Etude asymptotique et simulation numérique de la propagation Laser en milieu inhomogène

Abstract : To simulate the propagation of a monochromatic laser beam in a medium, we use the paraxial approximation of the Klein-Gordon (in the time-varying problem) and of the Maxwell (in the non time-depending case) equations.
In a first part, we make an asymptotic analysis of the Klein-Gordon equation.
We obtain approximated problems, either of Schrödinger or of transport-Schrödinger type. We prove existence and unicity of a solution for these problems, and estimate the difference between it and the exact solution of the Klein-Gordon equation.
In a second part, we study the boundary problem for the advection Schrödinger equation, and show what the boundary condition must be in order that the problem on our domain be the restriction of the problem in the whole space: such a condition is called a transparent or an absorbing boundary condition.
In a third part, we use the preceding results to build a numerical resolution method, for which we prove stability and show some simulations.
Document type :
Theses
Mathematics. Université Paris-Diderot - Paris VII, 2005. French


https://tel.archives-ouvertes.fr/tel-00142670
Contributor : Marie Doumic Jauffret <>
Submitted on : Friday, April 20, 2007 - 2:19:37 PM
Last modification on : Thursday, April 23, 2015 - 2:17:43 PM

Identifiers

  • HAL Id : tel-00142670, version 1

Collections

Citation

Marie Doumic. Etude asymptotique et simulation numérique de la propagation Laser en milieu inhomogène. Mathematics. Université Paris-Diderot - Paris VII, 2005. French. <tel-00142670>

Export

Share

Metrics

Consultation de
la notice

89

Téléchargement du document

69