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Résumé 

 

 
 

Les systèmes embarqués actuels (téléphone portable, assistant personnel…) ne sont pas 

considérés comme des hôtes de confiance car toute personne y ayant accès, sont des 

attaquants potentiels. Les données contenues dans ces systèmes peuvent être sensibles 

(données privées du propriétaire, mot de passe, code d’un logiciel…) et sont généralement 

échangées en clair entre le Système sur Puces (SoC – System on Chip) et la mémoire dans 

laquelle elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible : 

un attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la 

possibilité d’insérer du code afin d’altérer le fonctionnement d’une application s’exécutant sur 

le système. Afin de prévenir ce type d’attaque, des mécanismes matériels doivent être mis en 

place afin d’assurer la confidentialité et l’intégrité des données. L’approche conventionnelle 

pour atteindre cet objectif est de concevoir un mécanisme matériel pour chaque service de 

sécurité (confidentialité et intégrité). Cette approche peut être implantée de manière sécurisée 

mais empêche toute parallélisation des calculs sous-jacents. 

Les travaux menés au cours de cette thèse ont dans un premier temps, consisté à faire une 

étude des techniques existantes permettant d’assurer la confidentialité et l’intégrité des 

données. Dans un deuxième temps, nous avons proposé deux mécanismes matériels destinés à 

la sécurisation des transactions entre un processeur et sa mémoire. Un moteur de chiffrement 

et de contrôle d’intégrité parallélisé, PE-ICE (Parallelized Encryption and Integrity Checking 

Engine) a été conçu. PE-ICE permet une parallélisation totale des opérations relatives à la 

sécurité aussi bien en écriture qu’en lecture de données en mémoire. Par ailleurs, une 

technique basée sur une structure en arbre (PRV-Tree – PE-ICE protected Reference Values) 

comportant la même propriété de parallélisation totale, a été spécifiée afin de réduire le 

surcoût en mémoire interne impliqué par les mécanismes de sécurité. 
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Abstract 

 

 
 

Today’s embedded systems are considered as non trusted hosts since the owner, or anyone 

else who succeeds in getting access, is a potential adversary. The bus between the System on 

Chip (SoC) and the external memory is one of the weakest points of such systems because 

external memories contain sensitive data (end users private data, software code…) which are 

usually exchanged in clear form over the bus. Therefore an adversary may probe this bus in 

order to read private data or to retrieve software code (data confidentiality concern). Another 

possible attack relies on code injection (data integrity concern). Thus, hardware mechanisms 

must be designed to ensure data confidentiality and integrity. The conventional way to reach 

such a goal is to implement a dedicated hardware engine for each security service. Being 

secured, this approach prevents parallelizability of the underlying computations.  

In this thesis, after a study of existing techniques and engines guaranteeing data 

confidentiality and integrity, two hardware mechanisms dedicated to the security of 

processor-memory transactions are proposed. First, a Parallelized Encryption and Integrity 

Checking Engine (PE-ICE) has been designed to provide an effective solution to ensure both 

security services to data. PE-ICE allows full parallelizations on processor read and write 

operations while optimizing the hardware resources required. Then, a technique based on a 

tree structure (PRV-Tree – PE-ICE protected Reference Values) with the same property of 

full parallelization, is specified to decrease the on-chip memory overhead implied by security 

mechanisms.  
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Introduction 
 
 
 
 

 
Not a day passes in our lives without someone using an embedded system: PDA, mobile 

phones, MP3 players, set-top box, video equipments… The range of services provided by 

every single embedded system tends to widen rapidly and applications like on-line banking 

transactions, web browsing, email, application / game download become common on mobile 

devices. As a consequence the amount of sensitive information such as private data – bank 

information, passwords, email, photos… – or intellectual property – software, digital 

multimedia content… – contained or transiting in those devices also increases. The issue is 

that today’s embedded systems are considered as untrustworthy hosts [1] since the owner, or 

anyone else who succeeds in getting access, is a potential adversary. Thus, one of the 

challenges for the high-technology industry in the development of pervasive computing is the 

ability to ensure secured computation and storage.  

The attacks conducted on embedded systems [2] challenge several security services such 

as data confidentiality, data integrity and system availability. Data confidentiality ensures that 

data stored in or transiting through embedded systems are only read by authorized parties 

while data integrity guarantees that those data are not tampered with, deleted or altered by 

malicious entities. Availability refers to the requirement of ensuring the access to the device 

to the user without unexpected delay or obstacle. 

Software attacks like viruses are the most famous threat because they regularly affect our 

desktop computers. Viruses turned up in embedded systems in 2004 with the worm called 

Cabir which infected mobile phones running Symbian Operating System (OS) and which 

propagated itself via Bluetooth. According to McAfee Virus Library, there were 120 types of 

Cabir variants [3] in 2005. The industry started to work on this issue with the Trustzone 

Project [4] from ARM and through consortiums such as the Trusting Computing Group [5] 

(TCG, formerly Trusting Computing Platform Alliance, TCPA) whose goal is to define 



Introduction 

 

 18

secured processing architectures. However, all these efforts do not consider hardware-based 

(physical) attacks and work under the assumption that the communication channels between 

the processor chip and the other components are secure despite the fact that data exchanges 

are often done in clear. The well known cracking of the Xbox gaming console shows that 

designing computing systems with such an assumption leads to simple physical attacks. In 

[6], the hacker Andrew “bunnie” Huang, explained his approach to break the Xbox security 

features and demonstrated that one of the weakest points of computing systems are buses 

because they offer a low-cost spot for attacks. 

Thus, in this thesis we focus on physical non-invasive1 attacks – or board level attacks – 

conducted on buses between the System on Chip and off-chip volatile memory or directly in 

the memory – typically Random Access Memory (RAM). The objectives of the adversary can 

be the unauthorized use or the illegal distribution of intellectual properties or – what is more 

inconvenient for end users – to discover or to corrupt private data retrieved on buses or 

directly in memory. Thus, our goal is to provide a private and authenticated tamper resistant 

environment for application execution. This means we must ensure the confidentiality of the 

off-chip memory content during storage or execution to prevent the leakage of any sensitive 

information and its integrity to forbid execution of intentionally altered data.  

Smartcards offer a countermeasure against such attacks by putting all processing and 

storage elements in a single chip. Another common solution is secure co-processors which 

encapsulate the components handling sensitive computations and data in a tamper-resistant 

and tamper-responsive package, such as the IBM 4578 [7]. However, these solutions are not 

suited for embedded systems because the latter require an expensive and large package to be 

able to provide a high performance system while the former do not allow storing a large 

amount of code and data and do not offer a high computing power.    

A trade-off between the above mentioned countermeasures is to limit the trust boundaries 

to the SoC and to embed memory protection apparatus on-chip. This concept was introduced 

by Best with bus-encryption microprocessor [8, 9, 10] in 1979: data are encrypted before 

being outputted off-chip and are only decrypted once on-chip. However, encryption only 

ensures data confidentiality but does not provide tamper-detection mechanisms to guarantee 

data integrity. Later on, several research works [11, 12, 13, 14] considered this additional 

                                                 
1 In this work we do not consider the non-invasive attacks called side-channel attacks. They are based on the 
analysis of the system behavior (power consumption, execution time, supply voltage, temperature, radiation …) 
to draw conclusion on the cryptographic functions or on the secret values on which the security of the underlying 
computing systems rely and which require specific countermeasures.  
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issue to offer a private and authenticated tamper resistant environment to software execution. 

They achieved this task by providing both security services – data confidentiality and integrity 

– separately. The shortcoming of such an approach is the serialization of the computation of 

the underlying cryptographic algorithms on write or on read operations introducing non-

parallelizable latencies on off-chip memory accesses. Moreover, the hardware resources 

needed are not optimized since the implementation of a dedicated engine for each security 

service is required. 

 

Objectives: In this thesis, the goal is to provide a private and authenticated tamper 

resistant environment to applications running in embedded processors. The attacks targeted 

are the physical attacks conducted at the board level, more specifically bus probing and 

memory tampering (code and data injection). The designed hardware mechanisms must 

ensure the confidentiality and the integrity of the off-chip memory content while considering 

the constraints relative to the processor context – particularly random access of variable sizes 

– to optimize hardware resources, memory access latencies and the memory bandwidth 

consumption at run-time.  

 

Contributions: In order to reach the above mentioned objectives, we explore added 

redundancy and randomness to block encryption to provide data integrity in addition to 

confidentiality. Two hardware mechanisms are proposed:  

 

(1) PE-ICE – Parallelized Encryption and Integrity Checking Engine – is a dedicated 

solution to guarantee data confidentiality and integrity of the external memory content with 

the following features: 

• Full parallelization of the encryption and integrity checking process on write and read 

operations.  

• Implementation of a single encryption algorithm to provide both security services: 

data confidentiality and integrity.  

In this thesis, the architecture of PE-ICE and its security limitations are defined. Moreover 

PE-ICE is evaluated in terms of latencies introduced on memory accesses, of hardware 

resources required for its SoC implementation and of run-time performance degradation. 
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(2) PRV-Tree - PE-ICE protected Reference Values Tree – is a scheme allowing to 

securely store off-chip the meta-data used by PE-ICE and thus to propose an efficient solution 

against a specific kind of attacks (replay). PRV-Tree offers the following advantages when 

compared to existing solutions by using the same hardware as PE-ICE: 

• Full parallelization of the underlying operations on read and write operations 

• Reduction of the memory bandwidth consumption 

In this thesis the concept of PRV-Tree is detailed and its advantages are highlighted 

through concrete application examples. 

 

The security of our schemes relies on the use of a well known and studied block 

encryption algorithm (Rijndael [15]) and on the essential assumption that the System on Chip 

is trusted. 

 

The thesis is organized as follows.  

Chapter 1 introduces the cryptographic tool by defining the security service objectives and 

by describing the cryptographic function useful to provide such security services and 

discussed in the rest of the thesis.  

Chapter 2 provides the threat model and defines the considered attack scenarios. Moreover 

we show through an example of attack that performing memory encryption only is not 

sufficient and could lead to simple attacks challenging data confidentiality. We also present 

the bus encryption and the memory content (integrity) verification principles. Finally this 

chapter deals with the issue of implementing cryptographic functions in a System on Chip.  

Chapter 3 first relates the existing memory encryption engines and the memory 

verification schemes embedded on-chip. Then the techniques providing both data 

confidentiality and authentication are described and the related implementations in our 

application domain considering the same security perimeter (SoC trusted) are presented.  

Chapter 4 defines the architecture of the proposed engine PE-ICE (Parallelized Encryption 

and Integrity Checking Engine).  In this chapter we show how to add the integrity checking 

capability to block encryption. Moreover we describe PE-ICE processing on read and write 

operations, and the PE-ICE security limitations and memory consumptions are discussed. 

Chapter 5 proposes several PE-ICE configurations which depend on the underlying block 

cipher and evaluates their implementation on a commercial on-chip bus and processor core. 
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Moreover, a comparison with a conventional scheme (data confidentiality and integrity 

separately provided by dedicated engines) is discussed. 

Chapter 6 proposes a scheme called PRV-Tree (PE-ICE Protected Reference Value Tree) 

to eliminate the on-chip memory overhead implied by the PE-ICE countermeasure against a 

specific kind of attacks (replay). The advantages of PRV-Tree compared to existing solutions 

(Hash Trees) are finally discussed. 

Chapter 7 concludes this thesis by summarizing the contributions. Further works are also 

detailed and a new research idea is proposed to improve the mechanisms reported in the 

thesis.
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Chapter 1: The cryptographic tool 
 

 

 

 

 
Cryptology is the science of secret. Two sub-disciplines compose cryptology: 

cryptography which is the science of keeping secrets and cryptanalysis which is the science 

of breaking those secrets.  

This chapter presents the techniques provided by cryptography to allow secured 

communications and the existing attacks proposed by cryptanalysis to circumvent such 

techniques. The first section gives general term definitions. Then, section 1-2 exposes 

Kerckhoffs’ principles which define what a secure cryptosystem is. Section 1-3 and section 1-

4 respectively describe techniques for data encryption and for data integrity checking.   

 

1-1. Definitions  

Cryptography is a study of techniques dedicated to provide security services to implement 

information security. Such security services are confidentiality, authentication, data integrity 

and non-repudiation (definition taken from [16]): 

 

Confidentiality is a service used to keep the content of information from all but those 

authorized to have it. Secrecy is a term synonymous with confidentiality and privacy. There 

are numerous approaches to providing confidentiality, ranging from physical protection to 

mathematical algorithms which render data unintelligible. 
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Data integrity is a service which addresses the unauthorized alteration of data. To ensure 

data integrity, one must have the ability to detect data manipulation by unauthorized parties. 

Data manipulation includes such things as insertion, deletion, and substitution. 

 

Authentication is a service related to identification. This function applies to both entities 

and information itself. Two parties entering into a communication should identify each other. 

Information delivered over a channel should be authenticated as to origin, date of origin, data 

content, time sent, etc. For these reasons this aspect of cryptography is usually subdivided into 

two major classes: entity authentication and data origin authentication. Data origin 

authentication implicitly provides data integrity (for if a message is modified, the source has 

changed).  

 

Non-repudiation is a service which prevents an entity from denying previous 

commitments or actions. When disputes arise due to an entity denying that certain actions 

were taken, a means to resolve the situation is necessary. For example, one entity may 

authorize the purchase of property by another entity and later deny such authorization was 

granted. A procedure involving a trusted third party is needed to resolve the dispute. 

 

In the context of this thesis, non-repudiation is not applicable as the system on chip is the 

only active entity in a processor-memory communication system; therefore such a service 

issue is not dealt with in this dissertation. In the following, when the term data integrity is 

used, data origin authentication is implicitly checked. In this chapter, differences between 

these two notions are highlighted when required.  

 

Encryption is the transformation process which makes a message, called plaintext, 

unintelligible. The resulting text of such a transformation is called ciphertext. Encryption 

operations are mathematical functions used to ensure the confidentiality of a message (but not 

only). Decryption is the operation which allows to retrieve the plaintext from the ciphertext. 

Both encryption and decryption primitives use a key which specifies the particular 

transformation respectively from plaintext to ciphertext and from ciphertext to plaintext.  

In the following, the encryption function using the key Ke will be noted as EKe. Hence if P 

is the message to encrypt, then EKe(P) is the encryption of P using the key Ke. It results in a 

ciphertext C such as C = EKe(P). Similarly, the decryption function using the key Kd will be 



Chapter 1.  The Cryptographic Tool 

 

 25

noted as DKd and the plaintext P is recovered by applying DKd on the ciphertext C: P = 

DKd(C). Encryption techniques are exposed in section 1-3. 

The integrity checking process is the set of operations which allows to verify the data 

integrity of a message during its storage or transmission. Such a process is described in 

section 1-4. 

A cryptosystem is a set of algorithms used to provide the above mentioned security 

services and particularly confidentiality. It is usually composed of three algorithms: one for 

the key (or keys) generation, one for encryption noted E and one for decryption noted D. 

A cryptanalyst studies techniques allowing to retrieve secret information on which the 

robustness of a cryptosystem - e.g. the key - relies. In the following a malicious cryptanalyst 

is referred to as an adversary or an attacker. The term eavesdropper is used when the attack 

only involves monitoring of the communication channel.  

Two families of attacks have to be considered:  

• Active attacks which allow message deletion or corruption, data injection or 

replay.  

• Passive attacks which consist in observing ciphertext on the communication 

channel (eavesdropping). 

 

1-2. Kerckhoffs’ Principles 

In 1883, Auguste Kerckhoffs defined six principles to design a secure cryptosystem [17]: 

 

1. The system should be, if not theoretically unbreakable, unbreakable in practice; 

2. It must not be required to be secret, and it must be able to fall into the hands of the 

enemy without inconvenience;  

3. Its key must be communicable and retainable without the help of written notes, and 

changeable or modifiable at the will of the correspondents;  

4. the cryptogram should be transmissible by telegraph; 

5. the encryption/decryption apparatus should be portable and operable by a single 

person;  
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6. it is necessary - given the circumstances that command its application - that the 

system be easy to use, requiring neither mental strain nor the knowledge of a long 

series of rules to observe. 

All of Kerckhoffs’ requirements are still valid today. Among them we can notice that the 

second principle states that all algorithms used in a cryptosystem should be public knowledge. 

 

1-3. Encryption Techniques 

The first purpose of encryption techniques is to provide the confidentiality security 

service. The second and the third of Kerckhoffs’ principles implicitly mean that the robustness 

of an encryption scheme relies on a secret: the key. If this secret is shared by all persons who 

use a cipher to communicate in a private way, this cipher is called symmetric or secret-key 

cipher. On the other hand, if the secret is only known by the intended recipient of the 

encrypted message, the cipher used is called asymmetric or public-key cipher.   

 

1-3.1. Secret-Key Cipher (a.k.a. Symmetric-Key Cipher) 

1-3.1.1.  Principle 

 

 

Figure 1-1  Secret-key (a.k.a. symmetric key) cipher principle 
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The entities using cryptosystems based on this family of ciphers to communicate must 

agree on a secret. This secret is the encryption key Ke and the decryption key Kd. This is why 

they are called secret-key ciphers. Moreover, such ciphers are also referred to as symmetric-

key cipher since they mostly use the same key for encryption and for decryption (Ke = Kd) or 

because Ke is easily computable from Kd and vice-versa.  

 

Example of utilization: Alice and Bob want to communicate over an unsecured channel 

(Figure 1-1). They first choose together a secret key Ke. Then Alice encrypts the message with 

a symmetric-key cipher and Ke and sends it to Bob. Bob receives the ciphertext and uses the 

same symmetric-key cipher and Ke (or computes Kd from Ke) to retrieve the plaintext.  

 

Symmetric ciphers are designed to provide fast computation on encryption and on 

decryption. However the previous example highlights the main drawback of symmetric-key 

cryptosystems which is to securely agree on a secret key prior to establishing the 

communication.  

Secret-key algorithms are divided into two families: stream ciphers and block ciphers. 

 

1-3.1.2. Stream Ciphers 

1-3.1.2.1. Principle 

 

 

Figure 1-2  Stream cipher principle 
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same size as the message. The reverse procedure should be applied to the ciphertext to 

retrieve the plaintext; i.e. the same key has to be applied character by character on the 

ciphertext. 

 

Modern stream ciphers are inspired by such a principle and are composed of two parts 

(Figure 1-2): a key stream generator and a XOR operator. The key stream generator provides 

a bit stream ki; the encryption proper is performed by the XOR operator which combines ki 

and the plaintext pi one bit at a time. It results in the ciphertext ci as follows:  

 

ci = pi ⊕ ki. 

 

The decryption process is also a XOR operation between the same bit stream as the one 

used for encryption and the ciphertext ci. In the light of the XOR operator property (ki ⊕ ki = 

Id2), the result of the decryption is the plaintext: 

 

pi = ci ⊕ ki. 

 

1-3.1.2.2.  One Time Pad: The Perfect Stream Cipher 

One type of stream ciphers has been proved theoretically unbreakable by Shannon [19]: the 

One-Time Pad (OTP). OTP uses a secret key stream randomly generated and at least as long 

as the plaintext. Hence the sole information that a cryptanalyst could guess, is the length of 

the plaintext. However, generating a random bit stream as long as the plaintext and 

transmitting it to the intended recipient of the message are two difficult tasks which make 

OTP implementation unaffordable. 

 

1-3.1.2.3. Modern Stream Ciphers 

In order to overcome the OTP issues, key stream generators of modern stream ciphers use 

algorithms which produce a pseudo random key stream ki from an internal state Si and a secret 

key as depicted in Figure 1-3. The internal state is initialized by a small data called “seed” and 

all the cryptographic complexity of such a scheme resides in the output algorithm. The 

objective is to make a bounded adversary think that the key stream generator output is 
                                                 
2 Id is the identity function. 
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random. However the resulting key stream is obviously not truly random and the unbreakable 

provability of OTP is no longer valid for such stream ciphers. 

 

 

Figure 1-3  Key stream generators model of modern stream ciphers 
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sequences depend on the internal state of the key stream generator. The internal state is 
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Figure 1-4  Synchronous stream ciphers 
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encrypted message bits are lost during transmission, the key stream will be shifted in 

comparison to the ciphertext and the result of the decryption will be wrong. Additional 

mechanisms must be foreseen to re-synchronize the system and to avoid impacting the whole 

message deciphering. An advantage of such a class of stream ciphers concerns error 

propagation. If an error occurred on one or several bits during transmission, only the 

decryption of this or those bits will produce a wrong result.  Unfortunately, this advantage 

becomes a drawback from a security point of view. Indeed an adversary, who changes bits in 

the ciphertext, knows how the plaintext is impacted.  

 

 

Figure 1-5  Self -synchronous stream ciphers 
 

Concerning self-synchronous stream ciphers, the evolution of the internal state of the key 

stream generator depends on the n previous ciphertext bits (Figure 1-5). Therefore on 

decryption, the key stream generator will be automatically synchronized with the key stream 

generator used during encryption after receiving n bits of ciphertext. Such a class of stream 

ciphers propagates transmission errors but in a limited way. Suppose that an error occurred 

and that the erroneous bits were used to decide the next internal state of the key stream 

generator. As internal states depend only on the n previous ciphertext bits, only the next key 

stream sequence and, as a consequence, the decryption of the corresponding ciphertext will be 

impacted by the error.  

Stream ciphers are usually constructed by using block ciphers as output algorithms. 

Examples of stream ciphers are therefore presented in the section dedicated to block cipher 

modes of operation (3.1.3.6.).  
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1-3.1.2.4.  Advantages and Drawbacks 

The main advantages of stream ciphers are their speed and their low hardware complexity. 

In addition, they are relevant for applications for which error propagation is not acceptable 

(synchronous stream ciphers) or must remain limited (self-synchronous stream ciphers).  

However designing a secure stream cipher is a difficult task. The fact that two key streams 

must never be used twice in the same cryptosystem is one security critical point. Suppose that 

two plaintext messages P1 and P2 are encrypted with the same key stream KS, the resulting 

ciphertexts will be respectively C1 = P1 ⊕  KS and C2 = P2 ⊕  KS. Hence, P1 ⊕  P2 = C1 ⊕  C2, 

which gives information to cryptanalysts to perform attacks [16]. Moreover, a key stream 

generator using a secret key K and always initialized with the same seed will produce each 

time the same key stream. Therefore, an attacker may replay an old ciphertext with the 

certainty that it will be correctly decrypted.  Such attacks highlight the fact that the seed or the 

secret key must be changed on each initialization of the output algorithm.  

 

1-3.1.3. Block Ciphers 

1-3.1.3.1.  Principle 

 

 

Figure 1-6  Block ciphers principle 
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decryption process works analogously deciphering the ciphertext n-bit block by n-bit block 

using Kd.  

 

1-3.1.3.2. The Shannon Principles  

Shannon [19] identified two properties for cipher operations to be secure: confusion and 

diffusion. In Shannon’s original definitions, confusion makes the relation between the key and 

the ciphertext as complex as possible. An ideal confusion makes each bit of the ciphertext 

dependent on all bits of the key. Diffusion refers to the property that redundancy in the 

statistics of the plaintext is dissipated in the statistics of the ciphertext. Theoretically, to reach 

such a goal, each bit of the ciphertext must depend on all bits of the plaintext. 

In the same paper, Shannon introduced the notion of substitution-permutation networks 

also called product ciphers. Product ciphers iterate simple operations like substitution – to add 

confusion - and permutation – to add diffusion.  The objective of combining simple 

transformations which do not individually provide a high level of security is to obtain strong 

cipher. 

Most modern block ciphers are based on the product cipher principle. 

 

1-3.1.3.3. Block Cipher Structures 

 

Figure 1-7  Block ciphers structure 
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A block cipher is divided into two parts: the key schedule and the data path. 

The data path follows the product cipher principle: it is composed of a function (or a set of 

functions) called a round that is repeated a fixed number of times. It takes the plaintext as 

input, and outputs the ciphertext after the fixed number of rounds Nr.  

The key schedule processes the secret key and derives from it the round keys used in each 

data path round. The derivation of the key is necessary to add confusion: it increases the 

dependency of each bit of the ciphertext upon all bits of the secret key. 

The first round of the data path (Figure 1-7) takes the plaintext and the first round key as 

inputs, and then the following rounds take the previous round output and the corresponding 

round key as inputs. 

In order to illustrate block cipher theory, the following section describes the last block 

encryption algorithm standardized by the NIST (National Institute of Standard and 

Technology): AES (Advanced Encryption Standard). 

 

1-3.1.3.4. Example: AES   

The Rijndael [15] algorithm was developed by Joan Daemen and Vincent Rijmen to 

answer the call for bock cipher standardization from the NIST. It was adopted as the new 

standard after a standardization process of five years. It was then called AES [20] (Advanced 

Encryption Standard) and replaced the famous DES [21] (Data Encryption Standard) for 

which the key length became too small to resist a brute force attack3 [22]. 

The AES algorithm processes 128-bit data blocks using cipher keys with lengths of 128, 

192 and 256 bits. In the following, the AES structure is detailed only for 128-bit keys; such a 

configuration is referred to as AES-128. For more information on the other configurations 

refer to [15, 20]. 

 

The encryption data path: 

 

The AES-128 data path is an iteration of 10 rounds after a first XOR operation between 

the plaintext block and the secret key. A round is made of four operations: SubBytes, 

ShiftRows, MixColumns and AddRoundKey, except the last round of the data path which 

does not include the MixColumns transformation (Figure 1-8). 

                                                 
3 A brute force attacks consists in trying all possible keys to find out all plaintext / ciphertext pairs, see section 
3.3 
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Figure 1-8 AES Encryption process: 10 rounds of 4 operations: SubBytes - ShiftRows - 
MixColumns - AddRoundKey 

 

Those operations are performed on a 4x4 array of bytes called the State. At the start of the 

cipher the State array is filled by the plaintext bytes – in0, in1, in2, … , in15 – as shown in 

Figure 1-9 (taken from [20]). Sr,c is a byte of plaintext in the State array, the suffixes r and c 

refer respectively to the row and the column to which it belongs.  Then the State is processed 

by the data path and at the end of the last round it is copied to the output array (Figure 1-9) to 

produce the ciphertext - out0, out1, out2, … , out15.  

 

 

Figure 1-9  State array input and output 
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Figure 1-10  SubBytes: the S-box is applied on each byte of the State array 
 

 

Figure 1-11 The S-box: substitution value for a byte xy 
 
 

SubBytes is a non-linear byte substitution applied on each byte of the State array using a 

substitution table, the S-box (Figure 1-10 - taken from [20]). Each byte Sr,c of the State array 

is represented by two digits xy which are used to address the S-box (Figure 1-11 - taken from 

[20]). The pointed value replaces Sr,c in the State array. The S-box is constructed by 

performing two transformations: taking the multiplicative inverse of the State array in the 

Galois Field GF(28) and applying an affine transformation over GF(2). Non-linearity is 

provided by the first one which minimizes the correlation between the input and the output 

and the second one increases the algebraic structure complexity of the operation. Both 

transformations are invertible; hence the S-box is invertible. 
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Figure 1-12 ShiftRows: the last three rows of the state array are cyclically shifted  
of r-byte  

 

The ShiftRows transformation acts on the last three rows of the State array. They are 

cyclically shifted of a number equal to the value of the suffix r as shown in Figure 1-12 (taken 

from [20]). The objective of ShiftRows is to introduce diffusion through rows. 

 

 

 

Figure 1-13 MixColumns multiplies each column of the State array by a constant matrix 
 

The MixColumns transformation multiplies each column of the State array by a constant 

matrix (Figure 1-13 – taken from [20]). Considering each column as a polynomial over 

GF(28), such transformation amounts to a multiplication modulo x4 + 1 with a(x) = x03 x3 + 

x01 x2 + x01 x + x02. The objective of MixColumns is to introduce diffusion through 

columns. 
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The AddRoundKey transformation is a simple bitwise XOR operation between each 

column of the State array and the corresponding column Wn,c in the Round Key matrix 

(provided by the key schedule) with n indicating the number of the round (Figure 1-14 – taken 

from [20]): 

[S’0,c , S’1,c , S’2,c , S’3,c ] = [S0,c , S1,c , S2,c , S3,c ] ⊕ Wn,c        for 0 ≤ c ≤ 3 

 

 

Wn ,0 Wn ,3 Wn ,2 

Wn,c 

 

Figure 1-14 AddRoundKey: Xor operation between each column of the State array and 
the corresponding column in the round key matrix 

 
The key schedule: 

 

 

Figure 1-15 Computation of a round key 
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is depicted in Figure 1-15. Round key 0 is the secret key and is used for the first XOR 

operation with the plaintext before the first round of the data path.  

RotWord and SubWord are two transformations used in the key schedule. RotWord takes a 

word (a0 a1 a2 a3) as input, cyclically permutes the bytes composing it, and outputs the word 

(a1 a2 a3 a0). SubWord takes a word as input and applies the S-box to each of the four bytes. 

Rcon [1 to 10] is a constant array of ten words [20]. 

A Round key (n) is composed of four words Wn,i, with n as the suffix of the corresponding 

Round key and i as the position of the word in the Round Key. 

To compute Round key (n+1) (Wn+1,0 Wn+1,1 Wn+1,2 Wn+1,3), four operations are chained 

(Figure 1.15). The last word Wn,4 of the current Round key (n) (Wn,0 Wn,1 Wn,2 Wn,3) is first 

processed by RotWord. Then the resulting word is applied to SubWord and a XOR operation 

is performed between the output of SubWord and Rcon [n+1]. Finally, the first word of Round 

Key (n+1), Wn+1,0, is obtained by a XOR operation between the first word of Round key (n), 

Wn,0, and the result of the last operation. The other words of Round key (n+1), Wn+1,1 Wn+1,2 

Wn+1,3, are computed with XOR operations between Wn+1,i-1, and Wn,i. 

 

The decryption: 

All the transformations described above are invertible. Hence, the decryption is obtained 

by applying the inverse functions InvSubBytes, InvShiftRows, InvMixColumns, and 

AddRoundKey in reverse order. AddRoundKey remains the same as it involves only XOR 

operations. The round keys are generated in the same way, however the key schedule takes as 

input the decryption key that is the last Round key (Round key(10)) of the key schedule in the 

encryption process. 

 

AES is fast both in software and in hardware. For example, the AES implementation on 

ASIC presented in [23] shows that the encryption of one 128-bit block is done in 11 clock 

cycles at 330 MHz.  

 

1-3.1.3.5. Advantages and Drawbacks 

Block ciphers are usually slower than stream ciphers but are more popular. The main 

reason is the fact that they are simple to understand and to implement. Moreover block 

ciphers are well known and studied since they are not used only to ensure data confidentiality. 

As it will be presented in section 1-4, block ciphers are a building block for other 
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cryptographic algorithms like the ones dedicated to data integrity and authentication security 

services.   

 

1-3.1.3.6. Modes of Operation 

Block ciphers offer a solution to encrypt a given n-bit plaintext block into an n-bit 

ciphertext block. Modes of operation are the recommended ways to use block ciphers to 

encrypt a message longer than the cipher block size n.  

In this sub section, the principles of five block cipher modes of operation are exposed: 

ECB (Electronic Code Book), CBC (Cipher Block Chaining), CTR (Counter), OFB (Output 

FeedBack) and CFB (Cipher FeedBack). For detailed description of such modes – particularly 

OFB and CFB – refer to [24]. 

The NIST has recently started a standardization process for Authenticated Encryption 

modes with the objective to provide both data confidentiality and authentication. Such modes 

are described and discussed in a dedicated section in chapter 3 (section 3-33). 

In the following, encryption modes are described considering a block cipher processing n-

bit block. The secret key K is considered to be the same for encryption and decryption. The 

encryption and decryption operations using K are respectively noted Ek and Dk. Moreover, the 

length of the message to encrypt is supposed to be a multiple of the ciphered block size n. 

When it is not the case, message padding is required; however this issue is not exposed here, 

for details refer to [16][24]. 

 

a. ECB - Electronic Code Book 

 

ECB mode is the direct application of block cipher principle: plaintext blocks P1, P2, P3, 

…, Pm composing a message M, are encrypted one at a time and independently from one 

another (Figure 1.16a). The resulting ciphertext is C1, C2, C3, …, Cm with 

 

miiPEC iki ≤≤∀= 1  assuch           )(  

 

The decryption follows the same principle (Figure 1-16b), thus: 

 

miiCDP iki ≤≤∀= 1  assuch           )(
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Figure 1-16 The ECB (Electronic Code Book) mode 
 

The fact that the encryption of a same plaintext block twice results in the same ciphertext 

block is the main drawback of ECB mode from a security point of view. A message 

containing repetitive patterns must not be encrypted with such a mode because an adversary 

can deduce when the same information occurs twice or is transmitted twice. A way to 

improve the security of the ECB mode is to include random bit in each plaintext block before 

encryption [16]. 

With the ECB mode, encryption and decryption processes are fully parallelizable. 

Concerning error propagation, the effect of ECB mode is limited. If one bit is erroneous in 

an encrypted message, only the decryption of the corresponding ciphered block is impacted. 

 

b. CBC - Cipher Block Chaining 

 

 

Figure 1-17 The CBC (Cipher Block Chaining) mode 
 

In CBC mode, each plaintext block Pi of a message M (P1, P2, P3, …, Pm) is combined 

with the previous ciphered block Ci-1 by a XOR operation prior to encryption (Figure 1-17a), 

thus:  
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An initialization vector (IV) is required to encrypt the first plaintext block P1:  

 

1for         )( 11 =⊕= iIVPEC k  

 

The decryption process is therefore (Figure 1-17b):  

 

   
2  assuch        )(

1for        )(

1⎩
⎨
⎧

≤≤∀⊕
=⊕

=
− miiCCD

iIVCD
P

iik

ik
i  

 

The main advantage of CBC compared to ECB is that a plaintext block encrypted twice 

gives two different ciphertext blocks as the encryption depends on the previous ciphertext 

block.  However, a complete message encrypted twice in CBC mode with a given key results 

in the same ciphertext if the same IV is used. A way to overcome such a drawback is to 

change the IV for each encrypted message. Ideally, this IV should be secret. Therefore it could 

be randomly generated for each message to encrypt, encrypted in ECB mode and sent with the 

message. 

CBC encryption is performed in series (Figure 1-17a) since such a process requires the 

previous ciphertext block to start. On decryption, CBC is parallelizable because all required 

information could be available: the current and the previous ciphertext blocks and the secret 

key.  

The CBC mode has a limited effect on error propagation. If one bit is erroneous after 

transmission of the encrypted message, the decryption of the corresponding ciphertext block 

results in a wrong plaintext block and one bit of the following plaintext block will be affected 

– because of the XOR operation with the erroneous bit.  

 

c. CTR – Counter 

 

CTR is a block cipher mode which is used as a stream cipher (like OFB and CFB). CTR is 

a synchronous stream cipher (Figure 1-4): the output algorithm is the block cipher and the 

internal state S of the key stream generator is a counter initialized with an IV (the seed) and 

incremented for each new plaintext block. Considering a message M composed of m plaintext 

block Pi with (1 ≤ i ≤ m), the CTR encryption process (Figure 1-18a) works as follows: 
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Figure 1-18 The CTR (Counter) mode 
 

As a stream cipher, for decryption (Figure 1-18b) the same key stream - as the one used for 

encryption - must be generated to perform the XOR operation with the ciphertext (C1, C2, C3, 

…, Cm), therefore: 
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Like the CBC mode, in order to avoid the encryption of the same message resulting in the 

same ciphertext, the IV must be different and ideally secret for each message to encrypt with 

the same secret key K. Moreover, the key stream generated for each plaintext block depends 

only on the counter value S for a given K. Hence, the same value of S must never be used 

twice; otherwise the same key stream sequence is generated for two different plaintext blocks, 

leading to the weakness described in 3.1.2.4. The IV must be carefully selected on each 

encryption to circumvent such a security hole. 

As CTR is a synchronous stream cipher, there is no error propagation (see section 1-

3.1.2.3). 

The CTR mode is fully parallelizable on encryption and on decryption as the key stream 

generation only depends on the counter value S. 
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d. OFB - Output FeedBack 

 

The OFB mode is a synchronous stream cipher, like CTR (Figure 1-4). The output 

algorithm is the block cipher and the internal state S of the key stream generator is defined by 

the result of the block encryption of the previous internal state. Such a mode requires an IV 

(the seed) to initialize the internal state. Considering a message M composed of m plaintext 

block Pi with (1 ≤ i ≤ m), the OFB encryption process (Figure 1-19a) works as follows: 
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For decryption (Figure 1-19b), the same key stream - as the one used for encryption - must 

be used to perform the XOR operation with the ciphertext, therefore: 
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Figure 1-19 The OFB (Output FeedBack) mode 
 

A message encrypted twice in OFB mode results in the same ciphertext. Hence, as for the 

CBC and CTR modes, the IV must be different and ideally secret for each message encrypted 

with a given key.  

OFB is a synchronous stream cipher therefore there is no error propagation (see section 1-

3.1.2.3). 

The OFB mode is not parallelizable on encryption and on decryption. Indeed, a given 

internal state of the key stream generator is defined only at the end of the block encryption of 

the previous internal state. Therefore key stream sequences are produced in series.  
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e. CFB - Cipher FeedBack 

 

The CFB mode is a self synchronous stream cipher (Figure 1-5). The output algorithm is 

the block cipher and the internal state S is defined by the previous ciphertext Ci-1. Such a 

mode requires an IV (the seed) to initialize S. Considering a message M composed of m 

plaintext block Pi with (1 ≤ i ≤ m), the CFB encryption process (Figure 1-20a) works as 

follows: 
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For decryption (Figure 1-20b), the same key stream - as the one used for encryption - must 

be used to perform the XOR operation with the ciphertext, therefore: 
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Figure 1-20 The CFB (Cipher FeedBack) mode 
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are done sequentially. On decryption, CFB mode is parallelizable since this operation only 

requires available information – the ciphered message and the secret key- to start the 

computation of the key stream sequences.  

 

The last three presented modes (CTR, OFB and CFB) may be implemented in order to 

generate key stream sequences shorter than n (the size of block processed by the underlying 

cipher block). Such a task is achieved by selecting the l leftmost bits of each key stream 

sequence [24] where l is the desired size of the key stream. Moreover, note that when modes 

of encryption are used as stream cipher (CTR, OFB and CFB) only the block encryption 

process is involved. In hardware, this allows to save silicon area. 

 

1-3.2. Public-Key Encryption 

1-3.2.1.  Principle 

 

Figure 1-21 Public-key cipher principle 
 

Contrary to symmetric-cipher, entities using cryptosystems based on public-key cipher to 

communicate in a confidential way do not need to agree on a secret. Such schemes are also 

named asymmetric-cipher because they use two different keys for encryption and for 

decryption: the encryption key Ke, called the public key since it can be transmitted over an 

unsecured channel and it does not require to be kept secret, and the decryption key Kd, 
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designated as the private key since only the intended recipient of an encrypted message must 

know it.  

Take up again the example of Alice and Bob where Alice wants to send a confidential 

message to Bob (Figure 1-21). Bob must first compute a pair of public / private keys (Ke, Kd) 

and transmit the public-key Ke to Alice over an unsecured channel4. Then Alice encrypts her 

message with Ke and sends it to Bob. Finally, Bob uses Kd to decrypt the message. 
 

The notion of public-key cryptosystems was first introduced in [25] by professors Wilfred 

Diffie and Martin Hellman. Such cryptosystems are based on the difficulty to solve complex 

mathematical problems and particularly on trapdoor one-way functions. A function f(x) = y is 

designated as one-way if for every x it is easy to compute f(x), while it is computationally 

difficult to retrieve x from y. Whereas a function f(x) = y is designated as one-way with 

trapdoor, if for every x it is easy to compute f(x), and that, knowing a secret – the trapdoor –, 

it is easy to retrieve x from y. 

An example of such complex mathematical problems is the factorization of large numbers: 

it is easy to compute the multiplication of two large numbers but the inverse function, the 

factorization, is computationally very difficult to resolve. The most famous public-key 

algorithm, RSA [26] (for Rivest Shamir Adleman, the names of the inventor) is based on such 

a problem.  Next section describes how RSA works.  

 

1-3.2.2. Example: RSA  

As all cryptosystems, RSA is composed of three algorithms: one for the key generation, 

one for encryption and one for decryption. 

 

Key generation algorithm; 

The key generation algorithm of RSA consists in computing three parameters which 

compose the encryption and the decryption keys Ke and Kd.  

The first parameter n, called the modulus, is computed by choosing two large prime 

numbers, p and q, and by multiplying them together:  n = pq. 

Then, the second parameter e, called the encryption exponent, is selected so that e and (q-

1)(p-1) are prime together - meaning gcd(e, (q-1)(p-1)) = 1 (gcd: greatest common divisor) – 

and e < (q-1)(p-1).  
                                                 
4 In fact this channel must be an authenticated channel otherwise an attack described in 3.2.3 remains feasible. 
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Finally, the extended Euclidean algorithm [16] is used to compute the third parameter d, 

the decryption exponent, as follows:  
 

ed ≡ 1 mod ((q-1)(p-1)) which is equivalent to ∃ k / ed + k(p-1)(q-1) = 1. 
 

It results that the public key Ke consisting of e and n, and the private key Kd is equal to d. 

Once the two keys are generated, the two prime numbers p and q are no longer used, 

therefore they must be destroyed. 

 

Encryption: 

Consider a message m represented as an integer comprised between 1 and n-1. The 

resulting ciphertext c of the m encryption using Ke (e,n) is obtained with: 
 

c = me mod n 
 

Decryption: 

The recipient of c uses Kd (d) to decrypt it as follows: 
 

m = cd mod n 
 

1-3.2.3. Advantages and Drawbacks 

The main advantage of public-key ciphers compared to secret-key ciphers is the fact that 

there is no need to share a secret prior to establishing the communication. The encryption key 

may be publicly known but its authentication is required, otherwise a man-in-the-middle 

attack is feasible. Such an attack involves (Figure 1-22) an adversary who monitors an 

unsecured channel, intercepts a message M and possibly some meta data X useful for security 

purposes, analyses them, and exchanges them by chosen data (M’; X’). Here, the adversary 

may catch Bob’s public key and replace it by its own. Alice encrypts her message with the 

fake public key and sends the message over the unsecured channel. The adversary retrieves 

the encrypted message, and is able to decrypt it with his private-key. Such an attack 

challenges the entity authentication and is circumvented by using public key certificates and a 

Public Key Infrastructure (PKI). A PKI is an infrastructure which supports the distribution of 

authenticated public keys. However, entity authentication is not the topic of this thesis; hence 

in the following public keys are considered authenticated - for information on PKI refer to 

[24]. 
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In addition, public-key ciphers are very slow because they are based on complex 

mathematic concepts. For example, in hardware an RSA decryption takes up to 260 000 

cycles at 100MHz to encrypt a 1024-bit plaintext block [27]. 

 

 

Figure 1-22 Man-in-the-middle attack principle 
 

1-3.3. Security of Encryption Techniques 

The attacks conducted on an encryption scheme might have two objectives: key recovery 

and message recovery.  

 

The objective of the first attack is to recover the secret-key or the private-key used 

respectively in a symmetric cipher or in an asymmetric cipher. The most well-known practical 

attack for key recovery is the brute force attack. It consists in trying all possible keys until 

finding out the one allowing to retrieve the plaintext from any ciphertext. Therefore, the 

longer the key is, the better for the encryption algorithm in term of robustness. 

 

The goal of message recovery attacks is to draw some conclusions on plaintexts by 

observing ciphertexts. In such attacks, it is supposed that the adversary knows some pair of 

corresponding plaintext / ciphertext, and the public key in the case of asymmetric encryption. 

A cryptosystem is immune against message recovery if it is semantically secure, meaning an 

eavesdropper is not able to determine if a given ciphertext is the encryption of one plaintext or 

another.  
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Previous adversary objectives (message recovery and key recovery) rely practically on 

passive attacks which could be classified by considering the kind of information the adversary 

knows. The following definitions have been taken from [16]: 

 

1. A ciphertext-only attack is one where the adversary (or cryptanalyst) tries to deduce 

the decryption key or plaintext by only observing ciphertext. Any encryption scheme 

vulnerable to this type of attack is considered to be completely insecure. 

2. A known-plaintext attack is one where the adversary has a quantity of plaintext and 

corresponding ciphertext. This type of attack is typically only marginally more 

difficult to mount. 

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then 

given corresponding ciphertext. Subsequently, the adversary uses any information 

deduced in order to recover plaintext corresponding to previously unseen ciphertext. 

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice of 

plaintext may depend on the ciphertext received from previous requests. 

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is then 

given the corresponding plaintext. One way to mount such an attack is for the 

adversary to gain access to the equipment used for decryption (but not the decryption 

key, which may be securely embedded in the equipment). The objective is then to be 

able, without access to such equipment, to deduce the plaintext from (different) 

ciphertext. 

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice of 

ciphertext may depend on the plaintext received from previous requests. 
 

The robustness of an encryption scheme is evaluated by respecting the first and the 

second Kerckhoffs principles which state that an algorithm must be unbreakable in practice5 if 

not theoretically unbreakable and that it must be publicly known. This allows the research 

community to perform cryptanalysis and to check their accordance with the first Kerckhoffs 

principle. The sole cryptosystem proved secured is the One Time Pad.  

 

The encryption is mainly a countermeasure against passive attacks.  However, active 

attacks driven during transmission – e.g. the man-in-the-middle attack as depicted in Figure 

                                                 
5 A cryptosystem is said broken if an adversary succeeds in a key recovery or a message attack in a time slot 
smaller than the one for which the secret must be kept.  
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1.22 – which allows message deletion, data injection or replay must be also prevented. One 

objective of active attacks might be to constrain the search space – for instance on a brute 

force attack – when the ultimate adversary goal is message or key recovery. 

Countermeasures against active attacks are provided by data authentication or integrity 

checking techniques. Those techniques are presented in the next section. 

 

1-4. Data Integrity Checking Techniques 

This section will first present the principle of integrity checking processes of a message 

transmitted over an unsecured channel. Then, the cryptographic functions, called hash 

functions, used in such processes will be defined. However, this study focuses on mechanisms 

useful in our domain, i.e. store-and-retrieve application, therefore refer to [16] for a detailed 

definition of hash functions. Finally, integrity checking schemes and their respective 

objectives will be described.   

  

1-4.1. Integrity Checking Process Principle 

 

Figure 1-23 Integrity checking process principle 
 

In order to present this principle, the example of Alice and Bob is taken up again (Figure 1-

23). This time Alice sends a message M to Bob and needs the formal assurance that it will not 
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message using a specific black-box keyed-function HK. Then Alice sends T along with M. The 

role of the tag is to be a compact representative image of the message content and of its 

origin. Bob receives the pair (M; T), computes a tag T’, called the tag reference, over M using 

the same black-box keyed-function HK. If T’ is equal to T, Bob has the certainty that M has 

not been tampered with during transmission. 

Classic attacks led on integrity checking schemes are called forgery attacks. A forgery 

attack is successful when an adversary is able to find out the correct tag for a message of his 

choice. 

Note that the purpose of the principle presented above is only to give an overview of how 

integrity checking works; however, the implemented schemes can be slightly different 

depending on the underlying cryptographic functions involved in the tag computation. Those 

schemes are described in the following. 

 

The integrity checking mechanisms use cryptographic algorithms called hash functions. 

Most of the time, such functions are not used only to provide data integrity but are essential 

from a security point of view. Thus, the following section defines hash functions. 

 

1-4.2. Hash Functions 

A hash function h has at least two properties: compression and ease of computation. This 

means that given an input x of an arbitrary finite length, it is easy to compute the output h(x), 

called hash or digest, which has a fixed bit length n.  

The minimum objective of hash functions is to give a compact representative image of a 

message. Such an image must be ideally unique to identify the message. However the direct 

implication of the compression property is the fact that there are more possible inputs than 

outputs. That is why a hash function h may have the three following properties: 

• Preimage resistance: given y, an output of h, it is computationally infeasible to retrieve 

the corresponding input x such as h(x) = y. 

• Second preimage resistance: given x, an input of h, and y the corresponding output - 

meaning h(x) = y - it is computationally infeasible to find a second input x’ such as 

h(x’) = y. 

• Collision resistance: it is computationally infeasible to find two inputs x and x’ which 

have the same image through h, meaning h(x) = h(x’). 
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The collision resistant property implies the second preimage resistance. Ideally, a hash 

function should have the three previous properties. 

Hash functions are divided into two families: unkeyed hash functions and keyed hash 

functions.  

1-4.3. Unkeyed Hash Functions a.k.a. Modification Detection Codes (MDC) 

1-4.3.1.  Principle 

Unkeyed hash functions have a single input, the message to hash, and produce an n-bit 

digest. They are also called Modification Detection Codes (MDC) algorithms as their goal is 

only to provide a compact representative image of the input message. 

 

Figure 1-24 Model of iterative hash functions 
 

Most of unkeyed hash functions are designed as iterative processes as depicted in Figure 1-

24. Their input is an arbitrary length message M which is first divided into m fixed-length r-

bits block bi with 1 ≤ i ≤ m. If the length of M is not a multiple of r, a padding method is used 

to attain such size. Those methods are not dealt with here; for more information, refer to [24]. 

Then, each block is processed in series by a compression function f. Hence, f is solicited m 

times. f takes as inputs its previous result and a block bi; an IV is required for the first hash 

iteration. The output of the function hi (with 1 ≤ i ≤ m) – the intermediate hash value - is an l-

bit block. The final hash-value H is obtained by performing an output transformation g on the 

last iteration result hm. Typically, such a transformation consists of a truncation of hm to 

generate a digest (H) with a predefined size n such as n ≤ l.  
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1-4.3.2.  Example: SHA-1 

SHA-1 is one the most widely used hash functions. For example it is employed in 

protocols such as SSL(Secure Sockets Layer), TLS(Transport Layer Security) and IPSec 

(Internet Protocol Security). It was designed by the NSA (National Security Agency) and 

standardized by the NIST [28]. 

SHA-1 takes as input a message M smaller than 264 bits and processes 512-bit blocks. It 

provides a 160-bit digest. IVs and intermediate hash values are 160-bit long too. SHA-1 is 

divided into two parts: the pre-processing and the digest computation. 
 

The pre-processing: 

In SHA-1, the input message M is first padded if it is not a multiple of 512-bit and then 

split into m blocks bi of such a size (with 1 ≤ i ≤ m). The IV or h0 – specified in [28] - 

initializes five 32-bit variables A, B, C, D, E (Figure 1-25) which are used to store 

intermediate hash value hi (with 1 ≤ i ≤ m). After this step the 512-bit blocks bi are processed 

one at a time to obtain the digest.  

Before describing such a process, several parameters and functions used by SHA-1 must be 

defined. 
 

Parameters and functions:  

W is an array of eighty 32-bit words and Wt is a word in W (with 0 ≤ t ≤ 79).  

K is a constant array of 32-bit words and Kt is a constant word in K (with 0 ≤ t ≤ 79) such 

as: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤
≤≤
≤≤
≤≤

=

7906     when ,a62c1d6x0
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tc
t
t

ta

Kt  

RotLn(x) is a circular shift rotation of the word x by n positions to the left. 

Ft(x, y, z)6 is a function such as: 
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6 ∧ is the bitwise AND operation, ⊕ is the bitwise XOR operation and ¬ is the bitwise complement operation 
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Digest computation: 

In order to compute the digest, the four following steps are applied to each 512-bit block bi 

one at a time:  

First W is set such as: 

              
7916for            )(

150for                                                    

1683
1

,

⎪⎩

⎪
⎨
⎧

≤≤⊕⊕

≤≤
=

−−− tWWWROTL

tb
W

ttt

ti
t  

Where bi,t represents a tth 32-bit word in bi. 

 

Then the five variables A, B, C, D and E are initialized by the five words composing the 

previous intermediate hash value hi-1 (hi-1,0, hi-1,1, hi-1,2, hi-1,3, hi-1,4) except for the first block b0  

for which such a step is done during pre-processing (initialization with the IV = h0). 

 

 

Figure 1-25 The compression function (f) of SHA-1 
 

The third step is depicted in Figure 1-25. It consists in applying the following operations 

on the five variables7: 
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7 + used to compute the intermediate variable T is the addition modulo 232 
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Finally, the intermediate hash value hi (hi,0, hi,1, hi,2, hi,3, hi,4) is calculated with: 

4,14,

3,13,

2,12,

1,11,

0,10,

−

−

−

−

−

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

hEh
hDh
hCh
hBh
hAh

 

 

After repeating such a process for the m blocks composing the message M, the resulting 

hash is equal to hm, meaning that the output transformation for SHA-1 is the identity. 

 

1-4.3.3. Message Authentication Schemes Based on MDC 

As previously defined, data integrity is a service which addresses the unauthorized 

alteration of data by an adversary during transmission or storage. Additionally to such a 

notion, it is required to check the origin of the data to be sure that a message really comes 

from the claimed sender. MDCs are not sufficient to provide such an assurance since they are 

publicly known as all cryptographic functions (2nd Kerckhoffs principle) and they do not 

enroll a secret. For example, suppose that Alice computes a tag T of a message M using an 

unkeyed hash function H - H(M) = T - and sends it to Bob along with M. When Bob receives 

the pair (M; T) it computes the tag reference T’ using H – H(M) = T’. If T is equal to T’, the 

only certainty that he has is the fact that T is really the hash result of M using H! Indeed, a 

malicious third party could have intercepted the pair (M; T) during transmission (Man-in-the-

middle: Figure 1.22) and replaced it by a chosen pair (M’; H(M’)) without Bob being able to 

detect it. 

 

The service which identifies the source of a message is called data origin authentication 

and it will be referred to as message authentication. Data origin authentication implicitly 

provides data integrity (Figure 1-30). Indeed, if a message is modified during transmission 

this means that the source has changed. 

Mechanisms used in addition to MDCs to ensure message authentication are asymmetric 

signature, symmetric encryption or secret addition (HMAC [90]). 
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1-4.3.3.1. MDC and Asymmetric Signature 

Asymmetric signatures, also called public-key decryption are based on the same 

cryptographic concept than the one used in public-key encryption. The difference comes from 

the fact that the encryption is done with the private key and the decryption with the public key 

instead of the reverse. In this way, the private key holder is the only one able to encrypt a 

message that everybody can decrypt. Here the encryption objective is not to provide 

confidentiality; such a principle combined with a MDC is used to provide message 

authentication.  

Alice still wants to send a message to Bob with the assurance that it will not be modified 

during transmission and Bob needs to be sure that the information contained in the received 

message is correct and that Alice is really the sender (Figure 1-26). Thus Alice computes a 

hash (H) of the message M with a MDC and signs H by encrypting it with her private key Ke 

to obtain a tag T (also called signature). She sends the pair (M; T) to Bob over an unsecured 

channel. Bob receives (M; T), decrypts T using the Alice’s public key Kd and hashes the 

message M with the same MDC than the one used by Alice. He then compares the resulting 

reference hash H’ with H. The comparison of the two values informs Bob on the validity of 

M. 

 

Figure 1-26 Message authentication using a MDC and asymmetric signature 
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the public key Kd and the tag T since it is transmitted over an unsecured channel. Therefore it 

is easy to recover H by decrypting T with Kd. Now, suppose that an adversary is able to find a 

second message M’ resulting in the same H when processed by the same MDC than the one 

used by Alice. Thus, he can replace M by M’ without Bob being able to detect it.  

 

1-4.3.3.2. MDC and Symmetric Encryption 

Another way to provide message authentication is to use symmetric encryption in addition 

to MDC. This time Alice and Bob must agree on a secret encryption key Ks (Figure 1-27). 

Then Alice computes a digest H of the message M with a MDC and encrypts M and H with a 

symmetric algorithm and the secret key Ks. Bob receives and decrypts the ciphered message 

to recover M and H. He uses the same MDC than the one used by Alice to compute a hash H’ 

of M. If H does not match the hash reference H’ this means that the message was tampered 

with during transmission. 

 

 

Figure 1-27 Message authentication using a MDC and symmetric encryption 
 

In this case, if the underlying symmetric algorithm employed is secure, it is not required 

that the MDC should have the three properties: preimage, second preimage, and collision 

resistance. Indeed, an adversary who has neither the input of the MDC nor its output can not 

mount a forgery attack. 

On the other hand, if confidentiality is not required, only the hash value may be encrypted 
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retrieves the plaintext and the encrypted hash. Hence, he is able to first recover the digest by 

applying to the plaintext the same MDC than the one used by the sender and then to find a 

second message which gives the same digest. Since symmetric encryption is deterministic – 

meaning there is only one ciphertext for a given plaintext – he could send his message with 

the encrypted hash without the possibility for the intended recipient to be able to detect it. 

 

1-4.4. Keyed Hash Functions and MAC Algorithms 

1-4.4.1. Principle 

Keyed hash functions are dedicated to message authentication and thus are also called 

Message Authentication Code (MAC) algorithms. In the following the hash generated by such 

algorithms is referred to as the MAC or the MAC-value. They take a secret key as input in 

addition to the message to hash. They have a further property which is computation-

resistance, i.e. they are indistinguishable from random. This means that given an unspecified 

number of message-MAC pair (mi, MAC (mi)), it is impossible for an attacker to compute any 

message-MAC pairs (m, MAC (m)) for any new input m ≠ mi. In other words, the output of 

the MAC algorithm must seem random from an adversary point of view and this is mainly 

achieved by using the secret key. A hash function with such a property is necessarily 

preimage resistant, second preimage resistant and collision resistant since it is required to hold 

the secret key to be able to compute a MAC-value. 

 

 

Figure 1-28 Message authentication using MAC algorithms 
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In order to send an authenticated message M to Bob, Alice must first securely 

communicate to him a secret key Ks (Figure 1-28). Then Alice computes a tag T by applying a 

MAC algorithm on the message M and by using the secret key. Finally, she transmits T along 

with M to Bob. After reception, Bob computes a MAC-value T’ (tag reference) from M using 

Ks. If T’ matches T, the message is authenticated. 

Note that the passive attacks described in section 1-3.3 also apply to MAC algorithms. In 

this case the objective of the adversary is either to forge a message or the tag.  

MAC algorithms may be designed by using the general iterative model of hash function 

depicted in Figure 1-24. The secret key is thus an input of the output function g or it is 

involved in all iterations of the compression function f.  

MAC algorithms of our main interest are based on block ciphers and the most widely used 

one is the CBC-MAC. 
 

1-4.4.2. Example: CBC-MAC 

 

Figure 1-29 General model for CBC-MAC 
 

The principle of CBC-MAC is presented in the following in the case where the length of 

the message to authenticate is a multiple of n, the block size of the underlying block cipher. 

For detailed description of the different standardized CBC-MAC refer to [24]. 
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If l = n a simple forgery attack may be mounted. Consider a message M1 composed of m 

blocks (b1, b2, … , bm) and its corresponding MAC T produced by the previous exposed CBC-

MAC scheme. In the light of the XOR operator, the following message M2 has the same MAC 

T:  

mm bbbTbbb ,...,,,,...,,B 21212 ⊕=  

 

Indeed, 1111 )()( hbETbTEh kkm ==⊕⊕=+  and thus the same MAC computation is 

resumed. However, such an attack is not applicable in the case where all the messages to be 

authenticated have the same length m. The message forgery would be rejected at the input 

because it does not have the requested length. 
 

1-4.5. The Birthday Attacks 

The birthday attack is an algorithm-independent attack i.e. such an attack considers the 

algorithm as a block-box. It is an application of the birthday paradox [16]. Practically, 

suppose a function h which randomly generates output values from a set of N elements. There 

is a high probability that the same element is encountered twice after approximately 

N computations. This means that for a hash function producing an m-bit digest, a collision 

is found after roughly 2/2m  hash value generation. For example, SHA-1 is said to offer 80-bit 

of security against such an attack since it produces 160-bit digest. 

Resistance against the birthday attack is a security criterion to evaluate robustness of hash 

functions.  

All previous techniques (MDC and asymmetric signature, MDC and symmetric cipher and 

MAC) provide message authentication. However such a notion does not include preventions 

against replay attacks. Such attacks are performed in two steps. First, at a time t on an 

unsecured channel an adversary retrieves a message M - possibly encrypted – and the 

corresponding tag T. Then, at a time t + n of its choice, he could send the pair (M; T) again or 

use it in a Man-in-the-middle attack. Thus, the intended recipient will not be able to detect 

that this message M is a fake since after computation of the reference tag T’ on M, T will 

match T’. The service requiring prevention against replay attacks is referred to as transaction 

authentication. 
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1-4.6. Transaction Authentication 

Transaction authentication denotes message authentication augmented to additionally 

provide uniqueness and timeliness guarantees on data (Figure 1-30), thus preventing 

undetectable message replay (definition taken from [16]). 

 

 
 

Figure 1-30 Taxonomy of security services required to prevent active attacks 
 

Uniqueness and timeliness are ensured by using time-variant parameters as inputs with the 

data in message authentication schemes. Random numbers, timestamps and nonce are 

examples of time-variant parameters. A nonce is a number used once for a given purpose. It 

could be generated by a counter. Take up again the example of Alice and Bob depicted in 

Figure 1-28. In order to thwart replay attacks, they choose to use a nonce N. Hence, before 

starting to communicate, they must agree on a secret key Ks and on a random number to 

initialize N. Then each time Alice sends a message M to Bob, she increments the nonce and 

computes a tag T with a MAC algorithm which takes as inputs Ks and M concatenated with N. 

Finally, she transmits T along with M to Bob. After reception, Bob updates the nonce and 

computes a reference MAC-value T’ from the secret key Ks and from M concatenated with N. 

If T’ matches the one appended to M by Alice, the transaction is authenticated. 
 

1-5. Conclusion 

In this chapter, we defined the cryptographic terms useful in this thesis. Moreover we 

presented the encryption techniques guaranteeing data confidentiality and we described 

mechanisms allowing to check data integrity (and data origin authentication). However, we do 

not intend to give an exhaustive survey, but an overview of the existing solutions and a 

description of schemes used in the following chapters. 
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The objectives of attacks led on embedded systems are to retrieve information – possibly 

private – or to take control of it. One of the weakest points of such systems is the bus between 

the System on Chip (SoC) and the off-chip memory which contains sensitive data (end users 

private data, software code…). Those data are usually exchanged in clear over the bus during 

software loading and execution. Therefore an adversary may probe this bus to read and to 

retrieve private data or software code (data confidentiality concern). Another possible attack 

relies on code injection and on data tampering (data integrity concern). 

Thus, our goal is to provide a private and authenticated tamper resistant environment to 

software execution. This means that an adversary must be unable to understand the data 

retrieved on the bus or directly in memory, and that we must detect all kinds of data and code 

tampering (tamper detection). 

This chapter is organized as follows. Section 2-1 shows the relevancy of protecting data 

transferred on a processor-memory bus through an application example: software copy 

protection. Section 2-2 presents our threat model by specifying the adversaries and the attacks 

taken into account. This threat model is illustrated with an example of attack. Section 2-3 

highlights the specific issues of the implementation of cryptographic functions in a computing 

device. Thus, we first give an overview of the memory hierarchy in a computing system, then 

we present the basic principles of bus encryption and of memory integrity verification and 

finally, we describe the operations which are a source of overhead when such mechanisms are 

implemented.  
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2-1. Software Copy Protection 

The emergence of on-demand software downloading services brings in the foreground the 

problem of intellectual property (IP) protection. Software distributed over unsecured channel 

might be retrieved by a malicious eavesdropper and illegally spread. Therefore, the IP 

confidentiality must be ensured all along the distribution chain and also during execution. 

Such a goal is achieved by end-to-end encryption: from the source - the software provider - to 

the host - the computing system - and during execution. 

As an example, in this section we consider a set-top box operator who proposes on-

demand services or who needs to update the customer’s unit. Those services or products must 

be used only by the intended user and this user must not be able to copy it and to give it away. 

The scheme depicted in Figure 2-1 is used to ensure confidential distribution of the 

intellectual property sold by the set-top box operator:  
 

(1) A set-top box processor is equipped by the chip manufacturer with a private 

key Dc of a public/private key pair Ec/Dc and with a certificate Ce for Ec. Ce 

particularly contains the processor public key Ec and its signature produced 

by the chip manufacturer with his private key Dm.  

(2) The chip manufacturer public key Em is sent via an authenticated channel 

(PKI: Public-Key Infrastructure [24]) or delivered with the set-top box units 

to the set-top box operator.  

(3) When the customer asks for a service or a new feature (e.g. an update of the 

media player) the certificate Ce is sent with the request.  

(4) The set-top box operator authenticates Ec – asymmetric decryption of the 

signature contained in Ce using Em (Chapter 1 – Figure 1.25). 

(5) The software code S provided by the operator is symmetrically encrypted 

with the secret key K. K is then asymmetrically ciphered with the public 

key Ec before being sent to the customer’s set-top box.  

(6) The customer retrieves K by asymmetric decryption with its private key Dc. 

Then K serves to symmetrically decrypt S. 

(7) S is installed in the memory8. 

                                                 
8 Note that the user privacy is not ensured with this scheme since the operator could collect information on the 
user activities or consummation habits. Zhang and al. [29] proposes a simple scheme also based on a PKI 
infrastructure to solve this issue. 
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Figure 2-1  Secure software download for software copy protection 

 

Thus, if S is recorded on the communication channel between the set-top box operator and 

the customer’s unit it cannot be illegally distributed: each set-top box is equipped with a 

different private key Dc therefore the step (6) of the previous scheme would fail.  

 

S could be installed already encrypted in the external memory to extend the protection to 

the processor-memory communication. However, the hardware engine implemented to 

decrypt S must also take into account the encryption of RW data processed at run-time. 

Therefore, this engine must be optimized by considering the contextual specific constraint and 

propose an affordable trade-off between security strength and computation performance. 

Moreover, as highlighted by the attack described in section 2-2.3, the integrity of the memory 

content must also be verified to avoid code or data corruption which could lead to sensitive 

information leakage.  

 

2-2. The Threat Model 

In this section, we first classify adversaries by evaluating their ability to conduct attacks to 

define the security level targeted in this thesis. Then we describe the attacks considered. 

Finally, an example of attack is detailed to illustrate our threat model.  
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2-2.1. Security Level and Adversaries Classification 

IBM proposed a taxonomy [30] of adversaries and attacks in order to classify the security 

level achieved by each of their product: “Adversaries were grouped into three classes, in 

ascending order, depending on their expected abilities and attack strengths: 

Class I (clever outsiders): They are often very intelligent but may have insufficient 

knowledge of the system. They may have access to only moderately sophisticated equipment. 

They often try to take advantage of an existing weakness in the system, rather than try to 

create one. 

Class II (knowledgeable insiders): They have substantial specialized technical education 

and experience. They have varying degrees of understanding of parts of the system but 

potential access to most of it. They often have access to highly sophisticated tools and 

instruments for analysis. 

Class III (funded organizations): they are able to assemble teams of specialists with 

related and complementary skills backed by great funding resources. They are capable of in-

depth analysis of the system, designing sophisticated attacks, and using the most sophisticated 

analysis tools (very expensive). They may use Class II adversaries as part of the attack team.” 

 

In this work, we consider adversaries for whom the cost of the attack should not exceed 

the price of the protected entity or the expected amount of profits. Thus, in the following, our 

study will focus on countermeasures to thwart attacks and adversaries classified in class II. 

 

2-2.2. Considered Attacks 

The device to protect is supposedly exposed to a hostile environment where physical but 

non-invasive attacks are feasible (typically attacks carried out by adversaries of Class II).  

As a consequence, the main hypothesis in our threat model is the fact that the System on 

Chip (SoC) is considered as tamper resistant to physical attacks. A proof of such an 

assumption is the Xbox cracking example. In [6] the hacker, Andrew “bunnie” Huang, 

exposes his approach to attack the gaming console. The targeted ASIC was manufactured in a 

0,13µ process with several metal layers and to shape the chip would have required a lot of 

facilities. Thus, he considered this choice as too expensive and time-consuming and he 

decided to probe buses, which seemed a more reasonable approach. Thus, the SoC is 
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considered as a trusted area. In addition to this, side-channel attacks are not taken into account 

in this work. As a consequence, we consider that on chip registers and memories cannot be 

tampered with by an adversary.  

Moreover, software attacks are not considered; the operating system (OS) or at least a part 

of the OS, called the secure kernel, is also trusted.  

 

 
Figure 2-2  Board level attack based on bus probing and on data injection 

 

In this work, we focus mainly on board level attacks involving processor-memory bus 

probing (Figure 2-2) or memory tampering. Such attacks allow to perform readings of the 

memory content or to inject data on the bus or directly into memory. We are particularly 

concerned by the “Man in the middle” attacks. The corresponding protocol implementing this 

attack is divided into two parts: 

 

 First the attacker monitors the processor-memory communications and intercepts the 

data on the bus (passive attacks). Another possibility is to directly read data in memory. This 

raises the issue of data confidentiality. 

 

 Then the adversary may insert chosen texts – called “fake” in the following - on the 

processor-memory bus and thus challenge data integrity. The objective of the attacker could 

be to take control of the system by injecting malicious codes or to constrain the search space 

in case of a message recovery attack. The choice of the fake by the attacker leads us to define 

three kinds of feasible active attacks even if data are encrypted: 

 

• Spoofing attacks: the adversary exchanges a memory block 

transmitted on the bus with a random fake one. The attacker mainly alters 

program behavior but cannot foresee the results of his attack if the data are 

encrypted. 
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• Splicing or relocation attacks: the attacker swaps a memory 

block transmitted on the bus with another one previously recorded in the external 

memory. Such an attack may be viewed as a spatial permutation of memory 

blocks. When data are ciphered, the benefit for an attacker of using a memory 

block copy as a fake is the knowledge of its behavior if this one was previously 

observed.  

• Replay attacks: the protocol is nearly the same as for the 

splicing attack one; however the fake memory block is recorded at a specific 

address location and inserted later on at the same address (current data value 

replaced by an older one). Such an attack may be viewed as a temporal 

permutation of memory blocks at a specific address location.  

 

In order to perform those kinds of active attacks, the adversary can interfere in the 

protocol of communication between the SoC and the memory to handle the data, address and 

control lines. In this way he can insert data directly into RAM memory or switch between his 

own RAM and the device RAM at run-time (as implemented in the attack described in section 

2-2.3).  

We must provide message authentication to thwart spoofing attacks while for splicing and 

replay we must ensure transaction authentication (section 1-4.6).  

 

For clarity, in the following, the terms integrity checking and authentication, integrity and 

authenticity are used interchangeably. Moreover we refer to the described attacks – spoofing, 

splicing and replay – rather than to the security services – message and transaction 

authentication - to define the goal of the designed countermeasures. 

 

The next sub-section describes an attack on a commercial device to illustrate how a man 

in the middle attack led on the processor-memory bus can challenge the confidentiality of the 

off-chip memory content. 

 

2-2.3. Attack conducted on a Commercial Device: The DS5002FP 

Markus G. Kuhn performed a man in the middle attack on the Microcontroller DS5002FP 

[31] in 1997. Such a microcontroller was the most widely used commercial bus-encryption 
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processor at that time. This attack allowed the student to access the ciphered data stored by 

the DS5002FP in the external memory and to retrieve their clear version. 

The confidentiality of the data stored off-chip by the DS5002FP relies on an 8-bit block 

encryption / decryption function. The address bus is also encrypted with a 17-bit block 

encryption function. The secret key used is a 64-bit key randomly generated and stored on-

chip. The software is uploaded in clear through the serial port, then encrypted and stored in 

the external SRAM. The data encryption function depends on the secret key and on the data 

address. 

The principle of this attack is to inject guessed ciphered instructions on the processor-

memory bus and to figure out their corresponding clear version by observing CPU reactions. 

Such instructions are used to construct small encrypted programs which help the attacker to 

learn more on the system. Finally, a program designed from all the information deduced 

allows to output the whole memory content in clear form on the parallel port.  

 

 
Figure 2-3  Principle of the DS5002FP CPU attack with a read-out device connected to 

the bus (taken from [31]) 
 

In order to perform the attack a computer and a read-out device (developed by Markus G. 

Kuhn [31]) are used (Figure 2-3). The read-out device is connected to most of the pins of the 

DS5002FP microcontroller and to the SRAM memory. It allows to reset the CPU and to 

record in FIFO memory the CPU (Central Processing Unit) reaction on the address bus and on 

the four 8-bit parallel ports. Moreover, such a device is used to swap 8-bit encrypted data on 

the bus: instructions fetched by the CPU are replaced by the guessed ciphered instructions 

stored in a FIFO memory. Chip-enable and read/write signals are routed through the control 

logic of the read-out device to enable switching between SRAM and the instruction FIFO. 
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Therefore those signals are linked either to the SRAM or to the instruction FIFO depending 

on whether the attacker wishes to inject chosen data or not. 

 

The cost of this attack is low, it has been evaluated at 300$. Moreover, it can be done in 

only four hours. With this attack Kuhn shows practically that implementing short block 

encryption drastically limits the search space of a message recovery attack. In the DS5002FP 

the 8-bit encryption function (address-dependent) induces a mapping plaintext/ciphertext with 

only 256 entries at each memory location. Moreover, this attack highlights the fact that 

providing encryption only might not be sufficient to guarantee data confidentiality. M.G. 

Kuhn did not attack the encryption scheme directly; he constructed his own encrypted 

program gradually by inserting guessed instruction on the bus to finally dump the memory 

content through the parallel port after it had been decrypted by the encryption / decryption 

unit itself. A strong data integrity checking mechanism could have prevented such an attack. 

 

2-3. System on Chip Context 

In order to clearly highlight the challenge of protecting data transferred between a SoC 

and its memory and the consequence, in term of performance, of the choice of the underlying 

cryptographic functions, it is important to understand how those data are processed and 

accessed. In this section we do not describe data processing in computer architecture [32, 33] 

but we present the computing characteristics which influence the design of the hardware 

engines for security and their computation performance. Then we give the basic 

implementation principles adopted for them. Finally we present the source of performance 

degradation generated by those engines. 

 

2-3.1. Memory Accesses 

The off-chip memory is the main memory which contains the applications and data 

executed and processed by the CPU. However, the processor also uses an on-chip memory, 

called cache memory, closer, smaller and faster than the main memory. Its goal is to reduce 

the average time of memory accesses and, as a result to enhance global computing 

performance. Such a goal is reached by exploiting the locality principles: 
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• Temporal locality: If data is requested by the processor, there is a great probability that 

it will be used again shortly after. 

• Spatial locality: If data is requested by the processor, there is a great probability that 

the data stored around in adjacent addresses are also requested shortly afterwards. 

Thus, the cache memory is divided into blocks (or cache lines) and when an instruction or 

data is loaded from the main memory, it is simultaneously copied into the cache memory 

(temporal locality) with the surrounded data belonging to the same cache block (spatial 

locality). The architect-designer chooses the cache line length carefully to optimize 

computation performance by considering the underlying processor architecture and the 

applications running on it. Since the cache memory is smaller than the off-chip memory a 

replacement policy must also be defined (refer to [32] for more details).  

In this work, Load / Store RISC (Reduced Instruction Set Computer) architecture is used 

as processor, meaning that on a read cache miss – the data fetched by the processor is not 

present in the cache memory - the CPU loads a payload of a cache line size. However, such a 

behavior is not relevant for all read operations and loading certain data in the cache may be 

very inefficient, for instance when those data are known to be needed briefly. Another case is 

for data belonging to large structures like arrays. Such structures may be read entirely in the 

cache and thus result in cache pollution and in eviction of useful data from the cache. In order 

to solve this issue, those data are tagged as non-cacheable i.e. they are never stored in the 

cache memory and are directly fetched from the off-chip memory. 

On write operations, two different write policies may be implemented to achieve 

coherency between the cache and the off-chip memory: write-back and write-through. On 

write-through cache policy, the modifications of a data in the cache are instantaneously 

copied into the off-chip memory whereas on write-back a cache line is tagged in the cache 

when it is changed and the external memory is updated only when the block is evicted from 

cache. The latter write policy avoids successive off-chip write operations. However on each 

read cache miss, it requires to chain one write operation - to update the external memory with 

the evicted cache block if tagged as modified - with one read operation - to answer to the 

cache miss request. Moreover, for both cache policies, when the data to write is not in the 

cache, it is directly written in the off-chip memory9. 

 
                                                 
9 Such a behavior is called write-no-allocate. The policy which consists in loading the matching cache block 
before performing the write is named write-allocate. However we do not consider this latter case in this thesis 
since the processor used in the following (ARM9E [89]) does not implement it. 
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2-3.2. Basic Principles for the Hardware Mechanisms for Data Security 

2-3.2.1. Hardware Mechanisms for Data Security Localization 

Hardware mechanisms for security are designed between the cache memory and the 

memory controller on the trusted area (Figure 2.4).  

 
Figure 2-4  Localization on the SoC of the hardware mechanisms providing data 

confidentiality and authentication services 
 

This choice is motivated by the following reasons: 

1. Performance: such localization allows to store deciphered and integrity checked data 

in cache memory. Hence, only off-chip memory accesses are impacted by the additional 

latencies introduced by the underlying cryptographic functions.  

2. Security: Secret values, like encryption keys, enrolled in the cryptographic 

computations are stored on the trusted area and thus, are considered as inaccessible and secret 

from adversaries’ point of view.  

3. Compatibility: the design of the security engines is fully independent of the type of the 

memory to protect.  

 

2-3.2.2. Bus Encryption Principle 

Guaranteeing confidentiality of external memory content consists in preventing any useful 

information leakages from those off-chip memories. Hence, the basic requirement is that data 

monitored by an eavesdropper on the processor-memory bus or retrieved in memory must be 
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unintelligible. This task is achieved by performing bus encryption. The principle –introduced 

by Best [8, 9, 10] is obvious; data are encrypted on write operations and decrypted on read 

operations. In this way data transiting on the bus and stored in the off-chip memory are 

encrypted, making them incomprehensible from an adversary point of view. However, 

targeted memories are Random Access Memory (RAM), meaning that memory accesses 

could be of any length and start from any address; hence we must define a granularity of 

encryption i.e. the size of the atomic block – called in the following chunk – processed by the 

encryption engine on external memory accesses. Such a size is one of the parameters which 

fix the trade-off between performance and security. Chunks that are too short lead to weak 

encryption as highlighted by the Markus Kuhn attack – where a chunk of data is an 8-bit 

block – while too long ones may decrease computation performance e.g. by polluting the 

memory bandwidth on small memory accesses (see section 2-3.3.2). Several cryptographic 

choices for the encryption engine influence the definition of the chunk size:  

• The ciphered block size of the implemented underlying block cipher – to be used as 

the output algorithm in a stream cipher or directly for block encryption – sets its 

minimum length. 

• The encryption mode; for instance when CBC mode is used, a chunk is of a CBC 

chain length. 

 

As memories are organized in cache blocks, in the literature a chunk is usually of this size. 

However, as highlighted in section 2-3.3.2, this is not necessarily the most efficient choice. 

 

2-3.2.3. Principle of Memory (Content) Integrity Verification  

The integrity of the memory content is ensured by checking that read data has not been 

tampered with during external storage or transmission over the bus. Like for encryption, a 

granularity of integrity checking must be defined. In this section the chunk is the atomic block 

loaded on-chip to be authenticated on read operations. 

To fulfill the integrity checking objective, a value is appended to each chunk stored in the 

external memory. This value called tag (T) is usually computed on-chip with a MAC 

(Message Authentication Code) algorithm on write operations (Figure 2-5a). Such algorithms 

based on hash functions or on symmetric block encryption accept as inputs the chunk and a 

secret key. Theoretically they create a unique chunk/tag pair and the generated tag must give a 
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compact representative image of the chunk and of its source i.e. the processor. Moreover, only 

the SoC is capable to compute this tag as the secret key is stored on-chip. On read operations 

(Figure 2-5b), the integrity of the loaded chunk is checked by verifying the tag. To achieve 

this task, a tag reference T’ is computed on the chunk and compared with the tag T retrieved 

from the off-chip memory. If the tag matching process fails, an integrity checking flag 

informs the CPU which in turn adopts an adequate behavior (for instance a HALT instruction 

to stop processor execution). 

 

 
Figure 2-5  Integrity checking principle of external memory 

 

However, an efficient memory integrity checking engine must also verify that the memory 

works as a valid memory, meaning that a value read by the processor at a given address is the 

most recent value stored at this address (replay attacks). As explained in Chapter 3 (section 3-

2), the general principle presented above must be tuned to be compliant with the previous 

requirement. 

 

Note that for integrity checking the minimum chunk size is defined by the length of the 

atomic block processed by the underlying MAC or hash functions. Nevertheless, when data 

confidentiality and integrity is ensured the size of the chunk must be decided by also 

considering the constraint imposed by the encryption scheme. 
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2-3.3. Run-Time Performance Degradation Considerations 

2-3.3.1. Data Properties 

During software execution, two kinds of data are processed: Read Only (RO) data and 

Read Write (RW) data. 

Instructions or RO data are only written once in the off-chip memory at loading (from a 

Non Volatile Memory - NVM - or from a network connection). As a consequence, latencies 

introduced by the decryption and the integrity checking processes must be optimized on read 

operations. 

RW data are more difficult to secure because they are dynamically modified during 

software execution: several data values can be stored at the same address in the off-chip 

memory. Therefore RW data - contrarily to RO data - are vulnerable to replay attacks.  

 

2-3.3.2. Sources of Time Performance Degradation 

The run-time performance slowdown induced by the implementation of cryptographic 

algorithms, has mainly two sources: 

• the latencies introduced by the underlying functions involved in encryption and in tag 

computation, 

• the memory bandwidth pollution generated by the loading of meta-data such as tags. 

 

However, the processing of data by the security engines generates specific operations 

which represent another source of degradation. Whatever the size of the chunk and by 

considering that data integrity and confidentiality are ensured, a performance overhead must 

be expected on: 

• Read operations of data smaller than a chunk: such operations occur mainly for non-

cacheable data10. It is required to i) load the whole matching chunk from external 

memory with its tag ii) decipher it and check its integrity iii) and forward the 

requested data to the CPU. In addition to the latencies introduced by the security 

mechanisms, such a processing pollutes the memory bandwidth by loading data not 

necessarily needed. 

 
                                                 
10 And only for non-cacheable data when the chunk is smaller or equal in size to the cache block length. 
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• Write operations of data smaller than a chunk require to perform the following steps: 

i) load the matching chunk with its tag from the off-chip memory ii) decipher it and 

check its integrity iii) modify the corresponding sequence in the chunk iv) re-cipher it 

and re-compute its tag v) write it back into memory with its new tag. This chain of 

operations is called in the rest of the thesis a Read Modify Write (RMW). A RMW 

operation is always required in the following cases:  

(1) when the write-through policy is implemented 

(2) for non-cacheable data  

(3) on write miss – the data to modify is not in the cache - with the write-back 

cache policy.  

The additional performance slowdown implied by such an operation is mainly due to 

the generation of a read/decryption/checking process. 

 

Therefore, to reduce the run-time performance overhead introduced by RMW operations, 

ideally the chunk size should be defined as small as possible without affecting security. 

Note that those operations only concern RW data. This is one of the reasons – with the 

specific countermeasure required against replay (Chapter 3 and 6) - why the overhead of the 

hardware mechanisms designed for data security mainly emanates from the RW data 

processing. 

 

2-4. Conclusion 

In this chapter we specified the targeted security level we want to achieve by defining the 

kind of adversary we take into account. Moreover we presented our threat model where all 

components (buses and off-chip memories) are considered as untrustworthy except the SoC. 

This threat model is illustrated with an example of attack which shows that guaranteeing data 

confidentiality often requires also checking their integrity. Then, we described the principle of 

bus encryption and of memory integrity verification. Finally, we introduced the notion of 

chunk (atomic block loaded on read operations to be decrypted or/and integrity checked) 

essential to fix the trade-off between security and run-time performance. 
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This chapter surveys the hardware cryptographic engines dedicated to protect the off-chip 

memories of computing systems. It is organized as follows. Section 3-1 presents the existing 

bus encryption engines. In section 3-2, the mechanisms for memory integrity verification 

proposed in the literature are discussed with a specific emphasis on the schemes handling the 

replay attack issue. Finally, section 3-3 describes the technique providing both data 

confidentiality and authentication and the related schemes implemented in SoC.  

 

3-1. Hardware Engine for Bus Encryption 

The principle of bus encryption was first introduced by Best in 1979 [8, 9, 10]. Best fixed 

the basic principles presented in Chapter 2 (section 2-3). Accordingly, a cipher unit is 

implemented on-chip with a secret cipher key located in an on-chip register. The block cipher 

chosen by Best is based on basic cryptographic functions such as mono and poly-alphabetic 

substitutions and byte transpositions.  

Today’s hardware engines for bus encryption still use Best’s principles but propose 

improved security by implementing standardized encryption algorithms. Such engines use 

symmetric rather than asymmetric cryptography for performance reasons; asymmetric 

encryption or decryption on each external memory access would add a prohibitive latency. 

Bus encryption engines are divided into two families. The first one is called direct encryption 
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since the encryption and the decryption processes start only after receiving data; they use 

block cipher in ECB or CBC modes. The second family, One Time Pad (OTP) engines, is 

based on the CTR mode of encryption which enables to parallelize the keystream generation 

with memory access latencies. 

 

3-1.1. Direct Encryption 

Mainly two academic works proposed a detailed description of engines based on direct 

encryption: Gilmont and al. [34, 35, 36] and a first version of the AEGIS (Architectural 

EnGine for Information Security) processor [12, 13, 37, 38] developed at the MIT 

(Massachussetts Institute of Technology) by Suh and al. 

 

Gilmont and al. implements a direct encryption/decryption scheme based on the DES 

algorithm. The software code which is installed has already been ciphered. The encrypted 

application and the secret key K are transmitted by the software provider using an asymmetric 

mechanism as the one exposed in Chapter 2 (section 2-1). The encryption mode implemented 

seems to be ECB since a pipelined DES is used. The chunk size is of 64 bits and the 

encryption is salted with the virtual address. Therefore for RO data, this ensures that a same 

plaintext encrypted twice yields two different ciphertexts. However it is not true for RW data: 

a same value encrypted twice and stored at the same address results in the same ciphertext. 

This could lead to information leakage: for instance an adversary can deduce when a loop 

counter returns to a given value. Concerning performance cost, Gilmont and al. evaluates the 

overhead implied by decryption on an ARM7 processor core to 1% in the best case and 12% 

in the worst case. However it is not clear in [36] if they consider the encryption cost. 

   

A first version of the AEGIS [12, 37] processor implements AES direct encryption and 

uses two keys per application, Kstatic for RO data and Kdynamic for RW data. The program 

received is already encrypted under Kstatic. Kdynamic is generated on-chip with a random 

number generator [12, 37]. The granularity of encryption (chunk) is aligned on a L2 cache 

block basis (512-bit). The cache block is broken into 128-bit sub-blocks B[1], B[2], B[3] and 

B[4] and encrypted in CBC mode as depicted in Figure 3-1 (taken from [37] - || is the 

concatenation operator). The initialization vector IV required for the CBC mode consists of 

the address chunk and of a 32-bit value RV; the rest of the IV is padded with zeroes to be 128-



Chapter 3.  Related Works 

 

 81

bit. For RO data RV is set to zero and for RW data it is randomly generated on each write 

operation to avoid the ciphering of the same plaintext twice leading to the same ciphertext. RV 

is stored in the off-chip memory. On a read cache miss, RV and the chunk are loaded, if RV is 

zero, the cryptographic engine uses Kstatic for decryption otherwise it uses Kdynamic. Such a 

decryption (CBC) can be done in parallel. 

 

 
Figure 3-1  Direct encryption scheme (AES-CBC) proposed in the first version of the 

AEGIS processor 
 

Suh and al. give a performance evaluation of the proposed scheme on a high-end 

processor (1GHz) with two levels of cache (L1 I-cache = 64KB, L1 D-cache = 64KB, unified 

L2 caches = 1MB), a 64-bit bus (200 MHz) and considering 80 cycles of memory access 

latency and 40 cycles for the AES latency. The performance slowdown reaches 25% when the 

whole external memory is encrypted and the memory overhead implied by RV storage is of 

6.25%. In order to allow parallel decryption four AES cores are required [12].  

This encryption engine is secure regarding data confidentiality. However, an adversary 

has access to RV; hence the only information leakage comes from the possibility for an 

attacker to know when a cache block has the same value at different times if the same random 

vector (RV) is used. To circumvent this possible security hole, Suh and al. propose to replace 

RV [12] by a counter incremented on each write operation and to re-encrypt (with a new key) 

all the read write memory section when the counter reaches its limit. 
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The main drawback of such a scheme is on write operations because CBC encryption is 

done sequentially, drastically increasing the memory access latency. Moreover on write 

smaller than 512 bits, a RMW operation is required; hence at least two AES blocks must be 

loaded to be able to modify the matching data and to re-encrypt it. In the worst case, when the 

write affects B[1], the whole chunk must be loaded and re-encrypted because with CBC 

encryption a given ciphertext influences the encryption of the following ones in the chain. 

 

A third work, called XOM (eXecute Only Memory) [11, 39, 40], implements a direct 

encryption engine based on the 3-DES [51] block encryption algorithm. [41] proposes a 

performance evaluation with the following parameters for the simulation framework: 32KB 

separated L1 instruction and data cache and 256KB unified L2, 100 cycles of memory access 

latency and 50 cycles for the encryption latency. The simulation results show a performance 

slowdown of 20.8% on average and of 41.81% in the worst case scenario.  

 

Concerning commercial devices, Dallas Semiconductors updated their family of secure 

microcontrollers – DS5250[42] – by removing the address bus encryption and by 

implementing a DES (and 3-DES) algorithm since the attack of Markus Kuhn (Chapter 2, 

section 2-1.3). Moreover, several patents (VLSI Technology [43], General Instrument [44]) 

surveyed in one of our conference papers [45] propose encryption engines based on similar 

schemes as the one presented above. 

 

3-1.2. One Time Pad (OTP) 

The implementation of One-Time Pad engines described in the literature are based on the 

CTR block encryption mode (synchronous state cipher – Chapter 1). The main advantage of 

such a scheme for memory encryption is that a preprocessing step corresponding to the 

keystream (or pad) generation can be parallelized with the memory access latency if the 

counter value is known by the processor. Hence, ideally, the latency overhead is only 

introduced by the XOR operation between the ciphered data and the pad on read operations. 

The XOR operation can be done in one cycle. However some key points must be respected to 

securely implement an OTP engine in our application domain.  First the engine must be able 

to produce on decryption the same pad as the one used on encryption for any chunk by 

considering that the memory is randomly accessed. As a consequence, it must be able to 



Chapter 3.  Related Works 

 

 83

retrieve the counter position corresponding to any chunk. Then, as highlighted in Chapter 1, 

for the schemes based on stream ciphers to be secured a key stream sequence must never be 

used twice.  

 

 
Figure 3-2  One-Time Pad encryption scheme (AES-CTR) proposed in the last version of 

the AEGIS processor 
 

Mainly two academic works propose the implementation of an OTP for memory 

encryption. The first one is incorporated in the most recent version of the AEGIS processor 

[13, 37]. As for direct encryption, the chunk is of a cache block size. Figure 3-2 (taken from 

[37]) depicts an example of implementation for a 512-bit cache block (divided into 128-bit 

sub-blocks: B[1], B[2], B[3], B[4]). The pad used to encrypt or to decrypt a sub-block in a 

given chunk is generated by the AES decryption on (V || Add || TScounter || i) which 

represents the counter value. || is the concatenation operator. V is a fixed vector randomly 

chosen that makes the counter 128-bit. Add is the chunk address. i is the position of a 128-bit 

sub-block in the chunk. TScounter is generated on-chip by a 32-bit global counter on each 

write operation (  encryption) of a RW data and is stored in the off-chip memory. TScounter 

is equal to zero for RO data. On read operation, for RO data the keystream generation can be 

fully parallelized with the memory access latency since all values composing the counter are 

known on-chip. However for RW data the TScounter value must first be loaded from the 
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external memory to compute the pad and hence to decrypt the requested data. Moreover, to 

avoid the generation of the same pad twice when the global counter reaches its limit, Suh and 

al proposes to re-encrypt the whole protected memory with a new key. Performance 

evaluation of this OTP scheme alone has been done for high-end processors [13, 37] using a 

256 bytes on-chip buffer for time stamps and with the same architectural parameters as the 

one chosen for their direct encryption scheme. It is shown that the performance degradation 

remains under 18% in the worst case scenario. However, it is not indicated if this evaluation 

considers the re-encryption overhead. They estimate the re-encryption period between 35 

minutes and 5.35 hours on a 1 GHz processor and that one re-encryption takes less than 300 

million cycles. The memory overhead induced by the off-chip storage of TScounter is of 

6.25% of the encrypted memory space dedicated to RW data. 

 

A similar work is proposed by Yang and al. [41, 46]. The main difference comes from the 

fact that they use one sequence number (16-bit) per chunk rather than a global timer 

(TScounter of 32-bit) for RW data. As a consequence, it is required to load its value not only 

for decryption as in the previous scheme but also for encryption in order to increment it. 

Despite this disadvantage, the performance evaluation presented in [41] is better since they 

use a large on-chip cache (64 KB) to store those sequence numbers. Another key point 

explored by Yang and al. to improve performance is the exploitation of the “write buffer 

storage waiting time” to hide encryption latency. In most processors, buffers are used to store 

data to write until the bus is free. Hence, on encryption the pad generation is launched as soon 

as the data to write enter the write buffer, profiting from the storage waiting time in this 

buffer. The performance degradation is estimated to 6.7% in the worst case scenario and to 

1.28% on average on a high-end processor with two levels of cache (L1 I-cache = 64KB, L1 

D-cache = 64KB, unified L2 caches = 256KB with 1024-bit L2-cache block), and considering 

100 cycles of memory access latency and 50 cycles for the AES latency. Those figures do not 

consider re-encryption overhead when a sequence number reaches its limit. However the re-

encryption may occur less frequently than for Suh’s scheme since a sequence number should 

be incremented slower than a global timer. The off-chip memory overhead, for the 

architecture parameters chosen, is about 1.5% of the amount of the encrypted RW (16-bit 

sequence number for each chunk). This low overhead is achieved by the use of large chunk 

size: 1024-bit cache block. However, to maintain such performance, a large on-chip cache (64 
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KB) dedicated to the sequence numbers is required whereas the AEGIS processor only uses a 

small buffer (256 B).   

Concerning security, Suh describes in [37] two potential security holes of the OTP 

implementation proposed by Yang and al. Both security holes are due to the generation of a 

same pad to encrypt (respectively decrypt) two different plaintexts (respectively ciphertexts). 

First, the fact that the sequence numbers are stored off-chip allows an adversary to choose the 

value used to generate a pad. Hence the attackers could replay the same sequence number on 

each data read by forcing the same encryption pad to be used on write back. This attack is not 

feasible in AEGIS since the TScounter value is generated on-chip, therefore the adversary 

cannot tamper with it. A way to solve this security hole for the Yang OTP is to check the 

integrity of sequence numbers. The second security weakness comes from the generation of 

the seed used to produce the pad via its AES encryption. This seed is created by the addition 

of the chunk’s (or cache block) virtual address VA and the sub-block sequence number SN. As 

a consequence, the same seed is generated for two chunks with VA1 = a and VA2 = a + x if the 

relative sequence numbers are equal to SN1 = b + x and SN2 = b, resulting in the same pad 

after the seed encryption. A simple way to solve this security hole is to concatenate the virtual 

address with the sequence number instead of adding both [37]. 

 

Both implementations require a RMW operation on write of data smaller than the chunk 

size. However, the OTP schemes allow to reduce the corresponding performance overhead. 

Indeed, in Suh’s OTP implementation, the use of an on-chip global timer enables the 

generation of the pad for the chunk to write during the read memory access latency. Therefore 

the re-encryption step of the RMW operation results simply in a XOR operation (1 cycle). 

This also applies to the Yang scheme if the matching sequence number is in the dedicated 

cache. 

 

The Suh and al. encryption scheme is the most secure implementation of OTP but Yang 

and al. propose an interesting trade-off between performance and security.  

 

3-1.3. Summary 

Table 3-1 sums up the characteristics of each family of memory encryption engines. The 

preprocessing feature of OTP schemes makes them more efficient than direct encryption 



Chapter 3.  Related Works 

 

 86

engines; however, their main drawbacks are the sensitive management of the counter and the 

re-encryption requirement of the whole memory when such a counter reaches its limit. 

 

Table 3-1  Summary of the existing memory encryption engines 

 
Direct Encryption 

(Gilmont, AEGIS 1st version, 
XOM, DS5250) 

One Time Pad – Counter 
Mode 

(AEGIS 2nd version, Yang) 
Security + + + + + + 

Performance (latencies) - + 
Off-chip Memory 

Consumption Low Low 

Silicon Area Usage 
- 

(Block Encryption and 
Decryption core) 

+ 
(Block Encryption or 
Decryption only core) 

Comments • Straightforward 
implementation (+) 

• Sensitive management of 
the counter (-) 

• Require periodic memory 
re-encryption (-) 

 

3-2. Memory Integrity Verification Engines 

The integrity checking objectives in our application context is to detect any code or data 

injection or corruption on the processor-memory bus and thus to forbid the execution of 

intentionally altered memory content.  

Gilmont and al. [36] claims to protect the integrity of the data stored off-chip with 

encryption at run-time. They base their theory on the fact that the encryption is salted with the 

virtual address; therefore an adversary who wants to modify an encrypted data or to swap 

memory blocks in the memory has little chance to induce a valid behavior. While this 

assumption may be considered for static code since the key is different for each application 

loaded in memory, it is not true for dynamic data because a replay attack could easily be 

conducted with a predictable behavior. For example, a loop counter can be replayed by an 

adversary to freeze the code loop execution or to control the number of loop iterations 

wanted. Moreover, Markus Kuhn’s attack demonstrates that using the address in the 

encryption does not provide a sufficient countermeasure against a ciphered instruction 

searched attack. An efficient integrity checking engine must come with a tamper detection 
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mechanism to avoid the feasibility of such kinds of attacks and to prevent the processing of 

altered data. 

In the following, we present a study of the schemes proposed in the state of the art to 

check data integrity. We first discuss the MAC based solutions and we show their limitations. 

Then we present hash tree schemes which allow to handle the specific issue of replay attacks. 

 

3-2.1. Integrity Checking Engines Based on MAC algorithms 

In the XOM project, the principle of memory integrity verification presented in Chapter 2 

(section 2-3.2.3) is implemented. Therefore, the tag computed on the chunk thwarts spoofing 

attacks since a modification of the data will be detected by the tag matching process. The 

MAC algorithm used is not specified but to prevent splicing attacks, the address is enrolled in 

the tag computation (Addressed-MAC).  

Many embedded systems are running operating systems (OS) which are based on 

preemptive multitasking: the OS periodically interrupts tasks, stores the context (on-chip 

registers, stack pointer, frame pointer…) off-chip and restores it later. A possible attack 

consists in replaying a previously recorded context. The countermeasure proposed by XOM to 

avoid such a replay attack is to use a “register key”. The value of this register is modified on 

each interruption and is given as an additional input of the MAC algorithm. However as stated 

in [40, 47, 48] this countermeasure does not prevent other RW data from being replayed in the 

external memory. For instance, a loop counter can be replayed in the external memory to 

extend its duration. The integrity engine based on a addressed-MAC scheme implementation 

cannot detect it since the information used for the tag computation – the replayed data and its 

address - remains the same at a given address. 

 

A solution might be to enroll secret random values in the tag computation. Such a solution 

has never been explored in our application domain and will be deeply studied in Chapter 4, 5 

and 6. 

 

In [49] Merkle proposes a technique, called hash trees, which allows to solve the issue of 

replay attacks. This technique, thoroughly implemented in our application domain in [13, 37, 

47], is presented in the next sub-section. 
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3-2.2. Hash Trees 

A simple solution to thwart replay attacks would be to store the tags or the hashes of each 

chunk on-chip. In this way tags or hashes are inaccessible from adversaries and any 

corruptions of the loaded data are always detected by the tag (or hash) verification process. To 

limit the on-chip memory overhead two options are possible: i) generate smaller tags ii) attach 

a tag to a chunk composed of multiple cache blocks (  extend the chunk size). While the 

latter might induce a great loss of performance by increasing the memory bandwidth usage, 

the former might dramatically reduce the robustness of the integrity checking engine since 

more chunks would correspond to the same tag. However, even with a small tag or hash, the 

on-chip memory overhead would be unaffordable. 

 
Figure 3-3  A balanced 4-ary hash tree 
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Merkle or hash trees solve the latter issue by securely storing chunk hashes off-chip. The 

principle is to keep a trusted value (hash tree root) on-chip which reflects the current external 

memory state. This value is updated on each write operation and checked on each read 

operation through a tree11 of hashes computed over the memory to authenticate (Figure 3-3). 

Each element of the tree has the size h (in bit) of a hash. The leaves are the h-bit data blocks 

composing the memory. Each internal node is the collision-resistant hash of its children 

chunks (containing m h-bit blocks or hashes). The elements issued from the same parent in the 

tree are called siblings. It results in an m-ary hash tree. 

 

The integrity checking process on each read operation works as follows:  

i) Read the matching chunk - composed of the fetched data and its sibling in the tree 

- and its parent hash in the untrusted memory  

ii) hash the chunk 

iii) compare it with its parent hash. 

 The same steps are repeated with the parent hash and its parent until the root of the tree is 

reached. Since the latter is stored on-chip, it cannot be tampered with by an adversary; hence 

it is trusted. If one of the hash verification fails, this means that a data or a hash has been 

corrupted in memory; the process stops and the integrity checking engine raises an exception.  

 

On write operations, the tree must be updated, thus the following steps are required:  

i) authenticate the matching chunk (with the process described for read operations)  

ii) perform the write in the loaded chunk 

iii) hash the chunk  

iv) update the parent in the tree with the resulting hash 

Similarly to read operations those steps are repeated with the parent hash all along the 

path from the leave to modify to the root of the tree. The authentication of each chunk loaded 

on write operations is mandatory otherwise an adversary could corrupt the sibling of the 

fetched data during this process without detection. 

 

                                                 
11 Refer to Chapter 6 section 1 for the definition of a tree structure. 
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The overhead in memory consumption to store an m-ary hash tree is constant and equal 

to )1(
1

−m . The number of hash verifications on a read operation is of logm(N) with N the 

number of h-bit block composing the memory to protect.  

On read operations, the hash computations are parallelizable during the integrity checking 

process and the degradation mainly emanates from the memory bandwidth pollution 

generated by the huge amount of meta-data (hashes belonging to the same branch in the tree) 

to load. Moreover, on write operations the update of the tree is a sequential process. All those 

issues make the direct implementation of the hash tree principle clearly unaffordable for a 

computing system. In [47] Gassend and al. show that the corresponding performance 

slowdown can reach a factor 10. To decrease this overhead they propose to exploit the 

principle of locality of cache memory and to apply it to hash values (Cached hash tree). When 

a chunk of hashes is loaded on-chip it is stored in the cache memory after being checked. The 

cached hashes are trusted since stored on-chip; as a consequence the integrity checking 

process on read operations stops when a hash in the tree is fetched from cache. Such a 

solution also improves performance on write operations if the intermediate hashes in the tree 

branch to update are cached. However, this update process still requires serializing hash 

computations. 

Suh integrates cached hash tree principle in the AEGIS processor. A first implementation 

of such a tree for embedded systems (25MHz processor, 12.5MHz SDRAM memory, 64-bit 

bus width, 32KB I/D cache, 512-bit cache blocks) is proposed in [12, 37]. The scheme 

protects 4MB of memory against replay and uses an additional hash cache of 16KB. The 

performance slowdown is evaluated to 18.9% when the data cache miss rate is of 12.5%. 

Concerning high-end processors, the performance slowdown is evaluated to 20-30% on 

average and to 50% in the worst case scenario (256KB L2 cache used also to cache hashes) in 

the same simulation framework as the one considered for their direct encryption scheme. 

However, the performance overhead of hash trees greatly depends on several parameters: 

cache block and chunk size, amount of memory to protect, hash length, processor-memory 

bus width and data cache size. This point is further detailed in chapter 6. 

Another scheme based on hash trees called Log Hash Tree is proposed in [13]. However, 

the integrity checking is done at regular intervals, thus giving the adversary potentially 

enough time to perform an attack.  
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3-2.3. Summary 

Among the existing solutions to check memory integrity (Table 3-2), only hash trees 

provide a countermeasure against all active attacks presented in Chapter 2 (spoofing, splicing, 

replay). However such a solution suffers from some drawbacks. First, the update of hash trees 

on write operations is not a parallelizable process. Then, despite the cached hash mechanisms, 

the memory bandwidth pollution generated by the loading of several hashes during data 

authentication or the tree update remains high. Finally, large hash values are required to resist 

collision, implying a non-negligible off-chip memory usage.  

 

Table 3-2  Summary of solutions achieving memory integrity checking 

 Addressed-MAC 
(XOM) 

Cached Hash Trees 
(AEGIS) 

Security 
-  

(no countermeasure against 
replay 

+ + + 

Performance – Memory 
bandwidth consumption + - 

Off-chip Memory 
consumption Low High 

 

3-3. Memory Encryption and Authentication: Techniques and Related Works 

In this section we present the three existing techniques providing data confidentiality and 

integrity and the related engines implemented to protect the off-chip memory content. First 

we present the principle of generic composition consisting in pairing an encryption mode with 

an integrity checking technique. Then we present the concept of Added Redundancy Explicit 

Authentication (AREA). Finally, the authenticated encryption mode candidates proposed to 

the NIST standardization process are described. 
 

3-3.1.  The Conventional Way: Generic Composition Schemes 

3-3.1.1. Principle 

The conventional way to provide both data confidentiality and integrity is to pair a data 

authentication technique and an encryption mode, and therefore to perform two passes on 
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data. A first pass is dedicated to encryption and a second one is done to compute a tag with a 

MAC (or a hash) algorithm. The three possible schemes defined in [50] are depicted in Figure 

3-1: 

• Encrypt-then-MAC (Figure 3-1a) encrypts the plaintext to get a ciphertext C, and 

then appends to C a tag T computed with a MAC algorithm over C.  

• MAC-then-Encrypt (Figure 3-1b) calculates a tag over the plaintext P, appends the 

resulting tag to P and then encrypts them together.  

• Encrypt-and-MAC (Figure 3-1c) encrypts the plaintext P to get a ciphertext C and 

appends to C a tag T computed over P.  

 

The main drawback of such techniques is that both security mechanisms (encryption and 

MAC computation) are non-parallelizable on read or on write operations or on both. On write 

operations, for the Encrypt-then-MAC scheme, the tag computation starts only at the end of 

the encryption process while for the MAC-then-Encrypt, encryption only terminates after the 

completion of the tag calculation. Concerning read operations, for the Encrypt-and-MAC and 

the MAC-then-Encrypt schemes, the tag reference computation begins only when the 

decryption process is completed. 
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Figure 3-4  The conventional way to provide data confidentiality and integrity:  

The generic composition schemes 
 

In [50], Bellare and al. proved that the most secure way to pair an authentication technique 

with an encryption mode is to use the Encrypt-then-MAC scheme and to enroll a different key 

for each computation. 
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3-3.1.2. Off-Chip Memory Protection Engines Based on Generic Composition 

The works presented in this section aim to provide trusted processor architecture with 

different objectives. However, they all need to protect the processor-memory transaction to 

thwart non-invasive physical attacks. Thus, they all implement a generic composition scheme 

by considering the same security perimeter: the System on Chip (SoC).  

 

3-3.1.2.1. AEGIS 

The AEGIS processor objective is to offer a trusted computing platform for a large set of 

applications with a special focus on distributed computation. They consider software as well 

as physical attacks. Concerning the latter issue, Suh and al. implement a generic composition 

scheme constructed with the OTP engine presented in section 3-1.2 and a MAC algorithm for 

RO data and a cached hash tree for RW data (as presented in section 3-2.2) in the Encrypt-

then-MAC fashion. For an embedded processor (50MHz) with 32KB of data cache, 16KB of 

hash cache and 4KB of time stamp cache, the performance slowdown is low and evaluated at 

25% for a data cache miss rate of 12.5%. However the memory region protected against 

replay by the hash tree is limited to 16MB. By reducing the data cache to 4KB and the hash 

cache to 2KB the degradation can reach 73%. Such an engine requires 3 AES “encryption 

only” cores and 5 SHA-1 hardware copies. The off-chip memory overhead is of 33% of the 

amount of memory immune against replay – hash tree storage - 25% of the RO memory 

section – MAC (tag) storage - and of 6.25% of the RW memory region – time stamp storage. 

For a high end processor (1GHz, 200MHz and 64-bit memory bus, 256B on-chip buffer 

dedicated to time stamps) and in the case where all data and instructions are protected, the 

performance slowdown is evaluated at 40% on average (256KB unified L2 cache) and at 60% 

in the worst case scenario. 

 

3-3.1.2.2. SP – Secret Protected 

The SP (Secret Protected) architecture (formerly VSCoP – Virtual Secure Coprocessing) 

focuses on the protection of critical information such as cryptographic keys contained in 

mobile devices and of sensitive computations involving the management of those keys. Lee 

and al. propose the concept of concealed execution where a Trusted Software Module (TSM) 

handles the management of the sensitive information. TSM runs in a dedicated mode 
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protecting its code and data from software attacks. The integrity of the TCM code is ensured 

with a CBC-MAC (AES) scheme while for data, both confidentiality and integrity are 

provided by pairing AES-CBC encryption and the AES-CBC-MAC with the Encrypt-then-

MAC construction. The chunk size in SP is of a cache line (512-bit). To thwart replay attacks 

they propose to implement a hash-tree scheme similar to the one of AEGIS. 

A particularity of SP is that the targeted device does not contain permanent secret (i.e. 

private key). A secure I/O device is designed to record a pass-phrase entered by the user. This 

pass-phrase is hashed to be used as the master key enrolled in the hardware cryptographic 

computations. In this way the sensitive data are directly associated to the user rather than the 

device. 

The SP architecture fulfills its objective efficiently. Considering 100 cycles of initial off-

chip memory latency, separated L1 cache with 64KB of I-cache and 64KB of D-cache, and a 

2 MB unified L2 cache, the performance slowdown is kept under 1%. The overhead is 

negligible because the amount of data to protect is low compared to the unsecured ones, 

inducing an increase of the off-chip memory latency only on a small number of memory 

accesses. Those results do not consider the implementation of hash tree but for the same 

reasons the overhead should remain of the same order.  

 

3-3.1.2.3. XOM 

XOM [11, 39, 40] aims to provide the same security features as the AEGIS processor with 

countermeasures against software and physical attacks. The objectives are also similar: 

software copy protection and tamper-resistant software distribution. To thwart physical 

attacks, an Encrypt-then-MAC construction of a direct encryption mode paired with an 

addressed-MAC is proposed. However, as highlighted in Chapter 2, XOM failed in preventing 

replay attacks. Moreover, the architecture of the off-chip memory protection engine and its 

performance evaluation are not detailed.  

 

3-3.1.2.4. Summary 

The most secure engines providing both data encryption and integrity checking are those 

implementing hash trees because they offer a countermeasure against replay (Table 3-3). 

However, only the SP architecture obtains negligible performance overhead by focusing on 

the protection of critical information such as keys and code required to manage them. 
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Table 3-3  Summary of the memory protection engine (encryption and integrity 
checking) based on generic composition 

Encrypt-then-MAC construction 
 

XOM AEGIS SP 

Security 
- 

(MAC - no protection 
against replay) 

+ + + 
(Merkle Trees) 

+ + + 
(Merkle Trees) 

Performance N/A - + 
Off-chip Memory 

Consumption N/A high low 

Comments N/A 

Performance 
evaluation done 

on complete 
applications 

Only information 
related to secret keys 

are protected 

 

In the following, the underlying block cipher processes n-bit blocks under k-bit keys. EK 

and DK are respectively the encryption and the decryption functions under the key K. The 

message to encrypt M is divided into m n-bit plaintext blocks Pi with (1 ≤ i ≤ m). Similarly the 

ciphered version of M is divided into m n-bit ciphertext blocks Ci with (1 ≤ i ≤ m). 

 

3-3.2. AREA: Added Redundancy Explicit Authentication 

The principle of the AREA schemes is to insert redundancy into the plaintext message 

before encryption and to check it after decryption. Such a scheme is constructed with cipher 

mode with infinite error propagation on encryption and on decryption (infinite two-way error 

propagation). A cipher mode has infinite error propagation on encryption if a ciphertext block 

Ci can be expressed as a function of all previous plaintext blocks Pi to P1 of the message M to 

encrypt. Similarly, a cipher mode has infinite error propagation on decryption if a plaintext Pi 

can be expressed as a function of all previous ciphertext blocks Ci to C1 in the encrypted 

message Ek(M). For instance, CBC has infinite error propagation on encryption since a given 

ciphertext block can be written as a function of all previous plaintext blocks, but has limited 

error propagation on decryption since a given plaintext can be expressed as a function of only 

two ciphertext blocks.  

In order to authenticate a message in addition to encrypt it, a value Pm+1 – the redundancy 

- is appended at the end of the plaintext message before encryption. In this way, the result of 

the encryption of Pm+1, Cm+1 will depend on all plaintext blocks Pi composing the message to 
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authenticate. If the error propagation of the underlying cipher mode is not infinite, distinct 

messages leading to the same Cm+1 can be easily found. Pm+1 and Cm+1 are sent along with the 

encrypted message. On decryption, the corruption of one bit in any ciphertext block Ci will 

impact the decryption of Cm+1 since it depends on all previous ciphertext blocks (infinite error 

propagation). The recipient can detect a malicious modification by comparing the decryption 

of Cm+1 with Pm+1. 

An example of cipher mode usable for an AREA scheme is the PCFB (Propagating Cipher 

FeedBack) mode which is described in the following section. 

AREA schemes seem really efficient since only one pass over the data is required to 

provide both data confidentiality and authentication on encryption and decryption (i.e. on 

write and read operations in our application domain). However, the infinite error propagation 

is usually achieved by chaining encryption (e.g. CBC, PCBC12, and PCFB) or decryption (e.g. 

PCBC, PCFB) operations, making parallelization impracticable. 

 

3-3.3. Authenticated Encryption Modes 

As shown in [50] and [53], providing both data confidentiality and authentication with 

schemes based on generic composition or on AREA could be a risky task. Hence, an 

important effort led by the cryptographic research community through the NIST's modes-of-

operation [54] activities is deployed to define Authenticated Encryption (AE) modes. It aims 

at proposing a secure way to provide the confidentiality and authenticity security services to 

data.  

This section describes those modes while keeping our objectives in mind. For instance, 

some of the presented AE modes, also called AEAD modes - where AEAD stands for 

Authenticated-Encryption with Associated Data - allow authenticating some data without 

having to encrypt them. However, the objective of this work is to provide data authenticity-

and-confidentiality, therefore this point is not furthermore developed in this thesis, for more 

details see the corresponding reference. Moreover, one of our interests is to reach such an 

objective by introducing low latencies on both write and read operations. Considering the 

latter aspect this section is divided into three parts. First we give an overview of the AE 

modes including an expensive non-parallelizable computation in their construction, either for 
                                                 
12 PCBC stands for Plaintext Cipher Block Chaining or for Plaintext-Ciphertext Block Chaining. It has never 
been standardized as a cipher mode. Several versions and definitions of PCBC have been proposed as AREA 
schemes. [53] presents the different existing PCBC modes and describes potential attacks. 
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encryption or for tag calculation. Then we describe the operations of the AE modes classified 

by the NIST as parallelizable. Finally, we discuss the implementation of the most relevant AE 

modes for protecting the off-chip memory content of computing systems. 

For clarity we do not detail the mathematical concept behind those modes in the following 

section, we only sketch a simplified description of the proposed AE modes to allow the reader 

to realize the cost of a hardware implementation in a SoC. 

Moreover, the presented authenticated encryption modes are only described for messages 

of length which is a multiple of the block size of the underlying block cipher. 

 

3-3.3.1. Authenticated Encryption Modes with Non-Parallelizable Operations 

3-3.3.1.1. CCM - Counter CBC-MAC 

CCM [55] is a secure combination of two existing modes using a single key: CTR mode 

for encryption and CBC-MAC for authentication. CTR is highly parallelizable and pre-

processing is feasible: as discussed in Chapter 2, keystream (or pad) sequences could be 

generated in parallel before data is available if the counter initialization is known. The main 

drawback concerning our application is the use of CBC-MAC which implies serialized block 

encryption and prevents any parallelization. Moreover, CCM follows the Encrypt-then-MAC 

construction and on write operations the tag computation can only start after the end of the 

encryption of the first plaintext block.  

 

3-3.3.1.2. EAX - Encrypt Authenticate Translate 

Similarly to CCM, EAX [56] is the generic composition of an authentication mode, 

OMAC (One key CBC-MAC [24, 57]), and of an encryption mode, CTR, in the Encrypt-then-

MAC fashion. EAX also uses a single key. It allows to enhance the security of CCM 

regarding authentication particularly for messages of varying length [Dent]. However, such a 

point is not of our concern since in our application domain we process blocks of fixed size 

(usually defined by the chunk size). The same CCM drawbacks apply to EAX since OMAC is 

still a recursive construction. 
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3-3.3.1.3. PCFB - Propagating Cipher Feedback 

PCFB [58] is a stream cipher which mixes OFB and CFB modes. The output algorithm is 

an n-bit block cipher and the internal state is the concatenation of l-bit of the previous 

ciphertext and of (n – l) bits of the previous key stream. In this way, it results in an infinite 

two-way error propagation. In order to provide authentication, PCFB works like an AREA 

scheme. Despite the fact that this mode is the only one to perform one pass over the data to 

provide both confidentiality and integrity, its two-way error propagating inherent feature 

makes it not parallelizable on both encryption - write operations - and decryption - read 

operations: in order to generate a keystream for the current encryption (respectively 

decryption), the previous ciphertext and keystream (respectively keystream) are required. 

 

3-3.3.1.4. IACBC - Integrity Aware Cipher Block Chaining 

IACBC [59] uses two keys (K0 and K1) and requires a random initialization vector r for 

each message processed. It implements the CBC mode for encryption under K1 with post-

whitening (after encryption) with an n-bit vector Si: Ci = EK1(Pi ⊕ Ci-1) ⊕ Si with C0 = EK1(r) 

(Figure 3-5). The whitening step consists in the addition of a key-dependent value to break the 

pattern of the text on which it is applied. To obtain the set of Si, a subset of t = ⎡ ⎤)1(log2 +m 13 

new random and independent vectors Wi is computed from the encryption of r under K0. 

Then, a Gray code controls the generation of the pairwise independent Si vectors. To obtain 

the authentication tag T, the checksum (XOR summation) of the plaintext block composing M 

(checksum = ΣPi) is first xored with the result of the last plaintext block encryption before its 

post-whitening step, then block encrypted and finally whitened with S0.  

The shortcoming of IACBC is the use of the CBC principle which prevents any 

parallelization during encryption (write operations). On decryption (read operations), IACBC 

is parallelizable but after two serialized block cipher invocations: one to obtain r (assuming 

that r is not known by the decrypting party) and one to obtain S1. The integrity checking 

process is parallelizable with the ciphertext decryption since the verification can be done by 

comparing the T decryption result with the checksum obtained at the end of decryption.  

 

                                                 
13 ⎡ ⎤X denotes X rounding up. 
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Figure 3-5  IACBC - Integrity Aware Cipher Block Chaining 

 

3-3.3.1.5. XCBC-XOR 

XCBC-XOR [60] is very similar to IACBC since it is based on CBC principle and on 

post-whitening. The main difference comes from the whitening step which is done with an 

addition in the group of natural number modulo 2128 and not in a binary Galois Field. Whereas 

the latter is simply performed with a bitwise XOR, the former requires managing a carry-bit 

through the adder which is less efficient in hardware. Moreover, in XCBC-XOR the 

whitening value is obtained by multiplying the position i of the currently processed block Pi 

in the message M by the initialization vector r: Si = i x r.  

 

3-3.3.2. Parallelizable Authenticated Encryption modes 

3-3.3.2.1. IAPM – Integrity Aware Parallelizable Mode 

IAPM [59] was proposed by Jutla (also inventor of IACBC) as the refinement of the 

IACBC to make it parallelizable. The recursiveness of the CBC-like encryption was removed 

and replaced by a pre-whitening step on the plaintext with the corresponding pairwise 

independent vector Si: Ci = EK1(Pi ⊕ Si) ⊕ Si with C0 = EK1(r)(Figure 3-6). To obtain the 

authentication tag T, the checksum (ΣPi) of the plaintext block composing M is processed like 

a plaintext block with S0 as whitening value. 
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Figure 3-6  IAPM - Integrity Aware Parallelizable Mode 

 

Similarly to IACBC, IAPM requires two serialized block cipher invocations before 

starting data processing: one to obtain r (assuming that r is not known by the decrypting 

party) and one to obtain S1. This non-parallelizable step can be considered as negligible when 

long messages are processed and when the throughput is privileged to the latency. 

 

3-3.3.2.2. XECB-XOR 

Like IAPM for IACBC, XECB-XOR [60] removed the recursiveness of XCBC-XOR with 

a pre-whitening step. However, XECB-XOR suffers from the same drawbacks as XCBC-

XOR: the underlying algebraic structure is not suited for hardware implementation.  

   

3-3.3.2.3. OCB – Offset Code Book 

OCB [62] is a refinement of IAPM, proposed by Rogaway. The encryption process 

(Figure 3-6b) is the same; the differences come from the whitening values and the tag 

generations. Moreover, OCB uses a unique encryption key K and requires an initialization 

vector N which only needs to be a nonce (a Number used ONCE). 

Let L be the encryption of the n-bit null vector under K: L = Ek(0n) and γi a Gray code with 

i the position of the processed block in the message M. Moreover R is the encryption under K 

of the addition (XOR) in the binary Galois Field addition GF(2n) of N and L: R = Ek(N ⊕ L).  

Thus, the whitening value Si used in the encryption of Pi is computed by:  
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where ⊗ denotes the binary Galois Field GF(2n) multiplication. The ciphered text Ci is 

obtained as for IAPM with: 

iiiKi SSPEC ⊕⊕= )(  

 

The tag results from the encryption under K of the XOR operation between the checksum 

of the plaintext block (ΣPi) and the last whitening value Sm: 

)(
1

m

m

i
iK SPET ⊕= ∑

=

 

Assuming that L is produced in advance and memorized, OCB is parallelizable on 

encryption and on decryption after one block cipher invocation which corresponds to the 

computation of R. 

Rogaway proposes to truncate the tag T. If such an operation is performed the integrity 

checking process is no more parallelizable with the decryption since the tag cannot be simply 

decrypted and compared to the checksum of the decrypted block xored with the last whitening 

value. 

 

Note that IAPM as OCB are not collision-resistant since the tag is computed on a XOR 

summation. As a consequence a bit flip in the same position in two plaintext blocks of a 

message will yield in the generation of the same tag for the original message as well as for the 

tampered one. However, it is not of our concern since in our context the adversary does not 

have access to the plaintext. This attack does not apply to IACBC since the CBC-like 

construction induces infinite error propagation until the checksum on encryption; hence a 

modification of one bit in the message affects the tag computation. 

 

3-3.3.2.4. GCM – Galois Counter Mode 

GCM [63] is an Encrypt-then-MAC construction which uses the CTR mode for 

encryption and a MAC algorithm based on the Carter-Wegman[64] design under a unique key 

K.  
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Figure 3-7  GCM -Galois Counter Mode (The message to encrypt is a multiple of the 

block length of the underlying block cipher) 
 

Let H be the encryption of the n-bit null vector under K: H = Ek(0n) and GHASH(x) the 

function consisting in the multiplication in GF(2128) of x with H (Figure 3-7). To obtain a hash 

of the ciphered message, GHASH(C1) is first performed and then GHASH(GHASH(Ci-1) ⊕ 

Ci) is recursively computed. The final tag T results from the encryption of this hash with the 

CTR mode; hence T is computed with: 

 

))(()0( 1 mmK CCGHASHGHASHCounterET ⊕⊕= −  

 

In GCM, the Encrypt-then-MAC scheme is implemented, thus encryption and tag 

computation are not parallelizable. Moreover, the tag computation is a recursive process. 

Nevertheless [65] shows that a multiplication over the binary Galois field GF(2128) can be 

done in hardware in less than one cycle at 271 MHz, making GCM an efficient authenticated 

encryption mode. 

 

3-3.3.2.5. CWC – Carter-Wegman authentication with Counter 

Similarly to GCM, CWC [66] pairs a CTR encryption mode with a Carter-Wegman MAC. 

However, CWC suffers from many drawbacks when compared to GCM [67]. In particular, 

the proposed implementation of Carter-Wegman MAC computes a hash consisting in a 
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multiplication in a prime Galois field GF(2127-1) which is less suitable in hardware than a 

multiplication in the binary Galois Field GF(2128). In [68] they estimated the cost of the 

integer-based hash function (CWC) to 100K gates while in [63] the hardware resources for a 

binary field hash function are evaluated to 30K gates. 

 

3-3.3.2.6. CS – Cipher State 

Cipher State [69] mode proposes a totally different approach. Instead of pairing two 

schemes, one for encryption and one for authentication, CS retrieves information during 

encryption between the underlying block cipher rounds and computes an authentication code 

from them. This technique seems interesting but does not catch the attention of the research 

community since, contrarily to the other AE modes, there are no comments or proposed 

implementation of such a mode. 

  

3-3.3.3. Discussion 

The NIST has recommended two modes: the CCM for short tag [71] and the GCM [72] 

for long tag. Nevertheless CCM is discarded for our application due to its non-parallelizable 

tag computation which would greatly increase memory access latencies. Concerning GCM, 

[73] advises not to consider this mode when the tag should be truncated. Typically when 

authentication is done on short memory blocks it is desirable for us to have a short tag to save 

expense of off-chip memory. 

Otherwise, IAPM and OCB is the NIST non-recommended14 AE mode which seems to be 

the most relevant for our application because encryption and tag computation, and decryption 

and integrity checking are strongly parallelizable. However, one block cipher invocation for 

OCB and two for IAPM must be completed before those processes can start; such a non-

parallelizable computation could increase memory access latencies. Moreover, when the tag is 

truncated, the integrity checking process is no more parallelizable with decryption. 

The last comment on the AE modes is the fact that they all require to be tuned to prevent 

replay and splicing attacks when implemented to protect processor-memory communications. 

We did not find SoC implementation of Authenticated Encryption modes to protect the 

off-chip memory content.  

 
                                                 
14 The main reason for this rejection is the fact that they are patented. 
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3-4. Conclusion 

In this chapter we have first presented the engines proposed in the literature to protect 

separately the confidentiality and the integrity of the off-chip memory content. We have 

highlighted that for two reasons the OTP encryption scheme (based on the CTR encryption 

mode) is the most efficient technique to be used in our application domain. First, a 

preprocessing step allows parallelizing the key stream preparation with the external memory 

access latency (particularly on read operations). Secondly, such schemes only need 

encryption-only cores which are less gate-consuming than encryption/decryption cores 

required by direct encryption. Concerning memory integrity verification, we have showed that 

hash trees are the only existing technique allowing to thwart replay attacks, but at a non-

negligible cost in term of performance. Finally, in the third part of this chapter, we have 

described the techniques providing both data confidentiality and integrity: generic 

composition scheme, AREA and authenticated encryption. The generic composition scheme 

proposed by Suh and al. is secure but the main shortcomings are the hardware implementation 

of two algorithms, one for encryption and one for the integrity checking, and the non-

parallelization of both processes (and the intrinsic non-parallelizability of hash trees) on write 

operations. Concerning the AREA technique, the requirement of two-way infinite error 

propagation leads to serialized computations, thus preventing latency optimization. Finally, 

the most efficient authenticated encryption mode seems to be GCM despite the 

recommendation of using long tag, because the tag computation is fast compared to classic 

hash or MAC functions. The CTR mode is implemented in GCM allowing preprocessing and 

mitigating the additional hardware cost of the multiplication over GF(2128) – required by the 

GCM hash function. However, the GCM must be tuned to thwart splicing and replay attacks. 
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Chapter 4: PE-ICE - Parallelized 

Encryption and Integrity Checking Engine 
 

 

 

 

 

 
The proposed Parallelized Encryption and Integrity Checking Engine, PE-ICE, is a 

dedicated solution guaranteeing the confidentiality and the authenticity of data transferred 

onto the processor-memory bus of a computing system.  

The first objective of PE-ICE is to perform encryption and integrity checking in a 

parallelized way and hence to optimize latencies introduced by the underlying hardware 

mechanisms on read and write operations. Moreover, we achieve this task by keeping in mind 

a second goal which is to optimize the hardware resources usage. A third objective of PE-ICE 

is to decrease the memory bandwidth pollution generated by the encryption and the integrity 

checking processes on RMW operations.   

This chapter is organized as follows. Section 4-1 gives an overview of PE-ICE. Section 4-

2 describes the integrity checking process in PE-ICE and the property of block cipher on 

which it relies. Section 4-3 presents the encryption mode implemented and introduces the 

notion of fine granularity of integrity checking. Section 4-4 deals with issues of PE-ICE 

implementation in a SoC. Section 4-5 discusses the level of security offered by PE-ICE and 

the implementation key points to maintain it. Section 4-6 describes how to retrieve data 

processed by PE-ICE in memory. Section 4-7 evaluates the amount of on-chip and off-chip 

memory consumed by PE-ICE. Finally, section 4-8 sums up terms and PE-ICE parameters 

defined in this chapter and proposes a synthetic description of PE-ICE operations.  
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4-1. General Overview 

PE-ICE may be viewed as a black box implementing a block cipher and performing one 

pass on the data to provide both confidentiality and authentication. On encryption (  write 

operations; Figure 4-1a), the inputs of PE-ICE are the data to protect PL
15 and a tag T – 

composing a plaintext block - and a secret key K; the only output is a ciphered block C. On 

decryption (i.e. read operations; Figure 4-1b), the inputs are a ciphered block C, a secret key 

K and a reference tag T’; the outputs are a payload PL and an integrity checking flag which 

informs the processor on the validity of PL regarding its integrity. 

 

 
Figure 4-1  PE-ICE general overview 

 

The block encryption provides the data confidentiality service. Data authentication is 

ensured in PE-ICE by adding the integrity checking capability to the underlying block cipher. 

 

4-2. Adding the Integrity Checking Capability to Block Encryption 

4-2.1. The Diffusion Property of Block Ciphers 

In order to verify the integrity of data, PE-ICE relies on the diffusion property identified 

by Shannon [19] for block ciphers to be considered as secure. Theoretically a block cipher 

must be indistinguishable from a random permutation with equiprobable outputs from an 

adversary point of view, and the redundancy in the statistics of the plaintext has to be 

dissipated in the statistics of the ciphertext. Therefore once a block encryption is performed, 

the resulting position and value of each bit in a ciphertext block C are a function of all bits of 

the corresponding plaintext block P. Suppose that P is composed of two distinct data (PL and 
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T), after ciphering, it is impossible to distinguish the PL ciphered part from the T one in C 

(Figure 4-2). Moreover if one bit is modified in C, after decryption there is a strong 

probability that the resulting T will be impacted. This probability depends on the size of T.  

Suppose that T is t-bit long and that the ciphered block length is n-bit. The number of 

possible plaintext blocks with the same T resulting from the decryption of a tampered C is 

equal to 2n-t. Hence the probability D that T remains the same after decryption is 

tn

tn

D
2
1

2
2

==
−

. 

 

 
Figure 4-2  The diffusion property of block ciphers 

 

4-2.2. PE-ICE Encryption and Integrity Checking Process 

PE-ICE is localized between the last level of cache memory and the memory controller on 

the SoC (Figure 4-3). Data confidentiality is ensured by block encryption: on write operations 

data are encrypted before being stored in the external memory and on read operations they are 

decrypted before being stored in the cache memory. Concerning data authentication, the 

previous property is used as follows to add the integrity checking capability to block-

encryption in PE-ICE.  

 

On write operations (Figure 4-3a), a payload PL provided by the processor is concatenated 

with a tag T to produce each plaintext block P to be processed by the block cipher. Such a tag 

must theoretically be a nonce, a Number used ONCE, for a given encryption key and does not 

need to be calculated over the data with a specific algorithm; for example it may be generated 

by a counter. After encryption, an indistinguishable and unique pair PL/T is created and the 

resulting ciphered block C is written in the external memory.  

 

On read operations (Figure 4-3b) C is loaded and decrypted. The tag T issued from the 

resulting plaintext block is compared to an on-chip re-generated tag called the tag reference 

T’. If T does not match T’, it means that at least one bit of C has been modified during 
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transmission on the bus or in the off-chip memory (spoofing attack), and PE-ICE raises an 

integrity checking flag to prevent further processing. 

 

 
Figure 4-3  PE-ICE Encryption and Integrity checking process 

 

To summarize, PE-ICE could be seen as an AREA (Added Redundancy Explicit 

Authentication – Chapter 3) scheme at the block level instead of the message level: the 

redundancy is added in each plaintext block before encryption and checked for each 

ciphertext block after decryption. The diffusion property of block cipher provides the two-

way infinite error propagation at the block level. 

 

The PE-ICE principle presented above gives a countermeasure against spoofing attacks 

considering that we are able to re-generate a tag reference on read operations which match the 

tag used on write operations. The next sub-section describes the tag generation and how its 

composition allows to thwart splicing and replay attacks. 

 

4-2.3. The Tag Generation 

In the processor-memory communication context, the SoC alone is achieving both the 

encryption and the decryption. Therefore, the SoC has to hold the tag value T of each ciphered 
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block between the encryption and the decryption or must be able to regenerate it on read 

operations to perform the integrity checking process. The challenge is to reach this objective 

by storing as little tag information as possible on the SoC to optimize the on-chip memory 

usage.  

 

The composition of the tag is different for each kind of data, RO and RW, and depends on 

their respective properties.  

 

RO data are only written once in external memory and are not modified during run-time. 

Therefore, such payloads are only sensitive to spoofing and splicing attacks. Thus, the tag 

contained in each plaintext block of RO data can be fixed for a payload PL stored at a given 

address. Moreover, it can be public because an adversary needs the secret encryption key to 

create an accepted PL/T pair. However, this adversary must not be able to choose the reference 

tag T’ or to influence its generation. Hence, PE-ICE uses the most significant bits of the 

ciphered block address as tag (Figure 4-4a) to respect the nonce requirement. If an attacker 

performs a splicing attack, the address used by the processor to fetch a block and by PE-ICE 

to generate the reference tag T’ will not match the one loaded as tag T.  

 

RW data are modified during software execution and are consequently sensitive to replay. 

Using only the address as tag is not enough to prevent such an attack because the address bits 

will not relate changes between write operations at run-time at a given location in memory 

and thus, the processor cannot verify that the data stored at a given address is the most recent 

one (temporal permutation). For that reason the tag is composed of a vector RV (T = RV - 

Figure 4-4b) which is changed on each write operation. In the proposed definition of PE-ICE, 

RV is a random value16 generated on-chip. In this way, the tag is unpredictable17 from an 

adversary point of view making this latter unable to know when two ciphered blocks have the 

same tag. However on read operations PE-ICE must be able to retrieve the correct random 

values – called in the following the reference random values RV’ - to generate the reference 

                                                 
16 In this thesis, we suppose that a random number generator is embedded on-chip and that it does not leak 
information on the produced value. 
17 Unpredictability is not mandatory, a nonce like a counter is sufficient for RV- a random value is not a nonce 
since a given value can arise twice. If a counter is implemented to generate RV, we must assure that the same 
counter value is not used twice by changing the encryption key and by re-encrypting the corresponding memory 
section once the counter reaches its limit. Otherwise an adversary can predict when a replay will succeed by 
waiting that the counter generates the same value. However, re-encryption can be very expensive when the size 
of RV is chosen small by the designer.  
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tag T’ for the integrity checking process. On the other hand, the set of RV’ must be secret and 

tamper-proof from an adversary point of view; otherwise he could perform a replay when he 

notices that two blocks are authenticated with the same RV’ – if known – or he could choose 

the data to replay by replaying it with the corresponding RV’ – if non-tamper-proof. In order 

to solve this issue the random values generated on write operations are stored on-chip18 as 

reference random values in a dedicated memory. Thus, they are trusted since the SoC is 

trusted. Such a tag also protects against splicing attacks. However, instead of making this 

attack impossible – as it is the case for RO data with the use of the address in the tag – the 

security relies, as for replay, on the difficulty for an adversary to find two blocks processed by 

PE-ICE which the reference random values match. The probability to overcome this difficulty 

is the same as for replay attacks and is defined in section 4-2.1.  

The size of RV fixes a trade-off between the strength of the countermeasure against replay 

and the on-chip memory overhead (RV’ stored on-chip); that is why a second configuration of 

the tag is proposed for RW data where the most significant bits of the address of each 

ciphered block are concatenated with a RV (T = RV || ADD - Figure 4-4c). Such a 

configuration decreases the strength against replay but maintains a countermeasure against 

splicing and reduces the on-chip memory cost. 

 

 
Figure 4-4  Plaintext blocks and tag composition before encryption 

 

4-3. Encryption Mode and Chunk Definition 

As highlighted in Chapter 2 the definition of the granularity of encryption and of integrity 

checking – the chunk size – is essential to limit the memory bandwidth pollution on RMW 

operations. When direct encryption is implemented the smaller size of the chunk for 

encryption is the ciphered block length considering that the encryption is done in ECB. Thus, 

                                                 
18 This assumption is considered in Chapter 4 and 5. However Chapter 6 proposes a scheme to securely store the 
random value off-chip and to save on-chip memory. 

or PAYLOAD ADD PAYLOAD RV

Tag T 

 A plaintext block of  RO data 

RV: Random Value 

A plaintext block of  RW data 

ADD: Address most significant bits 

PAYLOAD ADD RV

 (a) T = ADD  (b) T = RV  (c) T = RV || ADD 

||: Concatenation operator 
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PE-ICE implements ECB19 mode. Such a mode also enables per-block integrity checking in 

PE-ICE since the tag contained in each plaintext block is generated independently for each 

plaintext block. This is the finest granularity of integrity checking allowed by PE-ICE; in this 

way, when a RMW operation is required only the matching ciphered block is loaded to be 

decrypted and checked. Hence, in the following, the chunk size is defined as the length of a 

block processed by the block cipher implemented in PE-ICE 

4-4. Protecting the Physical Address Space vs. the Virtual Address Space 

In works like XOM [39], the OS is untrusted and responsible for controlling the MMU 

(Memory Management Unit); hence an adversary can choose a block to load from memory by 

modifying the entries of the table which manages the virtual/physical address translation. 

Thus, he performs a splicing attack in the virtual address space. To prevent this attack the tag 

must be produced from the virtual address; otherwise if the tag is generated from the physical 

address, PE-ICE will not detect it because from its point of view the data is fetched from the 

correct address.  

The main advantage of using the virtual address comes from the fact that the application 

can be loaded in memory already encrypted off-line by PE-ICE (following the principle 

described in Chapter 2, section 2-3.1).  

However, the use of the virtual address requires some deep processor core modifications. 

As mentioned above, PE-ICE is localized between the cache memory and the memory 

controller where the virtual address is usually not available. Therefore, such an 

implementation could be impracticable when PE-ICE must be interfaced with a processor 

core for which the source code is not easily obtainable (e.g. ARM). Moreover, for physically-

addressed cache memory it will be required to store the virtual address - particularly to be 

able to write-back dirty cache block in the main memory – implying an additional on-chip 

memory overhead. Finally, for shared libraries or data, the fact that several virtual addresses 

map to the same physical address complicates [40] or prevents [41, 46] their protection. In 

previous works [41, 46] this point remains an open question. 

                                                 
19 In [61, 74, 75, 83, 84, 85] PE-ICE is presented by using CBC mode for RO data. The use of CBC is secure and 
does not induce additional performance overhead when compared to ECB mode. This is because only the 
decryption process is required for RO data during run-time and such a process can be done in parallel. However, 
it does not strengthen the encryption in comparison to ECB when implemented in PE-ICE. Indeed, the tag 
(nonce) generated for RO data ensures that the same plaintext block does not occur twice (see section 5.2). 
Therefore, for the sake of clarity, in this thesis we consider that all data are encrypted in ECB. 
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Nevertheless, considering our threat model (OS trusted), an adversary could only perform 

a splicing attack on the physical address space (physical relocation of memory block on the 

bus or in the off-chip memory); as a consequence the address used in the tag is the physical 

one. 

The direct implication of such a choice is the need to decrypt and re-encrypt the code 

when it is received already ciphered and when a MMU is implemented. Indeed, the physical 

address is unknown until the translation of the address when the application is loaded in the 

off-chip memory. Hence, the program must be first decrypted to be able to insert the physical 

address in plaintext blocks and then re-encrypted. However, the cost of such a computation is 

negligible since it occurs once at the application load-time. Else, in case of no MMU and of 

static mapping of programs in the memory, the programmer might use the logical/physical 

address to encrypt the software with PE-ICE prior to installing it in memory. The latter case 

does not introduce performance overhead at load-time since the encryption of the executable 

binary is done off-line. 

On the other hand the use of the physical address solves the issue of shared data and of 

shared libraries encryption and integrity checking. Two physical sections of memory can be 

reserved, one for shared data and one for shared libraries, and handled by PE-ICE with a 

dedicated encryption key (or keys, see section 4-5.3).  

In the following when the term address is used alone we refer to the physical address. 

 

4-5. Security Considerations 

4-5.1. Active Attacks 

The objective of active attacks is to challenge both data confidentiality and integrity. The 

security level of the proposed scheme against the three active attacks (spoofing, splicing and 

replay) described in the threat model and lead on a chunk depends on four parameters:  

• t the size of the tag (in bits), 

• a the number of address bits in the tag, 

• r the size of the random value RV (in bit), 

• and b the ciphered block length (in bytes).  
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Table 4-1  Security limitations of PE-ICE regarding active attacks led on a chunk 
evaluated in chances to succeed 

RW data Attack RO data t = a + r t = r 

Spoofing attack t2
1  t2

1  t2
1  

Inside a splicing segment 0  0   Splicing attack  
Splicing-segment size: 

ba ×2 bytes Outside a splicing segment 0  r2
1  

t2
1  

Replay attack  N/A r2
1  t2

1  

 

The probability for an adversary to succeed with a spoofing attack depends only on t. 

Such a probability is defined in section 4-2.1 for spoofing and is equal to t2
1 .  

Concerning replay, the outputs of the random number generator implemented to produce 

RV are supposed equiprobable; therefore the probability to succeed a replay is equal to r2
1  and 

is the same for a splicing attack when t = r (the tag T is only composed of a random value RV 

– Figure 4.4c) .  

When the address is used in the tag, the physical addressing space protected against 

splicing attacks is determined by a and by b. It is equal to ba ×2  and is called in the following 

splicing-segment. However, a might have a size which could be insufficient to cover the 

whole address space20; hence a different key must be attributed to each splicing segment 

contained in the application addressing space. The key is said splicing-segment-dependent. In 

this way an adversary which swaps two memory blocks with the same address bits in the tag 

from a splicing segment to another will be detected since the decryption of the fake block will 

not be performed with the correct key. Such a requirement for the key only applies to RO data 

since the tag for RW data already includes a countermeasure against replay which protects 

against this attack. As a consequence, considering that the keys used to encrypt the RO 

memory section are splicing-segment-dependent, an adversary cannot perform a splicing 

attack on such a memory section. Thus, we consider that it is impossible to perform a splicing 

                                                 
20 For instance for 32-bit processor architecture with 4GB of address space, the minimum size for a to cover the 
whole address space is 28-bit if b = 16 (AES). 
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attack on a chunk of RO data while for RW data a splicing attack led on a chunk from a 

splicing segment to another has r2
1  chance to succeed and 0 inside a splicing-segment. 

 

Table 4-1 summarizes the security limitations of PE-ICE regarding the attacks presented 

in the threat model for each kind of data RW and RO. 

 

4-5.2. Confidentiality and Passive Attacks 

An interrogation concerning security might arise when considering PE-ICE: from the 

confidentiality point of view, is the encryption robustness affected by inserting in the plaintext 

blocks data potentially known by the adversary (the data address)? 

Considering our threat model (SoC trusted), the adversary might only perform two passive 

attacks, ciphertext-only attacks – the eavesdropper tries to deduce the secret key or the 

plaintext by observing the ciphertext – and known plaintext attacks – the adversary 

additionally knows a part of the plaintext – to challenge data confidentiality. Therefore, the 

choice of the block cipher algorithm is essential and must be secure against these two kinds of 

attacks. However, this is the minimum requirement for a block encryption algorithm, and in 

the following the block cipher implemented in PE-ICE fulfills this necessary condition.  

Moreover, inserting a tag that is a true nonce in each plaintext block removes the ECB 

weakness when the same plaintext block is ciphered. Indeed, theoretically the tag is a number 

used once and as a consequence is different for each plaintext block encrypted with a given 

encryption key, making each plaintext block different from the others. Therefore this ensures 

that the encryption of the same payload twice yields two different ciphertext blocks in ECB. 

However, practically this is only true for RO data. The use of a random value to thwart replay 

attack implies that for RW data the tag is not a true nonce since the same random value can 

occur twice. Hence, such a random value strengthens the robustness of ECB modes by 

ensuring that most of the time a same payload leads to different ciphertexts: statistically there 

is little probability that the same plaintext block (payload + tag) should appear twice during 

application execution. This probability depends on the size of r and on the way the payload is 
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generated. In such a case, the eavesdropper might only deduce that a same data has been 

written at a given address and at two different times21.  

 

4-5.3. PE-ICE Encryption Key Requirements 

As previously mentioned, for PE-ICE to be secure an encryption key must be splicing-

segment-dependent. However, such a key must respect further requirement.  

Different executables may be stored in the same physical splicing segment at different 

times. As a consequence, the tag inserted in each RO chunk will be the same at a given 

address for all those executables. Thus we need to avoid replay attacks of RO data from an 

application to another. Therefore to detect such a kind of replay the encryption key must also 

be application-dependent meaning that the key must be different for each application loaded 

in memory. 

Nevertheless, another attack remains feasible: an adversary may install an application in a 

splicing segment and record the resulting RO ciphered blocks in the memory with their 

corresponding address. Then, he resets the corresponding splicing-segment and re-installs the 

same application but at a different starting address in the same splicing-segment. Hence, since 

the secret-key is only application-dependent and splicing-segment-dependent, he could replay 

the RO ciphered blocks from the first installation at the address they had been stored at 

without detection. To thwart such an attack the key must be changed on each loading of an 

application, in this case the key is said installation-dependent. Note that the notion of 

installation-dependent includes the notion of application-dependent. 

Those encryption key requirements only apply to RO data. Indeed a countermeasure 

against replay during run-time is already foreseen for RW data and is valid for the different 

kinds of replay presented above. Hence, the same key could be used for all RW data. In order 

to fulfill all requirements for the secret keys – splicing-segment-dependent and installation-

dependent – dedicated to RO data, an encryption key is randomly generated on-chip on each 

application loading and for each splicing segment contained in the physical addressing space 

consumed by the application code. The key management is detailed in a use case proposed for 

PE-ICE in Chapter 5. 

                                                 
21 For RO data the tag is a true nonce in a given splicing segment; hence if the encryption mode used for RO data 
is CBC [61, 74, 75, 83, 84, 85] this tag allows to differentiate the first plaintext block of every CBC chains 
avoiding the use of an IV. 
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We consider that an application is always stored at the same address when no MMU are 

implemented22; hence the encryption keys only need to be splicing-segment-dependent and 

application-dependent23. In this case, the application might be encrypted off-line with PE-ICE 

and stored as such in the off-chip memory if the set of encryption keys used respects the two 

latter requirements. 

Concerning the shared libraries, the solution proposed in section 4-4 must be carefully 

implemented. In order to observe the key requirements, an encryption key must be dedicated 

to each splicing segment contained in the reserved memory section, and each time a new 

library is installed, the concerned splicing segment(s) must be re-encrypted with a new key. 

 

4-6. Physical Address Computation 

PE-ICE shifts the physical addressing by inserting tags between payloads. This shift must 

be transparent for the CPU, thus PE-ICE handles the translation.  
 

 
Figure 4-5  Off-chip Memory layout - Reorganization of the Protected Memory Regions 

(PMR) in PE-ICE line by PE-ICE and shifting of the physical address. Example 
depicted is a PMR containing five PE-ICE lines ( five line-payloads seen by the CPU) 

                                                 
22 Operating Systems such as µclinux [70] provide the capability to dynamically store applications in memory. 
23 The same remark applies if the virtual address is used in the tag. 
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To allow a straightforward computation of addresses PE-ICE reorganizes the Protected 

Memory Regions (PMR) in sections called PE-ICE blocks or PE-ICE lines (Figure 4-5) in the 

same way as the CPU organizes the off-chip memory in cache block. A PE-ICE line contains 

a certain number Nc of chunks ( ciphered blocks). In the following, a line-tag and a line-

payload denote respectively the amount of payload and tag contained in a PE-ICE line. All 

PE-ICE blocks have the same layout defined by the distribution of the line-tag and of the line-

payload over the Nc chunks. 
 

In order to retrieve an address AP of a PE-ICE block from the address ACPU provided by 

the CPU, PE-ICE needs to hold in a register the starting address AS of the protected memory 

region (PMR).  Then, the number P24 of line-payloads between AS and ACPU in the address 

space seen by the CPU is determined by: 
 

pb

SCPU

l
AA

P
)( −

=        (eq. 4.1) 

 

lpb
 is the size of a line-payload in bytes. Hence, lpb must be a power of 2 to allow a simple 

computation of P in hardware.  

Considering ltb the size of the line-tag in bytes, AP can be computed as follows: 
 

tbCPUP lPAA ×+=       (eq. 4.2) 

 

Similarly, ltb must be a power of 2. 

In brief, a PE-ICE block is defined by the number Nc of chunks (or ciphered blocks) it 

contains and both the length of its line-tag and line-payload must be a power of 2.  

However, when an operation requires accessing data in a line-payload, we must be able to 

retrieve the matching chunk in the corresponding PE-ICE block. This issue depends on how 

the line-tag is spread in the chunk(s) contained in a PE-ICE block and on the underlying block 

cipher implemented; therefore this consideration is dealt with in Chapter 5 which describes 

the proposed PE-ICE configurations.  

In the following APC denotes the address of a chunk in memory and lp
 and lt respectively 

the size of a line-payload and of a line-tag expressed in bits. 
                                                 
24 It can be also expressed as the position of an lpb-byte block starting from AS in the address space seen by the 
CPU, where lpb is the size of a line-payload. 
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4-7. Memory consumption 

The amount of memory consumed by PE-ICE comes from the tag storage for the off-chip 

memory and from the storage of the reference random values for the on-chip memory. 

The off-chip memory overhead is defined by the ratio ROF between the line-tag size (lt
 

bits) and the length of the corresponding line-payload (lp
 bits). ROF is equal to lt / lp. 

The on-chip memory overhead is defined by the ratio RON between the bit-length of 

random value used to protect a PE-ICE block against replay and the corresponding protected 

payload (the line-payload) size. The bit-length of random value is obtained by multiplying the 

number of chunks Nc contained in a PE-ICE block by the size r of a random value; hence RON 

is equal to
pl

rNc× .  

 

4-8. Summary 

This section sums up the different definitions introduced in this chapter and lists the useful 

parameters for the following chapters. 

4-8.1. Definitions 

Chunk: Atomic block processed by PE-ICE. Its size defines the granularity of encryption 

and of integrity checking. In PE-ICE the chunk size is of b-byte, the length of the block 

processed by the underlying block cipher. 

Tag (T): AREA (and added randomness) contained in and independently generated for 

each chunk on write operations. 

Reference tag (T’): tag generated by PE-ICE on read operations to perform the integrity 

checking process. 

RV: Random value inserted in the tag dedicated to RW data on write operations. 

RV’: Reference Random Values retrieved by PE-ICE on read operations to generate the 

reference tag T’ for RW data. 

PL: Payload contained in a chunk. 

PE-ICE block or line: Atomic block size of the PE-ICE memory reorganization. Such a 

block is defined by the number Nc of chunks it contains. All the PE-ICE blocks have the same 

pattern of tag and payload distribution over the Nc chunks. 
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Line-payload: Bit-length of payload contained in a PE-ICE line - must be a power of 2. 

Line-tag: Bit-length of tag contained in a PE-ICE line - must be a power of 2. 

PMR (Protected Memory Region): Physical memory region protected by PE-ICE. Such 

a region is organized in PE-ICE line. 

Encryption key requirements for RO data:  

Application-dependent: The key must be different for each application loaded in 

memory. 

Installation-dependent: The key must be changed on each installation (  loading in 

memory) of a given application. 

Splicing-segment-dependent: The key must be different for each splicing-segment used 

by a given application.  

 

4-8.2. PE-ICE Parameters 

Table 4-2 summarizes the parameters used to define a PE-ICE configuration. 

 

Table 4-2  Summary of the parameters defining PE-ICE 

Parameter Unit Definition 

b 

n 

byte 

bit 
Block size of the underlying block cipher and chunk length 

t bit Size of a chunk tag 

a bit Number of address bits contained in a chunk tag 

r bit 
Size of the random value (RV) contained in a chunk tag for RW 

data and of its corresponding reference random value (RV’)  

Nc - Number of chunks contained in a PE-ICE block 

lt = 2c bit Size of a line-tag 

lp = 2l bit Size of a line-payload 

AS - Starting address of PMR 

AP - Physical address of a PE-ICE line 

APC - Physical address of a chunk 

ROF - Ratio defining the off-chip memory overhead (ROF = lt / lp) 

RON - Ratio defining the on-chip memory overhead (RON =
pl

rNc× ) 
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4-8.3. PE-ICE Pseudo Codes 

PE-ICE processing at run-time can be summarized for operations on a chunk payload PL 

of RO data by the functions PE-ICE-read-ro and PE-ICE-write-ro described in 

pseudo code in Figure 4-6.  

 

 
Figure 4-6  PE-ICE operations on a payload of RO data contained in a chunk 

 

Concerning RW data, the PE-ICE operations on data of a size smaller or equal to the 

payload PL contained in a chunk can be summarized by the functions PE-ICE-read-rw 

 
• Computation of the chunk address APC 

ShiftAdd(ACPU) 
1. AP  [(ACPU – AS) >> (l - c)] + ACPU  
2. APC  SpecConfig(AP, ACPU)    
3. Return APC 

 
-- lt = 2c and lp = 2l 
-- SpecConfig is a specific function defined with PE-ICE configurations to 
retrieve APC from AP and ACPU 
 
 

• Read of a chunk of RO data 
PE-ICE-read-ro (PL, ACPU) 

1. APC  ShiftAdd(ACPU) 
2. Read the chunk from APC in memory  
3. Decrypt (chunk) = PL || T 
4. T’  MostSignAdd(APC) 
5. Check (T, T’); if T ≠ T’ raise the integrity checking flag else return PL  

 
-- MostSignAdd is a function which selects the a most significant bits of the 
address APC. 
 
 

• Write of a chunk of RO data 
PE-ICE-write-ro (PL, ACPU) 

1. APC  ShiftAdd(ACPU) 
2. T  MostSignAdd(APC) 
3. chunk = Encrypt(PL, T) 
4. Write chunk at APC in memory 
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and PE-ICE-write-rw described in pseudo code in Figure 4-7. We only considered the 

case where the tag is only composed of a random value (t = r). |x| denotes the length of x. 

 

 

Figure 4-7  PE-ICE operations on a RW data of a size smaller or equal to the payload 
contained in a chunk 

 

 
• Computation of the chunk address APC 

ShiftAdd(ACPU) 
2. AP  [(ACPU – AS) >> (l – c)] + ACPU  
3. APC  SpecConfig(AP, ACPU)    
4. Return APC 

 
-- lt = 2c and lp = 2l 
-- SpecConfig is a specific function defined with PE-ICE configurations to retrieve 
APC from AP and ACPU 
 

• Read of a chunk of RW data 
PE-ICE-read-rw (data, ACPU) 

1. APC  ShiftAdd(ACPU) 
2. Read chunk from APC in memory  
3. Decrypt (chunk) = PL || T 
4. T’  ReadOnChipMem(APC) (= RV’) 
5. Check (T, T’) ; if T ≠ T’ raise the integrity checking flag  

else if |data| < |PL|, retrieve data from PL 
else return PL 

 
• Write of a chunk of RW data 

PE-ICE-write-rw (data, ACPU) 
-- RMW operation 

1. if |data| < |PL|, PL  PE-ICE-read-rw(PL, ACPU) and write data in PL  
-- |data| = |PL| 

else APC  ShiftAdd(ACPU)                                                             
2. Encrypt(PL || T) 
3. T  RV  = RandomGen        -- Generate a new random value 
4. RV’  WriteOnChipMem(APC, RV) -- Update RV’ in the on-chip 

memory with RV 
5. chunk  Encrypt(PL, T) 
6. Write chunk at APC  in memory 
 

-- RandomGen is a random generation number call which allows generating RV.  
-- WriteOnChipMem and ReadOnChipMem are the functions which allow to read 
RV’ and to write RV in a dedicated on-chip memory. 
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4-9. Conclusion 

In this chapter, we have explored new directions to ensure data confidentiality and 

authenticity. We have presented the formal definition of PE-ICE. PE-ICE is not a newly 

proved authenticated mode but a dedicated solution to protect processor-memory 

communications whose security relies on our threat model (SoC trusted and, ciphertext-only 

and known plaintext attacks) and on the underlying block cipher security.  

We showed that PE-ICE provides data confidentiality and authentication by performing 

only one path on the data and by using a single block cipher algorithm. Data confidentiality is 

guaranteed by block encryption while data authentication relies on the diffusion property of 

block-encryption algorithms and by applying the principle of AREA at the block level. Added 

redundancy before encryption enables to thwart splicing and spoofing attacks while added 

randomness handles the issue of replay attacks.  

Moreover, we introduced the notion of fine granularity of integrity checking which allows 

to decrease the memory bandwidth pollution on RMW operations. Thus, PE-ICE proposes a 

fine chunk size independent of the cache line length while offering a high security level 

regarding the threat model defined in Chapter 2. 

Finally, the use of the same algorithms to ensure data confidentiality and authenticity 

allows to reduce the cost of hardware resources. 
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Chapter 5: PE-ICE Implementation 
 

 

 

 

 

 
In this Chapter we describe and evaluate different PE-ICE configurations, and we discuss 

their implementations in a SoC. Note that we only consider 32-bit processor architecture.  

This Chapter is organized as follows. Section 5-1 describes three PE-ICE configurations 

based on different versions of the Rijndael algorithm. Section 5-2 presents the hardware 

design of one PE-ICE configuration and gives the latencies introduced by all considered PE-

ICE configurations. Section 5-3 evaluates PE-ICE performance at run-time. Finally in section 

5-4 a comparison with a generic composition scheme is proposed. 

 

5-1. PE-ICE Configurations  

A configuration of PE-ICE depends on the n-bit block length of the underlying block 

cipher and is denoted PE-ICE-n.  Moreover, a configuration is defined by the layout of a PE-

ICE line, meaning the pattern of the line-tag and of the line-payload distribution over the 

chunks it contains.  

In this section three PE-ICE configurations based on different versions of the Rijndael 

algorithm are described and solutions are proposed to handle the issue of encryption key 

managements.  
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5-1.1. PE-ICE-128 

PE-ICE-128 is the proposed configuration for the AES block cipher to be used in PE-ICE.  

AES encryption processes 128-bit blocks (described in Chapter 1) and is the standardized 

version of the Rijndael algorithm [15].  

 

5-1.1.1. Layout of a PE-ICE-128 Line 

As explained in Chapter 4, in order to allow a straightforward computation of a PE-ICE 

line address, the line-payload and the line-tag lengths must be both a power of 2. Moreover 

encryption forces a PE-ICE-128 block to be a multiple of the ciphered block length. As a 

consequence, choosing a line-payload and a line-tag both of 64-bit or of 128-bit fulfills all 

requirements but induces a huge off-chip memory overhead of 100%. Thus, to reduce this 

overhead we define the line-payload and the line-tag length respectively to 256-bit and 128-

bit. The resulting PE-ICE-128 is therefore composed of three chunks and is defined by the 

following parameters: lp = 256-bit, lt = 128-bit, and Nc = 3. The line-tag distribution among 

plaintext blocks (chunks) composing a PE-ICE-128 block is depicted in Figure 5-1.  

 

 
Figure 5-1  Layout of a PE-ICE-128 line before encryption 

 
The tag of the third chunk in a PE-ICE-128 line contains 32-bit of padding (PAD section) 

to make it 128-bit (ciphered block size). This choice could appear as a wasting of bits which 

could be useful to strengthen the security of PE-ICE; for instance, these bits can be shared 
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among the three chunk tags of a PE-ICE-128 block as presented in [74, 75]. However, this 

implies that the size of PL is no more a multiple of 32-bit which makes the corresponding 

chunk more difficult to address (see 1.1.4). Moreover, such a line-tag repartition may require 

loading two chunks - instead of one for the proposed layout - on 32-bit read and on RMW 

operations on 32-bit, leading to additional memory bandwidth pollution. 

 

5-1.1.2. Security Limitations 

Concerning RO data, the 32-bit address of each ciphered block is used as tag (Figure 5-

1a). Hence, a splicing segment is of the size of the addressing space (4GB) and thus only one 

encryption key dedicated to RO data is required per application. KRO denotes such a key. 

For RW data (Figure 5-1b), the strength of the proposed countermeasure against replay 

and splicing attacks depends on the designer’s choice of the values of r and a. For example if 

a = 24 and r = 8, a splicing segment is 256 MB long (224 x 16B); thus a replay attack has a 

1/28 chance to succeed, while an adversary has a 1/28 chance to succeed with a splicing from a 

splicing-segment to another and 0 with a splicing inside a splicing-segment. When t = r = 32, 

for both replay and splicing attacks, the chance to succeed is of 1/232. One key is required for 

all RW data stored off-chip and is denoted KRW.  

 

Table 5-1  Security limitations offered by PE-ICE-128 and by PE-ICE-160 regarding 
active attacks led on a chunk and evaluated in chances to succeed for an adversary 

RW data Attack RO data t = a + r t = r = 32

Spoofing attack 322
1  322

1  322
1  

Inside a splicing segment 0  0   
Splicing attack 

Outside a splicing segment N/A  r2
1  

322
1  

Replay attack  N/A r2
1  322

1  

 

When r is chosen small to save on-chip memory, a simple trick enabling to improve the 

strength against splicing and replay is to foresee in PE-ICE a counter which memorizes the 

number of detected intrusions. When this counter reaches a value determined by the designer 

or by the software programmer, the external memory space dedicated to RW data is zeroized 
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and a new KRW is generated. However a scheme is proposed in Chapter 6 allowing to choose a 

large value for r without generating on-chip memory overhead. 

For both kinds of data the tag is at least 32-bit long, hence an adversary has a 1/232 chance 

to succeed with a spoofing attack. 

Table 5-1 summarizes the security limitations offered by PE-ICE-128.  

 

5-1.1.3. Memory Consumption 

The off-chip memory overhead of PE-ICE-128 is of 50% (lt = 128 and lp = 256  ROF = 

½) therefore the tag storage takes up to 33% of the protected memory region (PMR).  

The on-chip memory overhead is of 9.4% of the off-chip memory protected against replay 

by considering r = 8 (Nc = 3, r = 8, lp = 256  RON = 32
3 ). 

 

5-1.1.4. Computation of a Chunk Physical Address 

The address of a PE-ICE-128 block Ap is obtained by applying to ACPU the equation 

provided in Chapter 4 (eq. 4.1): 
 

      
2

)( SCPU
CPUP

AA
AA

−
+=   (eq. 5.1) 

 

However, one of the objectives of PE-ICE is to load the minimum of data on small 

transfers. Hence, PE-ICE-128 must be able to retrieve the address APC of the chunk in a given 

PE-ICE-128 block which contains the requested data. To solve this issue, the less significant 

bits of ACPU (ACPU[4;0]) addressing the data in the payload are used with an address decoder 

(AD). The output of AD is an offset Oi (0, 16 bytes, 32 bytes) to add to AP and to determine 

the matching chunk address. 

  iPPC OAA +=    (eq. 5.2) 

 

5-1.2. PE-ICE-160 

The Rijndael algorithms support any key and block size that is a multiple of 32, between 

128 and 256. For PE-ICE-160, we use Rijndael processing 160-bit blocks and using a 128-bit 

key. This version of the algorithm is referred to as Rijn-160.  
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5-1.2.1. Layout of a PE-ICE-160 Line 

The definition of a PE-ICE-160 line is easier with such a block cipher. Indeed, the biggest 

power of 2 contained in 160 is 128, hence we choose a line-payload of such a size and a line-

tag of 32-bit. All requirements are fulfilled: the PE-ICE-160 line is a multiple of the ciphered 

block length (Nc = 1); lp and lt are both a power of 2.  The resulting PE-ICE-160 line is 

depicted in Figure 5-2. Note that for PE-ICE-160, a PE-ICE-160 line, a line-payload and a 

line-tag are respectively equivalent to a chunk, PL and a chunk tag (Nc = 1, |PL| = lp , t = lt). 

 

 
Figure 5-2  Layout of a PE-ICE-160 line before encryption 

 

5-1.2.2. Security Limitations 

PE-ICE-160 has exactly the same security limitations as PE-ICE-128 since the size of the 

tag dedicated to a chunk is the same (Table 5-1).  

 

5-1.2.3. Memory Consumption 

The off-chip memory overhead of PE-ICE-160 is of 25% (lt = 32 and lp = 128  ROF = 

¼) therefore the tag storage takes up to 20% of the protected memory region (PMR).  

The on-chip memory overhead is 6.25% of the off-chip memory protected against replay 

by considering r = 8 (Nc = 1, r = 8, lp = 128  RON = 16
1 ).  

 

5-1.2.4. Computation of a Chunk Physical Address 

An advantage of PE-ICE-160 is the straightforward computation of the address APC of a 

chunk. Indeed, as mentioned above a PE-ICE-160 block is equivalent to a chunk, hence APC = 

(b) Read / Write data 

Chunk (Add)

(a) Read Only data 

Chunk (Add)

Tag Payload RV : Random value

128-bit 
A line-payload 

160-bit  

32-bit 

r-bit 32 bits 
A line-tag 

128-bit Add 

160-bit  

a-bit 

128-bit RV Add 
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AP and is obtained by simply applying the equation (eq. 4.1) provided in Chapter 4 to the 

address ACPU provided by the CPU: 

    
4

)( SCPU
CPUPC

AA
AA

−
+=   (eq. 5.3) 

 

5-1.3. PE-ICE-192 

PE-ICE-192 is the PE-ICE configuration with the Rijndael algorithm processing 192-bit 

block and using 128-bit keys. Such a Rijndael version is referred to as Rijn-192. 

 

5-1.3.1. Layout of a PE-ICE-192 Line 

Similarly to PE-ICE-160 the bigger power of 2 contained in 192 is 128, hence we choose 

a line-payload of such a size and a line-tag of 64-bit. The resulting PE-ICE-192 line is 

depicted Figure 5-3. Note that for PE-ICE-192, a PE-ICE-192 line, a line-payload and a line-

tag are also equivalent respectively to a chunk, PL and a tag (Nc = 1, |PL| = lp, t = lt). 

 

 
Figure 5-3  Layout of a PE-ICE-192 line before encryption 

 
5-1.3.2. Security Limitations 

Concerning RO data, a chunk tag T contains the 32-bit of the chunk address (Figure 5-3a), 

thus it protects the whole address space (4GB) against splicing attacks (a = 32) and only one 

encryption key dedicated to RO data is required per application during run-time.  

The particularity of PE-ICE-192 is the fact that (Figure 5-3b) the size of the chunk tag (t = 

64) prevents splicing attacks on the whole addressing space dedicated to RW data (a = 28) 

(b) Read / Write data 

Chunk (Add)

(a) Read Only data 

Chunk (Add)

Tag 

Payload 

RV : Random value

128-bit 
A line-payload 

192-bit  

r-bit 64-bit 
A line-tag 

192-bit  

28-bit 

PAD 128-bit Add 

RV 128-bit Add[31;4]

32-bit 32-bit 

PAD 

PAD : Padding 
64-bit
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while offering a large range of choice for the value of r. Indeed, r can be up to 36 without 

decreasing the strength of the countermeasure against splicing. The chance to succeed with a 

replay depends on the value of r and is equal to r2
1 . One key is also required for RW data but 

for all applications. 

For both kinds of data the chunk tag is 64-bit long, hence an adversary has a 1/264 chance 

to succeed with a spoofing attack. 

Table 5-2 summarizes the security limitations of such a configuration of PE-ICE-192.  

 

Table 5-2  Security limitations offered by PE-ICE-192 regarding active attacks led on a 
chunk and evaluated in chances to succeed for an adversary 

RW data Attack RO data t = a + r 

Spoofing attack 642
1  642

1  

Inside the source splicing 
segment 0  0   

Splicing attack Outside the source splicing 
segment N/A  N/A 

Replay attack  N/A r2
1  

 

5-1.3.3. Memory Consumption 

The off-chip memory overhead of PE-ICE-192 is 50% (lt = 64 and lp = 128  ROF = ½) 

therefore the tag storage takes up to 33% of the protected memory region (PMR).  

The on-chip memory overhead is 6.25% of the off-chip memory protected against replay 

by considering r = 8 (Nc = 1, r = 8, lp = 128  RON = 16
1 ).  

 

5-1.3.4. Computation of a Chunk Physical Address 

Like PE-ICE-160, the computation of the address APC of a chunk is straightforward since 

a chunk is equivalent to a PE-ICE-192 line; hence APC = AP: 

 

      
2

)( SCPU
CPUPC

AA
AA

−
+=   (eq. 5.4) 
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At this stage PE-ICE-160 and PE-ICE-192 seem to be the most straightforward PE-ICE 

implementations. While the latter offers a high level of security by preventing splicing attacks 

for all kinds of data on the whole addressing space the former proposes an optimum trade-off 

between security and off-chip memory overhead with strong countermeasures against splicing 

and replay when t = r.  

 

5-2. Hardware Design and Latencies 

AMBA [76] (Advanced Microcontroller Bus Architecture) are the most common on-chip 

buses implemented in embedded processors. Thus, PE-ICE-128 has been designed compliant 

with an AMBA bus in order to be easily portable on those processors and to evaluate the 

latencies introduced on memory accesses.  

 

5-2.1. The AMBA-AHB Bus 

 

 

Figure 5-4  PE-ICE-128 localization on an AMBA-AHB bus 
 

AMBA is the definition proposed by ARM of on-chip communication standards for 

embedded processors. Mainly two standards are described in the AMBA specification: AHB 

(Advanced High-perforance Bus) and APB (Advanced Peripheral Bus). APB is dedicated to 

low-power peripheral accesses. AHB is a bus which supports processor connections to on-

chip memories and to off-chip memory interfaces. It is foreseen for high performance and 
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high clock frequency system modules. One of the specificities of AHB is the implementation 

of burst transfers.  

 

In the present work, we are particularly interested in AMBA-AHB since data exchanged 

with the off-chip memory transit on this bus before leaving the SoC – write operations - or 

before being processed by the CPU – read operations. PE-ICE-128 is therefore designed as an 

interface between the off-chip memory controller and the rest of the AMBA-AHB bus (Figure 

5-4). The protocol AHB is also used for communication between PE-ICE and the memory 

controller. 

 

5-2.2. Design Principle 

PE-ICE-128 has been designed in VHDL to accurately measure the latencies introduced 

on memory accesses and to be able to deduce the ones of the other PE-ICE configurations. 

Figure 5-5 depicts an overview of this hardware design. The description of this figure is 

detailed per operation: 

 

(1) Write operations: The CPU transmits over the AMBA-AHB bus the controls signals – 

ahb_ctrl – which describe the requested operation (Read or Write, size of the transfer, kind of 

transfer: single or burst…) and the corresponding address – haddr. If PE-ICE-128 is free – pe-

ice_ready – it collects this information with two sequencers – SEQ_SLAVE and 

SEQ_MASTER. SEQ_SLAVE stores the data to write – hwdata – in the register REG_IN, 

translates the data address and launches a random number generation if the data to write is a 

RW data in order to generate the tag. When enough payloads are ready in REG_IN to 

constitute a plaintext block with the tag, SEQ_SLAVE activates AES encryption. 

SEQ_MASTER also translates the data address – pe-ice_addr, waits for the AES_ENGINE 

acknowledge which indicates that the ciphered data is ready in REG_OUT, and manages the 

forwarding of the encrypted block to the memory controller – pe-ice_ctrl. Data to write in the 

off-chip memory are sent over the mwdata bus. 
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Figure 5-5  PE-ICE design principle on an AMBA-AHB bus 
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(2) Read operations: The CPU transmits over the AMBA-AHB bus the control signals and 

the corresponding address, respectively on ahb_ctrl and haddr. If PE-ICE-128 is free – pe-

ice_ready - SEQ_MASTER collects this information and translates the address to obtain the 

off-chip memory address of the requested data: pe-ice_addr. It forwards the read request to 

the memory controller via pe-ice_addr and pe-ice_ctrl. It waits for the memory controller’s 

positive response – mctrl_ready – and stores the data coming from mrdata in REG_OUT. 

When an AES block is ready in this register, it launches the AES_ENGINE for decryption. At 

the same time, SEQ_SLAVE also translates the address and sends it to IC (Integrity 

Checking). If the requested data is RW data, this address also serves to retrieve the random 

value needed to form the tag in RVM (Random Value Memory). IC generates the tag 

reference from pe-ice_addr and from this random value. When decryption is done, the 

payload part of the plaintext block is stored in REG_IN and the tag part is transmitted to IC. 

IC immediately compares it to the tag reference and depending on the comparison results 

allows or not SEQ_SLAVE to forward the data in REG_IN to the CPU on hrdata. 

 

(3) Read Modify Write operations: These operations occur for PE-ICE-128 when the size 

of the data to write does not match the payload contained in one or two chunks. As presented 

in chapter 2, on such operations it is first required to load the matching encrypted block(s) and 

to decrypt it – and authenticate it – before starting the write operation. When PE-ICE-128 is 

configured for 256-bit cache block, such operations are 8 to 32-bit write and 128-bit write. 

For 8 to 32-bit write only the matching chunk is loaded from the off-chip memory whereas for 

128-bit write two consecutive chunks are fetched. Therefore, as for normal write operations 

SEQ_SLAVE stores data from the CPU in REG_IN but at the same time SEQ_MASTER 

manages the read and the decryption of the matching chunks. The data to keep in the 

decrypted block(s) are stored in REG_IN after being checked by IC. SEQ_SLAVE starts re-

encryption only after re-generation of a new tag. Finally, SEQ_MASTER writes the encrypted 

chunk(s) in the off-chip memory. 

 

Two versions of PE-ICE-128 have been designed by considering the principles exposed 

above. The first one optimizes latencies introduced by PE-ICE-128 by considering all features 

of the AMBA-AHB bus described in the specification [76]. Its purpose is to evaluate PE-ICE 

in terms of performance. The second version is dedicated to an implementation on the LEON2 

processor [77] and as a consequence takes into account the specific implementation of the 
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AMBA-AHB bus on this processor. For instance, only single transfers and undefined bursts 

are available; hence, it is not possible at the beginning of a CPU request to differentiate a 4-

word write from an 8-word write or a 4-word read from an 8-word read. Thus this version of 

PE-ICE-128 implements all kinds of operations described above but always serializes 

SEQ_SLAVE and SEQ_MASTER jobs to handle this LEON specificity. On all read 

operations, a whole PE-ICE-128 block is loaded – three AES blocks – and on all write 

operations the data is first stored in REG_IN and depending on the size of the write, a read is 

requested or not by SEQ_MASTER to the memory controller. 

Both versions of PE-ICE-128 do not include a random number generator. We use fixed 

numbers instead of random values. However, such a component does not influence 

performance since the random values could be generated in advance. 

 

5-2.3. Latencies 

In this section, we present the additional latencies introduced on off-chip memory 

accesses by the different PE-ICE configurations and by AES encryption/decryption. The 

underlying CPU considered in this study is the ARM9E for which the optimum frequency in 

the 0.18µm CMOS technology is around 200MHz with an AHB bus running at 100MHz [78]. 

 

5-2.3.1. PE-ICE-128 Latencies 

Our implementation of the AES algorithm is non-pipelined and takes 11 cycles to encrypt 

one 128-bit block of plaintext in ECB (1 cycle per round plus 1 cycle to bufferise the result). 

The AES implementation in the 0.18µm CMOS technology presented in [23] shows that such 

a latency is valid until 330 MHz. Hence, in the following we consider two realistic cases for 

the ratio RE/B (= 
AHB

AES

F
F ) between the AES frequency (FAES) and the bus frequency (FAHB): RE/B 

= 1 and RE/B = 2. When RE/B = 2 the intrinsic latency of the AES encryption seen on the AHB 

bus is of 6 cycles.  

Table 5-3 summarizes the additional latencies seen on the AHB bus and introduced by 

AES encryption in ECB mode – referred to in the following as the AES-ECB engine – and by 

PE-ICE-128 on all operations requested by an ARM9E processor core during run-time. Figure 

5-6 and Figure 5-7 depict how those latencies occur respectively on read and write operations; 
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for the sake of clarity we do not show RMW operations (8 to 32-bit write and 128-bit write 

for PE-ICE-128). The latencies seen on the AHB when no security engines are implemented 

are referred to as the Base latencies25. 

 

Table 5-3  Additional latencies introduced by PE-ICE-128 and by the AES-ECB engine 
on an AMBA-AHB bus for the operations requested by an ARM9E core 

 

The latencies on all read operations and on 256-bit write operations of RW data have been 

verified by RTL simulation of the optimized version of PE-ICE-128 with the Modelsim 

simulator [79]. An 8 to 32-bit write generates a RMW operation on an AES block for the 

AES-ECB engine as for PE-ICE-128. A 128-bit write also generates a RMW operation but 

only for PE-ICE-128 and this is due to the fact that such a payload is contained in two chunks 

(Figure 5-1). The additional latencies of those two RMW operations are deduced from 

previous simulation results and from the read memory latencies we have considered: 9 cycles 

for the off-chip read latency. The choice of such latency is motivated in section 5-3 where 

run-time performance evaluation is detailed. 

Concerning the AES-ECB encryption (respectively decryption), the additional latencies 

seen on the AHB bus (Figure 5-6 and 5-7), are due to the intrinsic latency of the AES plus the 

time to collect one 128-bit plaintext (respectively ciphertext) block on the 32-bit bus. 

Concerning PE-ICE-128, on write operations the overhead compared to the AES-ECB engine 

comes from the tag encryption and storage; a plaintext block is collected in less than 4 bus 

cycles (Figure 5-6), increasing the throughput of PE-ICE-128 and generating bus resource 

                                                 
25 To obtain the additional latencies introduced by the security engines from Figure 5-6 and 5-7: for each 
operation subtract the Base latency from the ones induced by the security engines. Moreover, on write operations 
the tag does not appear on Figure 5-6 since it is collected at the same time as the data. 

AES-ECB  PE-ICE-128 
Latencies  

(AHB cycles) 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB Operations 

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 
8 to 32-bit Write 38 28 38 28 0% 0% 
8 to 32-bit Read 15 10 15 10 0% 0% 

128-bit Write 15 10 39 29 160% 190% 
128-bit Read 15 10 16 11 6.5% 10% 
256-bit Write 15 10 18 13 20% 30% 
256-bit Read 15 10 17 12 13.5% 20% 
512-bit Write 15 10 22 17 46.5% 70% 
512-bit Read 15 10 21 16 40% 60% 



Chapter 5.  PE-ICE Implementation 

 

 140

conflicts. On read operations (Figure 5-7), the inverse applies; the overhead is due to the tag 

which increases the amount of data to load and to decrypt, pollutes the throughput of PE-ICE-

128 and creates wait cycles. 32-bit write operation does not generate additional latencies for 

PE-ICE-128 compared to the AES-ECB engine because this RMW is performed for both on a 

128-bit block.   

However, the PE-ICE integrity checking process is almost negligible compared to AES-

ECB encryption alone (comprised between 0 and 47% for RE/B = 1) except for the 4-word 

write RMW operation (153% for RE/B = 1). Doubling the ratio RE/B decreases the latencies of 

the security mechanisms (of 29% on average for PE-ICE-128 and of 32% for AES-ECB) and 

slightly increases the integrity checking cost of PE-ICE-128. 

 

5-2.3.2. PE-ICE-160 Latencies 

The difference between all Rijndael versions lies in the number of rounds required to 

output a ciphertext block (or a plaintext block). This number of rounds Nr is defined in [15] 

and is equal to: 6);max( += NbNkNr  where Nk is the number of 32-bit words in the key and 

Nb the number of 32-bit words in the block processed. For Rijn-160, Nr is equal to 11. Hence 

the intrinsic latency of Rijn-160 seen on the AHB bus is of 12 cycles and of 6 cycles 

respectively for RE/B = 1 and RE/B = 2. Table 5-4 sums up the additional latencies introduced 

by PE-ICE-160 on the AHB bus (expressed in bus cycles). 

 

Table 5-4  Additional latencies introduced by PE-ICE-160 and by the AES-ECB engine 
on an AMBA-AHB bus for the operations requested by an ARM9E core 

 

  

AES-ECB PE-ICE-160 
Latencies  

(AHB cycles) 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB Operations 

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 
8 to 32-bit Write 38 28 42 30 10.5% 7% 
8 to 32-bit Read 15 10 17 11 13.5% 10% 

4-word Write 15 10 17 11 13.5% 10% 
4-word Read 15 10 17 11 13.5% 10% 
8-word Write 15 10 18 12 20% 20% 
8-word Read 15 10 18 12 20% 20% 

16-word Write 15 10 20 14 33.5% 40% 
16-word Read 15 10 20 14 33.5% 40% 
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Figure 5-6  Latencies introduced on the AHB bus by the different PE-ICE 

configurations and by the AES-ECB engine on read operations 
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Figure 5-7  Latencies introduced on the AHB bus by the different PE-ICE 

configurations and by the AES-ECB engine on write operations 
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Compared to the AES-ECB engine the overhead of PE-ICE-160 is partially due to the 

increase of the intrinsic latency of the underlying block cipher. Moreover, on read operations 

(Figure 5-6) the tag generates wait cycles by polluting the PE-ICE-160 throughput while on 

write operations the fact that a plaintext block is collected in 4 cycles – instead of 5 for a 160-

bit block - provokes bus resource conflicts (Figure 5-7). 

The cost of the PE-ICE-160 integrity checking process is less important than the one of 

PE-ICE-128. On average it is of 19.5% for RE/B = 1 and of 22% for RE/B = 2 whereas for PE-

ICE-128 it is respectively of 34.5% and 46%. This improvement comes from the 4-word write 

operation which does not generate a RMW for PE-ICE-160 since such a payload is contained 

in one chunk. Hence, like AES-ECB encryption, the 128-bit payload can be directly ciphered 

and the matching chunk overwritten in memory. A second reason for this latency reduction is 

the value of the ratio Payload / Tag which is higher for PE-ICE-160 than for PE-ICE-128 on 

most of the operations, meaning that the amount of meta-data (tag) to process is lower on 

average for the same amount of payload. 

 

5-2.3.3. PE-ICE-192 Latencies 

For Rijn-192, Nr is equal to 12. Hence the intrinsic latency of Rijn-160 seen on the AHB 

bus is of 13 cycles and of 7 cycles respectively for RE/B = 1 and RE/B = 2. 

Table 5-5 sums up the additional latencies introduced by PE-ICE-160 on the AHB bus 

(expressed in bus cycles). 

 

Table 5-5  Additional latencies introduced by PE-ICE-192 and by the AES-ECB engine 
on an AMBA-AHB bus for the operations requested by an ARM9E core 

 

AES-ECB PE-ICE-192 
Latencies  

(AHB cycles) 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB Operations 

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 
8 to 32-bit Write 38 28 46 34 21% 21,5% 
8 to 32-bit Read 15 10 19 13 26.5% 30% 

4-word Write 15 10 19 13 26.5% 30% 
4-word Read 15 10 19 13 26.5% 30% 
8-word Write 15 10 21 15 40% 50% 
8-word Read 15 10 21 15 40% 50% 

16-word Write 15 10 25 19 66.5% 90% 
16-word Read 15 10 25 19 66.5% 90% 
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Similarly to PE-ICE-160, the overhead of PE-ICE-192 is due to the increase of the 

intrinsic latency of the block cipher and to the tag which generates bus resource conflicts on 

write operations (Figure 5-7) and wait cycles on read operations (Figure 5-6). 

Despite the fact that the 4-word write operation does not generate a RMW for PE-ICE-

192, the cost of the PE-ICE-192 integrity checking process is slightly higher than the one of 

PE-ICE-128. On average it is of 39.5% for RE/B = 1 and of 49% for RE/B = 2 whereas for PE-

ICE-128 it is respectively of 34.5% and 46%.  

 

5-2.4. Silicon Area Usage 

The hardware implementation of the same round is required for all versions of Rijndael. 

Therefore, the hardware resources needed for all PE-ICE configurations and for the AES-ECB 

engine to obtain the latencies listed above can be estimated in numbers of AES cores, NAES, 

implementing such a round.  

The processor can read or write a 32-bit data per AHB bus cycle. Thus, considering that a 

plaintext (or ciphertext) block is collected in 4 bus cycles and that the AES intrinsic latency 

seen on the AHB bus for RE/B = 1 (11 cycles) and for RE/B = 2 (6 cycles), the AES-ECB 

engine must implement respectively three and two AES cores to reach the optimum 

throughput of 32-bit per cycle.  

For the PE-ICE configurations the same reasoning can not be followed since the tag 

pollution makes their throughput per cycle different on read and write operations. For instance 

for PE-ICE-160, on write operations, 4 cycles are required to collect a plaintext block on the 

AHB bus and 5 cycles to output a ciphertext block to the memory controller while on read 

operations, 5 cycles are required to collect a ciphered text block and 4 to output a plaintext 

block. The maximum throughput theoretically required on write operations is higher than on 

read operations. However, the available bandwidth between PE-ICE and the memory 

controller limits the throughput on write operations: on read and on write operations a 

ciphered text block is processed only every 4 cycles for PE-ICE-128. Hence, considering the 

intrinsic latencies of the AES when RE/B = 1 and when RE/B = 2, to reach the optimum 

throughput NAES must be equal respectively to three and two, as for the AES-ECB engine. By 

reasoning similarly for PE-ICE-160 and PE-ICE-192, we obtain the same values for NAES.  

For an atomic bus transfer the same key is shared by all implemented AES cores, hence 

only one key expander core is needed for all PE-ICE configurations and for the AES-ECB 
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engine. By considering the figures provided by Ocean Logic [80] an AES 

encryption/decryption core with 11 cycles of latency takes 24 Kgates and the corresponding 

key expander core 32 Kgates in the 0.18µ technology. This means that, like the AES-ECB 

engine, the hardware cost of all PE-ICE configurations can be approximated to 104 Kgates 

and 80 Kgates respectively for RE/B = 1 and for RE/B = 2.  

 

5-2.5. Latency Optimization 

 
Figure 5-8  Architecture using 64-bit processor memory bus 

 
In previous works [12, 13, 37, 41, 46, 47] the off-chip memory bandwidth is increased by 

using a 64-bit processor-memory bus. Hence to achieve the same objective, we propose an 

alternative implementation where PE-ICE is interfaced with the memory controller with a 64-

bit AHB bus (AHB-64) and with the CPU with an AHB 32-bit bus (AHB-32 - Figure 5-8).  

Therefore, the time to collect a ciphertext block on read operations is drastically reduced, 

allowing for PE-ICE configurations to hide the wait cycles introduced with a 32-bit bus. On 

write operations the former bus resource conflicts are removed since the bus can be released 

faster after encryption. Thus the overhead compared to AES encryption is null for PE-ICE-

128 except for the additional RMW it generates (128-bit write); for PE-ICE-160 and PE-ICE-

192 it is only due to the increase of the intrinsic latency of the underlying block cipher. 

By considering the assumption of a 64-bit bus between PE-ICE and the memory 

controller, the latencies seen on the AHB bus are given in Table 5-6a for the AES-ECB 

engine and in Table 5-6b for PE-ICE-160 and PE-ICE-192.  
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Table 5-6  Additional latencies introduced by the PE-ICE configurations and by the 
AES-ECB engine on an AMBA-AHB bus for the operations requested by an ARM9E 

core with a bus width of 64-bit 

(a) AES-ECB and PE-ICE-128 

 

(b) PE-ICE-160 and PE-ICE-192 

 

Concerning the AES-ECB engine the number of AES cores to implement remains 

unchanged when compared to the architecture considered in section 5-2.4 since 4 cycles are 

still required to collect one plaintext block on write operations and to output a deciphered text 

on read operations.  

For PE-ICE-128, the limiting factor is no more the bandwidth between it and the memory 

controller but the AHB-32 bandwidth. Thus we must consider the higher throughput required 

which is the one on write operations. Hence, considering the AES intrinsic latencies and that 

on write operations a plaintext block is collected on average all 2.66 cycles (8 cycles to collect 

AES-ECB PE-ICE-128 
Latencies  

(AHB cycles) 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB Operations 

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 
8 to 32-bit Write 35 25 35 25 0% 0% 
8 to 32-bit Read 13 8 13 8 0% 0% 

4-word Write 13 8 34 24 161% 200% 
4-word Read 13 8 13 8 0% 0% 
8-word Write 13 8 13 8 0% 0% 
8-word Read 13 8 13 8 0% 0% 

16-word Write 13 8 13 8 0% 0% 
16-word Read 13 8 13 8 0% 0% 

PE-ICE-160 PE-ICE-192 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB 
Latencies  

(AHB cycles) 
Overhead  

vs. AES-ECB Operations 

RE/B=1 RE/B=2 RE/B=1 RE/B=2 RE/B=1 RE/B=2 RE/B=1 RE/B=2 
8 to 32-bit 

Write 39 27 11,5% 8% 41 29 17% 16% 

8 to 32-bit 
Read 15 9 15,5% 12,5% 16 10 23% 25% 

4-word Write 15 9 15,5% 12,5% 16 10 23% 25% 
4-word Read 15 9 15,5% 12,5% 16 10 23% 25% 
8-word Write 15 9 15,5% 12,5% 16 10 23% 25% 
8-word Read 15 9 15,5% 12,5% 16 10 23% 25% 

16-word Write 15 9 15,5% 12,5% 16 10 23% 25% 
16-word Read 15 9 15,5% 12,5% 16 10 23% 25% 
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the 256-bit line-payload contained in three chunks on the 32-bit AHB bus), it results26 that 

five AES cores must be implemented when RE/B = 1 and three when RE/B = 2. For PE-ICE-

160 and PE-ICE-192 a plaintext block must be collected in 4 cycles. Therefore, by following 

the same reasoning the number NAES of AES cores to implement to obtain the latencies listed 

in Table 5-6 is given in Table 5-7. 

Once again, PE-ICE-160 offers the best trade-off since the hardware resources required in 

this implementation are the same as an AES-ECB encryption engine. 

 

Table 5-7  Number of AES cores to implement for PE-ICE and the AES-ECB engine 
when the off-chip memory bus width is of 64-bit 

NAES 
 

RE/B = 1 RE/B = 2

AES-ECB 3 2 

PE-ICE-128 5 3 

PE-ICE-160 3 2 

PE-ICE-192 4 2 
 

Another possible option to improve the latency is to run the hardware encryption core at 

its maximum frequency (330 MHz). 

 

5-3. Performance Evaluation 

5-3.1. SoC Designer Tool Set 

In order to evaluate the performance during run-time of the PE-ICE configurations 

exposed above the SoC designer tool set [81] is used.  

The SoC Designer Developer Suite provided by ARM consists in two separate 

applications: 

• SoCDesigner is used to integrate custom components modeled in SystemC (CABA 

– Cycle Accurate Bit Accurate) into complex SoC platforms.  

                                                 
26 The reasoning on read operations with the objectives of reaching the optimum throughput of 32-bit per cycle 
logically leads to the same result. 
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• SoCExplorer is a cycle accurate simulator allowing to run benchmarks and to 

profile the platforms defined with SoCDesigner. 

 

5-3.2. Simulation Platform Modeling 

The SoC platform designed to evaluate the performance overhead implied by encryption 

and by PE-ICE is depicted in Figure 5-9. The libraries required to model the processor core 

(ARM926EJ-S), the AHB-bus and the external memory (PMEM for RO data and DMEM for 

RW data) have been provided by ARM with the SoC Designer tool set.  

The component called Latency_comp is the modeling in SystemC of the off-chip memory 

access latencies. It allows to set the number of wait cycles seen on the AHB bus for each kind 

of operations requested by the CPU. 

In the following we refer to the Base platform to denote the SoC platform which does not 

include hardware mechanisms for data security (encryption and integrity checking engine). 

 

Core (ARM926EJ-S) AHB_BUS 

LATENCY_COMP 

PMEM 

ARM System 

DMEM 

 
Figure 5-9  Generic architecture of the simulation platforms  

 

To define the Base latencies we use the figures provided in the datasheet of an AHB 

compliant memory controller, the PL172[82]. We choose the lower read (9 cycles) and write 

(1 cycle) latencies assuming the following parameters for the underlying SDRAM memory: 

- Precharge latency = 2 

- Activate latency = 2 

- CAS latency = 2. 
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 In this way, ideal memory accesses are defined and PE-ICE is pushed in the worst 

simulation case. One simulation platform per security engine has been designed. 

Latency_comp parameters for each platform are set by adding the latencies given in Tables 5-

3, 5-4 and 5-5 to the Base ones.  

  

5-3.3. Simulation Framework 

In [83, 84, 85] the proposed evaluation considers that the CPU, the AHB bus and the 

hardware encryption core run at the same frequencies i.e. FCPU = FAHB = FAES. In this thesis 

another realistic case for embedded systems is explored where FCPU = 2*FAHB = FAES (RE/B = 

2) meaning that the latencies seen by the CPU are twice as big as the ones seen on the AHB 

bus. 

The architectural parameters defining the simulation frameworks are summarized in Table 

5-8. 

Table 5-8  Architectural parameters of the simulation platforms 

Processor Core ARM926EJ-S 
Processor-memory width 32-bit 

AHB Clock ratio (FCPU / FAHB) 2 
Cache line size 256-bit 
Cache policy Write-back 

RE/B (FAES / FAHB) 2 
Base off-chip Read latency (in AHB bus cycles) 9 
Base off-chip Write latency (in AHB bus cycles) 1 

 

5-3.4. Results 

Four EEMBC (Embedded Microprocessor Benchmarking Consortium [86]) benchmarks 

(MP3 player, Huffman, CJPEG, DJPEG) and four software applications designed for 

embedded systems at STMicroelectronics (ADPCM, FingerPrint, DES, MP2Audio) were 

used in this evaluation. The simulation results for the Base platform serve as reference and are 

shown in IPC (Instruction Per Cycles) in Figure 5-10 for two different sizes of data cache and 

instruction cache (4KB and 128KB). We observed that the performance slowdown of the 

studied hardware mechanisms for data security is mainly relative to the data cache miss rate; 

Figure 5-11 gives this cache miss rate for each benchmark and for both sizes of the data 

cache. 
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Figure 5-10 Simulation results for the Base platform 
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Figure 5-11 Data cache miss rate for the set of benchmarks used for the performance 

evaluation and for two different data cache sizes (4KB and 128KB) 
 

Note that considering the low Base latencies and the fact that all applications are entirely 

protected, the worst case results are presented in this section. Indeed, all data processed during 

software execution do not require to be necessarily encrypted and integrity checked. 

In order to illustrate the impact of the studied hardware mechanisms for data security we 

show in Figure 5-12 the simulation results of the platforms emulating the AES engine, PE-

ICE-128, PE-ICE-160 and PE-ICE-192, in IPC normalized to the Base platform performance. 

The AES-ECB engine performance clearly highlights that the overhead is mainly due to 



Chapter 5.  PE-ICE Implementation 

 

 151

encryption; it is 50% in the worst case (CJPEG – 4KB) and, 31.5% and of 14.3% (Table 5-9) 

on average respectively for 4KB and 128KB data cache. This quite important performance 

cost can be drastically reduced by applying the improvements proposed in section 5-2.5 and 

by using the encryption algorithm at its maximum frequency. Moreover, we did not explore 

the exploitation of the waiting time in the write buffer and of the Base write latency. The 

latencies introduced by the different security engines could be partially hidden on write 

operations by starting the encryption before storing data in the write buffer or at least at the 

same time as the memory access request. 

 

Increasing the data cache size decreases the overhead of the security engines by reducing 

the number of off-chip memory accesses (Table 5-9), except for the DES benchmark for 

which the data cache miss rate remains almost the same (Figure 5-12).  
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Figure 5-12 Run-time overhead of AES encryption and of the PE-ICE configurations for 

two data cache sizes (4KB and 128KB) 
 

Table 5-9  Average performance slowdown implied by the AES-ECB engine  
and by PE-ICE configurations 

 4KB 128KB 

AES-ECB 31,5% 14,3% 
PE-ICE-128 32,7% 15,2% 
PE-ICE-160 33,7% 15,7% 
PE-ICE-192 37,6% 18,1% 
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Nevertheless the interesting point is the low overhead implied by PE-ICE compared to the 

AES engine. We evaluate the performance slowdown of the integrity checking mechanisms 

proposed by PE-ICE when compared to AES encryption alone by normalizing the IPCs of the 

PE-ICE platforms to the AES-ECB engine performance (Figure 5-13). The best results are 

obtained with PE-ICE-128 since on average (Table 5-10) the degradation is 1.9% and 1.1% 

respectively for a data cache size of 4KB and of 128KB and in the worst case it is 4.1% (DES 

– 4KB) and. However PE-ICE-160 results are close since on average it implies a performance 

slowdown of 3.3% for a data cache of 4KB and of only 1.7% for a data cache of 128KB. 

Moreover for benchmarks requesting several 128-bit write operations PE-ICE-160 improves 

the performance of PE-ICE-128 (DES – CJPEG and DJPEG for 128KB data cache).  

 

 
Figure 5-13 Run-time overhead of the integrity checking mechanism of PE-ICE 

configurations compared to AES-ECB encryption alone for two data cache sizes (4KB 
and 128KB) 

 
Table 5-10 Average performance slowdown implied by the integrity checking 

mechanism of PE-ICE compared to AES-ECB encryption alone 

 4KB 128KB 

PE-ICE-128 1,9% 1,1% 
PE-ICE-160 3,3% 1,7% 
PE-ICE-192 9,9% 4,7% 
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In summary, PE-ICE-128 has the lowest overhead in terms of run-time performance when 

compared to AES encryption while PE-ICE-192 offers the highest strength regarding the PE-

ICE security limitations. However, considering all evaluation aspects - security limitations, 

off-chip memory overhead, additional latencies, run-time performance and hardware cost - 

PE-ICE-160 is the configuration which offers the best trade-off. Therefore, in section 5-5 the 

comparison with a generic composition scheme is done with PE-ICE-160. 

 

5-4. Implementation Use Case 

All applications stored off-chip do not necessarily require to be protected. Thus, PE-ICE 

must determine at run-time if it has to handle the current memory access and which 

encryption key to use. Several solutions are possible, but they are deeply dependent on the 

underlying CPU and OS. Here we propose a use case where the design of the CPU core is not 

legally modifiable or at a huge cost (e.g. ARM); nevertheless it can be surely optimized when 

the target platform is fully specified and easily modifiable. 

 

5-4.1. Protected Memory Region and Key Management 

For clarity, in the following, we consider a simplified case where, the OS defines only two 

contiguous physical memory sections at application load-time and sets the following access 

rights in the page table (MMU) for the application (Figure 5-15): 

• RO region: which contains the code and the read only data 

• RW region: which contains the read write data 

 

A straightforward solution for PE-ICE to identify the protected memory regions (PMR) is 

to have one table per kind of memory section, Table_RO and Table_RW (Figure 5-14). Each 

table entry corresponds to a given application and contains two parameters: As and Ae, the 

start and the end physical addresses of each memory section seen by the CPU. Such table 

entries are maintained by the OS that updates As and Ae, each time a new application is 

loaded. Thus, when a memory request is issued, PE-ICE checks if the address falls into [As; 

Ae] for one of the tables and, depending on the result, handles the corresponding transfer or 

lets it transit normally.  
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The same tables can be used to define the key to enroll in the encryption. As previously 

shown, for all PE-ICE configurations the same key is used for all RW data stored in the off-

chip memory and one key per application is required for RO data. Thus for RW data a register 

memorizes KRW and for RO data, each KRO is simply stored as additional information in each 

Table-RO entry (Figure 5-13). Thus, depending on the address processed, PE-ICE selects the 

correct KRO in Table-RO or KRW in the RW key register. 

 

 
Figure 5-14 Tables used by PE-ICE to identify the Protected Memory Regions and to 

select the correct encryption key 
 

5-4.2. Physical Memory Management 

As shown in Chapter 4, PE-ICE shifts the physical addressing and handles the physical 

address computation. However, the system must be aware of the additional memory 

consumption to avoid memory conflict. 

Thus, the OS acts as usual at load-time i.e. it allocates an address space and sets the 

relevant access permission bits in the Memory Management Unit (MMU) for each section, 

RW and RO. However, when an application requires PE-ICE protection, the OS also 

computes, for each memory section defined, the size of the additional memory required for 

tags by multiplying ROF with the size of the corresponding section and reserves in the MMU a 

consecutive dedicated address space AT (Additional memory for Tags) of such a size (Figure 

5-15); nevertheless, access rights in the page table of the application are set to NO_ACCESS 

for this memory section. This way, any access to this region will fail (it will be trapped by the 
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MMU), and will not be passed on to PE-ICE or to the memory controller.  Moreover, the OS 

is aware of the use of this section and will not map AT to any other application. 

 

The solutions proposed above are transparent in terms of performance at run-time since 

they are done at load-time or can be parallelized on read operations with the off-chip memory 

access latency and on write operations with the bus cycles required to collect a plaintext 

block. 

 
Figure 5-15 Physical memory management for PE-ICE implementation 

 

5-5. Comparison With a Generic Composition Scheme  

In this section PE-ICE is compared to a generic composition scheme referred to as GC. 

GC is the combination of AES-ECB encryption and of a CBC-MAC algorithm. The secure 

implementation of this engine in our application context is first defined and evaluated in a 

similar implementation context as PE-ICE (e.g. ARM9E and AHB bus). Then a comparison 

with PE-ICE-160 is presented to highlight the respective advantages and shortcomings of the 

described engines. 
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5-5.1. The Generic Composition Scheme: AES and CBC-MAC 

5-5.1.1. Secure Implementation of GC 

The tag required for the integrity checking process – described in chapter 2, section 2-

2.2.3 - is computed over a chunk with a CBC-MAC algorithm. The underlying block cipher 

Ek for our CBC-MAC implementation is AES. The Encrypt-then-MAC construction is chosen 

because it is the most secured conventional method to pair an authenticated mode and an 

encryption mode [50]; therefore the tag is computed over the ciphered chunk composed of m 

AES blocks (C1, C2, …, Cm) by using a different key than the one required for the encryption 

[50]. The direct implementation of the CBC-MAC presented in chapter 1 (section 1-4.4.2) is 

not secure since the generated tag depends only on the data and therefore is not resistant to 

splicing and replay attacks. That is why a 128-bit vector N is additionally enrolled in the 

CBC-MAC computation. N is composed of the 32-bit chunk address concatenated with an r-

bit vector RV and padded with zeroes to be 128-bit. The address serves to thwart splicing 

attacks by making N different for each ciphered chunk stored off-chip. For RW data, RV is the 

countermeasure against replay attacks, it is an r-bit random value generated on-chip, with its 

reference RV’ stored also on-chip. Thus it can be retrieved for integrity checking on read 

operations while making it secret and tamper-proof from an adversary point of view. For RO 

data RV is padded with zeroes. 

 

 
Figure 5-16 Insecure implementation of the CBC-MAC algorithm 

 
The way N is involved in the tag computation must be carefully defined. An intuitive 

solution would be to simply xor N with C1 (Figure 5-16); however such an implementation 

leads to a simple splicing attack. Let X be the result of the xor operation between N and C1. 
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Now suppose that an adversary wants to relocate the block C2 27 of a chunk (C1, C2, …, Cm) of 

RO data previously recorded in memory with its tag T. This attacker knows N for RO data 

since it is only composed of the address and of padding. Hence, he can tamper with C1 in 

order to obtain the expected X allowing to produce the correct T’ corresponding to T.  Such an 

attack will not be detected by the integrity checking engine since T will match T’. 

In order to avoid such an attack, the 128-bit vector xored with C1 must be unpredictable 

from an adversary point of view; therefore, N is encrypted and enrolled in the first block 

cipher invocation of the CBC-MAC. In this way the encryption of N is transparent since it can 

be parallelized with the memory access latency on read operations and with encryption on 

write operations28. The secure CBC-MAC implementation is described in Figure 5-17.  

 

 
Figure 5-17 Secure implementation of the CBC-MAC algorithm 

 

5-5.1.2. Optimized Definition of the Generic Composition Scheme 

GC Encryption engine: AES encryption is done in ECB mode in order to perform a fair 

comparison of the integrity checking process overhead between PE-ICE and GC. We consider 

such an implementation secure even if the same block encrypted twice led to the same 

ciphertext block, which is not the case for PE-ICE. To overcome this possible security hole, 

CBC mode must be used with an IV containing a counter or a random value as proposed in 

[12].  

GC MAC engine: In the literature the chunk size is defined by the cache line length. 

However, this choice for the CBC-MAC is inefficient for big cache block in terms of latency 

due to the inherent recursiveness of such a MAC algorithm. Thus, we will define a granularity 

                                                 
27 Or another block after C1 in the chunk. 
28 In [85] we enrolled N in the last block cipher invocation of the CBC-MAC computation. While secure this 
implementation is not optimized since the encryption of N directly impacts the memory access latency. 

C1

Ek

C2

Ek

Cm 

Ek 

Tag 

128 128 

128 

128 

128

128 
N

Ek

128 

128 



Chapter 5.  PE-ICE Implementation 

 

 158

of integrity checking allowing an affordable trade-off between latency and hardware 

resources. 

The number of hardware cores required for the CBC-MAC engine depends on two factors: 

the granularity of integrity checking (the chunk size) and the maximum length of the atomic 

transfers performed during run-time29. Indeed, in order to optimize the latencies introduced on 

off-chip memory access, the CBC-MAC engine must implement either the number of AES 

hardware cores required to reach the optimum throughput of 32-bit per cycle independently 

from the atomic transfer size or enough cores to be able to process in parallel all chunks 

contained in an atomic transfer.  

 

 
Figure 5-18 CBC-MAC implemented in the proposed  

generic composition scheme (GC) 
 

The ideal implementation would be to perform per-block integrity checking (chunk size = 

one ciphered block C) with a tag computed on two blocks, N and C. The intrinsic latency of 

such a CBC-MAC computation is of 21 cycles for RE/B = 1 and of 11 cycles for RE/B = 2. 

Thus, the CBC-MAC engine would require respectively six and three AES cores to reach the 

optimum throughput of 32-bit per cycle. In order to reduce this huge hardware cost we 

increase the size of the granularity of the integrity checking to 256-bit (chunk size) and we 

only consider atomic transfers limited to 512-bit; the resulting CBC-MAC engine requires 

two AES cores for both values of R E/B. This is the minimum number of core to be able, on 

RMW operations, to generate the new tag – for the chunk to write - and the tag reference – to 

check the chunk loaded to be modified.  

                                                 
29 This factor is usually defined by the cache line size. 

C1

Ek Ek Ek

Truncation

T 

128 

128

32 

C2N 
128128



Chapter 5.  PE-ICE Implementation 

 

 159

Finally, the tag is computed on M = (N, C1, C2) and is truncated to 32-bit to decrease the 

memory bandwidth pollution generated by its transmission on the bus and to optimize the off-

chip memory overhead. The CBC-MAC implementation in GC is depicted in Figure 5-18. 

 

5-5.1.3. Security Considerations 

In the following, the defined CBC-MAC implementation is evaluated regarding the three 

attacks exposed in the threat model (spoofing, splicing, replay) and led on a chunk. 

CBC-MAC is based on block cipher encryption; therefore its outputs are equiprobable 

from an adversary point of view. Concerning spoofing and splicing attacks, the chance to 

succeed for an attacker depends on the size of the tag and is equal to 1/232; hence we consider 

that the CBC-MAC scheme protects the whole addressing space against splicing. The strength 

of the countermeasure against replay depends on r: the chance for replay to succeed is equal 

to 1/2r. The latter probability is limited by the size of the tag, meaning that there is no sense in 

choosing r > 32. Table 5-11 sums up the security limitations offered by GC. 
 

Table 5-11 Security limitations offered by the CBC-MAC scheme 
implemented in GC regarding active attacks led on a chunk and 

evaluated in chance to succeed for an adversary 

Attack RO data RW data 

Spoofing attack 322
1  322

1  

Splicing attack 322
1  322

1  

Replay attack  N/A r2
1  

 

5-5.1.4. Memory Consumption 

The off-chip memory overhead of GC is of 12.5% since it requires to store 32-bit of tag 

for 256-bit of payload. The on-chip memory overhead depends on the size of RV and is 

defined by the ratio between r and the protected payload. For r = 8, this overhead is of 3.1%. 

 

5-5.1.5. Latencies  

In this section we consider an implementation of GC on the AHB bus to evaluate the 

latencies introduced on read and write operations. 
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On read operations the encryption of N can be parallelized with the memory access 

latency, hence the CBC-MAC latency seen on the AHB bus is only due to two consecutives 

AES encryptions and resulting in 21 cycles of latency for RE/B = 1 and 11 for RE/B = 2 with 4 

additional cycles to collect the first block. The integrity checking process is parallelizable 

with decryption process since they are both performed on the ciphertext, therefore the 

resulting latency for GC on read operations is of 25 cycles when RE/B = 1 and of 15 cycles 

when RE/B = 2. 

On write operations, the CBC-MAC has the same latency (21 and 11 cycles) since the 

enrollment of N is hidden by the AES encryption. However, the data encryption process and 

the tag computation latencies are only partially parallelized. Moreover, the CBC-MAC 

generates a RMW write on the tag for the 8 to 32-bit and 128-bit write operations; this means 

that the chunk and the corresponding tag are loaded and checked, to be recomputed by 

enrolling the new 128-bit value in the CBC-MAC computation.  Table 5-12 sums up the 

additional latencies introduced by GC on the AHB bus.  

On average the overhead of GC compared to AES encryption alone is of 77.1% for RE/B = 

1 and of 52% for RE/B = 2. 

 

Table 5-12 Additional latencies introduced by GC on an AMBA-AHB bus 
for the operations requested by an ARM9E core 

GC (AES + CBC-MAC) 
Latencies (AHBcycles) Overhead vs. AES Operations 
RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 

8 to 32-bit Write 58 38 +54% +36% 
8 to 32-bit Read 25 15 +66% +50% 

128-bit Write 32 20 +113% +100% 
128-bit Read 25 15 +66% +50% 
256-bit Write 29 14 +93% +40% 
256-bit Read 25 15 +66% +50% 
512-bit Write 29 14 +93% +40% 
512-bit Read 25 15 +66% +50% 

 

5-5.1.6. Hardware Cost 

On read operations the processes are parallelized; thus despite the fact that they are both 

based on the AES algorithm, the AES-ECB engine and the CBC-MAC scheme of GC cannot 

share hardware. 
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The AES-ECB encryption requires three AES encryption/decryption cores for RE/B = 1 

and two for RE/B = 2. As exposed in section 5-5.1.2 the proposed CBC-MAC uses two AES 

cores. However, only the encryption process is involved in the CBC-MAC computation, 

therefore the hardware cost can be optimized by using an AES core implementing the 

encryption process only. The silicon area consumed by such a core is estimated at 16 Kgates 

by Ocean Logic [80] in the 0.18µ technology. Moreover, the AES-ECB encryption and the 

CBC-MAC computation require separated key expansion cores since they enroll two different 

keys. The resulting hardware cost for GC is of 168 Kgates when RE/B = 1 and of 144 Kgates 

when RE/B = 2 in the 0.18µ technology. 

 

5-5.1.7. Run-Time Performance 

A simulation platform has been designed for GC by configuring the Latency_comp 

component with the latencies given in Table 5-12 for RE/B = 2 added to the Base ones. The 

simulation framework is the same as the one described in section 5-3. GC has also been 

evaluated for two data cache sizes: 4 KB and 128 KB. 
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Figure 5-19 Run-time overhead of GC, of the AES-ECB engine and of PE-ICE-160 for 
two data cache sizes (4KB and 128KB) 
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Similarly to PE-ICE configurations the overhead of GC compared to the Base 

performance is mainly due to the encryption as shown in Figure 5-19 and in Table 5-13. 

Nevertheless the additional performance slowdown of the integrity checking mechanisms of 

GC (CBC-MAC) is non negligible (Figure 5-20) when compared to the AES-ECB engine 

since it is of 18% in the worst case scenario (DJPEG – 4KB), and of 13.7% and 7.8% 

respectively in average for a data cache of 4 KB and of 128 KB (Table 5-14). 
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Figure 5-20 Run-time overhead of the integrity checking mechanism of GC  

– CBC-MAC – and of PE-ICE configurations when compared to AES-ECB encryption 
and for two data cache sizes (4KB and 128KB) 

 
 

Table 5-13 Average performance slowdown implied by the AES-ECB engine  
and by GC when compared to Base 

 4KB 128KB 

AES-ECB 31.5% 14.3% 
GC(AES-ECB +CBC-MAC) 40.6% 20.7% 

 

Table 5-14 Average performance slowdown implied by the integrity checking 
mechanism of GC - CBC-MAC - compared to AES-ECB encryption alone 

 4KB 128KB 

GC (CBC-MAC) 13.7% 7.8% 
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5-5.2. Comparison between GC and PE-ICE 

To compare GC and PE-ICE-160, we evaluate their respective cost to ensure data integrity 

in addition to data confidentiality. The AES-ECB engine is used as the reference cost to 

provide data confidentiality since PE-ICE-160 and GC implement both the ECB encryption 

mode. Table 5-14 shows the overhead implied by the integrity checking mechanisms in PE-

ICE-160 and in GC.  

PE-ICE-160 does not require additional silicon area to achieve the integrity checking 

process while GC implies an overhead of 68% and of 80% respectively for RE/B = 1 and for 

RE/B = 2. Moreover, this feature is always valid for PE-ICE-160 while for GC it is dependent 

of the cache line size which fixes the maximum size of the atomic transfer during run-time. 

 

Table 5-15 PE-ICE and GC comparison: evaluation of the cost of the integrity checking 
mechanisms of the two approaches when compared to the AES-ECB encryption 

 

In term of latencies the overhead of GC reaches up to 77% on average while for PE-ICE-

160 it remains always under 22% on average. The additional performance slowdown when 

compared to the AES-ECB encryption is roughly four times lower for PE-ICE-160 than for 

GC. Note that all PE-ICE configurations always outperform GC during run-time (Figure 5-

17). 

Concerning security, PE-ICE-160 has the same security limitations as GC regarding the 

defined active attacks when r = 32. Moreover, PE-ICE-160 increases the robustness of the 

ECB mode by introducing a random value – for RW data – or a nonce – for RO data. Hence 

for RO data a same plaintext block encrypted twice never produces the same ciphertext block 

GC (AES-ECB + CBC-MAC) PE-ICE-160 
 

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 
Hardware cost  

(estimation in 0,18µ) 
168 Kgates 

 +62% 
144 Kgates  

 +80% 
104 Kgates 

~0% 
80 Kgates 

~0% 

Latencies +77.1% +52% +19.5% +22% 

DC = 4KB - +13.7% - +3.3% Run-time 
slowdown DC = 128KB - +7.8% - +1.7% 

Off-chip memory 
consumption 

+12.5% +25% 

On-chip memory 
consumption 256

r  
128

r  
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while for RW data there is a little probability that the same plaintext block ciphered twice 

leads to the same ciphertext block. This is not ensured by GC. 

The main advantage of GC concerns the memory consumption since for the same value 

of r, GC implies an on-chip and off-chip memory overhead twice smaller than PE-ICE-160. 

Indeed, to maintain a strong security level with a fine granularity of integrity checking (per-

block) PE-ICE requires having a dedicated tag to each processed ciphered block.  

 

5-6. Conclusion 

In this chapter we have proposed and evaluated different configurations of PE-ICE and we 

have highlighted that PE-ICE using the Rijndael algorithms processing 160-bit blocks offers 

the best trade-off between performance, security and off-chip memory consumption. 

Moreover, we have showed that PE-ICE improves the robustness of AES-ECB encryption and 

adds the integrity checking capability to block encryption without silicon area overhead and at 

almost free cost in terms of run-time performance. Finally the comparison with a generic 

composition scheme has demonstrated that the implementation of PE-ICE instead of a MAC 

algorithm in addition to block encryption is more efficient in terms of hardware cost and of 

latencies.  

PE-ICE succeeds in efficiently thwarting spoofing and splicing attacks. However, as for 

MAC algorithms, the countermeasure against replay attacks implied an unaffordable on-chip 

memory overhead to store the set of reference random value when r is long and when a large 

amount of memory must be immune against replay. The next chapter proposes a scheme to 

overcome this issue and to reduce this on-chip memory cost to the storage of an r-bit value. 
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Chapter 6: PRV-Tree - Secure Off-chip 

Storage of Reference Random Values  
 

 

 

 

 

 
The principle proposed by PE-ICE to thwart replay attacks is to insert randomness in 

plaintext blocks. However, as previously exposed the set of reference random value (RV’) 

used for the tag matching process must be secret and tamper-proof from adversaries’ point of 

view. The solution proposed in previous chapters is to store all RV’ on-chip. While secure, 

this solution can be expensive in terms of on-chip memory consumption when a large amount 

of off-chip memory must be replay immune and when a high security level is required (big 

value for r). Hence, we present a secure way, the PRV-Tree (PE-ICE Protected Reference 

random Value Tree) scheme, to store this set of reference random value off-chip by mounting 

a tree of RV’ and by protecting it with PE-ICE.  

Note that in this chapter we only consider PE-ICE configurations for which a PE-ICE line 

is equivalent to a chunk i.e. PE-ICE-160 and PE-ICE-192. Thus, only the term chunk is used. 

Moreover the term payload implicitly denotes PL as a line-payload. 

 This chapter is organized as follows. Section 6-1 introduces the notion of m-ary balanced 

tree. Section 6-2 shows how to securely store the set of reference random values off-chip. 

Section 6-3 describes the tree of reference random values RV-Tree and the PRV-Tree scheme 

allowing to store securely RV-Tree off-chip and to reduce the on-chip memory overhead to a 

single r-bit value. Section 6-4 proposes a comparison between PRV-Tree using PE-ICE-160 
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and hash trees. Finally, section 6-5 updates the use case presented in Chapter 4 to incorporate 

the PRV-Tree scheme.  

 

6-1. m-ary Balanced Tree  

A tree is a data structure which emulates a tree structure to link elements together. The 

main difference with the tree in nature is the fact that the root is the element at the top of the 

tree while the leaves are the elements at the bottom.  The root and all the nodes of the tree 

until the leaves (not included) have a certain number of children. A given child (nodes or 

leaves) has at most one parent node and all children of the same parent node are called the 

siblings. The only element which does not have a parent is the root.  

In this thesis, we are particularly interested in m-ary balanced tree where all nodes of the 

tree must have the same number m of children. Moreover, we only consider m values which 

are of a power of two30. Figure 6-1 depicts a 2-ary (binary) tree with three levels of elements. 

 

 
Figure 6-1  A balanced binary tree (2-ary tree) 

 
The number L of level of nodes in the tree can be easily deduced from the number N of 

leave elements and from the arity m:  
 

      L = logm(N)   (eq. 6.1) 
 

                                                 
30 This choice is motivated by the need of easily retrieving the nodes from a memory. 
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The number E of elements in the tree is computed by adding the number of nodes and 

leaves at each level of the tree: 

         
1

11

0 −
−

==
+

=
∑ m

mmE
LL

l

l .   (eq. 6.2) 

6-2. Secure Storage Principle of the Reference Random Values 

As explained in Chapter 4, the set of reference random values used for the tag matching 

process must be secret and tamper-proof from an adversary point of view. The solution 

exposed in Chapters 4 and 5 – the set of RV’ is stored on-chip – is secure but could be 

expensive when a large amount of memory must be replay immune with a strong level of 

detection (large random value). For instance, if 256MB of RW data must be protected against 

replay with 32-bit random values, 64 MB of memory must be embedded for PE-ICE-160 as 

for PE-ICE-192. Hence, the set of RV’ should be stored off-chip while ensuring its 

confidentiality – secrecy requirement – and its authentication – the tamper-proof requirement. 

Therefore, we propose to apply PE-ICE to the set of RV’: the reference random values of 

consecutive chunks of data – named in the following data-chunks - in memory are 

concatenated to form a payload. Then this payload is processed by PE-ICE, meaning that it is 

concatenated with a tag consisting partially (or totally) of a random value (RV) before being 

encrypted. The resulting block is called an RVS (Reference random Value Storage) chunk or 

an RVS-block and is depicted in Figure 6-2. The reference random value (RV’) of such a 

chunk is stored on-chip. 

   

 
Figure 6-2  An RVS-chunk before PE-ICE encryption (for t = r) 

 

The size of RV used in the RVS-chunk must be at least equal to r, the size of the random 

value used for the data-chunk; otherwise an adversary has more chance to succeed in a replay 

of a data-chunk with its RVS-block than in a replay of the data-chunk alone. In the following 

t-bit (t = r)

RV1’ RV2’ RVA’ RV 

Tag RV’: Reference Random Value of a data-chunk 

lp-bit 

r-bit  

RV: Random Value  
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we consider that the RV length is always equal to r whatever the payload processed (reference 

random value or RW data) by PE-ICE. The number A of RV’ fitting in a RVS-chunk depends 

on lp (payload size of the underlying PE-ICE configuration) and on r and is equal to31: 

        ⎥
⎦

⎥
⎢
⎣

⎢
=

r
l

A p .   (eq. 6.3) 

 

Thus, for operations on a payload PE-ICE works as follows: 

• On read operations: 

i) load the data-chunk with the RVS-block containing the required RV’ 

ii) decrypt both chunks 

iii) check that RV = RV’ for the RVS-block  by reading RV’ on-chip 

iv) retrieve the required RV’ in the RVS payload and check that RV = RV’ for 

the data-chunk. 

• On write operations of a payload:   

i) encrypt PL with PE-ICE and a new RV 

ii) write the resulting data-chunk in memory 

iii) load the RVS-chunk containing the corresponding RV’ on-chip 

iv) decrypt and authenticate it by checking that RV= RV’ 

v) update the reference random value (RV’  RV) of the data-chunk in the 

RVS payload 

vi) generate a new RV for the RVS-block and update RV’ in the dedicated on-

chip memory (RV’  RV) 

vii) encrypt the new RVS payload with PE-ICE and the new RV   

 

This scheme allows to reduce the on-chip memory overhead by a factor A. However, this 

may be insufficient. Take up again the example of 256MB of RW data to protect against 

replay with 32-bit random values, the amount of on-chip memory required is of 16 MB, 

which remains unaffordable in a SoC. The solution is to recursively repeat the application of 

PE-ICE on the set of reference random value RV’ used to authenticate RVS-chunks until 

having only one RV’ to store on-chip. That amounts to creating an A-ary tree of Reference 

random Values (RV-Tree) protected by PE-ICE (PRV-Tree scheme). 

                                                 
31 ⎣ ⎦X denotes X rounding down. 



Chapter 6.  PRV-Tree – Secure Off-chip Storage of Reference Random Values 

 

 171

6-3. PRV-Tree scheme (PE-ICE protected of the Reference Value Tree) 

6-3.1.  Principle 

The ultimate objective of PRV-Tree is to authenticate RW data and to securely store off-

chip the set of reference random value (RV’) required for this task by keeping only one 

reference random value on-chip. By securely, we mean that the confidentiality and the 

authenticity of the set of RV’ is ensured. 

In the following, we call RV-Tree the structure which links the reference random values 

together and with data while we call PRV-Tree the scheme allowing the secure storage of 

RV-Tree and performing the authentication process.  

Each element of an RV-tree is r-bit long. The RW memory section to protect is divided in 

Nr r-bit blocks which are the leaves of the tree. Each node in the tree is the reference random 

value used to authenticate the A-leaves or the A-nodes below it – its A children. The top of the 

tree is the RV’-root which is kept on-chip where it cannot be tampered with. The resulting tree 

is securely stored off-chip (PRV-Tree) by constructing payload with A-sibling nodes or leaves 

and by encrypting them with PE-ICE resulting respectively in RVS-chunks or in data-chunks. 

Note that data-chunks are the chunks processed by PE-ICE in previous chapters. A 4-ary RV-

Tree is depicted in Figure 6-3. 

 

PRV-tree works as follows for RW data at run-time: 

On read operations – authentication process: 

i) Read the chunk to authenticate (and to decrypt) and its parent chunk in memory 

which contains the required RV’ 

ii) Decrypt both chunks  

iii) Retrieve RV in the chunk’s tag and RV’ in the parent’s payload 

iv) Compare RV to RV’,  

• if RV ≠ RV’ raise the integrity checking flag and stop execution  

• else forward the payload for speculative execution and continue the 

authentication process by rising up RV-Tree. 
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Figure 6-3  4-ary RV-Tree: Reference (random) Value Tree 
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This process is repeated to authenticate the parent chunk until the root of the tree. Note 

that the first iteration concerns the authentication of a data-chunk while the following ones 

concern the authentication of RVS-chunks. Moreover, starting from the second iteration only 

the parent chunk needs to be loaded since the chunk to authenticate has already been read 

during the previous iteration. The number of checks ( iterations) to achieve the 

authentication process depends on the number L of level of the RV-Tree that is easily 

computed from Nr and from the tree-arity A: 
 

      L = logA(Nr).   (eq. 6.4) 

 

On write operations the tree must be updated, thus the following steps are required:  

v) read (authentication) the matching chunk (with the process described for read 

operations) 

vi) perform the write in the decrypted payload  

vii) generate a new RV and concatenate it with the resulting payload 

viii) Encrypt and store the chunk in the off-chip memory 

ix) Update the parent node with RV’ (= RV)  Write RV in the parent chunk. 

 

Similarly to read operations, this process is repeated with the parent node until RV’-root. 

Note that the first step of authentication is only required for the first iteration since it implies 

the authentication of all the parent’s nodes belonging to the same tree branch. 

The initialization of the tree is done at load-time by performing the write operations 

described above on all the RW memory section to protect but by turning off the integrity 

checking process (meaning without the first step of authentication).  

 

6-3.2.  Physical Address Computation  

In this section we consider an A-ary RV-Tree of L level which protects Nr r-bit blocks of 

data or in other words Nr/A payloads of data. Moreover, l denotes the level in the tree an r-bit 

block of payload (of data or of RV’) belongs to. 

For PRV-Tree to be efficient the computation of the parent’s chunk addresses must be 

straightforward.  
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An RVS-chunk is retrieved in memory in two steps: 

• First the address of the corresponding payload is calculated in the address space 

seen by the CPU. 

• Then, the physical address is computed by applying the shift implied by PE-ICE 

processing. 

 

 To achieve the first task we use the method proposed in [47]: all elements of a tree are 

numbered consecutively starting from 0 from the root to the leaves as depicted in Figure 6-4 

for a 4-ary tree. The position of a parent node can be easily found by subtracting one from one 

of its children number, by dividing the result by the arity and by rounding down. 

 

Figure 6-4  Principle of computation of parent chunk addresses on a 4-ary tree 
 

The method exposed above can be easily applied to the tree constructed with the payloads 

in the RV-tree. The payloads are numbered as depicted for the RV-Tree in Figure 6-3. 

Considering AS the starting address of the PMR-RW and the address provided by the CPU, the 

position P0 of a payload leave is computed by (as in eq. 4.1): 

 

pb

SCPU

l
AA

P
−

=0 .   (eq. 6.5) 

 

Then the position of a parent payload Pl is recursively computed from the position of its 

child Pl-1 or from the position of the payload leave to authenticate: 
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When P becomes negative, this means that the parent node searched for is not in an off-

chip payload but is RV-root which is stored on-chip. The computation of P shows that A must 

be a power of 2 to allow a straightforward hardware implementation. 

Considering that the RVS-chunks are stored separately from the data-chunks starting from 

address AT, the address ARVS of an RVS-chunk in the address space seen by the CPU can be 

easily found with: 

pblTRVS lPAA ×+=    (eq. 6.7) 

 

Finally, the shift provoked by PE-ICE processing can be applied on ARVS to retrieve the 

physical address AP-RVS of an RVS-chunk (similarly as in Chapter 4 with ACPU = ARVS): 

 

tblRVSRVSP lPAA ×+=−   (eq. 6.8) 

 

6-3.3. Off-chip Memory Consumption 

The off-chip memory overhead of the PRV-Tree scheme corresponds to the amount of 

memory required to store the RV-Tree starting from the first level of reference random value, 

l = 1, to the penultimate one, l = L - 1, plus the consumption implied by the PE-ICE protection 

of this amount of memory.  

The cost of the RV-tree storage is defined by the ratio RTree between the numbers of nodes 

stored off-chip (level 1 to level L-1) and the number of leaves (level 0): 
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 by considering LA
1 negligible. 

Thus, the overall overhead of the PRV-Tree is equal to: 
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6-4. Comparison between PRV-Trees (PE-ICE-160) and Hash Trees 

Hash tree is the existing solution which handles the specific issue of replay attacks 

without generating on-chip memory overhead. In this section, we present the PRV-Tree 

scheme configured with PE-ICE-160 and we discuss its advantages compared to hash trees. 

Table 6-1 shows the possible configurations of a PRV-Tree scheme working with PE-

ICE-160 depending on the value of r. Those r values have been deduced from eq.6.3 and from 

the fact that A must be a power of 2. 

The number of checks can be huge, for example when 256MB of RW data required to be 

protected against replay, L is equal to 7, 9 and 13 respectively for r = 8, 16 and 32 (Table 6-

2). All tree schemes [37, 47] face this same issue and usually implement Authentication 

Speculative Execution (ASE) meaning that data are forwarded to the CPU before the end of 

the integrity checking process. But, PRV-Tree with PE-ICE-160 (except r = 32) or with PE-

ICE-192 offer the possibility of performing a first step of authentication (against spoofing and 

splicing) by checking the address bits contained in the tag. In addition, the principle of cached 

tree described in Chapter 2 and proposed in [47] can be easily adapted to PRV-Tree – by 

caching intermediate reference random values – to reduce the number of checks to achieve. 

  

Table 6-1  PRV-Tree with PE-ICE-160 for different r-values 

 r = 8 r = 16 r = 32 

A (RV-Tree arity) 16 8 4 

L (number of check) )(log 816 N )(log 168 N  )(log 324 N

Off-chip memory overhead of PRV-Tree 8.3% 17.9% 41.7% 
Overall off-chip memory overhead of PE-ICE-160 

with PRV-Tree  33.3% 42.9% 66.7% 
 

Moreover, the interesting point of PRV-Tree when compared to existing solutions like 

Hash trees is the drastic reduction of the memory bandwidth pollution. The memory 

bandwidth consumption of tree schemes can be approximated by multiplying C the chunk size 

by L the number of checks required to reach the tree root and to terminate the authentication 

process - one check requires loading at least one chunk. For PE-ICE the chunk length is 

always of the block size processed by the underlying block cipher (for PE-ICE-160, C = 160-

bit). L can be adapted - for a given amount of RW data to be immune against replay - by 

playing on the r value to change the arity of RV-Tree (Table 6-1) and to define the 
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performance-security trade-off wanted. On the other hand, the hash tree principle is based on 

collision resistance to be secure; thus, to thwart the birthday attack the hash must be long. If 

we consider the implementation proposed in [37, 47], hashes are 128-bit long and chunks are 

512-bit long (A = 4). The modification of the chunk size influences the tree-arity (and vice 

versa) but the memory bandwidth consumption is almost constant because the hash size 

remains the same. Concrete examples are given in Table 6-2, the memory bandwidth 

consumption of PRV-Tree (PE-ICE-160) and of Hash-tree are computed for two RW memory 

region sizes to protect against replay (16MB and 256MB) and for different configurations of 

both engines. We show that PRV-Tree reduces the memory bandwidth pollution by a factor 3 

for a comparable security level (PRV-Tree with r = 32). By decreasing the security level, this 

factor reaches 4.1 on average when r = 16 and 5.3 when r = 8. This improvement provided by 

PRV-Tree is mainly the result of the fine granularity of integrity checking of PE-ICE. 

 

Table 6-2  Memory bandwidth consumption of tree schemes for two different sizes of the 
RW memory section to protect against replay, 16MB and 256 MB 

 
(a) PRV-Tree (PE-ICE-160) for different r values 

PE-ICE-160 with PRV-Tree C* = 160-bit 
r = 8; A = 16:  

)(log 816 NL =  
r = 16; A = 8  

)(log 168 NL =  
r = 32; A = 4 

)(log 324 NL =  
RW=16MB RW=256MB RW=16MB RW=256MB RW=16MB RW=256MB

L value 
(Number of checks) 6 7 8 9 11 13 

Memory bandwidth 
consumption for data 

authentication 
120B 140B 160B 180B 220B 260B 

 
(b) Hash-Tree [37, 47] for different chunk sizes 

Hash Tree (hash of 128-bit) 
C* = 256; A = 2  

)(log 1282 NL =  
C* = 512; A = 4  

)(log 1284 NL =  
C* = 1024; A = 8 

)(log 1288 NL =  
RW=16MB RW=256MB RW=16MB RW=256MB RW=16MB RW=256MB

L value 
(Number of checks) 20 24 10 12 7 8 

Memory bandwidth 
consumption for data 

authentication 
640B 768B 640B 768B 896B 1024B 

* C is the chunk size in bit; Nr is the protected memory size expressed in r-bit blocks where r 
is the size of the random values for PE-ICE and the hash length for hash tree. 
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Another non negligible advantage of PRV-Tree is that the update process of the tree on 

write operations is fully parallelizable since the tag (random value and possibly address-bits) 

in PE-ICE is produced independently from the payload it protects. For Hash trees, a hash 

parent is computed over the data or over the hash children, thus the process is done in series.   

Moreover, PRV-Tree does not induce an overhead in terms of hardware since it uses the 

same hardware as PE-ICE.  

The main shortcoming of PRV-Tree with PE-ICE to achieve both data confidentiality and 

integrity is the off-chip memory overhead. For PRV-Tree plus PE-ICE-160 this overhead 

reaches 66.7% while for a comparable security level the Hash-Tree scheme implemented with 

an OTP engine in [37] consumes 41% of memory. Nevertheless, PRV-Tree can be configured 

to achieve an acceptable security level (r = 16) while requiring almost the same memory 

consumption of 42.9% (Table 6-1).  

 

6-5. Implementation Use Case 

In this section the use case presented in Chapter 5 (section 5-4) is updated to incorporate 

the PRV-Tree scheme.  

 
Figure 6-5  Physical memory management for PE-ICE with PRV-Tree 

 
At load-time the OS computes the size of the additional memory required to store the 

RVS-chunks (PRV-Tree starting from l = 1 to l = L - 1) by multiplying RPRV-Tree with the size 

PMR-RW 

Unprotected memory space AT: Additional memory for Tags storage

PMR : Protected Memory Region 

RW 

AT-RW NO_ACCESS 

(a) Physical Memory seen by 
the CPU through the MMU 

(b) Physical Memory seen 
by PE-ICE 

AeRW

AsRW

AeRW 

AsRW 

PT NO_ACCESS PT (RVS-chunks)  

data-chunks  

AT 

PT : PRV-Tree storage 
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of the RW memory section. Then it reserves in the MMU a consecutive dedicated address 

space PT (PRV-Tree) of such a size (Figure 6-5); nevertheless, access rights in the page table 

of the application are set to NO_ACCESS for this memory region. In this way, any access to 

this region will fail (it will be trapped by the MMU), and will not be passed on to PE-ICE or 

to the memory controller.  Moreover, the OS is aware of the use of this section and will not 

map PT to any other application. 

The encryption key used for PRV-Tree can be KRW since RV’ values are processed like 

RW data by PE-ICE (same tag generation). Moreover an entry must be added in Table_RW 

(Figure 6-6) to store the start address of the PT region for PE-ICE to be able to compute the 

address of the parent chunks. 

 

 
Figure 6-6  Table_RW used by PE-ICE to identify the Protected Memory Regions of 

RW data and to retrieve parent chunks in memory 
 

6-6. Other applications of PRV-Tree  

PRV-Tree can be used to reduce the on-chip memory overhead implied by security 

mechanisms with replay attack countermeasures requiring to store reference values on-chip. 

For example, the reference random values needed by the generic composition scheme GC - 

presented in Chapter 5, section 5-5 – to thwart replay attacks can be stored off-chip by using 

the PRV-Tree scheme. 

 

Moreover, as mentioned in Chapter 4 the value used as tag in PE-ICE does not necessarily 

need to be random. It could be a nonce. However, when the nonce reaches its limit, all the 

memory protected with this nonce must be re-encrypted with a new encryption key. 

PRV-Tree can also be used to protect reference value generated from nonces. However, as 

for PE-ICE when the nonce reaches its limit, the whole tree must be re-encrypted with a new 

 
As 

(Start address of 
RW section) 

Ae 
(End address of 

RW section) 

AT 
(Start address of 

PT region) 

Application 1 AsRW1 AeRW1 AT1 

Application 2 AsRW2 AeRW2 AT2 
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key. Otherwise, an adversary can predict when he can replay an old node of the tree with its 

children. 

 

6-7. Conclusion 

In this Chapter we presented a scheme (PRV-Tree) allowing to efficiently protect RW 

data against replay by allowing to store the reference values required to achieved such a goal 

off-chip. Compared to existing tree schemes achieving the same objective – Hash trees – 

PRV-Tree offers numerous advantages like the reduction of the memory bandwidth pollution 

at run-time – thanks to the fine granularity of integrity checking of PE-ICE -  the 

parallelization of the operations on write (tree update) and the use of the same hardware as 

encryption engines. Moreover, PRV-Tree allows the designer a scalable choice in the trade-

off between security and performance by playing on the r value. Finally, in certain 

configurations of PE-ICE (tag for RW data composed of address bits with random bits), PRV-

Tree allows partial integrity checking: it gives a first response against spoofing and splicing 

attacks. 

PRV-Tree can be easily applied to existing integrity checking scheme requiring to store 

reference values on-chip. Moreover, those reference values do not necessarily need to be 

generated from random but can be also generated from nonces. 

However, PRV-Tree must be implemented with the cached tree scheme to clearly quantify 

its benefit when compared to Cached Hash trees.  
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Chapter 7: Conclusion 

 
 
 
 
 

 
 

This chapter concludes the thesis. Section 7-1 summarizes the contributions. Section 7-2 

describes the remaining works. Finally, section 7-3 proposes further ideas to improve the 

concept of PE-ICE and of PRV-Tree. 

 

7-1. Contributions 

The objective of countermeasures against physical attacks at the board level (bus probing 

and memory tampering) is to provide a private and authenticated tamper resistant 

environment to applications running on the targeted devices. Thus it is required to guarantee 

the confidentiality and the integrity of data transferred between the processor and the off-chip 

memory.  

The conventional way to ensure those security services in a System on Chip is to design a 

hardware engine dedicated to each security service. Such an approach leads to a non-optimal 

usage of the required silicon area and implies non-parallelizable latencies generated by the 

underlying computation: encryption/decryption, tag computation/tag matching process 

(integrity checking). 

In this thesis we explored the addition of redundancy and of randomness in block 

encryption at the block level to efficiently ensure the confidentiality and the integrity of data 

transferred on the processor-memory bus of embedded systems. By verifying such 

redundancy and randomness after decryption, we add the integrity checking capability to 

block encryption. In this way, a single algorithm is implemented to achieve both security 

services. Moreover, the key point of the proposed engine PE-ICE is that the tag is generated 
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independently from the data it protects. As a result that PE-ICE enables the following 

features: 

• Latency optimization: The encryption (respectively decryption) and the tag 

computation (respectively integrity checking) processes are done in parallel, 

allowing to optimize the latencies introduced on write and read memory access 

latencies. 

• Hardware resources optimization: the same hardware resources are used to 

achieve all processes: encryption/decryption and integrity checking. 

• Optimization of the RMW operations processing: We introduced the notion of fine 

granularity of integrity checking allowing to reduce the memory bandwidth 

pollution on RMW operations. 

 

The insertion of randomness dedicated to handle the specific issue of replay attacks in PE-

ICE generates a huge on-chip memory overhead to store the reference random value required 

for the tag matching process (integrity checking). The proposed solution to reduce this 

overhead to the on-chip storage of a single random value, PRV-Tree, relies on the PE-ICE 

principle to mount a tree of reference random values and to securely store them off-chip. 

PRV-Tree improves existing countermeasures against replay based on tree schemes (hash 

trees) in the following aspects: 

• Reduction of the memory bandwidth pollution: The authentication process relying 

on a tree scheme requires successive loading of tree elements. PRV-Tree reduces 

the memory bandwidth pollution by decreasing the size of the chunks (a chunk 

defining the granularity of the integrity checking process).  

• Full parallelization: PRV-Tree is parallelizable on read and on write operations. 

This feature is enabled by the fact that the tags are generated in PE-ICE 

independently from the data it protects.  

• First step of authentication: Contrary to existing tree schemes, PRV-Tree does not 

require the end of the whole authentication process to give a response to spoofing 

or splicing attacks. If address bits are contained in tags, after the first check, PRV-

Tree is able to detect data relocation (splicing) or random insertion (spoofing).  

• Scalability: By choosing the size of the random value the designer easily defines 

the desired trade-off between security, performance and off-chip memory 

overhead. 
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Moreover, PRV-Trees can be easily applied to integrity checking scheme requiring to 

store reference values on-chip. In addition, the reference values protected by PRV-Tree do not 

necessarily need to be random but can be generated from nonce. 

PE-ICE and PRV-Tree are secured regarding the attacks described in our threat model if 

the assumptions considered in this work are respected: 

i) the SoC package must be tamper-resistant to be able to trust data stored inside.  

ii) the random number generator must not leak information on the values it outputs. 

Those values are used to construct tags for RW data which must be unpredictable.  

In this way the security of the proposed mechanisms relies on the security of the 

underlying block cipher since an adversary has only access to ciphertexts. Moreover, 

concerning the three active attacks considered (spoofing, splicing, replay), the designer must 

be aware of the security limitations given in this thesis.   

 

7-2. Further Works 

During this thesis the implementation of the concept of PE-ICE has been started on the 

LEON2 processor. This hardware experimentation must be terminated to refine the SoC 

integration issues of PE-ICE. 

Moreover, the PRV-Tree must be evaluated at run-time to quantify its improvement in 

terms of performance. An ideal implementation should include a cached tree mechanism to 

efficiently decrease the number of checks usually required by a tree scheme. 

In this thesis, our work focuses on uniprocessor systems. Recently several research 

projects [87, 88] studied the off-chip memory protection of multiprocessor platforms. The 

main additional issue of such platforms compared to uniprocessor is to distinguish a 

modification performed by one of the CPU from a corruption conducted by a malicious party. 

Thus, a challenge would be to explore how to extend the protection provided by our proposed 

mechanisms to multiprocessor systems. 

  

7-3. Further Idea: PE-ICE-OTP 

The principle of PE-ICE cannot be simply extended to stream cipher since parallelizable 

mode, such as CTR, does not provide error propagation or diffusion: a bit change in the 
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ciphertext only impacts the matching bit in the text resulting from decryption. Hence, if a tag 

is appended to a payload before encryption, an adversary could localize the encrypted tag in 

the ciphertext and replace it with a chosen one, thus inserting fake text at will (the tag is not 

computed on data). 

 

 
Figure 7-1  PE-ICE-OTP Principle 

 
The idea is to work on an un-keyed diffusion function implemented before an OTP 

encryption. This function must provide full diffusion meaning that every bit at its output must 

depend on all bits at its input. For instance, the AES algorithm fulfills such requirement in 

two rounds [15]. Thus PE-ICE-OTP could work as follows: 

• On write operations (Figure 7-1a), the payload is mixed with a tag with the full 

diffusion function in parallel of the OTP pad computation and before the 

encryption step strictly speaking (xor operation). 

• On read operations (Figure 7-1b), the ciphertext loaded is first decrypted with the 

OTP scheme and then the inverse transformation of the diffusion function is 

applied to the decrypted text. Finally, the tag matching process is done to 

authenticate the payload. Thus, if an adversary tampers with or modifies one or 

some bits in the ciphertext, the corruption will impact all plaintext bits and will be 

detected during the tag matching process. 
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Contrary to PE-ICE, decryption and integrity checking processes are serialized but the 

preprocessing feature of OTP compensates those non-parallelizable computations. 

 

PE-ICE-OTP can further decrease the latencies on read and write operations when 

compared to PE-ICE and speeds up the authentication process of PRV-Tree by profiting from 

the preprocessing feature of the OTP scheme. 

 



 



  

 189

UNIVERSITE MONTPELLIER II 
SCIENCES ET TECHNIQUES DU LANGUEDOC 

Résumé de thèse – French Summary 
 

pour obtenir le grade de 
 

DOCTEUR DE L'UNIVERSITE MONTPELLIER II 

Discipline :Génie Informatique, Automatique et Traitement du Signal 
Formation Doctorale : Systèmes Automatiques et Microélectroniques 

Ecole Doctorale : Information, structures, Systèmes 
 

présentée et soutenue publiquement  
 

par 
 

Reouven ELBAZ 

Le 12 Décembre 2006 à Montpellier 

 

MMééccaanniissmmeess  MMaattéérriieellss  ppoouurr  ddeess  TTrraannssffeerrttss  
PPrroocceesssseeuurr  MMéémmooiirree  SSééccuurriissééss  ddaannss  lleess  

SSyyssttèèmmeess  EEmmbbaarrqquuééss  
 

 
 

JURY 

 

M. Jean Claude Bajard, Professeur, Université de Montpellier II, Président du jury 

M. Viktor Fischer, Professeur, Université de St Etienne, Rapporteur 

M. Olivier Sentieys, Professeur, Université de Rennes I, Rapporteur 

M. Joan Daemen, Docteur, Société STMicroelectronics, Examinateur 

M. Pierre Guillemin, Société STMicroelectronics, Examinateur 

M. Jean Baptiste Rigaud, Maître de Conférence, Centre Microélectronique de Provence, Examinateur 

M. Gilles Sassatelli, Chargé de Recherche CNRS, LIRMM – UMII, Examinateur 

M. Lionel Torres, Professeur, Université de Montpellier II, Directeur de Thèse 



  

 190



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 191

 

 

Sommaire 
 

 

 

Liste des Figures .............................................................................................. 193 
 
Liste des Tableaux........................................................................................... 194 
 
1. Introduction ................................................................................................. 195 
 
2. Modèle de Menace ....................................................................................... 197 
 
3. Contexte et Etat de l’Art............................................................................. 198 
3.1. L’Outil Cryptographique................................................................................................. 198 

3.2. Contexte .......................................................................................................................... 198 

3.2.1. Emplacement des Mécanismes Matériels de Sécurité.......................................... 198 

3.2.2. Principe de chiffrement sur Bus ........................................................................... 199 

3.2.3. Principe de contrôle de l’intégrité du contenu mémoire ...................................... 199 

3.3. Etat de l’Art ..................................................................................................................... 200 

3.3.1. Techniques Existantes .......................................................................................... 201 

3.3.1.1. Composition Générique................................................................................. 201 

3.3.1.2. Technique AREA (Ajout de Redondance Authentification Explicite) ......... 202 

3.3.1.3. Mode de Chiffrement Authentifié ................................................................. 203 

3.3.2. Engin de Protection du Contenu des Mémoires Externes .................................... 203 

3.3.2.1. XOM (eXecute Only Memory) ..................................................................... 203 

3.3.2.2. AEGIS ........................................................................................................... 204 

3.3.2.3. SP – Secret Protected .................................................................................... 204 

 
 



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 192

4. PE-ICE - de l’anglais Parallelized Encryption and Integrity Checking 

Engine ............................................................................................................... 204 

4.1. Confidentialité................................................................................................................. 205 

4.2. Vérification de l’Intégrité avec PE-ICE .......................................................................... 205 

4.2.1. La Propriété de Diffusion des Algorithmes de Chiffrement par Bloc.................. 205 

4.2.2. Processus de Contrôle de l’Intégrité avec PE-ICE............................................... 206 

4.2.3. La Génération des Etiquettes................................................................................ 207 

4.3. Analyse de la Sécurité ..................................................................................................... 209 

4.4. Exemple de Configuration .............................................................................................. 210 

4.4.1. PE-ICE-160: Sécurité et Gestion des Clefs.......................................................... 210 

4.4.2. Latences................................................................................................................ 211 

4.4.3. Ressources Matérielles Requises ......................................................................... 212 

4.4.4. Dégradation des Performances durant l’Exécution.............................................. 213 

 
5. Conclusion.................................................................................................... 216 

 



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 193

 

 

Liste des Figures 

 

 

 
Figure 1. Attaque au niveau de la carte par observation de bus............................................. 197 

Figure 2  Localisation des mécanismes matériels de chiffrement et de contrôle de l'intégrité 

sur le Système sur Puce........................................................................................... 199 

Figure 3  Principe de contrôle de l'intégrité du contenu des mémoires externes ................... 200 

Figure 4  Approche conventionnelle pour assurer la confidentialité et l'intégrité de données

................................................................................................................................................ 201 

Figure 5  Propriété de diffusion des algorithmes de chiffrement par bloc............................. 206 

Figure 6  Principe de fonctionnement de PE-ICE.................................................................. 206 

Figure 7  Composition d'un bloc de texte en clair et d'une étiquette avant chiffrement ........ 208 

Figure 8  Résultats de simulations des applications d’évaluation sur une plateforme définie 

sans mécanisme de sécurité pour deux tailles de mémoire cache dédiée aux données

................................................................................................................................. 214 

Figure 9  Taux de défauts de cache de données lors de l’exécution des applications utilisées 

pour l’évaluation des dégradations des performances engendrées par les mécanismes 

matériels de sécurité. ............................................................................................... 214 

Figure 10 Dégradation engendrée par les mécanismes de sécurité (PE-ICE et AES-ECB) pour 

deux tailles de mémoire cache dédiée aux données. Les résultats sont donnés pour 

différentes versions de PE-ICE: PE-ICE-128 (AES), PE-ICE-160 (Rijn-160) et PE-

ICE-192 (Rijn-192). ................................................................................................ 215 

Figure 11 Dégradation des performances engendrée par le mécanisme de contrôle de PE-ICE. 

Les résultats sont donnés pour différentes versions de PE-ICE: PE-ICE-128 (AES), 

PE-ICE-160 (Rijn-160) et PE-ICE-192 (Rijn-192) et sont normalisés par rapport au 

chiffrement AES-ECB............................................................................................. 216 

 



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 194

 

 

Liste des Tableaux 

 

 

 
Tableau 1  Robustesse de PE-ICE évaluée en chances de réussir une attaque active (insertion 

aléatoire, relogement ou rejeu)............................................................................. 210 

Tableau 2  Robustesse de PE-ICE-160 évaluée en chances de réussir une attaque active 

(insertion aléatoire, relogement ou rejeu) ............................................................ 211 

Tableau 3  Latences introduites par PE-ICE-160 et par un engin AES-ECB sur un bus AHB 

pour toutes les opérations requises par un ARM9E au cours de l'exécution d'une 

application ............................................................................................................ 212 

Tableau 4  Paramètres architecturaux choisis pour les simulations ....................................... 213 

 



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 195

 

Mécanismes Matériels pour des 

Transactions Processeur-Bus Sécurisées 

dans les Systèmes Embarqués 
 

 

 

 

 

 

1. Introduction 

Les systèmes embarqués actuels (téléphone portable, assistant personnel) ne sont pas 

considérés comme des hôtes de confiance car le propriétaire ou toute personne y ayant accès, 

sont des attaquants potentiels [1]. Les données contenues dans ces systèmes peuvent être 

sensibles (données privées du propriétaire, mot de passe, code d’un logiciel…) et sont 

généralement échangées en clair entre le Système sur Puces (SsP) et la mémoire dans laquelle 

elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible : un 

attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la possibilité 

d’insérer du code afin d’altérer le fonctionnement d’une application s’exécutant sur le 

système. Un exemple illustrant parfaitement cette problématique est l’attaque menée par 

Markus Kuhn [31] sur un micro contrôleur 8 bits implémentant un système de chiffrement. Le 

principe de son attaque est le suivant i) observer le bus ii) identifier les instructions qui 

permettent de faire sortir des données de la mémoire externe sur le port parallèle iii) 

construire un code qui fait sortir la totalité du contenu de la mémoire externe sur le port 
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parallèle iv) insérer ce code sur le bus lorsque le processeur adresse un emplacement mémoire 

adéquat. 

Afin de prévenir ce type d’attaque, des mécanismes matériels doivent être mis en place 

afin d’assurer la confidentialité et l’intégrité des données. Dans notre contexte, garantir la 

confidentialité consiste à rendre incompréhensibles les données circulant sur le bus ou 

stockées en mémoire externe,  tandis que la vérification de l’intégrité a pour but de détecter 

toute insertion ou altération de codes ou de données. 

Dans le domaine de la sécurisation des communications entre un processeur et sa mémoire 

externe, les systèmes de protection des données utilisent la méthode conventionnelle, c'est-à-

dire un système matériel dédié à chacune des propriétés : confidentialité et intégrité. La 

conséquence d’une telle approche est la réalisation en série des opérations requises par chaque 

composant, et l’addition des surcoûts en performance. Par ailleurs, les ressources matérielles 

ne sont pas optimisées car deux algorithmes doivent être implantés en matériel. 

L’objectif de PE-ICE (Moteur de chiffrement et de contrôle d’intégrité parallélisé de 

l’anglais Parallelized Encryption and Integrity Checking Engine) est de fournir une solution 

dédiée aux transactions de bus entre un processeur et sa mémoire afin d’optimiser, d’une part, 

les latences introduites par les mécanismes matériels de sécurité lors de tout type d’opérations 

(lecture et écriture) et d’autre part la surface de silicium requise pour leur implémentation sur 

un SsP. Son principe est basé sur l’utilisation d’un unique algorithme de chiffrement par bloc 

afin de fournir aux données les propriétés de confidentialité et d’intégrité. 

Cette thèse est organisée de la façon suivante. La section 2 présente notre modèle de 

menace. La section 3 présente brièvement l’outil cryptographique, puis expose le contexte de 

l’étude et enfin décrit les techniques permettant d’assurer l’intégrité et la confidentialité des 

données ainsi que les engins dédiés à la protection des mémoires externes proposés dans l’état 

de l’art. La section 4 explique les spécificités de PE-ICE permettant de conférer à un 

algorithme de chiffrement par bloc la capacité de vérification d’intégrité. Un exemple 

d’implémentation ainsi que son évaluation (en terme de performance et de surcoût mémoire et 

en surface de silicium) sera également exposé dans cette section. De plus, une évaluation d’un 

engin de chiffrement de bus ne garantissant que la confidentialité est proposée afin d’estimer 

le coût de l’intégrité engendré par PE-ICE. Finalement, les perspectives et les futures 

améliorations sont exposées en section 5. 
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2. Modèle de Menace 

Les attaques sur le Système sur Puce (SsP) ne sont pas considérées, seules celles menées 

au niveau de la carte et plus particulièrement impliquant l’observation ou l’insertion de 

données sur le bus entre le processeur et la mémoire ou directement en mémoire doivent être 

contrées (Figure 1). 

 

 

Figure 1. Attaque au niveau de la carte par observation de bus 

 
La famille d’attaques appelée « l’homme au milieu » nous concerne tout particulièrement. 

Son protocole comporte deux étapes. La première phase est passive et consiste à récupérer des 

données sur le bus et à les analyser. Elle a pour objectif principal de mettre en défaut la 

confidentialité des données. La seconde phase est active : l’attaquant remplace ces données 

par d’autres de son choix, remettant en cause l’intégrité de ces données. L’observation de 

l’exécution des blocs mémoire interceptés lors de la première étape de l’attaque peut aider 

l’attaquant dans le choix de ceux à insérer sur le bus (ou en mémoire) lors de cette seconde 

phase. Trois types d’attaques actives sont alors définis en fonction du choix fait par 

l’attaquant  du bloc à insérer sur le bus ou en mémoire: 

• L’attaque par insertion aléatoire : l’attaquant remplace un bloc mémoire intercepté 

sur le bus par un autre choisi aléatoirement. 

• L’attaque par relogement : l’attaquant échange un bloc mémoire récupéré sur le bus 

par un autre préalablement enregistré sur ce même bus. Cette attaque peut être vue 

comme une permutation spatiale de blocs mémoire. 

• L’attaque par rejeu : l’attaquant récupère un bloc mémoire à une adresse spécifique et 

le réinjecte plus tard sur le bus lorsque le processeur adresse ce même espace 

mémoire. Cette attaque peut être vue comme une permutation temporelle de blocs 

mémoire. 

 

 Bus d’adresse

SsP 

Aire de confiance Mémoire  
Externe Bus de donnée 
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3. Contexte et Etat de l’Art 

3.1. L’Outil Cryptographique 

La confidentialité des données est assurée par leur chiffrement avec des algorithmes de 

chiffrement symétrique.  Ce type d’algorithme est divisé en deux familles : le chiffrement par 

flux – le texte en clair est traité bit par bit – et le chiffrement par bloc – le texte en clair est 

dans un premier temps divisé en blocs de même longueur puis les blocs sont traités un à un. 

Pour plus de détails sur les techniques de chiffrement consulter [16, 24]. 

Le contrôle de l’intégrité est effectué grâce à des fonctions dites de hachage qui 

permettent de calculer une image compressée de la donnée à protéger. Cependant, il est 

parfois requis d’identifier également la source qui émet ces données. Des algorithmes de 

MAC (de l’anglais Message Authentication Code) sont alors utilisés ; ils consistent en une 

fonction de hachage qui prend en entrée une clef secrète (détenue à la fois par l’entité source 

et par le destinataire d’un message) en plus de la donnée. Lors de la transmission d’un 

message M, une étiquette T est alors calculée par un algorithme de MAC et apposée à M avant 

envoi. Le destinataire utilise alors le même algorithme de MAC et la même clef que celle 

employée par l’entité source pour recalculer une étiquette de référence T’. Il compare T et T’. 

Si elles sont différentes, cela signifie que le message a été corrompu au cours de sa 

transmission. 

 

3.2. Contexte 

3.2.1. Emplacement des Mécanismes Matériels de Sécurité 

Les mécanismes matériels de sécurité sont généralement placés sur le SsP entre la 

mémoire cache et le contrôleur de mémoire externe (figure 2) pour les raisons suivantes : 

 

• Performance : cette localisation permet de stocker les données déchiffrées et vérifiées 

en termes d’intégrité, dans la mémoire cache embarquée dans le système sur puce. De 

cette manière les latences introduites par les fonctions cryptographiques sous-jacentes 

n’ont pas d’impact sur tous les accès mémoire.  

• Sécurité : les valeurs qui doivent rester secrètes telles que les clefs de chiffrement 

utilisées par les algorithmes de cryptographie, sont stockées sur l’aire de confiance (le 
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SsP). Elles peuvent ainsi être considérées comme inaccessibles et secrètes pour un 

attaquant.  

• Compatibilité : la conception des mécanismes de sécurité est complètement 

indépendante du type de mémoire utilisée. 

 

 
Figure 2  Localisation des mécanismes matériels de chiffrement et de contrôle de 

l'intégrité sur le Système sur Puce 
 
 

3.2.2. Principe de chiffrement sur Bus 

Garantir la confidentialité du contenu des mémoires externes consiste à éviter toute fuite 

d’informations sensibles sur le bus ou dans la mémoire. Par conséquent, les données transitant 

sur le bus entre le processeur et la mémoire et stockées dans la mémoire doivent être rendues 

incompréhensibles pour un attaquant. Le chiffrement du bus permet d’atteindre cet objectif. 

Le concept a été introduit par Best [8, 9, 10] à la fin des années 70. Le principe est simple : les 

données sont chiffrées lorsqu’elles quittent l’aire de confiance (SsP) lors des opérations 

d’écriture et déchiffrées dans le SsP lors des opérations de lecture. De cette manière, les 

données ne sont accessibles à un attaquant (sur le bus ou en mémoire) que dans leur version 

chiffrée et donc théoriquement incompréhensibles.  

 

3.2.3. Principe de contrôle de l’intégrité du contenu mémoire 

La vérification de l’intégrité du contenu mémoire consiste à contrôler qu’une donnée n’a 

pas été modifiée lors de sa transmission sur le bus ou directement en mémoire. Afin 

d’atteindre cet objectif, une étiquette T est ajoutée à la fin de chaque bloc mémoire M lors de 
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son écriture (Figure 3a). Cette étiquette est destinée à identifier le contenu et la source du bloc 

mémoire auquel elle est rattachée lors de la lecture de ce dernier. Il faut donc être capable de 

créer une relation unique entre M et T. Pour cela, T est calculée avec des algorithmes de MAC 

(de l’anglais Message Authentication Code, c.à.d. Code d’Authentification de Message).  

Le processus de vérification de l’intégrité a lieu lors de la lecture (Figure 3b) de M. Il 

consiste à rapatrier T correspondant au M chargé, puis à recalculer une étiquette de référence 

T’ sur le SsP et enfin à comparer T à T’. Si les deux étiquettes sont différentes, cela signifie 

que la donnée a été modifiée. Généralement dans ce cas, un drapeau est prévu dans le 

dispositif pour prévenir l’UCT (Unité Centrale de Traitement) de ne pas traiter la donnée 

correspondante.  

 

 

Figure 3  Principe de contrôle de l'intégrité du contenu des mémoires externes 
 

3.3. Etat de l’Art 

Dans cette partie, les techniques permettant d’assurer aux données les deux services de 

sécurité, à savoir confidentialité et intégrité, sont tout d’abord décrites. Ensuite, les engins 

basés sur une de ces techniques et destinés à la protection des mémoires externes sont 

présentés. 
 

(a) Opération d’écriture: Calcul de l’étiquette 
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3.3.1. Techniques Existantes 

3.3.1.1. Composition Générique 

 

M : Message en clair 

MAC 

Chiffrement
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Km

Chiffrement

MAC 
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M 

M 

(a) Chiffrement-puis-MAC 
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(c) Chiffrement-et-MAC
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Ke : Clef secrète de chiffrement
Km : Clef secrète de MAC 
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E(T): Version chiffrée de l’étiquette 

T M C 

M 
Chiffrement
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T : Etiquette 
C : Message chiffré 

 
Figure 4  Approche conventionnelle pour assurer la confidentialité et l'intégrité de 

données 
 

Dans notre contexte, les systèmes proposés dans l’état de l’art [12, 13, 37, 39, 40, 52, 14] 

utilisent l’approche conventionnelle pour assurer l’intégrité et la confidentialité des données. 

Cette approche consiste à implémenter un algorithme consacré au chiffrement 

(confidentialité) et un autre dédié au calcul de l’étiquette (intégrité). Trois possibilités 

d’implémentation s’offrent alors au concepteur. La première « Chiffrement-puis-MAC » 

(Figure 4a) consiste à chiffrer le texte en clair M puis à calculer l’étiquette T en appliquant le 

texte chiffré C à l’entrée de l’algorithme de MAC. Concernant la seconde méthode « MAC-

puis-Chiffrement » (Figure 4b), T est d’abord obtenue en appliquant M en entrée du MAC, 
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puis est apposée à la fin de M. Finalement M et T sont chiffrés. La dernière possibilité 

« Chiffrement-et-MAC » (Figure 4c) consiste à procéder au calcul de T à partir de M et à le 

placer à la fin de C - texte résultant du chiffrement de M. 

 

Le principal inconvénient d’une telle approche est son caractère non parallélisable lors des 

opérations de lecture ou d’écriture. En effet, concernant la méthode « Chiffrement-puis-

MAC », lors d’une opération d’écriture, il faut attendre la fin du chiffrement de M pour 

commencer le calcul de l’étiquette. Pour les deux autres possibilités, il faut attendre lors d’une 

opération de lecture la fin du déchiffrement de C pour démarrer le calcul de l’étiquette étant 

donné que cette opération requiert le texte en clair. 

Bellare et al. ont prouvé dans [50] que la méthode de composition générique la plus 

sécurisée est « Chiffrement-puis-MAC ». 

 

3.3.1.2. Technique AREA (Ajout de Redondance Authentification Explicite) 

La technique AREA (de l’anglais Added Redundancy Explicit Authentication) consiste à 

insérer de la redondance dans le message en clair avant chiffrement et de la vérifier lors du 

déchiffrement. De tels mécanismes sont construits à partir de modes de chiffrement avec 

propagation d’erreurs infinies en chiffrement et en déchiffrement. La propagation d’erreurs 

est infinie en chiffrement si un bloc de texte chiffré peut être exprimé en fonction de tous les 

blocs de texte en clair. De même, la propagation d’erreur est infinie en déchiffrement 

lorsqu’un bloc de texte en clair peut être exprimé en fonction de tous les blocs de texte 

chiffré. Des exemples de modes de chiffrement ayant de telles propriétés sont PCFB [58] et 

PCBC[53].  

Pour authentifier un message en plus de le chiffrer en utilisant la technique AREA, une 

valeur choisie par l’émetteur du message est ajoutée à la fin du texte en clair. Son chiffrement 

dépendra de tous les blocs de texte en clair contenus dans le message. Cette valeur est 

envoyée en clair avec le message chiffré. De cette manière le destinataire peut vérifier que le 

déchiffrement du dernier bloc lui correspond bien. 

 

Ce type de technique paraît très efficace car une seule passe sur les données est requise. 

Cependant, afin d’obtenir une propagation d’erreurs infinie, les opérations de chiffrement et 

de déchiffrement doivent être réalisées en série, rendant toute parallélisation impraticable. 
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3.3.1.3. Mode de Chiffrement Authentifié 

Dans [50] et [53], il est montré qu’il peut être dangereux de garantir la confidentialité et 

l’intégrité des données avec des schémas de construction AREA et des compositions 

génériques. C’est pourquoi, la communauté de recherche en cryptographie travaille sur 

l’élaboration de modes de chiffrement authentifié à travers le processus de standardisation du 

NIST [54]. 

Deux modes ont récemment été recommandés par le NIST : CCM [55] (Counter CBC-

MAC) et GCM [63] (Galois Counter Mode). CCM implémente une composition générique 

d’un mode compteur de chiffrement et de l’algorithme de MAC CBC-MAC. Son principal 

inconvénient est le fait que le calcul de l’étiquette avec un CBC-MAC est réalisé en série. 

Concernant le GCM, ce mode authentifié est extrêmement performant (mode compteur [16] et 

fonction de hash réalisé en moins d’un cycle) mais le NIST ne recommande pas son 

utilisation lorsque les étiquettes doivent être courtes. Dans notre contexte, il est préférable 

d’avoir des étiquettes les plus petites possibles car elles sont stockées en mémoire externe. Par 

ailleurs tous les modes proposés au processus de standardisation du NIST doivent être 

améliorés afin de répondre à la problématique des attaques par rejeu. 

 

3.3.2. Engin de Protection du Contenu des Mémoires Externes 

Les engins de protection mémoire assurant l’intégrité et la confidentialité des mémoires 

externes sont tous basés sur des compositions génériques. Les travaux présentés dans cette 

partie ont pour objectifs de fournir une architecture sécurisée ; cependant ils ont été conçus 

pour des applications différentes. 

 

3.3.2.1. XOM (eXecute Only Memory) 

XOM [39, 40] propose une architecture sécurisée avec des contre-mesures aux attaques 

logicielles et physiques pour des applications telles que la distribution sécurisée de propriétés 

intellectuelles ou la protection contre la copie de ces dernières. Les données stockées en 

mémoire externe sont chiffrées puis protégées en intégrité par un algorithme de MAC adressé 

(l’adresse est ajoutée en entrée de l’algorithme de MAC) (Chiffrement-puis-MAC). 

Cependant, l’architecture de l’engin de protection mémoire n’est pas décrite et les 

dégradations correspondantes ne sont pas détaillées. Concernant la sécurité du système, un 
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algorithme de MAC adressé seul protège contre les attaques par insertion aléatoire et par 

relogement mais pas contre le rejeu. En effet, l’étiquette ne dépendant que des données et de 

l’adresse, il est impossible de différencier deux données stockées à une même adresse si elles 

sont rejouées avec leur étiquette. 

 

3.3.2.2. AEGIS 

L’objectif du processeur AEGIS [12, 13, 37] est de fournir une architecture sécurisée 

généraliste avec une attention particulière portée aux applications de calculs distribués. Les 

attaques logicielles comme les attaques physiques sont considérées. Concernant ce dernier 

type d’attaque, Suh et al. implémentent une composition générique en Chiffrement-puis-MAC 

d’un « One Time Pad » (OTP, chiffrement par bloc en mode compteur  chiffrement par 

flux [16]) et d’un système d’arbre de hash (ou arbre de Merkle [49]). Les pertes en 

performance sont évaluées à 25% en moyenne pour un système embarqué et à 73% dans le 

pire cas. Le surcoût en mémoire externe est d’environ 40% (stockage de l’arbre de hash et de 

meta-data utiles pour l’implémentation sécurisée d’un OTP). 

 

3.3.2.3. SP – Secret Protected 

L’objectif des travaux menés par Lee et al. à travers l’architecture SP [52, 14] est de 

fournir une solution matérielle permettant de protéger les données critiques, telles les clefs de 

chiffrement, requises par les applications sécurisées. Par conséquent, seules ces données et le 

code permettant de les traiter, sont chiffrés et déchiffrés (et vérifiés) lors des échanges avec la 

mémoire externe. L’unité matérielle se chargeant de cette tâche est la composition générique 

en « Chiffrement-puis-MAC » d’un chiffrement par bloc en CBC et d’un CBC-MAC. Les 

pertes en performance sont évaluées à moins de 1%. Pour contrer les attaques par rejeu, 

l’implémentation d’un système d’arbre de Merkle est proposé mais n’est pas compris dans 

l’estimation donnée. 

 

4. PE-ICE - de l’anglais Parallelized Encryption and Integrity Checking Engine 

L’objectif de PE-ICE [61, 74, 75, 83, 84, 85] est de fournir une solution permettant 

d’assurer la confidentialité et l’intégrité des données transmises sur le bus 
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processeur/mémoire ainsi que d’optimiser, d’une part, les latences introduites par les 

mécanismes matériels de sécurité lors de tout type d’opérations requises par un processeur, et 

d’autre part, la surface de silicium requise pour leur implémentation. Pour cela, PE-ICE utilise 

uniquement un algorithme de chiffrement par bloc. La confidentialité est alors garantie par le 

chiffrement, tandis que la vérification d’intégrité s’appuie sur la propriété de diffusion des 

algorithmes de chiffrement par bloc et sur l’utilisation des ressources disponibles sur le SsP.  

 

4.1. Confidentialité 

PE-ICE assure la confidentialité des données par leur chiffrement à l’aide de l’algorithme 

Rijndael [15] ; c’est un algorithme de chiffrement par bloc qui traite des blocs et des clefs de 

taille comprise entre 128 bits et 256 bits et multiple de 32 bits. Pour PE-ICE, nous nous 

intéresserons aux versions de cet algorithme qui utilisent une clef de 128 bits et des tailles de 

blocs de 128, 160 et 192 bits. A noter que le Rijndael chiffrant des blocs de 128 bits avec une 

clef de 128, 192 ou 256 bits est l’algorithme standardisé par le NIST (National Institute of 

Standard and Technology) sous le nom AES [20] (Advanced Encryption Standard). 

 

4.2. Vérification de l’Intégrité avec PE-ICE 

4.2.1. La Propriété de Diffusion des Algorithmes de Chiffrement par Bloc 

Le principe de contrôle de l’intégrité des données dans PE-ICE repose sur la propriété de 

diffusion des algorithmes de chiffrement par bloc. Cette propriété a été identifiée par 

Shannon  comme nécessaire au chiffrement par bloc pour qu’il soit sécurisé. Théoriquement, 

un chiffrement par bloc doit être équivalent à une permutation de bits aléatoires avec des 

résultats en sortie équiprobable. En d’autres termes, après un tel chiffrement, chaque bit d’un 

bloc de texte chiffré C dépend de tous les bits du bloc de texte en clair P correspondant. Par 

conséquent si P est composé de deux parties Pu et T, il est impossible après chiffrement de 

distinguer dans C la partie correspondant à Pu de celle correspondant à T (Figure 5). Par 

ailleurs, si un seul bit est modifié dans C, il y a une très grande probabilité que, par exemple, 

la partie T résultante du déchiffrement soit erronée. Cette probabilité dépend de la taille de T.  
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Figure 5  Propriété de diffusion des algorithmes de chiffrement par bloc 

 
En supposant que t soit la longueur de T en bits et que n soit la taille d’un bloc de 

chiffrement, le nombre de textes en clair comportant la même partie T après le déchiffrement 

d’un bloc C corrompu est alors de 2n-t. Par conséquent, la probabilité D que T ait la même 

valeur après déchiffrement est de tn
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 et la probabilité D  que T soit erronée est 

de D−1 . 

 

4.2.2. Processus de Contrôle de l’Intégrité avec PE-ICE 

 

 
Figure 6  Principe de fonctionnement de PE-ICE 

 

La propriété précédente est utilisée afin d’ajouter la capacité de vérification de l’intégrité 

au chiffrement par bloc. Ainsi le principe de contrôle d’intégrité du contenu mémoire avec 

PE-ICE fonctionne comme suit: 

• Opérations d’écriture (Figure 6a) : La donnée à écrire Pu est concaténée avec une 

étiquette T afin de produire un bloc de texte en clair P. En théorie, une telle 
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étiquette doit être un nombre utilisé une seule fois – appelé nonce – pour une clef 

de chiffrement donnée et ne nécessite pas d’être calculée avec un algorithme 

spécifique ; elle peut par exemple être générée avec un compteur. Après 

chiffrement, une unique paire Pu/T est créée et le bloc chiffré résultant est écrit en 

mémoire externe. 

• Opérations de lecture (Figure 6b): C est chargé sur le SsP et déchiffré. L’étiquette 

T provenant du bloc déchiffré est alors comparée à une étiquette de référence T’ 

re-générée sur le SsP. Si T et T’ ne sont pas égales, cela signifie qu’au moins un bit 

de C a été corrompu durant sa transmission sur le bus ou directement en mémoire. 

PE-ICE lève alors un drapeau pour prévenir le CPU afin qu’il n’exécute pas la 

donnée correspondante. 

  

En résumé, PE-ICE peut être vu comme l’application de la technique AREA au niveau du 

bloc de chiffrement plutôt qu’au niveau du message, la propagation d’erreurs infinie étant 

assurée par la propriété de diffusion des algorithmes de chiffrement par bloc. 

On notera que le mode de chiffrement utilisé est ECB – Electronic Code Book. Par 

ailleurs le bloc chiffré résultant est appelé un chunk. Un chunk peut également être défini 

comme le bloc atomique chargé lors d’opérations de lecture pour déchiffrement et vérification 

d’intégrité. 

Le principe exposé au-dessus n’est une contre-mesure que contre les attaques par 

insertions aléatoires mais ne précise pas comment les étiquettes sont générées ni comment 

fonctionnent les contre-mesures contre le relogement et le rejeu. La section suivante traite de 

ces problématiques. 

 

4.2.3. La Génération des Etiquettes 

Dans notre contexte, le SsP est le seul à réaliser les processus de chiffrement et de 

déchiffrement. Par conséquent, le SsP doit conserver en mémoire la valeur de l’étiquette de 

chaque bloc chiffré entre le chiffrement et le déchiffrement ou alors doit être capable de le re-

générer pour procéder au contrôle de l’intégrité. Le challenge est d’atteindre cet objectif en 

stockant le moins d’informations possibles sur l’étiquette dans le SsP. 
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La composition de l’étiquette est différente pour chaque type de données traitées par le 

processeur - donnée en lecture seule (RO) et donnée en écriture / lecture (RW) - et dépend de 

leurs propriétés respectives. 

 

Les données RO sont écrites une seule fois en mémoire externe lors du chargement d’une 

application et ne sont pas modifiées au cours de l’exécution. Par conséquent, l’étiquette 

dédiée à un bloc de texte en clair RO peut être fixe pour une charge utile donnée. De plus, elle 

peut être publique car un attaquant a besoin de la clef secrète pour créer une paire charge utile 

/ étiquette Pu/T acceptée. Cependant, cet attaquant ne doit pas pouvoir choisir l’étiquette de 

référence ou ne doit pas influencer sa génération. C’est pourquoi l’étiquette, pour les données 

RO, est constituée des bits les plus significatifs de l’adresse de chaque charge utile stockée en 

mémoire (Figure 7a). De cette manière, si un attaquant essaie une attaque par relogement 

l’adresse utilisée par le processeur (SsP) pour charger une donnée RO et pour générer 

l’étiquette de référence ne correspondra pas à l’étiquette T contenue dans le bloc déchiffré. 

 

 
Figure 7  Composition d'un bloc de texte en clair et d'une étiquette avant chiffrement 

 
Les données RW sont modifiées au cours de l’exécution d’une application et sont donc 

sensibles aux attaques par rejeu. L’utilisation de l’adresse seule comme étiquette ne suffit pas 

pour prévenir une telle attaque car les bits d’adresses ne rendent pas compte d’une 

modification de la charge utile entre deux écritures. Pour cette raison, l’étiquette est composée 

d’un vecteur RV qui est changé à chaque écriture (Figure 7b). RV est une valeur aléatoire 

générée sur le SsP. De cette manière l’étiquette est imprédictible pour un attaquant qui ne peut 

deviner lorsque deux blocs chiffrés ont la même étiquette à partir de l’observation de ces 

textes chiffrés. Cependant lors des opérations de lecture PE-ICE doit être capable de retrouver 

valeur aléatoire correspondant au bloc chargé – nommé par la suite la valeur aléatoire de 

référence RV’ – afin de reconstituer l’étiquette de référence T’ pour le processus de contrôle 

d’ intégrité. Par ailleurs, l’ensemble des valeurs aléatoires de référence RV’ doit être gardé 

orPu ADD Pu RV

Etiquette T 

Un bloc de texte en clair P de 
données RO 

Un bloc de texte en clair P de données RW 

Pu ADD RV

 (a) T = ADD  (b) T = RV  (c) T = RV || ADD 

RV: Valeur aléatoire ||: Opérateur de concaténation 

ADD: Bits d’adresse les plus significatifs 
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secret et infalsifiable. En effet, si RV’ n’est pas gardé secret, un attaquant peut prévoir son 

attaque et rejouer un bloc chiffré s’il s’aperçoit que deux blocs sont authentifiés par la même 

RV’, et dans le cas où RV’ est falsifiable, il peut choisir la donnée à rejouer en rejouant la RV’ 

correspondant. Afin de remplir toutes ces conditions, l’ensemble des valeurs aléatoires de 

référence est stocké sur le SsP. 

Cette étiquette permet de contrer tous les types d’attaques présentés dans le modèle de 

menace (insertion aléatoire, relogement et rejeu). Cependant, le niveau de sécurité 

correspondant dépend de la longueur de RV. Or plus RV est grand plus le surcoût en mémoire 

embarquée est important (stockage de RV’). C’est pourquoi nous proposons une seconde 

configuration pour la construction de l’étiquette où une valeur aléatoire (RV) est concaténée 

avec les bits les plus significatifs de l’adresse (Figure 7c). De cette manière il est possible de 

diminuer le surcoût en mémoire interne tout en maintenant une forte contre-mesure à 

l’encontre des attaques par relogement. 

On notera que l’adresse utilisée dans la génération de l’étiquette est l’adresse physique. 

 

4.3. Analyse de la Sécurité 

Concernant les attaques passives remettant en cause la confidentialité des données, seules 

les attaques à texte chiffré connu – l’attaquant ne connaît que le texte chiffré – et à texte en 

clair connu – l’attaquant connaît le texte chiffré ou une partie du texte en clair, en 

l’occurrence l’adresse contenue dans l’étiquette pour ce dernier cas – peuvent être menées. 

C’est pourquoi le choix de l’algorithme de chiffrement par bloc utilisé pour l’implémentation 

de PE-ICE est primordial : cet algorithme doit être résistant à ces deux d’attaques. Les 

algorithmes de chiffrement par bloc utilisés pour configurer PE-ICE dans la suite de ce 

document remplissent ces conditions minimales. 
 

Concernant les attaques actives définies dans le modèle de menace, la résistance de PE-

ICE dépend de quatre paramètres : la longueur t en bit de l’étiquette, la longueur r en bit de la 

valeur aléatoire RV, le nombre de bits d’adresse a contenus dans l’étiquette et la taille du bloc 

chiffré b en octet de l’algorithme de chiffrement sous-jacent à PE-ICE.  

Lorsque des bits d’adresse sont utilisés pour construire une étiquette, l’espace mémoire 

immunisé contre les attaques par relogement est calculé à partir de a et de b et est égal à 

ba ×2 . Cet espace mémoire est appelé par la suite un segment de relogement.  
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Nous estimons la résistance de PE-ICE aux attaques actives en chances de réussite pour 

un attaquant (Tableau 1). 
 

Tableau 1  Robustesse de PE-ICE évaluée en chances de réussir une attaque active 
(insertion aléatoire, relogement ou rejeu) 

Donnée RW Attaque Donnée 
RO t = a + r t = r 

Attaque par insertion aléatoire t2
1

 
t2

1
 

t2
1

 
A l’intérieur d’un segment 

de relogement 0  0   Attaque par 
relogement 

Taille d’un segment de 
relogement en octet: 

ba ×2  

En dehors d’un segment de 
relogement 0  r2

1
 

t2
1

 

Attaque par rejeu N/A r2
1

 
t2

1
 

 
4.4. Exemple de Configuration 

Dans cette section nous présentons une configuration de PE-ICE avec l’algorithme 

Rijndael qui traite des blocs de 160 bits et avec une clef de 128 bits (Rijn-160). Cette 

configuration est appelée PE-ICE-160. PE-ICE-160 est évalué en terme de surcoût mémoire, 

de latences introduites et de dégradations de performances. A titre de comparaison, la même 

évaluation est proposée pour un chiffrement AES (version standardisée de l’algorithme 

Rijndael – qui ne procure que la confidentialité des données) en mode ECB dans les mêmes 

conditions. Cet engin de chiffrement est nommé par la suite AES-ECB. 

 

4.4.1. PE-ICE-160: Sécurité et Gestion des Clefs 

Un chunk ou un bloc de texte en clair de PE-ICE-160 est composé de 128 bits de charge 

utile et de 32 bits d’étiquette comme décrit Figure 8.  

L’étiquette est de 32 bits donc un attaquant à 1/232 chances de réussir une attaque pas 

insertion aléatoire. Par ailleurs, pour les données RO, les 32 bits de l’étiquette sont des bits 

d’adresse. Par conséquent, si l’architecture de processeur utilisée est de 32 bits une telle 

étiquette protège tout l’espace d’adressage (4GB) contre le relogement de données RO et une 

seule clef est nécessaire par application. 

 



Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués 

 

 211

Tableau 2  Robustesse de PE-ICE-160 évaluée en chances de réussir une attaque 
active (insertion aléatoire, relogement ou rejeu) 

Données RW Attaques Données 
RO t = a + r t = r 

Attaque par insertion aléatoire 322
1  322

1  322
1  

A l’intérieur d’un segment 
de relogement 0  0   Attaque par 

relogement 
Taille d’un segment de 

relogement en octet: 
ba ×2  

En dehors d’un segment de 
relogement 0  r2

1
 

322
1  

Attaque par rejeu N/A r2
1

 322
1  

 

Pour les données RW, les chances de réussir pour un attaquant dépendent de la définition 

par le concepteur de PE-ICE des paramètres a et r. Dans le cas où t = r = 32, tous les types 

d’attaques actives (insertion aléatoire, relogement, rejeu) ont la même chance de réussir : 

1/232. Dans le cas où t = a + r = 32, les chances de réussir une attaque par insertion aléatoire 

ou par rejeu sont respectivement de 1/232 et de 1/2r. Une seule clef est également requise pour 

les données RW. 

Le Tableau 2 résume la résistance fournie par PE-ICE-160 aux attaques actives (insertion 

aléatoires, relogement et rejeu). 

 

4.4.2. Latences 

Les latences introduites par PE-ICE-160 entre la mémoire cache et le contrôleur mémoire 

sont évaluées sur un bus AHB (de l’anglais Advanced High-perforance Bus [76]) de 32 bits. 

Ces latences sont données dans le Tableau 3 pour toutes les opérations demandées pas un 

processeur ARM9E [89] et pour deux valeurs différentes du rapport R entre la fréquence de 

l’algorithme de chiffrement sous-jacent (Rijn-160) et la fréquence du bus AHB : R = 1 et R = 

2. Une évaluation des latences introduites par un chiffrement AES (confidentialité 

uniquement) dans les mêmes conditions est également indiquée dans le Tableau 3. 
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Tableau 3  Latences introduites par PE-ICE-160 et par un engin AES-ECB sur un bus 
AHB pour toutes les opérations requises par un ARM9E au cours de l'exécution d'une 

application 

 

4.4.3. Ressources Matérielles Requises 

Les ressources matérielles requises pour l’implémentation de PE-ICE peuvent être 

estimées en nombre de cœurs de chiffrement Rijn-160 ou AES32 à prévoir pour atteindre le 

débit maximum à la sortie de PE-ICE ou de l’AES-ECB en lecture ou en écriture.  

Pour AES-ECB, le débit maximum en sortie est défini par celui du bus AHB qui est de 32 

bits par cycle. Sachant que l’AES traite des blocs de 128 bits et que sa latence intrinsèque en 

mode ECB [23] vue du bus AHB est de 11 cycles pour R = 1 et de 6 cycles pour R = 2, 

respectivement trois et deux cœurs AES doivent être implémentés pour atteindre le débit 

optimum de 32 bits par cycle. 

Pour PE-ICE-160, le débit est plus important en écriture qu’en lecture car l’étiquette de 

référence est collectée en parallèle de la charge utile, ce qui n’est pas le cas en lecture où les 

données arrivent en série de la mémoire externe. Le calcul du nombre de cœurs de 

chiffrement se fait donc par rapport au débit requis en écriture. PE-ICE-160 doit être capable 

de collecter 128 bits de charge utile tous les 4 cycles de bus sachant qu’un chiffrement avec 

                                                 
32 Etant basé sur le même algorithme, un cœur Rijn-160 et un cœur AES requièrent les mêmes ressources 
matérielles. Par conséquent, dans la suite du document nous ne ferons référence qu’à des cœurs AES. 

AES-ECB PE-ICE-160 
Latences  

(cycles AHB) 
Latences  

(cycles AHB) 
Surcoût  

vs. AES-ECB Opérations 

R = 1 R = 2 R = 1 R = 2 R = 1 R = 2 
Ecriture de 8 à 32 

bits 38 28 42 30 10,5% 7% 

Lecture de 8 à 32 
bits 15 10 17 11 13,5% 10% 

Ecriture de 4 mots 
de 32 bits 15 10 17 11 13,5% 10% 

Lecture de 4 mots 
de 32 bits 15 10 17 11 13,5% 10% 

Ecriture de 8 mots 
de 32 bits 15 10 18 12 20% 20% 

Lecture de 8 mots 
de 32 bits 15 10 18 12 20% 20% 

Ecriture de 16 mots 
de 32 bits 15 10 20 14 33,5% 40% 

Lecture de 16 mots 
de 32 bits 15 10 20 14 33,5% 40% 
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Rijn-160 demande 12 cycles de latences (vues du bus AHB) pour R = 1 et 6 cycles pour R = 

2. Le nombre de cœurs Rijn-160 est alors de trois pour R = 1 et de deux pour R = 2. 

En considérant les évaluations en nombre de portes d’un cœur AES (et de son cœur 

d’expansion de clef) de la société Ocean Logic [80], l’implémentation matérielle de PE-ICE-

160 et d’un AES-ECB demande une surface de 80 K portes en technologie 0,18µ.   
 

4.4.4. Dégradation des Performances durant l’Exécution  

Les dégradations engendrées par un chiffrement AES-ECB et par PE-ICE-160 ont été 

évaluées en utilisant l’outil de simulation SoCDesigner [81] fourni par ARM. Le cœur de 

processeur simulé est le ARM9E et les paramètres architecturaux choisis sont indiqués dans le 

Tableau 5. Les latences d’accès mémoire dites de base – sans mécanismes matériels de 

sécurité - en lecture et en écriture émanent de la documentation d’un contrôleur mémoire 

compatible AHB : le PL172 [82]. Les latences les plus petites ont été choisies afin d’estimer 

la dégradation de performances impliquée par PE-ICE dans le pire cas. 

Huit logiciels (MP3 player, Huffman, CJPEG, DJPEG, ADPCM, FingerPrint, DES, 

MP2Audio) destinés aux systèmes embarqués ont été utilisés afin d’évaluer les dégradations 

engendrées par les différentes versions de PE-ICE et par un chiffrement AES-ECB. Deux cas 

ont été considérés : une cache destinée aux données de 4 Ko et de 128 Ko ; le taux de défauts 

de cache relatif à chaque application d’évaluation utilisée est indiqué Figure 9. Les résultats 

de simulation (Tableau 4 : paramètres architecturaux) de l’AES-ECB et de PE-ICE-160 sont 

donnés Figure 10 en les normalisant par rapport aux résultats de simulation obtenus sur une 

plateforme conçue sans mécanismes de sécurité (Figure 8). Nous indiquons également en 

Figure 10 les évaluations d’autres configurations de PE-ICE : PE-ICE-128 (configuration 

avec l’AES comme algorithme de chiffrement par bloc sous-jacent) et PE-ICE-192 

(configuration avec le Rijndael traitant des blocs de 192 bits).  
 

Tableau 4  Paramètres architecturaux choisis pour les simulations 

Processeur ARM926EJ-S 
Bande passante du bus processeur mémoire 32 bits 

FCPU / FAHB 2 
Cache line 256 bits 

R = FAES / FAHB 2 
Latence d’accès mémoire en lecture de “Base” 

(en cycles de bus AHB) 9 

Latence d’accès mémoire en écriture de “Base” 
(en cycles de bus AHB) 1 
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Figure 8  Résultats de simulations des applications d’évaluation sur une plateforme 
définie sans mécanisme de sécurité pour deux tailles de mémoire cache dédiée aux 

données 
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Figure 9  Taux de défauts de cache de données lors de l’exécution des applications 
utilisées pour l’évaluation des dégradations des performances engendrées par les 

mécanismes matériels de sécurité. 
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Figure 10  Dégradation engendrée par les mécanismes de sécurité (PE-ICE et AES-ECB) 
pour deux tailles de mémoire cache dédiée aux données. Les résultats sont donnés pour 
différentes versions de PE-ICE: PE-ICE-128 (AES), PE-ICE-160 (Rijn-160) et PE-ICE-

192 (Rijn-192). 
 

La Figure 10 montre clairement que les dégradations de performances sont principalement 

dues au chiffrement car les différents engins de sécurité (PE-ICE et AES-ECB) implémentent 

tous un chiffrement ECB et engendrent une perte en performance relativement similaire. Le 

chiffrement AES-ECB implique une dégradation de 50% dans le pire cas (CJPEG – 4KB) et 

de 31,5% et de 14,3% en moyenne respectivement pour une cache de donnée de 4 KB et de 

128 KB. Augmenter la taille de la mémoire cache diminue logiquement les dégradations en 

réduisant le nombre d’accès à la mémoire externe. 

Concernant PE-ICE, les dégradations engendrées par rapport à un chiffrement AES-ECB 

correspondant au contrôle d’intégrité des données ont été évaluées en normalisant les résultats 

des différentes versions proposées (PE-ICE-128, PE-ICE-160 et PE-ICE-192) à ceux obtenus 

avec l’engin AES-ECB. La Figure 11 montre que le surcoût en performance est négligeable 

par rapport à un chiffrement des données seules : en moyenne PE-ICE-160 rajoute une 

dégradation de 3,3% et de 1,7% pour une cache de données de respectivement 4 Ko et 128 

Ko. 
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Figure 11  Dégradation des performances engendrée par le mécanisme de contrôle de 
PE-ICE. Les résultats sont donnés pour différentes versions de PE-ICE: PE-ICE-128 

(AES), PE-ICE-160 (Rijn-160) et PE-ICE-192 (Rijn-192) et sont normalisés par rapport 
au chiffrement AES-ECB 

 
 

5. Conclusion 

L’objectif des mécanismes de protection contre les attaques physiques au niveau système 

(observation du bus ou corruption du contenu mémoire) est de fournir aux applications 

exécutées sur un processeur un environnement confidentiel, authentifié et résistant aux 

falsifications. Un tel environnement requiert d’assurer la confidentialité et l’intégrité des 

données transférées entre un processeur et sa mémoire externe. 

La méthode conventionnelle utilisée dans les Systèmes sur Puces (SsP) est de dédier un 

engin matériel à chaque objectif sécuritaire : confidentialité et intégrité. Cette approche mène 

à une utilisation non optimisée des ressources matérielles et implique des latences générées 

par les calculs sous-jacents au chiffrement/déchiffrement et aux calculs d’étiquettes, non 

parrallélisables.  

Dans cette thèse, nous proposons d’explorer l’ajout de redondances et d’aléas dans chaque 

bloc de texte en clair avant leur chiffrement - par bloc - afin d’assurer efficacement la 

confidentialité et l’intégrité des données transitant sur le bus processeur mémoire des 
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systèmes embarqués. En vérifiant la redondance ou l’aléa après déchiffrement, nous ajoutons 

la capacité de contrôle de l’intégrité au chiffrement par bloc. De cette manière, un unique 

algorithme de chiffrement est implémenté pour garantir les deux services de sécurité. De plus, 

un point clef de PE-ICE est le fait que la génération de l’étiquette se fait indépendamment des 

données que ce dernier protège. Il en résulte que PE-ICE offre les avantages suivants : 

• Optimisation des latences : Les processus de chiffrement (respectivement de 

déchiffrement) et de calcul de l’étiquette (respectivement de contrôle d’intégrité) 

sont réalisés en parallèle, permettant d’optimiser les latences d’accès mémoire en 

écriture et en lecture. 

• Optimisation des ressources matérielles : le même matériel est utilisé pour assurer 

la confidentialité et l’intégrité des données. 

 

Nous avons également mis en place un mécanisme permettant de stocker les valeurs 

aléatoires de référence en mémoire externe (PRV-Tree ; voir version de la thèse en anglais) 

afin d’annuler le surcoût engendré par leur stockage sur le SsP. Par ailleurs nous 

implémentons actuellement PE-ICE sur un processeur LEON2 [77]. 
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   MECANISMES MATERIELS POUR DES TRANSFERTS PROCESSEUR MEMOIRE SECURISES DANS LES 

SYSTEMES EMBARQUES 
 

RESUME 

Les systèmes embarqués actuels (téléphone portable, assistant personnel…) ne sont pas considérés 
comme des hôtes de confiance car toute personne y ayant accès, sont des attaquants potentiels. Les données 
contenues dans ces systèmes peuvent être sensibles (données privées du propriétaire, mot de passe, code d’un 
logiciel…) et sont généralement échangées en clair entre le Système sur Puces (SoC – System on Chip) et la 
mémoire dans laquelle elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible : un 
attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la possibilité d’insérer du code 
afin d’altérer le fonctionnement d’une application s’exécutant sur le système. Afin de prévenir ce type d’attaque, 
des mécanismes matériels doivent être mis en place afin d’assurer la confidentialité et l’intégrité des données. 
L’approche conventionnelle pour atteindre cet objectif est de concevoir un mécanisme matériel pour chaque 
service de sécurité (confidentialité et intégrité). Cette approche peut être implantée de manière sécurisée mais 
empêche toute parallélisation des calculs sous-jacents. 

Les travaux menés au cours de cette thèse ont dans un premier temps, consisté à faire une étude des 
techniques existantes permettant d’assurer la confidentialité et l’intégrité des données. Dans un deuxième temps, 
nous avons proposé deux mécanismes matériels destinés à la sécurisation des transactions entre un processeur et 
sa mémoire. Un moteur de chiffrement et de contrôle d’intégrité parallélisé, PE-ICE (Parallelized Encryption and 
Integrity Checking Engine) a été conçu. PE-ICE permet une parallélisation totale des opérations relatives à la 
sécurité aussi bien en écriture qu’en lecture de données en mémoire. Par ailleurs, une technique basée sur une 
structure d’arbre (PRV-Tree – PE-ICE protected Reference Values) comportant la même propriété de 
parallélisation totale, a été spécifiée afin de réduire le surcoût en mémoire interne impliqué par les mécanismes 
de sécurité. 

 

 

MOTS-CLES: Architecture des processeurs, Systèmes embarqués, Sécurité, Confidentialité, Intégrité, 
Authentification, Cryptographie, Systèmes sur Puce, Observation de bus, Attaques, Mémoire, Performance.  
 
 

HARDWARE MECHANISMS FOR SECURED PROCESSOR-MEMORY TRANSACTIONS IN EMBEDDED SYSTEMS 
 

ABSTRACT  

Today’s embedded systems are considered as non trusted hosts since the owner, or anyone else who 
succeeds in getting access, is a potential adversary. The bus between the System on Chip (SoC) and the external 
memory is one of the weakest points of such systems because external memories contain sensitive data (end 
users private data, software code…) which are usually exchanged in clear form over the bus. Therefore an 
adversary may probe this bus in order to read private data or to retrieve software code (data confidentiality 
concern). Another possible attack relies on code injection (data integrity concern). Thus, hardware mechanisms 
must be designed to ensure data confidentiality and integrity. The conventional way to reach such a goal is to 
implement a dedicated hardware engine for each security service. Being secured, this approach prevents 
parallelizability of the underlying computations.  

In this thesis, after a study of existing techniques and engines guaranteeing data confidentiality and 
integrity, two hardware mechanisms dedicated to the security of processor-memory transactions are proposed. 
First, a Parallelized Encryption and Integrity Checking Engine (PE-ICE) has been designed to provide an 
effective solution to ensure both security services to data. PE-ICE allows full parallelizations on processor read 
and write operations while optimizing the hardware resources required. Then, a technique based on a tree 
structure (PRV-Tree – PE-ICE protected Reference Values) with the same property of full parallelization, is 
specified to decrease the on-chip memory overhead implied by security mechanisms. 
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Cryptography, System on Chip, Board level attacks, Memory, Performance. 
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