33 32 3.4
Poly(A) 115 -0.33 32 174

As we can see in the table our model does not provide a quantitative agreement with
experiments for the kinetics. This shows us that the single stranded DNA is not
only a simple polymer. We will come back to this point after presenting the kinetics
obtained with the Kratky-Porod chain which is a more realistic polymer model.

To complete this section, we present the evolution of the activation energies as a
function of D, k and «. Figure (4] gives the rates of opening and closing with
N=21 for different values of D.
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Figure 5.41: Effect of D on the kinetics with the FRC model in an Arrhenius plot. Open
and closed symbols represent the rates of opening and closing, respectively. The parameters
are the following: k=0.025 eV.A"2 a=6.9 A1, §=0.35, p=>5, 8 = 50° and N=21. Rates
of opening:o: D—0.08 eV; +: D—0.09 eV; ¢: D=0.10 €V; A: D—0.11 eV; : D—0.12 €V.
Rates of closing: e: D=0.08 eV; B: D=0.12 €V.

First of all, we can notice that the rates of opening and closing are well described by
an Arrhenius law even if we change the width of the Morse potential D. Moreover
we can see that the closing is not really affected by the change of D as the case of
S =1 which shows us that the closing is almost governed by the loop part of the
hairpin. Moreover, when we increase D, we also increase the activation energy of
opening E,,. Figure (42) gives the evolution of the activation energy of opening
as a function of D. The red curve represents 5D in Kcal.mol~! units.
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Figure 5.42: Evolution of the activation energy of opening as a function of D. The pa-
rameters are the following: k—0.025 eV.A=2, o 6.9 A=1, §-0.35, p- 5,0 = 50° and N 21.
The red curve represents 5x D in Kcal.mol~! units. o: theoretical results. The blue curve
is a linear fitting.
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As we can see, the variation of the activation energy of opening as a function of D is
linear. Moreover for a given value of D, E,, is close to M x D but it always stays lower
than this value. As we also put stacking interaction in the stem we expect activation
energies of opening of the order of M x D plus something coming form the stacking.
On the contrary, we get the reverse, here. Moreover if we look at Fig. (B43)), the
activation energy of opening and closing are not significantly affected by k which
represents the force of the stacking interaction and by a. Stacking interactions only
have an entropic effect (the curves are only translated). Before concluding on the
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Figure 5.43: Effect of k and « on the kinetics with the FRC in an Arrhenius plot. Open
and closed symbols represent the rates of closing and opening, respectively. The parameters
are: D—0.112 ¢V, § = 0.35, p = 5 and N-21. Left: a 6.9 A=; o: k- 0.01 eV.A72; o:
k=0.02 eV.A72; ; A: k=0.04 eV.A2; O: k=0.06 eV.A~2;. Right: k=0.025 eV.A"2. o:
a40A 0 a 504 Ara 60A;0: 0 75 AL

kinetics let us examine the results obtained with the Kratky-Porod chain.

5.5.2.2 Discrete Kratky-Porod model

First of all, as in the previous case, let us begin by the comparison of one kinetic re-
sult obtained with and without S to see the influence of S. Figure (B44) gives such
a comparison. We can notice that the closing rate is not significantly affected by the
use of the complete calculation and it is not so surprising because, as we pointed
out, the closing is mostly governed by the loop composed of the N monomers and
not by the stem. Nevertheless, the opening is slightly affected by S which tends
to slightly decrease the opening activation energy without changing the entropy be-
cause at high temperatures the two curves meet.

Figure (24H) gives the rates of opening and closing for two different values of € and
for different values of the loop length N. We have used the parameters presented
in the section thermodynamics, which provide the optimal comparison with the ex-
perimental results.
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Figure 5.44: Comparison of the kinetic rates with and without S with the KP model in
an Arrhenius plot. Open and closed symbols represent the rates of opening and closing,
respectively. The parameters are the following: D=0.102 eV, k=0.025 eV.A~2, a=6.9 A1,
6—0.35, p—5, €—=0.0019 eV.A=2. Black: S =1. Red: S #1.
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Figure 5.45: Rates of opening and closing with the KP model in an Arrhenius plot. Open
and closed symbols represent the rates of closing and opening, respectively. The parameters
are: D=0.107 eV, k=0.025 eV.A"2, a=6.9 A~1, § = 0.35, p = 5. Left: ¢=0.0018 eV.A~2;
o: N=12; 0: N=16; ¢: N=21; A: N—=30. Right: N—21, black: ¢—0.0018 eV.A2, red:
€=0.00195 eV. A2

As for the FRC model the kinetic of opening in not affected by the change of
the number of monomers in the loop. The opening activation energy E,, is equal to
0.43 eV (10 kcal.mol™1) for D = 0.107 eV. Concerning the kinetic of closing, we find
that the larger the number of monomers, the smaller the rate of closing. Indeed if
we increase the entropy of the loop by increasing /N, then the loop takes more time
to find the transition state in the phase space. Nevertheless, the closing activation
energy is not significantly affected by the change of N. We find a closing activation
energy E. equals to 0.04 eV (1 kcal.mol™'). The next table gives the comparison
with the experimental results.
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E,,, model | £y, model | E,,, exp | Ey, exp
Poly(T) 10 +1 32 3.4
Poly(A) 10 +1 32 17.4

We see that we are not able to get quantitative agreement between our results and
the experimental ones. Moreover if we increase the value of ¢ which gives us the
difference between poly(A) and poly(T) in the thermodynamics, we get almost no
difference in kinetics. This is in agreement with what we can see in literature where
they claim that regarding the difference in the kinetics, the persistence length of
poly(A) must be four times larger approximately than the poly(T) case to reproduce
such a difference [[7]. But if we impose such a change in the persistence length in
order to get the correct kinetic results, it is then the thermodynamic results which
are wrong. This shows us that the single stranded DNA is not a simple polymer.
To model it one must elaborate more complex models. We will come back on this
point in the conclusion because this an important lesson learned from the analysis

of DNA hairpins.

5.5.3 Discussions

Our model allows us to derive thermodynamics and kinetics properties of DNA hair-
pins. We find that the thermodynamic results are in semi-quantitative agreement
with the experimental ones. Indeed, we get correct values of the melting temperature
T,, and a good dependence on the loop length. Moreover, the difference between
poly(A) and poly(T) can be reproduced by increasing the rigidity of the loop. Nev-
ertheless, we have shown that a slight change of the rigidity is sufficient to get the
change of T,,,. Therefore, the persistence length [, would be comparable for poly(A)
and poly(T) in our study. We must point out that the transition width that we get is
approximately two times larger than expected in experiments. It could explain why
we only need a small change of the rigidity parameter to get the correct variation
of T,,.

For the kinetics, we have supposed that the system diffuses in a free energy surface
that we derive from the thermodynamic study and we have derived the rates of open-
ing and closing using the transition state theory and not only the Kramers'theory.
At this stage we have fixed the diffusion coefficient to a constant. We find that the
kinetics of opening does not depend on the loop properties as in the experiments.
Moreover we get positive activation energies of opening but the values differ from
a factor three from the results obtained by Libchaber. As we have shown, we can
increase F, by increasing D, which is the depth of the Morse potential but it would
also change T,,, to values that do not agree with experiments.

For the kinetics of closing the results are mixed. First of all, we are not able to get
results in quantitative agreement with experiments. Nevertheless we can bring some
contributions to the debate of the sign on the activation energy of closing that we
raised in the introduction. First, we have shown that the Arrhenius law is only valid
at low temperatures, i.e. below the melting temperature 7;,. Moreover we have seen
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that it is possible to get negative or positive activation energies of closing putting
or not energetic contributions in the loop. But we now that the stacking interaction
is important within the loop as Libchaber and coworker show in their study and it
is more important in poly(A) loops. Therefore the model of the loop must include
energetic contributions. In this hypothesis, we find a positive activation energy of
closing. As mentioned in the introduction, in their analysis of their discrepancy with
the experiments of the Libchaber group, Ansari et al. attribute the positive activa-
tion energy for closing to mismatches. While we are not able to give a quantitative
assessment of the effect of mismatches because we have not studied them, we can
however show that mismatches are not a necessary condition to get a positive
activation energy for closing. It can come from the rigidity of the loop only.

5.5.4 Beyond the PBD-model for the stem

Up to now we have described the stem by the PBD-model which has the interest
of being fairly simple while describing the melting properties of DNA to a good
accuracy as tested in some experiments [77]. We have obtained interesting results
on the effect of the loop but we are still facing quantitative disagreement with
experiments for the width of the melting transition. The model finds that the
opening of the hairpin extends on a much broader range than in the experiments.
This problem of the broad melting was also met in the first studies of the double
helix thermal denaturation. For a long double helix (or in the limit of an infinite
double stranded DNA) the problem was solved by the introduction of the nonlinear
stacking

W (yi, yi-1) =

bo| =

[1 + Pe_é(yiﬂ”_l)] (y; — y¢_1)2 . (5.67)

Its effect is to increase the entropy of the melted part of the helix with respect to
that of the closed part because the coupling decreases when either one of the two
base-pairs is open.

However the coupling never vanishes, even when vy;, y;,_; are very large due to the
constant 1 in the expression. This is necessary in the PBD-model because the DNA
strands do not break, even when the double helix is denaturated.

In our hairpin model the stacking interaction does not have to describe the covalent
bonds within the strands because this part of the physics of the hairpin is described
by the polymer model. Since the stacking potential only describes the interaction
by the plateaus made by the bases, in particular through the overlap of their -
electrons, it is now acceptable to let the stacking decay to 0 when the stem is fully
open, as schematized in Fig. (40). To test the consequences of a complete vanishing
of the stacking interaction, we have considered the case of the stacking potential

1 T
Wl(?/z’a yi—1> = §Klp€ Syimyi-1) (yi - yi—1)2> (5-68)
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instead of the potential W. To allow a comparison with our previous results we have

chosen
Kip=K(1+p). (5.69)

which ensures that, for the closed stem, the stacking is not modified.

Figure 5.46: Schematic representation of the stacking in the closed and the open config-
uration. Left: closed stem, the base-pairs interact. Right: open stem, the position of the
bases is random and their stacking energy may vanish

Figure (E47) compares melting curves obtained with stacking described by W and
Wi.
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Figure 5.47: Comparison of the melting curves and the energies obtained with two stacking
potentials W and Wy. These calculations have been performed with a loop described by
the Kratky-Porod chain (effective Gaussian approximation). Left: melting curves. Right:
energy. The black color corresponds to D=0.112 eV, k=0.025 eV.A"2 a=6.9 A~1, §=0.35,
p—5,e=0.0019 eV.A=2 N 24 and stacking W. The red color corresponds to D—=0.170 eV,
k=0.030 eV.A~2, stacking described by Wi and identical others parameters.

A stacking potential W, leads to a slightly sharper melting curve, which is there-
fore in better agreement with experiments, although the opening transition given by
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the model is still broader than the observed transition. It should be noticed that, in
order to preserve the melting temperature, when we use the stacking potential W,
we increase significantly the depth of the Morse potential. As shown by Fig. (B2471)
showing the energy versus temperature for the two cases of stacking W and W7,
using stacking W leads to an energy increase of 0.6 €V at the opening transition in-
stead of 0.4 eV when we use the stacking W. This higher value is in better agreement
with experimental measurements which give approximately 34 kcal/mol (1.47 eV)
for hairpins with five base-pairs stem but still lower than the experimental values.
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Conclusion

We have presented a simple model for DNA hairpins which contains the main phys-
ical ingredients, i.e. a polymer describing the DNA strands and the main features of
the stem, base pairing and stacking. It allows us to understand the main features of
hairpin properties, in particular the role played by the loop in the opening-closing
hairpins:

e with respect to the stem alone, hairpins open at significantly lower temper-
atures. We have shown that it can be understood in terms of entropy gain
when the loop opens.

e larger loops decrease the opening temperature even more, in agreement with
experiments.

Kinetic studies have been very useful to complete our understanding because:

e they give results separably on opening and closing; allowing us to analyse the
data more completely and in particular determine what has to be attributed
to the stem and what comes from the loop

e they also help us determining what comes form energetic or entropic effects in
the properties of hairpins.

The model is successful on some aspects:

e the effect of the size of the loop,

e the correct order of magnitude for E,,, E. (in particular positive activation
energy for closing, while other models do not get this experimental feature),
although our values are smaller than the experimental ones.

But the model is still not fully satisfactory:

e the melting transition that we calculate is too broad,
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e the variation of T}, versus N is smaller for more rigid loops than for softer
ones in our calculations while experiments show the contrary.

This indicates that some physical aspects are not properly described in our approach.
Our results suggest that this problem cannot be solved by improving the polymer
model because we have used two very different polymer models and they give the
same qualitative behavior. The FRC model has no energetic term in the loop while
the Kratky-Porod model (or its continuous counterpart the worm like chain) includes
a bending energy. The Kratky-Porod model is an improvement because it can give
a positive E, but it does not solve the quantitative disagreement that we noticed
above.

The solution can neither come from a simple improvement of the model for the
stem. We have used the PBD-model but we have shown for instance that changing
drastically the model for the stacking by allowing the stacking energy to vanish
completely in the open state narrowers slightly the melting transition but does not
bring a major quantitative change. However this attempt to improve the model
might give a clue to improving the theoretical description of DNA hairpins, because
it suggests that an increase in the entropy change when the hairpin opens could
bring the model closer to experiments. The simplifying assumptions that we have
made to establish the model are indeed leading to an underestimation of the entropy.
The main restriction is that bases are described as points. This allowed us to use a
simple polymer model for the strand of the stem and loop but it ignores the entropy
associated to the fluctuations of the orientation of the bases. When the stem is
formed the bases have restricted motions, but when the pairing is broken the bases
acquire a large orientational freedom which is not described in our model. Similarly,
for the loop the polymer model completely ignores the orientational fluctuations of
the bases. Moreover the properties of the loop could be strongly affected by the
tendency of the bases, particularly the large purines such as A, to stack on each
other.

Our results show that DNA hairpins are very good test to study the properties
of DNA single strands. When this work started, our aim was to learn how to
describe DNA self assembly and we had in mind that the effort would have to be
focused mainly on a correct description of the stem. But as the study developed we
got evidence that a good model of the loop was crucial. Hairpins provide precise
experimental results so that their models are submitted to strict testing. Obviously
we have not fully succeeded in describing DNA hairpins theoretically. We would
however like to point out that the difficulties appear when one tries to describe
all the experimental results (thermodynamics and kinetics, for various types of
loops poly(A) or poly(T) and various loop lengths). To our knowledge all previous
attempts to model DNA hairpins have only considered some aspects when a subset
of the experimental results is considered. But, when they are considered on all their
facets, DNA hairpins appear to be very complex.

The study shows that the description of the loop plays a large role for the validity
of a model. This is why we had to investigate different possibilities.
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Although they give interesting results none of the models is perfect and this study
shows that a DNA strand is not a simple polymer! On a very long scale (hundreds
of bases) a WLC model might be enough. On a very small scale (2 or 3 bases) any
simplified model is bound to fail due to the complex geometry and interactions of
the element making the strand (phosphates, sugars, bases). The intermediate range
that hairpins allow to study (10 to 30 or 50 bases) could have been expected to be
approximately described by the Kratky-Porod model which is a discrete version of
the continuous WL chain. According to our study this is probably the best polymer
model that one can use, but we have nevertheless shown that it is still not sufficient
to describe all the properties of the DNA strand forming the loop of a hairpin.
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Summary

DNA beacons are made of short single strands of DNA with terminal regions con-
sisting of complementary base sequences. As a result, the two end-regions can
self-assemble in a short DNA double helix, called the stem, while the remaining cen-
tral part of the strand makes a loop. In this closed configuration, the single strand
has the shape of a hairpin. Such hairpin conformations are important in determin-
ing the secondary structure of long single strands of DNA or RNA. A short single
strand of DNA which can form a hairpin becomes a so-called « DNA beacon » when
one of its ends is attached to a fluorophore while the second end is attached to a
quencher. When the fluorophore and the quencher are within a few Angstroms, the
fluorescence is quenched due to direct energy transfer from the fluorophore to the
quencher. As a result, in a closed hairpin configuration, the beacon is not fluores-
cent, while in the open configuration it becomes fluorescent. This property opens
many interesting applications for molecular beacons in biology or physics. Biologi-
cal applications use the possible assembly of the single strand which forms the loop
with another DNA strand which is complementary to the sequence of the loop. The
assembly of a double helix replacing the single strand of the loop forces the opening
of the hairpin, leading to a fluorescent signal. This technique provides very sensitive
probes for sequences which are complementary to the loop. In the same spirit it
has been suggested that DNA beacons could be used in vivo to detect the single
stranded RNA which is synthetized during the transcription of genes. This opens
the possibility to recognise cancer cells by targeting some genes which are heavily
transcribed in such cells.

For physics DNA beacons are very interesting too. They can for instance be used as
the basis of some devices such as molecular memories read by the detection of fluo-
rescence, or to perform molecular computation. The most important aspect for our
purpose is that molecular beacons allow accurate observations of the opening and
closing of DNA hairpins. The « melting profile » of the stem, induced by heating,
can be recorded accurately versus temperature and the auto-correlation function of
the fluorescence can be used to extract the kinetics of the opening/closing fluctua-
tions. Measurements have been made for different loop lengths and different bases
in the loop, providing a complete set of data which can be used to understand what
governs the properties of DNA hairpins. This is the goal of this thesis. The analy-
sis goes beyond the properties of hairpins themselves because, as shown below, the
results are very sensitive to the properties of the loop. Therefore the comparison of
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experimental data with the results of various models is a very sensitive test of our
ability to model single strands of DNA. This is important in other related contexts
such as the properties of RNA.

We have developed two different models in order to study the thermodynamics and
the kinetics of such systems. The first one is a planar square lattice model inspired
by the lattice models which have been used to study protein folding. The energy of
the DNA strand depends on two terms only, a bending energy when two consecutive
segments form a right angle and the energy of the base-pair which can form in the
stem. Using Monte Carlo simulation, we compute the equilibrium properties and
the kinetics of the system. The results obtained by this model are in qualitative
agreement with the experiments showing that the main properties of DNA hair-
pin rely on very simple and general ideas. Nevertheless, the main weakness of the
model is that it does not have enough degrees of freedom, so that a quantitative
comparison with experiments is not possible. Therefore we have proposed another
model which includes the physical ingredients of the lattice model but without the
constraint of the lattice. It combines polymer theory and the Peyrard-Bishop and
Dauxois (PBD) model of DNA melting. The model treats the hairpin as consisting
of two subsystems:

e the loop which is modelled by a polymer

e the stem which is modelled by the PBD + additional terms that take into
account the growth of the loop inside the stem.

With this approach we can compare our results quantitatively with the experimental
ones. We find a good agreement for the dependence of the melting temperature
with the characteristics of the loop, i.e. the length and the nature of the sequence.
Moreover the kinetic results are in qualitative agreement with the experiments. We
find that the kinetics of opening is governed by the stem only and that the rate
of closing decreases with the length of the loop. However we are not able to get
a quantitative agreement with experiments on all aspects. The temperature range
in which the transition takes place in the experiments is much narrower than given
by the model, irrespectively of the model that we choose for the loop. Although
it sounds disappointing, this negative result is perhaps the most important in the
thesis because we show clearly that a single strand of DNA cannot be modelled as a
simple polymer on a length scale of the order of a few tens of base-pairs, in spite of
the claims in the literature that such a picture is valid. Actually studies that claim
the validity of such a description either consider much longer segments over which
the subtleties of DNA structure are averaged out, or only take into account some
aspects of the experimental results so that the discrepancies are hidden.
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Zusammenfassung

DNA beacons bestehen aus kurzen DNA Einzelstrangen, die komplementéire Se-
quenzen in den Regionen der zwei Enden aufweisen. Die Endregionen eines Einzel-
strangs konnen aufgrund dieser Eigenschaft eine kurze DNA Doppelhelix bilden,
die mit Stamm bezeichnet wird. Der verbleibende zentrale Teil des Strangs formt
eine Windung, den so genannten Loop. In dieser geschlossenen Anordnung bildet
der Einzelstrang eine Hairpin-Struktur. Hairpins spielen eine besondere Rolle fiir
die Bestimmung der Sekundérstruktur langer DNA- oder RNA-Einzelstringe. Ein
kurzer DNA Einzelstrang, der eine Hairpin-Struktur bilden kann, formt einen so
genannten DNA beacon, wenn ein Ende mit eine fluoreszierenden Marker und das
andere Ende mit einem Quencher versehen wird. Sind diese Marker nur wenige
Angstrom voneinander entfernt, so verschwindet die Fluoreszenz durch direkten En-
ergietransfer vom fluoreszierenden Molekiil zum Quencher. Folglich ist fiir einen
geschlossenen Hairpin keine Fluoreszenz zu beobachten, sie tritt jedoch erneut auf,
sobald das Molekiil seine Struktur verdndert. Diese Eigenschaft ermoglicht den
Einsatz molekularer beacons fiir zahlreiche Anwendungen in der Physik und Biolo-
gie. Biologische Anwendungen nutzen die Bildung von Komplexen, bestehend aus
dem Einzelstrang, der den Loop beinhaltet, und einem weiteren komplementiren
DNA Strang. Die Komplexbildung zu einer Doppelhelix erzwingt die Entfaltung
des Hairpins, und ein Fluoreszenzsignal wird messbar. In diesem Zusammenhang
wurde erwogen, dass DNA beacons in vivo dazu verwendet werden konnten, um
einzelne RNA Stringe, die im Verlaufe der Transkription von Genen synthetisiert
werden, nachzuweisen. Auf diese Weise wire es moglich, Krebszellen zu erkennen,
indem man gezielt einige Gene beobachtet, die besonders oft in den Krebszellen
entschliisselt werden.

Auch fiir die Physik sind DNA beacons von besonderem Interesse. Sie konnen
beispielsweise fiir das Auslesen molekularer Speichereinheiten oder fiir molekulare
Rechenvorgéinge verwendet werden. Ihre herausragende Eigenschaft im Hinblick auf
das Thema der vorliegenden Arbeit ist ihre Fihigkeit, den Vorgang des Offnens und
des Schliefens von DNA Hairpins akkurat wiederzugeben. Eine "Schmelzkurve" des
Stamms, hervorgerufen durch Erhitzen, kann auf diese Weise gegen die Temperatur
aufgetragen werden; die Autokorrelationsfunktion der Fluoreszenz ermdoglicht es,
die Kinetik des Offnens/Schliefens zu bestimmen. Es existieren zahlreiche solcher
Messungen fiir unterschiedliche Loop-Lingen und Sequenzen, sie bilden einen voll-
standigen Datensatz und konnen dazu verwendet werden, das Verstidndnis der Eigen-
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schaften von DNA Hairpins zu erweitern. Dies ist das Ziel der vorliegenden Arbeit.
Die Untersuchungen in dieser Arbeit gehen iiber die Eigenschaften von Hairpins
hinaus, da, wie im folgenden gezeigt wird, die Ergebnisse sehr wesentlich von den
Eigenschaften des Loops abhéngen. Der Vergleich zwischen experimentellen Daten
und den Ergebnissen unterschiedlicher Modelle ist daher ein empfindlicher Test fiir
das theoretische Verstindnis der Physik einzelner DNA Strénge. Dies schlieft Pro-
bleme in anderen Bereichen, so zum Beispiel die Modellierung der Eigenschaften von
RNA, mitein.

In dieser Arbeit werden zwei Modelle vorgestellt, die die Thermodynamik und die
Kinetik solcher Systeme untersuchen. Das erste Modell ist ein zweidimensionales
Gittermodell, das auf den Gittermodellen fiir die Untersuchung der Proteinfaltung
beruht. Die Energie des Einzelstrangs wird darin aus lediglich zwei Beitrdgen berech-
net, einem Beitrag der Kriimmungsenergie, die fiir zueinander rechtwinklig ange-
ordnete Segmente auftritt, und einem Beitrag aus der Bindung von Basenpaaren,
die den Stamm bilden. Mithilfe von Monte Carlo Simulationen kénnen die Eigen-
schaften im thermodynamischen Gleichgewicht und die Kinetik des Systems un-
tersucht werden. Die Ergebnisse stimmen qualitativ mit experimentellen Beobach-
tungen iiberein und zeigen, dass die wesentlichen Eigenschaften von DNA Hairpins
auf sehr einfache theoretische Uberlegungen zuriickgefiihrt werden kénnen. Gleich-
wohl liegt die Hauptschwiche dieses Modells in der geringen Anzahl von Freiheits-
graden, so dass ein quantitativer Vergleich mit Experimenten nicht moglich ist. Aus
diesem Grund wurde ein weiteres Modell entwickelt, das die physikalischen Eigen-
schaften des Gittermodells beriicksichtigt, jedoch auf die rdumliche Einschrinkung
des Gitters verzichtet. Das Modell verkniipft Ideen aus der Polymertheorie mit
dem Peyrard-Bishop-Dauxois (PBD) Modell fiir DNA Schmelzen, und unterteilt ein
Hairpin Molekiil in zwei Untersysteme:

e den Loop, der als Polymer modelliert wird,

e den Stamm, wiedergegeben durch das PBD Modell unter Verwendung zu-
sitzlicher Terme, die das Wachstum des Loops im Stamm mit in Betracht
ziehen.

Dieser neue Zugang ermoglicht es, einen quantitativen Vergleich mit experi-
mentell ermittelten Daten durchzufiihren. Es zeigt sich, dass eine gute Uberein-
stimmung beziiglich der Abhéngigkeit der Schmelztemperatur von den Eigenschaften
des Loops (Léange und Sequenz) erzielt wird. Ein weiteres Ergebnis ist der Befund,
dass die Kinetik des Offnungsprozesses lediglich von den Eigenschaften des Stamms
abhingt und die Rate des Schliellungsprozesses mit steigender Loop-Lédnge abn-
immt. Dessen ungeachtet ist es nicht maoglich, eine quantitative Ubereinstimmung
mit allen experimentellen Beobachtungen zu erreichen. So ist das experimentell
bestimmte Temperaturintervall, in dem der Ubergang stattfindet, deutlich kleiner
als durch das Modell vorhergesagt, unabhéngig von der genauen Modellierung des
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Loops. Obzwar diese Feststellung enttiduschen mag, ist dieses negative Ergebnis
moglicherweise die zentrale Aussage der vorliegenden Arbeit: Auf der Lingenskala
von wenigen Dutzend Basenpaaren kann DNA nicht durch die klassische Polymerthe-
orie erfasst werden, im Widerspruch zu gegenteiligen Behauptungen in der Literatur.
Tatséchlich verwendet ein Teil der Studien, die zu solchen Behauptungen kommen,
wesentlich lidngere Segmente, und die lokalen strukturellen Eigenschaften der DNA
treten aufgrund von Mittelung nicht hervor. Der andere Teil der Studien schliefst
experimentelle Beobachtungen bereits in die Modellierung mitein, so dass die Ab-
weichungen vom Polymerverhalten in den Ergebnissen nicht offensichtlich werden.
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Les “DNA beacons” sont des molécules composées de simple brins d’ADN dont les
deux bouts contiennent des bases complémentaires et auxquels on attache un fluo-
rophore et un quencher. Ainsi, ces deux extrémités peuvent s’assembler pour former
un bout de double hélice d’ADN que nous appelons “stem”, la partie centrale du
brin forme alors une sorte de boucle. On appelle cette structure la configuration
en “épingle a cheveux”. Cette configuration joue un role important dans la déter-
mination de la structure secondaire des long brins d’ARN ou d’ADN. Lorsque le
fluorophore et le quencher sont a proximité I'un de Pautre, ¢’est-a-dire quelques A,
la fluorescence est bloquée du fait d’un transfert direct d’énergie du fluorophore vers
le quencher. Donc, dans la configuration fermée, “I’épingle a cheveux” n’est pas fluo-
rescente. Néanmoins, dans la configuration dite ouverte ou les deux extrémités sont
désappariées, la fluorescence réapparait. Cette propriété permet un grand nombre
d’applications des “molecular beacons” en Biologie et en Physique. En biologie, ces
molécules ont été proposées comme une alternative aux puces a ADN. En effet, si
la séquence d’un simple brin d’ADN est complémentaire de la séquence du brin for-
mant la boucle d’une “épingle a cheveux”, il y a appariement entre cette séquence
et la boucle. Cela implique une ouverture de “I’épingle a cheveux”, car la rigidité du
double brin est bien plus grande que celle du simple brin d’ADN et la molécule de-
vient alors fluorescente. Dans le méme esprit, ces molécules ont été proposées pour
la détection des cellules cancéreuses en ciblant ’ARN synthétisé par certains génes
de ces cellules. Pour les physiciens, ces molécules sont, également trés intéressantes.
Elles sont a la base de mémoires moléculaires. En effet, la partie boucle d’une
“épingle a cheveux” peut servir comme une mémoire ot I’on stocke de 'information
en utilisant la complémentarité des bases. Le processus d’écriture ou d’effacement
est alors suivi par la mesure de fluorescence de ces molécules. Pour notre travail,
I’aspect le plus important est qu’elles représentent des systémes simples permettant
une étude détaillée de I'assemblage/désassemblage de la double hélice d’ADN. Les
courbes de dénaturation, qui représentent 1’évolution de la fluorescence en fonction
de la température ainsi que les fonctions d’auto-corrélation de fluorescence peuvent
étre mesurées trés précisément, ce qui permet d’extraire les propriétés thermody-
namiques et cinétiques de cette structure en “épingle a cheveux”. Des mesures ont
été faites avec différents types de bases et différentes longueurs de boucle, don-
nant ainsi un grand nombre de données. Ce sont ces propriétés physiques qui nous
intéressent dans cette thése. La comparaison des résultats expérimentaux et des
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résultats obtenus par différents modéles est un excellent moyen pour tester notre
capacité a modéliser les propriétés de 'ADN.

Nous avons développé deux modéles différents pour étudier la thermodynamique et
la cinétique de ces systémes. Le premier est un modéle sur réseau inspiré des mod-
éles sur réseau utilisés pour I'étude des repliements des protéines. Dans ce modéle,
I’énergie du simple brin d’ADN, dépend seulement de deux termes, un terme pour le
colit énergétique associé a un angle entre deux bases consécutives et un terme de gain
énergétique pour la formation d'une paire de bases. A partir de simulations Monte
Carlo, nous avons étudié les propriétés d’équilibre et la cinétique du systéme. Les
résultats obtenus a I’aide de ce modéle sont en accord qualitatifs avec les résultats
expérimentaux montrant ainsi que les principales propriétés des “épingles a cheveux”
sont gouvernées par des phénomeénes physiques simples. Néanmoins, la principale
faiblesse de ce modéle réside dans le manque de degrés de liberté qui ne permet donc
pas une comparaison quantitative avec les expériences. Nous avons donc élaboré un
autre modéle qui inclut les ingrédients physiques du premier modéle mais sans la
contrainte apportée par le réseau. Il combine la théorie des polymeéres et le modéle
de Peyrard-Bishop et Dauxois (PBD) pour la double hélice. Le systéme est alors
divisé en deux sous-systéme:

e la boucle qui est modélisée par un polymeére,

e la partie double brin d’ADN qui est modélisée par le modéle PBD et complété
par des termes pour tenir compte de 'agrandissement de la boucle le long du
stem.

Avec cette nouvelle approche, nous sommes capable de comparer quantitativement
nos résultats théoriques avec les résultats expérimentaux. Nous trouvons un bon
accord pour la dépendance de la “température de transition” avec les caractéristiques
de la boucle, a savoir, la longueur et la nature de la séquence. De plus, les résultats
de cinétique sont en accord qualitatif avec les résultats expérimentaux. En effet,
nous trouvons que la cinétique d’ouverture est déterminée par les propriétés du
“stem” seulement et que la vitesse de fermeture décroit avec la longueur de la boucle.
Cependant, nous ne sommes pas capable d’obtenir une comparaison quantitative
compléte. Nous obtenons une largeur de transition environ deux fois plus grande
que celle obtenue dans les expériences, indépendamment du modéle de boucle. Aussi
surprenant que cela puisse paraitre, ce résultat négatif est peut-étre I'un des résultats
les plus important de ce travail de thése parce qu’il montre clairement qu’un simple
brin d’ADN ne peut pas étre modélisé par un simple polymeére a I’échelle de quelques
dizaines de paires de bases, en dépit de ce que dit la littérature portant sur ce sujet.
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Appendix A

Calculation of Py(R) for the
Kratky-Porod chain

This appendix explains the method proposed by N.Theodorakopoulos to compute
the probability distribution function of the end-to-end distance of a Kratky-Porod
chain.

Our calculation for the hairpin involves the probability distribution function for
the extension of the chain S(r|R). But for a chain like the Kratky-Porod chain
which includes an energy contribution depending on the angle between segments, the
probability distribution of an (N + 1)"™ segment depends on the spatial orientation
Xy of the n'™® segment. This suggests that the appropriate distribution for the
Kratky-Porod chain is not

N
Py(R) = ZlN / Y ... dQ e PHXD) (R—ZXj>, (A1)
j=1

but the end-to-end vector distribution function at fixed direction X, of the N®
segment, i.e.

Py (R;Xy) = / H dQ e PHX (R — ZN:X]) : (A.2)

The probability distribution 3 for the end-to-end vector is related to Py (R; Xy)
by

The method proposed by N.Theodorakopoulos uses an expansion of Py (R;Xy) in
terms of spherical harmonics

v (R; X ) = ZQ Yim (), (A.4)
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where the expansion coefficients are defined as
QY (R) = [ d Py (RiXa) Yy (). (A5)
The end-to-end distribution function is obtained from the lowest coefficient by

Px(R) = VirQy (R). (A.6)

The idea of the calculation is to build Py(R) by gradually adding segments to an
initial segment. Therefore one needs to define a recurrence relation
Zn

ﬁN-‘rl (R§ XN—i—l) = It
_l’_

/dQNdr'(5 (R—1" —Xpy41) X
6b(XN'XN+1_l)f)N (R, XN) . (A7)

Using the expression of Zy as a function of ig(b), one gets

ﬁN—i—l (R, XN—i—l) = /dQNdI'/(S (R —r — XN+1) X

¢ (X, Xv41) Py (R; Xv), (A.8)
with
Ko X ebXN XN y1—1) AD
6 (Ko, Xovaa) = s (4.9
which can be expanded in terms of spherical harmonics
& (X, Xnv1) = (b)) Vi () Vi (v 41), (A.10)
lm
with (D)
-~ 2
b) = —= Al
i) = L (A1)

expressed in terms of modified Bessel functions. With the spherical harmonic ex-
pansion of ¢, the angular integral of [AL8 can be performed. The result is

> d o
PN—‘,—I (R, XN+1) — / q drlelq.(R—I' )6—Zq.XN+1 %

(2m)’
> a)@h (&) Yim(2n1), (A.12)

lm

in which we have introduced the Fourier transform of the ¢ function.
Multiplying both sides by Y} (X ) and integrating over Qy1 extracts the expres-

. ~(N+1
sion of Ql(,m, )

~ d - ,
F0m) [ oo

(2r) )
S AB T @@ (), (A.13)
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where

) (q) = / 40 e 9% Yim (Q)ViE (). (A.14)

As we are interested in the case m’ = 0 because we need @(()]8[), Eq. (AI3) reduces
to

~ d - /
Qz(/]g)(R) 2/ 9 greia®=r)

(2r)°
S £ @ ), (A.15)
where
) 1 +1 y
10 = sVEFDRE [ e R RG), (A1)

where P, is a Legendre polynomial. In Fourier space Eq. ((A13) becomes
SV ~ 0) \A(N
w (@) = > )i (@)@ (@) (A17)
I

which can be expressed in a matrix form by defining a vector Q™) and a symmetric
matrix F by

M(a) = /a0)Q (a) (A.18)
Fir(q) = /u(b)iv (b) £y (a)- (A.19)

The recurrence relation is now
and the end-to-end distribution function is given by
Py(R) = V1rQ\M (R). (A.21)

The recurrence relation ([A20) provides the basis for the calculation of Py(R). For
this one needs to start from N =1

P (R;X,) = ié (R—X,). (A.22)
So that N )
P(R) = /dQlPl (R:X,) = -6(R-1). (A.23)
From the expansion of P, (R; X;) we get
Qim (q) = . 5 (@)0mo, (A.24)

/_47'( 10
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or

1
V= —=Fo (A.25)

Now with the recurrence relation we get

v _ L rpw A.26
Ql \/E [ ]lo' ( ’ )

Therefore the Fourier transform of the end-to-end distribution is given by
Py(q) = [F],, - (A.27)

If we know the matrix elements of F, we can then get Py(q) and Py(R) by inverse
Fourier transform. Their calculation is possible with the expansion

[e.e]

e = 37 (2h + 1)(~)ju() Peln), (A.28)

k=0

where the jj are the spherical Bessel functions (e.g. jo(q) = singq/q).

Putting this expression into formula for fl(l?) (¢), and using the integral formula for
the product of three Legendre polynomials [60], it is possible to express the matrix
elements of F as a finite sum of Bessel functions. (Eq.(31) in [60]).
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The Gaussian chain

B.1 Theoretical predictions

We consider the case of a chain with monomer modelled by springs which are ran-
domly oriented and totally independent from each other. Each monomer has a fixed
equilibrium length [,. We assume that the spring konstant K does not depend on
T and we consider the case [y # 0, contrary to the case usually presented in the
litterature. We will see even in such a simple polymer model that the calculations
could be non trivial. Figure (BJ) gives a representation of the Gaussian chain.

Figure B.1: Modelling of the Gaussian chain.

Using this model we can define the energy of such a chain, which is in this purely
harmonic case:
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1 N

We would like to calculate: (r;), (|[r;]]), (r7), ((Ry — Ryq)?), the gyration radius R?
and finally (U). The same method could be used to calculate other quantities.
First of all (r;):

(r;) =

ﬂ N
/Hdr] e exp(=2 (s — b))
j=1
BK +
/ [Lees o253 e -
j=1

Jj=1

. (B.2)
- /dri r; eXp(—%(HriH - l0)2)

[ s exp(= 5 el = 10

(r;) =0

This result is trivial because in this model each monomer is independent from the
others and randomly oriented.
Let us now consider (||r;||) :

K
[ el o2 (el = 10

/ ir, exp<_%K<||ri|| —1)?)

(l[e:l) =

. /000 dr r? exp(—ﬂTK(r —1p)%)
/000 drr exp(—ﬂTK(r —1)%)

Due to the presence of [y, the calculation of the two previous integrals is not dim-
mediate. Nevertheless one can easily show that:
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Z) = /000 drr exp(—ﬂTK(r — 1))
(B.4)

1 ﬁK l() 2w
2= = exp(= ) + 5|5 <Ef lo\/20K) +1)
1 ﬁKeXp( 9 o)+t o 3K rf(51 BK) +
Where Erf is the error function [07]. In the same way we have:

/ dr r* exp(— ﬂ —(r—1p) )Zﬁl—OK eXP(—ﬂTKZS)+

1 /2 1 Klg+1
,/ﬁ; (ext (510 v/25K) + 1) (L ﬁOKJF ) (B3)
Putting (B4) and (B3) in (B3), we get:

<r>—i<ﬁl—0Kexp( ﬂflg)%—l\/;i;((erf(l \/257)—1-1)(%)) (B.6)

In the same spirit we can calculate (r;?):

/dri r;’ exp(—ﬁTK(HI'iH —1p)?)
K
[ s x-Sl = 1)

<ri2> =

- /000 dr r® exp(—ﬂTK(r — )%
/000 dr r exp(—ﬂTK(r —1)%)

Using (B4), (B.3) and usual integration methods we get:

(SO

o ey ) (PR s

We can now easily derive the mean end to end distance of the chain using the fact
that the monomers are independent from each other:
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{((Ry —Ryg)?) = {((Ry — Ry_1) + (Ry-1 — Ry_s) +--- + (Ri — Ry))?)
{((Ry —Ry)®) = Z (r?) (B.9)

((Ry —Ro)*) = N (r?)

Therefore, we immediately have the expression of < U >:

=1 (B.10)

() = SNK (B + () ~ 1y (r)

Before giving the expression of the gyration radius, let us notice that, if [j = 0, then
we find the usual results for a harmonic system with two degrees of freedom:

<>_1 2k, T
"5V TR

o 2kT (B.11)
<7“ > - K
(U) = Nk,T

Finally, we give the exact result of the radius gyration as well as its value in the
limit of big N:

1

Ry =25 > ((Ru = Ru)®)
1

R; = WZZ\N—?M <7’2>

2 1 N 2
RQ%W/O /0 \n—m\<r>

B~ 07

(B.12)
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B.2 Monte Carlo simulation

We have developed a program which models this Gaussian chain. In our simulation
we have chosen for simplicity K =1, [p =1 and k, = 1.

We have used the Monte Carlo algorithm presented in chapter 4. Here we present
the mean values obtained numerically and compare it to the theoretical results. One
can notice that the numerical results are in total agreement with the theoretical ones.
This valid a posteriori the theoretical expressions derived for such quantities.

(r)

— Theoretical curve

o Numerical results

()

64

— Theoretical curve

o Numerical results

02

na 06 R 1 12 14 16 18

Figure B.2: Square mean length and mean length of a monomer. Left: mean length.

Right: square mean length
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Figure B.3: potential energy of the chain and square mean end-to-end distance. Left:
potential of the chain. Right: square mean end-to-end distance.
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