L. Microscopié-electronique-en-transmission-( and T. , 56 4.2.1. Les microscopes utilisés et leurs caractéristiques 56 4.2.2. Le mode haute résolution (HRTEM) : contraste de phase, p.72

]. Solubilité-du-carbone-et-de-l, azote dans le fer alpha et gamma [194] et du bore dans le fer gamma, p.180

C. Un-nanotube, Trois types de nanotubes monofeuillet : suivant l'orientation du feuillet hexagonal par rapportàportà l'axe du nanotube, on nomme (a) un nanotube chaise, (b) un nanotube zig-zag, p.11

T. Images and M. De-nanotubes-de-type, CN x synthétisés par CVD aérosol d'une solution de diméthlformamide (HOCN(CH 3 ) 2 ) transportée sous un flux d'argonàargon`argonà (a) 750°C et (b) 950°C. (c) Spectres EELS résolues spatialement sur des feuillets compartimentés et paralì elesàeles`elesà l'axe d'un nanotube [14, p.37

. Schéma-de-principe-de-la-diffusion-raman, Une fois excitée la molécule devient hautement instable, et retourne dans sonétatélectroniquesonétatsonétatélectronique de départ en

. Si-elle-revient-au-mêmé-etat-vibrationnel-que-celui-de-départ, la fréquence de lalumì ere diffusée est rigoureusementégalèrigoureusementégalè a celle de lalumì ere ayant servì a l'excitation : c'est la diffusion Rayleigh

). Diagramme-de-kataura, LesénergiesLesénergies de transition sont calculées par un modèle de liaisons fortes aux premiers voisins avec ? 0 = 2.9 eV et a C?C = 1.44 Å. Les lignes horizontales correspondent auxénergiesauxénergies laser expérimentales utilisées de 1, p.77

.. Spectre-expérimental-de-pertes-d-'´-energié-electronique-acquis-sur-un-nanotube-multifeuillets-de-carbone-pur, Trois régions distinctes se profilent Le pic intense centrécentréà 0 eV correspond auxélectronsauxélectrons n'ayant pas interagi lors de la traversée de l'´ echantillon. Ladeuxì eme région est comprise entre 0 et 50 eV : région des pertes proches. Puis latroisì eme région débutant vers 50 eV : région des pertes lointaines, comporte une série de seuils caractéristiques de la composition chimique de la zone sondée, p.86

J. L. Schéma and D. Cochon, Schéma du réacteur de synthèsè a vaporisation laser continue de l'ONERA en configuration injecteur, p.111

?. Min, Images MEB de nanotubes de type CN x multifeuillets obtenus par CVD aérosol avec un débit d'hydrogène de (a) 1 l.min ?1 et (b) 0 et 0.5 l, p.124

E. Signal, K. , and ]. , et (b) azote obtenus sur deséchantillonsdeséchantillons contenant des nanotubes monofeuillet (SWNTs) et multifeuillets (MWNTs) de type CN x . Il estégalement estégalement présenté en (a) la signature de référence du seuil K du C obtenue sur du graphite, p.153

G. ?1, G. , G. , and .. , nanotubes multifeuillets de type CN x synthétisés par CVD aérosol. (b) Signal EXAFS obtenù a plus haute résolution enénergieenénergie autour de 401 eV qui présente six pics multiples autour du pic G notés, p.154

E. Spectre and . Obtenu-sur-un, MWNTs de type CB x N y isolé avec un temps d'acquisition de 200 s sur une zone de 250 nm et une dipersion e ´ energie de 0.3 eV/canal. La concentration en bore et en azote dans ce nanotube est, p.170

E. Spectres, L. De-l-'oxygène, and M. Du-fer-enregistré-sur-une-nanoparticule-encapsulée-au-bout-du, Une soustraction du fond continu du pré-seuil et du post-seuil a ´ eté réalisé pour les deux seuil et un ajustement par des lorentziennes a ´ eté effectué pour calculer le rapport des lignes blanches du fer, p.178

. En-niveaux-de-gris, Elle correspondà correspondà une zone de 90 × 90 nm 2 Une collection de 4096 spectres de pertes d'´ energie ontétéontété enregistrés sur cette zone avec un temps d'acquisition par spectre de 100 ms, En couleur : sont représentées les cartes chimiques correspondant auxélémentsauxéléments B (bore), C (carbone), N (azote) et Co (cobalt) obtenuesàobtenuesà partir du spectre-image. . . . . . . . . . . . . . . . . . . . 208

.. En-niveaux-de-gris, La zone sondée correspondàcorrespond`correspondà une zone de 95.5 × 47.7 nm 2 Une collection de 2048 spectres de pertes d'´ energie ontétéontété enregistrés sur cette zone avec un temps d'acquisition par spectre de 100 ms et un pas de 1.5 nm. En couleur : sont représentées les cartes chimiques correspondant auxélémentsauxéléments B (bore), C (carbone), N (azote) et Co (cobalt) obtenuesàobtenuesà partir du spectre-image, p.211

.. En-niveaux-de-gris, La zone sondée correspondàcorrespond`correspondà une zone de 47.7 × 24 Une collection de 2048 spectres de pertes d'´ energie ontétéontété enregistrés sur cette zone avec un temps d'acquisition par spectre de 100 ms et un pas de 0.8 nm. En couleur : sont représentées les cartes chimiques correspondant auxélémentsauxéléments B (bore), C (carbone), N (azote) et Co (cobalt ) obtenuesàobtenuesà partir du spectre-image, p.214

X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Stability and Band Gap Constancy of Boron Nitride Nanotubes, Europhysics Letters (EPL), vol.28, issue.5, p.335, 1994.
DOI : 10.1209/0295-5075/28/5/007

O. Stéphan, P. Ajayan, C. Colliex, . Ph, J. M. Redlich et al., Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen, Science, vol.266, issue.5191, pp.1683-1685, 1994.
DOI : 10.1126/science.266.5191.1683

Y. Miyamoto, A. Rubio, M. L. Cohen, and S. G. Louie, N, Physical Review B, vol.50, issue.7, p.4976, 1994.
DOI : 10.1103/PhysRevB.50.4976

R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina et al., B???C???N, C???N and B???N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chemical Physics Letters, vol.287, issue.5-6, pp.671-676, 1998.
DOI : 10.1016/S0009-2614(98)00220-6

E. J. Liang, P. Ding, H. R. Zhang, X. Y. Guo, and Z. L. , Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine, Diamond and Related Materials, vol.13, issue.1, pp.69-73, 2004.
DOI : 10.1016/j.diamond.2003.08.025

X. Wang, Y. Liu, D. Zhu, L. Zhang, H. Ma et al., A Novel Route to Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature, The Journal of Physical Chemistry B, vol.106, issue.5, pp.933-937, 2002.
DOI : 10.1021/jp0130719

K. Suenaga, M. Yudasaka, C. Colliex, and S. Iijima, Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine, Chemical Physics Letters, vol.316, issue.5-6, pp.365-372, 2000.
DOI : 10.1016/S0009-2614(99)01340-8

C. Tang, Y. Bando, D. Golberg, and F. Xu, Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide, Carbon, vol.42, issue.12-13, pp.2625-2633, 2004.
DOI : 10.1016/j.carbon.2004.05.047

M. Terrones, H. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu et al., Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures, Applied Physics Letters, vol.75, issue.25, p.3932, 1999.
DOI : 10.1063/1.125498

M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W. K. Hsu et al., Advanced materials, pp.655-658, 1999.

S. Trasobares, O. Stéphan, C. Colliex, W. K. Hsu, H. W. Kroto et al., Compartmentalized CNx nanotubes: Chemistry, morphology, and growth, The Journal of Chemical Physics, vol.116, issue.20, pp.8966-8972, 2002.
DOI : 10.1063/1.1473195

T. Y. Kim, K. R. Lee, K. Y. Eun, and K. H. Oh, Carbon nanotube growth enhanced by nitrogen incorporation, Chemical Physics Letters, vol.372, issue.3-4, pp.603-607, 2003.
DOI : 10.1016/S0009-2614(03)00465-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.628.9542

M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz et al., Synthesis of N-doped SWNT using the arc-discharge procedure, Chemical Physics Letters, vol.387, issue.1-3, pp.193-197, 2004.
DOI : 10.1016/j.cplett.2004.02.005

K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard et al., Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers of Boron Nitride and Carbon, Science, vol.278, issue.5338, pp.653-655, 1997.
DOI : 10.1126/science.278.5338.653

W. Q. Han, J. Cumings, and A. Zettl, Pyrolytically grown arrays of highly aligned BxCyNz nanotubes, Applied Physics Letters, vol.78, issue.18, pp.2769-71, 2001.
DOI : 10.1063/1.1369620

W. Han, Y. Bando, K. Kurashima, and T. Sato, Boron-doped carbon nanotubes prepared through a substitution reaction, Chemical Physics Letters, vol.299, issue.5, pp.368-373, 1999.
DOI : 10.1016/S0009-2614(98)01307-4

D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles, Carbon, vol.38, issue.14, pp.2017-2027, 2000.
DOI : 10.1016/S0008-6223(00)00058-0

W. Q. Han, J. Cumings, X. Huang, K. Bradley, and A. Zettl, Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route, Chemical Physics Letters, vol.346, issue.5-6, pp.368-372, 2001.
DOI : 10.1016/S0009-2614(01)00993-9

D. Golberg, P. S. Dorozhkin, Y. Bando, and Z. Dong, Cables of BN-insulated B???C???N nanotubes, Applied Physics Letters, vol.82, issue.8, p.1275, 2003.
DOI : 10.1063/1.1555713

M. S. Dresselhaus, G. Dresselhaus, and P. , Avouris. Introduction to carbon materials research, Topics in Appl.Phys.Eds, vol.80, 2001.

A. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge, Physical Review Letters, vol.76, issue.25, pp.4737-4740, 1996.
DOI : 10.1103/PhysRevLett.76.4737

M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes : Synthesis, Structure, Properties and Applications, 2001.

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1998.
DOI : 10.1142/p080

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, and R. E. Smalley, Individual single-wall carbon nanotubes as quantum wires, Nature, vol.386, issue.6624, pp.474-477, 1997.
DOI : 10.1038/386474a0

URL : http://repository.tudelft.nl/islandora/object/uuid%3A4e58e2bc-5f69-4dbe-9942-aabcc9eaad35/datastream/OBJ/view

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, vol.277, issue.5334, pp.1971-1975, 1997.
DOI : 10.1126/science.277.5334.1971

S. Iijima, . Ch, A. Brabec, J. Maiti, and . Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, pp.2089-2092, 1996.
DOI : 10.1063/1.470966

W. Kräschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Solid C60: a new form of carbon, Nature, vol.347, issue.6291, pp.354-358, 1990.
DOI : 10.1038/347354a0

E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Composite Nanotubes, Physical Review Letters, vol.80, issue.20, pp.4502-4505, 1998.
DOI : 10.1103/PhysRevLett.80.4502

K. B. Shelimov and M. Moskovits, Composite Nanostructures Based on Template-Grown Boron Nitride Nanotubules, Chemistry of Materials, vol.12, issue.1, pp.250-254, 2000.
DOI : 10.1021/cm9905996

O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff et al., CVD Growth of Boron Nitride Nanotubes, Chemistry of Materials, vol.12, issue.7, pp.1808-1810, 2000.
DOI : 10.1021/cm000157q

W. Q. Han, W. Mickelson, J. Cumings, and A. Zettl, Transformation of BxCyNz nanotubes to pure BN nanotubes, Applied Physics Letters, vol.81, issue.6, pp.1110-1112, 2002.
DOI : 10.1063/1.1498494

D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima et al., Nanotubes in boron nitride laser heated at high pressure, Applied Physics Letters, vol.69, issue.14, p.2045, 1996.
DOI : 10.1063/1.116874

R. S. Lee, J. Gavillet, M. Lamy-de-la-chapelle, A. Loiseau, J. Cochon et al., Catalyst-free synthesis of boron nitride single-wall nanotubes with a preferred zig-zag configuration, Physical Review B, vol.64, issue.12, p.121405, 2001.
DOI : 10.1103/PhysRevB.64.121405

T. Laude, Y. Matsui, A. Marraud, and B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating, Applied Physics Letters, vol.76, issue.22, pp.3239-3241, 2000.
DOI : 10.1063/1.126593

V. L. Kuznetsov, Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes, Physical Review B, vol.64, issue.23, p.235401, 2001.
DOI : 10.1103/PhysRevB.64.235401

N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at high temperatures, Pergamon Materials Science, 1999.

D. R. Lide, Handbook of Chemistry and Physics, 2003.

H. Dai, Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chemical Physics Letters, vol.260, issue.3-4, pp.471-475, 1996.
DOI : 10.1016/0009-2614(96)00862-7

H. Nozaki and S. Itoh, Structural stability of BC2N, Journal of Physics and Chemistry of Solids, vol.57, issue.1, pp.41-49, 1996.
DOI : 10.1016/0022-3697(95)00088-7

P. E. Lammert, V. H. Crespi, and A. Rubio, N-Doped Carbon Nanotubes, Physical Review Letters, vol.87, issue.13, p.136402, 2001.
DOI : 10.1103/PhysRevLett.87.136402

X. Blase, J. Ch, A. D. Charlier, R. Vita, and . Car, Theory of composite BxCyNz nanotube heterojunctions, Applied Physics Letters, vol.70, issue.2, p.197, 1997.
DOI : 10.1063/1.118354

X. Blase, J. C. Charlier, A. Devita, and R. Car, Structural and electronic properties of composite B x C y N z nanotubes and heterojunctions, Applied Physics A: Materials Science & Processing, vol.68, issue.3, pp.293-300, 1999.
DOI : 10.1007/s003390050891

C. Y. Zhi, J. D. Guo, X. D. Bai, and A. G. Wang, Adjustable boron carbonitride nanotubes, Journal of Applied Physics, vol.91, issue.8, pp.5325-5332, 2002.
DOI : 10.1063/1.1459596

H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters, Applied Physics Letters, vol.76, issue.13, pp.1776-1778, 2000.
DOI : 10.1063/1.126164

J. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia et al., Enhanced Electron Field Emission in B-doped Carbon Nanotubes, Nano Letters, vol.2, issue.11, pp.1191-1195, 2002.
DOI : 10.1021/nl0256457

J. M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W. A. De-heer et al., Field emission properties of multiwalled carbon nanotubes, Ultramicroscopy, vol.73, issue.1-4, pp.7-15, 1998.
DOI : 10.1016/S0304-3991(97)00129-0

D. Golberg, P. S. Dorozhkin, Y. Bando, Z. Dong, C. C. Tang et al., Structure, transport and field-emission properties of compound nanotubes: CN x vs. BNC x ( x <0.1), Applied Physics A: Materials Science & Processing, vol.76, issue.4, pp.499-507, 2003.
DOI : 10.1007/s00339-002-2047-7

C. Y. Zhi, J. D. Guo, X. D. Bai, and A. G. Wang, Adjustable boron carbonitride nanotubes, Journal of Applied Physics, vol.91, issue.8, pp.5325-5332, 2002.
DOI : 10.1063/1.1459596

S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes, Journal of Applied Physics, vol.72, issue.10, p.4925, 1992.
DOI : 10.1063/1.352060

A. A. Ahmad, N. J. Ianno, S. D. Hwang, and P. A. Dowben, Thin Solids Films, pp.174-177, 1998.

S. Mondal and A. K. Banthia, Low-temperature synthetic route for boron carbide, Journal of the European Ceramic Society, vol.25, issue.2-3, pp.287-291, 2005.
DOI : 10.1016/j.jeurceramsoc.2004.08.011

Y. Miyamoto, A. Rubio, S. G. Louie, and M. L. Cohen, N, Physical Review B, vol.50, issue.7, p.4976, 1994.
DOI : 10.1103/PhysRevB.50.4976

J. J. Cuomo, P. A. Leary, D. Yu, W. Reuter, and M. Frisch, Reactive sputtering of carbon and carbide targets in nitrogen, Journal of Vacuum Science and Technology, vol.16, issue.2, pp.299-302, 1979.
DOI : 10.1116/1.569931

S. Muhl and J. M. Mendez, A review of the preparation of carbon nitride films, Diamond and Related Materials, vol.8, issue.10, pp.1809-1830, 1999.
DOI : 10.1016/S0925-9635(99)00142-9

H. Sjöström, S. Stafström, M. Boman, and J. Sundgren, Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure, Physical Review Letters, vol.75, issue.7, pp.1336-1339, 1995.
DOI : 10.1103/PhysRevLett.75.1336

E. Betranhandy and S. F. , A model study for the breaking of cyanogen out of CNx within DFT, Diamond and Related Materials, vol.15, issue.10, pp.1609-1613, 2006.
DOI : 10.1016/j.diamond.2006.01.016

URL : https://hal.archives-ouvertes.fr/hal-00098252

D. M. Teter and R. J. Hemley, Low-Compressibility Carbon Nitrides, Science, vol.271, issue.5245, pp.53-55, 1996.
DOI : 10.1126/science.271.5245.53

Y. Guo and W. A. Goddard, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio), Chemical Physics Letters, vol.237, issue.1-2, pp.72-76, 1995.
DOI : 10.1016/0009-2614(95)00267-8

A. Y. Liu and R. M. Wentzcovitch, Stability of carbon nitride solids, Physical Review B, vol.50, issue.14, pp.10362-10365, 1994.
DOI : 10.1103/PhysRevB.50.10362

M. Mattesini, S. F. Matar, and J. Etourneau, Stability and electronic property investigations of the graphitic C3N4 system showing an orthorhombic unit cell, Journal of Materials Chemistry, vol.10, issue.3, p.709, 2000.
DOI : 10.1039/a908903i

S. F. Lim, A. T. Wee, J. Lin, D. H. Chua, and C. H. Huan, On the nature of carbon nitride nanocrystals formed by plasma enhanced chemical vapor deposition and rapid thermal annealing, Chemical Physics Letters, vol.306, issue.1-2, pp.53-56, 1999.
DOI : 10.1016/S0009-2614(99)00425-X

L. W. Yin, M. Li, Y. Liu, J. Sui, and J. Wang1, Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction, Journal of Physics: Condensed Matter, vol.15, issue.2, pp.309-314, 2003.
DOI : 10.1088/0953-8984/15/2/330

L. Hultman, S. Stafström, Z. Csigány, J. Neidhardt, N. Hellgren et al., Aza-Fullerene, Physical Review Letters, vol.87, issue.22, p.225503, 2001.
DOI : 10.1103/PhysRevLett.87.225503

K. Montasser, S. Hattori, and S. Morita, Thin Solids Films, 1984.

J. Kouvetakis, T. Sasaki, C. Shen, R. Hagiwara, M. Lerner et al., Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network, Synthetic Metals, vol.34, issue.1-3, pp.1-7, 1989.
DOI : 10.1016/0379-6779(89)90355-X

M. Kawaguchi, Y. Wakukawa, and T. Kawano, Preparation and electronic state of graphite-like layered material BC6N, Synthetic Metals, vol.125, issue.2, pp.259-263, 2002.
DOI : 10.1016/S0379-6779(01)00540-9

A. Stanishevsky, H. Li, A. Badzian, T. Badzian, W. Drawl et al., Thin Solids Films, pp.270-274, 2001.

M. P. Johannsson, N. Hellgren, T. Berlind, E. Broitman, L. Hultman et al., Thin Solids Films, 2000.

B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, J. P. Zhang, A. K. Cheetham et al., Boron???carbon nanotubes from the pyrolysis of C2H2???B2H6 mixtures, Chemical Physics Letters, vol.300, issue.3-4, pp.473-477, 1999.
DOI : 10.1016/S0009-2614(98)01398-0

R. Sen, B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, G. Raina et al., B???C???N, C???N and B???N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chemical Physics Letters, vol.287, issue.5-6, pp.671-676, 1998.
DOI : 10.1016/S0009-2614(98)00220-6

G. Keskar, R. Rao, J. Luo, J. Hudson, J. Chen et al., Growth, nitrogen doping and characterization of isolated single-wall carbon nanotubes using liquid precursors, Chemical Physics Letters, vol.412, issue.4-6, pp.269-273, 2005.
DOI : 10.1016/j.cplett.2005.07.007

W. Q. Han, P. Kholer-redlich, T. Seeger, F. Ernst, and M. Rühle, Aligned CN[sub x] nanotubes by pyrolysis of ferrocene/C[sub 60] under NH[sub 3] atmosphere, Applied Physics Letters, vol.77, issue.12, pp.1807-1809, 2000.
DOI : 10.1063/1.1311813

M. Jung, Growth of carbon nanotubes by chemical vapor deposition, Diamond and Related Materials, vol.10, issue.3-7, pp.1235-1240, 2001.
DOI : 10.1016/S0925-9635(00)00446-5

R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-redlich, M. Rühle et al., Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Applied Physics Letters, vol.77, issue.21, p.3385, 2000.
DOI : 10.1063/1.1327611

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle et al., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chemical Physics Letters, vol.338, issue.2-3, pp.101-107, 2001.
DOI : 10.1016/S0009-2614(01)00278-0

URL : https://hal.archives-ouvertes.fr/hal-00144727

S. R. Vivekchand, L. M. Cele, F. L. Deepak, A. R. Raju, and A. Govindaraj, Carbon nanotubes by nebulized spray pyrolysis, Chemical Physics Letters, vol.386, issue.4-6, pp.313-318, 2004.
DOI : 10.1016/j.cplett.2003.11.115

S. Enouz, Master's thesis, 2003.

M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, and P. Bernier, Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors, Chemical Physics Letters, vol.377, issue.3-4, pp.293-298, 2003.
DOI : 10.1016/S0009-2614(03)01134-5

Z. Weng-sieh, K. Cherrey, N. G. Chopra, X. Blase, Y. Miyamoto et al., nanotubules, Physical Review B, vol.51, issue.16, pp.11229-11231, 1995.
DOI : 10.1103/PhysRevB.51.11229

D. L. Carroll, P. Redlich, X. Blase, J. C. Charlier, S. Curran et al., Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes, Physical Review Letters, vol.81, issue.11, p.2332, 1998.
DOI : 10.1103/PhysRevLett.81.2332

Y. Zhang, H. Gu, K. Suenaga, and S. Iijima, Heterogeneous growth of B???C???N nanotubes by laser ablation, Chemical Physics Letters, vol.279, issue.5-6, pp.264-269, 1997.
DOI : 10.1016/S0009-2614(97)01048-8

P. L. Gai, O. Stéphan, K. Mcguire, A. M. Rao, M. S. Dresselhaus et al., Structural systematics in boron-doped single wall carbon nanotubes, Journal of Materials Chemistry, vol.14, issue.4, p.669, 2004.
DOI : 10.1039/b311696d

E. Borowiak-palen, T. Pichler, G. G. Fuentes, A. Graff, R. J. Kalenczuk et al., Efficient production of B-substituted single-wall carbon nanotubes, Chemical Physics Letters, vol.378, issue.5-6, pp.516-520, 2003.
DOI : 10.1016/S0009-2614(03)01324-1

E. Borowiak-palen, T. Pichler, A. Graff, R. J. Kalenczuk, M. Knupfer et al., Synthesis and electronic properties of B-doped single wall carbon nanotubes, Carbon, vol.42, issue.5-6, pp.1123-1126, 2004.
DOI : 10.1016/j.carbon.2003.12.004

O. Jost, A. A. Gorbunov, J. Müller, W. Pompe, A. Graff et al., Impact of catalyst coarsening on the formation of single-wall carbon nanotubes, Chemical Physics Letters, vol.339, issue.5-6, p.297, 2001.
DOI : 10.1016/S0009-2614(01)00336-0

D. Golberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chemical Physics Letters, vol.308, issue.3-4, pp.337-342, 1999.
DOI : 10.1016/S0009-2614(99)00591-6

T. Epicier and J. Thibault, Ecole thématique : Microscopie des défauts cristallins, 2001.

X. Blase, J. Ch, P. Charlier, C. Gadelle, C. Journet et al., Understanding Carbon Nanotubes : From Basics to Applications, Lecture Notes in Physics, vol.677, 2006.

L. M. Peng, S. L. Dudarev, and M. J. Whelan, High-Energy Electron Diffraction and Microscopy, 2004.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy : a textbook for, Materials Science, vol.1, issue.4, 1996.
DOI : 10.1007/978-1-4757-2519-3

R. Barer and V. E. Cosslett, Advances in Optical and Electron Microscopy, 1984.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, p.2555, 1999.
DOI : 10.1016/S0379-6779(98)00278-1

S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorin et al., Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single-Wall Carbon Nanotubes, Physical Review Letters, vol.80, issue.17, p.3779, 1998.
DOI : 10.1103/PhysRevLett.80.3779

J. Kürti, H. Kresse, and . Kuzmany, First-principles calculations of the radial breathing mode of single-wall carbon nanotubes, Physical Review B, vol.58, issue.14, p.8869, 1999.
DOI : 10.1103/PhysRevB.58.R8869

S. Rols, A. Righi, L. Alvarez, E. Anglaret, C. Journet et al., Diameter distribution of single wall carbon nanotubes in nanobundles, The European Physical Journal B, vol.18, issue.2, p.201, 2000.
DOI : 10.1007/s100510070049

N. Nakamura, M. Fujitsuka, and M. Kitajima, Disorder-induced line broadening in first-order Raman scattering from graphite, Physical Review B, vol.41, issue.17, p.12260, 1990.
DOI : 10.1103/PhysRevB.41.12260

S. D. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus et al., -band feature of metallic carbon nanotubes, Physical Review B, vol.63, issue.15, p.155414, 2001.
DOI : 10.1103/PhysRevB.63.155414

URL : https://hal.archives-ouvertes.fr/jpa-00210025

M. Inokuti, Review of Modern Physics, p.297, 1971.

L. Reimer, Energy-Filtering Transmission Electron Microscopy, series in Optical Sciences, 1995.
DOI : 10.1016/s0065-2539(08)60863-x

C. Jeanguillaume and C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing, Ultramicroscopy, vol.28, issue.1-4, pp.252-257, 1989.
DOI : 10.1016/0304-3991(89)90304-5

R. F. Egerton, Electron Energy Loss Spectroscopy, 1971.

C. Souche, B. Jouffrey, G. Hug, and M. , Orientation Sensitive EELS-analysis of Boron Nitride Nanometric Hollow Spheres, Micron, vol.29, issue.6, p.419, 1998.
DOI : 10.1016/S0968-4328(98)00030-4

P. L. Gai, O. Stéphan, K. Mcguire, A. M. Rao, M. S. Dresselhaus et al., Structural systematics in boron-doped single wall carbon nanotubes, Journal of Materials Chemistry, vol.14, issue.4, p.669, 2004.
DOI : 10.1039/b311696d

N. Hellgren, Sputterred Carbon Nitride Thin Films, 1999.

M. Glerup, H. Kanzow, R. Almairac, M. Castignolles, and P. Bernier, Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors, Chemical Physics Letters, vol.377, issue.3-4, pp.293-298, 2003.
DOI : 10.1016/S0009-2614(03)01134-5

A. Renoux and D. Boulaud, Les aérosols, physique et métrologie, 1998.

Y. Hao, L. Quingwen, Z. Jin, and L. Zhongfan, The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile, Chemical Physics Letters, vol.380, issue.3-4, pp.347-351, 2003.
DOI : 10.1016/j.cplett.2003.09.031

R. Che, L. Peng, Q. Chen, X. F. Duan, and Z. N. Gu, Fe2O3 particles encapsulated inside aligned CNx nanotubes, Applied Physics Letters, vol.82, issue.19, pp.3319-3321, 2003.
DOI : 10.1063/1.1574399

N. Haddad, Master's thesis, 2005.

W. Merchan-merchan, A. V. Saveliev, and L. A. Kennedy, High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control, Carbon, vol.42, issue.3, pp.599-608, 2004.
DOI : 10.1016/j.carbon.2003.12.086

C. T. Chen, Y. Ma, and F. Sette, molecule, Physical Review A, vol.40, issue.11, p.6737, 1989.
DOI : 10.1103/PhysRevA.40.6737

URL : https://hal.archives-ouvertes.fr/hal-00216211

H. C. Choi, S. Y. Bae, J. Park, K. Seo, C. Kim et al., Experimental and theoretical studies on the structure of N-doped carbon nanotubes: Possibility of intercalated molecular N2, Applied Physics Letters, vol.85, issue.23, p.5742, 2004.
DOI : 10.1063/1.1835994

J. H. Yang, D. H. Lee, M. H. Yum, Y. S. Shin, E. J. Kim et al., Encapsulation mechanism of N2 molecules into the central hollow of carbon nitride multiwalled nanofibers, Carbon, vol.44, issue.11, pp.2219-2223, 2006.
DOI : 10.1016/j.carbon.2006.02.036

J. M. Ripalda, E. Roman, N. Diaz, L. Galan, I. Montero et al., Correlation of x-ray absorption and x-ray photoemission spectroscopies in amorphous carbon nitride, Physical Review B, vol.60, issue.6, pp.3705-3708, 1999.
DOI : 10.1103/PhysRevB.60.R3705

N. Hellgren, J. Guo, C. Sathe, A. Agui, J. Nordgren et al., Nitrogen bonding structure in carbon nitride thin films studied by soft x-ray spectroscopy, Applied Physics Letters, vol.79, issue.26, pp.4348-4350, 2001.
DOI : 10.1063/1.1428108

I. Jiménez, R. Gago, J. M. Albella, D. Caceres, and I. Vergara, Spectroscopy of ?? bonding in hard graphitic carbon nitride films: Superstructure of basal planes and hardening mechanisms, Physical Review B, vol.62, issue.7, pp.4261-4264, 2000.
DOI : 10.1103/PhysRevB.62.4261

Y. Miyamoto, M. L. Cohen, and S. G. Louie, Theoretical investigation of graphitic carbon nitride and possible tubule forms, Solid State Communications, vol.102, issue.8, pp.605-608, 1997.
DOI : 10.1016/S0038-1098(97)00025-2

H. K. Badeshia, Steels -Microstructure and Properties, 2006.

C. P. Ewels and M. Glerup, Nitrogen Doping in Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.5, issue.9, pp.1345-1363, 2005.
DOI : 10.1166/jnn.2005.304

P. Bernier and S. Lefrant, Le carbone dans tous sesétatssesétats, 1997.

I. Shimoyama, G. Wu, T. Sekiguchi, and Y. Baba, Evidence for the existence of nitrogen-substituted graphite structure by polarization dependence of near-edge x-ray-absorption fine structure, Physical Review B, vol.62, issue.10, p.6053, 2000.
DOI : 10.1103/PhysRevB.62.R6053

C. Colliex, T. , and C. Ortiz, Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system, Physical Review B, vol.44, issue.20, p.11402, 1991.
DOI : 10.1103/PhysRevB.44.11402

A. V. Sverdlin and A. R. Ness, Steel Heat Transfer Handbook

K. Suenaga, E. Sandre, C. Colliex, C. J. Pickard, H. Kataura et al., Electron energy-loss spectroscopy of electron states in isolated carbon nanostructures, Physical Review B, vol.63, issue.16, p.165408, 2001.
DOI : 10.1103/PhysRevB.63.165408

S. M. Vieira, O. Stéphan, and D. L. Carroll, Effect of growth conditions on B-doped carbon nanotubes, Journal of Materials Research, vol.21, issue.12, p.3058, 2006.
DOI : 10.1557/jmr.2006.0392

V. Serin, R. Brydson, A. Scott, Y. Kihn, O. Abidate et al., Evidence for the solubility of boron in graphite by electron energy loss spectroscopy, Carbon, vol.38, issue.4, pp.547-554, 2000.
DOI : 10.1016/S0008-6223(99)00128-1

H. Okamoto, Phase Diagram for Binary Alloys, Handbook, ASM international, 2000.

J. Peng, Thermochemistry and Constitution of Precursor-Derived Si-(B-)C-N Ceramics Derived Si-(B-)C-N Ceramics, 2002.