K. Datta, A. Bellacosa, T. Chan, and P. Tsichlis, Akt Is a Direct Target of the Phosphatidylinositol 3-Kinase: ACTIVATION BY GROWTH FACTORS, v-src and v-Ha-ras, IN Sf9 AND MAMMALIAN CELLS, Journal of Biological Chemistry, vol.271, issue.48, pp.51-53, 1996.
DOI : 10.1074/jbc.271.48.30835

J. Neubauer, M. Faure, F. Stanke-labesque, and B. Lefebvre, Invited review: Physiological and pathophysiological responses to intermittent hypoxia, J Appl Physiol, vol.90, issue.4, pp.1593-1602, 2001.

P. Lavie, L. Lavie, and P. Herer, All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age, European Respiratory Journal, vol.25, issue.3, pp.514-534, 2005.
DOI : 10.1183/09031936.05.00051504

L. Lavie and P. Lavie, Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea, Medical Hypotheses, vol.66, issue.6, pp.1069-73, 2006.
DOI : 10.1016/j.mehy.2005.10.033

S. Ryan, C. Taylor, W. Mcnicholas, P. Beguin, M. Joyeux-faure et al., Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation Acute intermittent hypoxia improves rat myocardium tolerance to ischemia, J Appl Physiol, vol.1129, issue.993, pp.2660-2667, 2005.

C. Murry, R. Jennings, and K. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, vol.74, issue.5, pp.1124-1160, 1986.
DOI : 10.1161/01.CIR.74.5.1124

Z. Cai, D. Manalo, G. Wei, E. Rodriguez, K. Fox-talbot et al., Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemiareperfusion injury. Circulation, pp.79-85, 2003.

L. Xi, D. Tekin, E. Gursoy, F. Salloum, J. Levasseur et al., Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.5-12, 2002.
DOI : 10.1152/ajpheart.00920.2001

N. Yamashita, M. Nishida, S. Hoshida, T. Kuzuya, M. Hori et al., Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning., Journal of Clinical Investigation, vol.94, issue.6, pp.2193-2202, 1994.
DOI : 10.1172/JCI117580

G. Baxter, F. Goma, and D. Yellon, Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium, British Journal of Pharmacology, vol.27, issue.2, 1995.
DOI : 10.1111/j.1476-5381.1995.tb15866.x

A. Kis, D. Yellon, and G. Baxter, Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase, Journal of Molecular and Cellular Cardiology, vol.35, issue.9, 2003.
DOI : 10.1016/S0022-2828(03)00208-6

Y. Wang, N. Ahmad, M. Kudo, and M. Ashraf, Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning, AJP: Heart and Circulatory Physiology, vol.287, issue.3, pp.1125-1156, 2004.
DOI : 10.1152/ajpheart.00183.2004

P. Sugden and A. Clerk, "Stress-Responsive" Mitogen-Activated Protein Kinases (c-Jun N-Terminal Kinases and p38 Mitogen-Activated Protein Kinases) in the Myocardium, Circulation Research, vol.83, issue.4, pp.345-52, 1998.
DOI : 10.1161/01.RES.83.4.345

R. Carroll and D. Yellon, Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial K ATP, Basic Research in Cardiology, vol.95, issue.3, pp.243-252, 2000.
DOI : 10.1007/s003950050187

R. Lasley, B. Keith, G. Kristo, Y. Yoshimura, R. Mentzer et al., Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent, AJP: Heart and Circulatory Physiology, vol.289, issue.2, pp.785-91, 2005.
DOI : 10.1152/ajpheart.01008.2004

T. Zhao, D. Hines, and R. Kukreja, Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels, Am J Physiol Heart Circ Physiol, vol.280, issue.3, pp.1278-85, 2001.

K. Gong, Z. Zhang, A. Li, Y. Huang, P. Bu et al., ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes

R. Fryer, A. Hsu, and G. Gross, ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection, Basic Research in Cardiology, vol.96, issue.2, pp.136-178, 2001.
DOI : 10.1007/s003950170063

K. Przyklenk, M. Sussman, B. Simkhovich, and R. Kloner, Does ischemic preconditioning trigger translocation of protein kinase C in the canine model? Circulation, pp.1546-57, 1995.

P. Hanlon, P. Fu, G. Wright, C. Steenbergen, M. Arcasoy et al., Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling, The FASEB Journal, vol.19, issue.10, pp.1323-1328, 2005.
DOI : 10.1096/fj.04-3545fje

R. 1. Naegele, B. Launois, S. Mazza, S. Feuerstein, C. Pepin et al., Which memory processes are affected in patients with obstructive sleep apnea? An evaluation of 3 types of memory, Sleep, vol.29, pp.533-577, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00410379

D. White and . Sleep, Sleep Apnea, Proceedings of the American Thoracic Society, vol.3, issue.1, pp.124-128, 2006.
DOI : 10.1513/pats.200510-116JH

C. Bergeron, J. Kimoff, and Q. Hamid, Obstructive sleep apnea syndrome and inflammation, Journal of Allergy and Clinical Immunology, vol.116, issue.6
DOI : 10.1016/j.jaci.2005.10.008

G. Hansson, Inflammation, Atherosclerosis, and Coronary Artery Disease, New England Journal of Medicine, vol.352, issue.16, pp.1685-95, 2005.
DOI : 10.1056/NEJMra043430

R. Li, B. Row, E. Gozal, L. Kheirandish, Q. Fan et al., Cyclooxygenase 2 and Intermittent Hypoxia-induced Spatial Deficits in the Rat, American Journal of Respiratory and Critical Care Medicine, vol.168, issue.4, pp.469-75, 2003.
DOI : 10.1164/rccm.200211-1264OC

S. Ryan, C. Taylor, and W. Mcnicholas, Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome, Circulation, vol.112, issue.17, pp.2660-2667, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.556746

M. Adachi, Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure, Circulation, vol.107, pp.1129-1163, 2003.

K. Minoguchi, T. Tazaki, T. Yokoe, H. Minoguchi, Y. Watanabe et al., Elevated Production of Tumor Necrosis Factor-?? by Monocytes in Patients With Obstructive Sleep Apnea Syndrome, Chest, vol.126, issue.5, pp.1473-1482, 2004.
DOI : 10.1378/chest.126.5.1473

M. Adachi, Increased levels and activity of matrix metalloproteinase-9 in obstructive sleep apnea syndrome, Am J Respir Crit Care Med, vol.170, pp.1354-1363, 2004.

J. Bounhoure, M. Galinier, A. Didier, and P. Leophonte, Sleep apnea syndrome and cardiovascular disease, Bull Acad Natl Med, vol.189, pp.445-459, 2005.

E. Ohga, T. Tomita, H. Wada, H. Yamamoto, T. Nagase et al., Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1, Journal of Applied Physiology, vol.94, issue.1, pp.179-84, 2003.
DOI : 10.1152/japplphysiol.00177.2002

K. Minoguchi, T. Yokoe, T. Tazaki, H. Minoguchi, A. Tanaka et al., Increased Carotid Intima-Media Thickness and Serum Inflammatory Markers in Obstructive Sleep Apnea, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.5, pp.625-655, 2005.
DOI : 10.1164/rccm.200412-1652OC

P. Beguin, M. Joyeux-faure, D. Godin-ribuot, P. Levy, and C. Ribuot, Acute intermittent hypoxia improves rat myocardium tolerance to ischemia, Journal of Applied Physiology, vol.99, issue.3, pp.1064-1073, 2005.
DOI : 10.1152/japplphysiol.00056.2005

N. Veillard, S. Steffens, G. Pelli, B. Lu, B. Kwak et al., Differential Influence of Chemokine Receptors CCR2 and CXCR3 in Development of Atherosclerosis In Vivo, Circulation, vol.112, issue.6, pp.870-878, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.520718

Z. Johnson, M. Kosco-vilbois, S. Herren, R. Cirillo, V. Muzio et al., Interference with Heparin Binding and Oligomerization Creates a Novel Anti-Inflammatory Strategy Targeting the Chemokine System, The Journal of Immunology, vol.173, issue.9, pp.5776-85, 2004.
DOI : 10.4049/jimmunol.173.9.5776

N. Veillard, S. Steffens, F. Burger, G. Pelli, and F. Mach, Differential Expression Patterns of Proinflammatory and Antiinflammatory Mediators During Atherogenesis in Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.12
DOI : 10.1161/01.ATV.0000146532.98235.e6

G. Hansson and P. Libby, The immune response in atherosclerosis: a double-edged sword, Nature Reviews Immunology, vol.98, issue.7, pp.508-519, 2006.
DOI : 10.1038/nri1882

I. Charo and R. Ransohoff, The Many Roles of Chemokines and Chemokine Receptors in Inflammation, New England Journal of Medicine, vol.354, issue.6, pp.610-631, 2006.
DOI : 10.1056/NEJMra052723

S. Lee, M. Brummet, S. Shahabuddin, T. Woodworth, S. Georas et al., Cutaneous Injection of Human Subjects with Macrophage Inflammatory Protein-1?? Induces Significant Recruitment of Neutrophils and Monocytes, The Journal of Immunology, vol.164, issue.6, pp.3392-401, 2000.
DOI : 10.4049/jimmunol.164.6.3392

E. Butcher, Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity, Cell, vol.67, issue.6, pp.1033-1039, 1991.
DOI : 10.1016/0092-8674(91)90279-8

J. Li, L. Thorne, N. Punjabi, C. Sun, A. Schwartz et al., Intermittent Hypoxia Induces Hyperlipidemia in Lean Mice, Circulation Research, vol.97, issue.7, pp.698-706, 2005.
DOI : 10.1161/01.RES.0000183879.60089.a9

K. Tan, W. Chow, J. Lam, B. Lam, W. Wong et al., HDL dysfunction in obstructive sleep apnea, Atherosclerosis, vol.184, issue.2, 2005.
DOI : 10.1016/j.atherosclerosis.2005.04.024

D. Hearse, Ischemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther, pp.767-76, 1990.

L. Opie, Reperfusion injury and its pharmacologic modification. Circulation, 1989.
DOI : 10.1161/01.cir.80.4.1049

E. Fletcher, Effect of episodic hypoxia on sympathetic activity and blood pressure, Respiration Physiology, vol.119, issue.2-3
DOI : 10.1016/S0034-5687(99)00114-0

P. Lavie, L. Lavie, and P. Herer, All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age, European Respiratory Journal, vol.25, issue.3, pp.514-534, 2005.
DOI : 10.1183/09031936.05.00051504

L. Lavie and P. Lavie, Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea, Medical Hypotheses, vol.66, issue.6, pp.1069-73, 2006.
DOI : 10.1016/j.mehy.2005.10.033

R. Bolli, Mechanism of myocardial "stunning". Circulation, pp.723-761, 1990.

L. Opie, The Heart, Physiology, from Cell to Circulation, 1998.

C. Murry, R. Jennings, K. Reimer, D. Yellon, G. Baxter et al., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation Ischaemic preconditioning: present position and future directions, Cardiovasc Res, vol.74, issue.371, pp.1124-1160, 1986.

T. Kuzuya, S. Hoshida, N. Yamashita, H. Fuji, H. Oe et al., Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia, Circulation Research, vol.72, issue.6, pp.1293-1302, 1993.
DOI : 10.1161/01.RES.72.6.1293

M. Marber, D. Latchman, J. Walker, and D. Yellon, Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction, Circulation, vol.88, issue.3
DOI : 10.1161/01.CIR.88.3.1264

K. Reimer, C. Murry, I. Yamasawa, M. Hill, and R. Jennings, Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis, Am J Physiol, vol.251, issue.6, 1986.

R. Bolli, The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview, Basic Res Cardiol, vol.91, issue.1, pp.57-63, 1996.
DOI : 10.1007/978-3-642-53793-6_52

J. Sun, X. Tang, A. Knowlton, S. Park, Y. Qiu et al., Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs., Journal of Clinical Investigation, vol.95, issue.1, pp.388-403, 1995.
DOI : 10.1172/JCI117667

R. Carroll and D. Yellon, Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial K ATP, Basic Research in Cardiology, vol.95, issue.3, pp.243-252, 2000.
DOI : 10.1007/s003950050187

N. Kaeffer, V. Richard, and C. Thuillez, Delayed Coronary Endothelial Protection 24 Hours After Preconditioning : Role of Free Radicals, Circulation, vol.96, issue.7, pp.2311-2317, 1997.
DOI : 10.1161/01.CIR.96.7.2311

A. Stein, X. Tang, Y. Guo, Y. Xuan, D. B. Bolli et al., Delayed Adaptation of the Heart to Stress: Late Preconditioning, Stroke, vol.35, issue.11_suppl_1, pp.2676-2685, 2004.
DOI : 10.1161/01.STR.0000143220.21382.fd

X. Tang, H. Takano, A. Rizvi, J. Turrens, Y. Qiu et al., Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits, Am J Physiol Heart Circ Physiol, vol.282, issue.1, pp.281-91, 2002.

H. Takano, R. Bolli, R. Black, J. Kodani, E. Tang et al., A1 or A3 Adenosine Receptors Induce Late Preconditioning Against Infarction in Conscious Rabbits by Different Mechanisms, Circulation Research, vol.88, issue.5, pp.520-528, 2001.
DOI : 10.1161/01.RES.88.5.520

H. Takano, X. Tang, Y. Qiu, Y. Guo, B. French et al., Nitric Oxide Donors Induce Late Preconditioning Against Myocardial Stunning and Infarction in Conscious Rabbits via an Antioxidant-Sensitive Mechanism, Circulation Research, vol.83, issue.1, pp.73-84, 1998.
DOI : 10.1161/01.RES.83.1.73

E. Kevelaitis, A. Oubenaissa, J. Peynet, C. Mouas, and P. Menasche, Preconditioning by Mitochondrial ATP-Sensitive Potassium Channel Openers : An Effective Approach for Improving the Preservation of Heart Transplants, Circulation, vol.100, issue.Supplement 2, 1999.
DOI : 10.1161/01.CIR.100.suppl_2.II-345

R. Fryer, A. Hsu, J. Eells, H. Nagase, and G. Gross, Opioid-Induced Second Window of Cardioprotection : Potential Role of Mitochondrial KATP Channels, Circulation Research, vol.84, issue.7, pp.846-51, 1999.
DOI : 10.1161/01.RES.84.7.846

R. Bolli, The Late Phase of Preconditioning, Circulation Research, vol.87, issue.11, pp.972-83, 2000.
DOI : 10.1161/01.RES.87.11.972

J. Karliner, N. Honbo, C. Epstein, M. Xian, Y. Lau et al., Neonatal Mouse Cardiac Myocytes Exhibit Cardioprotection Induced by Hypoxic and Pharmacologic Preconditioning and by Transgenic Overexpression of Human Cu/Zn Superoxide Dismutase, Journal of Molecular and Cellular Cardiology, vol.32, issue.10, pp.1779-86, 2000.
DOI : 10.1006/jmcc.2000.1212

Y. Ladilov, H. Maxeiner, C. Wolf, C. Schafer, K. Meuter et al., Role of protein phosphatases in hypoxic preconditioning, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.3, 2002.
DOI : 10.1152/ajpheart.00318.2001

L. Xi, D. Tekin, E. Gursoy, F. Salloum, J. Levasseur et al., Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.5-12, 2002.
DOI : 10.1152/ajpheart.00920.2001

Z. Cai, D. Manalo, G. Wei, E. Rodriguez, K. Fox-talbot et al., Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemiareperfusion injury. Circulation, pp.79-85, 2003.

J. Kerwin, J. Lancaster, J. , J. Feldman, and P. , Nitric Oxide: A New Paradigm for Second Messengers, Journal of Medicinal Chemistry, vol.38, issue.22, pp.4343-62, 1995.
DOI : 10.1021/jm00022a001

R. Bolli, Z. Bhatti, X. Tang, Y. Qiu, Q. Zhang et al., Evidence That Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Triggered by the Generation of Nitric Oxide, Circulation Research, vol.81, issue.1, pp.42-52, 1997.
DOI : 10.1161/01.RES.81.1.42

Y. Qiu, A. Rizvi, X. Tang, S. Manchikalapudi, H. Takano et al., Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits, Am J Physiol, vol.273, issue.6 2, pp.2931-2937, 1997.

M. Hill, H. Takano, X. Tang, E. Kodani, G. Shirk et al., Nitroglycerin induces late preconditioning against myocardial infarction in conscious rabbits despite development of nitrate tolerance. Circulation, pp.694-703, 2001.

X. Tang, E. Kodani, H. Takano, M. Hill, K. Shinmura et al., Protein tyrosine kinase signaling is necessary for NO donor-induced late preconditioning against myocardial stunning, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.4, pp.1441-1449, 2003.
DOI : 10.1152/ajpheart.00789.2002

R. Bolli, Oxygen-derived free radicals and myocardial reperfusion injury: An overview, Cardiovascular Drugs and Therapy, vol.75, issue.Suppl. V
DOI : 10.1007/BF00054747

L. Becker, New concepts in reactive oxygen species and cardiovascular reperfusion physiology, Cardiovascular Research, vol.61, issue.3, pp.461-70, 2004.
DOI : 10.1016/j.cardiores.2003.10.025

S. Takeshima, J. Vaage, and G. Valen, Can reactive oxygen species precondition the isolated rat heart against arrhythmias and stunning? Acta Physiol Scand, pp.263-70, 1997.

J. Sun, X. Tang, S. Park, Y. Qiu, J. Turrens et al., Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs., Journal of Clinical Investigation, vol.97, issue.2, pp.562-76, 1996.
DOI : 10.1172/JCI118449

C. Baines, M. Goto, and J. Downey, Oxygen Radicals Released During Ischemic Preconditioning Contribute to Cardioprotection in the Rabbit Myocardium, Journal of Molecular and Cellular Cardiology, vol.29, issue.1
DOI : 10.1006/jmcc.1996.0265

N. Yamashita, S. Hoshida, N. Taniguchi, T. Kuzuya, and M. Hori, A ???Second Window of Protection??? Occurs 24 h After Ischemic Preconditioning in the Rat Heart, Journal of Molecular and Cellular Cardiology, vol.30, issue.6, pp.1181-1190, 1998.
DOI : 10.1006/jmcc.1998.0682

C. Arnaud, M. Joyeux, C. Garrel, D. Godin-ribuot, P. Demenge et al., Free-radical production triggered by hyperthermia contributes to heat stress-induced cardioprotection in isolated rat hearts, British Journal of Pharmacology, vol.279, issue.7, pp.1776-82, 2002.
DOI : 10.1038/sj.bjp.0704619

URL : https://hal.archives-ouvertes.fr/inserm-00266209

W. Martin, Opioid antagonists, Pharmacol Rev, vol.19, issue.4, pp.463-521, 1967.

B. Barron, C. Jones, and J. Caffrey, Pericardial repair depresses canine cardiac catecholamines and met-enkephalin. Regul Pept, Nov, vol.10, issue.593, pp.313-333, 1995.

T. Eliasson, C. Mannheimer, F. Waagstein, B. Andersson, C. Bergh et al., Myocardial Turnover of Endogenous Opioids and Calcitonin-Gene-Related Peptide in the Human Heart and the Effects of Spinal Cord Stimulation on Pacing-Induced Angina Pectoris, Cardiology, vol.89, issue.3
DOI : 10.1159/000006783

P. Mclaughlin and Y. Wu, Opioid gene expression in the developing and adult rat heart

S. Wu, H. Li, and T. Wong, Cardioprotection of Preconditioning by Metabolic Inhibition in the Rat Ventricular Myocyte : Involvement of ??-Opioid Receptor, Circulation Research, vol.84, issue.12, pp.1388-95, 1999.
DOI : 10.1161/01.RES.84.12.1388

G. Baxter, F. Goma, and D. Yellon, Involvement of protein kinase C in the delayed cytoprotection following sublethal ischaemia in rabbit myocardium, British Journal of Pharmacology, vol.27, issue.2, 1995.
DOI : 10.1111/j.1476-5381.1995.tb15866.x

G. Baxter, M. Mocanu, and D. Yellon, Attenuation of Myocardial Ischaemic Injury 24 h After Diacylglycerol TreatmentIn Vivo, Journal of Molecular and Cellular Cardiology, vol.29, issue.7, pp.1967-75, 1997.
DOI : 10.1006/jmcc.1997.0436

P. Ping, J. Zhang, Y. Qiu, X. Tang, S. Manchikalapudi et al., Ischemic Preconditioning Induces Selective Translocation of Protein Kinase C Isoforms ?? and ?? in the Heart of Conscious Rabbits Without Subcellular Redistribution of Total Protein Kinase C Activity, Circulation Research, vol.81, issue.3, pp.404-418, 1997.
DOI : 10.1161/01.RES.81.3.404

Y. Qiu, P. Ping, X. Tang, S. Manchikalapudi, A. Rizvi et al., Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved., Journal of Clinical Investigation, vol.101, issue.10, pp.2182-98, 1998.
DOI : 10.1172/JCI1258

P. Ping, H. Takano, J. Zhang, X. Tang, Y. Qiu et al., Isoform-Selective Activation of Protein Kinase C by Nitric Oxide in the Heart of Conscious Rabbits : A Signaling Mechanism for Both Nitric Oxide??Induced and Ischemia-Induced Preconditioning, Circulation Research, vol.84, issue.5, pp.587-604, 1999.
DOI : 10.1161/01.RES.84.5.587

K. Datta, A. Bellacosa, T. Chan, and P. Tsichlis, Akt Is a Direct Target of the Phosphatidylinositol 3-Kinase: ACTIVATION BY GROWTH FACTORS, v-src and v-Ha-ras, IN Sf9 AND MAMMALIAN CELLS, Journal of Biological Chemistry, vol.271, issue.48, pp.30835-30844, 1996.
DOI : 10.1074/jbc.271.48.30835

H. Tong, W. Chen, C. Steenbergen, and E. Murphy, Ischemic Preconditioning Activates Phosphatidylinositol-3-Kinase Upstream of Protein Kinase C, Circulation Research, vol.87, issue.4, pp.309-324, 2000.
DOI : 10.1161/01.RES.87.4.309

A. Kis, D. Yellon, and G. Baxter, Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase, Journal of Molecular and Cellular Cardiology, vol.35, issue.9, 2003.
DOI : 10.1016/S0022-2828(03)00208-6

M. Michel, Y. Li, and G. Heusch, Mitogen-activated protein kinases in the heart, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.363, issue.3, pp.245-66, 2001.
DOI : 10.1007/s002100000363

R. Da-silva, T. Grampp, T. Pasch, M. Schaub, and M. Zaugg, Differential Activation of Mitogen-activated Protein Kinases in Ischemic and Anesthetic Preconditioning, Anesthesiology, vol.100, issue.1
DOI : 10.1097/00000542-200401000-00013

E. Marais, S. Genade, H. Strijdom, J. Moolman, and A. Lochner, p38 MAPK Activation Triggers Pharmacologically-induced ?? -adrenergic Preconditioning, but Not Ischaemic Preconditioning, Journal of Molecular and Cellular Cardiology, vol.33, issue.12, pp.2157-77, 2001.
DOI : 10.1006/jmcc.2001.1478

S. Haq, A. Clerk, and P. Sugden, Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by adenosine in the perfused rat heart, FEBS Letters, vol.317, issue.3, pp.305-313, 1998.
DOI : 10.1016/S0014-5793(98)01000-X

E. Reid, G. Kristo, Y. Yoshimura, C. Ballard-croft, B. Keith et al., In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signaling, AJP: Heart and Circulatory Physiology, vol.288, issue.5, pp.2253-2262, 2005.
DOI : 10.1152/ajpheart.01009.2004

R. Fryer, A. Hsu, and G. Gross, ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection, Basic Research in Cardiology, vol.96, issue.2, pp.136-178, 2001.
DOI : 10.1007/s003950170063

A. Rizvi, X. Tang, Y. Qiu, Y. Xuan, H. Takano et al., Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning, Am J Physiol, vol.277, issue.3 2, pp.874-84, 1999.

X. Tang, Y. Qiu, S. Park, J. Sun, A. Kalya et al., Time Course of Late Preconditioning Against Myocardial Stunning in Conscious Pigs, Circulation Research, vol.79, issue.3, pp.424-458, 1996.
DOI : 10.1161/01.RES.79.3.424

R. Bolli, S. Manchikalapudi, X. Tang, H. Takano, Y. Qiu et al., The Protective Effect of Late Preconditioning Against Myocardial Stunning in Conscious Rabbits Is Mediated by Nitric Oxide Synthase : Evidence That Nitric Oxide Acts Both as a Trigger and as a Mediator of the Late Phase of Ischemic Preconditioning, Circulation Research, vol.81, issue.6, pp.1094-107, 1997.
DOI : 10.1161/01.RES.81.6.1094

J. Imagawa, D. Yellon, and G. Baxter, Pharmacological evidence that inducible nitric oxide synthase is a mediator of delayed preconditioning, British Journal of Pharmacology, vol.93, issue.A, pp.701-709, 1999.
DOI : 10.1038/sj.bjp.0702368

Y. Guo, W. Jones, Y. Xuan, X. Tang, W. Bao et al., The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene, Proceedings of the National Academy of Sciences, vol.79, issue.3, pp.11507-11519, 1999.
DOI : 10.1161/01.RES.79.3.363

Y. Wang, Y. Guo, S. Zhang, W. Wu, J. Wang et al., Ischemic Preconditioning Upregulates Inducible Nitric Oxide Synthase in Cardiac Myocyte, Journal of Molecular and Cellular Cardiology, vol.34, issue.1, pp.5-15, 2002.
DOI : 10.1006/jmcc.2001.1482

E. Kodani, Y. Xuan, H. Takano, K. Shinmura, X. Tang et al., Role of cyclic guanosine monophosphate in late preconditioning in conscious rabbits. Circulation, pp.3046-52, 2002.

K. Shinmura, Y. Xuan, X. Tang, E. Kodani, H. Han et al., Inducible Nitric Oxide Synthase Modulates Cyclooxygenase-2 Activity in the Heart of Conscious Rabbits During the Late Phase of Ischemic Preconditioning, Circulation Research, vol.90, issue.5, pp.602-610, 2002.
DOI : 10.1161/01.RES.0000012202.52809.40

G. Gross and J. Peart, channels and myocardial preconditioning: an update, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.3, pp.921-951, 2003.
DOI : 10.1152/ajpheart.00421.2003

G. Gross and J. Auchampach, Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs, Circulation Research, vol.70, issue.2, pp.223-256, 1992.
DOI : 10.1161/01.RES.70.2.223

W. Cole, C. Mcpherson, and D. Sontag, ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage, Circulation Research, vol.69, issue.3, pp.571-81, 1991.
DOI : 10.1161/01.RES.69.3.571

K. Hamada, J. Yamazaki, and T. Nagao, Shortening of Action Potential Duration is not Prerequisite for Cardiac Protection by Ischemic Preconditioning or a KATPChannel Opener, Journal of Molecular and Cellular Cardiology, vol.30, issue.7, pp.1369-79, 1998.
DOI : 10.1006/jmcc.1998.0701

G. Grover, D. Alonzo, A. Parham, C. Darbenzio, and R. , Cardioprotection with the KATP Opener Cromakalim Is Not Correlated with Ischemic Myocardial Action Potential Duration, Journal of Cardiovascular Pharmacology, vol.26, issue.1, pp.145-52, 1995.
DOI : 10.1097/00005344-199507000-00023

Z. Yao and G. Gross, Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs, Circulation, vol.89, issue.4, pp.1769-75, 1994.
DOI : 10.1161/01.CIR.89.4.1769

I. Inoue, H. Nagase, K. Kishi, and T. Higuti, ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, vol.352, issue.6332, pp.244-251, 1991.
DOI : 10.1038/352244a0

K. Garlid, P. Paucek, V. Yarov-yarovoy, H. Murray, R. Darbenzio et al., Cardioprotective Effect of Diazoxide and Its Interaction With Mitochondrial ATP-Sensitive K+ Channels : Possible Mechanism of Cardioprotection, Circulation Research, vol.81, issue.6, pp.1072-82, 1997.
DOI : 10.1161/01.RES.81.6.1072

D. Mei, G. Elliott, and G. Gross, KATP channels mediate late preconditioning against infarction produced by monophosphoryl lipid A, Am J Physiol, vol.271, issue.6 2, pp.2723-2732, 1996.

K. Garlid, Cation transport in mitochondria ??? The potassium cycle, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1275, issue.1-2, pp.123-129, 1996.
DOI : 10.1016/0005-2728(96)00061-8

A. Szewczyk, B. Mikolajek, S. Pikula, and M. Nalecz, Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel, Pol J Pharmacol, vol.45, issue.4, pp.437-480, 1993.

E. Holmuhamedov, L. Wang, and A. Terzic, overload in rat cardiac mitochondria, The Journal of Physiology, vol.1241, issue.2, pp.347-60, 1999.
DOI : 10.1111/j.1469-7793.1999.0347m.x

A. Costa, C. Quinlan, A. Andrukhiv, I. West, M. Jaburek et al., The direct physiological effects of mitoKATP opening on heart mitochondria, AJP: Heart and Circulatory Physiology, vol.290, issue.1, pp.406-421, 2006.
DOI : 10.1152/ajpheart.00794.2005

S. Javadov, S. Clarke, M. Das, E. Griffiths, K. Lim et al., Ischaemic Preconditioning Inhibits Opening of Mitochondrial Permeability Transition Pores in the Reperfused Rat Heart, The Journal of Physiology, vol.1504, issue.2, pp.513-537, 2003.
DOI : 10.1113/jphysiol.2003.034231

P. Light, Regulation of ATP-sensitive potassium channels by phosphorylation, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1286, issue.1, pp.65-73, 1996.
DOI : 10.1016/0304-4157(96)00004-4

P. Light, C. Bladen, R. Winkfein, M. Walsh, and R. French, Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels, Proceedings of the National Academy of Sciences, vol.85, issue.8, pp.9058-63, 2000.
DOI : 10.1161/01.RES.85.8.731

G. Brooks and D. Hearse, Role of Protein Kinase C in Ischemic Preconditioning: Player or Spectator?, Circulation Research, vol.79, issue.3, pp.627-657, 1996.
DOI : 10.1161/01.RES.79.3.628

T. Sato, B. O-'rourke, and E. Marban, Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res, Jul, vol.13, issue.831, pp.110-114, 1998.

M. Walker, M. Curtis, D. Hearse, R. Campbell, M. Janse et al., The Lambeth Conventions: guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion, Cardiovascular Research, vol.22, issue.7, pp.447-55, 1988.
DOI : 10.1093/cvr/22.7.447

K. Yoshida, Y. Mizukami, and M. Kitakaze, Nitric oxide mediates protein kinase C isoform translocation in rat heart during postischemic reperfusion, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1453, issue.2, pp.230-238, 1999.
DOI : 10.1016/S0925-4439(98)00105-7

M. Joyeux, D. Godin-ribuot, and C. Ribuot, Resistance to myocardial infarction induced by heat stress and the effect of ATP-sensitive potassium channel blockade in the rat isolated heart, British Journal of Pharmacology, vol.27, issue.6, pp.1085-1093, 1998.
DOI : 10.1038/sj.bjp.0701710

Y. Shi, P. Rafiee, J. Su, K. Pritchard, J. Tweddell et al., Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels, Basic Research in Cardiology, vol.99, issue.3, pp.173-82, 2004.
DOI : 10.1007/s00395-004-0455-x

H. Ding, H. Zhu, J. Dong, W. Zhu, W. Yang et al., Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury1, Acta Pharmacologica Sinica, vol.79, issue.3, pp.315-337, 2005.
DOI : 10.1016/S0005-2728(99)00025-0

P. Hanlon, P. Fu, G. Wright, C. Steenbergen, M. Arcasoy et al., Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling, The FASEB Journal, vol.19, issue.10, pp.1323-1328, 2005.
DOI : 10.1096/fj.04-3545fje

E. Gross, J. Peart, A. Hsu, J. Auchampach, and G. Gross, Extending the cardioprotective window using a novel ??-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway, AJP: Heart and Circulatory Physiology, vol.288, issue.6, pp.2744-2753, 2005.
DOI : 10.1152/ajpheart.00918.2004

C. Arnaud, M. Joyeux-faure, S. Bottari, D. Godin-ribuot, and C. Ribuot, NEW INSIGHT INTO THE SIGNALLING PATHWAYS OF HEAT STRESS-INDUCED MYOCARDIAL PRECONDITIONING: PROTEIN KINASE Cepsilon TRANSLOCATION AND HEAT SHOCK PROTEIN 27 PHOSPHORYLATION, Clinical and Experimental Pharmacology and Physiology, vol.276, issue.3, pp.129-162, 2004.
DOI : 10.1007/s004240050028

URL : https://hal.archives-ouvertes.fr/inserm-00266325

R. Lasley, B. Keith, G. Kristo, Y. Yoshimura, R. Mentzer et al., Delayed adenosine A1 receptor preconditioning in rat myocardium is MAPK dependent but iNOS independent, AJP: Heart and Circulatory Physiology, vol.289, issue.2, pp.785-91, 2005.
DOI : 10.1152/ajpheart.01008.2004

J. Neubauer, Invited review: Physiological and pathophysiological responses to intermittent hypoxia, J Appl Physiol, vol.90, issue.4, pp.1593-1602, 2001.

H. Sasaki, P. Ray, L. Zhu, H. Otani, T. Asahara et al., Hypoxia/Reoxygenation Promotes Myocardial Angiogenesis via an??NF ?? B-dependent Mechanism in a Rat Model of Chronic Myocardial Infarction, Journal of Molecular and Cellular Cardiology, vol.33, issue.2, pp.283-94, 2001.
DOI : 10.1006/jmcc.2000.1299

R. Lasley, G. Anderson, R. Mentzer, and J. , Ischaemic and hypoxic preconditioning enhance postischaemic recovery of function in the rat heart, Cardiovascular Research, vol.27, issue.4, pp.565-70, 1993.
DOI : 10.1093/cvr/27.4.565

K. Baumgarten, G. Gerstenblith, and R. Weiss, High Extracellular K+During Hypoxic Preconditioning Episodes Attenuates the Post-Ischemic Contractile and Ionic Benefits of Preconditioning, Journal of Molecular and Cellular Cardiology, vol.31, issue.1, pp.203-216, 1999.
DOI : 10.1006/jmcc.1998.0860

B. Brar, A. Stephanou, R. Knight, and D. Latchman, Activation of Protein Kinase B/Akt by Urocortin is Essential for its Ability to Protect Cardiac Cells Against Hypoxia/Reoxygenation-induced Cell Death, Journal of Molecular and Cellular Cardiology, vol.34, issue.4, pp.483-92, 2002.
DOI : 10.1006/jmcc.2002.1529

Y. Fujio, T. Nguyen, D. Wencker, R. Kitsis, and K. Walsh, Akt Promotes Survival of Cardiomyocytes In Vitro and Protects Against Ischemia-Reperfusion Injury in Mouse Heart, Circulation, vol.101, issue.6, pp.660-667, 2000.
DOI : 10.1161/01.CIR.101.6.660

T. Matsui, J. Tao, F. Del-monte, K. Lee, L. Li et al., Akt Activation Preserves Cardiac Function and Prevents Injury After Transient Cardiac Ischemia In Vivo, Circulation, vol.104, issue.3, 2001.
DOI : 10.1161/01.CIR.104.3.330

P. Sugden and A. Clerk, "Stress-Responsive" Mitogen-Activated Protein Kinases (c-Jun N-Terminal Kinases and p38 Mitogen-Activated Protein Kinases) in the Myocardium, Circulation Research, vol.83, issue.4, pp.345-52, 1998.
DOI : 10.1161/01.RES.83.4.345

W. Xu, Y. Liu, S. Wang, T. Mcdonald, V. Eyk et al., Cytoprotective Role of Ca2+- Activated K+ Channels in the Cardiac Inner Mitochondrial Membrane, Science, vol.267, issue.36, 2002.
DOI : 10.1016/S0006-291X(88)81212-9

H. Sasaki, S. Fukuda, H. Otani, L. Zhu, G. Yamaura et al., Hypoxic Preconditioning Triggers Myocardial Angiogenesis: a Novel Approach to Enhance Contractile Functional Reserve in Rat with Myocardial Infarction, Journal of Molecular and Cellular Cardiology, vol.34, issue.3, pp.335-383, 2002.
DOI : 10.1006/jmcc.2001.1516

L. Kevin, E. Novalija, and D. Stowe, Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice, Anesthesia & Analgesia, vol.101, issue.5, pp.1275-87, 2005.
DOI : 10.1213/01.ANE.0000180999.81013.D0

K. Gong, Z. Zhang, A. Li, Y. Huang, P. Bu et al., ROS-mediated ERK activation in delayed protection from anoxic preconditioning in neonatal rat cardiomyocytes

Y. Shi, W. Hutchins, J. Su, D. Siker, N. Hogg et al., Delayed cardioprotection with isoflurane: role of reactive oxygen and nitrogen, AJP: Heart and Circulatory Physiology, vol.288, issue.1, pp.175-84, 2005.
DOI : 10.1152/ajpheart.00494.2004

A. Nakano, M. Cohen, and J. Downey, Ischemic preconditioning, Pharmacology & Therapeutics, vol.86, issue.3, pp.263-75, 2000.
DOI : 10.1016/S0163-7258(00)00058-9

S. Takeshima, J. Vaage, and G. Valen, Preconditioning the globally ischaemic, isolated rat heart: the impact of the preconditioning model on post-ischaemic systolic and diastolic function, Scandinavian Journal of Clinical and Laboratory Investigation, vol.10, issue.7, pp.637-683, 1997.
DOI : 10.1016/S0022-2828(95)90590-1

T. Miura, M. Goto, K. Urabe, A. Endoh, K. Shimamoto et al., Does myocardial stunning contribute to infarct size limitation by ischemic preconditioning? Circulation, 1991.

M. Joyeux-faure, F. Stanke-labesque, B. Lefebvre, P. Beguin, D. Godin-ribuot et al., Chronic intermittent hypoxia increases infarction in the isolated rat heart, Journal of Applied Physiology, vol.98, issue.5, pp.1691-1697, 2005.
DOI : 10.1152/japplphysiol.01146.2004

S. Armstrong, Protein kinase activation and myocardial ischemia/reperfusion injury, Cardiovascular Research, vol.61, issue.3
DOI : 10.1016/j.cardiores.2003.09.031

M. Joyeux, A. Boumendjel, R. Carroll, C. Ribuot, D. Godin-ribuot et al., SB 203580, a mitogen-activated protein kinase inhibitor, abolishes resistance to myocardial infarction induced by heat stress. Cardiovasc Drugs Ther, pp.337-380, 2000.

A. Kulisz, N. Chen, N. Chandel, Z. Shao, and P. Schumacker, Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.282, issue.6, pp.1324-1333, 2002.
DOI : 10.1152/ajplung.00326.2001

M. Zheng, C. Reynolds, S. Jo, R. Wersto, Q. Han et al., Intracellular acidosisactivated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury, Faseb J

A. Dana, M. Skarli, J. Papakrivopoulou, and D. Yellon, Adenosine A1 Receptor Induced Delayed Preconditioning in Rabbits : Induction of p38 Mitogen-Activated Protein Kinase Activation and Hsp27 Phosphorylation via a Tyrosine Kinase- and Protein Kinase C-Dependent Mechanism, Circulation Research, vol.86, issue.9, pp.989-97, 2000.
DOI : 10.1161/01.RES.86.9.989

A. Clerk and P. Sugden, The p38-MAPK inhibitor, SB203580, inhibits cardiac stressactivated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs). FEBS Lett, pp.93-99, 1998.

A. Saurin, J. Martin, R. Heads, C. Foley, J. Mockridge et al., The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes, The FASEB Journal, vol.14, issue.14, pp.2237-2283, 2000.
DOI : 10.1096/fj.99-0671com

M. Tanno, R. Bassi, D. Gorog, A. Saurin, J. Jiang et al., Diverse Mechanisms of Myocardial p38 Mitogen-Activated Protein Kinase Activation: Evidence for MKK-Independent Activation by a TAB1-Associated Mechanism Contributing to Injury During Myocardial Ischemia, Circulation Research, vol.93, issue.3, pp.254-61, 2003.
DOI : 10.1161/01.RES.0000083490.43943.85

R. Fryer, P. Pratt, A. Hsu, and G. Gross, Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection, J

X. Liu, X. Wu, L. Cai, C. Tang, and J. Su, Hypoxic preconditioning of cardiomyocytes and cardioprotection: phophorylation of HIF-1?? induced by p42/p44 mitogen-activated protein kinases is involved, Pathophysiology, vol.9, issue.4, pp.201-206, 2003.
DOI : 10.1016/S0928-4680(03)00006-3

J. Zhang, Y. Huang, and Z. Yang, Role of mitogen -activated protein kinases signal pathway in cardiomyocyte injury induced by serum after hypoxia and burn injury

R. Germack and J. Dickenson, Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.39, issue.3, pp.429-471, 2005.
DOI : 10.1016/j.yjmcc.2005.06.001

E. Chen, N. Mazure, J. Cooper, and A. Giaccia, Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation, Cancer Res, vol.61, issue.6, pp.2429-2462, 2001.

Y. Wang, N. Ahmad, M. Kudo, and M. Ashraf, Contribution of Akt and endothelial nitric oxide synthase to diazoxide-induced late preconditioning, AJP: Heart and Circulatory Physiology, vol.287, issue.3, pp.1125-1156, 2004.
DOI : 10.1152/ajpheart.00183.2004

Q. Qin, J. Downey, and M. Cohen, Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.2, pp.727-761, 2003.
DOI : 10.1152/ajpheart.00476.2002

Y. Uchiyama, H. Otani, T. Okada, T. Uchiyama, H. Ninomiya et al., Integrated pharmacological preconditioning in combination with adenosine, a mitochondrial KATP channel opener and a nitric oxide donor, The Journal of Thoracic and Cardiovascular Surgery, vol.126, issue.1, pp.148-59, 2003.
DOI : 10.1016/S0022-5223(03)00236-8

R. Yu, S. Mandlekar, T. Tan, and A. Kong, Activation of p38 and c-Jun N-terminal Kinase Pathways and Induction of Apoptosis by Chelerythrine Do Not Require Inhibition of Protein Kinase C, Journal of Biological Chemistry, vol.275, issue.13, pp.9612-9621, 2000.
DOI : 10.1074/jbc.275.13.9612

Z. Balafanova, R. Bolli, J. Zhang, Y. Zheng, J. Pass et al., Nitric Oxide (NO) Induces Nitration of Protein Kinase Cepsilon (PKCepsilon ), Facilitating PKCepsilon Translocation via Enhanced PKCepsilon -RACK2 Interactions. A NOVEL MECHANISM OF NO-TRIGGERED ACTIVATION OF PKCepsilon, Journal of Biological Chemistry, vol.277, issue.17, p.11, 2002.
DOI : 10.1074/jbc.M112451200

K. Hu, D. Duan, G. Li, and S. Nattel, Protein Kinase C Activates ATP-Sensitive K+ Current in Human and Rabbit Ventricular Myocytes, Circulation Research, vol.78, issue.3, pp.492-500, 1996.
DOI : 10.1161/01.RES.78.3.492

R. Bolli, Cardioprotective Function of Inducible Nitric Oxide Synthase and Role of Nitric Oxide in Myocardial Ischemia and Preconditioning: an Overview of a Decade of Research, Journal of Molecular and Cellular Cardiology, vol.33, issue.11, pp.1897-918, 2001.
DOI : 10.1006/jmcc.2001.1462

R. Bolli, D. B. Tang, X. Qiu, Y. Ping, P. Xuan et al., The nitric oxide hypothesis of late preconditioning, Basic Research in Cardiology, vol.93, issue.5, pp.325-363, 1998.
DOI : 10.1007/s003950050101

K. Przyklenk, M. Sussman, B. Simkhovich, and R. Kloner, Does ischemic preconditioning trigger translocation of protein kinase C in the canine model? Circulation, pp.1546-57, 1995.

X. Yang, H. Sato, J. Downey, and M. Cohen, Protection of Ischemic Preconditioning is Dependent upon a Critical Timing Sequence of Protein Kinase C Activation, Journal of Molecular and Cellular Cardiology, vol.29, issue.3, pp.991-1000, 1997.
DOI : 10.1006/jmcc.1996.0344

H. Takano, X. Tang, and R. Bolli, Differential role of K(ATP) channels in late preconditioning against myocardial stunning and infarction in rabbits, Am J Physiol Heart Circ Physiol, vol.279, issue.5, pp.2350-2359, 2000.

H. Zhu, J. Dong, W. Zhu, H. Ding, and Z. Zhou, ATP-dependent potassium channels involved in the cardiac protection induced by intermittent hypoxia against ischemia/reperfusion injury, Life Sciences, vol.73, issue.10, pp.1275-87, 2003.
DOI : 10.1016/S0024-3205(03)00429-6

J. Baker, S. Contney, G. Gross, and Z. Bosnjak, KATPChannel Activation in a Rabbit Model of Chronic Myocardial Hypoxia, Journal of Molecular and Cellular Cardiology, vol.29, issue.2, pp.845-853, 1997.
DOI : 10.1006/jmcc.1996.0361

P. Beguin, M. Joyeux-faure, D. Godin-ribuot, P. Levy, and C. Ribuot, Acute intermittent hypoxia improves rat myocardium tolerance to ischemia, Journal of Applied Physiology, vol.99, issue.3, pp.1064-1073, 2005.
DOI : 10.1152/japplphysiol.00056.2005

K. Node, M. Kitakaze, H. Kosaka, K. Komamura, T. Minamino et al., Increased release of NO during ischemia reduces myocardial contractility and improves metabolic dysfunction. Circulation, pp.356-64, 1996.

R. Pabla and M. Curtis, Effect of Endogenous Nitric Oxide on Cardiac Systolic and Diastolic Function During Ischemia and Reperfusion in the Rat Isolated Perfused Heart, Journal of Molecular and Cellular Cardiology, vol.28, issue.10, pp.2111-2132, 1996.
DOI : 10.1006/jmcc.1996.0203

S. Jones and R. Bolli, The ubiquitous role of nitric oxide in cardioprotection, Journal of Molecular and Cellular Cardiology, vol.40, issue.1, pp.16-23, 2006.
DOI : 10.1016/j.yjmcc.2005.09.011

F. Jung, L. Palmer, N. Zhou, and R. Johns, Hypoxic Regulation of Inducible Nitric Oxide Synthase via Hypoxia Inducible Factor-1 in Cardiac Myocytes, Circulation Research, vol.86, issue.3, pp.319-344, 2000.
DOI : 10.1161/01.RES.86.3.319

M. Kitakaze, K. Node, K. Komamura, T. Minamino, M. Inoue et al., Evidence for nitric oxide generation in the cardiomyocytes: its augmentation by hypoxia, Journal of Molecular and Cellular Cardiology, vol.27, issue.10, pp.2149-54, 1995.
DOI : 10.1016/S0022-2828(95)91335-1

P. Peppard, T. Young, M. Palta, and J. Skatrud, Prospective Study of the Association between Sleep-Disordered Breathing and Hypertension, New England Journal of Medicine, vol.342, issue.19, pp.1378-84, 2000.
DOI : 10.1056/NEJM200005113421901

E. Shahar, C. Whitney, S. Redline, E. Lee, A. Newman et al., Sleep-disordered Breathing and Cardiovascular Disease, American Journal of Respiratory and Critical Care Medicine, vol.163, issue.1, pp.19-25, 2001.
DOI : 10.1164/ajrccm.163.1.2001008

K. Minoguchi, T. Yokoe, T. Tazaki, H. Minoguchi, A. Tanaka et al., Increased Carotid Intima-Media Thickness and Serum Inflammatory Markers in Obstructive Sleep Apnea, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.5
DOI : 10.1164/rccm.200412-1652OC

F. Nieto, T. Young, B. Lind, E. Shahar, J. Samet et al., Association of Sleep-Disordered Breathing, Sleep Apnea, and Hypertension in a Large Community-Based Study, JAMA, vol.283, issue.14
DOI : 10.1001/jama.283.14.1829

T. Young, P. Peppard, and D. Gottlieb, Epidemiology of Obstructive Sleep Apnea, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.9, pp.1217-1256, 2002.
DOI : 10.1164/rccm.2109080

P. Lavie, P. Herer, and V. Hoffstein, Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study, BMJ, vol.320, issue.7233, pp.479-82, 2000.
DOI : 10.1136/bmj.320.7233.479

H. Becker, A. Jerrentrup, T. Ploch, L. Grote, T. Penzel et al., Effect of nasal continuous positive airway pressure treatment on blood pressure in patients with obstructive sleep apnea. Circulation, pp.68-73, 2003.

D. Brooks, R. Horner, L. Kozar, C. Render-teixeira, and E. Phillipson, Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model., Journal of Clinical Investigation, vol.99, issue.1, 1997.
DOI : 10.1172/JCI119120

E. Fletcher, J. Lesske, W. Qian, C. Miller, and T. Unger, Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats., Hypertension, vol.19, issue.6_Pt_1, pp.555-61, 1992.
DOI : 10.1161/01.HYP.19.6.555

H. Greenberg, A. Sica, D. Batson, and S. Scharf, Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia, J Appl Physiol, vol.86, issue.1, pp.298-305, 1999.

E. Fletcher, J. Lesske, R. Behm, C. Miller, H. Stauss et al., Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea, J Appl Physiol, vol.72, issue.5, pp.1978-84, 1992.

J. Lesske, E. Fletcher, G. Bao, and T. Unger, Hypertension caused by chronic intermittent hypoxia--influence of chemoreceptors and sympathetic nervous system, J Hypertens, 1997.

R. Smith, D. Veale, J. Pepin, and P. Levy, Autonomic nervous system and obstructive sleep apneas], Rev Mal Respir, vol.16, issue.3, pp.287-304, 1999.

M. Koskenvuo, J. Kaprio, M. Partinen, H. Langinvainio, S. Sarna et al., Snoring as a risk factor for hypertension and angina pectoris. Lancet, pp.893-899, 1985.

Y. Peker, J. Hedner, H. Kraiczi, and S. Loth, Respiratory Disturbance Index, American Journal of Respiratory and Critical Care Medicine, vol.162, issue.1, pp.81-87, 2000.
DOI : 10.1164/ajrccm.162.1.9905035

T. Young and P. Peppard, Sleep-disordered breathing and cardiovascular disease: epidemiologic evidence for a relationship, Sleep, vol.23, issue.4, pp.122-128, 2000.

J. Marin, S. Carrizo, E. Vicente, and A. Agusti, Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study, The Lancet, vol.365, issue.9464, pp.1046-53, 2005.
DOI : 10.1016/S0140-6736(05)74229-X

A. Shamsuzzaman, B. Gersh, and V. Somers, Obstructive Sleep Apnea, JAMA, vol.290, issue.14, pp.1906-1920, 2003.
DOI : 10.1001/jama.290.14.1906

P. Ridker, J. Buring, N. Cook, and N. Rifai, C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events. An 8-year follow-up of 14,719 initially healthy American women, ACC Current Journal Review, vol.12, issue.3, pp.391-398, 2003.
DOI : 10.1016/S1062-1458(03)00157-0

G. Hansson, Inflammation, Atherosclerosis, and Coronary Artery Disease, New England Journal of Medicine, vol.352, issue.16
DOI : 10.1056/NEJMra043430

A. Vgontzas, D. Papanicolaou, E. Bixler, K. Hopper, A. Lotsikas et al., Sleep Apnea and Daytime Sleepiness and Fatigue: Relation to Visceral Obesity, Insulin Resistance, and Hypercytokinemia, The Journal of Clinical Endocrinology & Metabolism, vol.85, issue.3, pp.1151-1159, 2000.
DOI : 10.1210/jcem.85.3.6484

A. Vgontzas, D. Papanicolaou, E. Bixler, A. Kales, K. Tyson et al., Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity, The Journal of Clinical Endocrinology & Metabolism, vol.82, issue.5, pp.1313-1319, 1997.
DOI : 10.1210/jcem.82.5.3950

P. Mills and J. Dimsdale, Sleep apnea: a model for studying cytokines, sleep, and sleep disruption, Brain, Behavior, and Immunity, vol.18, issue.4, pp.298-303, 2004.
DOI : 10.1016/j.bbi.2003.10.004

E. Ohga, T. Tomita, H. Wada, H. Yamamoto, T. Nagase et al., Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1, Journal of Applied Physiology, vol.94, issue.1, pp.179-84, 2003.
DOI : 10.1152/japplphysiol.00177.2002

T. Yokoe, K. Minoguchi, H. Matsuo, N. Oda, H. Minoguchi et al., Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation, pp.1129-1163, 2003.

K. Chin, T. Nakamura, K. Shimizu, M. Mishima, T. Nakamura et al., Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome, The American Journal of Medicine, vol.109, issue.7, pp.562-569, 2000.
DOI : 10.1016/S0002-9343(00)00580-5

E. Ohga, T. Nagase, T. Tomita, S. Teramoto, T. Matsuse et al., Increased levels of circulating ICAM-1, VCAM-1, and L-selectin in obstructive sleep apnea syndrome, J

L. Dyugovskaya, P. Lavie, and L. Lavie, Increased Adhesion Molecules Expression and Production of Reactive Oxygen Species in Leukocytes of Sleep Apnea Patients, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.7, pp.934-943, 2002.
DOI : 10.1164/ajrccm.165.7.2104126

M. Grisham, D. Granger, and D. Lefer, Modulation of leukocyte???endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease, Free Radical Biology and Medicine, vol.25, issue.4-5, pp.4-5, 1998.
DOI : 10.1016/S0891-5849(98)00094-X

B. Walzog and P. Gaehtgens, Adhesion Molecules: The Path to a New Understanding of Acute Inflammation, News Physiol Sci, vol.15, pp.107-120, 2000.

J. Baguet, L. Hammer, P. Levy, H. Pierre, S. Launois et al., The Severity of Oxygen Desaturation Is Predictive of Carotid Wall Thickening and Plaque Occurrence, Chest, vol.128, issue.5, pp.3407-3419, 2005.
DOI : 10.1378/chest.128.5.3407

P. Barnes, Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients, Chest, vol.122, issue.4, pp.1162-1169, 2002.

A. Barcelo, C. Miralles, F. Barbe, M. Vila, S. Pons et al., Abnormal lipid peroxidation in patients with sleep apnoea, European Respiratory Journal, vol.16, issue.4, pp.644-651, 2000.
DOI : 10.1034/j.1399-3003.2000.16d13.x

L. Lavie, A. Vishnevsky, and P. Lavie, Evidence for lipid peroxidation in obstructive sleep apnea. Sleep, Feb, vol.1, issue.271, pp.123-131, 2004.

K. Tan, W. Chow, J. Lam, B. Lam, W. Wong et al., HDL dysfunction in obstructive sleep apnea, Atherosclerosis, vol.184, issue.2, pp.377-82, 2006.
DOI : 10.1016/j.atherosclerosis.2005.04.024

R. Schulz, S. Mahmoudi, K. Hattar, U. Sibelius, H. Olschewski et al., Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy, Am J Respir Crit Care Med, vol.162, issue.2, 2000.

B. Row, R. Liu, W. Xu, L. Kheirandish, and D. Gozal, Intermittent Hypoxia Is Associated with Oxidative Stress and Spatial Learning Deficits in the Rat, American Journal of Respiratory and Critical Care Medicine, vol.167, issue.11, 2003.
DOI : 10.1164/rccm.200209-1050OC

W. Xu, C. L. Row, B. Xu, R. Ke, Y. Xu et al., Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea, Neuroscience, vol.126, issue.2, pp.313-336, 2004.
DOI : 10.1016/j.neuroscience.2004.03.055

L. Chen, E. Einbinder, Q. Zhang, J. Hasday, C. Balke et al., Oxidative Stress and Left Ventricular Function with Chronic Intermittent Hypoxia in Rats, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.7, pp.915-935, 2005.
DOI : 10.1164/rccm.200504-560OC

Y. Suzuki, V. Jain, A. Park, and R. Day, Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases, Free Radical Biology and Medicine, vol.40, issue.10, 2006.
DOI : 10.1016/j.freeradbiomed.2006.01.008

R. Farre, M. Rotger, J. Montserrat, G. Calero, and D. Navajas, Collapsible upper airway segment to study the obstructive sleep apnea/hypopnea syndrome in rats, Respiratory Physiology & Neurobiology, vol.136, issue.2-3, pp.2-3, 2003.
DOI : 10.1016/S1569-9048(03)00082-X

M. Campen, L. Shimoda, O. Donnell, and C. , Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice, Journal of Applied Physiology, vol.99, issue.5, pp.2028-2063, 2005.
DOI : 10.1152/japplphysiol.00411.2005

H. Greenberg, X. Ye, D. Wilson, A. Htoo, T. Hendersen et al., Chronic intermittent hypoxia activates nuclear factor-??B in cardiovascular tissues in vivo, Biochemical and Biophysical Research Communications, vol.343, issue.2, pp.591-597, 2006.
DOI : 10.1016/j.bbrc.2006.03.015

E. Fletcher, Invited review: Physiological consequences of intermittent hypoxia: systemic blood pressure, J Appl Physiol, vol.90, issue.4, pp.1600-1605, 2001.

H. Kraiczi, J. Magga, X. Sun, H. Ruskoaho, X. Zhao et al., Hypoxic pressor response, cardiac size, and natriuretic peptides are modified by long-term intermittent hypoxia, J Appl Physiol, vol.87, issue.6, pp.2025-2056, 1999.

N. Kanagy, B. Walker, and L. Nelin, Role of Endothelin in Intermittent Hypoxia-Induced Hypertension, Hypertension, vol.37, issue.2, pp.511-516, 2001.
DOI : 10.1161/01.HYP.37.2.511

L. Lavie, Obstructive sleep apnoea syndrome ??? an oxidative stress disorder, Sleep Medicine Reviews, vol.7, issue.1, pp.35-51, 2003.
DOI : 10.1053/smrv.2002.0261

T. Young, J. Blustein, L. Finn, and M. Palta, Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults, Sleep, vol.20, issue.8, pp.608-621, 1997.

C. Bergeron, J. Kimoff, and Q. Hamid, Obstructive sleep apnea syndrome and inflammation, Journal of Allergy and Clinical Immunology, vol.116, issue.6
DOI : 10.1016/j.jaci.2005.10.008

J. Li, L. Thorne, N. Punjabi, C. Sun, A. Schwartz et al., Intermittent Hypoxia Induces Hyperlipidemia in Lean Mice, Circulation Research, vol.97, issue.7, pp.698-706, 2005.
DOI : 10.1161/01.RES.0000183879.60089.a9

B. Ansell, K. Watson, A. Fogelman, M. Navab, and G. Fonarow, High-Density Lipoprotein Function, Journal of the American College of Cardiology, vol.46, issue.10, pp.1792-1800, 2005.
DOI : 10.1016/j.jacc.2005.06.080

A. Newman, F. Nieto, U. Guidry, B. Lind, S. Redline et al., Relation of Sleep-disordered Breathing to Cardiovascular Disease Risk Factors : The Sleep Heart Health Study, American Journal of Epidemiology, vol.154, issue.1, pp.50-59, 2001.
DOI : 10.1093/aje/154.1.50

D. Taub, K. Conlon, A. Lloyd, J. Oppenheim, and D. Kelvin, Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta, Science, vol.144, issue.5, 1993.
DOI : 10.1038/346425a0

S. Lee, M. Brummet, S. Shahabuddin, T. Woodworth, S. Georas et al., Cutaneous Injection of Human Subjects with Macrophage Inflammatory Protein-1?? Induces Significant Recruitment of Neutrophils and Monocytes, The Journal of Immunology, vol.164, issue.6, pp.3392-401, 2000.
DOI : 10.4049/jimmunol.164.6.3392

B. Kwak and F. Mach, Statins inhibit leukocyte recruitment: new evidence for their antiinflammatory properties, Arterioscler Thromb Vasc Biol, vol.21, issue.8, pp.1256-1264, 2001.

C. Arnaud, F. Burger, S. Steffens, N. Veillard, T. Nguyen et al., Statins Reduce Interleukin-6-Induced C-Reactive Protein in Human Hepatocytes: New Evidence for Direct Antiinflammatory Effects of Statins, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.6, pp.1231-1237, 2005.
DOI : 10.1161/01.ATV.0000163840.63685.0c

K. Shimizu, M. Aikawa, K. Takayama, P. Libby, and R. Mitchell, Direct anti-inflammatory mechanisms contribute to attenuation of experimental allograft arteriosclerosis by statins. Circulation, pp.2113-2133, 2003.

C. Sullivan, F. Issa, M. Berthon-jones, and L. Eves, REVERSAL OF OBSTRUCTIVE SLEEP APNOEA BY CONTINUOUS POSITIVE AIRWAY PRESSURE APPLIED THROUGH THE NARES, The Lancet, vol.317, issue.8225, pp.862-867, 1981.
DOI : 10.1016/S0140-6736(81)92140-1