]. H. Anato and . Anatoa, Contribution à la réalisation d'un appareillage d'hyperthermie en thérapie antiturnorale : simulation numérique, 1992.

]. D. Armitage, H. H. Armitage, R. Leveen, and . Pethig, Radiofiequency-Induced Hyperthermia: Computer Simulation of Specific Absorption Rate Distributions Using Realistic Anatomical Models, Phys. Med. Biol, vol.28, issue.1, pp.3-4, 1983.

]. C. Balanis and . Balanis, Advanced engineering electromagnetics, 1989.

]. A. Bayliss, E. Bayliss, and . Turkel, Radiation boundary conditions for wave-like equations, Communications on Pure and Applied Mathematics, vol.7, issue.6, pp.707-725, 1980.
DOI : 10.1002/cpa.3160330603

]. D. Beasley, D. R. Beasley, R. R. Bull, and . Martin, An Overview of Genetic algorithms: Part 1, Fundamentals, pp.2-58, 1993.

A. Boagl, Y. Boag, A. Leviatan, and . Boag, Analysis and optimization of waveguide multiapplicator hyperthermia systems, IEEE Transactions on Biomedical Engineering, vol.40, issue.9, pp.946-952, 1993.
DOI : 10.1109/10.245616

]. N. Brusentsov, V. V. Brusentsov, T. N. Gogosov, A. V. Brusentsova, and . Sergeev, Evaluation of Ferromagnetic Fluids Suspensions For the Site-Specific Radiofiequency-Induced Hyperthermia of MX1 1 Sarcoma Cells in Vivo, Journal of Magnetism and Magnetic Materials, vol.225, pp.1-13, 2001.

]. G. Cerri, G. Cerri, R. D. Leo, and V. M. Primiani, Thermic End-Fire Interstitial Applicator for Microwave HyperthermiaFDTD Analysis of Power Deposition Patterns of an Array of Interstitial Antennas for Use in Microwave Hyperthermia, IEEE Transactions on Microwave Theory and Techniques IEEE Transactions on Microwave Theory and Techniques, vol.4, issue.40 8, pp.1692-1693, 1135.

K. Chen and J. C. Lin, Biological Effects of Electromagnetics Fileds, Handbook of Electrornagnetic Compatibility, pp.903-912, 1995.

C. K. Chou, Application of electromagnetic energy in cancer treatment, IEEE Transactions on Instrumentation and Measurement, vol.37, issue.4, pp.547-55, 1988.
DOI : 10.1109/19.9810

C. K. Chou, H. Bassen, J. Osepchuk, Q. Balzano, R. Petersen et al., Radio frequency electromagnetic exposure: Tutorial review on experimental dosimetry, Bioelectromagnetics, vol.22, issue.3, pp.195-208, 1996.
DOI : 10.1002/(SICI)1521-186X(1996)17:3<195::AID-BEM5>3.0.CO;2-Z

S. T. Cleeg, K. A. Murphy, W. T. Joines, G. Rine, and T. V. Samulski, Finite element computation of electromagnetic fields [hyperthermia treatment], IEEE Transactions on Microwave Theory and Techniques, vol.42, issue.10, pp.1984-1991, 1994.
DOI : 10.1109/22.320784

C. Darwin, The Origin of Species by Means of Natural Selection, p.1859
DOI : 10.5962/bhl.title.24329

L. Davis, Handbook of Genetic Algorithms, 1991.

J. F. Deford and O. P. Gandhi, An Impedance Method to Calculate Currents Induced in Biological Bodies Exposed to Quasi-Static Electromagnetic Fields, IEEE Transactions on Electromagnetic Compatibility, vol.27, issue.3, pp.168-173, 1985.
DOI : 10.1109/TEMC.1985.304281

R. Leo, G. Cerri, and F. Moglie, Microstrip Patch Applicators, IEEE, pp.524-527, 1989.

D. Despretz, Modélisation et caractérisation électromagnétiques et thermiques de nouveaux applicateurs en structure filaire pour l'hyperthermie micro-onde contrôlée par radiométrie micro-onde : application en cancérologie et urologie, Thèse présenté à l'I.E.M.N, pp.12-13, 1997.

G. Dhatt and G. Touzot, Une présentation de la méthode des éléments finis, éditions Maloine, 1984.

B. Engquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. Comp, vol.3, issue.1, pp.629-65, 1977.

M. A. Esrick and D. A. Mcrae, The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping, Physics in Medicine and Biology, vol.39, issue.1, pp.133-144, 1994.
DOI : 10.1088/0031-9155/39/1/008

]. T. Feyerabend, G. J. Feyerabend, B. Wiedemann, H. Jager, and . Vesely, Local Hyperthermia, Radaiation, and Chemotherapy in Recurrent Breast Cancer is Feasible and Effective Except for Inflammatory Disease, Int. J. Radiation Oncology Biol. Phys, vol.49, issue.5, pp.13-17, 2001.

]. C. Fonseca, P. J. Fonseca, and . Fleming, An Overview of Evolutionary Algorithms in Multiobjective Optimization, Evolutionary Computation, vol.3, issue.1, pp.1-16, 1995.
DOI : 10.1162/evco.1994.2.3.221

]. S. Gabriell, R. W. Gabriel, C. Lau, and . Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Physics in Medicine and Biology, vol.41, issue.11, pp.2251-2269, 1996.
DOI : 10.1088/0031-9155/41/11/002

S. Gabriel21, R. W. Gabriel, C. Lau, and . Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol.41, issue.11, pp.2271-2293, 1996.
DOI : 10.1088/0031-9155/41/11/003

]. O. Gandhi, G. Gandhi, and . Kang, Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices, Physics in Medicine and Biology, vol.46, issue.11, pp.2759-2771, 2001.
DOI : 10.1088/0031-9155/46/11/301

]. Y. Gardan and . Gardan, Mathématiques et CAO1: Méthode de base, éditions Hermes, 1987.

]. D. Goldberg and . Goldberg, Algorithmes génétiques, 1994.

]. D. Goldberg2 and . Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1989.

]. M. Habeck and . Habeck, Cancer Drog Delivery is Hot Stuff, p.754, 2001.

]. M. Hagmann and . Hagmann, Comments, with reply, on "Numerical simulation" of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors by J.-Y. Chen and O.P. Gandhi, IEEE Transactions on Biomedical Engineering, vol.39, issue.12, pp.1322-1324, 1992.
DOI : 10.1109/10.184711

F. X. Hart and . Hart, Use of a spread sheet to calculate the current-density distribution produced in human and rat models by low-frequency electric fields, Bioelectromagnetics, vol.2, issue.3, pp.13-228, 1990.
DOI : 10.1002/bem.2250110303

]. N. Hayashi, K. Hayashi, H. Isaka, Y. Tarao, and . Yokoi, Numerical Calculation of Induced Electric Filed and Currents on Simple Models of Multi-Medium Biological Systems Using the Impedance Method, International Symposium on High Voltage Engineering, Austria, pp.8355-8356, 1995.

R. Bibliographie-[-hergtl, W. Hergt, C. G. Andra, W. A. Hilger, U. Kaiser et al., Physical Limits of Hyperthermia Using Magnetite Fine Particles, IEEE Transactions on Magnetics, vol.1, issue.34 5, pp.3745-3754, 1998.

H. S. Ho and . Ho, Safety of metallic implants in magnetic resonance imaging, Journal of Magnetic Resonance Imaging, vol.215, issue.4, pp.472-477, 2001.
DOI : 10.1002/jmri.1209

]. J. Holland and . Holland, Adaptation in Natural and Artificial Systems The univ. of Michigan press, 1975.

]. R. Jayasundarl, L. D. Jayasundar, N. M. Hall, and . Bleehen, RF Coils for Combined MR and Hyperthermia Studies: 1. Hyperthermia Applicator as an MMR Coil, Magnetic Resonance Imaging, issue.19, pp.1-1, 2001.

]. R. Jayasundar2, L. D. Jayasundar, N. M. Hall, and . Bleehen, RF coils for combined MR and hyperthermia studies: I. Hyperthermia applicator as an MR coil, Magnetic Resonance Imaging, vol.19, issue.1, pp.1-17, 2001.
DOI : 10.1016/S0730-725X(00)00227-7

]. R. Johnsonl, A. W. Johnson, J. L. Preece, and . Murfin, Flexible Electromagnetic Hy erthermia Applicator, Medicine & Biology Society #A 10 annual international conference, pp.1264-1265, 1988.

R. H. Johnson21, A. W. Johnson, J. L. Preece, and . Green, Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator, Physics in Medicine and Biology, vol.35, issue.6, pp.761-779, 1990.
DOI : 10.1088/0031-9155/35/6/006

]. A. Jordan, R. Jordan, P. Scholz, H. Wust, and . Fahling, Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Journal of Magnetism and Magnetic Materials, vol.201, issue.1-3, pp.1-1
DOI : 10.1016/S0304-8853(99)00088-8

]. R. Kaateel, H. Kaatee, B. P. Crezee, J. W. Kanis, and . Lagendijk, Spatial Tempearture with a 27 MHz Current Source Interstitial Hyperthermia System, Journal of the European Society for Therapeutic Radiology and Oncology, vol.37, issue.1, pp.189-197, 1997.

]. R. Kaatee2, P. Kaatee, J. Nowak, and . Zee, Clinical Thermometry, Using the 27 MHz Multi-Electrode Current-Source Interstitial Hyperthermia System in Brain Turnours, Journal of the European Society for Therapeutic Radiology and Oncology, issue.59, pp.227-250, 2001.

]. Y. Kanai, T. Kanai, K. Tsukamoto, Y. Toyama, M. Saitoh et al., Analysis of a hyperthermic treatment in a reentrant resonant cavity applicator by solving time-dependent electromagnetic-heat transfer equations, IEEE Transactions on Magnetics, vol.32, issue.3, p.1661
DOI : 10.1109/20.497574

H. Kato, J. W. Hand, M. V. Prior, M. Furukawa, O. Yamamoto et al., Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia, IEEE Transactions on Biomedical Engineering, vol.38, issue.7, pp.644-647, 1991.
DOI : 10.1109/10.83563

M. Krairiksh, T. Wakabayashi, and W. Kiranon, A spherical slot array applicator for medical applications, IEEE Transactions on Microwave Theory and Techniques, vol.43, issue.1, pp.78-86, 1995.
DOI : 10.1109/22.363004

H. Kroeze, J. Van-de-kamer, A. A. De-leeuw, and J. J. Lagendijk, Regional hyperthermia applicator design using FDTD modelling, Physics in Medicine and Biology, vol.46, issue.7, pp.1919-1935, 2001.
DOI : 10.1088/0031-9155/46/7/313

C. K. Lee, M. D. Chang, and J. G. Rhee, Clinical experience using 8 MHZ radiofrequency capacitive hyperthermia in combination with radiotherapy: Results of a phase study, International Journal of Radiation Oncology*Biology*Physics, vol.32, issue.3, pp.733-745, 1995.
DOI : 10.1016/0360-3016(94)00608-N

B. R. Leigh, B. Stea, R. Cassady, J. Kittelson, and T. C. Cetas, Clinical hyperthermia with a new device: The current sheet applicator, International Journal of Radiation Oncology*Biology*Physics, vol.30, issue.4, pp.945-951, 1994.
DOI : 10.1016/0360-3016(94)90370-0

W. L. Lin, W. C. Fan, J. Y. Yen, Y. Chien, and M. J. Shieh, A theoretical study of cylindrical ultrasound transducers for intracavitary hyperthermia, International Journal of Radiation Oncology*Biology*Physics, vol.46, issue.5, pp.1329-1336, 2000.
DOI : 10.1016/S0360-3016(99)00353-3

Y. Lu, J. Ying, T. Tan, and K. Arichandran, Electromagnetic and Thermal Simulations of 3-D Human Head Mode1 under RF Radiation by Using the FDTD and FD Approches, IEEE Transactions on Magnetics, vol.32, issue.3, pp.1653-1656, 1996.

D. R. Lynch and K. D. Paulsen, Time-domain integration of the Maxwell equations on finite elements, IEEE Transactions on Antennas and Propagation, vol.38, issue.12, pp.1933-1942, 1990.
DOI : 10.1109/8.60982

D. R. Lynch, K. D. Paulsen, and J. W. Strohbehn, Finite element solution of Maxwell's equations for hyperthermia treatment planning, Journal of Computational Physics, vol.58, issue.2, pp.246-269, 1985.
DOI : 10.1016/0021-9991(85)90179-2

R. Mertens, H. D. Gersem, R. Belmans, and K. Hameyer, An algebraic multigrid method for solving very large electromagnetic systems, IEEE Transactions on Magnetics, vol.34, issue.5, pp.3327-3330, 1998.
DOI : 10.1109/20.717782

G. Mur, Edge elements, their advantages and their disadvantages, IEEE Transactions on Magnetics, vol.30, issue.5, pp.3552-3557, 1994.
DOI : 10.1109/20.312706

Y. Nagata, M. Hiraoka, Y. Nishimura, and S. Masunaga, Clinical results of radiofrequency hyperthermia for malignant liver tumors, International Journal of Radiation Oncology*Biology*Physics, vol.38, issue.2, pp.359-365, 1997.
DOI : 10.1016/S0360-3016(96)00625-6

]. J. Bibliographie-[-nédélec and . Nédélec, Mixed finite elements in (r13, Nurn. Math, vol.35, issue.3, pp.3-15, 1980.

]. L. Nicolas, K. A. Nicolas, S. J. Connor, B. G. Salon, L. F. Ruth et al., Mod??lisation 2D par El??ments Finis de ph??nom??nes micro-ondes en milieu ouvert, Journal de Physique III, vol.2, issue.11, pp.2101-2122, 1992.
DOI : 10.1051/jp3:1992234

]. C. Niederst and . Niederst, Mise au point et intégration en clinique d'un programme prévisionnel de calcul de la répartition du champ électrique et des températures induites par des applicateurs électromagnétiques externes, Thèse de doctorat, 1997.

]. O. Nielsen, M. Nielsen, J. Horsman, and . Overgaard, A future for hyperthermia in cancer treatment?, European Journal of Cancer, vol.37, issue.13, pp.1587-1589, 2001.
DOI : 10.1016/S0959-8049(01)00193-9

]. M. Okoniewski, E. Okoniewski, M. A. Okoniewska, and . Stuchly, Three-dimensional subgridding algorithm for FDTD, IEEE Transactions on Antennas and Propagation, vol.45, issue.3, pp.422-429, 1997.
DOI : 10.1109/8.558657

]. J. Pasciak, J. Pasciak, L. Gopalakrishnan, and . Dernkowicz, Analysis of Multigrid Algorithm for time Harmonic Maxwell Equations, 1991.

]. K. Paulsen, X. Paulsen, J. M. Jia, and . Sullivan, Finite element computations of specific absorption rates in anatomically conforming full-body models for hyperthermia treatment analysis, IEEE Transactions on Biomedical Engineering, vol.40, issue.9, pp.933-945, 1993.
DOI : 10.1109/10.245615

]. H. Pennes and . Pennes, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, J. Physiol, issue.1, pp.93-122, 1948.

]. R. Petit and . Petit, Ondes électromagnétiques en radioélectricité et en optique, Editions Massons, 1988.

]. C. Polk, J. H. Polk, and . Song, Electric fields induced by low frequency magnetic fields in inhomogeneous biological structures that are surrounded by an electric insulator, Bioelectromagnetics, vol.109, issue.3, pp.235-249, 1990.
DOI : 10.1002/bem.2250110305

]. N. Pothecary, C. J. Pothecary, and . Railton, Finite difference time domain modelling of hyperthermia applicators for cancer therapy, 1993 IEEE MTT-S International Microwave Symposium Digest, pp.1151-1152, 1993.
DOI : 10.1109/MWSYM.1993.277075

]. S. Ratnajeevan, H. Ratnajeevan, V. Hoole, A. Sathiaseelan, and . Tseng, Computation of Hyperthermia-Sar Distribution in 3-D, IEEE Transactions on Magnetics, vol.26, issue.2, pp.1011-1014, 1990.

A. Sullivan31, O. Ressel, C. Schmitt, T. Weiss, and . Feyerabend, Therapeutic Outcome and Side-Effects After Radiotherapy, Chemotherapy andlor Hyperthermia Treatments of Head and Neck Tumour Xenografts, European Journal of Cancer, issue.38, pp.594-601, 2002.

C. E. Reuter, A. Tafiove, V. Sathiaseelan, M. Piket-may, and B. B. , Unexpected physical phenomena indicated by FDTD modeling of the Sigma-60 deep hyperthermia applicator, IEEE Transactions on Microwave Theory and Techniques, vol.46, issue.4, pp.3-13, 1998.
DOI : 10.1109/22.664132

O. Risse, C. Sengel, and C. Arvieux, Technical aspects of microwave thermotherapy, Bioelectrochemistry and Bioenergetics, issue.48, pp.305-309, 1999.

B. Saludjian, Méthodes d'optimisation multimodales associées à la modélisation numérique en électromagnétisme, Thèse de doctorat, 1999.

A. Sekkak, V. N. Kanellopoulos, L. Pichon, and A. Razek, A thermal and electromagnetic analysis in biological objects using 3D finite elements and absorbing boundary conditions, IEEE Transactions on Magnetics, vol.31, issue.3, pp.1865-1868, 1995.
DOI : 10.1109/20.376401

K. Senior, Hyperthermia and hypoxia for cancer-ce11 destruction, The Lancet Oncology, vol.2, 2001.

J. A. Shaw, C. H. Durney, and D. A. Christensen, Computer-aided design of two dimensional electric-type hyperthermia applicators using the finite-difference time-domain method, IEEE Transactions on Biomedical Engineering, vol.38, issue.9, pp.861-870, 1991.
DOI : 10.1109/10.83606

P. R. Stauffer, C. J. Diederich, and D. Bozzo, Conforma1 Array Microwave Applicator for Superficial Hyperthermia of Large Contoured Surfaces, IEEE MTT-S Digest, pp.53-54, 1994.

D. Sullivan, Mathematical methods for treatment planning in deep regional hyperthermia, IEEE Transactions on Microwave Theory and Techniques, vol.39, issue.5, pp.864-872, 1991.
DOI : 10.1109/22.79115

D. M. Sullivan, A frequency-dependent FDTD method for biological applications, IEEE Transactions on Microwave Theory and Techniques, vol.40, issue.3, pp.532-539, 1992.
DOI : 10.1109/22.121729

D. Sullivan, Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method, IEEE Transactions on Microwave Theory and Techniques, vol.38, issue.2, pp.204-225, 1990.
DOI : 10.1109/22.46431

]. H. Bibliographie-[-tarao, N. Tarao, K. Hayashi, and . Isaka, Improved Impedance Method for the Calculation of Electric Fields Induced in Simple Biological Structures by ELF Magnetics FieldDéfinition d'un système d'hyperthermie profonde anticancéreuse induite par couplage de deux guides d'ondes à 27, Thèse Institut National Polytechnique de Lorraine, pp.77-80, 1996.

]. J. Vasconcelos and . Vasconcelos, Optimisation de forme des structures électromagnétiques, Thèse de doctorat, 1994.

]. A. Vera and . Vera-hernandez, Contribution à l'étude d'un système d'hyperthermie profonde en cancérologie: Automatisation du traitement du signal, modélisation de la distribution et de l'absorption du champ électrique à 27, Thèse présenté à I'INPL, 1999.

]. J. Vrba, M. Vrba, L. Lapesschmitt, and . Oppl, Technical aspects of microwave thermotherapy, Bioelectrochemistry and Bioenergetics, vol.48, issue.2, pp.305-309, 1999.
DOI : 10.1016/S0302-4598(99)00039-2

]. J. Webb and . Webb, Edge elements and what they can do for you, IEEE Transactions on Magnetics, vol.29, issue.2, pp.1460-1465, 1993.
DOI : 10.1109/20.250678

]. J. Wiersma, R. A. Wiersma, J. D. Van-maarseveen, and . Van-dijk, A flexible optimization tool for hyperthermia treatments with RF phased array systems, International Journal of Hyperthermia, vol.18, issue.2, pp.2-73, 2002.
DOI : 10.1080/02656730110091847

M. F. Wongl, O. Wong, V. F. Picon, and . Hanna, Résolution par éléments finis des équations de Maxwell dans les problèmes de jonctions et cavités micro-ondes, J. Phys. III, vol.2, pp.2083-2099, 1992.

P. Wust, J. Nadobny, M. Seebass, D. Stalling, J. Gellermann et al., Influence of patient models and numerical methods on predicted power deposition patterns, Int. J. Hyperthermia, vol.15, issue.11 6, pp.5-19, 1999.

P. Wust, M. Seebass, J. Nadobny, P. Deuflhard, G. Monich et al., Simulation studies promote technological development of radiofrequency phased array hyperthermia, International Journal of Hyperthermia, vol.11, issue.4, pp.477-494, 1996.
DOI : 10.3109/02656738709140411

J. Yaol and . Yao-bi-n-'guessan, Méthode des éléments finis mixtes et conditions aux limites absorbantes pour la modélisation des phénomènes électromagnétiques hyperfréquences, Thèse Ecole Centrale de Lyon, 1995.

K. S. Yeel and . Yee, Numerical Solution of Initial Boundary-Value Problems Involving Maxwell's equations in Isotropic Media, IEEE Transactions on Antennas and Propagation, issue.14, pp.302-307, 1966.

M. Yeh, B. S. Trembly, E. Douple, T. P. Ryan, P. J. Hoopes et al., Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators, IEEE Transactions on Biomedical Engineering, vol.41, issue.9, pp.874-882, 1994.
DOI : 10.1109/10.312095

]. L. Yuwen, W. Yuwen, Z. Cunxin, W. Congyi, and . Haixiang, Microcalorimetric study of the metabolism of U-937 cells undergoing apoptosis induced by the combined treatment of hyperthermia and chemotherapy, Journal of Thermal Biology, vol.27, issue.2, pp.129-135, 2002.
DOI : 10.1016/S0306-4565(01)00074-2

J. V. Zee, J. N. Peer-valstar, and P. Rietveld, Pratical Limitations of Interstitial Thermometry During Deep Hyperthermia, Int. J. Radiation Oncology Biol. Phys, vol.40, issue.5, pp.1205-1206