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Introdu
tionDNA hairpins are mole
ules made of a single strand of DNA whi
h has two 
om-plementary sequen
es of bases at its two ends. As a result the ends tend to bindto ea
h other to form a short pie
e of double stranded DNA, 
alled the stem of thehairpin. The remaining part of the strand makes a loop as shown on Fig. (1).DNA hairpins have a dual interest. First they play important roles in biology

Figure 1: s
hemati
 representation of a DNA hairpin 
on�guration [1℄.su
h as the regulation of gene expression during trans
ription [2℄. Se
ond, hairpinsprovide a model system to study the self-assembly pro
ess that leads to the for-mation of the famous DNA double helix. This self-assembly 
an o

ur in solutionsthat 
ontain a su�
ient 
on
entration of two 
omplementary DNA spe
ies. But thepro
ess is 
omplex be
ause the 
omplementary strands must �rst �nd ea
h otherin solution and then assemble. In a hairpin, the two parts that have to assembleare already atta
hed to ea
h other. Therefore the pro
ess leading to their assemblyis simpler. Moreover, as explained later in the manus
ript hairpins 
an be studiedvery pre
isely in experiments using some �uores
ent dyes [3℄. As a result a

urateexperimental results on the assembly-dis-assembly of the stem 
an be 
olle
ted [4, 5℄.The goal of our study is to propose a suitable model for the equilibrium statisti
alphysi
s and kineti
s of the 
losing and opening of DNA hairpins. As DNA hair-xi



Introdu
tionpins are fairly simple biologi
al mole
ules, their self-assembly in solution is a moretra
table problem than either protein folding or DNA double helix formation and one
an isolate more easily a plausible rea
tion 
oordinate, whi
h is the end-to-end dis-tan
e. In parti
ular when one 
ompares their assembly to protein folding, one 
ouldthink that this task has already been 
ompleted. This is not the 
ase. Of 
oursesome studies have been performed [6, 7℄, and we shall review them in Chap. 2, butthey are phenomenologi
al and rely on many empiri
al parameters whi
h are di�-
ult to evaluate quantitatively and have to be �tted on experimental results. Thedi�
ulties are not restri
ted to the theoreti
al level. Even the experiments raisepuzzling questions be
ause the studies of Lib
haber and 
oworkers [4℄ disagree onsome fundamental points with the measurements of Walla
e et al. [8℄ and Ansari [6℄.All experiments agree qualitatively on the equilibrium thermodynami
s properties.The melting temperature Tm de
reases with the length of the loop and Tm is lowerfor a poly(A) than for a poly(T) loop. Dis
repan
ies appear in the kineti
 studies.While all agree that the a
tivation energy for the opening is positive and does notdepend on the loop, di�erent experiments disagree on the properties of the 
losing.Lib
haber and 
oworkers measure a small positive a
tivation energy of 
losing butWalla
e and Ansari �nd instead a negative a
tivation for 
losing. A 
areful analysisshows that the 
ontradi
tion may be only apparent. First the experiments of Ansariet al [7℄ are made with very short loop (only 4 thymine bases T4) and a stem of6 base-pairs while Lib
haber and 
oworkers [4℄ 
onsider mu
h longer loops (T12 toT30) and a shorter stem (5 base-pairs). The experiments of Walla
e et al 
onsiderhairpins whi
h are similar to those studied by Lib
haber and 
ollaborators (A30loop, and 5 base-pairs in the stem) but they have varied the solvent. In pure watertheir a
tivation energy for 
losing is mostly negative (in the highest range of thetemperature domain that has been investigated) but it be
omes slightly positive atthe lowest temperatures (275K). With a solvent 
ontaining MGCl2 (20.10−3 mol/l)the a
tivation energy is weakly positive in the whole temperature range whi
h hasbeen studied. In their analysis of the dis
repan
ies between their measurements andthose of the group of Lib
haber, Ansari et al. invoke the possible role of misfoldedloops. They 
ould play a dominant role in the low temperature range (where positivea
tivation energies are found by Walla
e; similarly all experiments of the Lib
habergroup are performed signi�
antly below Tm where traps by misfolded loops 
ouldplay a role). Walla
e et al. assign the non-Arrhenius behavior that they observe tointra
hain intera
tions within the loop (the breaking of AA sta
king intera
tions inthe loop).All these studies show that although rather 
omplete set of data on DNA hairpinsis available, those data are far from being properly understood. The studies byAnsari et al. [7, 6℄, are able to rea
h a reasonable �t of the experiments but at theexpense of a 
omplex loop model whi
h in
ludes a phenomenologi
al 
ooperativityparameter [7℄.Our aim in this work is to examine to what extend statisti
al physi
s 
an des
ribethe properties of DNA hairpins in terms of a basi
 model with the minimal amountxii



of ad-ho
 assumptions and parameters that 
an be related to the intera
tion energiesbetween the elements that make the stru
ture of the hairpin. We will of 
ourse haveto make some limitations, as dis
ussed in this manus
ript, but this kind of approa
h
an be fruitful for understanding some properties of DNA hairpins. For instan
e weshall see in Chap. 5 that a positive a
tivation energy for 
losing 
an be found evenfor a simple loop model.The �rst model that we have developed is a two dimensional latti
e model withtwo parameters only [9℄. We model the favourable intera
tion between 
omplemen-tary bases by a parameter d, and introdu
e a parameter of �exibility ǫ to take intoa

ount the rigidity of the strands. We show that we 
an reprodu
e qualitativelysome experimental results and we report on the role of the mismat
hes on the ther-modynami
s and the kineti
s of this system by 
omparing two models one withmismat
hes, the other without. This �rst model reveals its limits when quantitativeresults are sought in parti
ular be
ause the entropy of the system is not properlydes
ribed. So we have developed an another model, based on the same idea as the�rst one but some what more sophisti
ated. We divide the system into two parts,the loop and the stem. We apply for the loop the theory of polymers and for thestem we introdu
e the base pairing and sta
king intera
tions following the work ofPeyrard, Bishop, Dauxois and Theodorakopoulos [10, 11℄, whi
h has been su

essfulin des
ribing many aspe
ts of DNA denaturation. Our approa
h involves only fun-damental entities relating either to the single-strand stru
ture (polymer rigidity) orto H-bond and sta
king intera
tions. The thermodynami
s 
an be determined usingthe standard results of the statisti
al me
hani
s of systems in equilibrium betweentwo limit states and the kineti
s 
an also be addressed within the framework of therea
tion rate theory for systems where it is possible to isolate a rea
tion 
oordinate.We will show in this work that the model of the single strand that forms the loopis 
ru
ial to reprodu
e properly the experimental properties of hairpins. In otherwords hairpins are very sensitive systems to test simple models of single strandedDNA. The interest of the development of su
h models is not only a
ademi
 be
ausesingle stranded DNA is 
losely related to RNA, whi
h plays a very important rolein biology, in parti
ular be
ause it 
an adopt 
omplex 
on�gurations whi
h oftenin
lude hairpins.The �rst 
hapter of this thesis gives some general ba
kgrounds around the DNAmole
ule and DNA hairpins. It also presents brie�y the previous works around thethermal denaturation of DNA. The se
ond 
hapter presents a review of some ex-perimental studies dealing with the problem of the self-assembly of single strandsof DNA. It also gives a brief review of the problem of protein folding. The third
hapter deals with the di�erent polymer models 
ommonly used to model single
hains and that we have used for the modelling of the loop part of DNA hairpins.Finally, the fourth and the �fth 
hapters introdu
e and dis
uss the two models thatwe have developed in order to study the thermodynami
s and the kineti
s of DNAhairpins. xiii





Part IDNA mole
ule and Single-StrandedDNA

1





Chapter 1The DNA mole
ule and SingleStranded DNA, Hairpins
Contents1.1 The DNA mole
ule . . . . . . . . . . . . . . . . . . . . . . 31.1.1 DNA stru
ture and 
onformation . . . . . . . . . . . . . . 41.1.2 DNA properties . . . . . . . . . . . . . . . . . . . . . . . . 71.1.3 DNA melting models . . . . . . . . . . . . . . . . . . . . . 101.2 Single stranded DNA . . . . . . . . . . . . . . . . . . . . . 141.2.1 How to get it? . . . . . . . . . . . . . . . . . . . . . . . . 141.2.2 Why is it interesting to study ssDNA and their hairpin form? 15
1.1 The DNA mole
uleDesoxyribonu
lei
 a
id (DNA) is the mole
ule whi
h 
ontains all the geneti
 infor-mation inside nu
leotide sequen
es 
alled genes. This mole
ule was found at thebeginning of 20th 
entury [12℄, but its stru
ture has only been pre
ised in the middleof the 
entury by Watson and Cri
k [13℄. DNA is inside the 
ore of ea
h 
ell in sev-eral forms. For example during the mitose whi
h is the 
ell division, DNA adoptsthe 
hromosomal form whereas for the rest of the time, the mole
ule is in the inter-phasi
 form. The geneti
 
ode stored in DNA is expressed during 
omplex pro
essessu
h as trans
ription and repli
ation. It is important to noti
e that more than onemeter of DNA is 
ompa
ted in the nu
leus of ea
h 
ell whi
h has a diameter of 10−7m. Therefore DNA in the 
ell is not a linear mole
ule. 3



The DNA mole
ule and Single Stranded DNA, Hairpins1.1.1 DNA stru
ture and 
onformationDNA is a very long heli
oidal polymer 
omposed of two 
hains whi
h are twistedaround ea
h other. Ea
h 
hain 
onsists of nu
leotides linked by 
ovalent bonds. Inthe name desoxyribonu
lei
 a
id we �nd nu
lei
 a
id and desoxyribose. DNA is anu
lei
 a
id be
ause this mole
ule is in the 
ore of ea
h 
ell and is an a
id a

ordingto Bronstëd. More pre
isely, in the DNA mole
ule, monomers of ea
h 
hain aredesoxyribonu
leotides. Two of them are purines: Adenosine and Guanosine formedby a �ve-atom 
y
le plus a six-atom 
y
le. The other two are pyrimidines: Cytosineand Thymine formed by a single 
y
le of six atoms. A desoxyribonu
leotide is
omposed of three mole
ular parts:
• a 
y
li
 sugar of �ve 
arbon atoms (desoxyribose)
• a purine base: Adenine or Guanine or a pyrimidine: Cytosine or Thymine
• and a phosphate linked to the sugar by a phosphoester bond.The sequen
es of single bonds between su

essive nu
leotides give a �exibility tothe ba
kbone be
ause the rotation around a single bond is quite easy. However theheli
oidal 
on�guration of the DNA restri
ts these rotations.Ea
h base is linked to the sugar-phosphate ba
kbone, by a 
ovalent bond (N-gly
osidi
 bond) and the two nu
leotidi
 
hains are linked together by hydrogenbonds. These hydrogen bonds only exist between 
omplementary bases 
alled base-pairs: Guanine-Cytosine(G-C) and Adenine-Thymine(A-T). Therefore the doublehelix whi
h has a 
omplementary stru
ture 
ontains the same information in thetwo strands twisted around ea
h other. Finally the sites where the bases are at-ta
hed to the ba
kbones are not exa
tly opposite on a diameter of the se
tion, sothat the heli
oidal stru
ture of the DNA presents a minor and a major groove.Using the abbreviation of the bases one 
an easily des
ribe any nu
leotide sequen
e,whi
h is also 
alled the primary stru
ture. The geneti
 information is stored in theprimary sequen
e. The sequen
e is written in the dire
tion from 5'-end to the 3'-endof the sugar phosphate ba
kbone where 5' and 3' label two parti
ular 
arbon atomsof the sugar 5'-ACCGGTTA-3'OH as shown in Fig. (1.1), or simply, ACCGGTTA(whi
h is di�erent from the opposite sequen
e, ATTGGCCA) [14℄. In the nativeform, ea
h strand is 
oupled into a duplex or double helix with its 
omplementarystrands.Figure (1.2) gives some dimensions of the DNA 
omponents, Fig.(1.3) shows thedouble helix a

ording to Cri
k and Watson and Fig. (1.4) presents the pairingbetween 
omplementary bases.There are several 
onformations of the DNA double helix. The more 
hara
ter-isti
 stru
tures are 
alled A,B and Z. A and B forms are right-handed heli
es whi
h4



1.1 The DNA mole
ule

18 Å
6 Å
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Figure 1.1: Numeration of the 
arbon-atomin the sugar [14℄.
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Figure 1.2: S
hemati
 form of the double
hain.

Figure 1.3: The double helix of Cri
k andWatson [12℄. Figure 1.4: Pairing of 
omplementarybases [12℄.
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The DNA mole
ule and Single Stranded DNA, Hairpinsturn around their axis 
ounter-
lo
kwise. The di�eren
e between these stru
turesis the position of the bases around the axis of the helix and the in
lination of theplateau formed by the bases with this axis. In the B helix, the plateaus of the basesis tilted by approximately �fteen degrees with respe
t to the helix axis. Moreoverea
h base-pair turns about thirty six degrees around the helix axis 
ompared to theprevious base-pair. Thus, ten base-pairs are needed to get one full rotation. TheB 
on�guration is stable for approximately 92 % of relative humidity. While the Aform is stable for approximately 75 % of relative humidity and needs the presen
eof 
ounter ions su
h as sodium or potassium. A-T sequen
es are prone to the B
on�guration. The distan
e between base-pairs along the helix axis is 0.34 nm for B
on�guration and it is not very di�erent for the A form. Another important form isthe Z 
on�guration whi
h is a left-handed helix. In this 
on�guration the monomerof the heli
oidal 
hain is the dinu
leotide and not the nu
leotide. Moreover there areno large grooves and the ba
kbone sugar-phosphate �zigzags� on the periphery ofthe helix. This 
onformation only exists in parti
ular 
onditions: high salt 
on
en-trations, methylation of 
ytosines. Alternate sequen
es of purines and pyrimidineshave a higher tenden
y to adopt the Z 
on�guration. Figure (1.5) gives an idealizedrepresentation of the A,B and Z 
on�gurations.

Figure 1.5: A,B and Z form of the DNA double helix [12℄.
6



1.1 The DNA mole
ule1.1.2 DNA propertiesThe stability of DNA results from various intera
tions between atoms or groups ofatoms of the mole
ule and intera
tions with the solvent, as for instan
e ele
trostati
intera
tions between 
ations su
h as magnesium and phosphates. Studies of theDNA [26, 15℄ reveal that its stability is essentially due to two types of intera
tionbetween the bases:
• Intera
tion between 
omplementary bases: hydrogen bonds link the 
y
les ofthe two bases forming a pair
• Sta
king intera
tion between base-pairs whi
h are due to hydrophobi
 inter-a
tions and overlap of the π-ele
trons of the base plateausFinally it is important to note that the sta
king intera
tion also exits between 
on-se
utive bases of the same 
hain and is very important in the 
ase of single strandedDNA as we will show in the next se
tions.1.1.2.1 Repli
ation and Trans
riptionDNA is involved in two major events in biology: trans
ription and repli
ation [14℄.For these to o

ur the DNA double helix has to be untwisted or 
urved. The tran-s
ription is the 
opy of DNA into a messenger RNA that tells to the 
ell how to makea protein. DNA only unwinds over a short region, say 15-20 base-pairs, when mak-ing RNA. The bubble of unpaired bases 
an travel along the DNA very rapidly, atabout 100 base-pairs per se
ond. When DNA is 
opied into RNA, a 
opying enzyme
alled RNA polymerase atta
hes itself to one of the two DNA strands and 
arriesout the pro
ess of 
opying DNA into RNA a

ording to the rules of Watson-Cri
kpairing. There is one di�eren
e between RNA and DNA: the Thymine of DNA isrepla
ed by the Ura
il in RNA. Using the pro
ess 
alled translation, the nu
leotidi
sequen
e of the RNA is read by group of three nu
leotides, named triplets. Ea
htriplet 
orresponds to a parti
ular amino a
id and sequen
es of amino a
ids deter-mine the proteins synthesized by the 
ell.The repli
ation is the pro
ess by whi
h DNA is 
opied into another DNA mole
ulejust before a single 
ell divides into two 
ells. During this pro
ess the DNA doublehelix has to open 
ompletely and an enzyme 
alled DNA polymerase 
arries outthe pro
ess of 
opying DNA into DNA. Figures (1.6) and (1.7) give a s
hemati
representation of repli
ation and trans
ription of DNA.1.1.2.2 Melting of DNAThe two strands of a DNA mole
ule 
an be disso
iated into single polydeoxyri-bonu
leotide strands (the pro
ess is also 
alled denaturation or melting) by heat.7



The DNA mole
ule and Single Stranded DNA, Hairpins

Figure 1.6: S
hemati
 representation ofrepli
ation of DNA [16℄. Figure 1.7: S
hemati
 representation oftrans
ription of DNA [17℄.It o

urs be
ause of the breaking of the hydrogen bonds between 
omplementarybases and the disruption of the base sta
king. Knowing how denaturation pro
eedsis important for understanding DNA repli
ation and manipulations of DNA in lab-oratory. Besides the denaturation due to a temperature in
rease, the separation ofthe strands 
an also be 
aused by a number of physi
al fa
tors su
h as 
hange in salt
on
entration, pH or other fa
tors. Melting of DNA by heat is a standard methodfor preparing "single-stranded DNA" (ssDNA).The denaturation of DNA o

urs over a narrow temperature range and 
auses anumber of physi
al 
hanges. For instan
e, the ultraviolet absorption at 260 nmin
reases. The simplest 
hara
terization of DNA denaturation is via the meltingtemperature, Tm, the temperature at whi
h half the melting has taken pla
e. Tmdepends on DNA length, sequen
e, ioni
 environment, pH, et
. Be
ause GC-pairsare linked by three hydrogen bonds, while AT-pairs only have two, the temperatureat whi
h a parti
ular DNA mole
ule "melts" usually will in
rease with higher per-
entage of GC-pairs. The relationship between melting temperature (Tm) and GC
ontent for long DNA 
an be approximately des
ribed:
Tm = 69◦ + 0.41 × %(G + C). (1.1)8



1.1 The DNA mole
uleThis equation emphasizes that GC-pairs are more stable than AT-pairs but it over-simpli�es the phenomenon. As the ordered regions of sta
ked base-pairs in the DNAduplex are disrupted, the UV absorban
e in
reases. This di�eren
e in absorban
ebetween the duplex and single strand states is due to an e�e
t 
alled hypo
hromi
ity.Hypo
hromi
ity (meaning "less 
olor") is the result of nearest neighbor base-pairintera
tions. When the DNA is in the duplex state (dsDNA), intera
tions betweenbase-pairs de
rease the UV absorban
e relative to that of single strands. When theDNA is in the single strand state the intera
tions are mu
h weaker, due to the de-
reased proximity, and the UV absorban
e is higher than that in the duplex state.The pro�le of UV absorban
e versus temperature is 
alled a melting 
urve; the mid-point of the transition determines the melting temperature, Tm. The dependen
eof the melting temperature, Tm, on the salt 
on
entration 
an be analyzed to yieldquantitative thermodynami
 data in
luding ∆H , ∆G and ∆S for the transitionfrom duplex to single stranded DNA. Alternatively, one 
an get this information byanalyzing the whole melting 
urve.Thermodynami
 analyses of this type are done extensively in bio
hemistry resear
hlabs as well as in physi
s labs [18, 19, 20℄ parti
ularly those involved in nu
lei
a
id stru
ture determination. In addition to providing important information aboutthe 
onformational properties of either DNA or RNA sequen
es (mismat
hed base-pairs and loops have distin
t e�e
ts on melting properties), thermodynami
 data forDNA are also important for several basi
 bio
hemi
al appli
ations. For example,information about Tm 
an be used to determine the minimum length of a oligonu-
leotide probe needed to form a stable double helix with a target gene at a parti
ulartemperature. Figure (1.8) gives a example of a melting 
urve.

Figure 1.8: Melting 
urves example. The solution 
onditions were 10 nM sodiumphosphate, pH 7.0, 1.0 M sodium 
hloride and a strand 
on
entration of 2µM . Theduplex sequen
es are GCAAAGAC/GTCTTTGC, GCATAGAC/GTCTATGC, GCAGA-GAC/GTCTCTGC, and GCACAGAC/GTCTGTGC, with melting temperature of 33.7,30.6, 35.7, and 38.5 ◦C, respe
tively [18℄.
9



The DNA mole
ule and Single Stranded DNA, Hairpins1.1.3 DNA melting modelsDNA melting 
an be viewed as a phase transition in a one-dimensional system andit has attra
ted the attention of theoreti
ians for the last �fty years. Various modelshave been developed to study the opening of the double helix and its �u
tuationalopening. We introdu
e some of them in this se
tion be
ause they provide a basisfor a model for the stem of the hairpin.1.1.3.1 Mi
ros
opi
 modelThis model may appear the most natural at a �rst sight be
ause it des
ribes themole
ule at the atomi
 s
ale. It in
ludes all the intera
tions between the atomsof the ma
romole
ule and must take into a

ount the geometri
 
onstraints in thethree dimensional spa
e. In this model di�erent types of intera
tions have to be
onsidered: ele
trostati
, Van der Waals, angular and dihedral energies. Biophysi-
ists use this type of models in parti
ular to study the dynami
s of proteins [21℄.The 
ommon expressions for the intera
tions are the following:
• potential des
ribing the stret
hing of 
ovalent bonds kbond(r−r0)

2 where kbondis a 
onstant, r the bond length and r0 the equilibrium length;
• potential of angular rigidity: kf(θ − θ0)

2, where kf is 
onstant and θ is thepolar angle between two 
onse
utive bonds and θ0 the equilibrium value;
• potential of torsion( rotation around simple bonds): kg(1 + cosφ), where kg isa �xed parameter and φ is the rotational angle around a bond;
• Lennard-Jones potential: 4ǫ

[
(σ

r
)12 − (σ

r
)6
] for non-bonding intera
tionsOne 
an easily imagine that this type of 
al
ulation needs a very long 
pu-time innumeri
al simulations. And su
h a detailed study may not be relevant to study largeDNA 
onformational 
hanges. Indeed, the fast mi
ros
opi
 displa
ements of atomsare not responsible of physi
al properties of the mole
ule at mesos
ale. We will
ome ba
k to this point in the se
ond part of this thesis. While mi
ros
opi
 models
an be useful to observe the dynami
s of the mole
ule for a short time s
ale, they
annot be applied to study the melting transition itself, whi
h is a 
olle
tive e�e
tinvolving long segments of DNA on time s
ales whi
h are beyond the possibilities ofthe present 
omputers. This is even more obvious if one thinks that useful resultsfor the melting 
an only be provided by the statisti
s of many individual events andnot from a single mole
ular dynami
s traje
tory.1.1.3.2 Poland and S
heraga modelThe Poland-S
heraga model takes a 
ompletely opposite approa
h be
ause it triesto use the simplest possible des
ription of the mole
ule. It was introdu
ed in 196610



1.1 The DNA mole
uleby Poland and S
heraga [23, 24℄. The model is built upon an original idea byZimm [25℄. The model 
onsists of an alternating sequen
e (
hain) of ordered andunordered states (loops), whi
h represent denaturing DNA in terms of a sequen
e ofdouble-stranded and single-stranded regions. In the original model [25℄, the base isassumed to exist in any of three states, bounded in the helix, unbound in free 
hainsor in unbound sequen
es between two heli
oidal portions. The heli
oidal (ordered)sequen
es are energeti
ally favoured over the unbound states and the 
ontribution ofthe other two states is in
luded in some phenomenologi
al parameters. The nu
le-ation of an ordered (heli
oidal) region ( a low-probability event 
ontrolled by a 
oop-erativity fa
tor [25℄), is followed by helix growth, a high probability event 
ontrolledby the statisti
al weight w of the ordered (heli
oidal) state. Figure (1.9) illustratesthe Poland-S
heraga model s
hemati
ally. The question whi
h is addressed is the
Figure 1.9: S
hemati
 representation of the Poland-S
heraga model.possible �rst order phase transition in one dimensional system. Indeed, experimentsaround melting of DNA suggest that the transition is �rst order [26℄.For su
h a simple model one 
an 
ompute the partition fun
tion Z and the fra
tionof ordered states in a 
hain of N base-pairs given by

θ =
1

N

∂ ln Z

∂ ln w
, (1.2)where w is the statisti
al weight of an ordered state, whi
h is not at the end of the or-dered sequen
e. A phase transition o

urs if θ has a dis
ontinuity with temperature.But this one-dimensional model would not have a phase transition unless additionalingredients are in
luded. In fa
t the most deli
ate aspe
t of these Ising-like modellies in the evaluation of the entropy of a loop. It must be expli
itly in
luded be
ausethe model is not ri
h enough to des
ribe all the 
on�gurations of an open regionsin
e it uses a simple two-state variable. Poland and S
heraga asserted that thestatisti
al weight of a denaturated sequen
e of length l is given by the 
hange inentropy due to the added 
on�gurations arising from a loop of length 2l. This hasthe general form Asl

lc
for large l, where s is the entropy gain for the opening of asingle base-pair. As shown by Poland and S
heraga, the value of the exponent c is
ru
ial. No phase transition should o

ur for c ≤ 1 and a �rst order transition arisesif c > 2. If 1 < c ≤ 2 a phase transition of higher order should o

ur, although θ is
ontinuous at the transition. They �nd that c = d/2 for ideal random walks, where

d is the dimension, there is thus no transition at d ≤ 2 (c ≤ 1) and a 
ontinuous11



The DNA mole
ule and Single Stranded DNA, Hairpinstransition for 2 < d ≤ 4 (1 < c ≤ 2).Fisher [27℄ has derived the entropy of the denaturated loops modelled as self-avoidingwalks. Within this approa
h, the denaturation transition of DNA is 
ontinuous bothin two and three dimensions. Indeed, He �nds c = 1.46 for d = 2 and c ≈ 1.75 for
d = 3. The transition is thus sharper, but still 
ontinuous, in three dimensions.The proper 
al
ulation of c turns out to be a very di�
ult problem whi
h has onlybeen solved re
ently. Kafri et al [28℄ and have shown that the DNA denaturationtransition 
ould be �rst order if the e�e
ts of ex
luded volume intera
tion insidethe loop and with the rest of the 
hain is taken into a

ount. Assuming that theentropy is still given by the expression showed below, they evaluate the exponent cby 
onsidering the entropy of a loop of length 2l embedded in a 
hain of length 2L.Figure (1.10) gives a representation of a su
h 
on�guration.They �nd a lower entropy yielding a larger value of the exponent c ≈ 2.115 whi
h
Figure 1.10: Topology of the loop embedded in a 
hain. The verti
es Vi 
orrespond tothe separation between bound and unbound states.gives a �rst order phase transition in dimension 3.Finally Blossey and Carlon [29℄ propose a reparametrizing of the helix nu
leationparameters, reanalysing the data in
luding the works of Kafri et al.Besides the need of many parameters, these models are not adapted to short DNAsegments and moreover they 
annot des
ribe intermediate states between 
losed andfully open. For instan
e one aspe
t whi
h is missing is the a
tual distan
e betweenthe strands. For hairpins this is also the distan
e between the two ends of the loop.This distan
e is very important to determine the properties of the loop. This is whywe have 
hosen a model whi
h in
ludes this distan
e.1.1.3.3 PBD modelThis model was introdu
ed by Peyrard and Bishop in 1989 [10℄ and was improvedwith Dauxois in 1993 [11, 32℄. In this approa
h the mole
ule is supposed to belinear in one dimension, and its heli
ity is not taken into a

ount. Ea
h base-pair isrepresented by its stret
hing y and has a mass m. The idea in this approa
h is to usea potential at the s
ale of the base. Hydrogen bonds between 
omplementary basesare modelled by a Morse potential and the 
oupling between 
onse
utive base-pairsis either harmoni
 or nonlinear. In this last 
ase the 
oupling 
onstant dependson the state of the two base-pairs whi
h intera
t. The displa
ements along themole
ule are not 
onsidered be
ause they are mu
h weaker than transverse ones.12



1.1 The DNA mole
uleWe will 
ome ba
k to this model in mu
h more details in the se
ond part of thisthesis. The Hamiltonian of the system is given by (1.3)
H =

∑

n

[ p2
n

2m
+ W (yn, yn−1) + V (yn)

]
, (1.3)where:

pn = mdyn

dt

W (yn, yn−1) = K
2

[
1 + ρe−α(yn+yn−1)

]
(yn − yn−1)

2

V (yn) = D (e−ayn − 1)
2
,with, yn whi
h is the stret
hing of the base-pair and K, ρ, α, D and a whi
h arepositive 
onstants. Figure (1.11) shows the di�erent intera
tion potentials in the
hain.

n n+1n-1

V(y  )
n W(y  ,  y      )

n n-1

y

Figure 1.11: Peyrard-Bishop model for DNA.
1.1.3.4 Heli
oidal ModelIn order to be more realisti
, Simona Co

o during her PhD [33℄ with Mi
hel Peyrard,and Maria Barbi developed a DNA heli
oidal model [34, 35℄.This model in
orporatesthe heli
ity of the mole
ule [25, 36℄. Figure (1.12) shows a s
hemati
 representationof the model. This approa
h, like the previous model uses a Morse potential (Vm) forhydrogen bonds as well as a sta
king intera
tion (Vs). Moreover there is a potential(Vb) whi
h represents the longitudinal vibration of the mole
ule whi
h is 
oupled tothe stret
hing of the base-pairs be
ause the ba
kbone is assumed to be rigid. Indeed,to take into a

ount the heli
ity there is one more degree of freedom 
ompared tothe Peyrard-Bishop and Dauxois model. With the notations of Fig. (1.12), the13



The DNA mole
ule and Single Stranded DNA, Hairpinsexpressions of the potentials are:
Vm(rn, rn−1) = D

(
e−a(rn−R) − 1

)2

Vs(rn, rn−1) = Ee−b(rn+rn−1−2R) (rn − rn−1)
2

Vb(rn, rn−1, hn) = K (hn − H)2 ,

(1.4)with E, b, R, K and H whi
h are positive parameters. This model is more 
omplete

Figure 1.12: DNA Heli
oidal Model [33℄.than the PBD model and it is not ne
essary to introdu
e su
h a 
omplexity for the
ase of DNA hairpins be
ause we are 
onsidering only very short stems. Taking intoa

ount the heli
ity is important for long DNA mole
ules where torsional energy
an build up. For a short stem it 
an be easily released at the free end and thereforeit is not essential for the physi
s of the system.1.2 Single stranded DNA1.2.1 How to get it?A single stranded DNA is one of the two nu
leotidi
 
hains of the double helix. Inprin
iple it is not di�
ult to get a ssDNA. Single stranded DNA 
an be produ
edexperimentally by rapidly 
ooling heat-denatured DNA. Heating 
auses the strandsto separate and rapid 
ooling prevents renaturation. Bases in ssDNA also seem tosta
k to give heli
ity to the 
hain. There is a lot of resear
h [37, 38℄ to 
hara
terizethe sta
king of bases in ssDNA. In DNA the sta
king intera
tion between base-pairs is �a priori� di�erent from the 
ase of ssDNA at least for the intensity of theintera
tion. Figure (1.13) gives a s
hemati
 representation of a ssDNA. The interest14



1.2 Single stranded DNAof ssDNA also lies on its strong analogy with RNA whi
h plays a large role in biology.

Figure 1.13: S
hemati
 representation of ssDNA.1.2.2 Why is it interesting to study ssDNA and their hairpinform?ssDNA 
an form hairpin-loop 
on�gurations whi
h are very interesting stru
turesfor physi
ists and biologists [41, 39, 40℄. As explained in the introdu
tion, DNAhairpins are short nu
leotide strands whi
h have, in their two terminating regions,
omplementary bases whi
h 
an therefore self assemble to form a short double helix
alled the stem of the hairpin. They 
an exist in two states, the open and the 
losedstate, and �u
tuate between the two, being mostly 
losed at low temperature andmostly open at high temperature. For biologists, regions of DNA mole
ule wherehairpin formation is possible, are believed to play a key role in DNA transpositionand in global regulation of gene expression [2℄. Moreover loop formation is a �rststep in the folding of the RNA mole
ule [14℄ and also serve as intera
tion sites forproteins [42℄. DNA hairpins may provide very sensitive probes for short DNA se-quen
es [43℄: a loop whi
h is 
omplementary to a sequen
e to re
ognise 
an selfassemble with it. It is proposed as an alternative to the DNA-
hips [44℄. This15



The DNA mole
ule and Single Stranded DNA, Hairpinsprevents the hairpin from 
losing and it is dete
ted by �uores
en
e. The hairpin
on�guration 
an be adopted by the mole
ular bea
ons whi
h are single strandedoligonu
leotide 
omprising a probe sequen
e embedded within 
omplementary se-quen
es that form the stem part of the hairpin. A �uorophore is 
ovalently atta
hedto one end of the oligonu
leotide, and a quen
her is 
ovalently atta
hed to the otherend. In the absen
e of target, the stem of the hairpin holds the �uorophore so 
loseto the quen
her that �uores
en
e does not o

ur. When this probe binds to itstarget, the rigidity of the probe-target duplex for
es the stem to unwind, 
ausingthe separation of the �uorophore and the quen
her and the restoration of the �uo-res
en
e. This allows the dete
tion of probe-target.For the physi
ists hairpins provide a very simple system to study the self assem-bly of DNA with two pie
es of strand whi
h are maintained in the vi
inity of ea
hother for the assembly. Physi
al appli
ations of DNA hairpins are beginning to be
onsidered. One remarkable example is the use of DNA hairpins to make memory
hips for 
omputers [45℄. These systems use the �uorophore/quen
her method thatwe present in the next 
hapter to dete
t the opening of the hairpins and use a lo
allaser heating to 
ause their opening. To 
onstru
t a memory, transitions betweenbistable states are generally required. The bistable states 
orrespond to a writtenstate and an unwritten state, respe
tively. The transition between bistable states isrealized by mole
ular rea
tions bases on hairpin DNA. DNA mole
ular memory is
omposed of two types of DNA: a hairpin DNA and a linear DNA. The hairpin a
tsas a memory mole
ule with a memory address, the linear DNA as a data mole
ulewith an address tag of the memory. Figure (1.14) gives a s
hemati
 representationof su
h mole
ules. The loop region of memory DNA has a memory adress, whi
h is

Figure 1.14: S
hemati
 representation of the memory DNA and the data DNA [45℄. (a)Memory DNA: a �uores
ent dye TAMRA is atta
hed to the 5'-end and its quen
her Dab
ylis atta
hed to the 3'-end. (b) Data DNA: a data DNA has a 
omplementary base sequen
eof the loop and the 3'-stem of the memory DNA. (
) Data-
omplementary DNA: a data-
omplementary base sequen
es of S and L, respe
tively.re
ognized by the data DNA. The address tag part of the data DNA is 
omposed of a
omplementary base sequen
e of the loop and the 3'-stem of the memory DNA. Thismemory exploits a hybridization rea
tion between the hairpin DNA and the linearDNA in memory addressing. Writing data on the memory is to make the linear16



1.2 Single stranded DNADNA hybridize with the hairpin DNA. The hairpin DNA 
hanges from a 
losed toan open stru
ture when the data is written on the memory. In pra
ti
e the writingoperation follows a serie of operations: heating up a solution of memory DNA anddata DNA from room temperature TR (=25◦C) to the writing temperature TW then
ooling it down from TW to TR. At TW the data DNA hybridizes with the memoryDNA be
ause the memory DNA opens and the memory-data DNA duplex is stable.Erasing data from the memory is to separate the linear DNA from the hairpin DNA.The hairpin DNA returns to the 
losed 
on�guration when the data is erased fromthe memory through a series of operations: heating up the solution from TR to theerasing temperature TE and 
ooling it down qui
kly from TE to TR. The duplex ofmemory DNA and data DNA is 
ompletely disso
iated at TE . The qui
k 
oolingallows the memory DNA to 
lose so that the data DNA 
an no longer a

ess to thememory DNA. Figures (1.15) and (1.16) gives a s
hemati
 view of the written andthe erasing pro
ess. The mole
ular rea
tions for addressing of a large amount of

Figure 1.15: S
hemati
 representation of the writing pro
ess [45℄. It is 
omposed of theheating from TR (room temperature) to TW (writing temperature) then 
ooling from TWto TR.DNA mole
ular memories based on hybridization between the address part of hair-pin DNA and the address tag of linear DNA pro
eed in parallel so that massivelyparallel addressing of a huge memory spa
e will be possible in prin
iple. There aresome problems and the most important one is that the data are not 
ompletelyerased during the erasing pro
edure whi
h is due to the fa
t that the 
ooling rateof erasing is not fast enough to separate the memory DNA and the data DNA.Figure (1.17) gives a s
hemati
 representation of hairpin-loop 
on�guration for a17



The DNA mole
ule and Single Stranded DNA, Hairpins

Figure 1.16: S
hemati
 representation of the erasing pro
ess [45℄. It is 
omposed of theheating from TR (room temperature) to TE(erasing temperature) then 
ooling qui
kly from
TE to TR.RNA (for ssDNA Ura
ile is repla
ed by Thymine). Modelling the �u
tuations of

Figure 1.17: S
hemati
 representation of RNA loop.a hairpin is more 
hallenging than modelling the thermal denaturation of DNA fortwo reasons:18



1.2 Single stranded DNA
• the self assembly of a stru
ture is not simply the reverse pro
ess of its openingbe
ause the elements must �nd ea
h other in spa
e and then orient properlywith respe
t to ea
h other, before a
tually assembling in a �nal stage whi
h isthe only stage of the pro
ess whi
h 
an be viewed as the reverse of the breaking;
• the time s
ales for the assembly 
an be very long (hundred of µs for instan
e),i.e. many orders of magnitude longer than the typi
al time s
ale of the mi
ro-s
opi
 dynami
s of a ma
romole
ule [46℄.
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Chapter 2Review of experimental properties ofDNA hairpins.
Contents2.1 Bulk �uores
en
e . . . . . . . . . . . . . . . . . . . . . . . . 212.1.1 Fluores
en
e Resonan
e Energy Transfer . . . . . . . . . . 212.1.2 Fluores
en
e Bulk measurements . . . . . . . . . . . . . . 232.2 Fluores
en
e Correlation Spe
tros
opy(FCS): Kineti
s . 252.2.1 Experimental proto
ol . . . . . . . . . . . . . . . . . . . . 262.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3 Stati
 Absorban
e measurements . . . . . . . . . . . . . . 292.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30In this se
tion we review some of the known experimental results [49, 50℄ of DNAhairpins and their analysis by the authors of the experiments. This will give us hintson the ingredients required to design a model and experimental fa
ts against whi
hthis model 
an be tested.2.1 Bulk �uores
en
e2.1.1 Fluores
en
e Resonan
e Energy TransferFluores
en
e Resonan
e Energy Transfer (FRET) is a powerful te
hnique for 
hara
-terizing distan
e-dependent intera
tions at a mole
ular s
ale [3℄. It is one of the fewtools available that is able to measure intermole
ular and intramole
ular distan
eintera
tions both in-vivo and in-vitro.FRET involves the ex
itation of a donor �uorophore by in
ident light within its21



Review of experimental properties of DNA hairpins.absorption spe
trum. This radiative absorption elevates the donor �uorophore to ahigher-energy ex
ited state that would normally de
ay (return to the ground state)radiatively with a 
hara
teristi
 emission spe
trum. If, however, another �uorophoremole
ule (the a

eptor) exists in proximity to the donor with its energy state 
hara
-terized by an absorption spe
trum that overlaps the emission spe
trum of the donor,then the possibility of non-radiative energy transfer between donor and a

eptor ex-ists. The radiationless energy transfer des
ribed above is mediated by dipole-dipoleintera
tions (Van der Waals for
es) between the donor and a

eptor �uorophoremole
ules that vary as the inverse 6th power of distan
e between the two mole
ules.The rate of energy transfer from donor to a

eptor, kF , is approximately [47℄:
kF ≈ KD

(r0

r

)6

, (2.1)where kD is the radiative de
ay rate of the donor �uorophore, or inverse of the�uores
en
e emission lifetime in the absen
e of the a

eptor �uorophore (typi
ally1-50 ns), r is the distan
e between the two mole
ules, and r0 is the �Förster distan
e�that 
hara
terizes the 50 % e�
ien
y point of the energy transfer. The FRETe�
ien
y depends on the sixth power [47℄ of the distan
e between the two dyemole
ules:
E =

1

1 +
(

r
r0

)6 . (2.2)FRET is suited to measuring 
hanges in distan
e on the order of the Förster distan
e,whi
h is typi
ally 20 to 90 Å. This length s
ale is far below the Rayleigh-
riterionresolution limit of an opti
al mi
ros
ope (typi
ally 2500 Å for visible light at highnumeri
al aperture), thus illustrating the power of FRET for measuring extremelysmall distan
e intera
tions.As an example, Fig. (2.1) shows the overlap of the 
yan �uores
ent protein (CFP)emission spe
trum and the yellow �uores
ent protein (YFP) absorption spe
trum;this pair supports a strong FRET intera
tion. After energy transfer o

urs fromdonor to a

eptor, the a

eptor �uorophore is ex
ited to its �uores
en
e emissionstate. Be
ause the observed rate of �uores
en
e emission from the a

eptor is rate-limited by energy transfer from donor to a

eptor, the quantitative measurementof FRET emission 
an therefore provide an inferred measurement of distan
e usingthe equation above. A

urate FRET determination generally involves 
omparisonof the donor and donor-a

eptor �uores
en
e emission intensities in samples withand without the a

eptor present. A ratio measurement is ne
essary be
ause, asFig. (2.1) demonstrates, there is typi
ally overlap between the donor and a

eptoremission spe
tra, thus making it di�
ult to determine with a single measurementexa
tly what fra
tion of the �uores
en
e measured with an a

eptor emission �l-ter derives from only the a

eptor. Fluores
en
e lifetime measurements providemore dire
t results for the energy transfer rate, are not sus
eptible to 
on
entra-tion variations, and 
an be made using time domain or phase modulation lifetime22



2.1 Bulk �uores
en
e

Figure 2.1: Donor and a

eptor absorption and emission spe
tra [3℄.measurement te
hniques. These types of measurement 
an also provide informationregarding 
onformational 
hanges due to mole
ular intera
tions.This te
hnique was used by the group of Lib
haber [4℄ and others [48℄ to study DNAhairpin-loops and their 
onformational �u
tuations. We present the thermodynami
results obtained by the group of Lib
haber in the next se
tion.2.1.2 Fluores
en
e Bulk measurements2.1.2.1 Measurement prin
ipleDNA hairpin-loops are supposed to be in equilibrium between two states: the openstate and the 
losed state. This equilibrium is 
hara
terized by an equilibrium
onstant and rates of opening and 
losing. In a more 
omplex view one 
an imaginea transition state between the 
losed and the open 
on�guration. Figure (2.2) givesa s
hemati
 representation of the equilibrium. In the experiments 
arried by the

Figure 2.2: S
hemati
 representation of the two states [4℄.group of Lib
haber, they used mole
ular bea
ons whi
h are oligonu
leotides 
apable23



Review of experimental properties of DNA hairpins.of forming a hairpin loop with a �uorophore and a quen
her atta
hed to the twoends of the stem. The 
onformational state is dire
tly reported by its �uores
en
ea

ording to the FRET prin
iple: in the 
losed state the �uorophore is quen
hed bythe quen
her and the mole
ule is not �uores
ent; in the open state the �uorophoreand the quen
her are far apart and the bea
on is �uores
ent. The sequen
es of theDNA hairpin-loop under study were 5'-CCCAA-(N)n-TTGGG-3' with varying loopbeing alternatively (T)12, (T)16, (T)30, or (A)21. By monitoring the �uores
en
e Ias a fun
tion of the temperature T they 
an dedu
e the normalized �uores
en
e:
f(T ) =

I(T ) − Ic

I0 − Ic
, (2.3)where I0 is the �uores
en
e of the open bea
ons and Ic is the �uores
en
e of the
losed bea
ons. This quantity measures the per
entage of open hairpins at a giventemperature. Then the equilibrium 
onstant is given by

K(T ) =
f(T )

1 − f(T )
. (2.4)It is linked to 
hemi
al rates of opening and 
losing whi
h are essential to deal withthe 
onformational �u
tuations of the stru
ture (kineti
s).

K(T ) =
k−(T )

k+(T )
. (2.5)The derivation of Eq. (2.5) is presented in Chap. 42.1.2.2 ResultsThe �rst interesting result is the shape of the melting 
urves and the dependen
eof the melting temperature with the length and the nature of the sequen
e of theloop. The melting temperature Tm of the stru
ture is de�ned as the temperaturewhere 
losing and opening rates are equal, i.e. K(Tm) = 1 or f = 0.5. Figure (2.3)
ompares melting 
urves for a series of poly(A) and poly(T) hairpins. We 
an noti
etwo important points. First, for poly(A) and poly(T), the melting temperature de-
reases with the length of the loop and the de
ay is most signi�
ant for Poly(A). Onepossibility is that the entropi
 e�e
t produ
es 
onstraints or for
es at the beginningof the stem and indu
es the opening of the mole
ule. We will dis
uss more pre
iselythe relation between the loop length and Tm in Chap. 5 where we analyse the re-sults of our model. Se
ond for a same length of the loop the melting temperature ishigher for poly(T) than poly(A). The authors argue that the base sta
king is at theorigin of the di�eren
e from poly(A) to poly(T). Therefore the modelling of sta
kingintera
tion in the loop or at least the rigidity of the loop is therefore very importantbe
ause it seems to explain how the sequen
e of ssDNA 
an a�e
ts the properties ofhairpins. In order to be more pre
ise these authors performed experiments to �ndthe kineti
 properties of DNA hairpins using Fluores
en
e Correlation Spe
tros
opy.24



2.2 Fluores
en
e Correlation Spe
tros
opy(FCS): Kineti
s

Figure 2.3: Normalized melting 
urves. Loop lengths(number of bases) are des
ribedby the symbols, ◦=8, 2=12, ×=12, △=16, +=21, and 3=30. Data are �t with asingle equilibrium mass a
tion law [4℄2.2 Fluores
en
e Correlation Spe
tros
opy(FCS): Ki-neti
sThe idea is to measure the auto-
orrelation fun
tion whi
h re�e
ts the �u
tuationsof the emitted �uores
en
e. The problem is that the sour
es of �u
tuations in�uores
en
e are the di�usion of mole
ules in and out of the sampling volume andthe opening and 
losing of the se
ondary stru
ture. Therefore two independentmeasurements were performed:1. measurements of the auto-
orrelation fun
tion of the mole
ular bea
ons Gbeaconwhi
h 
ontains both di�usion and kineti
s 
ontributions.2. Measurements of the auto-
orrelation fun
tion Gcontrol from a sample for whi
hthe 
orrelation fun
tion 
onsists of the di�usion 
ontribution only. The ratio25



Review of experimental properties of DNA hairpins.of the two fun
tion gives the kineti
s part and is linked to the sum of thekineti
 rates k− and k+.The theoreti
al form of the auto-
orrelation fun
tion Gbeacon is a produ
t of a di�u-sion term and kineti
 term [4℄:
Gbeacon =

〈I(0)I(t)〉 − 〈I(0)〉2

〈I(0)〉2

= Gcontrol

(
1 +

1 − f

f
e−(k++k−)t

)
. (2.6)Therefore �tting the ratio Gbeacon/Gcontrol gives a

ess to the sum of the rates. Thenusing the �uores
en
e bulk measurements k− and k+ 
an be dedu
ed.2.2.1 Experimental proto
olA laser beam is fo
used onto the sample with an obje
tive lens and the emitted lightis 
olle
ted through the same obje
tive. It is then fo
used onto 25 µm diameterpinhole. Then the beam is divided in two by a beam-splitter 
ube and fo
used ontotwo Avalan
he photo-
ounting modules. Finally the signals from these two dete
torsare fed onto a 
orrelator and the 
ross-
orrelation of the ex
ited light is 
olle
ted.Figure (2.4) gives a s
hemati
 drawing of the experimental setup.

Figure 2.4: S
hemati
 drawing of the experimental setup. S, sample; OB, obje
tivelens; DM, di
hroi
 mirror; NF, not
h �lter; PH, pinhole; BS, beam-splitter; APD,Avalan
he photo-
ounting dete
tor; CORR, 
orrelator. [4℄2.2.2 ResultsFigure (2.5) gives the evolution of the rates of opening and 
losing versus tempera-ture for di�erent loop lengths.Figure (2.6) gives the evolution of the rates with temperature for the same loop26



2.2 Fluores
en
e Correlation Spe
tros
opy(FCS): Kineti
s

Figure 2.5: Arrhenius plots of the opening rates (open symbols) and the 
losingrates (�lled symbols) of bea
ons with di�erent loop lengths: (T)12 (
ir
les), (T)16(squares), (T)21 (diamonds), and (T)30 (triangles). The lines are exponential �ts tothe data [4℄.length but with a di�erent loop sequen
e, (A)21 and (T)21. First of all, rates ofopening and 
losing seem to follow an Arrhenius law. Indeed, the �tting of the ex-perimental points with an exponential k(T ) = k∞exp(−Ea/RT ) is 
onsistent withsu
h a law. Therefore the a
tivation energies of opening and 
losing 
ould be de-du
ed. In a �rst approximation the opening rate is not a�e
ted by the length andthe nature of the loop. Consequently, the opening seems to be governed by the stemonly: strength of the base-pairs and sta
king intera
tions in the double helix part.This �rst eviden
e is very important for the modelling and we will 
ome ba
k tothis point for quantitative 
omparison of the experimental and theoreti
al results.Se
ond, the a
tivation energy of 
losing for poly(T) is not a�e
ted by the length ofthe loop. Nevertheless the rate of 
losing is lower for bigger loops a

ording to thein
rease of the loop entropy. Indeed bigger loops generates a bigger phase spa
e andthe meeting of the two ends of the ssDNA take more time. This indi
ates that thefree energy of a poly(T) loop is mostly entropi
 and the base sta
king does not seemto be very important in this 
ase. Nevertheless, Fig. (2.6) shows that the a
tivationenergies of 
losing for poly(A) and poly(T) are very di�erent and the a
tivationenergy of poly(A) is bigger than for poly(T). So, in poly(A) there is an additionalenthalpi
 term due to the base sta
king (perhaps also due to a bigger ex
luded vol-ume in poly(A)).Figure (2.7) shows the evolution of the a
tivation energy of 
losing with the looplengths for poly(A) and poly(T). In a �rst approximation the author of the study
onsider that the enthalpy of poly(T) does not depend on the loop length (−0.127



Review of experimental properties of DNA hairpins.

Figure 2.6: Comparison of the opening rates (opening symbols) and the 
losingrates (�lled symbols) for the bea
ons with loops of equal length but with di�erentsequen
e: (T)21 (
ir
les) and (A)21 (squares). The lines are exponential �ts to thedata [4℄.

Figure 2.7: Closing enthalpy vs loop lengths (number of bases) of (◦) poly(A) and(•) poly(T) [37℄.k
al.mol−1. base−1) but for poly(A) ∆Hc in
reases with in
reasing loop length(+0.5k
al.mol−1.base−1). This 
on�rms two key points:1. the loop sequen
e dependen
e of the 
losing properties;2. a free energy mostly entropi
 for poly(T) but with an additional enthalpi
term for poly(A).28



2.3 Stati
 Absorban
e measurementsA

ording to the Lib
haber's group the energeti
 barrier of 
losing 
omes from adistortion of the loop and a nu
leation of the �rst base-pair in the stem while thelinearity of ∆Hc with loop length in poly(A) re�e
ts the base sta
king energy inssDNA.All these results will help us in the design of a model for ssDNA. They give us ideasof the physi
al ingredients ne
essary to the modelling: hydrogen bonds + sta
kingintera
tion for the stem and rigidity + base sta
king in the loop.2.3 Stati
 Absorban
e measurementsAnother type of measurement that 
an be used for hairpins is the 
ommon ab-sorban
e te
hnique. We present brie�y this te
hnique as well as some results that
an be found in the literature [49℄ in parti
ular the results of Kuznetsov et al [6℄.We also present in this se
tion an interesting model developed by Kuznetsov et alwhi
h is in good agreement with absorban
e results.2.3.1 ExperimentAs explained in Chap. 1, a DNA mole
ule is 
omposed of nu
lei
 a
ids whi
h absorbUV light around 265 nm. This absorption depends on the 
omposition and thestru
ture of nu
lei
 a
ids. The absorban
e measurement is based on the Beer-Lambert law:
A = ǫ.l.c (2.7)Where ǫ is the mole
ular absorption 
oe�
ient, l the distan
e of sample traversedby the UV-light and 
 the 
on
entration of the system in the sample. The 
hangeof absorban
e is dire
tly proportional to the amount of substan
e whi
h absorbsUV-light. Figure (2.8) gives a s
hemati
 representation of a possible experimentalmethod to measure absorban
e. For DNA the 
losed and open forms have very dif-

Figure 2.8: S
hemati
 representation of a spe
trophotometer [6℄.ferent absorption 
oe�
ients. Natural DNA, i.e. 
losed DNA, has a small value of ǫwhile single strands, or more pre
isely unsta
ked bases, have a mu
h higher ǫ. There-fore the opening of the stem of hairpins leads to a strong in
rease in absorban
e. In29



Review of experimental properties of DNA hairpins.their experiments, in order to in
rease the sensitivity of the dete
tion, Kuznetsov etal, use a modi�ed form of DNA. They 
hange the base A in the base-pair A-T by2-aminopurine (2AP), a �uores
ent analog of the Adenine whi
h absorbs at 266 nmand 330 nm. When the base-pair is formed there is no absorban
e, so in the 
losedstate a hairpin does not absorb.2.3.2 AnalysisIn order to analyse their experiments, Kuznetsov et al introdu
e a very simple modelfor the hairpin whi
h has some similarities with the models that we dis
uss in detailsin the next 
hapter.The model [6℄ is based on the simple one dimensional Ising model that we presentedin Chap. 1 [23℄ (
alled also Poland and S
heraga model) but with the improvementbrought by Benight and 
oworkers [26℄: the introdu
tion of nearest-neighbor se-quen
e dependen
e in the sta
king intera
tion. Of 
ourse this model is only validfor the stem. For the loop they used the wormlike 
hain model [51, 52℄ whi
h wewill present in more detail in the next 
hapter. To des
ribe the partition fun
tion ofthe system they need three parameters: si, the statisti
al weight for ea
h base-pair;
σ, the 
ooperativity parameter and wloop(n), the end-loop weighting fun
tion for aloop 
onsisting of n bases. The statisti
al weight 
orresponding to ea
h base-pairformation, si, depends on the type of base-pair A-T or G-C and intera
tions withits neighbors, and in
ludes the stability from hydrogen bonding as well as sta
kingintera
tions:

si = e−
∆Gi
RT , (2.8)where

∆Gi = ∆Hi − T∆Si +
δGi−1,i + δGi,i+1

2
. (2.9)

∆H and ∆S are the enthalpy and the entropy 
hange, respe
tively, asso
iated withbase-pair formation. δGi,i±1 are enthalpies asso
iated to sta
king intera
tions. Thesta
king intera
tion as well as base-pair formation are dire
tly in
luded in enthalpiesand they do not deal with potential of intera
tions whi
h 
ould explain the physi
alorigin of su
h phenomena. The 
ooperativity is asso
iated with the jun
tion betweenan inta
t and broken base-pair, and it depends on the spe
i�
 type of base-pairs atthe jun
tion. The form of the 
ooperativity parameter is the following:
σi,i+1 = 〈σ〉

1
2 e

δGi,i+1
2RT , (2.10)where 〈σ〉 is the average of the ten di�erent sta
king intera
tions and the value istaken a

ording to Wartell and Benight's works [26℄. The base-pair at the jun
tionbetween the stem and the loop is always inta
t in their modelling (of 
ourse not inthe 
oil state) therefore the end-loop weighting fun
tion wloop(n) is proportional tothe probability of forming a loop with n bases (the end-to-end distan
e is therefore30



2.3 Stati
 Absorban
e measurements�xed):
wloop(n) =

(
3

2πb2

) 3
2

Vrg(n)σloop(n), (2.11)where n is the number of bases in the loop, b = 2P is the statisti
al segment length(Kuhn's length), Vr is a 
hara
teristi
 rea
tion volume within whi
h the bases atthe two ends of the loop 
an form hydrogen bonds, σloop(n) models the stabilizingintera
tions of the bases within the loop and between the loop and the stem, and�nally g(n) is the probability of forming a loop with n bases. Figure (2.9) gives as
hemati
 representation of some mi
rostates of the model and the 
orrespondingstatisti
al weights are given in Eq. (2.12)

Figure 2.9: S
hemati
 representation of some mi
rostates of the Kuznetsov et almodel. [6℄
za = 〈σ〉

1
2

(
Ns∏

i=1

si

)
wloop(N)

zb = σ1,2

(
Ns∏

i=2

si

)
wloop(N) (2.12)

zc = 〈σ〉
1
2

(
Ns−2∏

i=1

si

)
wloop(N + 4).To �t the abosorban
e measurements they derive the fra
tion of inta
t base-pairssummed over all the mi
rostates, θI(T ):

θI(T ) =
∑

j

nj

Ns

zj

Q(T )
, (2.13)31



Review of experimental properties of DNA hairpins.where Q(T ) is obtained by summing the statisti
al weights of all mi
rostates {j}and nj is the number of inta
t base-pairs in the jth mi
rostate.The absorban
e melting pro�les at 266 nm 
an be expressed as :
A(T ) = θ(T )[AU(T ) − AL(T )] + AL(T ), (2.14)where AU(T ) and AL(T ) are the limiting baselines at high and low temperature,respe
tively and θ(T ) is the net fra
tion of broken base-pairs whi
h is 
al
ulatedfrom Eq. (2.13) as

θ(T ) = 1 − θI(T ).We only give one result that shows that, with appropriate parameters, the model isin good agreement with the experimental results. Figure (2.10) shows the meltingpro�les of 5'-CGGATAA(TN)TTATCCG-3' with di�erent value of N and the �tsusing the model presented below. The most important weaknesses of this model are

Figure 2.10: Fits to the equilibrium melting pro�les. The symbols are normalizedabsorban
e: •, N=4; �, N=8; N, N=12; the lines are the fra
tion of broken base-pairs. ∆Gloop is the free energy of forming a loop 
losed by an A-T base-pair and isobtained by the model: red and bla
k 
urve is the test of di�erent σloop [6℄.the following:1. the stem does not 
ontain enough degrees of freedom and the end-to-end dis-tan
e of the loop is �xed.2. This model is too phenomenologi
al. Its parameters are hard to 
onne
t withproperties of DNA hairpins. The sta
king is dire
tly in
luded in an enthalpi
term and in the parameter σ.32



Chapter 3Review of some polymer and proteinmodels
Contents3.1 Polymer theory . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 333.1.2 Freely jointed 
hain . . . . . . . . . . . . . . . . . . . . . 343.1.3 Freely rotating 
hain . . . . . . . . . . . . . . . . . . . . . 373.1.4 Kratky-Porod 
hain . . . . . . . . . . . . . . . . . . . . . 413.1.5 Growth of a polymer 
hain . . . . . . . . . . . . . . . . . 453.2 Protein models . . . . . . . . . . . . . . . . . . . . . . . . . 493.2.1 Protein folding . . . . . . . . . . . . . . . . . . . . . . . . 493.2.2 Latti
e models . . . . . . . . . . . . . . . . . . . . . . . . 50For hairpins the properties of the loop are important. In this 
hapter we reviewsome polymer models [53℄ that 
ould be used to des
ribe the loop. Another aspe
tof our study is the formation of the hairpin, i.e. the folding of the single strandof DNA to form the stem. This pro
ess is qualitatively similar to the folding ofproteins in their biologi
ally a
tive 
on�guration. This is why, in this 
hapter, wealso give a brief review of protein folding theory.3.1 Polymer theory3.1.1 Introdu
tionSin
e the birth of the interdis
iplinary studies approximately �fty years ago, poly-mer theory has known a high development for its appli
ation in 
hemi
al te
hnologyas well as, of 
ourse, in biology. Indeed ma
romole
ules play a key role in mole
ular33



Review of some polymer and protein modelsbiology with DNA, RNA and proteins. As one 
an imagine, polymers have 
omplexproperties due to their intera
tion both inside the mole
ule and with the environ-ment, i.e. with the solvent and other identi
al mole
ules. In this 
hapter we will
on
entrate our attention on the equilibrium properties of polymers presenting threedi�erent models: the freely jointed 
hain, the freely rotating 
hain and �nally theKratky-Porod 
hain ( or worm like 
hain) [54℄. Dynami
al properties of polymer insolution will not be 
onsidered in this thesis [53, 55℄ be
ause they are not ne
essaryfor our purpose.3.1.2 Freely jointed 
hainThe freely jointed 
hain (FJC) is the simplest model for a single polymer in solution.Ea
h monomer o

upies a point in three or two dimensional spa
e. The 
onformationof the FJC is represented by the set of N+1 position ve
tors {Rn} ≡ (R0 . . .RN)de�ning the position of the nodes in spa
e. We 
an also de�ne the bond ve
tors that
onne
t together these monomers {rn} ≡ (r1 . . . rN ), withrn = Rn −Rn−1, (3.1)for n=1. . .N.
R

r1

l

Figure 3.1: Freely jointed 
hain.To 
onstru
t a probabilisti
 model for the polymer, we say that the node n mustbe at a distan
e b from the node n − 1, and ea
h dire
tion in spa
e has the sameprobability. Therefore the distribution for the bond ve
tor with, a 
onstant length
b, is the following:

Φ(r) =
1

4πb2
δ (|r| − b) . (3.2)34



3.1 Polymer theoryThis distribution is normalized to unity
∫

drΦ(r) = 1. (3.3)Sin
e the bond ve
tors rn are independent of ea
h other,
Φ(ri, rj) = Φ(ri)Φ(rj). (3.4)so that the joint probability distribution 
an be fa
tored into single bond ve
torprobability distribution. For a 
hain of N bond ve
tors, the distribution fun
tion iswritten as
Ψ({rn}) =

N∏

n=1

Φ(rn). (3.5)Note that this is an unphysi
al model for a polymer sin
e it allows two monomers tobe arbitrarily 
lose to ea
h other: there is no �ex
luded volume� intera
tion betweenany two monomers. Note also that 
onstru
ting the polymer 
hain with N bonds isequivalent to a random walk of N steps, whi
h is the other name of this model.3.1.2.1 End-to-end ve
torWe are interested in 
ertain properties of this model. First, we want to know theproperties of the end-to-end distan
e of the polymer.R = RN −R0 =

N∑

n=1

rn. (3.6)To de�ne its statisti
al properties, we would like to know the moments of this quan-tity, in parti
ular 〈R〉 and 〈R2
〉. First, 〈R〉 =

∑N
n=1 〈rn〉 = 0 be
ause

〈rn〉 =

∫ rnΦ(rn)drn = 0. (3.7)There is no preferred dire
tion for any bond, so that the average is zero. Se
ond,〈R2
〉,

〈R2
〉

=

〈
N∑

i=1

N∑

j=1

ri · ri

〉

〈R2
〉

=

N∑

i,j=1

〈ri · rj〉

〈R2
〉

=

N∑

i=1

〈
|ri|2

〉
+

N∑

i6=j=1

〈ri · rj〉
〈R2

〉
= Nb2. (3.8)35



Review of some polymer and protein modelsAll of the 
ross terms vanish be
ause the distribution of the individual bonds arestatisti
ally independent. There are N remaining terms, ea
h of them giving a fa
tor
b2. Also, note that this implies that √〈R ·R〉 = R =

√
Nb, i.e. that the root meansquare end-to-end distan
e of a polymer grows as √N .3.1.2.2 End-to-end ve
tor distributionWe now 
onsider the statisti
al distribution of the end-to-end ve
tor of the FJCmodel. The probability distribution fun
tion G(R) of the end-to-end ve
tor is 
al-
ulated using the distribution of the bonds:

G(R) =

∫
dr1

∫
dr2 · · ·

∫
drNδ

(R−
N∑

n=1

rn

)
Ψ({rn}), (3.9)whi
h is rewritten using the integral representation of the delta fun
tion as

G(R) =
1

(2π)3

∫
Ψ({rn)

∫ exp(−ik(R−
N∑

n=1

rn

))
dk N∏

i=1

drj

G(R) =
1

(2π)3

∫
e−ik·R N∏

n=1

(∫
1

4πb2
δ (|rn| − b) eik·rndrn

)
dk. (3.10)It is possible to evaluate the integral within the parentheses for ea
h n using polar
oordinates with k pointing along the z dire
tion. We get

∫ ∞

0

1

4πb2
δ (|rn| − b) eik·rndrn =

sin kb

kb
. (3.11)Using Eq. (3.11), the expression (3.10) be
omes

G(R) =
1

(2π)3

∫
e−ik·R(sin kb

kb

)N

dk. (3.12)So far the 
al
ulation is exa
t for all N . To pro
eed, we need to make an approxima-tion to evaluate the integral. We are interested in large N , sin
e we are interestedin long polymer 
hains. One 
an 
he
k that limN→∞(sin kb/kb)N = 0 for all kb > 0.So the dominant part of the integral 
omes from the small values of kb. Thereforewe 
an use the fa
t that
sin kb

kb
≈ 1 − (kb)2

3!
≈ exp

(
−(kb)2

6

)
. (3.13)The distribution now be
omes

G(R) =
1

(2π)3

∫
e−ik·Re−

k2b2N
6 dk. (3.14)36



3.1 Polymer theoryThe integral over k is a standard Gaussian integral [57℄ whi
h gives us
G(R) =

(
3

2πb2N

) 3
2

e−
3R2

2b2N . (3.15)We 
an noti
e that the probability distribution for the ve
tor R only depends onits length R and is Gaussian. Moreover the distribution (3.15) has the unrealisti
feature that ||R|| 
an be larger than the maximum extended length Nb of the 
hainwhi
h is due to the approximation made in the 
al
ulations. Finally we 
an expressthe probability distribution of the end-to-end distan
e R using
G(R)dR = P (R)dR. (3.16)Therefore, repla
ing b by l,

P (R) = R2

√
2

π

(
3

2l2N

) 3
2

e−
3R2

2l2N . (3.17)Figure (3.2) gives a representation of P (R) for di�erent value of N and a �xed valueof l=6 Å whi
h approximately is the interbase distan
e in ssDNA.
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Figure 3.2: Probability distribution of the end to end distan
e of a freely jointed 
hain.3.1.3 Freely rotating 
hainA more realisti
 model to des
ribe 
hains without long-range-intera
tions is thefreely rotating 
hain (FRC) [56℄. A drawing of a freely rotating 
hain is shown inFig. (3.3). The angle θ is �xed for ea
h segment; but ea
h segment 
an freely rotatealong the φ degree of freedom. The distribution fun
tion for the end-to-end ve
tor37
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Figure 3.3: Freely rotating 
hain.R, is not known for the dis
rete 
ase but for very long 
hain this distribution tendsto a Gaussian fun
tion. Nevertheless with numeri
al simulation it is quite easy toget this distribution. It is interesting to derive 〈R2
〉 of su
h a 
hain in order tointrodu
e the notion of persisten
e length [54℄.3.1.3.1 End-to-end ve
torWe 
an write ba
k the expression of 〈R2

〉 as
〈R2

〉
=

N∑

i=1

〈r2
i

〉
+ 2

N∑

i=1

N−i∑

j=1

〈ri · ri+j〉 . (3.18)Thus a re
ursion relation is needed to 
al
ulate 〈ri · ri+j〉. The relationship is derivedby su

essively proje
ting ea
h ve
tor ri onto the unit ve
tor along the dire
tion ofthe previous two ve
tors of the 
hain ri−1 and ri−2. Thereforeri = − cos φiri−2 + cos θ (1 + cosφi) ri−1 +
sin φi

l
ri−2 × ri−1, (3.19)where φ is the azimuthal rotation angle of the ith bond ve
tor relative to the previousone. It follows that ri · ri−2 = l2

(
cos2 θ − sin2 θ cos φi

)
. (3.20)38



3.1 Polymer theoryThe se
ond term in Eq. (3.20) averages to zero (integration over the azimuthalangle). Therefore
〈ri · ri−2〉 = l2 cos2 θ, (3.21)whi
h 
an be generalized as

〈ri · ri+j〉 = (cos θ)j−1 〈ri+j−1 · ri+j〉 = l2(cos θ)j

≡ l2e−
jl
λ , (3.22)where λ = −l/ ln cos θ is de�ned as the 
orrelation length. Putting Eq. (3.22)into Eq. (3.18) and after some standard algebrai
 manipulations, we obtain

〈R2
〉

= Nl2

(
1 + cos θ

1 − cos θ
− 2 cos θ

N

1 − (cos θ)N

(1 − cos θ)2

)
. (3.23)We 
learly see that when N be
omes large Eq. (3.23) simpli�es into

〈R2
〉

= Nl2
1 + cos θ

1 − cos θ
, (3.24)whi
h shows that, as in the 
ase of the FJC, the end-to-end distan
e s
ales as √N .As Eq. (3.21) shows, the bonds are 
orrelated and the 
hain is said to have �sti�ness�.To 
hara
terize how sti� the 
hain is, we have to �nd the �memory� of the 
hain.Let us suppose that the �rst segment of the 
hain points in the dire
tion u0. Weask, how does the end-to-end ve
tor of the 
hain R, 
orrelate with the originalorientation, u0? If R is on average along the same dire
tion as the original, the
hain is very sti�. If not, it is more �exible. Thus, it is natural to evaluate

〈R · u0〉 =

〈R · r1

‖r1‖

〉

〈R · u0〉 =
1

l

N∑

i=1

〈r1 · ri〉

〈R · u0〉 = l
N∑

i=1

(cos θ)i−1

〈R · u0〉 = l
1 − (cos θ)N

1 − cos θ
. (3.25)In the limit of a long 
hain (only large N),

lim
N→∞

〈R · u0〉 ≡ lp =
l

1 − cos θ
, (3.26)where lp is 
alled the persisten
e length of the 
hain. This des
ribes the sti�ness inthe 
hain be
ause it des
ribes how long the orientation of the 
hain persists through39



Review of some polymer and protein modelsits length. Clearly, the smaller θ is, the sti�er the 
hain will be. A θ-value of zero
orresponds to a 
ompletely rigid rod [55℄. It is interesting to look at the 
ontinuumlimit de�ned by l → 0, N → ∞, Nl → L whi
h is 
onstant and θ → 0. We 
anwrite Eq (3.22) as
〈r0 · rN〉 = l2(cos θ)N

〈r0 · rN〉 = l2 exp (N ln (cos θ))

〈r0 · rN〉 = l2 exp

(
N

(
cos θ − 1 − (cos θ − 1)2

2
+ · · ·

))

〈r0 · rN〉 = l2 exp

(
−Nl

(
(1 − cos θ)

l
+

(1 − cos θ)2

2l
+ · · ·

))

〈r0 · rN〉 ≈ exp−Nl

lp
, (3.27)whi
h shows that the persisten
e length 
orresponds to the 
orrelation length of the
hain in the 
ontinuum limit approximation only.3.1.3.2 End-to-end ve
tor distributionIt is not possible to derive an exa
t expression for the end-to-end ve
tor distributionfor all R and all N . Nevertheless as Eq. (3.24) shows, the end-to-end distan
es
ales with √

N for large N . Therefore we 
an expe
t, a

ording to the 
entral limittheorem that the probability distribution of the end-to-end ve
tor to be Gaussian.In Ref. [54℄ it is shown that, in su
h a limit, the 
hara
teristi
 fun
tion, whi
h is theFourier transform of the probability distribution, is Gaussian:
K(k) = exp−

(k2

6
Nl2

1 + cos θ

1 − cos θ

)
. (3.28)Therefore the probability distribution G(R) also is Gaussian for large N :

G(R) =
1

(2π)3

∫
K(k)e−ik·Rdk

G(R) =
1

8(πσ2
N )

3
2

exp− R2

4σ2
N

, (3.29)where σ2
N = Nl2

6
1+cosθ
1−cos θ

is the gyration radius of the polymer in su
h a limit.Therefore the end-to-end probability distribution is
P (R) = 4πR2G(R) =

1

2
√

π

1

σN

(
R

σN

)2

e
− R2

4σ2
N . (3.30)In pra
ti
e we have to know when the approximation of large N is valid. For thatwe have 
ompared the real probability of the FRC simulated numeri
ally and the40



3.1 Polymer theoryGaussian approximation. Figure (3.4) gives the 
omparison for two di�erent valuesof the polar angle and for di�erent values of the number of monomers. The lengthof one monomer is �xed to 6 Å, whi
h is the appropriate value for a DNA strand.(a) (b)
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Figure 3.4: Probability distribution of the Freely Rotating Chain for two values of
θ, (a): θ=120◦; (b): θ=45◦ and 
omparison with the Gaussian approximation. Thelength of one monomer is �xed to 6 Å.First of all, P (R) is not Gaussian for all N and for all θ. Indeed for a smallvalue of θ and N=10-20, the Gaussian approximation is not 
orre
t be
ause theGaussian approximation allows R to be larger than Nl and it is physi
ally notpossible. Nevertheless for bigger values of N like 50 the Gaussian approximation isbetter and in these 
onditions we 
an use su
h an approximation.Se
ond, for a large value of θ, the limit of large N is rapidly rea
hed. Indeed for
N=10 the probability distribution is approximately Gaussian and the greater N ,the best is the Gaussian approximation. Therefore the validity of the large N limitdepends on θ. If θ is large, the limit is rea
hed rapidly but if θ is small, bigger valuesof N are needed.We now understand why it is very di�
ult to derive an exa
t expression of theend-to-end distan
e probability distribution for all N .3.1.4 Kratky-Porod 
hain3.1.4.1 An exa
t 
al
ulation of PN(r)We 
onsider the 
hain des
ribed by the Hamiltonian

H = −ǫ

N−1∑

j=1

(rj · rj+1 − l2
)
, (3.31)41



Review of some polymer and protein modelswhere l is the length of the segment. If we de�ne Xj = rj/l, whi
h is a unit ve
tor
H = ǫl2

N−1∑

j=1

(Xj ·Xj+1 − 1) . (3.32)The partition fun
tion of the 
hain is given by
ZN =

∫
dΩ1...dΩN

N−1∏

j=1

eb(Xj ·Xj+1−1), (3.33)with b = ǫl2/kBT and Ωj is the solid angle variation asso
iated with a 
hange oforientation of ve
tor Xj. This system is formally analogous to a one-dimensionalHeisenberg 
hain in zero �eld studied in [58℄. Using polar 
oordinates, θj+1, φj+1referred to Xj as the polar axis, the integrals separate yielding
ZN =

∫
dΩ1

[
N−1∏

j=1

∫ π

θj+1=0

∫ 2π

φj+1=0

eb cos θj+1 sin θj+1dθj+1dφj+1

]
e−b(N−1)

ZN = 4π

[
2π

eb − e−b

b

]N−1

ZN = (4π)N

[
e−b sinh b

b

]N−1

. (3.34)Or if we introdu
e the modi�ed Bessel fun
tion of zeroth order i0(b) = sinh b/b,
ZN = (4π)N [e−bi0(b)

]N−1.A similar approa
h 
an be used to 
ompute the 
orrelation fun
tions whi
h give usthe persisten
e length.
Ck = 〈Xj ·Xj+k〉 = 〈X1 ·Xk+1〉 , (3.35)by setting j = 1 without loss of generality

Ck =
1

ZN

∫
dΩ1X1

∫
dΩ2e

−bX1·X2 ...

∫
dΩke

−bXk−1·Xk×
∫

dΩk+1Xk+1e
−bXk·Xk+1

∫
dΩk+2e

−bXk+1·Xk+2 × ...×
∫

dΩN−1e
−bXN−1·XN × e−(N−1)b. (3.36)The integrals over Ωk+2...ΩN−1 simplify with the 
orresponding integrals in ZN .Moreover we 
an use the relation for unit ve
tors

∫
dΩj+1Xj+1e

−bXj ·Xj+1 = 4πi1(b)Xj, (3.37)42



3.1 Polymer theorywhere
i1(b) =

b cosh b − sinh b

b2
, (3.38)whi
h 
an again be obtained by dire
t integration in polar angles [57℄.This allows us to get an expression of Ck by integrations whi
h involve su

essivelyXk+1, Xk, ...X1. Ea
h one gives a fa
tor i1(b).The result is

Ck = 〈X1 ·Xk+1〉 =

(
i1(b)

i0(b)

)k

. (3.39)Using the de�nition of the persisten
e length
Ck = 〈X1 ·Xk+1〉 = e−kl/lp , (3.40)we obtain the persisten
e length as

l

lp
= − ln

[
i1(b)

i0(b)

]
= − ln

(
coth b − 1

b

)
. (3.41)It is interesting to noti
e that, in the limit of large b (ǫ large or low temperature T )we get

lp =
l

ln
[
coth b − 1

b

] ≈ lb = l × ǫl2

kBT
, (3.42)whi
h is the result obtained with the worm like 
hain model [51℄, i.e. the 
ontinuumlimit of the Kratky-Porod 
hain.As explained in Chap. 5 to model the statisti
al physi
s of DNA hairpins, we needthe probability distribution fun
tion of the polymer PN(R), whi
h makes up thehairpin. For the Kratky-Porod 
hain its 
al
ulation is mu
h more 
omplex than fora Gaussian 
hain. Even in the 
ontinuum limit (WLC model) the exa
t expression isnot known. An approximate expression has been obtained by Wilhem and Frey [59℄.It reads

PN(R) = 4πR2 1

4πR2

κ

2
√

π

∞∑

n=1

1

κ (1 − R/L)3/2
exp

[
− (n − 1/2)2

κ (1 − R/L)

]
×

H2

(
n − 1/2√

κ (1 − R/L)

)
, (3.43)where L = Nl is the total length of the polymer, κ = ǫl3/kBTL is the rigidity
oe�
ient of the WLC.In the 
ase of the dis
rete Kratky-Porod 
hain the 
al
ulation is even harder andthe probability distribution PN(R) is not known analyti
ally. However a 
ompu-tationally e�
ient method for its a

urate numeri
al 
al
ulation has re
ently been43



Review of some polymer and protein modelsproposed by N. Theodorakopoulos [60℄. As we use this method in our numeri
al 
al-
ulations, we give the 
al
ulation in Appendix A. The Fourier transform of PN(R)is expressed as a matrix element of the N th produ
t of a matrix F as
PN(q) =

(
F N
)
00

, (3.44)where the elements Fll of the semi-in�nite matrix F are expressed as a �nite sum ofBessel fun
tions. (See Appendix A for their expression).In pra
ti
e the size of the matrix F has to be trun
ated to a �nite lmax. For a semi-�exible 
hain L >> lp (for instan
e N = 11 segments and a persisten
e length of 2segments) lmax=2 or 3 produ
es results whi
h 
an hardly be distinguished from theexa
t results produ
ed by Monte Carlo simulations. For rigid 
hains L/lp = O(1),for instan
e for N = 10 and a persisten
e length of 5 segments, lmax = 4 is ne
essaryto get a good agreement with Monte Carlo simulations. These small values of lmaxprovide a rather e�
ient numeri
al method to 
ompute PN(R) for the Kratky-Porod
hain.3.1.4.2 E�e
tive Gaussian approa
hIn spite of its e�
ien
y and the moderate values of lmax whi
h are required, the
al
ulation of PN(R) for a Kratky-Porod 
hain may be
ome quite long when wewant to s
an a large number of temperatures to obtain a 
urve for the opening asa fun
tion of temperature. This is why it is useful to have a faster approximate
al
ulation.One possibility is to use an e�e
tive Gaussian approximation whi
h has a doubleinterest1. it is faster than the 
omplete Kratky-Porod 
al
ulation;2. for Gaussian 
hain we know an exa
t expression for the 
onditional probabilityfun
tion S(r|R) whi
h enters into our hairpin 
al
ulation ( the S fun
tion ispresented in the next se
tion).The idea is to approximate PN(R) by the expression for a Gaussian 
hain thatwould lead to the persisten
e length that we 
al
ulated for the Kratky-Porod 
hainEq. (3.42). This is 
an be done with
P G

N (R) =
1

2
√

π

1

σN

(
R

σN

)2

e−R2/4σ2
N , (3.45)with σN = N

6
χl2 and χ = 1+coth b−1/b

1−coth b+1/b
. The 
orresponding 
onditional probability isgiven by Eq. (3.58) whi
h exa
tly veri�es Eq. (3.50).Figure (3.5) 
ompares the e�e
tive Gaussian approximation to the Kratky-Porodexpression. In the 
ase L/lp=5.9 the e�e
tive Gaussian approximation is rough (but44



3.1 Polymer theory
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Figure 3.5: Comparison of the e�e
tive Gaussian probability distribution fun
tionand the exa
t expression for N=10 and N=32. The parameters are T=300 K and
ǫ=0.0015 eV.Å−2.The bla
k 
urve 
orresponds to the e�e
tive Gaussian fun
tion.Left:N= 10 and right:N= 32nevertheless better than the WLC expression of Wilhem and Frey), but for L/lp=19one 
an noti
e that the e�e
tive Gaussian approximation be
omes very good. There-fore, in our hairpin 
al
ulation for small values of N we use the full dis
rete KPdistribution and for higher values of N we use the e�e
tive Gaussian approxima-tion. Moreover in the 
ase of the Kratky-Porod 
hain, in any 
ase for our hairpin
al
ulation we have to use for S(r|R) the Gaussian form.In order to determine to what extend this approximation modi�es the denaturation
urves for hairpins (the 
al
ulation of su
h 
urves is given in Chap. 5) we have 
om-pared su
h 
urves for the two expressions P G

N (R) and P KP
N (R) as shown in Fig. (3.6).The di�eren
e between the two models for the loop are only per
eptible for the short-est and fairly rigid loops (N = 12, ǫ=0.0022 eV.Å−2 giving lp=15.4 Å or L/lp=4.66).For larger loops (N = 24, i.e. L/lp=9.32) the denaturation 
urves 
omputed with

P G
N (R) or P KP

N (R) 
an hardly be distinguished.
3.1.5 Growth of a polymer 
hainLet us 
onsider an e�e
tive Gaussian 
hain with a given number of monomers N , andan end-to-end distan
e ve
tor R. Its end-to-end distan
e probability distribution isgiven by Eq. (3.30). We introdu
e at this stage a new variable de�ned as

σN =
Nl2

6
χ. (3.46)45
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Figure 3.6: Comparison between the melting 
urves obtained with the e�e
tiveGaussian and the exa
t expression of the probability distribution fun
tion for N=12and N=24. The parameters are (see 
hapter 5 for their signi�
ation) D=0.090 eV,
k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35, ρ=2.0 and ǫ=0.0022 eV.Å−2. The bla
k 
urve
orresponds to the 
al
ulation with the E�e
tive Gaussian. Left: N=12 and right:N=24.We immediately see that

χ = 1 (FJC)

χ = 1+cos θ
1−cos θ

(FRC)

χ = 1+coth b−1/b
1−coth b+1/b

(KP),

(3.47)if we use an approximate des
ription for the FRC and the KP model. Suppose thatthe 
hain grows by the addition of one monomer at ea
h end. Let the additionalsegments at the two ends be represented by the ve
tors ∆1, ∆2, respe
tively. Thenew end-to-end distan
e ve
tor would then be r = R+∆1 −∆2. The unnormalizedprobability for the growth at ea
h end by a ve
tor ∆i will be proportional to
e
− 3|∆i|

2

2χl2 . (3.48)We would like to derive the fun
tion S(r|R) su
h as S(r|R)dr is the 
onditionalprobability that, if the end-to-end distan
e of the polymer 
hain of N monomersis equal to R, the end-to-end distan
e of a 
hain of N + 2 monomers, i.e. whereone monomer have been added at ea
h end, will be in the range (r, r + dr). It isnormalized to unity ∫ ∞

0

drS(r|R) = 1 ∀R. (3.49)Furthermore, it satis�es
∫ ∞

0

dRPN(R)S(r|R) = PN+2(r) ∀r, N, (3.50)46



3.1 Polymer theoryby de�nition. We shall see in Chap. 5 that this 
onditional probability is useful to
al
ulate the partition fun
tion of a DNA hairpin.The fun
tion S(r|R) is de�ned by
S(r|R) = Ar2

∫
dΩr

∫
d∆1

∫
d∆2e

−∆2
1+∆2

2
τ2 δ (r − R −∆1 + ∆2) , (3.51)where τ = 2χl2

3
and A is a normalization fa
tor. The �rst integral is over all orienta-tions of the ve
tor r, and the other two are meant over all spa
e. The normalization
onstant will be spe
i�ed at the end of the 
al
ulation. The r2 fa
tor appears be-
ause we only want the norm of r to fall in the spe
i�
 range. The integral over ∆2
an be done trivially. Abbreviating r − R = ρ, we obtain

S(r|R) = Ar2

∫
dΩr

∫ ∞

0

d∆1∆
2
1

∫ 1

−1

dµe−
∆2

1
τ2 e−

∆2
1+ρ2−2ρ∆1µ

τ2 , (3.52)where
µ =

ρ.∆1

ρ∆
. (3.53)We are omitting a 2π fa
tor from integration over the azimuthal angle of ∆1 be
ausethis only 
hanges the normalization. Performing the dµ integration, we get

S(r|R) = Ar2
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dΩr
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ρ
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ρ2

τ2

∫ ∞
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, (3.54)where we have again omitted 
onstant fa
tors to be �xed by normalization.Using the de�nite integral

J(a, b) =

∫ ∞

0

dx xe−ax2

sinh bx =
b

2a

(
π

a

1
2

)
e

b2

4a , (3.55)we 
an do the integration over ∆2. Reintrodu
ing ρ = r − R

S(r|R) = Ar2

∫
dξe−

r2+R2−2rRξ

2τ2 , (3.56)where now
ξ =

r.R

rR
. (3.57)Finally, performing the integration over dξ, and using Eq. (3.49) that �xes the
onstant A, we get

S(r|R) =

(
3

πχl2

) 1
2 r

R
sinh

(
3rR

2χl2

)
e
− 3

4
r2+R2

χl2 . (3.58)One 
an show, that the fun
tion S(r|R) satis�es Eq. (3.50) with PN(R) given byEq. (3.30) but it is slightly tedious. This equation assumes that PN(R) is Gaussian.47



Review of some polymer and protein modelsAs we dis
ussed above it is not always the 
ase. Sin
e we intend to use the 
onditionalprobability S(r|R) in our hairpin 
al
ulations, it is useful to examine the error thatit introdu
es when it is applied to a polymer whi
h is not Gaussian su
h as the FRCor the KP 
hain. Let us 
ompare PN+2(r) given by the exa
t polymer model andits value obtained with (3.50) where PN(R) is also des
ribed by the exa
t polymermodel (FRC of KP). As we 
an see, for small values of N , the 
al
ulation of
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Figure 3.7: Comparison of PN+2(r) obtained using Eq. (3.50) and the real form withthe FRC. The length of one monomer is �xed to 6 Å, and θ=45◦. The bla
k 
urverepresents PN(r), the red 
urve is for the exa
t PN+2(r) and the blue one is obtainedusing Eq. (3.50). Left: N=12 and right: N=30.
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Figure 3.8: Comparison of PN+2(r) obtained using Eq. (3.50) and the real form withthe KP 
hain. The length of one monomer is �xed to 6 Åand ǫ=0.0020 eV.Å−2. Thebla
k 
urve represents PN(r), the red 
urve is for the exa
t PN+2(r) and the blueone is obtained using Eq. (3.50). Left: N = 12 and Right: N = 30.
PN+2(r) using Eq. (3.50) is not 
orre
t be
ause PN(r) is not Gaussian. Neverthelessfor N = 30 the �growth� of the polymer is 
orre
tly reprodu
ed by the S fun
tion. In48



3.2 Protein modelsa more general way, we 
an say that better the Gaussian approximation for PN(r),the better the result obtained by Eq. (3.50), whi
h is of 
ourse natural sin
e (3.50)is exa
t in the Gaussian 
ase.3.2 Protein models3.2.1 Protein foldingThe formation of a DNA hairpin from a single strand of DNA is qualitatively sim-ilar to the folding of the amino-a
id 
hain of a protein. The parti
ular amino-a
idsequen
e (or "primary stru
ture") of a protein predisposes it to fold into its native
onformation or 
onformations [61℄. Many proteins do so spontaneously during orafter their synthesis inside 
ells. While these ma
romole
ules may be seen as "foldingthemselves," in fa
t their folding depends a great deal on the 
hara
teristi
s of theirsurrounding solution, in
luding the identity of the primary solvent (either water orlipid inside 
ells), the 
on
entration of salts, the temperature, and mole
ular 
haper-ones. For the most part, s
ientists have been able to study many identi
al mole
ulesfolding together. It appears that in transitioning to the native state, a given aminoa
id sequen
e always takes roughly the same route and pro
eeds through roughlythe same number of fundamental intermediates.The essential fa
t of folding, however, remains that the amino a
id sequen
e of ea
hprotein 
ontains the information that spe
i�es both the native stru
ture and thepathway to attain that state: folding is a spontaneous pro
ess. The passage of thefolded state is mainly guided by Van der Waals for
es and entropi
 
ontributions tothe Gibbs free energy: an in
rease in entropy is a
hieved by moving the hydrophobi
parts of the protein inwards, and the hydrophili
 ones outwards [62℄. During thefolding pro
ess, the number of hydrogen bonds does not 
hange appre
iably, be
ausefor every internal hydrogen bond in the protein, a hydrogen bond of the unfoldedprotein with the aqueous medium has to be broken.The entire duration of the folding pro
ess varies dramati
ally depending on theprotein of interest. The slowest folding proteins require many minutes or hours tofold, primarily due to steri
 hindran
es. However, small proteins, with lengths of ahundred or so amino a
ids, typi
ally fold on time s
ales of millise
onds. The veryfastest known protein folding rea
tions are 
omplete within a few mi
rose
onds.The Levinthal paradox, proposed by Levinthal in 1969 [21℄, states that, if a proteinwere to fold by sequentially sampling all possible 
onformations, it would take anastronomi
al amount of time to do so, even if the 
onformations were sampled ata rapid rate (on the nanose
ond or pi
ose
ond s
ale). Based upon the observationthat proteins fold mu
h faster than this, Levinthal then proposed that a random
onformational sear
h does not o

ur in folding, and the protein must, therefore,fold by following a pre-determined path.Folding and unfolding rates also depend on environment 
onditions like temperature,solvent vis
osity, pH and more. The folding pro
ess 
an also be slowed down (and49



Review of some polymer and protein modelsthe unfolding sped up) by applying me
hani
al for
es, as revealed by single-mole
uleexperiments.The study of protein folding has been greatly advan
ed, in re
ent years by the de-velopment of fast, time-resolved te
hniques [63℄. These are experimental methodsfor rapidly triggering the folding of a sample of unfolded protein, and then observingthe resulting dynami
s. Fast te
hniques in widespread use in
lude ultrafast mixingof solutions, photo
hemi
al methods, and laser temperature jump spe
tros
opy. ForDNA hairpins the formation of the hairpin is similar to the folding, but, thanks tothe use of FRET we have seen that the kineti
s 
an be measured.The protein folding phenomenon was largely an experimental endeavor until thegroundbreaking formulation of the Energy Lands
ape theory by Bryngelson andWolynes in the late 1980's [64℄. The theory introdu
ed the prin
iple of minimalfrustration, whi
h asserts that evolutionary sele
tion has designed the amino a
idsequen
es of natural proteins so that intera
tions between side 
hains largely favorthe mole
ule's a
quisition of the folded state. Intera
tions that do not favor fold-ing are sele
ted against, although some residual frustration is expe
ted to exist. A
onsequen
e of these evolutionarily designed sequen
es is that proteins are generallythought to have globally "funneled energy lands
apes" (
oined by Onu
hi
) that arelargely dire
ted towards the native state. This "folding funnel" lands
ape allowsthe protein to fold to the native state through any of a large number of pathwaysand intermediates, rather than being restri
ted to a single me
hanism. The theoryis supported by 
omputational simulations [67℄, [68℄ of model proteins and has beenused to improve methods for protein stru
ture predi
tion and design. Ab initio te
h-niques for 
omputational protein stru
ture predi
tion employ simulations of proteinfolding to determine the protein's �nal folded shape.3.2.2 Latti
e modelsLatti
e proteins are highly simpli�ed 
omputer models of proteins [66℄, [69℄ whi
hare used to investigate protein folding. Be
ause proteins are su
h large mole
ules,
ontaining hundreds or thousands of atoms, it is not possible with 
urrent te
hnol-ogy to simulate more than a few mi
rose
onds of their behaviour in all-atom detail.Hen
e real proteins 
annot be folded on a 
omputer. Latti
e proteins [65℄, however,are simpli�ed in two ways: the amino a
ids are modelled as single "beads" ratherthan modelling every atom, and the beads are restri
ted to a rigid (usually 
ubi
)latti
e. This simpli�
ation means they 
an fold to their energy minima in a timequi
k enough to be simulated. Latti
e proteins are made to resemble real proteinsby introdu
ing an energy fun
tion, a set of 
onditions whi
h spe
ify the energy ofintera
tion between neighbouring beads, usually taken to be those o

upying adja-
ent latti
e sites. The energy fun
tion mimi
s the intera
tions between amino a
idsin real proteins, whi
h in
lude steri
, hydrophobi
 and hydrogen bonding e�e
ts.The beads are divided into types, and the energy fun
tion spe
i�es the intera
tions50



3.2 Protein modelsdepending on the bead type, just as di�erent types of amino a
id intera
t di�er-ently. Latti
e protein models were studied in the last seventies to gain a deeperunderstanding of the Levinthal paradox. The main advantage of latti
e models overmore detailed ones is that in many 
ases their whole 
onformational spa
e 
an beexamined. However, even for su
h simple models the number of possible 
onforma-tions is growing very qui
kly as the size of the polymer in
reases. For example, onthe square latti
e, a 18-mer has 5808335 di�erent 
onformations unrelated by sym-metries. Simply enumerating them is tri
ky in the above 
ase, while in the 49-mer
ase it is out of rea
h (there are ≈ 1020 of them). However as shown by Go [70℄ andhis 
ollaborators, starting form a random 
onformation, the 49-mer 
an rea
h itsground state, that, is its lowest energy 
on�guration, within a few thousands stepsof a Monte Carlo simulation, as long as the energy surfa
e is de�ned as follows.First, the lowest energy, 
ompa
t 7x7 
onformation, is 
hosen a priori. Figure (3.9)gives a s
hemati
 representation of the 
ompa
t 
onformation of the 49-mer on thesquare latti
e. Then, for all pairs of monomers whi
h are 
lose neighbours in this

Figure 3.9: A 
ompa
t 
onformation of the 49-mer on the square latti
e [21℄.
on�gurations, the 
onta
t energy is assumed to be attra
tive, while for all othersit is not. So, when the ground-state is at the bottom of a deep funnel on the energysurfa
e, then it is quite easy for a �exible polymer to �nd its way and rea
h it trougha random sear
h biased by the average energy gradient. However, even if the funnelpi
ture is nowadays the preferred view for understanding the folding pro
ess, thereis no indi
ation that protein energy surfa
es are as funneled and as deep as in theGo model.Another popular latti
e models, the HP model, features just two bead types - hy-drophobi
 (H) and polar (P) - and mimi
s the hydrophobi
 e�e
t by spe
ifying a51



Review of some polymer and protein modelsnegative (favourable) intera
tion between H beads [21℄. For any sequen
e in anyparti
ular stru
ture, an energy 
an be rapidly 
al
ulated from the energy fun
tion.For the simple HP model, this is simply an enumeration of all the 
onta
ts betweenH residues that are adja
ent in the stru
ture, but not in the 
hain.Most resear
hers 
onsider a latti
e protein sequen
e protein-like only if it possessesa single stru
ture with an energeti
 state lower than in any other stru
ture. This isthe energeti
 ground state, or native state. The relative positions of the beads in thenative state 
onstitute the latti
e protein's tertiary stru
ture. By varying the energyfun
tion and the bead sequen
e of the 
hain (the primary stru
ture), e�e
ts on thenative state stru
ture and the kineti
s (rate) of folding 
an be explored, and thismay provide insights into the folding of real proteins. In parti
ular, latti
e modelshave been used to investigate the energy lands
apes of proteins, i.e. the variation oftheir internal free energy as a fun
tion of 
onformation.
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Chapter 4A two dimensional latti
e model
Contents4.1 Self assembly of DNA hairpins . . . . . . . . . . . . . . . 554.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554.1.2 Metropolis-Monte Carlo s
heme . . . . . . . . . . . . . . . 574.2 Equilibrium properties of the opening-
losing transition 594.2.1 The transition in the absen
e of mismat
h . . . . . . . . . 594.2.2 Role of the mismat
hes . . . . . . . . . . . . . . . . . . . 624.3 Kineti
s of the opening and 
losing . . . . . . . . . . . . . 634.1 Self assembly of DNA hairpins4.1.1 ModelAs we explained in Chap. 2, a �uorophore and a quen
her 
an be used to monitorthe two limiting 
onformations of ssDNA. We propose here a very simple modelwhi
h allows us to des
ribe su
h an equilibrium. Our hairpin model is inspiredby the latti
e models whi
h have been used to study protein folding [65℄. It is alatti
e model so that only dis
rete motions are allowed, thus it 
annot des
ribe thetrue dynami
s of the hairpin. Instead we use a Monte-Carlo dynami
s where themoves are dis
rete and determined by their probability at the temperature of thesimulation, depending on their energy 
ost or gain. To 
arry su
h a 
al
ulationwe only have to spe
ify the energy of the model in ea
h 
on�guration. As a �rstapproa
h to this problem we de
ided to 
hoose the simplest underlying latti
e, aplanar square latti
e. This 
hoi
e of model restri
ts the number of a

essible stateswith respe
t to a more 
omplex three-dimensional latti
e, but, as dis
ussed below, itintrodu
es some limitations on the ability of the model to des
ribe a
tual hairpins.The energy of the DNA strand is assumed to depend on two terms only, a bending55



A two dimensional latti
e model

Figure 4.1: Two 
on�gurations of the hairpin model in a latti
e. The DNA strandis indi
ated by the thi
k line on the latti
e. The hydrogen bonds are marked by thethi
k bonds 
onne
ting two points of the stand, and the shaded 
orners representthe bending energy 
ontributions. The left 
ase 
orresponds to the perfe
t 
losing,while the right �gure shows an example of a mismat
hed partial 
losing.energy whi
h appears when two 
onse
utive segments are at some angle, and theenergy of the base-pairs whi
h 
an form in the stem. The total number of nu
leotidesin the DNA strand is denoted by N . The number of nu
leotides whi
h 
an formthe stem is denoted by ns. In order to spe
ify the kind of pairing allowed in thestem, ea
h nu
leotide of the stem, denoted by index j is a�e
ted of a �type� tj . Onlytwo nu
leotides having the same �type� are allowed to form a base-pair by hydrogenbonding. Thus, rather that a
tually spe
ifying the type of a base (A, T, G, C) wespe
ify the type of pairing that it 
an form. The energy of the model is written as
E = nAEA +

1

2

ns∑

j=1

ns∑

j′=1

e(j, j′) (4.1)
e(j, j′) = δ(tj − tj′)δ(djj′ − 1)a(j)a(j′)EHB(tj), (4.2)where

• nA is the number of angles in the DNA strand on the latti
e, and EA is a pos-itive model parameter giving the energy 
osts of a bent. In some 
al
ulations,
EA may be di�erent for a bent in the stem or in the loop.

• e(j, j′) is the pairing energy between nu
leotides j and j′ of the stem. Thefa
tor δ(tj − tj′) enfor
es the 
ondition that the two nu
leotides should be ofthe same �type�, δ(djj′ − 1) indi
ates that the pairing is only possible if thetwo nu
leotides are adja
ent on the latti
e. The fa
tors a(j) and a(j′) areequal to 1 only if the nu
leotide is available for pairing, i.e. if it is not alreadyinvolved in another pair. Otherwise the pairing is not formed and they are56



4.1 Self assembly of DNA hairpinsset to 0. They are ne
essary be
ause some geometries of the 
hain 
ould puta nu
leotide in a position adja
ent to two sites o

upied by nu
leotides of thesame type. Finally EHB(tj) is the pairing energy for nu
leotides of type tj . Itis a negative quantity, whi
h means that the pairing is favourable be
ause itlowers the energy of the hairpin.We studied this model using Monte Carlo simulations in the same spirit as thestudies performed on latti
e models of proteins, i.e. we generate a random walk of theDNA 
hain on the latti
e with the 
ondition that the system should be in thermalequilibrium at temperature T . A 
on�guration of energy E must therefore have aprobability proportional to exp(−E/T ), where T is measured in units of energy. Ifthe moves are sele
ted in order to stay as 
lose as possible to the a
tual motion of apolymer in a �uid, the method 
an even be used to study dynami
al e�e
ts with a�
titious time s
ale whi
h is simply given by the number of Monte Carlo steps [72℄.For this reason we sele
ted only lo
al motions of the 
hain. On the two-dimensionalsquare latti
e, there are only three su
h motions: the 
hange of the angle betweenthe two segments at one end of the 
hain, the �ipping of a 
orner of a latti
e
ell with respe
t to the diagonal of the 
ell and a 
rank me
hanism. Figure (4.2)gives a representation of these displa
ements. If it does not lead to a 
lash with
(a)                                        (b)                                                            (c)

Figure 4.2: three possible motions: (a), �ipping of a 
orner of a latti
e 
ell withrespe
t to the diagonal of the 
ell; (b) 
rank me
hanism; (
), 
hange of the anglebetween the two segments at one end of the 
hain.another part of the 
hain, an attempted motion is a

epted with probability P =
min[exp(−∆E/T ), 1], where ∆E = E2 − E1 is the di�eren
e between the energyafter and before the move, using a standard Metropolis algorithm.4.1.2 Metropolis-Monte Carlo s
hemeWe are interested in the thermodynami
s and the kineti
s of the system, and we stud-ied them with the Monte Carlo-Metropolis s
heme [72℄. This te
hnique is frequentlyused for equilibrium properties nevertheless we also use it for kineti
s assuming thatlo
al displa
ements give a dynami
 with time s
ales proportional to reality. When57



A two dimensional latti
e modelwe are interested in the statisti
al properties, we have to determine the partitionfun
tion of the system, whi
h is in the dis
rete 
ase:
Z =

∑

i

exp(−βU(i)), (4.3)where the sum is over all the 
on�guration of the system. In pra
ti
e, the numberof 
on�guration in too large and it not possible to determine this sum numeri
ally.We have the same problem for the 
al
ulation of integrals in the 
ontinuous 
ase.Therefore we need spe
i�
 methods to estimate these integrals. Monte Carlo al-gorithm 
onsists in repla
ing the 
al
ulation of an integral by a dis
rete sum overpoints whi
h are judi
iously distributed. Indeed, one does not have to 
al
ulate thevalue of the integral where the integrand is negligible. Thus, we 
an determine ina reasonable number of step the value of the integral. Let us 
ome ba
k to theproblem of statisti
al me
hani
s. We assume that we �x the temperature to T . Weare often interested in the determination of averages quantities su
h as:
〈A〉 =

∑
i Ai exp(−βUi)

Z
. (4.4)In Eq. (4.4) we 
an see:

Pi =
exp(−βUi)

Z
. (4.5)This quantity de�nes the probability of the 
on�guration of energy Ui at equilibrium.If we 
an generate 
on�gurations with this weight, then the average of A will beestimated by

〈A〉 ≃ 1

Nr

Nr∑

i

Ai. (4.6)So with the Monte Carlo method we 
an estimate the average of A if we 
an generate
on�gurations with the equilibrium probability. Therefore, the problem 
onsists indetermining a method that generates a sto
hasti
 dynami
 in order to get the equi-librium distribution. Then, the averages will simply be done by the relation (4.6).In 1953, to generate su
h a sto
hasti
 dynami
s, Metropolis, Rosenbluth and Teller,proposed a method based on the detailed balan
e relation (in the 
anoni
al ensembleand at equilibrium):
W (j → i)P e

j = W (i → j)P e
i , (4.7)where W (i → j) is a transition probability of the state i to the state j and P e

i is theequilibrium probability of the state i whi
h is given by Eq. (4.5). We 
an rewriterelation (4.7) as:
P e

i

P e
j

=
W (j → i)

W (i → j)
= e−β(U(i)−U(j)). (4.8)Therefore the system will 
onverge to the equilibrium state if at ea
h transition ofa state i to a state j the transition probabilities obey the relation (4.8). We only58



4.2 Equilibrium properties of the opening-
losing transitionhave to �nd a simple expression for the transition probability W . The 
hoi
e ofMetropolis et al whi
h gives the Monte Carlo-Metropolis algorithm is the following:
W (i → j) =

{
1, U(j) − U(i) ≤ 0
e−β(U(j)−U(i)), U(j) − U(i) > 0.

(4.9)A possible algorithm to implement it is:1. We generate a state j from state i using a deterministi
 rule or a randompro
ess2. We 
al
ulate ∆U = U(j) − U(i).3. • If ∆U ≤ 0, then W (i → j) = 1 and we keep the new state j.
• If ∆U > 0, then W (i → j) = e−β∆U and we pi
k a number r randomlyin the interval [0,1℄. We keep the state j if r ≤ e−β∆U , or we reje
t it ifnot.4. We 
ome ba
k to the beginning of the pro
edure in 1.Using this s
heme, the system rea
hes its equilibrium state after a number of stepthat is di�
ult to estimate �a priori�. In pra
ti
e the number of steps is 
hosen largeenough to observe steady state values of the observed quantities averaged over alarge number of individual steps. After that, we repeat the pro
edure with a di�erentinitial 
ondition and another set of random numbers to get averages or equilibriumprobability distributions from di�erent realizations. Finally new algorithms based onMonte Carlo s
heme [73℄ have been introdu
ed to allow the study of bigger systems.4.2 Equilibrium properties of the opening-
losingtransition4.2.1 The transition in the absen
e of mismat
hLet us 
onsider �rst the equilibrium properties of DNA hairpins in the simple 
asewhen they 
an only 
lose with a 
orre
t mat
hing of the bases in the stem. Thiswould be the 
ase if the base sequen
e in the stem forbids any mismat
h. In orderto 
ompare with experimental results [4℄ we 
onsidered the 
ase of a stem having5 base-pairs (ns = 5). Sin
e there are only 4 types of bases, at least one has toappear twi
e in the stem. Thus the Watson-Cri
k pairing rules allow at least onemismat
hed pairing, but it may be very unfavourable be
ause, if it o

urred, theother bases of the stem would not be paired and may even experien
e some steri
59



A two dimensional latti
e modelhindran
e. In the model it is easy to stri
tly forbid any mismat
hed 
losing by us-ing a sequen
e ti = {1, 2, 3, 4, 5} where all base-pairs have di�erent types. Besidesthis 
ondition, in our 
al
ulations we gave same energy EHB = −1 to all types ofbase-pairs. This value sets the energy s
ale, and thus the temperature s
ale. Withthese parameters, the model does not attempt to mimi
 any real DNA hairpin, butit is designed to stay as simple as possible in order to exhibit the basi
 me
hanismsthat govern the hairpin properties.Figure (4.3) shows the variation of the number of hydrogen-bonded base-pairs ver-

Figure 4.3: Variation versus temperature of the number of hydrogen-bonded pairsin the stem for hairpins of di�erent lengths N , in the absen
e of mismat
hes.sus temperature for 
hains having di�erent numbers N of nu
leotides. The numberof nu
leotides in the loop is N − 10 sin
e the stem is always made of two segmentsof 5 nu
leotides. In these 
al
ulations, the bending energy EA has been set to
EA = 0.02, and it has the same value along the whole DNA strand. The resultshave been obtained with di�erent initial 
onditions: we start either from a 
losedhairpin or a random 
oil. Ea
h point in the �gure is an average of 100 
al
ulationswith di�erent sets of random numbers to generate the initial 
onditions and thesto
hasti
 motions of the 
hains on the latti
e, ea
h 
al
ulation involving between
4 108 and 8 108 Monte Carlo steps (depending on temperature and 
hain length).The �rst 2 107 steps are dis
arded in the analysis to allow the model to equilibratingto the sele
ted temperature. For T ≥ 0.15 a good equilibration is a
hieved, whileresults at lower temperatures show some dependen
e on the initial 
onditions be-
ause an equilibrium state has not been rea
hed. This is why they are not shown inFig. (4.3).As expe
ted, when temperature in
reases we observe a fairly sharp de
rease of thenumber of hydrogen-bonded base-pairs. It 
orresponds to the opening of the hair-pin, whi
h o

urs over a temperature range of about 0.2 energy units, around theso-
alled �melting temperature� Tm ≈ 0.35, whi
h is well below to the temperature60



4.2 Equilibrium properties of the opening-
losing transition
T = 1 
orresponding to the binding energy of a base-pair. This indi
ates that theentropy gain provided by the opening of the hairpin 
ontributes to lower the freeenergy barrier for opening. In
reasing the length of the loop lowers Tm, in agreementwith the experiments [4℄. It also makes the transition sharper, whi
h is not observedin the experiments.

Figure 4.4: E�e
t of the rigidity of the loop on the opening of the hairpin: variationversus temperature of the number of hydrogen-bonded pairs in the stem for loopswith di�erent bending energies EA = 0.02 and 0.60, in the absen
e of mismat
hes.In the stem the bending energy has been set to EA = 0.02 for both 
al
ulations.The two sets of points for EA = 0.6 (
rosses and squares) have been obtained intwo independent 
al
ulations, with di�erent sets of temperatures and di�erent initial
onditions. The 
rosses show results obtained with a 
losed hairpin initial 
ondition,while the squares have been obtained with random initial 
onditions. Ea
h point onthis �gure is an averaging over 100 sets of initial 
onditions and random numbers.The role of the rigidity of the loop 
an be tested by 
hanging the value of thebending energy EA for all the bends in the loop, without 
hanging its value in thestem. Figure (4.4) shows that a more rigid loop leads to an opening at lower temper-ature, in agreement with the experimental observations [4℄. However the variationof Tm given by the model appears to very small, and moreover, as dis
ussed below,the e�e
t of the rigidity of the loop on the thermodynami
s of the hairpin is not
orre
tly des
ribed in our model. This points out some limitations of the simpli�edmodel, although a quantitative 
omparison with the experiments is di�
ult be
ause,in the experiments, the rigidity was varied by 
hanging the bases from T to A. Thelarger purine bases A are assumed to give a higher rigidity to the strand but this
ould only be related to the variation of EA by extensive all-atom numeri
al simula-tions [1℄. Moreover, the role of base sta
king in the loop is 
ertainly more 
omplexthan the simple 
hange of the rigidity of the 
hain that our simpli�ed model 
andes
ribe. 61



A two dimensional latti
e model4.2.2 Role of the mismat
hesOne feature of DNA hairpins is that, unless they have a spe
i�
ally designed se-quen
e, they may 
lose with a wrong pairing in the stem (see �gure (4.1)). Theseimperfe
t, mismat
hed, 
losings have a higher energy that the perfe
tly 
losed hair-pin, but they 
an be very long-lived.

Figure 4.5: Comparison of melting 
urves with and without mismat
hes. The meanvalue 〈d〉 of the distan
e between the �rst and last nu
leotide is plotted versustemperature. The 
hain has N = 20 nu
leotides, with EHB = −1 for all base-pairs ofthe stem, Ea = 0.02. The squares show data without mismat
h (ti = {1, 2, 3, 4, 5}),while the 
ir
les and 
rosses show data with mismat
hes (ti = {1, 1, 1, 1, 1}). In this
ase two sets of 
al
ulations have been performed. The 
ir
les have been obtainedwith 8 108 Monte Carlo steps, while the 
rosses involve only 4 108 Monte Carlo steps.For T > 0.25 the two sets give identi
al results, but, at low T , a smaller number ofMonte-Caro steps slightly a�e
ts the results.They a�e
t the opening-
losing transition as shown in Fig. (4.5) whi
h 
omparesthe melting 
urves in the presen
e and in the absen
e of mismat
hes. In order toallow mismat
hes, the sequen
e of bases of the stem has been set to ti = {1, 1, 1, 1, 1},i.e. all base-pairs are of the same type so that many mismat
hed pairings are possible,with 1,2,3,4 hydrogen-bonded base-pairs. In this 
ase we show the mean value 〈d〉of the distan
e between the �rst and last nu
leotide of the 
hain rather than thenumber of hydrogen-bonded stem base pairs be
ause 〈d〉 provides a more 
ompletepi
ture of the 
on�guration of the hairpin.On Fig. (4.5), the 
ase without mismat
h shows a smooth melting 
urve, similarto the results of Fig. (4.3). In the low temperature domain where the hairpin is
losed, 〈d〉 is larger than the value 〈d〉 = 1 that 
ould be expe
ted from a stati
image of the 
losed hairpin be
ause there are �u
tuations. They are parti
ularlyimportant at the free end of the stem, as s
hematised on Fig. (4.6).When mismat
hes are allowed, the 
urve 〈d(T )〉 shows a fairly sharp kink around
T = 0.215, and then an in
rease, qualitatively similar to 
ases without mismat
h,62



4.3 Kineti
s of the opening and 
losingbut o

urring however more smoothly and at higher temperature. The kink, whi
h
orresponds to a jump of 〈d〉 of about one unit, is due to the formation of a mis-mat
hed 
losing where only 4 base-pairs of the stem are formed (Fig. (4.6), rightpart). As temperature is raised further, the number of paired bases in the stemkeeps de
reasing, but, as there are many more possibilities for binding than in theno-mismat
h 
ase, the opening of the hairpin is more gradual.
Figure 4.6: S
hemati
 plot of the �u
tuations of the free end of the 
hain in aperfe
tly 
losed state (left) and in a mismat
hed state (right).4.3 Kineti
s of the opening and 
losingUp to now we spoke of the opening transition of the hairpin as if the hairpin shouldbe 
losed at low T and open at high T . It is a
tually more 
omplex be
ause, in asmall system like the hairpin, a phase transition between two states does not exist.A
tually we always have a equilibrium between the open form O and the 
losed form
C

C
ko

⇄
kcl

O , (4.10)whi
h 
an be studied like a 
hemi
al equilibrium rather than a phase transition.At low T the equilibrium is displa
ed towards 
losing and at high T it is displa
edtowards opening.This suggests that the methods of 
hemi
al kineti
s 
an be used to analyse thedynami
s of the �u
tuations of the hairpin. Let us 
onsider that the hairpin is atwo-state system. This is obviously an approximation whi
h be
omes very 
rudewhen mismat
hes are allowed sin
e, in this 
ase, the hairpin 
an also exist in someintermediate states where it is in
ompletely 
losed. In the absen
e of mismat
h, thetwo-state pi
ture is a satisfa
tory approximation, as shown in Fig. (4.7). This �gureshows the histogram of the distan
e d between the two ends of the 
hains, and thehistogram of the number of hydrogen-bonded base-pairs at temperature T = 0.36 fora model without mismat
h with N = 50. This temperature is 
lose to the meltingtemperature Tm for this model, and the histograms 
learly show the 
oexisten
e oftwo populations of states: (i) an open state, where there are no hydrogen-bondedpairs in the stem, whi
h 
orresponds to the hump for d > 5 on Fig. (4.7-a), (ii) a63



A two dimensional latti
e model
losed state 
orresponding to the sharp maximum for d < 4 in Fig. (4.7-a) and tothe existen
e of 2 to 5 hydrogen-bonded base-pairs in Fig (4.7-b) (with a maximumat 4, due to the opening �u
tuations at the end of the stem as dis
ussed above ands
hematised in Fig. (4.6), left).(a) (b)

Figure 4.7: Normalised histograms of the distan
e d between the two ends of the
hain (a), and number of hydrogen bonds (b) for a hairpin with N = 50 and nomismat
hes, at temperature T = 0.36. This temperature is 
lose to the openingtemperature Tm of this hairpin. Model parameters EHB = −1, Ea = 0.02. Thehistograms show the 
oexisten
e of two populations: one population of 
ompletelyopen hairpins (large values of d and 0 hydrogen bonds) and a population of 
losedhairpins in whi
h some of the hydrogen bonds are formed, the highest probabilitybeing with 4 hydrogen bonds formed.The two-state pi
ture allows us to write standard kineti
 equations for the pop-ulations [C] and [O] of the 
losed and open states as
d[C]

dt
= −ko[C] + kcl[O] (4.11)

d[O]

dt
= +ko[C] − kcl[O] , (4.12)where ko and kcl are the kineti
 
onstants for the opening and 
losing events respe
-tively. This system has the solution

[C](t) =
C0ko

ko + kcl
e−(ko+kcl)t +

C0kcl

ko + kcl
, (4.13)where C0 is the value of [C] at time t = 0. This shows that, if we start from a pop-ulation of 
losed hairpins, we expe
t it to de
ay exponentially with a 
hara
teristi
time τ = 1/(ko + kcl) until an equilibrium is rea
hed with

[O]

[C]
=

ko

kcl
= Ke , (4.14)64



4.3 Kineti
s of the opening and 
losingwhere Ke is the equilibrium 
onstant.Therefore, if we follow the evolution of the population of 
losed hairpins in aMonte Carlo simulation whi
h starts from C0 
losed 
on�gurations, we 
an deter-mine separately τ (from the de
ay of the 
losed population) and Ke from the �nalequilibrium state, so that we 
an determine the kineti
 
onstants for opening and
losing, given by
ko =

1

τ

1

1 + Ke
kcl =

1

τ

Ke

1 + Ke
. (4.15)

Figure 4.8: Arrhenius plot of the kineti
 
onstants kop (open symbols) and kcl (
losedsymbols) versus 1/T for a model without mismat
h, N = 50, EHB = −1, Ea = 0.02.The time unit is a Monte Carlo step. The lines are least square �ts of the points(full lines for opening state de�ned by d > 4, and dashed lines for opening de�nedby the absen
e of hydrogen bonded base pairs).Figure (4.8) shows the results of su
h an analysis for a 
ase without mismat
hes.The open/
losed state of the 
hain was measured with two di�erent 
riteria: fromthe distan
e d between the two ends (a value d > 4 is 
onsidered as an open state)or from the number of hydrogen-bonded base-pairs (an open state must not haveany bound base-pair). Both give very similar results, in agreement with the abovedis
ussion of Fig. (4.7) whi
h shows that both 
riteria 
an be used to separatebetween the open and 
losed states. When they are plotted in logarithmi
 s
aleversus 1/T , the kineti
 
onstants are well �tted by straight lines, whi
h allows us tode�ne a
tivation energies Eo and Ecl for the opening and 
losing events by
ko = Koe

−Eo/T kcl = Kcle
−Ecl/T . (4.16)The �ts of Fig. (4.8) give Eo = 6.3 and Ecl = 2.5. Figure (4.8) is very similar to the�gures showing ko and kcl whi
h 
an be obtained experimentally [4℄ (see �gure (2.5)).The experiments also �nd an opening a
tivation energy mu
h larger than the 
losing65



A two dimensional latti
e modelenergy. The experimental ratio Eo/Ecl is even larger than the ratio that we derivefrom our model. Owing to the simpli
ity of the model, it would be meaningless totry to adjust parameters to get the experimental ratio. What is more interestingis the meaning of this result Eo ≫ Ecl, whi
h 
an be related to the need to breakthe hydrogen bonds linking the base-pairs to open the hairpin, while the kineti
 ofthe 
losing is dominated by entropi
 e�e
ts be
ause it o

urs when the two sides ofthe stem managed to rea
h the 
orre
t spatial position after a random walk in the
on�guration spa
e.Experiments show that the opening kineti
s is almost insensitive to the lengthof the loop, while the 
losing slows down signi�
antly when the length of the loopin
reases (kcl de
reases) while its a
tivation energy does not depend on the lengthof the loop. The model 
on�rms that the a
tivation energies do not vary when we
hange N , but it only �nds a very small variation of kcl as a fun
tion of N , 
ontraryto the experiments. This points out one of its severe limitations: the entropy ofthe loop is not su�
iently well des
ribed when its motions are 
onstrained on atwo-dimensional square latti
e. This limitation also appears when we study thee�e
t of the rigidity of the loop. As noti
ed above, the e�e
t is very small and toobtain some noti
eable in�uen
e of the rigidity, we have to in
rease the bendingenergy very signi�
antly, for instan
e up to EA = 0.6 (�gure 4.4). In this 
asethe a
tivations energies be
ome Eo = 5.5 and Ecl = 2.5, i.e. the opening a
tivationenergy is redu
ed by about 12 % and the 
losing energy is only weakly a�e
ted, whilethe experiments found a large in
rease of the 
losing a
tivation energy and almost no
hange for Eo . This shows that, for this study, our model does not 
orre
tly des
ribethe experiment. Besides an in
orre
t des
ription of entropi
 e�e
ts in the model,that we already mentioned above, other phenomena 
ould enter, and parti
ularlya possible role of the mismat
hes in the experimental sequen
e. While the modelstri
tly forbids mismat
hes, in the experiments, 
hanging the bases in the loop from
A to T modi�es the possible mismat
hes.As one 
ould expe
t, the kineti
s of the hairpin �u
tuations is strongly a�e
ted bythe presen
e of mismat
hes. The two-state approa
h is no longer valid. Mismat
hedstates are open if we de�ne them in terms of the distan
e between the ends but stillshow many hydrogen-bonded base-pairs. Although the time evolution of the 
losedstates is no longer a simple exponential de
ay, an approximate �t by an exponentialgives the order of magnitude of the 
hara
teristi
 time τ . Figure (4.9) shows thevalues of τ determined with two de�nitions of an open state: (i) a state where thedistan
e of the two ends of the 
hain is d > 2, (ii) a state where all the hydrogenbonds linking the bases in the stem have been broken. Figure (4.9) shows that thelifetime of 
losed hairpins de�ned a

ording to these 
riteria vary by several orders ofmagnitude. This is not surprising be
ause a hairpin whi
h is 
losed in a mismat
hedstate may be 
ounted for open for the �rst 
riterion (d > 2) but 
losed with respe
tto the se
ond one sin
e some of its base-pairs are hydrogen bonded. In this 
ase theabove analysis to 
al
ulate ko and kcl loses its meaning.66



4.3 Kineti
s of the opening and 
losing

Figure 4.9: Logarithmi
 plot of the 
hara
teristi
 time for opening τ versus 1/Tfor a 
ase with mismat
hes. The squares (�tted by the full line) 
orrespond to ade�nition of the opening from the distan
e of the two ends (d > 2) and the 
rosses(�tted by the dashed line) de�ne opening by the absen
e of any hydrogen-bondedbase-pair. The time unit is a Monte Carlo step.The role of the mismat
hes in the experimental studies of mole
ular bea
ons[4℄ has not been investigated so that we 
annot 
ompare the results of the modelwith experimental data. Although the sequen
e used in [37℄ 
ould in prin
iple allowwrong 
losing, there were 
ertainly mu
h less likely than in our study where allbase-pairs of the stem are the same. Moreover, studies using a �uorophore and aquen
her are only probing the distan
e d between the ends of the 
hain, so that theyare not sensitive to wrong 
losings. For su
h a study the hairpin is still a two-statesystem.
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PBD-Polymer model for DNA Hairpinssimpli�ed model but is nevertheless mu
h ri
her, in parti
ular regarding the mod-elling of the loop, whi
h plays a large role in the properties of DNA hairpins. Asimple view of DNA hairpins 
an 
onsider them as a single short polymer with hy-drogen bonds as well as base-pair sta
king between the two ends of the 
hain. Sothe idea is to 
ombine models of polymers with the PBD-model for the double helix.Our model is based in this point of view. We have 
hosen to divide the model ofthe hairpin in two parts:
• the loop formed by a sequen
e of identi
al bases whi
h is treated as a simplepolymer, in pra
ti
e made of a single type of base, A or T.
• The stem whi
h is an extension of the two ends of the loop (with a poly-mer behaviour) but with additional intera
tions a

ording to the pairing of
omplementary monomers or bases (given by the PBD-model).In pra
ti
e we 
onstru
t our model beginning from the simplest loop whi
h is asequen
e of A or T-bases, i.e. an homogeneous polymer. The loop is modelled by apolymer 
hain in three dimensions. One major question of our study is what is theappropriate model for the loop? We will examine it in detail in this 
hapter but atthis level, we 
an already make some 
omments that set the framework of our study.We have tested the three di�erent polymer models that we have presented in theChap. 3. The FJC is the simplest but we 
an expe
t it to be oversimpli�ed be
ausethe experiments show that the sta
king intera
tion of the bases inside the loop isimportant regarding the physi
al properties of the hairpin. Fixing the value of θ inthe FRC 
ould perhaps model in some sense the sta
king intera
tion and the rigidityeven if the rotation around the bond is free be
ause, as we have shown in Chap. 3,the value of θ determines the persisten
e length of the 
hain, i.e. its rigidity. Thusthis model deserves an investigation. The Kratky-Porod model whi
h seems to be agood model for the modelling of long DNA 
hains 
ould be a good 
andidate for theloop be
ause it in
ludes a parameter whi
h represents the rigidity of the 
hain. Thequestion is to know whether this model remains 
orre
t for single 
hain where thepersisten
e length is very di�erent from that of double stranded DNA for whi
h itwas experimentally tested, and for short 
hains less than ten times the persisten
elength.As we are interested in a very short stem, it is not ne
essary to take into a

ountthe heli
ity of the DNA mole
ule [33℄, [34℄. As for the previous model, the goal is to�nd thermodynami
s and kineti
s properties of this system [37℄, [4℄. Before doingthat, we will study separately a short stem in order to see the di�eren
e with thein�nite 
ase and it will also give us the qualitative properties of this part on the
omplete system. Figure (5.1) gives a s
hemati
 representation of the model.
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5.2 Study of the stem
R=y+d

M=5

m=1        2       3        4        5

n=1  

n=2

n=5
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n=3

n=6

n=7

n=8n=9

n=10

N=10

r=y1+d

Figure 5.1: Plot of the model to de�ne some notations. Index m=1· · ·M will be usedfor the stem base-pairs. Index n=1...N+1 will be used for the bases in the loop. Note wehave 2M+N-1 bases in total. The variables ym are the stret
hing of the base pairs ym = 0means that the distan
e between the bases is d=10Å, whi
h is the value that we use forthe equilibrium distan
e of bases in a pair. The variable r will be used for the variation ofthe distan
e between the two bases at the end of the hairpin, i.e. r=y1+d. The variable Ris the distan
e between the two ends of the loop. Therefore R=yM+d.5.2 Study of the stemIn this part we study the stem with the 
ondition that the two strands are 
on�nedbe
ause we must keep in mind that we have the loop whi
h limits their separation.In pra
ti
e we will impose this 
ondition through the potential V (y). In order toillustrate the transfer integral method we have 
hosen a very simple version of thePBD-model whi
h allows analyti
al 
al
ulations. Figure (5.2) gives a s
hemati
representation of the model of the stem.
Un

Vn
r R

coupling
Harmonic

Potential V(y)

Figure 5.2: S
hemati
 representation of the stem.The 
hara
teristi
s of the stem are the following:
• The displa
ements along the 
hain are not 
onsidered be
ause their amplitudeis mu
h smaller than the perpendi
ular ones [32℄. The transverse displa
ementsare represented by un and vn for the two bases. 71



PBD-Polymer model for DNA Hairpins
• The 
oupling between two 
onse
utive bases is harmoni
.
• To model the 
ombined e�e
t of the hydrogen bond, the repulsive part of thephosphate as well as the e�e
t of the solvent, we put an e�e
tive potential. ThePBD-model uses a Morse potential. In this se
tion we use a simpler squarepotential shown on Fig. (5.3). It has qualitatively the shape that we 
anexpe
t for the intera
tion within a base-pair of the stem. The well des
ribesthe binding of the bases. The plateau 
orresponds to the open state. But thebases are 
on�ned to a �nite distan
e by the loop. This e�e
t is des
ribed bythe in�nite barrier at distan
e L.

y

−D

L

V(y)

Figure 5.3: S
hemati
 representation of the potential V(y) where y is the stret
hing of thehydrogen bonds between the bases. The in�nite wall at y=0 means that the bases 
annotoverlap, while the in�nite wall at y=L 
omes from the maximum separation of the strands,limited by the length of the loop.
Therefore, the Hamiltonian of the model is:

H =
∑

n

[
1

2
m
(
u̇n

2 + v̇n
2
)

+
1

2
K
[
(un − un−1)

2 + (vn − vn−1)
2]+ V (un − vn)

]
,(5.1)where the three terms represent the kineti
 energy of the transverse vibrations, thepotential energy of the 
hain and the bonds 
onne
ting bases in pairs, respe
tively.

m is the mass of a base and K, the spring 
onstant. This Hamiltonian 
an be usedfor various 
al
ulations [10℄, [11℄, [19℄ but here we are interested in the statisti
alme
hani
s only. It is 
onvenient to introdu
e new variables xn and yn linked to un72



5.2 Study of the stemand vn by:
xn =

1√
2
(un + vn)

yn =
1√
2
(un − vn).The Hamiltonian takes the following form:

H =
∑

n

[
1

2
mẋn

2 +
1

2
K (xn − xn−1)

2

]
+
∑

n

[
1

2
mẏn

2 +
1

2
K (yn − yn−1)

2

]
+ V (yn)

H = Hx + Hy. (5.2)We immediately see that the Hamiltonian is divided in two parts: Hx des
ribes theharmoni
 
enter of mass motion and Hy 
ontains all the anharmoni
ities expressedin V (yn). In the next se
tion, we will fo
us our attention on Hy only be
ause it isthis part of the Hamiltonian that 
ontains the physi
s of the hairpin opening be
auseit is the variable yn that des
ribes the opening or the 
losing of a base-pair.5.2.1 Partition fun
tionIn statisti
al physi
s, if we are able to derive the partition fun
tion of a system, thenwe get all the thermodynami
 quantities. The problem is that we must sum overall the 
on�gurations and it is generally impossible. That's why numeri
al approx-imations like Monte Carlo Metropolis s
heme or other more sophisti
ated methodsare sometimes used [72℄. Here we present an exa
t analyti
al 
al
ulation of thepartition fun
tion for a �nite homogeneous stem. In the 
ase of a non homogeneousstem numeri
al 
al
ulation are ne
essary [71℄.The partition fun
tion that we have to 
al
ulate is the following:
Zs =

∫ N∏

i=1

dyidpie
−β

P

i

p2
i

2m e−β[
P

i V (yi)+
PN

i=2
K
2

(yi−yi−1)
2]. (5.3)The momentum part in the partition fun
tion gives:

Zsp =

(
2πm

β

)N
2

.To go further in the 
al
ulation, we introdu
e the eigenfun
tions and eigenvalues ofthe non symmetri
 transfer integral operator:
∫

dyi−1e
−β(K

2
(yi−yi−1)

2+V (yi))φR
k (yi−1) = e−βǫkφR

k (yi) (5.4)
∫

dyi−1e
−β(K

2
(yi−yi−1)2+V (yi−1))φL

k (yi−1) = e−βǫkφL
k (yi), (5.5)73



PBD-Polymer model for DNA Hairpinswith:
∫

dyφR
k (y)φL

k (y) = 1 (5.6)
∑

k

φR
k (y)φL

k (x) = δ(x − y) (5.7)
φL

k (y) = eβV (x)φR
k (y). (5.8)Now it is 
onvenient to use the identity:

∫
drδ(r − y1) = 1.Therefore we 
an introdu
e this integral in the partition fun
tion without 
hanginganything:

Zs = Zsp

∫ N∏

i=2

dyie
−β[

PN
i V (yi)+

PN
i=3

K
2

(yi−yi−1)
2]

∫
dy1

∫
dr δ(r − y1)e

−β(V (y1)+ K
2

(y2−y1)
2).Using Eq. (5.7), we get:

Zs = Zsp

∫
dr
∑

k

φR
k (r)

∫ N∏

i=2

dyie
−β[

PN
i=2 V (yi)+

PN
i=3

K
2

(yi−yi−1)2]

∫
dy1e

−β(V (y1)+ K
2

(y2−y1)
2)φL

k (y1)
︸ ︷︷ ︸

e−βǫkφL
k
(y2)

.Then we 
an perform the same integration over the variables y2 to yN−1:
Zs = Zsp

∑

k

e−β(N−1)ǫk

∫
drφR

k (r)

∫
dyNe−βV (yN )φL

k (yN).Finally using Eq. (5.8) we get the following expression for the partition fun
tion:
Zs =

(
2πm

β

)N
2 ∑

k

e−β(N−1)ǫk

[∫
dyφR

k (y)

]2

. (5.9)Thus if we are able to �nd the eigenstates and the eigenvalues of the transfer integraloperator, we 
an 
ompute the thermodynami
 quantities su
h as the free energy, theentropy and the heat 
apa
ity.74



5.2 Study of the stem5.2.2 Transfer integral in the 
ontinuum medium approxima-tionIf we use the 
ontinuum medium approximation it is possible to get the eigenfun
-tions and the eigenvalues that we need. Due to the Gaussian fun
tion in the transferintegral operator exp (−βK(yi − yi−1)
2/2), the kernel takes very small values ex
eptin the vi
inity of yi. Consequently we 
an perform a Taylor expansion of φR

k (yi−1)around yi and then integrate over yi−1:
e−βǫkφR

k (yi) =

∫
dyi−1e

−β(K
2

(yi−yi−1)2+V (yi))φR
k (yi−1)

= e−βV (yi)

∫
dyi−1e

−β K
2

(yi−yi−1)2φR
k (yi−1)

= e−βV (yi)

∫
dyi−1e

−β K
2

(yi−yi−1)2
[
φR

k (yi)+

dφR
k

dy
(yi − yi−1) +

1

2

d2φR
k

dy2
(yi − yi−1)

2 + · · ·
]

= e−βV (yi)

[
φR

k (yi) + 0 +
1

2

d2φR
k

dy2

(−2

K

)
∂

∂β

√
2π

βK
+ · · ·

]

= e−βV (yi)

√
2π

βK

[
1 +

1

2βK

d2

dy2
+ · · ·

]
φR

k (yi)

e−βǫkφR
k (yi) = e−βV (yi)

√
2π

βK

(
e

1
2βK

d2

dy2

)
φR

k (yi).Indeed, we re
ognize the expansion of an exponential. Putting e = 1
2β

ln
(

βK
2π

),
α = 1

2β2K
and Ek = ǫk − e we get the following S
hrödinger equation:

−α
d2φR

k (y)

dy2
+ V (y)φR

k (y) = Ekφ
R
k (y). (5.10)Consequently �nding the eigenfun
tions and eigenvalues is equivalent to solvinga S
hrödinger equation for a parti
le in the potential V (y). The solution of thisequation is quite easy to derive and we will only give the result here. We must
onsider two 
ases, one for Ek < 0 and the other for Ek > 0.Bound states: -D < E < 0 In the solution of the S
hrödinger equation inthe book of Peyrard and Dauxois [74℄ with a similar potential, but without therestri
tion y<L, we see that a lo
alized ground state exists only under a temperature

T∞
m = 2a

√
2KD

πkb
. In our 
ase L & 100a, whi
h means that the 
onstraint y<L does not
hange qualitatively the results, although the system now has a dis
rete spe
trumfor all E. When the parti
le is in the well, it lies in a lo
alized ground state, whi
hexists for T < Tm with Tm ≈ T∞

m . 75



PBD-Polymer model for DNA HairpinsOne 
an show that the ground state has the following form:
φR

0 (y) =






A0 sin k0y 0 ≤ y ≤ a,

A0
sink0a

sinh ρ0(L−a)
sinh ρ0 (L − a) a < y ≤ L.

(5.11)With k2
0 = D+E0

α
and ρ2

0 = −E0

α
. One must be 
areful for the normalisation. Indeedthe 
orre
t normalisation is given by the Eq. (5.6). So that we have:

1

A2
0

=
e−βD

k0

[
k0a − sin k0a cos k0a

]

+
sin2 k0a

ρ0

[
coth ρ0 (l − a) − ρ0 (L − a)

sinh2 ρ0 (L − a)

]
. (5.12)The eigenvalue E0 is solution of the equation :

tan k0a = −k0

ρ0
tanh ρ0 (L − a). (5.13)In pra
ti
e we solve this equation numeri
ally.Extended states: E>0 As the potential V (y) goes to in�nity for y > L, we geta in�nite but dis
rete number of eigenfun
tions. Indeed, the 
on�ning aspe
t of thepotential leads to a quantization of the eigenvalues. In this 
ase, the eigenfun
tionsare given by :

φR
n (y) =





An sin kny 0 ≤ y ≤ a,

An
sinkna

sink′
n(L−a)

sin k
′

n (L − a) a < y ≤ L.
(5.14)With k2

n = D+En

α
and k

′2
n = En

α
. The 
ondition of normalisation gives the An :

1

A2
n

=
e−βD

kn

[
kna − sin kna cos kna

]

+
sin2 kna

k′

n

[
cot k

′

n (L − a) − k
′

n (L − a)

sin2 k′

n (L − a)

]
. (5.15)And the eigenvalues are given by :

tan kna = −kn

k′

n

tan k
′

n (L − a). (5.16)In this 
ase we also �nd the solutions numeri
ally. Figures (5.4) and (5.5) give someeigenfun
tions for T < Tm and the evolution versus temperature of the eigenstates
orresponding to the lowest eigenvalues versus temperature.76



5.2 Study of the stem

Figure 5.4: Representation of eigenfun
tions.
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Figure 5.5: Evolution of the eigenvalues as a fun
tion of temperature.Now we have the eigenfun
tions and eigenvalues ne
essary to 
ompute the partitionfun
tion of the stem.5.2.3 ResultsFree energy and Entropy Using the expression of the partition fun
tion andthe relation F (T ) = −kbT ln Zs we 
an 
ompute the total free energy of the stem.77
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Figure 5.6: Free energy of a �nite stem.The parameters are the following: D=4; a=0.1,K=6 and N=5 in arbitrary unitsAnd the derivative of the free energy determines the evolution of the entropy of thesystem with temperature.
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Figure 5.7: Temperature variation of the entropy of the stem. The parameters are thefollowing: D=4, a=0.1, K=6 and N=5 in arbitrary units
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5.2 Study of the stemThe graphi
 of the entropy does not show a transition be
ause there is no dis
on-tinuity or angular point in the free energy. The entropy grows 
ontinuously withthe temperature but there is nevertheless a temperature range in whi
h the entropyin
reases faster. It 
orresponds to the temperature domain in whi
h the system
hanges form 
losed to open. Instead of a transition, for the �nite system that we
onsider here, we 
an expe
t the 
oexisten
e of 
losed and open state with a gradualshift from a mostly 
losed to a mostly open situation. To verify this hypothesis we
an sele
t a �rea
tion 
oordinate� and 
ompute the free energy versus this 
oordi-nate. For the hairpin the appropriate 
oordinate is r, the stret
hing of the base-pairthat terminates the hairpin. This parameter is appropriate be
ause it is relatedto the experiments that use FRET to dete
t the variation of distan
e between a�uorophore and a quen
her.Free energy as a fun
tion of r Let us 
al
ulate this new quantity whi
h willbe very important for the study of the hairpin. We must 
al
ulate the partitionfun
tion for a given r. The derivation is quite similar to the previous 
al
ulation.So we have to integrate e−βHs over all the variables of the stem ex
epted the �rstvariable y1. That is equivalent to integrating over the �rst variable y1 but puttingalso a delta fun
tion δ(r − y1). Therefore the partition fun
tion is given by:
Zs(r) = Zsp

∫ N∏

i=2

dyie
−β[

PN
i V (yi)+

PN
i=3

K
2

(yi−yi−1)2]
∫

dy1δ(r−y1)e
−β(V (y1)+ K

2
(y2−y1)

2).Then we perform the same 
al
ulation as for Zs introdu
ing the eigenstates of thetransfer integral operator and �nally we get:
Zs(r) =

(
2πm

β

)N
2 ∑

k

e−β(N−1)ǫkφR
k (r)

∫
dyφR

k (y). (5.17)In pra
ti
e the summation over k is trun
ated to the 100 lowest values of ǫ be
ausethe other 
ontributions are negligible. Consequently we 
an easily 
ompute the freeenergy lands
ape Fs,T (r) = −kbT lnZsr. Figure (5.8) gives the evolution of the freeenergy lands
ape of the stem as a fun
tion of temperature.We get a free energy with a well for a small value of r, whi
h represents the 
losed
on�guration, and a large plateau for higher value of r whi
h represents the open
on�gurations. The fa
t that we have a plateau 
omes from the form of the poten-tial V (y). The shape of the free energy F (r) indi
ates that only one state is reallystable, the 
losed state. But due to the large plateau, states with large r will alsobe populated at any temperature. And when T in
reases their weight will in
rease79
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Figure 5.8: Free energy lands
ape for di�erent temperature.be
ause the depth of the well 
orresponding to the 
losed state de
reases. There-fore the free energy F (r) shows that the stem opens gradually when temperaturein
reases. However for the stem alone we 
annot speak of a transition sin
e only onestable state exists. The expression of Z(r) allows us to 
ompute the mean value of
r versus T , whi
h is a measure of the opening of the double stranded DNA. Noti
ethat the value of 〈r〉 involves the summation over all eigenstates (in pra
ti
e 100).On the 
ontrary in the limit N → ∞ the sum is dominated by the lowest eigenvalue
ǫ0. It is interesting to evaluate the in�uen
e of the ex
ited states ǫk (k > 0) on themean distan
e of the �rst base-pair 〈r〉. The expression of 〈r〉 is given by

〈r〉 =

∫
dr rZs(r)∫
drZs(r)

. (5.18)Figure (5.9) shows 〈r〉 
al
ulated with respe
tively 1 term (ǫ0 only), 2, 5, 10 termsin the summation.
With one term we note sharp rise of 〈r〉 while the transition appears smootherwhen we in
lude additional terms. This is be
ause the summation restri
ted to thelowest term 
orresponds to the thermodynami
 limit for whi
h a true transitionwould exist (at least in the limit L → ∞) while the introdu
tion of the extraterms allow us to properly take into a

ount the �nite size of the stem. The simplesquare potential that we have 
hosen is 
onvenient for this study be
ause we 
anget the eigenfun
tions of the transfer operator in an analyti
 form. For L → ∞ andthe Morse potential of the PBD-model an analyti
al expression exists (but is verytedious to manipulate and leads to numeri
al di�
ulties) but for a �nite L, onlythe numeri
al approa
h would have been possible if we had not 
hosen the simplesquare potential.80



5.3 The 
omplete system
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Figure 5.9: In�uen
e of the ex
ited states on the mean distan
e of the �rst base-pair.The parameters are D=4, a=0.1, L=10 and K=6 in arbitrary units. •: one term; �: twoterms; ⋄: �ve terms and △: ten terms in the summation.To 
on
lude, we have seen that the study of a �nite stem requires several eigenstatesand with the simple version of the PBD-model it is quite easy to 
al
ulate them.Nevertheless, we know that to be more realisti
 we have to use the 
omplete versionof the PBD-model that we have presented in Chap. 1 with a non linear sta
kingand a Morse potential. Indeed, the work on the DNA mole
ule has shown thatthe sta
king is more important when two 
onse
utive base-pairs are 
losed than oneinta
t and the other broken. To take this into a

ount the PBD-model in
ludes a nonlinear sta
king given by W in Eq. (1.3). Moreover the potential whi
h 
hara
teriseshydrogen bonds is the Morse potential. The 
oupling in the Hamiltonian of thestem given by Eq. (5.2) (without the Hx) is now repla
ed by Eq. (1.3). In the
ase of the 
omplete model we 
annot use the transfer integral method be
ause itis di�
ult to �nd all the eigenstates and eigenvalues of the transfer operator. Anumeri
al 
al
ulation of the eigenstates 
ould be possible but, even this approa
h iste
hni
ally di�
ult due to over�ows and numeri
al a

ura
y problems. Moreover,the approximation of 
ontinuous media is not 
orre
t for small 
hains as it is shownin Ref. [32℄. For these reasons we have used a dire
t numeri
al integration of thepartition fun
tion for the 
omplete system. We present our 
al
ulation in the nextse
tion.5.3 The 
omplete systemNow we 
an 
ome ba
k to the problem of the hairpin. The goal is to �nd thepartition fun
tion of the system in order to get the free energy lands
ape. Withthis quantity we will be able to �nd thermodynami
s and kineti
s properties and
ompare them to the experimental ones. 81



PBD-Polymer model for DNA Hairpins5.3.1 Partition fun
tionAs experiments probe the opening of hairpins by using a �uorophore/quen
her sys-tem whi
h is sensitive to the distan
e between the ends of the hairpin, it is usefulto 
ompute the partition fun
tion of the system for a given distan
e r between thetwo ends of the 
hain as we did for the stem in the previous se
tion. Therefore weintrodu
e a delta fun
tion in the 
al
ulation of the partition fun
tion as we havedone for the stem only. In order to see how we 
onstru
t our partition fun
tion let'sbegin by a system without sta
king intera
tion and hydrogen bonds, i.e a polymeralone.First of all the partition fun
tion for a given end-to-end distan
e rM = R is linkedto the end-to-end probability distribution
PN(rM) =

∫ ∏
N dαNδ

(
‖
∑N−1

i=1 ri‖ − rM

)
e−β HN (αN )

∫ ∏
N dαNe−βHN (αN )

=
ZN(R)

Ztot
N

. (5.19)Where N is the number of monomers, {αN}, the generi
 variables of the loop and
HN , the Hamiltonian of the loop. In order to build the partition fun
tion of thehairpin we shall start from the redu
ed partition fun
tion of the loop made of Nmonomers ZN(rM), where rM is the distan
e between the ends of the loop whi
his also the distan
e between the two bases making the last base-pair of the stem,whi
h is at the end of the loop (see Fig. (5.1)). Then we shall extend the loop byadding the segments forming the stem. In a �rst step let us ignore the sta
king andMorse potential intera
tions whi
h are spe
i�
 to the stem and only 
onsider thepolymer made by the DNA strand. When we add one base-pair to the stem we addtwo segments to the polymer. The extended loop with N + 2 monomers has nowthe distan
e rM−1 between its ends. So that its restri
ted partition fun
tion is

ZN+2(rM−1) = PN+2(rM−1)Z
tot
N+2. (5.20)But the probability PN+2(rM−1) 
an be expressed as a fun
tion of PN (rM) if weintrodu
e the 
onditional probability S(ρ′|ρ) that if a polymer has the distan
e ρbetween its ends, the polymer with two additional monomers has the distan
e ρ′between its ends as s
hematized on Fig. (5.10).

ρ ρ’Figure 5.10: S
hemati
 representation of the growth of the polymer.
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5.3 The 
omplete systemThis 
onditional probability fun
tion 
an in prin
iple be 
al
ulated if we have amodel for the polymer. We have shown in Chap. 3 how it 
an be obtained for ane�e
tive Gaussian model.With this fun
tion we 
an express PN+2(r) in term of PN(R) as
PN+2(ρ

′) =

∫
dρS(ρ′|ρ)PN(ρ), (5.21)or, in the 
ontext of our 
al
ulation

PN+2(rM−1) =

∫
drMS(rM−1|rM)PN(rM), (5.22)whi
h gives the redu
ed partition fun
tion for a stem with two base-pairs as

ZN+2(rM−1) = Ztot
N+2

∫
drMS(rM−1|rM)PN(rM). (5.23)The same pro
ess 
an be repeated if we add the third base-pair in the stem. From

ZN+4(rM−2) = PN+4(rM−2)Z
tot
N+4

= Ztot
N+4

∫
drM−1S(rM−2|rM−1)PN(rM−1), (5.24)we get

ZN+4(rM−2) = Ztot
N+4

∫
drM−1 drM S(rM−2|rM−1)S(rM−1|rM)PN(rM). (5.25)We 
an 
ontinue the pro
ess until we have added (M −1) base-pairs to the one thatis next to the loop, in order to get the 
omplete stem, with M base-pairs, whi
h
orresponds to the total of (N + 2(M − 1)) monomers in the polymer forming thehairpin.We get the redu
ed partition fun
tion

ZN+2(M−1) = Ztot
N+2(M−1)

∫ + ∞

0

dr

M∏

i=2

S(ri−1|ri)PN(rM). (5.26)Up to now we have ignored the 
ontribution of the Morse potential and sta
kingintera
tion. Let us now examine how it enters.Consider again the loop alone with its terminal base-pair. Due to the Morse potential
V (rM), the probability PN(rM) must be multiplied by e−βV (rM ). Its redu
ed partitionfun
tion is then

ZN(rM) = e−βV (rM ) PN (rM)Ztot
N . (5.27)When we add one base-pair, i.e. two monomers we add one sta
king intera
tion

W (rM−1, rM) and one Morse potential V (rM). So that Eq. (5.20) be
omes
ZN+2(rM−1) = Ztot

N+2

e−βV (rM−1)

∫
drM e−β(W (rM−1,rM )+V (rM ))S(rM−1|rM)PN(rM). (5.28)83



PBD-Polymer model for DNA HairpinsThis shows that, in our previous 
al
ulation we 
an formally repla
e S(ri−1|ri) by
S(ri−1|ri) → S(ri−1|ri) exp (−β (V (ri) + W (ri−1, ri))) , (5.29)and multiply the �nal result by the e−βV term 
orresponding to the base-pair 
los-ing the system. Therefore the redu
ed partition fun
tion of the hairpin with theintera
tions in the stem is �nally given by

Z(r) =Zloop(N+2(M−1))e
−βV (r1)×

∫ +∞

0

M∏

i=2

dri

M∏

i=2

S(ri−1|ri)e
−β[V (ri)+W (ri−1,ri)]PN(rM), (5.30)where ri = yi + d a

ording to the notations of Fig. (5.1). Note also that r = r1 and

R = rM in these notations. V and W have the following expressions





V (ri) = D
[
(exp (−α (ri − d)) − 1)2 − 1

]
,

W (ri, ri+1) = K
2

[1 + ρ exp (−δ (ri + ri−1 − 2d))] (ri − ri−1)
2 .

(5.31)5.3.2 Free Energy and EntropyIt is interesting to see the form of the total free energy as well as the entropy of thesystem. The free energy is given by
F (T ) = −kBT lnZ, (5.32)where Z is obtained by integrating Z(r) over r

Z =

∫
drZ(r). (5.33)And the entropy S(T ) is given by the �rst derivative of F

S(T ) = −∂F

∂T
. (5.34)Of 
ourse the expressions of F and S depend on the model of the loop we are usingthrough PN(R). However the behavior of the temperature evolution of F and S staysqualitatively the same for di�erent loop models. Figure (5.11) gives the evolutionof F (T ) and S(T ) with temperature for the FRC model and without the growth ofthe polymer (S≡1).We 
an see a 
hange of the slope in the free energy around 310 K whi
h 
ould bede�ned as the melting temperature. The entropy pro�le shows a sharp in
rease whenthe system goes from the 
losed state to the open one by in
reasing the temperature.To be more pre
ise we have to derive melting 
urves as well as rates of opening and
losing for di�erent parameters of the model and di�erent loop models. Before doingthat we present the derivation of the rates of opening and 
losing in the 
ase of anequilibrium between the open and the 
losed state with a transition state betweenthe two.84



5.3 The 
omplete system
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Figure 5.11: Example of free energy pro�le and entropy with the FRC model forthe loop.The parameters of the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 45◦ and N=21. Left: Free energy. Right: Entropy 
al
ulatedby S(T ) = ∂F

∂T5.3.3 Kineti
s: theoreti
al predi
tionsIn order to study the kineti
s of the opening-
losing �u
tuations, we view them fromthe point of view of a 
hemi
al equilibrium between two states (C 
losed, O open)separated by a transition state (T) as s
hematized on Fig. (5.12)
k1
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C T OFigure 5.12: Chemi
al equilibrium.
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Figure 5.13: Example of a free energy pro�le obtained with S ≡1 and a loop modeled bythe FRC. The parameters are the following: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, θ=45◦ and N=21.Here k1, k−1, k2 and k−2 designate the kineti
 
onstants. Let us denote by C with85



PBD-Polymer model for DNA Hairpinsindi
es C, T, O the 
on
entrations of the di�erent spe
ies. Therefore we have
ĊC = −k1CC + k−1CT

ĊT = − (k−1 + k2) CT + k1CC + k−2CO (5.35)
ĊO = −k−2CO + k2CT .We then assume that the 
on
entration of the transition state stays 
onstant. Thisis the quasi-stationary state approximation:

ĊT = 0. (5.36)Then we get
CT =

k1CC + k−2CO

k−1 + k2
. (5.37)Now if we insert Eq. (5.37) in (5.35) we get

ĊC = −k1CC + k−1
k1CC + k−2CO

k−1 + k2

= − k1k2

k−1 + k2
CC +

k−1k−2

k−1 + k2
CO

ĊC = −kfCC + kbCO, (5.38)where kf and kb are the rates of opening and 
losing, respe
tively, we would liketo derive. The assumption (5.36) amounts to assuming k−1 + k2 >> kb, kf , whi
hmeans that the stationary state for T is rea
hed be
ause the time s
ales for goingin and out of the transition state are shorter than the time s
ales to open or 
lose.Moreover
ĊC + ĊO = 0, (5.39)and at the equilibrium ĊC = ĊO = 0, so that

C̄C

C̄O

=
kb

kf
=

k1k−2

k−1k2
. (5.40)Finally we obtain

k−1
f = k−1

1 +
C̄C

C̄O

k−1
−2 (5.41)

k−1
b = k−1

−2 +
C̄O

C̄F

k−1
1 . (5.42)The ratio in Eq. (5.46) is given by thermodynami
s

C̄C

C̄O

=
ZC

ZO

. (5.43)86



5.3 The 
omplete systemThe opening-
losing of a hairpin is a 
omplex pro
ess involving many degrees offreedom but in the spirit of our equilibrium thermodynami
s 
al
ulation, it is naturalto introdu
e a rea
tion 
oordinate r, whi
h is the distan
e between the ends of thehairpin.In this spirit, we 
an 
onsider that the system is evolving on a one-dimensional freeenergy surfa
e, whi
h has the qualitative shape shown in Fig. (5.13). The 
losed andopen states are minimum of this surfa
e F (r) and the transition state 
orrespondsto the maximum. We 
an sele
t the origin so that the transition state is at r = 0.In term of the free energy F (r) the partition fun
tions for the 
losed and the openstates are
ZC =

∫ 0

−∞
dre−βF (r) (5.44)

ZO =

∫ ∞

0

dre−βF (r), (5.45)and the kineti
s of the opening-
losing �u
tuations is an evolution on this free energysurfa
e, whi
h 
an be des
ribed by a Fokker-Plan
k formalism. Therefore we haveto derive the expression of k1 and k−2 to get the rates of opening and 
losing.To do that we suppose that the system di�uses on the one dimensional e�e
tivepotential and we would like to know the mean passage time [75℄ for the systemwhi
h is in one of the two wells to go in the other one through the barrier. If we 
all
P (r) the probability distribution, i.e. P (r)dr is the probability of the system to bein the range [r, r + dr], it obeys to the usual Fokker-Plan
k equation:

{
∂P
∂t

= −∂j(r)
∂r

j(r) = −D(r)
[

∂P
∂r

+ βF ′P
]
.

(5.46)We assume some boundary 
onditions asso
iated to our problem:
• Re�e
ting boundary also to the left: r → −∞: limr→−∞ j(r, t) = 0 ∀ t. Inpra
ti
e we use a hard 
ore at r=9.7 Å.
• Absorbing boundary in r = rmax: j(rmax, t) = ΛP (rmax, t) with Λ → +∞whi
h means that on
e it has passes the maximum the system evolves to these
ond minimum.The mean �rst passage time is given by [76℄

τ =

∫ +∞

0

dt

∫ rmax

−∞
drP (r, t). (5.47)First of all let's integrate Eq. (5.46) over r:

∫ r′

−∞

∂P (r, t)

∂t
dr = −j(r′, t), 87



PBD-Polymer model for DNA Hairpinsso that
j(rmax, t) = ΛP (rmax, t) = −

∫ rmax

−∞

∂P (r, t)

∂t
dr. (5.48)Using Eq. (5.46), we also get

∫ r′

−∞

∂P (r, t)

∂t
dr = D(r′)

[
∂P

∂r′
+ βF ′P

]

= D(r′)eβF ∂

∂r′
(
eβF P

)
. (5.49)Now we 
an integrate (5.49) over r′

∫ rmax

R

dr′
∂

∂r′
(
eβF P

)
=

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t

eβF (rmax)P (rmax, t) − eβF (R)P (R, t) =

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t
. (5.50)Putting Eq. (5.48) in Eq. (5.50)

P (R, t) = − e−βF (R)

e−βF (rmax)

1

Λ

∫ rmax

−∞
dR′∂P (R′, t)

∂t
−

e−βF (R)

∫ rmax

R

dr′

D(r′)e−βF

∫ r′

−∞
dR′∂P (R′, t)

∂t
, (5.51)and putting

p0(R) =
e−βF (X)

∫ rmax

−∞ dRe−βF (R)
,with ∫ rmax

−∞ p0(R) dR = 1, we get
P (R, t) = − P0(R)

P0(rmax)

1

Λ

∫ rmax

−∞
dR′∂P (R′, t)

∂t
−

P0(R)

∫ rmax

R

dr′

D(r′)P0(r′)

∫ r′

−∞
dR′∂P (R′, t)

∂t
. (5.52)Now let us integrate Eq. (5.52) over R and t whi
h is exa
tly the de�nition of τ thatwe are looking for

τ =

∫ ∞

0

dt

∫ rmax

−∞
dR P (R, t)

τ =
1

ΛP0(rmax)

∫ rmax

−∞
dyP (y, 0)+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

dr

D(r)P0(r)

∫ r

−∞
dyP (y, 0) (5.53)88



5.3 The 
omplete systemwhere we have assumed that limt→+∞ P (y, t) = 0 ∀ y. At t = 0 let us assume thatthe system is at the thermodynami
 equilibrium, so that P (y, 0) = P0(y), then
τ =

1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

dr

D(r)P0(r)

∫ r

−∞
dyP0(y)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

x

drH(r)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dxP0(x)

∫ rmax

−∞
drH(r)Θ(r − x)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
drH(r)

∫ r

−∞
dxP0(x)

=
1

ΛP0(rmax)
+

∫ rmax

−∞
dr

1

D(r)P0(r)

∫ r

−∞
dyP0(y)

∫ r

−∞
dxP0(x)

τ =
1

ΛP0(rmax)
+

∫ rmax

−∞
dr

1

D(r)P0(r)

(∫ r

−∞
dxP0(x)

)
, (5.54)where Θ(x) is the Heaviside fun
tion. Finally, taking Λ → +∞, we get





τ =
∫ rmax

−∞
dr

D(r)P0(r)
I2(r)

I(r) =
∫ r

−∞ dxP0(x).

(5.55)Now we 
an apply the expression of τ to our spe
ial 
ase
k−1

1 = τCT =

∫ rT

−∞
dr

I2
C(r)

D(r)P
(C)
0 (r)

, (5.56)with
IC(r) =

∫ r

−∞
dxP

(F )
0 (x),and

P
(F )
0 (r) =

e−βF (r)

ZC

∀ r < rT .We also need the expression of k−1
−2

k−1
−2 = τOT =

∫ ∞

rT

dr
I2
O(r)

D(r)P
(O)
0 (r)

, (5.57)with
IO(r) =

∫ ∞

r

dxP
(O)
0 (x),and

P
(O)
0 (r) =

e−βF (r)

ZO

∀ r > rT . 89



PBD-Polymer model for DNA HairpinsTherefore
k−1

f =

∫ rT

−∞
dr

I2
C(r)

D(r)P
(C)
0 (r)

+
ZC

ZO

∫ ∞

rT

dr
I2
O(r)

D(r)P
(O)
0 (r)

k−1
f = ZC

(∫ rT

−∞

dr

ZC

I2
C(r)

D(r)P
(C)
0 (r)

+

∫ ∞

rT

dr

ZO

I2
O(r)

D(r)P
(O)
0 (r)

)

k−1
f = ZC

∫ +∞

−∞
dr

eβF (r)I2(r)

D(r)
, (5.58)with

I(r) =






∫ r

−∞ dxe−βF (x)

ZC
∀ r < rT

∫ +∞
r

dxe−βF (x)

ZO
∀ r > rT .

(5.59)Finally k−1
b = ZO

ZC
k−1

f . In order to avoid numeri
al problems during integrations wetransform Eq. (5.58) as
k−1

f = ZC

∫ +∞

−∞
dr

e−βF (r)J2(r)

D(r)
, (5.60)with

J(r) =





∫ r

−∞ dxe−β(F (x)−F (r))

ZC
∀ r < rT

∫ +∞
r

dxe−β(F (x)−F (r))

ZO
∀ r > rT .

(5.61)5.4 Case of S≡1In order to get a �rst idea of the behavior of the hairpin, it is 
onvenient to startfrom a zeroth-order approximation in whi
h the stem and the loop are de
oupled inthe 
al
ulation. This 
an be obtained if we set S ≡1 in the general expression (5.29).This approximation simply repla
es e−βV (rM ) by e−βV (rM )PN(rM) in the expressionfor the stem alone. Stri
tly speaking this is not 
orre
t be
ause the transformationgives an expression of Z(r) whi
h does not have the expe
ted dimension for a redu
edpartition fun
tion. We nevertheless introdu
e this approximation as a preparationfor the dis
ussion of the 
omplete 
al
ulation of Se
tion 5, keeping in mind that it
an only give the general behavior of Z(r), up to a fa
tor. In this 
ase, the redu
edpartition fun
tion is given by
Z(r) = e−βU(r)

∫ M−1∏

i=2

dri

∫
drMPN(rM)T (rM − d, rM−1) · · ·T (r2, r − d), (5.62)where T (ri, ri−1) = exp (−β [V (ri) + W (ri, ri−1)]) and U(r) = V (r − d).90



5.4 Case of S≡15.4.1 Thermodynami
sThe free energy lands
ape F (r) = −kbT ln Z(r), with Z(r) de�ned by (5.54) hasthe shape plotted in Fig. (5.13).It is interesting to 
ompare this �gure to Fig. (5.9) for the stem alone. In thepresen
e of the loop besides, the deep minimum around r=10 Å, we have a se
ondminimum for large values of r. One 
an understand its presen
e in term of theentropy of the loop. The idea is similar to rubber elasti
ity. When the loop isstret
hed it 
an only o

upy a small number of 
onformations and thus has a lowerentropy. When r in
reases the loop 
an a

ess many 
on�gurations and its entropyin
reases, hen
e de
reasing the free energy. But whatever the loop model, too lowvalues of r also lead to a penalty in free energy. For the Kratky-Porod 
hain modelthe penalty is energeti
, while for the FRC very low values of r again redu
e thenumber of 
on�gurations or are even not a

essible. This explains why, when rde
reases below r2 the free energy raises gain to a maximum for r = rc before thelarge drop at r = r1 whi
h is due to the large energy gain when the hydrogen bondsin the stem are formed.This shape of the 
urve F (r) justi�es the image of the two-state system that wehave used for the kineti
s. Those states are the 
losed state for r ≈ r1 and the openstate for r ≈ r2. In the view of a 
hemi
al equilibrium between the two states, one
an de�ne an equilibrium 
onstant
Keq =

PO

PC

. (5.63)Where, PO, and PC are the probabilities to be open or 
losed, respe
tively. Wede�ne the probabilities by
PO =

∫ +∞
rc

drZ(r)
∫ +∞
0

drZ(r)
, (5.64)and PC + P0 = 1. The parameter rc is the value of the rea
tion 
oordinate atthe maximum of the free energy (transition state) between the two wells whi
h
orresponds to the open and the 
losed state. Then the melting 
urves whi
h areequivalent to the normalized �uores
en
e measured in the experiments are given by

PO. Indeed, we have
f =

Keq

1 + Keq
=

PO

PC

1 + PO

PC

= PO. (5.65)Let us now give a �rst qualitative view of the properties of the hairpin as a fun
tionof the model parameters. A more quantitative pi
ture will be given for S 6= 1 butthis �rst approa
h is useful to get an idea of the separate in�uen
e of the loop andstem. 91



PBD-Polymer model for DNA Hairpins5.4.1.1 Role of the loopFRC model First of all we propose to 
ompare the melting 
urve obtained fora stem of �ve base-pairs and with and without loop to see its e�e
t. Figure (5.14)gives su
h a 
omparison.

250 300 350 400 450 500 550
Temperature

0

0,2

0,4

0,6

0,8

1

P
O

Figure 5.14: Melting 
urve obtained for a stem of �ve base-pairs with and without a loop.The loop is des
ribed by the FRC model. The bla
k 
urve 
orresponds to the stem alone.We see that the stem tends to open at lower temperatures in presen
e of the loopwhi
h is due to the additional entropy brought by the loop. Therefore Tm is smallerfor the hairpin than for a stem alone. Moreover the transition is a bit sharper inthe 
ase of the hairpin but this is not a strong e�e
t. The results are summarizedin the next table
Tm

∆P
∆T

Tmstem 350 3.9stem+loop 325 3.1where we indi
ate the melting temperature and the quantity ∆P
∆T

Tm whi
h is a di-mensionless measure of the slope at Tm, multiplied by Tm to get a dimensionlessquantity. It measures the width of the transition.In order to study the e�e
t of the loop in more details, we now present the resultsobtained by varying the properties of the loop. Figure (5.15) and (5.16) give themelting 
urves for di�erent loop lengths as well as the evolution of Tm for two dif-ferent �xed angles θ. First of all, for the two values of θ the melting temperature
Tm de
reases with the loop length. The de
rease is most important for θ = 60◦. Tmvaries from 350 K to 323 K for N going from 12 to 30 but for θ = 45◦, ∆Tm=15K only. Se
ondly, for the same value of the loop length, Tm de
reases with de
reas-ing θ. Theses results are in qualitative agreement with some of the experimental92



5.4 Case of S≡1results. Indeed Tm is smaller for Poly(A) than Poly(T) for the same loop length.The sta
king intera
tion whi
h is expe
ted to be more important in the 
ase of A-sequen
e is equivalent to smaller values of θ be
ause it maintains the 
hain morerigid. Moreover, the larger the loop length, the larger the entropy, whi
h tends todestabilize the hairpin 
on�guration. However the model is not fully satisfa
torybe
ause the observed variation ∆Tm of the melting temperature is larger for poly(A) than poly(T) whi
h is not the results given by the model. We must also noti
ethat the width of the transition given by the model is about 100 K whi
h is mu
hlarger than in the experiments.
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Figure 5.15: Melting 
urves with the FRC model: θ = 45◦. The parameters of thestem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 45◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. ◦: theoreti
al results, line: linear �tting.
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Figure 5.16: Melting 
urves with the FRC model: θ = 60◦. The parameters of thestem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 60◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. ◦: theoreti
al results, red line: linear �tting. 93



PBD-Polymer model for DNA HairpinsDis
rete Kratky-Porod 
hain If we 
hange the model of the loop, it is inter-esting to see the 
hange in the thermodynami
s. Let us now 
onsider the dis
reteversion of the Kratky-Porod 
hain as we presented in Chap. 3 whi
h in
ludes anadditional energeti
 
ontribution in the probability distribution of the end-to-enddistan
e. Figures (5.17) and (5.18) give the melting pro�les and the melting tem-perature Tm for di�erent loop lengths and for two di�erent values of the rigidityparameter ǫ.
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Figure 5.17: Melting 
urves with the Kratky-Porod 
hain: ǫ=0.0019 eV.Å−2. The pa-rameters of the stem are: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ=0.0019 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature with N. ◦: theoreti
al results, line: linear �tting.
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Figure 5.18: Melting 
urves with the Kratky-Porod 
hain ǫ=0.0040 eV.Å−2. The pa-rameters of the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ=0.0040 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature with N. ◦: theoreti
al results.For ǫ=0.0019.eV.Å−2 we �nd the 
orre
t tenden
y: Tm de
reases with the lengthof the loop as in the 
ase of the FRC and the experiments. Tm varies from 325 K94



5.4 Case of S≡1to 299 K for N going from 12 to 30 whi
h is 
omparable to the experimental re-sults. However for ǫ=0.0040 eV.Å−2, we obtain something quite surprising be
ausethe evolution of Tm as a fun
tion of N is not monotonous. Indeed, for N goingfrom 12 to 21 Tm in
reases and for N higher than 21 it de
reases. As ǫ is large,the probability to form small loops, whi
h are ne
essary to form hydrogen bonds inthe stem, is very small. Consequently the phase spa
e 
orresponding to the 
losed
on�guration is smaller. But when we in
rease the number of monomers in the loop,even if ǫ is large, the tenden
y to get a 
losed loop is higher, whi
h allows the for-mation of base-pairs in the stem. To see this e�e
t, Fig. (5.19) gives the end-to-endprobability distribution of the Kratky-Porod 
hain for di�erent loop lengths and fortwo di�erent values of ǫ.For ǫ=0.0019 eV.Å−2, near the equilibrium distan
e of the hydrogen bonds (10 Å
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Figure 5.19: Plot of the probability distribution of the Kratky-Porod 
hain. Left:T=330K, ǫ=0.0019 eV.Å−2; bla
k: N=12; red: N=16; green: N=21; blue: N=30. Right: T=275K, ǫ=0.0040 eV.Å−2; bla
k: N=12; red: N=16; green: N=21; blue: N=30approximately), for smaller N we get a larger end-to-end probability that tends tostabilize the hairpin 
on�guration. On the 
ontrary, for the 
ase of ǫ=0.0040 eV.Å−2there is an inversion of this phenomenon for N < 21. For N < 21, redu
ing N re-du
es the value of the end-to-end probability distribution for small R, whereas for
N > 21, redu
ing N in
reases the end-to-end probability distribution at R small.That explains the evolution of Tm as a fun
tion of N .5.4.1.2 Role of the stemLet us now study the e�e
t of the stem parameters on the properties of the hair-pins. Figure (5.20) gives the evolution of the melting 
urves with the 
hange of Dand k, and Fig. (5.21) shows the same quantity but with the 
hange of α and ρ.First when we in
rease the value of D, whi
h is the depth of the Morse potential,the 
losed 
onformation is more stable and the transition to the open state takespla
e at higher temperatures as expe
ted be
ause the thermal �u
tuations must be95



PBD-Polymer model for DNA Hairpinslarge enough to allow the system to over
ome the free energy barrier representedin Fig. (5.12). Se
ond, when we 
hange the value of k, we a�e
t the rigidity of thestem and the larger k, the larger the rigidity. Then, as for the stem alone, the 
losed
on�guration is more stable for larger values of k and the equilibrium is shifted tohigher temperatures. Only the kineti
 results will tell us if this evolution should beattributed to entropi
 or energeti
 e�e
ts. The value of ρ has a small e�e
t on themelting pro�les be
ause we 
onsider short stems su
h as the �ve base-pairs stem.This is di�erent from the e�e
t of ρ on the double stranded DNA. For long doubleheli
es large values of ρ lead to a large entropy in
rease when some regions are onthe plateau of the Morse potential, and thereby lead to a sharper transition. Finallywe see that the bigger the width of the Morse potential (small values of a), the largerthe melting temperature Tm. When we in
rease the width of the Morse potential,we also in
rease the width of the �rst well of the free energy lands
ape whi
h repre-sent the 
losed 
on�guration. Thus the 
losed 
onformation is more stable and thesystem again needs more thermal �u
tuations to open. In fa
t we �nd qualitativelythe same in�uen
e of the parameters on Tm as in the long dsDNA with a squarepotential and a linear sta
king: Tm ∼
√

kD
α

. To �nish with this part we also give the
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Figure 5.20: E�e
t of D and k on the melting 
urve. The parameters are the follow-ing: α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 60◦, N=21. Left: E�e
t of d, k=0.025 eV.Å−2;
•: D=0.09 eV; �: D=0.107 eV; ⋄: D=0.13 eV. Right: E�e
t of k, D=0.107 eV; •k=0.013 eV.Å−2; � k=0.025 eV.Å−2; ⋄ k=0.050 eV.Å−2.in�uen
e of ǫ as well as the in�uen
e of D on the melting pro�les with the Kratky-Porod 
hain in Fig. (5.22). For the in�uen
e of D we get the same dependen
e asin the FRC 
ase. Moreover, the e�e
t of ǫ is 
omparable to the e�e
t of θ in FRC,the bigger the value of ǫ, the smaller Tm. Therefore when we in
rease the rigidity,the hairpin is subje
ted to for
es from the loop part whi
h tend to destabilize it.5.4.2 Kineti
sLet us dis
uss the kineti
 results for the two models of the loop that we studied.96



5.4 Case of S≡1

250 300 350 400 450 500
Temperature

0

0,2

0,4

0,6

0,8

1

P
O

260 280 300 320 340 360 380 400 420 440
Temperature

0

0,2

0,4

0,6

0,8

1

P
O

Figure 5.21: E�e
t of α and ρ on the melting 
urve. The parameters are the following:D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, θ = 60◦. Left: E�e
t of α, •:
α=4.0 Å−1, ; �: α=5 Å−1; ⋄: α=6.9 Å−1. Right: E�e
t of ρ, •: ρ = 2; �: ρ=5; ⋄: ρ=10.
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Figure 5.22: E�e
t of ǫ and D on the melting pro�les. The parameters are:k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, N=21. Left: D=0.102 eV; •:
ǫ=0.0010 eV.Å−2 ; �: ǫ=0.0019 eV.Å−2 ; ⋄: ǫ=0.0040 eV.Å−2 . Right: ǫ0.0019 eV.Å−2; •:D=0.09 eV; �: D=0.102 eV; ⋄: D=0.13 eV5.4.2.1 FRC modelThe e�e
ts of the length of the loop and of the θ angle of the FRC model are shownon Fig. (5.23) whi
h displays the kineti
 
onstants kop and kcl versus temperaturein a semi-logarithmi
 plot.The main points whi
h appear on the 
urves are the followings1. the variation of both 
onstants is linear on this plot, showing that they obeyArrhenius laws

kop ≈ e
− Eop

kBT and kcl ≈ e
− Ecl

kBT . (5.66)
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Figure 5.23: Rates of opening and 
losing with the FRC model in an Arrhenius plot.Open and 
losed symbols represent the rates of opening and 
losing, respe
tively. Theparameters are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left:θ = 45◦;
•: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21; bla
k: θ = 45◦, red:θ = 60◦2. Changing the loop parameters (loop length N and θ angle of the FRC model)does not a�e
t the kineti
s of the opening. This means that the opening isonly determined by the stem in this model.3. The opening a
tivation energy Eop is positive, i.e. the transition state has ahigher energy than the 
losed one, in agreement with the experiments. This is
onsistent with point (2) be
ause Eop 
an be viewed as the energy ne
essaryto break the base-pairing in the stem.4. The 
losing a
tivation energy is negative. This implies that the energy of thetransition state is lower than the energy of the open state. There is neverthelessa free energy barrier for 
losing, but it 
an only 
ome from entropy e�e
ts.Going from the open to the transition state leads to an energy gain, whi
hmust be attributed to the stem be
ause the freely rotating 
hain model of theloop has no energeti
 
ontribution. This is 
on�rmed by the independen
eof the slope Ecl from the 
hange of the loop parameters N or θ. But theentropy of the open state is mu
h higher than the entropy of the transitionstate be
ause the open loop 
an explore a mu
h larger domain of the phasespa
e.Fig. (5.23) shows that longer loops lead to longer 
losing times (smaller kcl). Thisis 
onsistent with the entropi
 role of the loop. Longer loop lengths in
rease thephase spa
e a

essible to the system and the time that it needs to explore this phasespa
e before rea
hing the transition state. The role of θ 
an also be understood inthe same framework. When we in
rease θ the loop is less 
onstrained when it formsthe transition state. It 
an form this 
losed state in more manners than when θ is98



5.4 Case of S≡1lower, i.e. it has a higher entropy at the transition state. As a result the 
losing rateis higher for larger values of θ. The variation of kop and kcl with other parameters
on�rms the 
on
lusions that we have drawn from the study of N and θ.As shown in Fig. (5.24) a variation of D and k has little e�e
t on the 
losing ratebe
ause 
losing is mostly 
ontrolled by the entropy of the loop. On the 
ontrary
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Figure 5.24: E�e
t of D and k on the kineti
s with the FRC model in an Arrheniusplot. Open and 
losed symbols represent the rates of opening and 
losing, respe
tively.The parameters are: α=6.9 Å−1, δ = 0.35, ρ = 5, N=21. Left: k=0.025 eV.Å−2; •:D=0.009 eV; �: D=0.107 eV; ⋄: D=0.130 eV. Right: D=0.107 eV; •: k=0.013 eV.Å−2; �:k=0.025 eV.Å−2; ⋄: k=0.050 eV.Å−2the variation of D and k signi�
antly in�uen
es the opening whi
h is 
ontrolled bythe stem. Raising D in
reases the depth of the free energy well asso
iated to the
losed state. Therefore it in
reases Eop and slows down the opening. Changing kwe noti
e only a very small e�e
t on Eop. This seems surprising be
ause k entersinto an energeti
 term in the stem and therefore we would expe
t it to play a rolein the opening. We will 
ome ba
k to this point in the 
omplete 
al
ulation (S 6= 1)but we 
an anti
ipate on this dis
ussion by noti
ing that the 
oupling along theDNA strand is weak. Most of the energeti
 
ontribution lies in the Morse potential,i.e. in the 
ontribution of D. But k has nevertheless an entropi
 role. In
reasing kde
reases the opening rate. This 
an be understood be
ause the opening of the stemgives more freedom to its 
omponents to �u
tuate. Therefore there is an entropygain. This entropy gain is smaller when k in
reases be
ause the relative motions ofthe elements of the stem are more 
onstrained. This explains why opening is slowerfor larger k.5.4.2.2 Dis
rete Kratky-Porod 
hainFigures (5.25) and (5.26) show the kineti
 results for the Kratky-Porod model ofthe loop. They 
on�rm and 
omplete the analysis that we made from the FRCmodel. As for the FRC model we see that a 
hange of the parameters of the loopmainly a�e
ts 
losing (Fig. 5.25). The main di�eren
e is that the 
losing a
tivation99
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Figure 5.25: Rates of opening and 
losing with the Kratky-Porod 
hain in an Arrheniusplot. Open and 
losed symbols represent the rates of opening and 
losing, respe
tively.The parameters are: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left:variations as a fun
tion of the loop size N, ǫ=0.0019 eV.Å−2 ; •: N=12; �: N=16; ⋄:N=21; △: N=30 Right: for a �xed loop size , N=21 variations as a fun
tion of the looprigidity; •: ǫ=0.0010 eV.Å−2; �: ǫ=0.0019 eV.Å−2; ⋄: ǫ=0.0040 eV.Å−2energy is now positive, in agreement with some experimental results. This 
anbe understood be
ause, due to the ǫ-term in the Hamiltonian of the Kratky-Porod
hain, there is now an energeti
 
ost for 
losing. In
reasing ǫ 
osts more energy for
losing (kcl de
reases). The e�e
t of ǫ is however more subtle be
ause, as shown onFig. (5.25) the Arrhenius plots for di�erent values of ǫ show almost parallel 
urves.This indi
ates that Ecl is not simply proportional to ǫ. The 
losing rate is stillstrongly a�e
ted by entropi
 e�e
ts, whi
h also depend on ǫ. Therefore the rigidityparameter plays a double role, i.e. an enthalpi
 and an entropi
 e�e
t. The lastpoint is very interesting be
ause it shows that the Kratky-Porod 
hain 
ould be agood 
andidate for the modelling of the loop, i.e. it 
ould allow the di�eren
ing ofpoly(T) and poly(A) as the experiments point out.Finally, Fig. (5.26) gives the variation of the kineti
 rates as a fun
tion of D and kwith the Kratky-Porod 
hain. The e�e
ts are exa
tly the same as in the FRC 
aseand we arrive at the same 
on
lusion that the stem only a�e
ts the physi
s of theopening.This �rst part allows us to understand qualitatively the e�e
ts of the di�erent pa-rameters of the model.5.5 Complete 
al
ulation: S 6= 1We now use the 
omplete 
al
ulation of the partition fun
tion. The 
al
ulation ofthe partition fun
tion involves therefore the 
onditional probability S(r|R) that,if a polymer of N segments has the distan
e R between its ends, the polymer of
N + 2 segments has the end-to-end distan
e r. This fun
tion should depend on the100
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Figure 5.26: E�e
t of D and k on the kineti
s with the Kratky-Porod 
hain in an Ar-rhenius plot. Open and 
losed symbols represent the rates of opening and 
losing, respe
-tively. The parameters are: α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ = 0.0019 eV.−2, N=21. Left:k=0.025 eV.Å−2; •: D=0.09 eV; � D=0.102 eV; ⋄: D=0.130 eV. Right: k=0.025 eV.Å−2;
•: k=0.013 eV.Å−2 ; �: k=0.025 eV.Å−2 ; ⋄: k=0.050 eV.Å−2.polymer model but we 
an only get its analyti
al expression in the 
ase of a Gaussianpolymer. We have dis
ussed this point in Se
tion (3.1.5) and we have shown thatwe 
an evaluate S(r|R) with an e�e
tive Gaussian model whi
h provides a goodapproximation for the FRC and the Kratky-Porod polymer models. In this se
tionwe use this e�e
tive Gaussian approximation of S(r|R) and we examine in a morequantitative way the various points that we dis
ussed in the previous se
tion.5.5.1 Thermodynami
s5.5.1.1 FRC modelFirst of all, it is interesting to look at the di�eren
e between the 
ase S ≡1 and the
omplete 
al
ulation whi
h 
ouples the loop and the stem in the polymer model.Figure (5.27) shows that there is not a big di�eren
e between the two 
al
ulations.Although the 
ase of S 6=1 adds entropy in stem, the 
on�nement of the part of thepolymer making the stem by the Morse potential and sta
king intera
tion does notallow large �u
tuations within the stem as soon as at least one base-pair is made.This parti
ularly true for a short stem. Taking into a

ount the 
onditional proba-bility S(r|R) is important for the internal 
onsisten
y of the 
al
ulation but it onlybrings small quantitative 
hanges in the results. In
luding S(r|R) properly, as wedo in this se
tion, would probably be
ome more important for hairpins with a verylong stem (20 base-pairs or more) be
ause it would be able to form open bubbleswith a large entropy. The next table gives the width of the melting 
urve, measuredby ∆P

∆T
Tm de�ned in Se
tion (5.4.1.1), and 
ompares it with the experimental valuefor poly(T). 101
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Figure 5.27: Comparison of the melting 
urves with S ≡1 and S 6=1 and with the FRCmodel: θ = 60◦.The parameters of the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 60◦. The bla
k 
olour is for the 
ase of S ≡1. Left: Melting pro�les,
◦: N=12; �: N=30. Right: evolution of the melting temperature as a fun
tion of N. ◦:
S 6=1, square: S ≡1.N S = 1, ∆P

∆T
Tm S 6= 1, ∆P

∆T
Tm Exp, Poly(T)12 3.6 3.7 1116 3.7 3.8 1121 3.7 3.8 1130 3.9 4.0 11We 
an noti
e that the introdu
tion of S(r|R) in the 
al
ulation has a very smalle�e
t on the width. Whatever the theoreti
al approa
h, the 
al
ulation gives awidth of the melting 
urves whi
h is signi�
antly higher than the experiments. It isone important weakness of our 
al
ulation and we will 
ome ba
k to this point inthe dis
ussion of our work. Using the FRC model we have adjusted our parametersin order to 
ompare the results given by the model and the experimental ones ina quantitative way. We have used the following approa
h to 
hose the parametersand study the validity of the model. We use the experimental results for poly(T) asthe referen
e. We look for the parameter set that give the best �t of these resultsas a fun
tion of the loop size N . Then we 
onsider the 
ase of poly(A). In this
ase, as all stem parameters have been �xed by the poly(T) study, we only haveone free parameter (θ or ǫ, depending on the polymer model). Figure (5.28) showsmelting 
urves obtained with two di�erent sets of parameters. Both give the meltingtemperature found in experiments for a poly(T) loop of 12 bases. The di�eren
elies in the variation of Tm as a fun
tion of the loop length N and this di�eren
eallows us to 
hoose the optimal set of parameters as shown in Fig. (5.29). Indeedthe best �t of the bla
k 
urve whi
h represents the experimental results for poly(T)is provided by the red 
urve obtained with D=0.112 eV, θ=50◦, k=0.025 eV.Å−2,

α=6.9 Å−1, δ=0.35 and ρ=5.102
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Figure 5.28: Melting 
urves equivalent to poly(T) with the FRC model.The parametersof the stem are:k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: Melting pro�les,D=0.112 eV, θ = 50◦,◦: N=12: �: N=16; ⋄: N=21; △: N=30. Right: melting pro�les,D=0.119 eV, θ = 45◦; ◦: N=12; �: N=16; ⋄: N=21; △: N=30.
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Figure 5.29: Variation of Tm as a fun
tion of the loop length N for di�erent sets of param-eters. ◦: experimental results for poly(T); �: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ = 0.35, ρ = 5, θ = 50◦; ⋄: D=0.119 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
θ = 45◦; △: D=0.100 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 64◦On
e these parameters have been �xed let us 
onsider the poly(A) 
ase. Forthe FRC model we 
an only sele
t θ. As mentioned before the sta
king intera
tionis larger in the 
ase of a poly(A) loop, and we model that by a de
rease of θ. Asfor the 
ase S ≡ 1, this leads to a lowering of Tm in agreement with experiments.Figure (5.30) gives the results obtained with θ=48◦ and the same stem parametersas for the poly(T) 
ase. We also show the 
omparison of the melting temperaturevariation as a fun
tion of N with the experimental results.We 
an see that we are able to reprodu
e quantitatively the variation of Tm as afun
tion of the loop length for poly(A) putting θ = 48◦. Tm varies from 326 K for
N=12 to 304 K for N=30 in agreement with experimental results. Nevertheless thewidth of the transition stays to large as the next table shows. Between experiments103
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Figure 5.30: Melting 
urves equivalent to poly(A) with the FRC model.The parametersof the stem are: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, θ = 48◦. Left:Melting pro�les, ◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: evolution of the meltingtemperature with N. bla
k: theoreti
al results, red: experimental data.and our 
al
ulation we a have a di�eren
e of a fa
tor two for the poly(A) 
ase anda fa
tor three for the poly(T) 
ase. The question is to understand why we get su
ha di�eren
e and if we 
an do something to improve this aspe
t. To help us in thisdis
ussion we present in the next se
tion the same study with the Krakty-Porod
hain model. N θ = 50◦, ∆P
∆T

Tm θ = 48◦, ∆P
∆T

Tm Poly(T) Poly(A)12 3.6 3.7 11 916 3.7 3.8 11 8.521 3.7 3.8 11 8.530 3.9 4.0 11 7.5To 
omplete the study with the FRC model for the loop, we give the evolutionof Tm and of the width of the transition as a fun
tion of D, α and k, the depthof the Morse potential, the width of the Morse potential and the rigidity of thestem, respe
tively. Figure (5.31) shows the variation of Tm as a fun
tion of D.We 
an noti
e that Tm in
reases linearly with D. In the 
ase of a single verylong stem treated in the approximation of 
ontinuum media, one 
an �nd that Tmin
reases with the square root of D using the PBD-model. To properly des
ribethe experimental properties of hairpins we must use a small value of the 
oupling
onstant k. This is 
onsistent with the experimental observations on DNA whi
hshow that a single base-pair 
an break without breaking the neighbours. This meansthat the 
ontinuum limit approximation is not valid for DNA. Most of the energywhen the stem opens 
omes from the pairing of the bases and this is why Tm dependslinearly on D. The dis
reteness of the stem is very important and it is why we havenot used the transfer integral method presented at the beginning of the 
hapter.Moreover, the kineti
 results for S ≡1 
on�rm that the a
tivation energy of opening104
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Figure 5.31: E�e
t of the depth of the Morse potential on the melting pro�les with theFRC modelling.The parameters of the stem are: k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35,
ρ = 5, θ = 50◦ and N=21. Left: Melting pro�les, •: D=0.08 eV; �: D=0.09 eV; ⋄:D=0.10 eV; △: D=0.11 eV, ×: D=0.12 eV. Right: evolution of the melting temperaturewith D. bla
k •: theoreti
al results, red line: linear �tting.only 
omes from D and not from k. Therefore it is not surprising to �nd su
h alinear dependen
e of Tm with D. Nevertheless, as the next table shows, the widthof the transition is not signi�
antly a�e
ted by the variation of D.D (eV) S 6= 1, ∆P

∆T
Tm0.08 3.50.09 3.90.10 3.80.11 3.80.12 3.9This shows us that the depth of the Morse potential serves as the �tting of themelting temperature by 
hanging the depth of the �rst well of the redu
ed freeenergy only. Let us now examine the e�e
t of the width of the Morse potentialon the thermodynami
s presented in Fig. (5.32). As in the 
ase S ≡1, the larger

α, the smaller the melting temperature Tm. The region that represents the 
losed
on�guration in the free energy pro�le is redu
ed when we in
rease α. Although it ismore di�
ult to over
ome the barrier between the 
losed and the open state (kineti
e�e
ts), the equilibrium is nevertheless displa
ed to the open state with the in
reaseof α be
ause the volume of the phase spa
e 
orresponding to a 
losed state de
reases.Moreover the width of the transition is slightly a�e
ted by the 
hange of α and asone 
an expe
t the smaller the width of the Morse potential, the smaller the widthof the transition. 105
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Figure 5.32: E�e
t of the width of the Morse potential on the melting pro�les with theFRC model. The parameters of the stem are: D=0.112 eV, k=0.025 eV.Å−2, δ = 0.35,
ρ = 5, θ = 50◦ and N=21. Left: Melting pro�les, •: α=4.0 Å−1; �: α=5.0 Å−1; ⋄:
α=6.0 Å−1; △: α=7.5 Å−1. Right: evolution of the melting temperature with α.a (Å−1) S 6= 1, ∆P

∆T
Tm4 3.45 3.56 3.87.5 4.1Finally, Fig. (5.33) gives the evolution of the melting pro�les as a fun
tion of k.When we in
rease k we also in
rease the melting temperature Tm but we slightly
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Figure 5.33: E�e
t of the rigidity of the stem on the melting pro�les with the FRCmodel.The parameters of the stem are: D=0.112 eV, α=6.9 Å−1, δ = 0.35, ρ = 5,
θ = 50◦ and N=21. Left: Melting pro�les, •: k=0.010 eV.Å−2; �: k=0.020 eV.Å−2;
⋄: k=0.040 eV.Å−2; △: k=0.060 eV.Å−2. Right: evolution of the melting temperaturewith k.de
rease the width of the transition from the 
losed to the open state. The 
losed106
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on�guration is stabilized by the 
ooperative e�e
ts whi
h are more important when
k in
reases. As the stem is 
omposed of �ve base-pairs only, the e�e
t of k is lessimportant than in the 
ase of a very long stem. Indeed in the 
ase of a very longstem, in the approximation of 
ontinuous medium, T ∝

√
k but here the dependen
eis weaker. k(eV.Å−2) S 6= 1, ∆P

∆T
Tm0.01 4.10.020 40.040 3.80.06 3.7As for the 
ase S ≡1, we now present the thermodynami
s obtained with the Kratky-Porod 
hain. As mentioned before, this polymer model presents the advantage ofhaving an expli
it energeti
 term in the probability distribution.5.5.1.2 Dis
rete Kratky-Porod modelIt is interesting to see the e�e
t of the S fun
tion in the 
ase of the Kratky-Porod
hain for the loop. Figure (5.34) gives the 
omparison of the two 
al
ulations. In
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Figure 5.34: Comparison of the melting 
urves with S ≡1 and S 6=1 and with theKratky-Porod model: ǫ = 0.0019 eV.Å−2 .The parameters of the stem are: D=0.102 eV,k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. The bla
k 
olor is for the 
ase of S ≡1.Left: Melting pro�les, ◦: N=12; �: N=30. Right: evolution of the melting temperatureas a fun
tion of N . ◦: S 6=1, �: S ≡1. The 
urves 
orrespond to a linear �tting.the 
ase of the KP model, the e�e
t of the S fun
tion is more important than forthe FRC polymer. Indeed, Tm 
hanges from 325 K to 312 K for N=12 when weintrodu
e the S fun
tion. We 
annot say that it is only due to entropi
 e�e
tsbe
ause the KP 
hain 
ontains energeti
 
ontributions, but we 
an say that the
S fun
tion tends to destabilize the 
losed 
on�guration. The next table gives the
hange of the width of the transition with and without the S fun
tion. 107



PBD-Polymer model for DNA Hairpins
N S ≡1, ∆P

∆T
Tm S 6= 1, ∆P

∆T
Tm12 3.3 3.230 4.1 3.7As we 
an see, the width of the transition seems to be slightly larger in the presen
eof the S fun
tion but the 
hange is not signi�
ant enough to allow a quantitative
omparison with experiments. Moreover we have seen that the evolution of Tm asa fun
tion of N is not monotonous for ǫ=0.0040 eV.Å−2. It is interesting now tosee what happens when we put the S fun
tion. To give a quantitative 
ompari-son, Fig. (5.35) shows the evolution of Tm(S ≡ 1, N) − Tm(S ≡ 1, N = 12) and

Tm(S 6= 1, N) − Tm(S 6= 1, N = 12) as a fun
tion of N .
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Figure 5.35: Variation of Tm as a fun
tion of N with and without the S fun
tion. Thebla
k 
urve represents Tm(S ≡ 1, N) − Tm(S ≡ 1,N = 12) and the red one is for Tm(S 6=
1, N) − Tm(S 6= 1, N = 12).We 
an noti
e that we get the same tenden
y with and without the S fun
tion.The maximum of the 
urve stays around N=21 whi
h shows us that the growthof the loop inside the stem represented by the S fun
tion has no e�e
t on thismaximum. Therefore this maximum is only governed by the evolution of the end-to-end probability distribution with N .As we have done before we now give the 
omparison of the experimental resultswith our model in the 
ase of the KP modelling for the loop in order to determinewhi
h is the best loop model. Figure (5.36) shows the melting 
urves obtainedfor ǫ=0.0018 eV.Å−2 whi
h 
orresponds to a persisten
e length equal to 12.3 Å.The right graphi
 gives the 
omparison of the evolution of Tm as a fun
tion of Nobtained experimentally for the poly(T) and obtained in our simulation. We 
ansee that our results are in semi-quantitative agreement with the experiments sin
e
Tm varies from 333 K for N=12 to 305 K for N=30 whi
h is 
omparable to theexperimental 
ase where Tm goes from 332 K to 314 K for the same variation of
N . Our main problem stays in the width of the transition whi
h is really too large
ompared to the experiments as shown in the next table.108
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ulation: S 6= 1
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Figure 5.36: Melting 
urves equivalent to poly(T) with the KP model.The parametersof the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ =
0.0018 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature as a fun
tion of N . bla
k: theoreti
al results, red:experimental data.

N ǫ=0.0018 eV.Å−2, ∆P
∆T

Tm Poly(T), ∆P
∆T

Tm12 3.2 1116 3.4 1121 3.45 1130 3.8 11The parameter ǫ represents the rigidity of the 
hain as mentioned before. The rigidityfor the poly(A) loops is larger than the poly(T) be
ause the sta
king intera
tion ismost important with A-bases. Therefore in order to model the di�eren
e betweenpoly(T) and poly(A) we have in
reased the value of ǫ and we have adjusted ourvalue to get Tm whi
h agree with experiments. Figure (5.37) gives the melting
urves obtained with ǫ=0.00195 eV.Å−2 whi
h 
orresponds to a persisten
e lengthequal to 13.5 Å. We 
an see that Tm goes from 327 K for N=12 to 300 K for N=30whi
h is 
omparable to the experimental result where ∆Tm is equal to 22 K for thesame variation of N and with Tm equal to 326 K for N=12. Nevertheless we still�nd larger transitions than the experimental 
ase as shown in the next table.
N ǫ=0.00195 eV.Å−2, ∆P

∆T
Tm Poly(A), ∆P

∆T
Tm12 3.25 916 3.45 8.521 3.6 8.530 3.8 7.5One 
an noti
e that to model the di�eren
e between poly(T) and poly(A) we do notneed to signi�
antly 
hange the value of the persisten
e length. We will 
ome ba
kto this point in the dis
ussion se
tion after the presentation of the kineti
 results.To 
omplete this part we give the evolution of the melting pro�les with the 
hange109
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Figure 5.37: Melting 
urves equivalent to poly(T) with the KP model.The parametersof the stem are: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5, ǫ =
0.00195 eV.Å−2. Left: Melting pro�les, •: N=12; �: N=16; ⋄: N=21; △: N=30. Right:evolution of the melting temperature as a fun
tion of N. bla
k: theoreti
al results, red:experimental data.of D. Figure (5.38) shows su
h an evolution. We �nd a linear evolution, as for the
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Figure 5.38: E�e
t of the depth of the Morse potential on the melting pro�les with theKP model.The parameters of the stem are: k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5,
ǫ0.0018 eV.Å−2 and N=21. Left: Melting pro�les, ◦: D=0.08 eV; �: D=0.09 eV; ⋄:D=0.10 eV; △: D=0.11 eV, ×: D=0.12 eV. Right: evolution of the melting temperaturewith D. bla
k ◦: theoreti
al results, red line: linear �tting.FRC loop model whi
h is not really surprising. Moreover, as the next table shows,the width of the transition is not signi�
antly a�e
ted by the variation of D.110



5.5 Complete 
al
ulation: S 6= 1D (eV) S 6= 1, ∆P
∆T

Tm0.08 3.40.09 3.30.10 3.50.11 3.40.12 3.4After dealing with the thermodynami
s of the model we propose to study the kineti
sand 
ompare our results to the experimental ones.5.5.2 Kineti
s5.5.2.1 FRC modelLet us �rst 
ompare the kineti
 result obtained with and without S in one parti
ular
ase to see if there is a signi�
ant di�eren
e. Figure (5.39) gives su
h a 
omparison.
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Figure 5.39: Comparison of the kineti
 rates with and without S with the FRC model inan Arrhenius plot. Open and 
losed symbols represent the rates of opening and 
losing,respe
tively. The parameters are the following: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, θ = 60◦ and N=21. Bla
k: S ≡1. Red: S 6=1.As we 
an show there is no per
eptible di�eren
e between the two 
al
ulations. Evenif the 
ase S ≡1 is 
on
eptually not satisfa
tory, it gives quite 
orre
t results. Asdis
ussed for the FRC 
ase, this 
omes from the fa
t that the stem is 
on�ned bythe Morse potential, so that the e�e
t of the polymer part in the stem is small.Let us now 
ompare the kineti
s obtained by the model and the experiments. Theparameters have been sele
ted by the thermodynami
 studies so that we 
annot doany �tting at this level.Figure (5.40) gives the rates of opening and 
losing for di�erent loop lengths and111



PBD-Polymer model for DNA Hairpins
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Figure 5.40: Rates of opening and 
losing with the FRC model in an Arrhenius plot.Open and 
losed symbols represent the rates of 
losing and opening, respe
tively. Theparameters are: D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: θ = 50◦;
•: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21, bla
k: θ = 50◦, red:θ = 48◦for θ = 50◦ and 48◦. For the FRC model it is not possible to do a quantitative
omparison of the theoreti
al results and the experimental ones, be
ause, �rstly weget negative a
tivation energies for 
losing whi
h is not the 
ase of experiments andse
ondly we have a fa
tor approximately three between the a
tivation energy ofopening obtained with our model and obtained in the experiments. Moreover thekineti
s is only marginally modi�ed when θ is varied in the range whi
h 
orre
tlymodels the di�eren
e between poly(A) and poly(T) in the thermodynami
s. How-ever, as in the experiments, the in
rease of the loop length tends to de
rease therate of 
losing and it does not a�e
t the rate of opening. As mentioned before whenwe in
rease the loop length, the available phase spa
e is then bigger, therefore thehairpin takes more time to 
lose.The theoreti
al results as well as the experimental ones 
on
erning the kineti
s withthe FRC model are summarized in the next table.

Eop, model Ecl, model Eop, exp Ecl, expPoly(T) 11.5 -0.33 32 3.4Poly(A) 11.5 -0.33 32 17.4As we 
an see in the table our model does not provide a quantitative agreement withexperiments for the kineti
s. This shows us that the single stranded DNA is notonly a simple polymer. We will 
ome ba
k to this point after presenting the kineti
sobtained with the Kratky-Porod 
hain whi
h is a more realisti
 polymer model.To 
omplete this se
tion, we present the evolution of the a
tivation energies as afun
tion of D, k and α. Figure (5.41) gives the rates of opening and 
losing with
N=21 for di�erent values of D.
112



5.5 Complete 
al
ulation: S 6= 1
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Figure 5.41: E�e
t of D on the kineti
s with the FRC model in an Arrhenius plot. Openand 
losed symbols represent the rates of opening and 
losing, respe
tively. The parametersare the following: k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35, ρ=5, θ = 50◦ and N=21. Ratesof opening:◦: D=0.08 eV; +: D=0.09 eV; ⋄: D=0.10 eV; △: D=0.11 eV; �: D=0.12 eV.Rates of 
losing: •: D=0.08 eV; �: D=0.12 eV.First of all, we 
an noti
e that the rates of opening and 
losing are well des
ribed byan Arrhenius law even if we 
hange the width of the Morse potential D. Moreoverwe 
an see that the 
losing is not really a�e
ted by the 
hange of D as the 
ase of
S ≡1 whi
h shows us that the 
losing is almost governed by the loop part of thehairpin. Moreover, when we in
rease D, we also in
rease the a
tivation energy ofopening Eop. Figure (5.42) gives the evolution of the a
tivation energy of openingas a fun
tion of D. The red 
urve represents 5D in K
al.mol−1 units.
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Figure 5.42: Evolution of the a
tivation energy of opening as a fun
tion of D. The pa-rameters are the following: k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35, ρ=5, θ = 50◦ and N=21.The red 
urve represents 5×D in K
al.mol−1 units. ◦: theoreti
al results. The blue 
urveis a linear �tting.
113



PBD-Polymer model for DNA HairpinsAs we 
an see, the variation of the a
tivation energy of opening as a fun
tion of D islinear. Moreover for a given value ofD, Eop is 
lose to M×D but it always stays lowerthan this value. As we also put sta
king intera
tion in the stem we expe
t a
tivationenergies of opening of the order of M ×D plus something 
oming form the sta
king.On the 
ontrary, we get the reverse, here. Moreover if we look at Fig. (5.43), thea
tivation energy of opening and 
losing are not signi�
antly a�e
ted by k whi
hrepresents the for
e of the sta
king intera
tion and by α. Sta
king intera
tions onlyhave an entropi
 e�e
t (the 
urves are only translated). Before 
on
luding on the
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Figure 5.43: E�e
t of k and α on the kineti
s with the FRC in an Arrhenius plot. Openand 
losed symbols represent the rates of 
losing and opening, respe
tively. The parametersare: D=0.112 eV, δ = 0.35, ρ = 5 and N=21. Left: α=6.9 Å−1; ◦: k=0.01 eV.Å−2; ⋄:k=0.02 eV.Å−2; ; △: k=0.04 eV.Å−2; �: k=0.06 eV.Å−2;. Right: k=0.025 eV.Å−2. ◦:
α=4.0 Å−1; ⋄: α=5.0 Å−1; △: α=6.0 Å−1; �: α=7.5 Å−1.kineti
s let us examine the results obtained with the Kratky-Porod 
hain.5.5.2.2 Dis
rete Kratky-Porod modelFirst of all, as in the previous 
ase, let us begin by the 
omparison of one kineti
 re-sult obtained with and without S to see the in�uen
e of S. Figure (5.44) gives su
ha 
omparison. We 
an noti
e that the 
losing rate is not signi�
antly a�e
ted by theuse of the 
omplete 
al
ulation and it is not so surprising be
ause, as we pointedout, the 
losing is mostly governed by the loop 
omposed of the N monomers andnot by the stem. Nevertheless, the opening is slightly a�e
ted by S whi
h tendsto slightly de
rease the opening a
tivation energy without 
hanging the entropy be-
ause at high temperatures the two 
urves meet.Figure (5.45) gives the rates of opening and 
losing for two di�erent values of ǫ andfor di�erent values of the loop length N . We have used the parameters presentedin the se
tion thermodynami
s, whi
h provide the optimal 
omparison with the ex-perimental results.114



5.5 Complete 
al
ulation: S 6= 1
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Figure 5.44: Comparison of the kineti
 rates with and without S with the KP model inan Arrhenius plot. Open and 
losed symbols represent the rates of opening and 
losing,respe
tively. The parameters are the following: D=0.102 eV, k=0.025 eV.Å−2, α=6.9 Å−1,
δ=0.35, ρ=5, ǫ=0.0019 eV.Å−2. Bla
k: S ≡1. Red: S 6=1.
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Figure 5.45: Rates of opening and 
losing with the KP model in an Arrhenius plot. Openand 
losed symbols represent the rates of 
losing and opening, respe
tively. The parametersare: D=0.107 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ = 0.35, ρ = 5. Left: ǫ=0.0018 eV.Å−2;
◦: N=12; �: N=16; ⋄: N=21; △: N=30. Right: N=21, bla
k: ǫ=0.0018 eV.Å−2, red:
ǫ=0.00195 eV.Å−2As for the FRC model the kineti
 of opening in not a�e
ted by the 
hange ofthe number of monomers in the loop. The opening a
tivation energy Eop is equal to0.43 eV (10 k
al.mol−1) for D = 0.107 eV. Con
erning the kineti
 of 
losing, we �ndthat the larger the number of monomers, the smaller the rate of 
losing. Indeed ifwe in
rease the entropy of the loop by in
reasing N , then the loop takes more timeto �nd the transition state in the phase spa
e. Nevertheless, the 
losing a
tivationenergy is not signi�
antly a�e
ted by the 
hange of N . We �nd a 
losing a
tivationenergy Ecl equals to 0.04 eV (1 k
al.mol−1). The next table gives the 
omparisonwith the experimental results. 115



PBD-Polymer model for DNA Hairpins
Eop, model Ecl, model Eop, exp Ecl, expPoly(T) 10 +1 32 3.4Poly(A) 10 +1 32 17.4We see that we are not able to get quantitative agreement between our results andthe experimental ones. Moreover if we in
rease the value of ǫ whi
h gives us thedi�eren
e between poly(A) and poly(T) in the thermodynami
s, we get almost nodi�eren
e in kineti
s. This is in agreement with what we 
an see in literature wherethey 
laim that regarding the di�eren
e in the kineti
s, the persisten
e length ofpoly(A) must be four times larger approximately than the poly(T) 
ase to reprodu
esu
h a di�eren
e [7℄. But if we impose su
h a 
hange in the persisten
e length inorder to get the 
orre
t kineti
 results, it is then the thermodynami
 results whi
hare wrong. This shows us that the single stranded DNA is not a simple polymer.To model it one must elaborate more 
omplex models. We will 
ome ba
k on thispoint in the 
on
lusion be
ause this an important lesson learned from the analysisof DNA hairpins.5.5.3 Dis
ussionsOur model allows us to derive thermodynami
s and kineti
s properties of DNA hair-pins. We �nd that the thermodynami
 results are in semi-quantitative agreementwith the experimental ones. Indeed, we get 
orre
t values of the melting temperature

Tm and a good dependen
e on the loop length. Moreover, the di�eren
e betweenpoly(A) and poly(T) 
an be reprodu
ed by in
reasing the rigidity of the loop. Nev-ertheless, we have shown that a slight 
hange of the rigidity is su�
ient to get the
hange of Tm. Therefore, the persisten
e length lp would be 
omparable for poly(A)and poly(T) in our study. We must point out that the transition width that we get isapproximately two times larger than expe
ted in experiments. It 
ould explain whywe only need a small 
hange of the rigidity parameter to get the 
orre
t variationof Tm.For the kineti
s, we have supposed that the system di�uses in a free energy surfa
ethat we derive from the thermodynami
 study and we have derived the rates of open-ing and 
losing using the transition state theory and not only the Kramers'theory.At this stage we have �xed the di�usion 
oe�
ient to a 
onstant. We �nd that thekineti
s of opening does not depend on the loop properties as in the experiments.Moreover we get positive a
tivation energies of opening but the values di�er froma fa
tor three from the results obtained by Lib
haber. As we have shown, we 
anin
rease Ea by in
reasing D, whi
h is the depth of the Morse potential but it wouldalso 
hange Tm to values that do not agree with experiments.For the kineti
s of 
losing the results are mixed. First of all, we are not able to getresults in quantitative agreement with experiments. Nevertheless we 
an bring some
ontributions to the debate of the sign on the a
tivation energy of 
losing that weraised in the introdu
tion. First, we have shown that the Arrhenius law is only validat low temperatures, i.e. below the melting temperature Tm. Moreover we have seen116



5.5 Complete 
al
ulation: S 6= 1that it is possible to get negative or positive a
tivation energies of 
losing puttingor not energeti
 
ontributions in the loop. But we now that the sta
king intera
tionis important within the loop as Lib
haber and 
oworker show in their study and itis more important in poly(A) loops. Therefore the model of the loop must in
ludeenergeti
 
ontributions. In this hypothesis, we �nd a positive a
tivation energy of
losing. As mentioned in the introdu
tion, in their analysis of their dis
repan
y withthe experiments of the Lib
haber group, Ansari et al. attribute the positive a
tiva-tion energy for 
losing to mismat
hes. While we are not able to give a quantitativeassessment of the e�e
t of mismat
hes be
ause we have not studied them, we 
anhowever show that mismat
hes are not a ne
essary 
ondition to get a positivea
tivation energy for 
losing. It 
an 
ome from the rigidity of the loop only.5.5.4 Beyond the PBD-model for the stemUp to now we have des
ribed the stem by the PBD-model whi
h has the interestof being fairly simple while des
ribing the melting properties of DNA to a gooda

ura
y as tested in some experiments [77℄. We have obtained interesting resultson the e�e
t of the loop but we are still fa
ing quantitative disagreement withexperiments for the width of the melting transition. The model �nds that theopening of the hairpin extends on a mu
h broader range than in the experiments.This problem of the broad melting was also met in the �rst studies of the doublehelix thermal denaturation. For a long double helix (or in the limit of an in�nitedouble stranded DNA) the problem was solved by the introdu
tion of the nonlinearsta
king
W (yi, yi−1) =

K

2

[
1 + ρe−δ(yi+yi−1)

]
(yi − yi−1)

2 . (5.67)Its e�e
t is to in
rease the entropy of the melted part of the helix with respe
t tothat of the 
losed part be
ause the 
oupling de
reases when either one of the twobase-pairs is open.However the 
oupling never vanishes, even when yi, yi−1 are very large due to the
onstant 1 in the expression. This is ne
essary in the PBD-model be
ause the DNAstrands do not break, even when the double helix is denaturated.In our hairpin model the sta
king intera
tion does not have to des
ribe the 
ovalentbonds within the strands be
ause this part of the physi
s of the hairpin is des
ribedby the polymer model. Sin
e the sta
king potential only des
ribes the intera
tionby the plateaus made by the bases, in parti
ular through the overlap of their π-ele
trons, it is now a

eptable to let the sta
king de
ay to 0 when the stem is fullyopen, as s
hematized in Fig. (5.46). To test the 
onsequen
es of a 
omplete vanishingof the sta
king intera
tion, we have 
onsidered the 
ase of the sta
king potential
W1(yi, yi−1) =

1

2
K1ρe−δ(yi−yi−1) (yi − yi−1)

2 , (5.68)117



PBD-Polymer model for DNA Hairpinsinstead of the potential W. To allow a 
omparison with our previous results we have
hosen
K1ρ = K (1 + ρ) , (5.69)whi
h ensures that, for the 
losed stem, the sta
king is not modi�ed.

Figure 5.46: S
hemati
 representation of the sta
king in the 
losed and the open 
on�g-uration. Left: 
losed stem, the base-pairs intera
t. Right: open stem, the position of thebases is random and their sta
king energy may vanishFigure (5.47) 
ompares melting 
urves obtained with sta
king des
ribed by W and
W1.
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Figure 5.47: Comparison of the melting 
urves and the energies obtained with two sta
kingpotentials W and W1. These 
al
ulations have been performed with a loop des
ribed bythe Kratky-Porod 
hain (e�e
tive Gaussian approximation). Left: melting 
urves. Right:energy. The bla
k 
olor 
orresponds to D=0.112 eV, k=0.025 eV.Å−2, α=6.9 Å−1, δ=0.35,
ρ=5, ǫ = 0.0019 eV.Å−2, N=24 and sta
king W . The red 
olor 
orresponds to D=0.170 eV,
k=0.030 eV.Å−2, sta
king des
ribed by W1 and identi
al others parameters.A sta
king potential W1 leads to a slightly sharper melting 
urve, whi
h is there-fore in better agreement with experiments, although the opening transition given by118



5.5 Complete 
al
ulation: S 6= 1the model is still broader than the observed transition. It should be noti
ed that, inorder to preserve the melting temperature, when we use the sta
king potential W1we in
rease signi�
antly the depth of the Morse potential. As shown by Fig. (5.47)showing the energy versus temperature for the two 
ases of sta
king W and W1,using sta
king W1 leads to an energy in
rease of 0.6 eV at the opening transition in-stead of 0.4 eV when we use the sta
king W. This higher value is in better agreementwith experimental measurements whi
h give approximately 34 k
al/mol (1.47 eV)for hairpins with �ve base-pairs stem but still lower than the experimental values.
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Con
lusionWe have presented a simple model for DNA hairpins whi
h 
ontains the main phys-i
al ingredients, i.e. a polymer des
ribing the DNA strands and the main features ofthe stem, base pairing and sta
king. It allows us to understand the main features ofhairpin properties, in parti
ular the role played by the loop in the opening-
losinghairpins:
• with respe
t to the stem alone, hairpins open at signi�
antly lower temper-atures. We have shown that it 
an be understood in terms of entropy gainwhen the loop opens.
• larger loops de
rease the opening temperature even more, in agreement withexperiments.Kineti
 studies have been very useful to 
omplete our understanding be
ause:
• they give results separably on opening and 
losing; allowing us to analyse thedata more 
ompletely and in parti
ular determine what has to be attributedto the stem and what 
omes from the loop
• they also help us determining what 
omes form energeti
 or entropi
 e�e
ts inthe properties of hairpins.The model is su

essful on some aspe
ts:
• the e�e
t of the size of the loop,
• the 
orre
t order of magnitude for Eop, Ecl (in parti
ular positive a
tivationenergy for 
losing, while other models do not get this experimental feature),although our values are smaller than the experimental ones.But the model is still not fully satisfa
tory:
• the melting transition that we 
al
ulate is too broad, 123
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lusion
• the variation of Tm versus N is smaller for more rigid loops than for softerones in our 
al
ulations while experiments show the 
ontrary.This indi
ates that some physi
al aspe
ts are not properly des
ribed in our approa
h.Our results suggest that this problem 
annot be solved by improving the polymermodel be
ause we have used two very di�erent polymer models and they give thesame qualitative behavior. The FRC model has no energeti
 term in the loop whilethe Kratky-Porod model (or its 
ontinuous 
ounterpart the worm like 
hain) in
ludesa bending energy. The Kratky-Porod model is an improvement be
ause it 
an givea positive Ecl but it does not solve the quantitative disagreement that we noti
edabove.The solution 
an neither 
ome from a simple improvement of the model for thestem. We have used the PBD-model but we have shown for instan
e that 
hangingdrasti
ally the model for the sta
king by allowing the sta
king energy to vanish
ompletely in the open state narrowers slightly the melting transition but does notbring a major quantitative 
hange. However this attempt to improve the modelmight give a 
lue to improving the theoreti
al des
ription of DNA hairpins, be
auseit suggests that an in
rease in the entropy 
hange when the hairpin opens 
ouldbring the model 
loser to experiments. The simplifying assumptions that we havemade to establish the model are indeed leading to an underestimation of the entropy.The main restri
tion is that bases are des
ribed as points. This allowed us to use asimple polymer model for the strand of the stem and loop but it ignores the entropyasso
iated to the �u
tuations of the orientation of the bases. When the stem isformed the bases have restri
ted motions, but when the pairing is broken the basesa
quire a large orientational freedom whi
h is not des
ribed in our model. Similarly,for the loop the polymer model 
ompletely ignores the orientational �u
tuations ofthe bases. Moreover the properties of the loop 
ould be strongly a�e
ted by thetenden
y of the bases, parti
ularly the large purines su
h as A, to sta
k on ea
hother.Our results show that DNA hairpins are very good test to study the propertiesof DNA single strands. When this work started, our aim was to learn how todes
ribe DNA self assembly and we had in mind that the e�ort would have to befo
used mainly on a 
orre
t des
ription of the stem. But as the study developed wegot eviden
e that a good model of the loop was 
ru
ial. Hairpins provide pre
iseexperimental results so that their models are submitted to stri
t testing. Obviouslywe have not fully su

eeded in des
ribing DNA hairpins theoreti
ally. We wouldhowever like to point out that the di�
ulties appear when one tries to des
ribeall the experimental results (thermodynami
s and kineti
s, for various types ofloops poly(A) or poly(T) and various loop lengths). To our knowledge all previousattempts to model DNA hairpins have only 
onsidered some aspe
ts when a subsetof the experimental results is 
onsidered. But, when they are 
onsidered on all theirfa
ets, DNA hairpins appear to be very 
omplex.The study shows that the des
ription of the loop plays a large role for the validityof a model. This is why we had to investigate di�erent possibilities.124



Con
lusionAlthough they give interesting results none of the models is perfe
t and this studyshows that a DNA strand is not a simple polymer! On a very long s
ale (hundredsof bases) a WLC model might be enough. On a very small s
ale (2 or 3 bases) anysimpli�ed model is bound to fail due to the 
omplex geometry and intera
tions ofthe element making the strand (phosphates, sugars, bases). The intermediate rangethat hairpins allow to study (10 to 30 or 50 bases) 
ould have been expe
ted to beapproximately des
ribed by the Kratky-Porod model whi
h is a dis
rete version ofthe 
ontinuous WL 
hain. A

ording to our study this is probably the best polymermodel that one 
an use, but we have nevertheless shown that it is still not su�
ientto des
ribe all the properties of the DNA strand forming the loop of a hairpin.
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SummaryDNA bea
ons are made of short single strands of DNA with terminal regions 
on-sisting of 
omplementary base sequen
es. As a result, the two end-regions 
anself-assemble in a short DNA double helix, 
alled the stem, while the remaining 
en-tral part of the strand makes a loop. In this 
losed 
on�guration, the single strandhas the shape of a hairpin. Su
h hairpin 
onformations are important in determin-ing the se
ondary stru
ture of long single strands of DNA or RNA. A short singlestrand of DNA whi
h 
an form a hairpin be
omes a so-
alled � DNA bea
on � whenone of its ends is atta
hed to a �uorophore while the se
ond end is atta
hed to aquen
her. When the �uorophore and the quen
her are within a few Angströms, the�uores
en
e is quen
hed due to dire
t energy transfer from the �uorophore to thequen
her. As a result, in a 
losed hairpin 
on�guration, the bea
on is not �uores-
ent, while in the open 
on�guration it be
omes �uores
ent. This property opensmany interesting appli
ations for mole
ular bea
ons in biology or physi
s. Biologi-
al appli
ations use the possible assembly of the single strand whi
h forms the loopwith another DNA strand whi
h is 
omplementary to the sequen
e of the loop. Theassembly of a double helix repla
ing the single strand of the loop for
es the openingof the hairpin, leading to a �uores
ent signal. This te
hnique provides very sensitiveprobes for sequen
es whi
h are 
omplementary to the loop. In the same spirit ithas been suggested that DNA bea
ons 
ould be used in vivo to dete
t the singlestranded RNA whi
h is synthetized during the trans
ription of genes. This opensthe possibility to re
ognise 
an
er 
ells by targeting some genes whi
h are heavilytrans
ribed in su
h 
ells.For physi
s DNA bea
ons are very interesting too. They 
an for instan
e be used asthe basis of some devi
es su
h as mole
ular memories read by the dete
tion of �uo-res
en
e, or to perform mole
ular 
omputation. The most important aspe
t for ourpurpose is that mole
ular bea
ons allow a

urate observations of the opening and
losing of DNA hairpins. The � melting pro�le � of the stem, indu
ed by heating,
an be re
orded a

urately versus temperature and the auto-
orrelation fun
tion ofthe �uores
en
e 
an be used to extra
t the kineti
s of the opening/
losing �u
tua-tions. Measurements have been made for di�erent loop lengths and di�erent basesin the loop, providing a 
omplete set of data whi
h 
an be used to understand whatgoverns the properties of DNA hairpins. This is the goal of this thesis. The analy-sis goes beyond the properties of hairpins themselves be
ause, as shown below, theresults are very sensitive to the properties of the loop. Therefore the 
omparison of127



Summaryexperimental data with the results of various models is a very sensitive test of ourability to model single strands of DNA. This is important in other related 
ontextssu
h as the properties of RNA.We have developed two di�erent models in order to study the thermodynami
s andthe kineti
s of su
h systems. The �rst one is a planar square latti
e model inspiredby the latti
e models whi
h have been used to study protein folding. The energy ofthe DNA strand depends on two terms only, a bending energy when two 
onse
utivesegments form a right angle and the energy of the base-pair whi
h 
an form in thestem. Using Monte Carlo simulation, we 
ompute the equilibrium properties andthe kineti
s of the system. The results obtained by this model are in qualitativeagreement with the experiments showing that the main properties of DNA hair-pin rely on very simple and general ideas. Nevertheless, the main weakness of themodel is that it does not have enough degrees of freedom, so that a quantitative
omparison with experiments is not possible. Therefore we have proposed anothermodel whi
h in
ludes the physi
al ingredients of the latti
e model but without the
onstraint of the latti
e. It 
ombines polymer theory and the Peyrard-Bishop andDauxois (PBD) model of DNA melting. The model treats the hairpin as 
onsistingof two subsystems:
• the loop whi
h is modelled by a polymer
• the stem whi
h is modelled by the PBD + additional terms that take intoa

ount the growth of the loop inside the stem.With this approa
h we 
an 
ompare our results quantitatively with the experimentalones. We �nd a good agreement for the dependen
e of the melting temperaturewith the 
hara
teristi
s of the loop, i.e. the length and the nature of the sequen
e.Moreover the kineti
 results are in qualitative agreement with the experiments. We�nd that the kineti
s of opening is governed by the stem only and that the rateof 
losing de
reases with the length of the loop. However we are not able to geta quantitative agreement with experiments on all aspe
ts. The temperature rangein whi
h the transition takes pla
e in the experiments is mu
h narrower than givenby the model, irrespe
tively of the model that we 
hoose for the loop. Althoughit sounds disappointing, this negative result is perhaps the most important in thethesis be
ause we show 
learly that a single strand of DNA 
annot be modelled as asimple polymer on a length s
ale of the order of a few tens of base-pairs, in spite ofthe 
laims in the literature that su
h a pi
ture is valid. A
tually studies that 
laimthe validity of su
h a des
ription either 
onsider mu
h longer segments over whi
hthe subtleties of DNA stru
ture are averaged out, or only take into a

ount someaspe
ts of the experimental results so that the dis
repan
ies are hidden.
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ZusammenfassungDNA bea
ons bestehen aus kurzen DNA Einzelsträngen, die komplementäre Se-quenzen in den Regionen der zwei Enden aufweisen. Die Endregionen eines Einzel-strangs können aufgrund dieser Eigens
haft eine kurze DNA Doppelhelix bilden,die mit Stamm bezei
hnet wird. Der verbleibende zentrale Teil des Strangs formteine Windung, den so genannten Loop. In dieser ges
hlossenen Anordnung bildetder Einzelstrang eine Hairpin-Struktur. Hairpins spielen eine besondere Rolle fürdie Bestimmung der Sekundärstruktur langer DNA- oder RNA-Einzelstränge. Einkurzer DNA Einzelstrang, der eine Hairpin-Struktur bilden kann, formt einen sogenannten DNA bea
on, wenn ein Ende mit eine �uoreszierenden Marker und dasandere Ende mit einem Quen
her versehen wird. Sind diese Marker nur wenigeAngström voneinander entfernt, so vers
hwindet die Fluoreszenz dur
h direkten En-ergietransfer vom �uoreszierenden Molekül zum Quen
her. Folgli
h ist für einenges
hlossenen Hairpin keine Fluoreszenz zu beoba
hten, sie tritt jedo
h erneut auf,sobald das Molekül seine Struktur verändert. Diese Eigens
haft ermögli
ht denEinsatz molekularer bea
ons für zahlrei
he Anwendungen in der Physik und Biolo-gie. Biologis
he Anwendungen nutzen die Bildung von Komplexen, bestehend ausdem Einzelstrang, der den Loop beinhaltet, und einem weiteren komplementärenDNA Strang. Die Komplexbildung zu einer Doppelhelix erzwingt die Entfaltungdes Hairpins, und ein Fluoreszenzsignal wird messbar. In diesem Zusammenhangwurde erwogen, dass DNA bea
ons in vivo dazu verwendet werden könnten, umeinzelne RNA Stränge, die im Verlaufe der Transkription von Genen synthetisiertwerden, na
hzuweisen. Auf diese Weise wäre es mögli
h, Krebszellen zu erkennen,indem man gezielt einige Gene beoba
htet, die besonders oft in den Krebszellenents
hlüsselt werden.Au
h für die Physik sind DNA bea
ons von besonderem Interesse. Sie könnenbeispielsweise für das Auslesen molekularer Spei
hereinheiten oder für molekulareRe
henvorgänge verwendet werden. Ihre herausragende Eigens
haft im Hinbli
k aufdas Thema der vorliegenden Arbeit ist ihre Fähigkeit, den Vorgang des Ö�nens unddes S
hlieÿens von DNA Hairpins akkurat wiederzugeben. Eine "S
hmelzkurve" desStamms, hervorgerufen dur
h Erhitzen, kann auf diese Weise gegen die Temperaturaufgetragen werden; die Autokorrelationsfunktion der Fluoreszenz ermögli
ht es,die Kinetik des Ö�nens/S
hlieÿens zu bestimmen. Es existieren zahlrei
he sol
herMessungen für unters
hiedli
he Loop-Längen und Sequenzen, sie bilden einen voll-ständigen Datensatz und können dazu verwendet werden, das Verständnis der Eigen-129



Zusammenfassungs
haften von DNA Hairpins zu erweitern. Dies ist das Ziel der vorliegenden Arbeit.Die Untersu
hungen in dieser Arbeit gehen über die Eigens
haften von Hairpinshinaus, da, wie im folgenden gezeigt wird, die Ergebnisse sehr wesentli
h von denEigens
haften des Loops abhängen. Der Verglei
h zwis
hen experimentellen Datenund den Ergebnissen unters
hiedli
her Modelle ist daher ein emp�ndli
her Test fürdas theoretis
he Verständnis der Physik einzelner DNA Stränge. Dies s
hlieÿt Pro-bleme in anderen Berei
hen, so zum Beispiel die Modellierung der Eigens
haften vonRNA, mitein.In dieser Arbeit werden zwei Modelle vorgestellt, die die Thermodynamik und dieKinetik sol
her Systeme untersu
hen. Das erste Modell ist ein zweidimensionalesGittermodell, das auf den Gittermodellen für die Untersu
hung der Proteinfaltungberuht. Die Energie des Einzelstrangs wird darin aus ledigli
h zwei Beiträgen bere
h-net, einem Beitrag der Krümmungsenergie, die für zueinander re
htwinklig ange-ordnete Segmente auftritt, und einem Beitrag aus der Bindung von Basenpaaren,die den Stamm bilden. Mithilfe von Monte Carlo Simulationen können die Eigen-s
haften im thermodynamis
hen Glei
hgewi
ht und die Kinetik des Systems un-tersu
ht werden. Die Ergebnisse stimmen qualitativ mit experimentellen Beoba
h-tungen überein und zeigen, dass die wesentli
hen Eigens
haften von DNA Hairpinsauf sehr einfa
he theoretis
he Überlegungen zurü
kgeführt werden können. Glei
h-wohl liegt die Haupts
hwä
he dieses Modells in der geringen Anzahl von Freiheits-graden, so dass ein quantitativer Verglei
h mit Experimenten ni
ht mögli
h ist. Ausdiesem Grund wurde ein weiteres Modell entwi
kelt, das die physikalis
hen Eigen-s
haften des Gittermodells berü
ksi
htigt, jedo
h auf die räumli
he Eins
hränkungdes Gitters verzi
htet. Das Modell verknüpft Ideen aus der Polymertheorie mitdem Peyrard-Bishop-Dauxois (PBD) Modell für DNA S
hmelzen, und unterteilt einHairpin Molekül in zwei Untersysteme:
• den Loop, der als Polymer modelliert wird,
• den Stamm, wiedergegeben dur
h das PBD Modell unter Verwendung zu-sätzli
her Terme, die das Wa
hstum des Loops im Stamm mit in Betra
htziehen.Dieser neue Zugang ermögli
ht es, einen quantitativen Verglei
h mit experi-mentell ermittelten Daten dur
hzuführen. Es zeigt si
h, dass eine gute Überein-stimmung bezügli
h der Abhängigkeit der S
hmelztemperatur von den Eigens
haftendes Loops (Länge und Sequenz) erzielt wird. Ein weiteres Ergebnis ist der Befund,dass die Kinetik des Ö�nungsprozesses ledigli
h von den Eigens
haften des Stammsabhängt und die Rate des S
hlieÿungsprozesses mit steigender Loop-Länge abn-immt. Dessen ungea
htet ist es ni
ht mögli
h, eine quantitative Übereinstimmungmit allen experimentellen Beoba
htungen zu errei
hen. So ist das experimentellbestimmte Temperaturintervall, in dem der Übergang statt�ndet, deutli
h kleinerals dur
h das Modell vorhergesagt, unabhängig von der genauen Modellierung des130



ZusammenfassungLoops. Obzwar diese Feststellung enttäus
hen mag, ist dieses negative Ergebnismögli
herweise die zentrale Aussage der vorliegenden Arbeit: Auf der Längenskalavon wenigen Dutzend Basenpaaren kann DNA ni
ht dur
h die klassis
he Polymerthe-orie erfasst werden, imWiderspru
h zu gegenteiligen Behauptungen in der Literatur.Tatsä
hli
h verwendet ein Teil der Studien, die zu sol
hen Behauptungen kommen,wesentli
h längere Segmente, und die lokalen strukturellen Eigens
haften der DNAtreten aufgrund von Mittelung ni
ht hervor. Der andere Teil der Studien s
hlieÿtexperimentelle Beoba
htungen bereits in die Modellierung mitein, so dass die Ab-wei
hungen vom Polymerverhalten in den Ergebnissen ni
ht o�ensi
htli
h werden.
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RésuméLes �DNA bea
ons� sont des molé
ules 
omposées de simple brins d'ADN dont lesdeux bouts 
ontiennent des bases 
omplémentaires et auxquels on atta
he un �uo-rophore et un quen
her. Ainsi, 
es deux extrémités peuvent s'assembler pour formerun bout de double héli
e d'ADN que nous appelons �stem�, la partie 
entrale dubrin forme alors une sorte de bou
le. On appelle 
ette stru
ture la 
on�gurationen �épingle à 
heveux�. Cette 
on�guration joue un r�le important dans la déter-mination de la stru
ture se
ondaire des long brins d'ARN ou d'ADN. Lorsque le�uorophore et le quen
her sont à proximité l'un de l'autre, 
'est-à-dire quelques Å,la �uores
en
e est bloquée du fait d'un transfert dire
t d'énergie du �uorophore versle quen
her. Don
, dans la 
on�guration fermée, �l'épingle à 
heveux� n'est pas �uo-res
ente. Néanmoins, dans la 
on�guration dite ouverte où les deux extrémités sontdésappariées, la �uores
en
e réapparaît. Cette propriété permet un grand nombred'appli
ations des �mole
ular bea
ons� en Biologie et en Physique. En biologie, 
esmolé
ules ont été proposées 
omme une alternative aux pu
es à ADN. En e�et, sila séquen
e d'un simple brin d'ADN est 
omplémentaire de la séquen
e du brin for-mant la bou
le d'une �épingle à 
heveux�, il y a appariement entre 
ette séquen
eet la bou
le. Cela implique une ouverture de �l'épingle à 
heveux�, 
ar la rigidité dudouble brin est bien plus grande que 
elle du simple brin d'ADN et la molé
ule de-vient alors �uores
ente. Dans le même esprit, 
es molé
ules ont été proposées pourla déte
tion des 
ellules 
an
éreuses en 
iblant l'ARN synthétisé par 
ertains gènesde 
es 
ellules. Pour les physi
iens, 
es molé
ules sont également très intéressantes.Elles sont à la base de mémoires molé
ulaires. En e�et, la partie bou
le d'une�épingle à 
heveux� peut servir 
omme une mémoire où l'on sto
ke de l'informationen utilisant la 
omplémentarité des bases. Le pro
essus d'é
riture ou d'e�a
ementest alors suivi par la mesure de �uores
en
e de 
es molé
ules. Pour notre travail,l'aspe
t le plus important est qu'elles représentent des systèmes simples permettantune étude détaillée de l'assemblage/désassemblage de la double héli
e d'ADN. Les
ourbes de dénaturation, qui représentent l'évolution de la �uores
en
e en fon
tionde la température ainsi que les fon
tions d'auto-
orrélation de �uores
en
e peuventêtre mesurées très pré
isément, 
e qui permet d'extraire les propriétés thermody-namiques et 
inétiques de 
ette stru
ture en �épingle à 
heveux�. Des mesures ontété faites ave
 di�érents types de bases et di�érentes longueurs de bou
le, don-nant ainsi un grand nombre de données. Ce sont 
es propriétés physiques qui nousintéressent dans 
ette thèse. La 
omparaison des résultats expérimentaux et des133



Résumérésultats obtenus par di�érents modèles est un ex
ellent moyen pour tester notre
apa
ité à modéliser les propriétés de l'ADN.Nous avons développé deux modèles di�érents pour étudier la thermodynamique etla 
inétique de 
es systèmes. Le premier est un modèle sur réseau inspiré des mod-èles sur réseau utilisés pour l'étude des repliements des protéines. Dans 
e modèle,l'énergie du simple brin d'ADN, dépend seulement de deux termes, un terme pour le
oût énergétique asso
ié à un angle entre deux bases 
onsé
utives et un terme de gainénergétique pour la formation d'une paire de bases. A partir de simulations MonteCarlo, nous avons étudié les propriétés d'équilibre et la 
inétique du système. Lesrésultats obtenus à l'aide de 
e modèle sont en a

ord qualitatifs ave
 les résultatsexpérimentaux montrant ainsi que les prin
ipales propriétés des �épingles à 
heveux�sont gouvernées par des phénomènes physiques simples. Néanmoins, la prin
ipalefaiblesse de 
e modèle réside dans le manque de degrés de liberté qui ne permet don
pas une 
omparaison quantitative ave
 les expérien
es. Nous avons don
 élaboré unautre modèle qui in
lut les ingrédients physiques du premier modèle mais sans la
ontrainte apportée par le réseau. Il 
ombine la théorie des polymères et le modèlede Peyrard-Bishop et Dauxois (PBD) pour la double héli
e. Le système est alorsdivisé en deux sous-système:
• la bou
le qui est modélisée par un polymère,
• la partie double brin d'ADN qui est modélisée par le modèle PBD et 
omplétépar des termes pour tenir 
ompte de l'agrandissement de la bou
le le long dustem.Ave
 
ette nouvelle appro
he, nous sommes 
apable de 
omparer quantitativementnos résultats théoriques ave
 les résultats expérimentaux. Nous trouvons un bona

ord pour la dépendan
e de la �température de transition� ave
 les 
ara
téristiquesde la bou
le, à savoir, la longueur et la nature de la séquen
e. De plus, les résultatsde 
inétique sont en a

ord qualitatif ave
 les résultats expérimentaux. En e�et,nous trouvons que la 
inétique d'ouverture est déterminée par les propriétés du�stem� seulement et que la vitesse de fermeture dé
roît ave
 la longueur de la bou
le.Cependant, nous ne sommes pas 
apable d'obtenir une 
omparaison quantitative
omplète. Nous obtenons une largeur de transition environ deux fois plus grandeque 
elle obtenue dans les expérien
es, indépendamment du modèle de bou
le. Aussisurprenant que 
ela puisse paraître, 
e résultat négatif est peut-être l'un des résultatsles plus important de 
e travail de thèse par
e qu'il montre 
lairement qu'un simplebrin d'ADN ne peut pas être modélisé par un simple polymère à l'é
helle de quelquesdizaines de paires de bases, en dépit de 
e que dit la littérature portant sur 
e sujet.
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Appendix ACal
ulation of PN (R) for theKratky-Porod 
hainThis appendix explains the method proposed by N.Theodorakopoulos to 
omputethe probability distribution fun
tion of the end-to-end distan
e of a Kratky-Porod
hain.Our 
al
ulation for the hairpin involves the probability distribution fun
tion forthe extension of the 
hain S(r|R). But for a 
hain like the Kratky-Porod 
hainwhi
h in
ludes an energy 
ontribution depending on the angle between segments, theprobability distribution of an (N + 1)th segment depends on the spatial orientationXN of the nth segment. This suggests that the appropriate distribution for theKratky-Porod 
hain is not
PN(R) =

1

ZN

∫
dΩ1...dΩNe−βH(Xj)δ

(R−
N∑

j=1

Xj

)
, (A.1)but the end-to-end ve
tor distribution fun
tion at �xed dire
tion XN of the N thsegment, i.e.

P̃N (R;XN) =
1

ZN

∫ N−1∏

j=1

dΩje
−βH(Xj)δ

(R−
N∑

j=1

Xj

)
. (A.2)The probability distribution A.1 for the end-to-end ve
tor is related to P̃N (R;XN)by

PN(R) =

∫
dΩN P̃N (R;XN) . (A.3)The method proposed by N.Theodorakopoulos uses an expansion of P̃N (R;XN) interms of spheri
al harmoni
s

P̃N (R;XN) =
∑

lm

Q̃
(N)
lm (R)Ylm(ΩN ), (A.4)137
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ulation of PN(R) for the Kratky-Porod 
hainwhere the expansion 
oe�
ients are de�ned as
Q̃

(N)
lm (R) =

∫
dΩN P̃N (R;XN)Y ∗

lm(ΩN ). (A.5)The end-to-end distribution fun
tion is obtained from the lowest 
oe�
ient by
PN(R) =

√
4πQ

(N)
00 (R). (A.6)The idea of the 
al
ulation is to build PN(R) by gradually adding segments to aninitial segment. Therefore one needs to de�ne a re
urren
e relation

P̃N+1 (R;XN+1) =
ZN

ZN+1

∫
dΩNdr′δ (R− r′ −XN+1)×

eb(XN .XN+1−1)P̃N (R;XN ) . (A.7)Using the expression of ZN as a fun
tion of i0(b), one gets
P̃N+1 (R;XN+1) =

∫
dΩNdr′δ (R− r′ −XN+1)×

φ (XN ,XN+1) P̃N (R;XN) , (A.8)with
φ (XN ,XN+1) =

eb(XN .XN+1−1)

4πi0(b)
, (A.9)whi
h 
an be expanded in terms of spheri
al harmoni
s

φ (XN ,XN+1) =
∑

l,m

îl(b)Ylm(ΩN)Y ∗
lm(ΩN+1), (A.10)with

îl(b) =
il(b)

i0(b)
, (A.11)expressed in terms of modi�ed Bessel fun
tions. With the spheri
al harmoni
 ex-pansion of φ, the angular integral of A.8 
an be performed. The result is

P̃N+1 (R;XN+1) =

∫
dq

(2π)3dr′eiq.(R−r′)e−iq.XN+1×
∑

l,m

îl(b)Q̃
(N)
lm (r′)Ylm(ΩN+1), (A.12)in whi
h we have introdu
ed the Fourier transform of the δ fun
tion.Multiplying both sides by Y ∗

l′m′(XN ) and integrating over ΩN+1 extra
ts the expres-sion of Q̃
(N+1)
l′m′

Q̃
(N)
l′m′(R)

∫
dq

(2π)3 dr′eiq.(R−r′)×
∑

l

îl(b)f
(m′)
ll′ (q)Q̃

(N)
lm′ (r′), (A.13)138



where
f

(m′)
ll′ (q) =

∫
dΩje

−iq.XjYlm(Ωj)Y
∗
l′m(Ωj). (A.14)As we are interested in the 
ase m′ = 0 be
ause we need Q̃

(N)
00 , Eq. (A.13) redu
esto

Q̃
(N)
l′0 (R) =

∫
dq

(2π)3dr′eiq.(R−r′)×
∑

l

îl(b)f
(0)
ll′ (q)Q̃

(N)
l0 (r′), (A.15)where

f
(0)
ll′ (q) =

1

2

√
(2l + 1)(2l′ + 1)

∫ +1

−1

dµe−iqµPl(µ)Pl′(µ), (A.16)where Pl is a Legendre polynomial. In Fourier spa
e Eq. (A.15) be
omes
Q̃

(N)
l′0 (q) =

∑

l

îl(b)f
(0)
ll′ (q)Q̃

(N)
l0 (q), (A.17)whi
h 
an be expressed in a matrix form by de�ning a ve
tor Q(N) and a symmetri
matrix F by

Q
(N)
l (q) =

√
îl(b)Q̃

(N)
l0 (q) (A.18)

Fll′(q) =

√
îl(b)̂il′(b)f

(0)
ll′ (q). (A.19)The re
urren
e relation is now Q(N+1) = FQ(N), (A.20)and the end-to-end distribution fun
tion is given by

PN(R) =
√

4πQ
(N)
0 (R). (A.21)The re
urren
e relation (A.20) provides the basis for the 
al
ulation of PN(R). Forthis one needs to start from N = 1

P̃1 (R;X1) =
1

4π
δ (R−X1) . (A.22)So that

P1(R) =

∫
dΩ1P̃1 (R;X1) =

1

4π
δ (R − 1) . (A.23)From the expansion of P̃1 (R;X1) we get

Q̃
(1)
lm(q) =

1√
4π

f
(0)
l0 (q)δm0, (A.24)139
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hainor
Q

(1)
l =

1√
4π

Fl0. (A.25)Now with the re
urren
e relation we get
Q

(N)
l =

1√
4π

[FN
]
l0

. (A.26)Therefore the Fourier transform of the end-to-end distribution is given by
PN(q) =

[FN
]
00

. (A.27)If we know the matrix elements of F, we 
an then get PN(q) and PN(R) by inverseFourier transform. Their 
al
ulation is possible with the expansion
e−iqµ =

∞∑

k=0

(2k + 1)(−i)kjk(q)Pk(µ), (A.28)where the jk are the spheri
al Bessel fun
tions (e.g. j0(q) = sin q/q).Putting this expression into formula for f
(0)
ll′ (q), and using the integral formula forthe produ
t of three Legendre polynomials [60℄, it is possible to express the matrixelements of F as a �nite sum of Bessel fun
tions. (Eq.(31) in [60℄).
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Appendix BThe Gaussian 
hain
B.1 Theoreti
al predi
tionsWe 
onsider the 
ase of a 
hain with monomer modelled by springs whi
h are ran-domly oriented and totally independent from ea
h other. Ea
h monomer has a �xedequilibrium length l0. We assume that the spring konstant K does not depend on
T and we 
onsider the 
ase l0 6= 0, 
ontrary to the 
ase usually presented in thelitterature. We will see even in su
h a simple polymer model that the 
al
ulations
ould be non trivial. Figure (B.1) gives a representation of the Gaussian 
hain.

R1

R2

R3

R4

RNFigure B.1: Modelling of the Gaussian 
hain.Using this model we 
an de�ne the energy of su
h a 
hain, whi
h is in this purelyharmoni
 
ase: 141



The Gaussian 
hain
U =

1

2
K

N∑

i=1

(‖Ri −Ri−1‖ − l0)
2

U =
1

2
K

N∑

i=1

(ri − l0)
2

(B.1)
We would like to 
al
ulate: 〈ri〉, 〈‖ri‖〉, 〈r2

i 〉, 〈(RN − R0)
2〉, the gyration radius R2

gand �nally 〈U〉. The same method 
ould be used to 
al
ulate other quantities.First of all 〈ri〉:
〈ri〉 =

∫ N∏

j=1

drj ri exp(−βK

2

N∑

j=1

(‖rj‖ − l0)
2)

∫ N∏

j=1

drj exp(−βK

2

N∑

j=1

(‖rj‖ − l0)
2)

〈ri〉 =

∫
dri ri exp(−βK

2
(‖ri‖ − l0)

2)
∫

dri exp(−βK

2
(‖ri‖ − l0)

2)

〈ri〉 = 0

(B.2)
This result is trivial be
ause in this model ea
h monomer is independent from theothers and randomly oriented.Let us now 
onsider 〈‖ri‖〉 :

〈‖ri‖〉 =

∫
dri ‖ri‖ exp(−βK

2
(‖ri‖ − l0)

2)
∫

dri exp(−βK

2
(‖ri‖ − l0)

2)

〈r〉 =

∫ ∞

0

dr r2 exp(−βK

2
(r − l0)

2)
∫ ∞

0

dr r exp(−βK

2
(r − l0)

2)

(B.3)
Due to the presen
e of l0, the 
al
ulation of the two previous integrals is not dim-mediate. Nevertheless one 
an easily show that:142



B.1 Theoreti
al predi
tions
Z1 =

∫ ∞

0

dr r exp(−βK

2
(r − l0)

2)

Z1 =
1

βK
exp(−βK

2
l20) +

l0
2

√
2π

βK

(
Erf(

1

2
l0
√

2βK) + 1
)

(B.4)Where Erf is the error fun
tion [57℄. In the same way we have:
∫ ∞

0

dr r2 exp(−βK

2
(r − l0)

2) =
l0

βK
exp(−βK

2
l20)+

1

2

√
2π

βK

(
erf(

1

2
l0
√

2βK) + 1
)(βKl20 + 1

βK

) (B.5)Putting (B.4) and (B.5) in (B.3), we get:
〈r〉 =

1

Z1

(
l0

βK
exp(−βK

2
l20) +

1

2

√
2π

βK

(
erf(

1

2
l0
√

2βK) + 1
)(βKl20 + 1

βK

)) (B.6)In the same spirit we 
an 
al
ulate 〈r 2
i 〉:

〈r 2
i 〉 =

∫
dri r 2

i exp(−βK

2
(‖ri‖ − l0)

2)
∫

dri exp(−βK

2
(‖ri‖ − l0)

2)

〈r2〉 =

∫ ∞

0

dr r3 exp(−βK

2
(r − l0)

2)
∫ ∞

0

dr r exp(−βK

2
(r − l0)

2)

(B.7)
Using (B.4), (B.5) and usual integration methods we get:

〈
r2
〉

=
1

Z1

((2 + βKl20
(βK)2

)
exp(−βK

2
l20)+

l0
2

√
2π

βK

(
erf(

1

2
l0
√

2βK) + 1
)(βKl20 + 3

βK

)) (B.8)We 
an now easily derive the mean end to end distan
e of the 
hain using the fa
tthat the monomers are independent from ea
h other: 143



The Gaussian 
hain
〈
(RN −R0)

2
〉

=
〈
((RN −RN−1) + (RN−1 −RN−2) + · · · + (R1 −R0))

2〉

〈
(RN −R0)

2〉 =
N∑

i=1

〈r2
i

〉

〈
(RN −R0)

2〉 = N
〈
r2
〉

(B.9)
Therefore, we immediately have the expression of < U >:

〈U〉 =
1

2
K

N∑

i=1

〈
(rn − l0)

2〉

〈U〉 =
1

2
NK

(
l20 +

〈
r2
〉
− l0 〈r〉

)
(B.10)Before giving the expression of the gyration radius, let us noti
e that, if l0 ≡ 0, thenwe �nd the usual results for a harmoni
 system with two degrees of freedom:

〈r〉 =
1

2

√
2πkbT

K

〈
r2
〉

=
2kbT

K

〈U〉 = NkbT

(B.11)
Finally, we give the exa
t result of the radius gyration as well as its value in thelimit of big N:

R2
g =

1

2N2

∑

n,m

〈
(Rn −Rm)2〉

R2
g =

1

2N2

∑

n

∑

m

|n − m|
〈
r2
〉

R2
g ≈ 1

2N2

∫ N

0

∫ N

0

|n − m|
〈
r2
〉

R2
g ≈ N

6

〈
r2
〉

(B.12)
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B.2 Monte Carlo simulationB.2 Monte Carlo simulationWe have developed a program whi
h models this Gaussian 
hain. In our simulationwe have 
hosen for simpli
ity K ≡ 1, l0 ≡ 1 and kb ≡ 1.We have used the Monte Carlo algorithm presented in 
hapter 4. Here we presentthe mean values obtained numeri
ally and 
ompare it to the theoreti
al results. One
an noti
e that the numeri
al results are in total agreement with the theoreti
al ones.This valid a posteriori the theoreti
al expressions derived for su
h quantities.
〈r〉

T

◦ Numeri
al resultsTheoreti
al 
urve
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◦ Numeri
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