Skip to Main content Skip to Navigation
Theses

Méthode de Dandelin-Graeffe et méthode de Baker

Abstract : The main topic of this work is the study of the convergence of classical methods to compute approximate values for the roots of complex polynomials. Considered methods are those of Bernoulli and Graeffe-Dandelin. We show that these questions of convergence tie in with Diophantine problems and that the theorems of Dirichlet's approximation and especially Baker's method yield new results of convergence that hold for polynomials with integer coefficients. Many examples calculated in MAPLE, are presented and analyzed there.
Document type :
Theses
Complete list of metadatas

Cited literature [17 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00151313
Contributor : Ismaïla Diouf <>
Submitted on : Monday, June 4, 2007 - 8:12:34 AM
Last modification on : Friday, June 19, 2020 - 9:10:04 AM
Long-term archiving on: : Friday, September 21, 2012 - 4:10:29 PM

Identifiers

  • HAL Id : tel-00151313, version 1

Collections

Citation

Ismaïla Diouf. Méthode de Dandelin-Graeffe et méthode de Baker. Mathématiques [math]. Université Louis Pasteur - Strasbourg I, 2007. Français. ⟨NNT : 2007STR13044⟩. ⟨tel-00151313⟩

Share

Metrics

Record views

337

Files downloads

2056