Métriques kählériennes de volume fini, uniformisation des surfaces complexes réglées et équations de Seiberg-Witten

Abstract : Let M=P(E) be a ruled surface. We introduce metrics of finite volume on M whose singularities are parametrized by a parabolic structure over E. Then, we generalise results of Burns--de Bartolomeis and LeBrun, by showing that the existence of a singular Kahler metric of finite volume and constant non positive scalar curvature on M is equivalent to the parabolic polystability of E; moreover these metrics all come from finite volume quotients of $H^2 \times CP^1$. In order to prove the theorem, we must produce a solution of Seiberg-Witten equations for a singular metric g. We use orbifold compactifications $\overline M$ on which we approximate g by a sequence of smooth metrics; the desired solution for g is obtained as the limit of a sequence of Seiberg-Witten solutions for these smooth metrics.
Document type :
Theses
Mathematics [math]. Ecole Polytechnique X, 2001. French


https://pastel.archives-ouvertes.fr/tel-00148005
Contributor : Yann Rollin <>
Submitted on : Monday, May 21, 2007 - 3:07:35 PM
Last modification on : Friday, March 27, 2015 - 4:02:23 PM

Identifiers

  • HAL Id : tel-00148005, version 1

Collections

Citation

Yann Rollin. Métriques kählériennes de volume fini, uniformisation des surfaces complexes réglées et équations de Seiberg-Witten. Mathematics [math]. Ecole Polytechnique X, 2001. French. <tel-00148005>

Export

Share

Metrics

Consultation de
la notice

122

Téléchargement du document

77