Skip to Main content Skip to Navigation
Theses

Equations cohomologiques de flots riemanniens et de difféomorphismes d'Anosov

Abstract : Abstract: In this thesis: i) We compute the leafwise cohomology
of a complete Riemannian Diophantine flow. ii) We solve explicitly the discrete
cohomological equation for the
) Anosov diffeomorphism on the torus Tⁿ defined by a matrix A ∈SL(n,ℤ
which is hyperbolic and
diagonalizable with all its eigenvalues real positive numbers. We
use this to solve the continuous cohomological equation of the
Anosov flow ℱ on the hyperbolic torus TAⁿ⁺¹
obtained from A by suspension. This enables us to compute some
other
geometrical objects associated to the diffeomorphism A and the foliation ℱ
like the invariant distributions and the
leafwise cohomology.
Document type :
Theses
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00145138
Contributor : Akbar Dehghan Nezhad <>
Submitted on : Tuesday, May 8, 2007 - 1:16:54 PM
Last modification on : Friday, November 13, 2020 - 8:44:03 AM
Long-term archiving on: : Tuesday, April 6, 2010 - 11:55:49 PM

Identifiers

  • HAL Id : tel-00145138, version 1

Collections

Citation

Akbar Dehghan Nezhad. Equations cohomologiques de flots riemanniens et de difféomorphismes d'Anosov. Mathématiques [math]. Université de Valenciennes et du Hainaut-Cambresis, 2006. Français. ⟨tel-00145138⟩

Share

Metrics

Record views

238

Files downloads

383