
HAL Id: tel-00142209
https://theses.hal.science/tel-00142209

Submitted on 17 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mécanismes Matériels pour des TransfertsProcesseur
Mémoire Sécurisés dans lesSystèmes Embarqués

Reouven Elbaz

To cite this version:
Reouven Elbaz. Mécanismes Matériels pour des TransfertsProcesseur Mémoire Sécurisés dans lesSys-
tèmes Embarqués. Micro et nanotechnologies/Microélectronique. Université Montpellier II - Sciences
et Techniques du Languedoc, 2006. Français. �NNT : �. �tel-00142209�

https://theses.hal.science/tel-00142209
https://hal.archives-ouvertes.fr

UNIVERSITE MONTPELLIER II
SCIENCES ET TECHNIQUES DU LANGUEDOC

T H E S E

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE MONTPELLIER II

Discipline : Génie Informatique, Automatique et Traitement du Signal
Formation Doctorale : Systèmes Automatiques et Microélectroniques

Ecole Doctorale : Information, structures, Systèmes

présentée et soutenue publiquement

par

Reouven ELBAZ

Le 12 Décembre 2006 à Montpellier

MMééccaanniissmmeess MMaattéérriieellss ppoouurr ddeess TTrraannssffeerrttss
PPrroocceesssseeuurr MMéémmooiirree SSééccuurriissééss ddaannss lleess

SSyyssttèèmmeess EEmmbbaarrqquuééss

HHaarrddwwaarree MMeecchhaanniissmmss ffoorr SSeeccuurreedd PPrroocceessssoorr--
MMeemmoorryy TTrraannssaaccttiioonnss iinn EEmmbbeeddddeedd SSyysstteemmss

JURY

M. Jean Claude Bajard, Professeur, Université de Montpellier II, Président du jury

M. Viktor Fischer, Professeur, Université de St Etienne, Rapporteur

M. Olivier Sentieys, Professeur, Université de Rennes I, Rapporteur

M. Joan Daemen, Docteur, Société STMicroelectronics, Examinateur

M. Pierre Guillemin, Société STMicroelectronics, Examinateur

M. Jean Baptiste Rigaud, Maître de Conférence, Centre Microélectronique de Provence, Examinateur

M. Gilles Sassatelli, Chargé de Recherche CNRS, LIRMM – UMII, Examinateur

M. Lionel Torres, Professeur, Université de Montpellier II, Directeur de Thèse

i

UNIVERSITE MONTPELLIER II
SCIENCES ET TECHNIQUES DU LANGUEDOC

T H E S E

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE MONTPELLIER II

Discipline : Génie Informatique, Automatique et Traitement du Signal
Formation Doctorale : Systèmes Automatiques et Microélectroniques

Ecole Doctorale : Information, structures, Systèmes

présentée et soutenue publiquement

par

Reouven ELBAZ

Le 12 Décembre 2006 à Montpellier

MMééccaanniissmmeess MMaattéérriieellss ppoouurr ddeess TTrraannssffeerrttss
PPrroocceesssseeuurr MMéémmooiirree SSééccuurriissééss ddaannss lleess

SSyyssttèèmmeess EEmmbbaarrqquuééss

HHaarrddwwaarree MMeecchhaanniissmmss ffoorr SSeeccuurreedd PPrroocceessssoorr--
MMeemmoorryy TTrraannssaaccttiioonnss iinn EEmmbbeeddddeedd SSyysstteemmss

JURY

M. Jean Claude Bajard, Professeur, Université de Montpellier II, Président du jury

M. Viktor Fischer, Professeur, Université de St Etienne, Rapporteur

M. Olivier Sentieys, Professeur, Université de Rennes I, Rapporteur

M. Joan Daemen, Docteur, Société STMicroelectronics, Examinateur

M. Pierre Guillemin, Société STMicroelectronics, Examinateur

M. Jean Baptiste Rigaud, Maître de Conférence, Centre Microélectronique de Provence, Examinateur

M. Gilles Sassatelli, Chargé de Recherche CNRS, LIRMM – UMII, Examinateur

M. Lionel Torres, Professeur, Université de Montpellier II, Directeur de Thèse

ii

iii

A Tiffanie, à mes Parents,

Et à ma Grand-mère Myriam,

iv

Remerciements

Je souhaite remercier en premier lieu « ma » Tiffanie, qui a su me supporter (dans tous
les sens du terme) au cours de ces trois ans. Il n’y a pas de mots pour exprimer l’importance
que tu as eu dans l’élaboration de ces travaux, et je ne parle même pas des heures passées sur
des démonstrations mathématiques.

Ensuite mes remerciements vont à mes parents, Marie France et Haïm Elbaz, qui ont
toujours su me témoigner leur amour inconditionnel, et bien évidemment à mes frères et
sœurs, Shmouël, Yossi, Déborah, Tsyona et Meyer qui malgré la distance ont toujours marqué
leur présence et leur soutien.

Ces travaux de thèse ont été réalisés dans le cadre d’un projet régional (PACA 2003-
08) impliquant la société STMicroelectronics, le LIRMM (Laboratoire d’Informatique de
Robotique et de Microélectronique de Montpellier) et le CMP (Centre Microélectronique de
Provence – Ecole des Mines de St Etienne). Dans ce contexte, j’ai été amené à travailler avec
de nombreuses personnes, j’espère ne pas en oublier.

Un immense merci à Pierre Guillemin qui au cours de ces trois ans a été mon
responsable chez STMicroelectronics. Toujours présent, il n’a jamais économisé son temps et
ses précieux conseils qui m’ont permis de poursuivre mes travaux de manière autonome. J’ai
vraiment apprécié travailler à ses côtés et je vais regretter notre collaboration. Merci Pierre.

Je remercie également mon directeur de thèse, Lionel Torres, ainsi que Gilles
Sassatelli du LIRMM qui ont su me faire confiance et me donner ma chance. Leurs
encouragements et leurs remarques constructives m’ont permis de valoriser efficacement mes
travaux. La bonne ambiance qui régnait lors de nos réunions a énormément contribué à ma
motivation.

Ensuite, je remercie Michel Bardouillet de STMicroelectronics pour ces discussions
particulières et animées qui m’ont amené à pousser ma réflexion toujours plus loin.

Merci à mon maître en design (et en jeux de mots), Albert Martinez de
STMicroelectronics, qui a fait preuve d’une patience et d’une pédagogie époustouflante.
Toujours disponible, j’ai énormément appris à ses côtés.

Je remercie également Claude Anguille de STMicroelectronics, avec qui j’ai travaillé
durant la première année de thèse. Une année certes, mais durant laquelle il m’a beaucoup
appris, en particulier concernant le travail d’équipe.

v

Je remercie le Professeur Viktor Fischer du Laboratoire Hubert Curien de St Etienne et
le Professeur Olivier Sentieys de l’Université de Rennes 1 qui ont accepté d’être les
rapporteurs de mes travaux de thèse.

Je suis particulièrement reconnaissant envers Joan Daemen de STMicroelectronics de

m’avoir fait l’honneur de sa participation à mon jury de thèse. Par ailleurs, ses conseils
prodigués au cours de ma thèse m’ont été d’une grande aide dans la compréhension de la
cryptographie.

Je remercie grandement le Professeur Jean Claude Bajard du LIRMM de m’avoir fait

l’honneur de présider mon jury de thèse.

Je remercie Jean Baptiste Rigaud du CMP pour avoir pris part à mon jury de thèse

ainsi que pour ses encouragements au cours de ma thèse.

 Le contexte « multi labo » dans lequel s’est déroulé ma thèse m’a amené à beaucoup
voyager entre Rousset, Marseille et Montpellier, et je tiens à remercier particulièrement deux
personnes qui ont tout fait pour me simplifier la vie. La géniale Evelyne Arrighi de
STMicroelectronics : on a à peine le temps de penser aux démarches à entreprendre qu’elle a
déjà tout fait !!!! Et Elisabeth Petiot du LIRMM, qui, même lorsqu’elle n’était plus
responsable des missions du département microélectronique, était toujours présente pour
répondre à mes questions dans la bonne humeur. Encore merci à vous deux, si tout le monde
pouvait être comme vous….

Ensuite je tiens à remercier toute l’équipe d’AST (STMicroelectonics) : Stéphan
Courcambeck (merci pour ton temps), William Orlando, Christian Schwarz, Sarah Hoffman,
Jean Nicolaï, Klaus Rischmuller (merci pour tous tes conseils en termes de communications),
Bernard Kasser et Norah Cowman.

Une « spéciale dédicace » à mes collègues de pause AST : Sophie Gabriele, Guillaume
Petitjean et Lionel Martin ainsi qu’à mes amis thésards AST : Simon Conseil et William
Ketchantang. Je crains de ne jamais retrouver une telle ambiance.

Je remercie les thésards du LIRMM ; je commence par mes colocataires de box :

Robin et Nicolas qui ont su durant mon absence, défendre vaillamment mon bureau dans un
hall où les places se font rares. Je pense également à Nicolas, Jean Baptiste (tu n’es pas
thésard mais ça passe pour cette fois), Alin, Nabil, Fabrice, Benoit, Daniel, Jean Denis, Jean
Etienne, Lionel, Julien, Annissa, Alex, Alex, Alex, Abdellah, Olivier, Zequin (Eric), Nicolas,
Mickael, Laurent et Marion. Merci également à Nurten pour son aide de dernière minute.

Je remercie également mon compagnon de toujours et mon complice « musical »
Vincent Kerzérho ainsi que son amie Anne Laure. Je remercie mon ami Wael Gouja ainsi que
tous les autres : Boris, Daniele, Severine, Nadine et Franck, Arnaud, Maxime, Nizar, Romain,
Christian, Seb…

Je ne peux terminer ces remerciements, sans remercier infiniment Dany et Alexandre
Herrmann pour leur accueil toujours chaleureux lors de mes nombreux séjours à Montpellier.

vi

vii

Résumé

Les systèmes embarqués actuels (téléphone portable, assistant personnel…) ne sont pas

considérés comme des hôtes de confiance car toute personne y ayant accès, sont des

attaquants potentiels. Les données contenues dans ces systèmes peuvent être sensibles

(données privées du propriétaire, mot de passe, code d’un logiciel…) et sont généralement

échangées en clair entre le Système sur Puces (SoC – System on Chip) et la mémoire dans

laquelle elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible :

un attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la

possibilité d’insérer du code afin d’altérer le fonctionnement d’une application s’exécutant sur

le système. Afin de prévenir ce type d’attaque, des mécanismes matériels doivent être mis en

place afin d’assurer la confidentialité et l’intégrité des données. L’approche conventionnelle

pour atteindre cet objectif est de concevoir un mécanisme matériel pour chaque service de

sécurité (confidentialité et intégrité). Cette approche peut être implantée de manière sécurisée

mais empêche toute parallélisation des calculs sous-jacents.

Les travaux menés au cours de cette thèse ont dans un premier temps, consisté à faire une

étude des techniques existantes permettant d’assurer la confidentialité et l’intégrité des

données. Dans un deuxième temps, nous avons proposé deux mécanismes matériels destinés à

la sécurisation des transactions entre un processeur et sa mémoire. Un moteur de chiffrement

et de contrôle d’intégrité parallélisé, PE-ICE (Parallelized Encryption and Integrity Checking

Engine) a été conçu. PE-ICE permet une parallélisation totale des opérations relatives à la

sécurité aussi bien en écriture qu’en lecture de données en mémoire. Par ailleurs, une

technique basée sur une structure en arbre (PRV-Tree – PE-ICE protected Reference Values)

comportant la même propriété de parallélisation totale, a été spécifiée afin de réduire le

surcoût en mémoire interne impliqué par les mécanismes de sécurité.

viii

ix

Abstract

Today’s embedded systems are considered as non trusted hosts since the owner, or anyone

else who succeeds in getting access, is a potential adversary. The bus between the System on

Chip (SoC) and the external memory is one of the weakest points of such systems because

external memories contain sensitive data (end users private data, software code…) which are

usually exchanged in clear form over the bus. Therefore an adversary may probe this bus in

order to read private data or to retrieve software code (data confidentiality concern). Another

possible attack relies on code injection (data integrity concern). Thus, hardware mechanisms

must be designed to ensure data confidentiality and integrity. The conventional way to reach

such a goal is to implement a dedicated hardware engine for each security service. Being

secured, this approach prevents parallelizability of the underlying computations.

In this thesis, after a study of existing techniques and engines guaranteeing data

confidentiality and integrity, two hardware mechanisms dedicated to the security of

processor-memory transactions are proposed. First, a Parallelized Encryption and Integrity

Checking Engine (PE-ICE) has been designed to provide an effective solution to ensure both

security services to data. PE-ICE allows full parallelizations on processor read and write

operations while optimizing the hardware resources required. Then, a technique based on a

tree structure (PRV-Tree – PE-ICE protected Reference Values) with the same property of

full parallelization, is specified to decrease the on-chip memory overhead implied by security

mechanisms.

x

Contents

 1

Contents

List of Figures .. 9

List of Tables.. 13

Introduction ... 17

Chapter 1: The cryptographic tool .. 23

1-1. Definitions... 23

1-2. Kerckhoffs’ Principles .. 25

1-3. Encryption Techniques ... 26

1-3.1. Secret-Key Cipher (a.k.a. Symmetric-Key Cipher) ... 26

1-3.1.1. Principle .. 26

1-3.1.2. Stream Ciphers.. 27

1-3.1.2.1. Principle ... 27

1-3.1.2.2. One Time Pad: The Perfect Stream Cipher.. 28

1-3.1.2.3. Modern Stream Ciphers ... 28

1-3.1.2.4. Advantages and Drawbacks... 31

1-3.1.3. Block Ciphers.. 31

1-3.1.3.1. Principle ... 31

Contents

 2

1-3.1.3.2. The Shannon Principles ... 32

1-3.1.3.3. Block Cipher Structures... 32

1-3.1.3.4. Example: AES.. 33

1-3.1.3.5. Advantages and Drawbacks... 38

1-3.1.3.6. Modes of Operation ... 39

1-3.2. Public-Key Encryption... 45

1-3.2.1. Principle .. 45

1-3.2.2. Example: RSA .. 46

1-3.2.3. Advantages and Drawbacks.. 47

1-3.3. Security of Encryption Techniques.. 48

1-4. Data Integrity Checking Techniques .. 50

1-4.1. Integrity Checking Process Principle... 50

1-4.2. Hash Functions... 51

1-4.3. Unkeyed Hash Functions a.k.a. Modification Detection Codes (MDC) 52

1-4.3.1. Principle .. 52

1-4.3.2. Example: SHA-1... 53

1-4.3.3. Message Authentication Schemes Based on MDC... 55

1-4.3.3.1. MDC and Asymmetric Signature... 56

1-4.3.3.2. MDC and Symmetric Encryption .. 57

1-4.4. Keyed Hash Functions and MAC Algorithms ... 58

1-4.4.1. Principle .. 58

1-4.4.2. Example: CBC-MAC.. 59

1-4.5. The Birthday Attacks ... 60

1-4.6. Transaction Authentication.. 61

1-5. Conclusion .. 61

Chapter 2: Security Concerns.. 63

2-1. Software Copy Protection ... 64

2-2. The Threat Model ... 65

2-2.1. Security Level and Adversaries Classification .. 66

2-2.2. Considered Attacks .. 66

2-2.3. Attack conducted on a Commercial Device: The DS5002FP................................ 68

2-3. System on Chip Context ... 70

Contents

 3

2-3.1. Memory Accesses .. 70

2-3.2. Basic Principles for the Hardware Mechanisms for Data Security........................ 72

2-3.2.1. Hardware Mechanisms for Data Security Localization 72

2-3.2.2. Bus Encryption Principle .. 72

2-3.2.3. Principle of Memory (Content) Integrity Verification.................................... 73

2-3.3. Run-Time Performance Degradation Considerations.. 75

2-3.3.1. Data Properties.. 75

2-3.3.2. Sources of Time Performance Degradation.. 75

2-4. Conclusion .. 76

Chapter 3: Related Works.. 79

3-1. Hardware Engine for Bus Encryption... 79

3-1.1. Direct Encryption... 80

3-1.2. One Time Pad (OTP) ... 82

3-1.3. Summary .. 85

3-2. Memory Integrity Verification Engines.. 86

3-2.1. Integrity Checking Engines Based on MAC algorithms.. 87

3-2.2. Hash Trees ... 88

3-2.3. Summary .. 91

3-3. Memory Encryption and Authentication: Techniques and Related Works 91

3-3.1. The Conventional Way: Generic Composition Schemes....................................... 91

3-3.1.1. Principle .. 91

3-3.1.2. Off-Chip Memory Protection Engines Based on Generic Composition......... 93

3-3.1.2.1. AEGIS.. 93

3-3.1.2.2. SP – Secret Protected ... 93

3-3.1.2.3. XOM .. 94

3-3.1.2.4. Summary .. 94

3-3.2. AREA: Added Redundancy Explicit Authentication .. 95

3-3.3. Authenticated Encryption Modes .. 96

3-3.3.1. Authenticated Encryption Modes with Non-Parallelizable Operations.......... 97

3-3.3.1.1. CCM - Counter CBC-MAC... 97

3-3.3.1.2. EAX - Encrypt Authenticate Translate .. 97

3-3.3.1.3. PCFB - Propagating Cipher Feedback... 98

Contents

 4

3-3.3.1.4. IACBC - Integrity Aware Cipher Block Chaining 98

3-3.3.1.5. XCBC-XOR... 99

3-3.3.2. Parallelizable Authenticated Encryption modes ... 99

3-3.3.2.1. IAPM – Integrity Aware Parallelizable Mode ... 99

3-3.3.2.2. XECB-XOR ... 100

3-3.3.2.3. OCB – Offset Code Book .. 100

3-3.3.2.4. GCM – Galois Counter Mode.. 101

3-3.3.2.5. CWC – Carter-Wegman authentication with Counter 102

3-3.3.2.6. CS – Cipher State... 103

3-3.3.3. Discussion ... 103

3-4. Conclusion .. 104

Chapter 4: PE-ICE - Parallelized Encryption and Integrity Checking

Engine ... 107

4-1. General Overview ... 108

4-2. Adding the Integrity Checking Capability to Block Encryption 108

4-2.1. The Diffusion Property of Block Ciphers.. 108

4-2.2. PE-ICE Encryption and Integrity Checking Process ... 109

4-2.3. The Tag Generation ... 110

4-3. Encryption Mode and Chunk Definition... 112

4-4. Protecting the Physical Address Space vs. the Virtual Address Space........................... 113

4-5. Security Considerations .. 114

4-5.1. Active Attacks.. 114

4-5.2. Confidentiality and Passive Attacks .. 116

4-5.3. PE-ICE Encryption Key Requirements ... 117

4-6. Physical Address Computation ... 118

4-7. Memory consumption ... 120

4-8. Summary ... 120

4-8.1. Definitions.. 120

4-8.2. PE-ICE Parameters .. 121

4-8.3. PE-ICE Pseudo Codes.. 122

4-9. Conclusion .. 124

Contents

 5

Chapter 5: PE-ICE Implementation ... 127

5-1. PE-ICE Configurations ... 127

5-1.1. PE-ICE-128.. 128

5-1.1.1. Layout of a PE-ICE-128 Line ... 128

5-1.1.2. Security Limitations.. 129

5-1.1.3. Memory Consumption .. 130

5-1.1.4. Computation of a Chunk Physical Address .. 130

5-1.2. PE-ICE-160.. 130

5-1.2.1. Layout of a PE-ICE-160 Line ... 131

5-1.2.2. Security Limitations.. 131

5-1.2.3. Memory Consumption .. 131

5-1.2.4. Computation of a Chunk Physical Address .. 131

5-1.3. PE-ICE-192.. 132

5-1.3.1. Layout of a PE-ICE-192 Line ... 132

5-1.3.2. Security Limitations.. 132

5-1.3.3. Memory Consumption .. 133

5-1.3.4. Computation of a Chunk Physical Address .. 133

5-2. Hardware Design and Latencies ... 134

5-2.1. The AMBA-AHB Bus ... 134

5-2.2. Design Principle... 135

5-2.3. Latencies .. 138

5-2.3.1. PE-ICE-128 Latencies .. 138

5-2.3.2. PE-ICE-160 Latencies .. 140

5-2.3.3. PE-ICE-192 Latencies .. 143

5-2.4. Silicon Area Usage .. 144

5-2.5. Latency Optimization... 145

5-3. Performance Evaluation.. 147

5-3.1. SoC Designer Tool Set... 147

5-3.2. Simulation Platform Modeling .. 148

5-3.3. Simulation Framework... 149

5-3.4. Results.. 149

5-4. Implementation Use Case ... 153

5-4.1. Protected Memory Region and Key Management... 153

Contents

 6

5-4.2. Physical Memory Management ... 154

5-5. Comparison With a Generic Composition Scheme .. 155

5-5.1. The Generic Composition Scheme: AES and CBC-MAC 156

5-5.1.1. Secure Implementation of GC .. 156

5-5.1.2. Optimized Definition of the Generic Composition Scheme 157

5-5.1.3. Security Considerations .. 159

5-5.1.4. Memory Consumption .. 159

5-5.1.5. Latencies ... 159

5-5.1.6. Hardware Cost .. 160

5-5.1.7. Run-Time Performance... 161

5-5.2. Comparison between GC and PE-ICE... 163

5-6. Conclusion .. 164

Chapter 6: PRV-Tree - Secure Off-chip Storage of Reference Random

Values.. 167

6-1. m-ary Balanced Tree ... 168

6-2. Secure Storage Principle of the Reference Random Values ... 169

6-3. PRV-Tree scheme (PE-ICE protected of the Reference Value Tree)............................. 171

6-3.1. Principle ... 171

6-3.2. Physical Address Computation .. 173

6-3.3. Off-chip Memory Consumption .. 175

6-4. Comparison between PRV-Trees (PE-ICE-160) and Hash Trees 176

6-5. Implementation Use Case ... 178

6-6. Other applications of PRV-Tree ... 179

6-7. Conclusion .. 180

Chapter 7: Conclusion .. 183

7-1. Contributions... 183

7-2. Further Works ... 185

7-3. Further Idea: PE-ICE-OTP ... 185

French Summary: Mécanismes Matériels pour des Transactions

Processeur-Bus Sécurisées dans les Systèmes Embarqués.......................... 189

Contents

 7

References .. 219

Bibliography Relative to the Study.. 229

 8

List of Figures

 9

List of Figures

Figure 1-1 Secret-key (a.k.a. symmetric key) cipher principle ... 26

Figure 1-2 Stream cipher principle.. 27

Figure 1-3 Key stream generators model of modern stream ciphers 29

Figure 1-4 Synchronous stream ciphers .. 29

Figure 1-5 Self -synchronous stream ciphers.. 30

Figure 1-6 Block ciphers principle.. 31

Figure 1-7 Block ciphers structure .. 32

Figure 1-8 AES Encryption process: 10 rounds of 4 operations: SubBytes - ShiftRows -

MixColumns - AddRoundKey .. 34

Figure 1-9 State array input and output... 34

Figure 1-10 SubBytes: the S-box is applied on each byte of the State array 35

Figure 1-11 The S-box: substitution value for a byte xy ... 35

Figure 1-12 ShiftRows: the last three rows of the state array are cyclically shifted............... 36

Figure 1-13 MixColumns multiplies each column of the State array by a constant matrix.... 36

Figure 1-14 AddRoundKey: Xor operation between each column of the State array and the

corresponding column in the round key matrix .. 37

Figure 1-15 Computation of a round key .. 37

Figure 1-16 The ECB (Electronic Code Book) mode ... 40

Figure 1-17 The CBC (Cipher Block Chaining) mode ... 40

Figure 1-18 The CTR (Counter) mode.. 42

Figure 1-19 The OFB (Output FeedBack) mode .. 43

List of Figures

 10

Figure 1-20 The CFB (Cipher FeedBack) mode... 44

Figure 1-21 Public-key cipher principle.. 45

Figure 1-22 Man-in-the-middle attack principle... 48

Figure 1-23 Integrity checking process principle.. 50

Figure 1-24 Model of iterative hash functions .. 52

Figure 1-25 The compression function (f) of SHA-1.. 54

Figure 1-26 Message authentication using a MDC and asymmetric signature....................... 56

Figure 1-27 Message authentication using a MDC and symmetric encryption 57

Figure 1-28 Message authentication using MAC algorithms.. 58

Figure 1-29 General model for CBC-MAC .. 59

Figure 1-30 Taxonomy of security services required to prevent active attacks...................... 61

Figure 2-1 Secure software download for software copy protection 65

Figure 2-2 Board level attack based on bus probing and on data injection 67

Figure 2-3 Principle of the DS5002FP CPU attack with a read-out device connected to the

bus ... 69

Figure 2-4 Localization on the SoC of the hardware mechanisms providing data

confidentiality and authentication services ... 72

Figure 2-5 Integrity checking principle of external memory .. 74

Figure 3-1 Direct encryption scheme (AES-CBC) proposed in the first version of the

AEGIS processor... 81

Figure 3-2 One-Time Pad encryption scheme (AES-CTR) proposed in the last version of the

AEGIS processor... 83

Figure 3-3 A balanced 4-ary hash tree .. 88

Figure 3-4 The conventional way to provide data confidentiality and integrity:.................. 92

Figure 3-5 IACBC - Integrity Aware Cipher Block Chaining .. 99

Figure 3-6 IAPM - Integrity Aware Parallelizable Mode ... 100

Figure 3-7 GCM -Galois Counter Mode (The message to encrypt is a multiple of the block

length of the underlying block cipher) .. 102

Figure 4-1 PE-ICE general overview .. 108

Figure 4-2 The diffusion property of block ciphers .. 109

List of Figures

 11

Figure 4-3 PE-ICE Encryption and Integrity checking process ... 110

Figure 4-4 Plaintext blocks and tag composition before encryption.................................. 112

Figure 4-5 Off-chip Memory layout - Reorganization of the Protected Memory Regions

(PMR) in PE-ICE line by PE-ICE and shifting of the physical address. Example

depicted is a PMR containing five PE-ICE lines (five line-payloads seen by

the CPU).. 118

Figure 4-6 PE-ICE operations on a payload of RO data contained in a chunk................... 122

Figure 4-7 PE-ICE operations on a RW data of a size smaller or equal to the payload

contained in a chunk ... 123

Figure 5-1 Layout of a PE-ICE-128 line before encryption.. 128

Figure 5-2 Layout of a PE-ICE-160 line before encryption.. 131

Figure 5-3 Layout of a PE-ICE-192 line before encryption.. 132

Figure 5-4 PE-ICE-128 localization on an AMBA-AHB bus... 134

Figure 5-5 PE-ICE design principle on an AMBA-AHB bus ... 136

Figure 5-6 Latencies introduced on the AHB bus by the different PE-ICE configurations and

by the AES-ECB engine on read operations .. 141

Figure 5-7 Latencies introduced on the AHB bus by the different PE-ICE configurations and

by the AES-ECB engine on write operations ... 142

Figure 5-8 Architecture using 64-bit processor memory bus.. 145

Figure 5-9 Generic architecture of the simulation platforms .. 148

Figure 5-10 Simulation results for the Base platform... 150

Figure 5-11 Data cache miss rate for the set of benchmarks used for the performance

evaluation and for two different data cache sizes (4KB and 128KB)............... 150

Figure 5-12 Run-time overhead of AES encryption and of the PE-ICE configurations for two

data cache sizes (4KB and 128KB)... 151

Figure 5-13 Run-time overhead of the integrity checking mechanism of PE-ICE

configurations compared to AES-ECB encryption alone for two data cache sizes

(4KB and 128KB) ... 152

Figure 5-14 Tables used by PE-ICE to identify the Protected Memory Regions and to select

the correct encryption key... 154

Figure 5-15 Physical memory management for PE-ICE implementation............................. 155

Figure 5-16 Insecure implementation of the CBC-MAC algorithm 156

List of Figures

 12

Figure 5-17 Secure implementation of the CBC-MAC algorithm.. 157

Figure 5-18 CBC-MAC implemented in the proposed generic composition scheme (GC) . 158

Figure 5-19 Run-time overhead of GC, of the AES-ECB engine and of PE-ICE-160 for two

data cache sizes (4KB and 128KB)... 161

Figure 5-20 Run-time overhead of the integrity checking mechanism of GC 162

Figure 6-1 A balanced binary tree (2-ary tree).. 168

Figure 6-2 An RVS-chunk before PE-ICE encryption (for t = r) 169

Figure 6-3 4-ary RV-Tree: Reference random Value Tree ... 172

Figure 6-4 Principle of computation of parent chunk addresses on a 4-ary tree................. 174

Figure 6-5 Physical memory management for PE-ICE with PRV-Tree 178

Figure 6-6 Table_RW used by PE-ICE to identify the Protected Memory Regions of RW

data and to retrieve parent chunks in memory .. 179

Figure 7-1 PE-ICE-OTP Principle .. 186

List of Tables

 13

List of Tables

Table 3-1 Summary of the existing memory encryption engines ... 86

Table 3-2 Summary of solutions achieving memory integrity checking 91

Table 3-3 Summary of the memory protection engine (encryption and integrity checking)

based on generic composition ... 95

Table 4-1 Security limitations of PE-ICE regarding active attacks led on a chunk evaluated

in chances to succeed .. 115

Table 4-2 Summary of the parameters defining PE-ICE .. 121

Table 5-1 Security limitations offered by PE-ICE-128 and by PE-ICE-160 regarding active

attacks led on a chunk and evaluated in chances to succeed for an adversary.... 129

Table 5-2 Security limitations offered by PE-ICE-192 regarding active attacks led on a

chunk and evaluated in chances to succeed for an adversary.............................. 133

Table 5-3 Additional latencies introduced by PE-ICE-128 and by the AES-ECB engine on

an AMBA-AHB bus for the operations requested by an ARM9E core 139

Table 5-4 Additional latencies introduced by PE-ICE-160 and by the AES-ECB engine on

an AMBA-AHB bus for the operations requested by an ARM9E core 140

Table 5-5 Additional latencies introduced by PE-ICE-192 and by the AES-ECB engine on

an AMBA-AHB bus for the operations requested by an ARM9E core 143

List of Tables

 14

Table 5-6 Additional latencies introduced by the PE-ICE configurations and by the AES-

ECB engine on an AMBA-AHB bus for the operations requested by an ARM9E

core with a bus width of 64-bit.. 146

Table 5-7 Number of AES cores to implement for PE-ICE and the AES-ECB engine when

the off-chip memory bus width is of 64-bit... 147

Table 5-8 Architectural parameters of the simulation platforms .. 149

Table 5-9 Average performance slowdown implied by the AES-ECB engine................... 151

Table 5-10 Average performance slowdown implied by the integrity checking mechanism of

PE-ICE compared to AES-ECB encryption alone .. 152

Table 5-11 Security limitations offered by the CBC-MAC scheme 159

Table 5-12 Additional latencies introduced by GC on an AMBA-AHB bus........................ 160

Table 5-13 Average performance slowdown implied by the AES-ECB engine................... 162

Table 5-14 Average performance slowdown implied by the integrity checking mechanism of

GC - CBC-MAC - compared to AES-ECB encryption alone 162

Table 5-15 PE-ICE and GC (Generic Composition scheme) comparison: evaluation of the

cost of the integrity checking mechanisms of the two approaches when compared

to the AES-ECB encryption .. 163

Table 6-1 PRV-Tree with PE-ICE-160 for different r-values... 176

Table 6-2 Memory bandwidth consumption of tree schemes for two different sizes of the

RW memory section to protect against replay, 16MB and 256 MB 177

List of Tables

 15

 16

Introduction

 17

Introduction

Not a day passes in our lives without someone using an embedded system: PDA, mobile

phones, MP3 players, set-top box, video equipments… The range of services provided by

every single embedded system tends to widen rapidly and applications like on-line banking

transactions, web browsing, email, application / game download become common on mobile

devices. As a consequence the amount of sensitive information such as private data – bank

information, passwords, email, photos… – or intellectual property – software, digital

multimedia content… – contained or transiting in those devices also increases. The issue is

that today’s embedded systems are considered as untrustworthy hosts [1] since the owner, or

anyone else who succeeds in getting access, is a potential adversary. Thus, one of the

challenges for the high-technology industry in the development of pervasive computing is the

ability to ensure secured computation and storage.

The attacks conducted on embedded systems [2] challenge several security services such

as data confidentiality, data integrity and system availability. Data confidentiality ensures that

data stored in or transiting through embedded systems are only read by authorized parties

while data integrity guarantees that those data are not tampered with, deleted or altered by

malicious entities. Availability refers to the requirement of ensuring the access to the device

to the user without unexpected delay or obstacle.

Software attacks like viruses are the most famous threat because they regularly affect our

desktop computers. Viruses turned up in embedded systems in 2004 with the worm called

Cabir which infected mobile phones running Symbian Operating System (OS) and which

propagated itself via Bluetooth. According to McAfee Virus Library, there were 120 types of

Cabir variants [3] in 2005. The industry started to work on this issue with the Trustzone

Project [4] from ARM and through consortiums such as the Trusting Computing Group [5]

(TCG, formerly Trusting Computing Platform Alliance, TCPA) whose goal is to define

Introduction

 18

secured processing architectures. However, all these efforts do not consider hardware-based

(physical) attacks and work under the assumption that the communication channels between

the processor chip and the other components are secure despite the fact that data exchanges

are often done in clear. The well known cracking of the Xbox gaming console shows that

designing computing systems with such an assumption leads to simple physical attacks. In

[6], the hacker Andrew “bunnie” Huang, explained his approach to break the Xbox security

features and demonstrated that one of the weakest points of computing systems are buses

because they offer a low-cost spot for attacks.

Thus, in this thesis we focus on physical non-invasive1 attacks – or board level attacks –

conducted on buses between the System on Chip and off-chip volatile memory or directly in

the memory – typically Random Access Memory (RAM). The objectives of the adversary can

be the unauthorized use or the illegal distribution of intellectual properties or – what is more

inconvenient for end users – to discover or to corrupt private data retrieved on buses or

directly in memory. Thus, our goal is to provide a private and authenticated tamper resistant

environment for application execution. This means we must ensure the confidentiality of the

off-chip memory content during storage or execution to prevent the leakage of any sensitive

information and its integrity to forbid execution of intentionally altered data.

Smartcards offer a countermeasure against such attacks by putting all processing and

storage elements in a single chip. Another common solution is secure co-processors which

encapsulate the components handling sensitive computations and data in a tamper-resistant

and tamper-responsive package, such as the IBM 4578 [7]. However, these solutions are not

suited for embedded systems because the latter require an expensive and large package to be

able to provide a high performance system while the former do not allow storing a large

amount of code and data and do not offer a high computing power.

A trade-off between the above mentioned countermeasures is to limit the trust boundaries

to the SoC and to embed memory protection apparatus on-chip. This concept was introduced

by Best with bus-encryption microprocessor [8, 9, 10] in 1979: data are encrypted before

being outputted off-chip and are only decrypted once on-chip. However, encryption only

ensures data confidentiality but does not provide tamper-detection mechanisms to guarantee

data integrity. Later on, several research works [11, 12, 13, 14] considered this additional

1 In this work we do not consider the non-invasive attacks called side-channel attacks. They are based on the
analysis of the system behavior (power consumption, execution time, supply voltage, temperature, radiation …)
to draw conclusion on the cryptographic functions or on the secret values on which the security of the underlying
computing systems rely and which require specific countermeasures.

Introduction

 19

issue to offer a private and authenticated tamper resistant environment to software execution.

They achieved this task by providing both security services – data confidentiality and integrity

– separately. The shortcoming of such an approach is the serialization of the computation of

the underlying cryptographic algorithms on write or on read operations introducing non-

parallelizable latencies on off-chip memory accesses. Moreover, the hardware resources

needed are not optimized since the implementation of a dedicated engine for each security

service is required.

Objectives: In this thesis, the goal is to provide a private and authenticated tamper

resistant environment to applications running in embedded processors. The attacks targeted

are the physical attacks conducted at the board level, more specifically bus probing and

memory tampering (code and data injection). The designed hardware mechanisms must

ensure the confidentiality and the integrity of the off-chip memory content while considering

the constraints relative to the processor context – particularly random access of variable sizes

– to optimize hardware resources, memory access latencies and the memory bandwidth

consumption at run-time.

Contributions: In order to reach the above mentioned objectives, we explore added

redundancy and randomness to block encryption to provide data integrity in addition to

confidentiality. Two hardware mechanisms are proposed:

(1) PE-ICE – Parallelized Encryption and Integrity Checking Engine – is a dedicated

solution to guarantee data confidentiality and integrity of the external memory content with

the following features:

• Full parallelization of the encryption and integrity checking process on write and read

operations.

• Implementation of a single encryption algorithm to provide both security services:

data confidentiality and integrity.

In this thesis, the architecture of PE-ICE and its security limitations are defined. Moreover

PE-ICE is evaluated in terms of latencies introduced on memory accesses, of hardware

resources required for its SoC implementation and of run-time performance degradation.

Introduction

 20

(2) PRV-Tree - PE-ICE protected Reference Values Tree – is a scheme allowing to

securely store off-chip the meta-data used by PE-ICE and thus to propose an efficient solution

against a specific kind of attacks (replay). PRV-Tree offers the following advantages when

compared to existing solutions by using the same hardware as PE-ICE:

• Full parallelization of the underlying operations on read and write operations

• Reduction of the memory bandwidth consumption

In this thesis the concept of PRV-Tree is detailed and its advantages are highlighted

through concrete application examples.

The security of our schemes relies on the use of a well known and studied block

encryption algorithm (Rijndael [15]) and on the essential assumption that the System on Chip

is trusted.

The thesis is organized as follows.

Chapter 1 introduces the cryptographic tool by defining the security service objectives and

by describing the cryptographic function useful to provide such security services and

discussed in the rest of the thesis.

Chapter 2 provides the threat model and defines the considered attack scenarios. Moreover

we show through an example of attack that performing memory encryption only is not

sufficient and could lead to simple attacks challenging data confidentiality. We also present

the bus encryption and the memory content (integrity) verification principles. Finally this

chapter deals with the issue of implementing cryptographic functions in a System on Chip.

Chapter 3 first relates the existing memory encryption engines and the memory

verification schemes embedded on-chip. Then the techniques providing both data

confidentiality and authentication are described and the related implementations in our

application domain considering the same security perimeter (SoC trusted) are presented.

Chapter 4 defines the architecture of the proposed engine PE-ICE (Parallelized Encryption

and Integrity Checking Engine). In this chapter we show how to add the integrity checking

capability to block encryption. Moreover we describe PE-ICE processing on read and write

operations, and the PE-ICE security limitations and memory consumptions are discussed.

Chapter 5 proposes several PE-ICE configurations which depend on the underlying block

cipher and evaluates their implementation on a commercial on-chip bus and processor core.

Introduction

 21

Moreover, a comparison with a conventional scheme (data confidentiality and integrity

separately provided by dedicated engines) is discussed.

Chapter 6 proposes a scheme called PRV-Tree (PE-ICE Protected Reference Value Tree)

to eliminate the on-chip memory overhead implied by the PE-ICE countermeasure against a

specific kind of attacks (replay). The advantages of PRV-Tree compared to existing solutions

(Hash Trees) are finally discussed.

Chapter 7 concludes this thesis by summarizing the contributions. Further works are also

detailed and a new research idea is proposed to improve the mechanisms reported in the

thesis.

 22

Chapter 1. The Cryptographic Tool

 23

Chapter 1: The cryptographic tool

Cryptology is the science of secret. Two sub-disciplines compose cryptology:

cryptography which is the science of keeping secrets and cryptanalysis which is the science

of breaking those secrets.

This chapter presents the techniques provided by cryptography to allow secured

communications and the existing attacks proposed by cryptanalysis to circumvent such

techniques. The first section gives general term definitions. Then, section 1-2 exposes

Kerckhoffs’ principles which define what a secure cryptosystem is. Section 1-3 and section 1-

4 respectively describe techniques for data encryption and for data integrity checking.

1-1. Definitions

Cryptography is a study of techniques dedicated to provide security services to implement

information security. Such security services are confidentiality, authentication, data integrity

and non-repudiation (definition taken from [16]):

Confidentiality is a service used to keep the content of information from all but those

authorized to have it. Secrecy is a term synonymous with confidentiality and privacy. There

are numerous approaches to providing confidentiality, ranging from physical protection to

mathematical algorithms which render data unintelligible.

Chapter 1. The Cryptographic Tool

 24

Data integrity is a service which addresses the unauthorized alteration of data. To ensure

data integrity, one must have the ability to detect data manipulation by unauthorized parties.

Data manipulation includes such things as insertion, deletion, and substitution.

Authentication is a service related to identification. This function applies to both entities

and information itself. Two parties entering into a communication should identify each other.

Information delivered over a channel should be authenticated as to origin, date of origin, data

content, time sent, etc. For these reasons this aspect of cryptography is usually subdivided into

two major classes: entity authentication and data origin authentication. Data origin

authentication implicitly provides data integrity (for if a message is modified, the source has

changed).

Non-repudiation is a service which prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying that certain actions

were taken, a means to resolve the situation is necessary. For example, one entity may

authorize the purchase of property by another entity and later deny such authorization was

granted. A procedure involving a trusted third party is needed to resolve the dispute.

In the context of this thesis, non-repudiation is not applicable as the system on chip is the

only active entity in a processor-memory communication system; therefore such a service

issue is not dealt with in this dissertation. In the following, when the term data integrity is

used, data origin authentication is implicitly checked. In this chapter, differences between

these two notions are highlighted when required.

Encryption is the transformation process which makes a message, called plaintext,

unintelligible. The resulting text of such a transformation is called ciphertext. Encryption

operations are mathematical functions used to ensure the confidentiality of a message (but not

only). Decryption is the operation which allows to retrieve the plaintext from the ciphertext.

Both encryption and decryption primitives use a key which specifies the particular

transformation respectively from plaintext to ciphertext and from ciphertext to plaintext.

In the following, the encryption function using the key Ke will be noted as EKe. Hence if P

is the message to encrypt, then EKe(P) is the encryption of P using the key Ke. It results in a

ciphertext C such as C = EKe(P). Similarly, the decryption function using the key Kd will be

Chapter 1. The Cryptographic Tool

 25

noted as DKd and the plaintext P is recovered by applying DKd on the ciphertext C: P =

DKd(C). Encryption techniques are exposed in section 1-3.

The integrity checking process is the set of operations which allows to verify the data

integrity of a message during its storage or transmission. Such a process is described in

section 1-4.

A cryptosystem is a set of algorithms used to provide the above mentioned security

services and particularly confidentiality. It is usually composed of three algorithms: one for

the key (or keys) generation, one for encryption noted E and one for decryption noted D.

A cryptanalyst studies techniques allowing to retrieve secret information on which the

robustness of a cryptosystem - e.g. the key - relies. In the following a malicious cryptanalyst

is referred to as an adversary or an attacker. The term eavesdropper is used when the attack

only involves monitoring of the communication channel.

Two families of attacks have to be considered:

• Active attacks which allow message deletion or corruption, data injection or

replay.

• Passive attacks which consist in observing ciphertext on the communication

channel (eavesdropping).

1-2. Kerckhoffs’ Principles

In 1883, Auguste Kerckhoffs defined six principles to design a secure cryptosystem [17]:

1. The system should be, if not theoretically unbreakable, unbreakable in practice;

2. It must not be required to be secret, and it must be able to fall into the hands of the

enemy without inconvenience;

3. Its key must be communicable and retainable without the help of written notes, and

changeable or modifiable at the will of the correspondents;

4. the cryptogram should be transmissible by telegraph;

5. the encryption/decryption apparatus should be portable and operable by a single

person;

Chapter 1. The Cryptographic Tool

 26

6. it is necessary - given the circumstances that command its application - that the

system be easy to use, requiring neither mental strain nor the knowledge of a long

series of rules to observe.

All of Kerckhoffs’ requirements are still valid today. Among them we can notice that the

second principle states that all algorithms used in a cryptosystem should be public knowledge.

1-3. Encryption Techniques

The first purpose of encryption techniques is to provide the confidentiality security

service. The second and the third of Kerckhoffs’ principles implicitly mean that the robustness

of an encryption scheme relies on a secret: the key. If this secret is shared by all persons who

use a cipher to communicate in a private way, this cipher is called symmetric or secret-key

cipher. On the other hand, if the secret is only known by the intended recipient of the

encrypted message, the cipher used is called asymmetric or public-key cipher.

1-3.1. Secret-Key Cipher (a.k.a. Symmetric-Key Cipher)

1-3.1.1. Principle

Figure 1-1 Secret-key (a.k.a. symmetric key) cipher principle

Unsecured
channel Secured

channel

EncryptionPlaintext P Ciphertext C=EKe(P)

Meeting at 7h00 am in … 3FA40E8A984D4815 …

Ke

Decryption
Plaintext P=DK(C) Ciphertext C

Meeting at 7h00 am in … 3FA40E8A984D4815 …

Kd = f(Ke)

Alice

Bob

Ke

Chapter 1. The Cryptographic Tool

 27

The entities using cryptosystems based on this family of ciphers to communicate must

agree on a secret. This secret is the encryption key Ke and the decryption key Kd. This is why

they are called secret-key ciphers. Moreover, such ciphers are also referred to as symmetric-

key cipher since they mostly use the same key for encryption and for decryption (Ke = Kd) or

because Ke is easily computable from Kd and vice-versa.

Example of utilization: Alice and Bob want to communicate over an unsecured channel

(Figure 1-1). They first choose together a secret key Ke. Then Alice encrypts the message with

a symmetric-key cipher and Ke and sends it to Bob. Bob receives the ciphertext and uses the

same symmetric-key cipher and Ke (or computes Kd from Ke) to retrieve the plaintext.

Symmetric ciphers are designed to provide fast computation on encryption and on

decryption. However the previous example highlights the main drawback of symmetric-key

cryptosystems which is to securely agree on a secret key prior to establishing the

communication.

Secret-key algorithms are divided into two families: stream ciphers and block ciphers.

1-3.1.2. Stream Ciphers

1-3.1.2.1. Principle

Figure 1-2 Stream cipher principle

The concept of stream ciphers was first introduced by Gilbert Vernam [18] in 1917. He

proposed to encrypt a message character by character with a previously-prepared key of the

Key stream
generator

 Key stream ki

Encryption Decryption

Plaintext pi Ciphertext ci
1 1

1 1 1

Key stream
generator

Key stream ki

Plaintext pi

Chapter 1. The Cryptographic Tool

 28

same size as the message. The reverse procedure should be applied to the ciphertext to

retrieve the plaintext; i.e. the same key has to be applied character by character on the

ciphertext.

Modern stream ciphers are inspired by such a principle and are composed of two parts

(Figure 1-2): a key stream generator and a XOR operator. The key stream generator provides

a bit stream ki; the encryption proper is performed by the XOR operator which combines ki

and the plaintext pi one bit at a time. It results in the ciphertext ci as follows:

ci = pi ⊕ ki.

The decryption process is also a XOR operation between the same bit stream as the one

used for encryption and the ciphertext ci. In the light of the XOR operator property (ki ⊕ ki =

Id2), the result of the decryption is the plaintext:

pi = ci ⊕ ki.

1-3.1.2.2. One Time Pad: The Perfect Stream Cipher

One type of stream ciphers has been proved theoretically unbreakable by Shannon [19]: the

One-Time Pad (OTP). OTP uses a secret key stream randomly generated and at least as long

as the plaintext. Hence the sole information that a cryptanalyst could guess, is the length of

the plaintext. However, generating a random bit stream as long as the plaintext and

transmitting it to the intended recipient of the message are two difficult tasks which make

OTP implementation unaffordable.

1-3.1.2.3. Modern Stream Ciphers

In order to overcome the OTP issues, key stream generators of modern stream ciphers use

algorithms which produce a pseudo random key stream ki from an internal state Si and a secret

key as depicted in Figure 1-3. The internal state is initialized by a small data called “seed” and

all the cryptographic complexity of such a scheme resides in the output algorithm. The

objective is to make a bounded adversary think that the key stream generator output is

2 Id is the identity function.

Chapter 1. The Cryptographic Tool

 29

random. However the resulting key stream is obviously not truly random and the unbreakable

provability of OTP is no longer valid for such stream ciphers.

Figure 1-3 Key stream generators model of modern stream ciphers

Modern stream ciphers are also called state ciphers since the generated key stream

sequences depend on the internal state of the key stream generator. The internal state is

initialized with the seed and the way it is updated leads to define two kinds of stream ciphers:

synchronous stream ciphers and self-synchronous stream ciphers.

Figure 1-4 Synchronous stream ciphers

Concerning synchronous stream ciphers the internal state of the key stream generator

changes independently of the ciphertext, it is only a function of the previous state and

possibly of the secret key (Figure 1-4). Therefore, the sender and the recipient of an encrypted

message must be synchronized: each state - defining a given key stream sequence - must

correspond to the same section of the message during encryption and decryption. If some

Encryption

Secret Key
K

Internal
state Si

Next
state Si+1

Output
algorithm

“Seed”: initial state

Key stream ki

pi ci

Secret Key
K

Internal
state Si

Next
state Si+1

Output
algorithm

“Seed”: initial state

Key stream ki

pi

Decryption

Internal
state Si

Output
algorithm

“Seed”: initial state

Secret Key

Key stream ki

Next
state Si+1

Chapter 1. The Cryptographic Tool

 30

encrypted message bits are lost during transmission, the key stream will be shifted in

comparison to the ciphertext and the result of the decryption will be wrong. Additional

mechanisms must be foreseen to re-synchronize the system and to avoid impacting the whole

message deciphering. An advantage of such a class of stream ciphers concerns error

propagation. If an error occurred on one or several bits during transmission, only the

decryption of this or those bits will produce a wrong result. Unfortunately, this advantage

becomes a drawback from a security point of view. Indeed an adversary, who changes bits in

the ciphertext, knows how the plaintext is impacted.

Figure 1-5 Self -synchronous stream ciphers

Concerning self-synchronous stream ciphers, the evolution of the internal state of the key

stream generator depends on the n previous ciphertext bits (Figure 1-5). Therefore on

decryption, the key stream generator will be automatically synchronized with the key stream

generator used during encryption after receiving n bits of ciphertext. Such a class of stream

ciphers propagates transmission errors but in a limited way. Suppose that an error occurred

and that the erroneous bits were used to decide the next internal state of the key stream

generator. As internal states depend only on the n previous ciphertext bits, only the next key

stream sequence and, as a consequence, the decryption of the corresponding ciphertext will be

impacted by the error.

Stream ciphers are usually constructed by using block ciphers as output algorithms.

Examples of stream ciphers are therefore presented in the section dedicated to block cipher

modes of operation (3.1.3.6.).

Decryption Encryption

Next state
Si+1

Internal
state Si

Output
algorithm

“Seed”: initial state

Secret Key
K

Key stream ki

pi ci

Next state
Si+1

Internal
state Si

Output
algorithm

“Seed”: initial state

Secret Key
K

Key stream ki

pi

n n

Chapter 1. The Cryptographic Tool

 31

1-3.1.2.4. Advantages and Drawbacks

The main advantages of stream ciphers are their speed and their low hardware complexity.

In addition, they are relevant for applications for which error propagation is not acceptable

(synchronous stream ciphers) or must remain limited (self-synchronous stream ciphers).

However designing a secure stream cipher is a difficult task. The fact that two key streams

must never be used twice in the same cryptosystem is one security critical point. Suppose that

two plaintext messages P1 and P2 are encrypted with the same key stream KS, the resulting

ciphertexts will be respectively C1 = P1 ⊕ KS and C2 = P2 ⊕ KS. Hence, P1 ⊕ P2 = C1 ⊕ C2,

which gives information to cryptanalysts to perform attacks [16]. Moreover, a key stream

generator using a secret key K and always initialized with the same seed will produce each

time the same key stream. Therefore, an attacker may replay an old ciphertext with the

certainty that it will be correctly decrypted. Such attacks highlight the fact that the seed or the

secret key must be changed on each initialization of the output algorithm.

1-3.1.3. Block Ciphers

1-3.1.3.1. Principle

Figure 1-6 Block ciphers principle

A block cipher is an encryption scheme which first splits the plaintext into n-bit blocks,

and then encrypts each block separately using a secret key Ke (Figure 1-6). The result of the

encryption of an n-bit block of plaintext is a ciphertext block of the same length. The

Encryption (E)

Plaintext P

Ciphertext C=EKe(P)

n-bit block n-bit block

n n

n-bit block nn
n-bit block

Decryption (D)

Ke

Kd = f(Ke)

P=DKd(C)

Chapter 1. The Cryptographic Tool

 32

decryption process works analogously deciphering the ciphertext n-bit block by n-bit block

using Kd.

1-3.1.3.2. The Shannon Principles

Shannon [19] identified two properties for cipher operations to be secure: confusion and

diffusion. In Shannon’s original definitions, confusion makes the relation between the key and

the ciphertext as complex as possible. An ideal confusion makes each bit of the ciphertext

dependent on all bits of the key. Diffusion refers to the property that redundancy in the

statistics of the plaintext is dissipated in the statistics of the ciphertext. Theoretically, to reach

such a goal, each bit of the ciphertext must depend on all bits of the plaintext.

In the same paper, Shannon introduced the notion of substitution-permutation networks

also called product ciphers. Product ciphers iterate simple operations like substitution – to add

confusion - and permutation – to add diffusion. The objective of combining simple

transformations which do not individually provide a high level of security is to obtain strong

cipher.

Most modern block ciphers are based on the product cipher principle.

1-3.1.3.3. Block Cipher Structures

Figure 1-7 Block ciphers structure

Round 3

Round 1

Round 2

Plaintext P

Round Key N-1

Round Key 3

Round Key 2

Round Key 1

Secret Key

Key Schedule

Round Key N

Ciphertext C

Data Path

Round N-1

Round N

Chapter 1. The Cryptographic Tool

 33

A block cipher is divided into two parts: the key schedule and the data path.

The data path follows the product cipher principle: it is composed of a function (or a set of

functions) called a round that is repeated a fixed number of times. It takes the plaintext as

input, and outputs the ciphertext after the fixed number of rounds Nr.

The key schedule processes the secret key and derives from it the round keys used in each

data path round. The derivation of the key is necessary to add confusion: it increases the

dependency of each bit of the ciphertext upon all bits of the secret key.

The first round of the data path (Figure 1-7) takes the plaintext and the first round key as

inputs, and then the following rounds take the previous round output and the corresponding

round key as inputs.

In order to illustrate block cipher theory, the following section describes the last block

encryption algorithm standardized by the NIST (National Institute of Standard and

Technology): AES (Advanced Encryption Standard).

1-3.1.3.4. Example: AES

The Rijndael [15] algorithm was developed by Joan Daemen and Vincent Rijmen to

answer the call for bock cipher standardization from the NIST. It was adopted as the new

standard after a standardization process of five years. It was then called AES [20] (Advanced

Encryption Standard) and replaced the famous DES [21] (Data Encryption Standard) for

which the key length became too small to resist a brute force attack3 [22].

The AES algorithm processes 128-bit data blocks using cipher keys with lengths of 128,

192 and 256 bits. In the following, the AES structure is detailed only for 128-bit keys; such a

configuration is referred to as AES-128. For more information on the other configurations

refer to [15, 20].

The encryption data path:

The AES-128 data path is an iteration of 10 rounds after a first XOR operation between

the plaintext block and the secret key. A round is made of four operations: SubBytes,

ShiftRows, MixColumns and AddRoundKey, except the last round of the data path which

does not include the MixColumns transformation (Figure 1-8).

3 A brute force attacks consists in trying all possible keys to find out all plaintext / ciphertext pairs, see section
3.3

Chapter 1. The Cryptographic Tool

 34

Figure 1-8 AES Encryption process: 10 rounds of 4 operations: SubBytes - ShiftRows -
MixColumns - AddRoundKey

Those operations are performed on a 4x4 array of bytes called the State. At the start of the

cipher the State array is filled by the plaintext bytes – in0, in1, in2, … , in15 – as shown in

Figure 1-9 (taken from [20]). Sr,c is a byte of plaintext in the State array, the suffixes r and c

refer respectively to the row and the column to which it belongs. Then the State is processed

by the data path and at the end of the last round it is copied to the output array (Figure 1-9) to

produce the ciphertext - out0, out1, out2, … , out15.

Figure 1-9 State array input and output

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

Plaintext

Ciphertext

Round Key 0 = Key

Round Key 1 to 9

Round Key 10

Initial XOR
operation

Round 1 to 9

Round 10

Chapter 1. The Cryptographic Tool

 35

Figure 1-10 SubBytes: the S-box is applied on each byte of the State array

Figure 1-11 The S-box: substitution value for a byte xy

SubBytes is a non-linear byte substitution applied on each byte of the State array using a

substitution table, the S-box (Figure 1-10 - taken from [20]). Each byte Sr,c of the State array

is represented by two digits xy which are used to address the S-box (Figure 1-11 - taken from

[20]). The pointed value replaces Sr,c in the State array. The S-box is constructed by

performing two transformations: taking the multiplicative inverse of the State array in the

Galois Field GF(28) and applying an affine transformation over GF(2). Non-linearity is

provided by the first one which minimizes the correlation between the input and the output

and the second one increases the algebraic structure complexity of the operation. Both

transformations are invertible; hence the S-box is invertible.

Chapter 1. The Cryptographic Tool

 36

Figure 1-12 ShiftRows: the last three rows of the state array are cyclically shifted
of r-byte

The ShiftRows transformation acts on the last three rows of the State array. They are

cyclically shifted of a number equal to the value of the suffix r as shown in Figure 1-12 (taken

from [20]). The objective of ShiftRows is to introduce diffusion through rows.

Figure 1-13 MixColumns multiplies each column of the State array by a constant matrix

The MixColumns transformation multiplies each column of the State array by a constant

matrix (Figure 1-13 – taken from [20]). Considering each column as a polynomial over

GF(28), such transformation amounts to a multiplication modulo x4 + 1 with a(x) = x03 x3 +

x01 x2 + x01 x + x02. The objective of MixColumns is to introduce diffusion through

columns.

Chapter 1. The Cryptographic Tool

 37

The AddRoundKey transformation is a simple bitwise XOR operation between each

column of the State array and the corresponding column Wn,c in the Round Key matrix

(provided by the key schedule) with n indicating the number of the round (Figure 1-14 – taken

from [20]):

[S’0,c , S’1,c , S’2,c , S’3,c] = [S0,c , S1,c , S2,c , S3,c] ⊕ Wn,c for 0 ≤ c ≤ 3

Wn ,0 Wn ,3 Wn ,2

Wn,c

Figure 1-14 AddRoundKey: Xor operation between each column of the State array and
the corresponding column in the round key matrix

The key schedule:

Figure 1-15 Computation of a round key

The key schedule provides the Round key required in each round of the data path; such a

process is called the key expansion. The secret key is said to be expanded in Nr (number of

rounds) round keys. For the AES-128 Nr is equal to 10. The architecture of the key schedule

Wn,0 Wn,1 Wn,2 Wn,3 Wn+1,0 Wn+1,1 Wn+1,2 Wn+1,3

RotWord

SubWord

Rcon

Chapter 1. The Cryptographic Tool

 38

is depicted in Figure 1-15. Round key 0 is the secret key and is used for the first XOR

operation with the plaintext before the first round of the data path.

RotWord and SubWord are two transformations used in the key schedule. RotWord takes a

word (a0 a1 a2 a3) as input, cyclically permutes the bytes composing it, and outputs the word

(a1 a2 a3 a0). SubWord takes a word as input and applies the S-box to each of the four bytes.

Rcon [1 to 10] is a constant array of ten words [20].

A Round key (n) is composed of four words Wn,i, with n as the suffix of the corresponding

Round key and i as the position of the word in the Round Key.

To compute Round key (n+1) (Wn+1,0 Wn+1,1 Wn+1,2 Wn+1,3), four operations are chained

(Figure 1.15). The last word Wn,4 of the current Round key (n) (Wn,0 Wn,1 Wn,2 Wn,3) is first

processed by RotWord. Then the resulting word is applied to SubWord and a XOR operation

is performed between the output of SubWord and Rcon [n+1]. Finally, the first word of Round

Key (n+1), Wn+1,0, is obtained by a XOR operation between the first word of Round key (n),

Wn,0, and the result of the last operation. The other words of Round key (n+1), Wn+1,1 Wn+1,2

Wn+1,3, are computed with XOR operations between Wn+1,i-1, and Wn,i.

The decryption:

All the transformations described above are invertible. Hence, the decryption is obtained

by applying the inverse functions InvSubBytes, InvShiftRows, InvMixColumns, and

AddRoundKey in reverse order. AddRoundKey remains the same as it involves only XOR

operations. The round keys are generated in the same way, however the key schedule takes as

input the decryption key that is the last Round key (Round key(10)) of the key schedule in the

encryption process.

AES is fast both in software and in hardware. For example, the AES implementation on

ASIC presented in [23] shows that the encryption of one 128-bit block is done in 11 clock

cycles at 330 MHz.

1-3.1.3.5. Advantages and Drawbacks

Block ciphers are usually slower than stream ciphers but are more popular. The main

reason is the fact that they are simple to understand and to implement. Moreover block

ciphers are well known and studied since they are not used only to ensure data confidentiality.

As it will be presented in section 1-4, block ciphers are a building block for other

Chapter 1. The Cryptographic Tool

 39

cryptographic algorithms like the ones dedicated to data integrity and authentication security

services.

1-3.1.3.6. Modes of Operation

Block ciphers offer a solution to encrypt a given n-bit plaintext block into an n-bit

ciphertext block. Modes of operation are the recommended ways to use block ciphers to

encrypt a message longer than the cipher block size n.

In this sub section, the principles of five block cipher modes of operation are exposed:

ECB (Electronic Code Book), CBC (Cipher Block Chaining), CTR (Counter), OFB (Output

FeedBack) and CFB (Cipher FeedBack). For detailed description of such modes – particularly

OFB and CFB – refer to [24].

The NIST has recently started a standardization process for Authenticated Encryption

modes with the objective to provide both data confidentiality and authentication. Such modes

are described and discussed in a dedicated section in chapter 3 (section 3-33).

In the following, encryption modes are described considering a block cipher processing n-

bit block. The secret key K is considered to be the same for encryption and decryption. The

encryption and decryption operations using K are respectively noted Ek and Dk. Moreover, the

length of the message to encrypt is supposed to be a multiple of the ciphered block size n.

When it is not the case, message padding is required; however this issue is not exposed here,

for details refer to [16][24].

a. ECB - Electronic Code Book

ECB mode is the direct application of block cipher principle: plaintext blocks P1, P2, P3,

…, Pm composing a message M, are encrypted one at a time and independently from one

another (Figure 1.16a). The resulting ciphertext is C1, C2, C3, …, Cm with

miiPEC iki ≤≤∀= 1 assuch)(

The decryption follows the same principle (Figure 1-16b), thus:

miiCDP iki ≤≤∀= 1 assuch)(

Chapter 1. The Cryptographic Tool

 40

Figure 1-16 The ECB (Electronic Code Book) mode

The fact that the encryption of a same plaintext block twice results in the same ciphertext

block is the main drawback of ECB mode from a security point of view. A message

containing repetitive patterns must not be encrypted with such a mode because an adversary

can deduce when the same information occurs twice or is transmitted twice. A way to

improve the security of the ECB mode is to include random bit in each plaintext block before

encryption [16].

With the ECB mode, encryption and decryption processes are fully parallelizable.

Concerning error propagation, the effect of ECB mode is limited. If one bit is erroneous in

an encrypted message, only the decryption of the corresponding ciphered block is impacted.

b. CBC - Cipher Block Chaining

Figure 1-17 The CBC (Cipher Block Chaining) mode

In CBC mode, each plaintext block Pi of a message M (P1, P2, P3, …, Pm) is combined

with the previous ciphered block Ci-1 by a XOR operation prior to encryption (Figure 1-17a),

thus:

miiCPEC iiki ≤≤∀⊕= − 2 assuch)(1

IV

P1

C1

C1 C2 Cm

P1 P2 Pm

Ek

Dk Dk Dk

(a) Encryption (b) Decryption

P2

C2

Ek

Pm

Cm

Ek

IV

P1 P2 Pm

C1 C2 Cm

C1 C2 Cm

P1 P2 Pm

Ek Dk Dk Dk

(a) Encryption (b) Decryption

Ek Ek

Chapter 1. The Cryptographic Tool

 41

An initialization vector (IV) is required to encrypt the first plaintext block P1:

1for)(11 =⊕= iIVPEC k

The decryption process is therefore (Figure 1-17b):

2 assuch)(

1for)(

1⎩
⎨
⎧

≤≤∀⊕
=⊕

=
− miiCCD

iIVCD
P

iik

ik
i

The main advantage of CBC compared to ECB is that a plaintext block encrypted twice

gives two different ciphertext blocks as the encryption depends on the previous ciphertext

block. However, a complete message encrypted twice in CBC mode with a given key results

in the same ciphertext if the same IV is used. A way to overcome such a drawback is to

change the IV for each encrypted message. Ideally, this IV should be secret. Therefore it could

be randomly generated for each message to encrypt, encrypted in ECB mode and sent with the

message.

CBC encryption is performed in series (Figure 1-17a) since such a process requires the

previous ciphertext block to start. On decryption, CBC is parallelizable because all required

information could be available: the current and the previous ciphertext blocks and the secret

key.

The CBC mode has a limited effect on error propagation. If one bit is erroneous after

transmission of the encrypted message, the decryption of the corresponding ciphertext block

results in a wrong plaintext block and one bit of the following plaintext block will be affected

– because of the XOR operation with the erroneous bit.

c. CTR – Counter

CTR is a block cipher mode which is used as a stream cipher (like OFB and CFB). CTR is

a synchronous stream cipher (Figure 1-4): the output algorithm is the block cipher and the

internal state S of the key stream generator is a counter initialized with an IV (the seed) and

incremented for each new plaintext block. Considering a message M composed of m plaintext

block Pi with (1 ≤ i ≤ m), the CTR encryption process (Figure 1-18a) works as follows:

Chapter 1. The Cryptographic Tool

 42

2 assuch 1

1for
 with)(

1⎩
⎨
⎧

≤≤∀+
=

=⊕=
− miiS

iIV
SPSEC

i
iiiki

Figure 1-18 The CTR (Counter) mode

As a stream cipher, for decryption (Figure 1-18b) the same key stream - as the one used for

encryption - must be generated to perform the XOR operation with the ciphertext (C1, C2, C3,

…, Cm), therefore:

2 assuch 1

1for
 with)(

1⎩
⎨
⎧

≤≤∀+
=

=⊕=
− miiS

iIV
SCSEP

i
iiiki

Like the CBC mode, in order to avoid the encryption of the same message resulting in the

same ciphertext, the IV must be different and ideally secret for each message to encrypt with

the same secret key K. Moreover, the key stream generated for each plaintext block depends

only on the counter value S for a given K. Hence, the same value of S must never be used

twice; otherwise the same key stream sequence is generated for two different plaintext blocks,

leading to the weakness described in 3.1.2.4. The IV must be carefully selected on each

encryption to circumvent such a security hole.

As CTR is a synchronous stream cipher, there is no error propagation (see section 1-

3.1.2.3).

The CTR mode is fully parallelizable on encryption and on decryption as the key stream

generation only depends on the counter value S.

S1 = IV

Pm

C1

Ek

(a) Encryption (b) Decryption

P1

S2

C2

Ek

P2

+1
Sm

Cm

Ek

+ (m-2)
S1 = IV

Cm

P1

Ek

C1

S2

P2

Ek

C2

+1
Sm

Pm

Ek

+ (m-2)

Chapter 1. The Cryptographic Tool

 43

d. OFB - Output FeedBack

The OFB mode is a synchronous stream cipher, like CTR (Figure 1-4). The output

algorithm is the block cipher and the internal state S of the key stream generator is defined by

the result of the block encryption of the previous internal state. Such a mode requires an IV

(the seed) to initialize the internal state. Considering a message M composed of m plaintext

block Pi with (1 ≤ i ≤ m), the OFB encryption process (Figure 1-19a) works as follows:

2 assuch)(

1for
 with)(

1⎩
⎨
⎧

≤≤∀
=

=⊕=
− miiSE

iIV
SPSEC

ik
iiiki

For decryption (Figure 1-19b), the same key stream - as the one used for encryption - must

be used to perform the XOR operation with the ciphertext, therefore:

2 assuch)(

1for
 with)(

1⎩
⎨
⎧

≤≤∀
=

=⊕=
− miiSE

iIV
SCSEP

ik
iiiki

Figure 1-19 The OFB (Output FeedBack) mode

A message encrypted twice in OFB mode results in the same ciphertext. Hence, as for the

CBC and CTR modes, the IV must be different and ideally secret for each message encrypted

with a given key.

OFB is a synchronous stream cipher therefore there is no error propagation (see section 1-

3.1.2.3).

The OFB mode is not parallelizable on encryption and on decryption. Indeed, a given

internal state of the key stream generator is defined only at the end of the block encryption of

the previous internal state. Therefore key stream sequences are produced in series.

S1 = IV

Pm

C1

Ek

(a) Encryption (b) Decryption

P1

S2

C2

Ek

P2

Sm

Cm

Ek

S1 = IV

Cm

P1

Ek

C1

S2

P2

Ek

C2

Sm

Pm

Ek

Chapter 1. The Cryptographic Tool

 44

e. CFB - Cipher FeedBack

The CFB mode is a self synchronous stream cipher (Figure 1-5). The output algorithm is

the block cipher and the internal state S is defined by the previous ciphertext Ci-1. Such a

mode requires an IV (the seed) to initialize S. Considering a message M composed of m

plaintext block Pi with (1 ≤ i ≤ m), the CFB encryption process (Figure 1-20a) works as

follows:

2 assuch

1for
 with)(

1-i⎩
⎨
⎧

≤≤∀
=

=⊕=
miiC

iIV
SPSEC iiiki

For decryption (Figure 1-20b), the same key stream - as the one used for encryption - must

be used to perform the XOR operation with the ciphertext, therefore:

2 assuch

1for
 with)(

1-i⎩
⎨
⎧

≤≤∀
=

=⊕=
miiC

iIV
SCSEP iiiki

Figure 1-20 The CFB (Cipher FeedBack) mode

Concerning the choice of the IV, CFB implementation must follow the same

recommendations as for OFB implementation.

CFB is a self synchronous stream cipher therefore error propagation is limited (see section

1-3.1.2.3).

On encryption, a given internal state of the key stream generator is defined only at the end

of the previous plaintext encryption, therefore key stream sequences and plaintext encryption

S1 = IV

Pm

C1

Ek

(a) Encryption (b) Decryption

P1

Cm

Ek

S2 = C1

C2

Ek

P2

Sm = Cm-1 S1 = IV

P1

Ek

Pm

Ek

S2 = C1

P2

Ek

Sm = Cm-1

C1 C2 Cm

Chapter 1. The Cryptographic Tool

 45

are done sequentially. On decryption, CFB mode is parallelizable since this operation only

requires available information – the ciphered message and the secret key- to start the

computation of the key stream sequences.

The last three presented modes (CTR, OFB and CFB) may be implemented in order to

generate key stream sequences shorter than n (the size of block processed by the underlying

cipher block). Such a task is achieved by selecting the l leftmost bits of each key stream

sequence [24] where l is the desired size of the key stream. Moreover, note that when modes

of encryption are used as stream cipher (CTR, OFB and CFB) only the block encryption

process is involved. In hardware, this allows to save silicon area.

1-3.2. Public-Key Encryption

1-3.2.1. Principle

Figure 1-21 Public-key cipher principle

Contrary to symmetric-cipher, entities using cryptosystems based on public-key cipher to

communicate in a confidential way do not need to agree on a secret. Such schemes are also

named asymmetric-cipher because they use two different keys for encryption and for

decryption: the encryption key Ke, called the public key since it can be transmitted over an

unsecured channel and it does not require to be kept secret, and the decryption key Kd,

Encryption
Plaintext P Ciphertext C=EKe(P)

Meeting at 7h00 am in … 3FA40E8A984D4815 …

Decryption
Plaintext P=DKd(C) Ciphertext

Meeting at 7h00 am in … 3FA40E8A984D4815 …

Bob’s Private Key (Kd)

Alice

Bob (Ke, Kd)

Bob’s Public Key (Ke) Unsecured
channel Unsecured

channel Ke

Chapter 1. The Cryptographic Tool

 46

designated as the private key since only the intended recipient of an encrypted message must

know it.

Take up again the example of Alice and Bob where Alice wants to send a confidential

message to Bob (Figure 1-21). Bob must first compute a pair of public / private keys (Ke, Kd)

and transmit the public-key Ke to Alice over an unsecured channel4. Then Alice encrypts her

message with Ke and sends it to Bob. Finally, Bob uses Kd to decrypt the message.

The notion of public-key cryptosystems was first introduced in [25] by professors Wilfred

Diffie and Martin Hellman. Such cryptosystems are based on the difficulty to solve complex

mathematical problems and particularly on trapdoor one-way functions. A function f(x) = y is

designated as one-way if for every x it is easy to compute f(x), while it is computationally

difficult to retrieve x from y. Whereas a function f(x) = y is designated as one-way with

trapdoor, if for every x it is easy to compute f(x), and that, knowing a secret – the trapdoor –,

it is easy to retrieve x from y.

An example of such complex mathematical problems is the factorization of large numbers:

it is easy to compute the multiplication of two large numbers but the inverse function, the

factorization, is computationally very difficult to resolve. The most famous public-key

algorithm, RSA [26] (for Rivest Shamir Adleman, the names of the inventor) is based on such

a problem. Next section describes how RSA works.

1-3.2.2. Example: RSA

As all cryptosystems, RSA is composed of three algorithms: one for the key generation,

one for encryption and one for decryption.

Key generation algorithm;

The key generation algorithm of RSA consists in computing three parameters which

compose the encryption and the decryption keys Ke and Kd.

The first parameter n, called the modulus, is computed by choosing two large prime

numbers, p and q, and by multiplying them together: n = pq.

Then, the second parameter e, called the encryption exponent, is selected so that e and (q-

1)(p-1) are prime together - meaning gcd(e, (q-1)(p-1)) = 1 (gcd: greatest common divisor) –

and e < (q-1)(p-1).

4 In fact this channel must be an authenticated channel otherwise an attack described in 3.2.3 remains feasible.

Chapter 1. The Cryptographic Tool

 47

Finally, the extended Euclidean algorithm [16] is used to compute the third parameter d,

the decryption exponent, as follows:

ed ≡ 1 mod ((q-1)(p-1)) which is equivalent to ∃ k / ed + k(p-1)(q-1) = 1.

It results that the public key Ke consisting of e and n, and the private key Kd is equal to d.

Once the two keys are generated, the two prime numbers p and q are no longer used,

therefore they must be destroyed.

Encryption:

Consider a message m represented as an integer comprised between 1 and n-1. The

resulting ciphertext c of the m encryption using Ke (e,n) is obtained with:

c = me mod n

Decryption:

The recipient of c uses Kd (d) to decrypt it as follows:

m = cd mod n

1-3.2.3. Advantages and Drawbacks

The main advantage of public-key ciphers compared to secret-key ciphers is the fact that

there is no need to share a secret prior to establishing the communication. The encryption key

may be publicly known but its authentication is required, otherwise a man-in-the-middle

attack is feasible. Such an attack involves (Figure 1-22) an adversary who monitors an

unsecured channel, intercepts a message M and possibly some meta data X useful for security

purposes, analyses them, and exchanges them by chosen data (M’; X’). Here, the adversary

may catch Bob’s public key and replace it by its own. Alice encrypts her message with the

fake public key and sends the message over the unsecured channel. The adversary retrieves

the encrypted message, and is able to decrypt it with his private-key. Such an attack

challenges the entity authentication and is circumvented by using public key certificates and a

Public Key Infrastructure (PKI). A PKI is an infrastructure which supports the distribution of

authenticated public keys. However, entity authentication is not the topic of this thesis; hence

in the following public keys are considered authenticated - for information on PKI refer to

[24].

Chapter 1. The Cryptographic Tool

 48

In addition, public-key ciphers are very slow because they are based on complex

mathematic concepts. For example, in hardware an RSA decryption takes up to 260 000

cycles at 100MHz to encrypt a 1024-bit plaintext block [27].

Figure 1-22 Man-in-the-middle attack principle

1-3.3. Security of Encryption Techniques

The attacks conducted on an encryption scheme might have two objectives: key recovery

and message recovery.

The objective of the first attack is to recover the secret-key or the private-key used

respectively in a symmetric cipher or in an asymmetric cipher. The most well-known practical

attack for key recovery is the brute force attack. It consists in trying all possible keys until

finding out the one allowing to retrieve the plaintext from any ciphertext. Therefore, the

longer the key is, the better for the encryption algorithm in term of robustness.

The goal of message recovery attacks is to draw some conclusions on plaintexts by

observing ciphertexts. In such attacks, it is supposed that the adversary knows some pair of

corresponding plaintext / ciphertext, and the public key in the case of asymmetric encryption.

A cryptosystem is immune against message recovery if it is semantically secure, meaning an

eavesdropper is not able to determine if a given ciphertext is the encryption of one plaintext or

another.

Unsecured
channel

Alice

Bob

Message M + Meta data X

Meeting at 9h00 am in …

Meeting at 7h00 am in …

Message M’ + Meta data X’

(M; X)

(M’; X’)

Adversary

(M; X)

(M’; X’)

Chapter 1. The Cryptographic Tool

 49

Previous adversary objectives (message recovery and key recovery) rely practically on

passive attacks which could be classified by considering the kind of information the adversary

knows. The following definitions have been taken from [16]:

1. A ciphertext-only attack is one where the adversary (or cryptanalyst) tries to deduce

the decryption key or plaintext by only observing ciphertext. Any encryption scheme

vulnerable to this type of attack is considered to be completely insecure.

2. A known-plaintext attack is one where the adversary has a quantity of plaintext and

corresponding ciphertext. This type of attack is typically only marginally more

difficult to mount.

3. A chosen-plaintext attack is one where the adversary chooses plaintext and is then

given corresponding ciphertext. Subsequently, the adversary uses any information

deduced in order to recover plaintext corresponding to previously unseen ciphertext.

4. An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice of

plaintext may depend on the ciphertext received from previous requests.

5. A chosen-ciphertext attack is one where the adversary selects the ciphertext and is then

given the corresponding plaintext. One way to mount such an attack is for the

adversary to gain access to the equipment used for decryption (but not the decryption

key, which may be securely embedded in the equipment). The objective is then to be

able, without access to such equipment, to deduce the plaintext from (different)

ciphertext.

6. An adaptive chosen-ciphertext attack is a chosen-ciphertext attack where the choice of

ciphertext may depend on the plaintext received from previous requests.

The robustness of an encryption scheme is evaluated by respecting the first and the

second Kerckhoffs principles which state that an algorithm must be unbreakable in practice5 if

not theoretically unbreakable and that it must be publicly known. This allows the research

community to perform cryptanalysis and to check their accordance with the first Kerckhoffs

principle. The sole cryptosystem proved secured is the One Time Pad.

The encryption is mainly a countermeasure against passive attacks. However, active

attacks driven during transmission – e.g. the man-in-the-middle attack as depicted in Figure

5 A cryptosystem is said broken if an adversary succeeds in a key recovery or a message attack in a time slot
smaller than the one for which the secret must be kept.

Chapter 1. The Cryptographic Tool

 50

1.22 – which allows message deletion, data injection or replay must be also prevented. One

objective of active attacks might be to constrain the search space – for instance on a brute

force attack – when the ultimate adversary goal is message or key recovery.

Countermeasures against active attacks are provided by data authentication or integrity

checking techniques. Those techniques are presented in the next section.

1-4. Data Integrity Checking Techniques

This section will first present the principle of integrity checking processes of a message

transmitted over an unsecured channel. Then, the cryptographic functions, called hash

functions, used in such processes will be defined. However, this study focuses on mechanisms

useful in our domain, i.e. store-and-retrieve application, therefore refer to [16] for a detailed

definition of hash functions. Finally, integrity checking schemes and their respective

objectives will be described.

1-4.1. Integrity Checking Process Principle

Figure 1-23 Integrity checking process principle

In order to present this principle, the example of Alice and Bob is taken up again (Figure 1-

23). This time Alice sends a message M to Bob and needs the formal assurance that it will not

be corrupted during transmission. Thus, Alice first computes a value T, called the tag, over the

COMP

HK(M)
Message M

Tag T

Bob

Unsecured
channel

(M; T)

HK(M)
(M; T) M

T

Message M

Message

validity flag
 T’
Tag reference

Alice

Chapter 1. The Cryptographic Tool

 51

message using a specific black-box keyed-function HK. Then Alice sends T along with M. The

role of the tag is to be a compact representative image of the message content and of its

origin. Bob receives the pair (M; T), computes a tag T’, called the tag reference, over M using

the same black-box keyed-function HK. If T’ is equal to T, Bob has the certainty that M has

not been tampered with during transmission.

Classic attacks led on integrity checking schemes are called forgery attacks. A forgery

attack is successful when an adversary is able to find out the correct tag for a message of his

choice.

Note that the purpose of the principle presented above is only to give an overview of how

integrity checking works; however, the implemented schemes can be slightly different

depending on the underlying cryptographic functions involved in the tag computation. Those

schemes are described in the following.

The integrity checking mechanisms use cryptographic algorithms called hash functions.

Most of the time, such functions are not used only to provide data integrity but are essential

from a security point of view. Thus, the following section defines hash functions.

1-4.2. Hash Functions

A hash function h has at least two properties: compression and ease of computation. This

means that given an input x of an arbitrary finite length, it is easy to compute the output h(x),

called hash or digest, which has a fixed bit length n.

The minimum objective of hash functions is to give a compact representative image of a

message. Such an image must be ideally unique to identify the message. However the direct

implication of the compression property is the fact that there are more possible inputs than

outputs. That is why a hash function h may have the three following properties:

• Preimage resistance: given y, an output of h, it is computationally infeasible to retrieve

the corresponding input x such as h(x) = y.

• Second preimage resistance: given x, an input of h, and y the corresponding output -

meaning h(x) = y - it is computationally infeasible to find a second input x’ such as

h(x’) = y.

• Collision resistance: it is computationally infeasible to find two inputs x and x’ which

have the same image through h, meaning h(x) = h(x’).

Chapter 1. The Cryptographic Tool

 52

The collision resistant property implies the second preimage resistance. Ideally, a hash

function should have the three previous properties.

Hash functions are divided into two families: unkeyed hash functions and keyed hash

functions.

1-4.3. Unkeyed Hash Functions a.k.a. Modification Detection Codes (MDC)

1-4.3.1. Principle

Unkeyed hash functions have a single input, the message to hash, and produce an n-bit

digest. They are also called Modification Detection Codes (MDC) algorithms as their goal is

only to provide a compact representative image of the input message.

Figure 1-24 Model of iterative hash functions

Most of unkeyed hash functions are designed as iterative processes as depicted in Figure 1-

24. Their input is an arbitrary length message M which is first divided into m fixed-length r-

bits block bi with 1 ≤ i ≤ m. If the length of M is not a multiple of r, a padding method is used

to attain such size. Those methods are not dealt with here; for more information, refer to [24].

Then, each block is processed in series by a compression function f. Hence, f is solicited m

times. f takes as inputs its previous result and a block bi; an IV is required for the first hash

iteration. The output of the function hi (with 1 ≤ i ≤ m) – the intermediate hash value - is an l-

bit block. The final hash-value H is obtained by performing an output transformation g on the

last iteration result hm. Typically, such a transformation consists of a truncation of hm to

generate a digest (H) with a predefined size n such as n ≤ l.

hm-1

IV

M

f f

Padding and splitting

(b1, b2, … , bm)

f

Output
transformation

g

b1 b2 bm

Hash value H

h1 h2

hm l
l

n

r r r

Chapter 1. The Cryptographic Tool

 53

1-4.3.2. Example: SHA-1

SHA-1 is one the most widely used hash functions. For example it is employed in

protocols such as SSL(Secure Sockets Layer), TLS(Transport Layer Security) and IPSec

(Internet Protocol Security). It was designed by the NSA (National Security Agency) and

standardized by the NIST [28].

SHA-1 takes as input a message M smaller than 264 bits and processes 512-bit blocks. It

provides a 160-bit digest. IVs and intermediate hash values are 160-bit long too. SHA-1 is

divided into two parts: the pre-processing and the digest computation.

The pre-processing:

In SHA-1, the input message M is first padded if it is not a multiple of 512-bit and then

split into m blocks bi of such a size (with 1 ≤ i ≤ m). The IV or h0 – specified in [28] -

initializes five 32-bit variables A, B, C, D, E (Figure 1-25) which are used to store

intermediate hash value hi (with 1 ≤ i ≤ m). After this step the 512-bit blocks bi are processed

one at a time to obtain the digest.

Before describing such a process, several parameters and functions used by SHA-1 must be

defined.

Parameters and functions:

W is an array of eighty 32-bit words and Wt is a word in W (with 0 ≤ t ≤ 79).

K is a constant array of 32-bit words and Kt is a constant word in K (with 0 ≤ t ≤ 79) such

as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤
≤≤
≤≤
≤≤

=

7906 when ,a62c1d6x0
5904 when,x8f1bbcdc0
3902 when ,ed9eba16x0

190 when ,8279995x0

tc
t
t

ta

Kt

RotLn(x) is a circular shift rotation of the word x by n positions to the left.

Ft(x, y, z)6 is a function such as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤⊕⊕
≤≤∧⊕∧⊕∧
≤≤⊕⊕
≤≤∧¬⊕∧

=

7960 when ,
5940 when)()()(
3920 when ,

190n whe),()(

),,(

tzyx
tzyzxyx
tzyx

tyxyx

zyxFt

6 ∧ is the bitwise AND operation, ⊕ is the bitwise XOR operation and ¬ is the bitwise complement operation

Chapter 1. The Cryptographic Tool

 54

Digest computation:

In order to compute the digest, the four following steps are applied to each 512-bit block bi

one at a time:

First W is set such as:

7916for)(

150for

1683
1

,

⎪⎩

⎪
⎨
⎧

≤≤⊕⊕

≤≤
=

−−− tWWWROTL

tb
W

ttt

ti
t

Where bi,t represents a tth 32-bit word in bi.

Then the five variables A, B, C, D and E are initialized by the five words composing the

previous intermediate hash value hi-1 (hi-1,0, hi-1,1, hi-1,2, hi-1,3, hi-1,4) except for the first block b0

for which such a step is done during pre-processing (initialization with the IV = h0).

Figure 1-25 The compression function (f) of SHA-1

The third step is depicted in Figure 1-25. It consists in applying the following operations

on the five variables7:

TA
AB

BROTLC
CD
DE

WKEDCBFAROTLT ttt

=
=
=

=
=

++++=

)(

),,()(

30

5

7 + used to compute the intermediate variable T is the addition modulo 232

A B C D E

A B C D E

RotL5

RotL30 Ft

Wt

Kt

Chapter 1. The Cryptographic Tool

 55

Finally, the intermediate hash value hi (hi,0, hi,1, hi,2, hi,3, hi,4) is calculated with:

4,14,

3,13,

2,12,

1,11,

0,10,

−

−

−

−

−

+=

+=

+=

+=

+=

ii

ii

ii

ii

ii

hEh
hDh
hCh
hBh
hAh

After repeating such a process for the m blocks composing the message M, the resulting

hash is equal to hm, meaning that the output transformation for SHA-1 is the identity.

1-4.3.3. Message Authentication Schemes Based on MDC

As previously defined, data integrity is a service which addresses the unauthorized

alteration of data by an adversary during transmission or storage. Additionally to such a

notion, it is required to check the origin of the data to be sure that a message really comes

from the claimed sender. MDCs are not sufficient to provide such an assurance since they are

publicly known as all cryptographic functions (2nd Kerckhoffs principle) and they do not

enroll a secret. For example, suppose that Alice computes a tag T of a message M using an

unkeyed hash function H - H(M) = T - and sends it to Bob along with M. When Bob receives

the pair (M; T) it computes the tag reference T’ using H – H(M) = T’. If T is equal to T’, the

only certainty that he has is the fact that T is really the hash result of M using H! Indeed, a

malicious third party could have intercepted the pair (M; T) during transmission (Man-in-the-

middle: Figure 1.22) and replaced it by a chosen pair (M’; H(M’)) without Bob being able to

detect it.

The service which identifies the source of a message is called data origin authentication

and it will be referred to as message authentication. Data origin authentication implicitly

provides data integrity (Figure 1-30). Indeed, if a message is modified during transmission

this means that the source has changed.

Mechanisms used in addition to MDCs to ensure message authentication are asymmetric

signature, symmetric encryption or secret addition (HMAC [90]).

Chapter 1. The Cryptographic Tool

 56

1-4.3.3.1. MDC and Asymmetric Signature

Asymmetric signatures, also called public-key decryption are based on the same

cryptographic concept than the one used in public-key encryption. The difference comes from

the fact that the encryption is done with the private key and the decryption with the public key

instead of the reverse. In this way, the private key holder is the only one able to encrypt a

message that everybody can decrypt. Here the encryption objective is not to provide

confidentiality; such a principle combined with a MDC is used to provide message

authentication.

Alice still wants to send a message to Bob with the assurance that it will not be modified

during transmission and Bob needs to be sure that the information contained in the received

message is correct and that Alice is really the sender (Figure 1-26). Thus Alice computes a

hash (H) of the message M with a MDC and signs H by encrypting it with her private key Ke

to obtain a tag T (also called signature). She sends the pair (M; T) to Bob over an unsecured

channel. Bob receives (M; T), decrypts T using the Alice’s public key Kd and hashes the

message M with the same MDC than the one used by Alice. He then compares the resulting

reference hash H’ with H. The comparison of the two values informs Bob on the validity of

M.

Figure 1-26 Message authentication using a MDC and asymmetric signature

MDC used in such a scheme must at least have the two properties: preimage resistance and

second preimage resistance. Take up again the example of Alice and Bob. Everybody knows

COMP

MDC

Message M

Tag T

Alice(Ke, Kd)

Bob

Unsecured
channel

(M; T)

MDC
(M; T)

M

T

Message M

Message

validity flag

Alice’s Private Key
Ke

Asymmetric
signature (E)

Public-key
decryption (D)

H

Alice’s Public Key
Kd

H

H’
Hash reference

Chapter 1. The Cryptographic Tool

 57

the public key Kd and the tag T since it is transmitted over an unsecured channel. Therefore it

is easy to recover H by decrypting T with Kd. Now, suppose that an adversary is able to find a

second message M’ resulting in the same H when processed by the same MDC than the one

used by Alice. Thus, he can replace M by M’ without Bob being able to detect it.

1-4.3.3.2. MDC and Symmetric Encryption

Another way to provide message authentication is to use symmetric encryption in addition

to MDC. This time Alice and Bob must agree on a secret encryption key Ks (Figure 1-27).

Then Alice computes a digest H of the message M with a MDC and encrypts M and H with a

symmetric algorithm and the secret key Ks. Bob receives and decrypts the ciphered message

to recover M and H. He uses the same MDC than the one used by Alice to compute a hash H’

of M. If H does not match the hash reference H’ this means that the message was tampered

with during transmission.

Figure 1-27 Message authentication using a MDC and symmetric encryption

In this case, if the underlying symmetric algorithm employed is secure, it is not required

that the MDC should have the three properties: preimage, second preimage, and collision

resistance. Indeed, an adversary who has neither the input of the MDC nor its output can not

mount a forgery attack.

On the other hand, if confidentiality is not required, only the hash value may be encrypted

but the MDC must at least be collision resistant. Indeed, suppose that it is not the case and

that an adversary who monitors the communication channel (Man-in-the-middle: Figure 1-22)

Secured
channel

H’COMP

MDC

Message M Alice

Bob

Unsecured
channel

(M; H)

Message M

Message

validity flag

Secret Key Ks

Symmetric
encryption (E)

H

H

EKs(M; H)

Secret Key Ks

Symmetric
decryption (D) MDC

EKs(M; H)(M; H)

M

Ks

Chapter 1. The Cryptographic Tool

 58

retrieves the plaintext and the encrypted hash. Hence, he is able to first recover the digest by

applying to the plaintext the same MDC than the one used by the sender and then to find a

second message which gives the same digest. Since symmetric encryption is deterministic –

meaning there is only one ciphertext for a given plaintext – he could send his message with

the encrypted hash without the possibility for the intended recipient to be able to detect it.

1-4.4. Keyed Hash Functions and MAC Algorithms

1-4.4.1. Principle

Keyed hash functions are dedicated to message authentication and thus are also called

Message Authentication Code (MAC) algorithms. In the following the hash generated by such

algorithms is referred to as the MAC or the MAC-value. They take a secret key as input in

addition to the message to hash. They have a further property which is computation-

resistance, i.e. they are indistinguishable from random. This means that given an unspecified

number of message-MAC pair (mi, MAC (mi)), it is impossible for an attacker to compute any

message-MAC pairs (m, MAC (m)) for any new input m ≠ mi. In other words, the output of

the MAC algorithm must seem random from an adversary point of view and this is mainly

achieved by using the secret key. A hash function with such a property is necessarily

preimage resistant, second preimage resistant and collision resistant since it is required to hold

the secret key to be able to compute a MAC-value.

Figure 1-28 Message authentication using MAC algorithms

COMP

Message M

Tag T = MAC

Alice

Bob

Unsecured
channel

(M; T)

(M; T)
M

T

Message M

Message

validity flag

Secret Key Ks

MAC
Algorithm

T’ MAC
Algorithm

Secret Key Ks

Secured
channel Ks

Chapter 1. The Cryptographic Tool

 59

In order to send an authenticated message M to Bob, Alice must first securely

communicate to him a secret key Ks (Figure 1-28). Then Alice computes a tag T by applying a

MAC algorithm on the message M and by using the secret key. Finally, she transmits T along

with M to Bob. After reception, Bob computes a MAC-value T’ (tag reference) from M using

Ks. If T’ matches T, the message is authenticated.

Note that the passive attacks described in section 1-3.3 also apply to MAC algorithms. In

this case the objective of the adversary is either to forge a message or the tag.

MAC algorithms may be designed by using the general iterative model of hash function

depicted in Figure 1-24. The secret key is thus an input of the output function g or it is

involved in all iterations of the compression function f.

MAC algorithms of our main interest are based on block ciphers and the most widely used

one is the CBC-MAC.

1-4.4.2. Example: CBC-MAC

Figure 1-29 General model for CBC-MAC

The principle of CBC-MAC is presented in the following in the case where the length of

the message to authenticate is a multiple of n, the block size of the underlying block cipher.

For detailed description of the different standardized CBC-MAC refer to [24].

The general model for CBC-MAC is depicted in Figure 1-29. The MAC is computed by

chaining block encryption, therefore the message M to authenticate is first split into m n-bit

blocks bi with (with 1 ≤ i ≤ m). An intermediate MAC hi is obtained by the encryption of the

current processed block bi Xored with the previous intermediate MAC hi-1 - hi = Ek (bi ⊕ hi-1) -

except for the first block b1 which is directly encrypted. The final MAC (or tag) is produced

by truncating hm: the l leftmost bits are selected such as l ≤ m.

b1

h1

Ek

b2

Ek

bm

hm

Ek

h2 hm-1

Optional
truncate

T

h0

n

n n n n

n n n

l

n

Chapter 1. The Cryptographic Tool

 60

If l = n a simple forgery attack may be mounted. Consider a message M1 composed of m

blocks (b1, b2, … , bm) and its corresponding MAC T produced by the previous exposed CBC-

MAC scheme. In the light of the XOR operator, the following message M2 has the same MAC

T:

mm bbbTbbb ,...,,,,...,,B 21212 ⊕=

Indeed, 1111)()(hbETbTEh kkm ==⊕⊕=+ and thus the same MAC computation is

resumed. However, such an attack is not applicable in the case where all the messages to be

authenticated have the same length m. The message forgery would be rejected at the input

because it does not have the requested length.

1-4.5. The Birthday Attacks

The birthday attack is an algorithm-independent attack i.e. such an attack considers the

algorithm as a block-box. It is an application of the birthday paradox [16]. Practically,

suppose a function h which randomly generates output values from a set of N elements. There

is a high probability that the same element is encountered twice after approximately

N computations. This means that for a hash function producing an m-bit digest, a collision

is found after roughly 2/2m hash value generation. For example, SHA-1 is said to offer 80-bit

of security against such an attack since it produces 160-bit digest.

Resistance against the birthday attack is a security criterion to evaluate robustness of hash

functions.

All previous techniques (MDC and asymmetric signature, MDC and symmetric cipher and

MAC) provide message authentication. However such a notion does not include preventions

against replay attacks. Such attacks are performed in two steps. First, at a time t on an

unsecured channel an adversary retrieves a message M - possibly encrypted – and the

corresponding tag T. Then, at a time t + n of its choice, he could send the pair (M; T) again or

use it in a Man-in-the-middle attack. Thus, the intended recipient will not be able to detect

that this message M is a fake since after computation of the reference tag T’ on M, T will

match T’. The service requiring prevention against replay attacks is referred to as transaction

authentication.

Chapter 1. The Cryptographic Tool

 61

1-4.6. Transaction Authentication

Transaction authentication denotes message authentication augmented to additionally

provide uniqueness and timeliness guarantees on data (Figure 1-30), thus preventing

undetectable message replay (definition taken from [16]).

Figure 1-30 Taxonomy of security services required to prevent active attacks

Uniqueness and timeliness are ensured by using time-variant parameters as inputs with the

data in message authentication schemes. Random numbers, timestamps and nonce are

examples of time-variant parameters. A nonce is a number used once for a given purpose. It

could be generated by a counter. Take up again the example of Alice and Bob depicted in

Figure 1-28. In order to thwart replay attacks, they choose to use a nonce N. Hence, before

starting to communicate, they must agree on a secret key Ks and on a random number to

initialize N. Then each time Alice sends a message M to Bob, she increments the nonce and

computes a tag T with a MAC algorithm which takes as inputs Ks and M concatenated with N.

Finally, she transmits T along with M to Bob. After reception, Bob updates the nonce and

computes a reference MAC-value T’ from the secret key Ks and from M concatenated with N.

If T’ matches the one appended to M by Alice, the transaction is authenticated.

1-5. Conclusion

In this chapter, we defined the cryptographic terms useful in this thesis. Moreover we

presented the encryption techniques guaranteeing data confidentiality and we described

mechanisms allowing to check data integrity (and data origin authentication). However, we do

not intend to give an exhaustive survey, but an overview of the existing solutions and a

description of schemes used in the following chapters.

Transaction authentication
timeliness - uniqueness

Message authentication
source identification

Data Integrity

 62

Chapter 2. Security Concerns

 63

Chapter 2: Security Concerns

The objectives of attacks led on embedded systems are to retrieve information – possibly

private – or to take control of it. One of the weakest points of such systems is the bus between

the System on Chip (SoC) and the off-chip memory which contains sensitive data (end users

private data, software code…). Those data are usually exchanged in clear over the bus during

software loading and execution. Therefore an adversary may probe this bus to read and to

retrieve private data or software code (data confidentiality concern). Another possible attack

relies on code injection and on data tampering (data integrity concern).

Thus, our goal is to provide a private and authenticated tamper resistant environment to

software execution. This means that an adversary must be unable to understand the data

retrieved on the bus or directly in memory, and that we must detect all kinds of data and code

tampering (tamper detection).

This chapter is organized as follows. Section 2-1 shows the relevancy of protecting data

transferred on a processor-memory bus through an application example: software copy

protection. Section 2-2 presents our threat model by specifying the adversaries and the attacks

taken into account. This threat model is illustrated with an example of attack. Section 2-3

highlights the specific issues of the implementation of cryptographic functions in a computing

device. Thus, we first give an overview of the memory hierarchy in a computing system, then

we present the basic principles of bus encryption and of memory integrity verification and

finally, we describe the operations which are a source of overhead when such mechanisms are

implemented.

Chapter 2. Security Concerns

 64

2-1. Software Copy Protection

The emergence of on-demand software downloading services brings in the foreground the

problem of intellectual property (IP) protection. Software distributed over unsecured channel

might be retrieved by a malicious eavesdropper and illegally spread. Therefore, the IP

confidentiality must be ensured all along the distribution chain and also during execution.

Such a goal is achieved by end-to-end encryption: from the source - the software provider - to

the host - the computing system - and during execution.

As an example, in this section we consider a set-top box operator who proposes on-

demand services or who needs to update the customer’s unit. Those services or products must

be used only by the intended user and this user must not be able to copy it and to give it away.

The scheme depicted in Figure 2-1 is used to ensure confidential distribution of the

intellectual property sold by the set-top box operator:

(1) A set-top box processor is equipped by the chip manufacturer with a private

key Dc of a public/private key pair Ec/Dc and with a certificate Ce for Ec. Ce

particularly contains the processor public key Ec and its signature produced

by the chip manufacturer with his private key Dm.

(2) The chip manufacturer public key Em is sent via an authenticated channel

(PKI: Public-Key Infrastructure [24]) or delivered with the set-top box units

to the set-top box operator.

(3) When the customer asks for a service or a new feature (e.g. an update of the

media player) the certificate Ce is sent with the request.

(4) The set-top box operator authenticates Ec – asymmetric decryption of the

signature contained in Ce using Em (Chapter 1 – Figure 1.25).

(5) The software code S provided by the operator is symmetrically encrypted

with the secret key K. K is then asymmetrically ciphered with the public

key Ec before being sent to the customer’s set-top box.

(6) The customer retrieves K by asymmetric decryption with its private key Dc.

Then K serves to symmetrically decrypt S.

(7) S is installed in the memory8.

8 Note that the user privacy is not ensured with this scheme since the operator could collect information on the
user activities or consummation habits. Zhang and al. [29] proposes a simple scheme also based on a PKI
infrastructure to solve this issue.

Chapter 2. Security Concerns

 65

Figure 2-1 Secure software download for software copy protection

Thus, if S is recorded on the communication channel between the set-top box operator and

the customer’s unit it cannot be illegally distributed: each set-top box is equipped with a

different private key Dc therefore the step (6) of the previous scheme would fail.

S could be installed already encrypted in the external memory to extend the protection to

the processor-memory communication. However, the hardware engine implemented to

decrypt S must also take into account the encryption of RW data processed at run-time.

Therefore, this engine must be optimized by considering the contextual specific constraint and

propose an affordable trade-off between security strength and computation performance.

Moreover, as highlighted by the attack described in section 2-2.3, the integrity of the memory

content must also be verified to avoid code or data corruption which could lead to sensitive

information leakage.

2-2. The Threat Model

In this section, we first classify adversaries by evaluating their ability to conduct attacks to

define the security level targeted in this thesis. Then we describe the attacks considered.

Finally, an example of attack is detailed to illustrate our threat model.

Set-top box
Chip manufacturer

Set-top box operator

Dm Em

Ec Ce

Ec K S

K

Off-chip RAM

SoC
S

Authenticated channel

(1)

(1)

(2)

(3)

(4) (5)

(6)

(5)

(6)

Gkey(M) : asymmetrical
(de)ciphering

Fkey(M) : symmetrical
(de)ciphering

M

M

GEc(K) FK(S)

(7)

Ce Dc

Chapter 2. Security Concerns

 66

2-2.1. Security Level and Adversaries Classification

IBM proposed a taxonomy [30] of adversaries and attacks in order to classify the security

level achieved by each of their product: “Adversaries were grouped into three classes, in

ascending order, depending on their expected abilities and attack strengths:

Class I (clever outsiders): They are often very intelligent but may have insufficient

knowledge of the system. They may have access to only moderately sophisticated equipment.

They often try to take advantage of an existing weakness in the system, rather than try to

create one.

Class II (knowledgeable insiders): They have substantial specialized technical education

and experience. They have varying degrees of understanding of parts of the system but

potential access to most of it. They often have access to highly sophisticated tools and

instruments for analysis.

Class III (funded organizations): they are able to assemble teams of specialists with

related and complementary skills backed by great funding resources. They are capable of in-

depth analysis of the system, designing sophisticated attacks, and using the most sophisticated

analysis tools (very expensive). They may use Class II adversaries as part of the attack team.”

In this work, we consider adversaries for whom the cost of the attack should not exceed

the price of the protected entity or the expected amount of profits. Thus, in the following, our

study will focus on countermeasures to thwart attacks and adversaries classified in class II.

2-2.2. Considered Attacks

The device to protect is supposedly exposed to a hostile environment where physical but

non-invasive attacks are feasible (typically attacks carried out by adversaries of Class II).

As a consequence, the main hypothesis in our threat model is the fact that the System on

Chip (SoC) is considered as tamper resistant to physical attacks. A proof of such an

assumption is the Xbox cracking example. In [6] the hacker, Andrew “bunnie” Huang,

exposes his approach to attack the gaming console. The targeted ASIC was manufactured in a

0,13µ process with several metal layers and to shape the chip would have required a lot of

facilities. Thus, he considered this choice as too expensive and time-consuming and he

decided to probe buses, which seemed a more reasonable approach. Thus, the SoC is

Chapter 2. Security Concerns

 67

considered as a trusted area. In addition to this, side-channel attacks are not taken into account

in this work. As a consequence, we consider that on chip registers and memories cannot be

tampered with by an adversary.

Moreover, software attacks are not considered; the operating system (OS) or at least a part

of the OS, called the secure kernel, is also trusted.

Figure 2-2 Board level attack based on bus probing and on data injection

In this work, we focus mainly on board level attacks involving processor-memory bus

probing (Figure 2-2) or memory tampering. Such attacks allow to perform readings of the

memory content or to inject data on the bus or directly into memory. We are particularly

concerned by the “Man in the middle” attacks. The corresponding protocol implementing this

attack is divided into two parts:

 First the attacker monitors the processor-memory communications and intercepts the

data on the bus (passive attacks). Another possibility is to directly read data in memory. This

raises the issue of data confidentiality.

 Then the adversary may insert chosen texts – called “fake” in the following - on the

processor-memory bus and thus challenge data integrity. The objective of the attacker could

be to take control of the system by injecting malicious codes or to constrain the search space

in case of a message recovery attack. The choice of the fake by the attacker leads us to define

three kinds of feasible active attacks even if data are encrypted:

• Spoofing attacks: the adversary exchanges a memory block

transmitted on the bus with a random fake one. The attacker mainly alters

program behavior but cannot foresee the results of his attack if the data are

encrypted.

 Address bus
SoC

Trusted area
 External

Memory
Data bus

Chapter 2. Security Concerns

 68

• Splicing or relocation attacks: the attacker swaps a memory

block transmitted on the bus with another one previously recorded in the external

memory. Such an attack may be viewed as a spatial permutation of memory

blocks. When data are ciphered, the benefit for an attacker of using a memory

block copy as a fake is the knowledge of its behavior if this one was previously

observed.

• Replay attacks: the protocol is nearly the same as for the

splicing attack one; however the fake memory block is recorded at a specific

address location and inserted later on at the same address (current data value

replaced by an older one). Such an attack may be viewed as a temporal

permutation of memory blocks at a specific address location.

In order to perform those kinds of active attacks, the adversary can interfere in the

protocol of communication between the SoC and the memory to handle the data, address and

control lines. In this way he can insert data directly into RAM memory or switch between his

own RAM and the device RAM at run-time (as implemented in the attack described in section

2-2.3).

We must provide message authentication to thwart spoofing attacks while for splicing and

replay we must ensure transaction authentication (section 1-4.6).

For clarity, in the following, the terms integrity checking and authentication, integrity and

authenticity are used interchangeably. Moreover we refer to the described attacks – spoofing,

splicing and replay – rather than to the security services – message and transaction

authentication - to define the goal of the designed countermeasures.

The next sub-section describes an attack on a commercial device to illustrate how a man

in the middle attack led on the processor-memory bus can challenge the confidentiality of the

off-chip memory content.

2-2.3. Attack conducted on a Commercial Device: The DS5002FP

Markus G. Kuhn performed a man in the middle attack on the Microcontroller DS5002FP

[31] in 1997. Such a microcontroller was the most widely used commercial bus-encryption

Chapter 2. Security Concerns

 69

processor at that time. This attack allowed the student to access the ciphered data stored by

the DS5002FP in the external memory and to retrieve their clear version.

The confidentiality of the data stored off-chip by the DS5002FP relies on an 8-bit block

encryption / decryption function. The address bus is also encrypted with a 17-bit block

encryption function. The secret key used is a 64-bit key randomly generated and stored on-

chip. The software is uploaded in clear through the serial port, then encrypted and stored in

the external SRAM. The data encryption function depends on the secret key and on the data

address.

The principle of this attack is to inject guessed ciphered instructions on the processor-

memory bus and to figure out their corresponding clear version by observing CPU reactions.

Such instructions are used to construct small encrypted programs which help the attacker to

learn more on the system. Finally, a program designed from all the information deduced

allows to output the whole memory content in clear form on the parallel port.

Figure 2-3 Principle of the DS5002FP CPU attack with a read-out device connected to

the bus (taken from [31])

In order to perform the attack a computer and a read-out device (developed by Markus G.

Kuhn [31]) are used (Figure 2-3). The read-out device is connected to most of the pins of the

DS5002FP microcontroller and to the SRAM memory. It allows to reset the CPU and to

record in FIFO memory the CPU (Central Processing Unit) reaction on the address bus and on

the four 8-bit parallel ports. Moreover, such a device is used to swap 8-bit encrypted data on

the bus: instructions fetched by the CPU are replaced by the guessed ciphered instructions

stored in a FIFO memory. Chip-enable and read/write signals are routed through the control

logic of the read-out device to enable switching between SRAM and the instruction FIFO.

Chapter 2. Security Concerns

 70

Therefore those signals are linked either to the SRAM or to the instruction FIFO depending

on whether the attacker wishes to inject chosen data or not.

The cost of this attack is low, it has been evaluated at 300$. Moreover, it can be done in

only four hours. With this attack Kuhn shows practically that implementing short block

encryption drastically limits the search space of a message recovery attack. In the DS5002FP

the 8-bit encryption function (address-dependent) induces a mapping plaintext/ciphertext with

only 256 entries at each memory location. Moreover, this attack highlights the fact that

providing encryption only might not be sufficient to guarantee data confidentiality. M.G.

Kuhn did not attack the encryption scheme directly; he constructed his own encrypted

program gradually by inserting guessed instruction on the bus to finally dump the memory

content through the parallel port after it had been decrypted by the encryption / decryption

unit itself. A strong data integrity checking mechanism could have prevented such an attack.

2-3. System on Chip Context

In order to clearly highlight the challenge of protecting data transferred between a SoC

and its memory and the consequence, in term of performance, of the choice of the underlying

cryptographic functions, it is important to understand how those data are processed and

accessed. In this section we do not describe data processing in computer architecture [32, 33]

but we present the computing characteristics which influence the design of the hardware

engines for security and their computation performance. Then we give the basic

implementation principles adopted for them. Finally we present the source of performance

degradation generated by those engines.

2-3.1. Memory Accesses

The off-chip memory is the main memory which contains the applications and data

executed and processed by the CPU. However, the processor also uses an on-chip memory,

called cache memory, closer, smaller and faster than the main memory. Its goal is to reduce

the average time of memory accesses and, as a result to enhance global computing

performance. Such a goal is reached by exploiting the locality principles:

Chapter 2. Security Concerns

 71

• Temporal locality: If data is requested by the processor, there is a great probability that

it will be used again shortly after.

• Spatial locality: If data is requested by the processor, there is a great probability that

the data stored around in adjacent addresses are also requested shortly afterwards.

Thus, the cache memory is divided into blocks (or cache lines) and when an instruction or

data is loaded from the main memory, it is simultaneously copied into the cache memory

(temporal locality) with the surrounded data belonging to the same cache block (spatial

locality). The architect-designer chooses the cache line length carefully to optimize

computation performance by considering the underlying processor architecture and the

applications running on it. Since the cache memory is smaller than the off-chip memory a

replacement policy must also be defined (refer to [32] for more details).

In this work, Load / Store RISC (Reduced Instruction Set Computer) architecture is used

as processor, meaning that on a read cache miss – the data fetched by the processor is not

present in the cache memory - the CPU loads a payload of a cache line size. However, such a

behavior is not relevant for all read operations and loading certain data in the cache may be

very inefficient, for instance when those data are known to be needed briefly. Another case is

for data belonging to large structures like arrays. Such structures may be read entirely in the

cache and thus result in cache pollution and in eviction of useful data from the cache. In order

to solve this issue, those data are tagged as non-cacheable i.e. they are never stored in the

cache memory and are directly fetched from the off-chip memory.

On write operations, two different write policies may be implemented to achieve

coherency between the cache and the off-chip memory: write-back and write-through. On

write-through cache policy, the modifications of a data in the cache are instantaneously

copied into the off-chip memory whereas on write-back a cache line is tagged in the cache

when it is changed and the external memory is updated only when the block is evicted from

cache. The latter write policy avoids successive off-chip write operations. However on each

read cache miss, it requires to chain one write operation - to update the external memory with

the evicted cache block if tagged as modified - with one read operation - to answer to the

cache miss request. Moreover, for both cache policies, when the data to write is not in the

cache, it is directly written in the off-chip memory9.

9 Such a behavior is called write-no-allocate. The policy which consists in loading the matching cache block
before performing the write is named write-allocate. However we do not consider this latter case in this thesis
since the processor used in the following (ARM9E [89]) does not implement it.

Chapter 2. Security Concerns

 72

2-3.2. Basic Principles for the Hardware Mechanisms for Data Security

2-3.2.1. Hardware Mechanisms for Data Security Localization

Hardware mechanisms for security are designed between the cache memory and the

memory controller on the trusted area (Figure 2.4).

Figure 2-4 Localization on the SoC of the hardware mechanisms providing data

confidentiality and authentication services

This choice is motivated by the following reasons:

1. Performance: such localization allows to store deciphered and integrity checked data

in cache memory. Hence, only off-chip memory accesses are impacted by the additional

latencies introduced by the underlying cryptographic functions.

2. Security: Secret values, like encryption keys, enrolled in the cryptographic

computations are stored on the trusted area and thus, are considered as inaccessible and secret

from adversaries’ point of view.

3. Compatibility: the design of the security engines is fully independent of the type of the

memory to protect.

2-3.2.2. Bus Encryption Principle

Guaranteeing confidentiality of external memory content consists in preventing any useful

information leakages from those off-chip memories. Hence, the basic requirement is that data

monitored by an eavesdropper on the processor-memory bus or retrieved in memory must be

C
ache

SoC: Trusted area

CPU
core

M
em

ory
C

ontroller
HMEI

External
Memory

Untrusted area Trusted area

Bus

Decrypted and integrity checked data

Encrypted and integrity protected data

HMEI: Hardware Mechanisms for data Encryption and Integrity checking

Chapter 2. Security Concerns

 73

unintelligible. This task is achieved by performing bus encryption. The principle –introduced

by Best [8, 9, 10] is obvious; data are encrypted on write operations and decrypted on read

operations. In this way data transiting on the bus and stored in the off-chip memory are

encrypted, making them incomprehensible from an adversary point of view. However,

targeted memories are Random Access Memory (RAM), meaning that memory accesses

could be of any length and start from any address; hence we must define a granularity of

encryption i.e. the size of the atomic block – called in the following chunk – processed by the

encryption engine on external memory accesses. Such a size is one of the parameters which

fix the trade-off between performance and security. Chunks that are too short lead to weak

encryption as highlighted by the Markus Kuhn attack – where a chunk of data is an 8-bit

block – while too long ones may decrease computation performance e.g. by polluting the

memory bandwidth on small memory accesses (see section 2-3.3.2). Several cryptographic

choices for the encryption engine influence the definition of the chunk size:

• The ciphered block size of the implemented underlying block cipher – to be used as

the output algorithm in a stream cipher or directly for block encryption – sets its

minimum length.

• The encryption mode; for instance when CBC mode is used, a chunk is of a CBC

chain length.

As memories are organized in cache blocks, in the literature a chunk is usually of this size.

However, as highlighted in section 2-3.3.2, this is not necessarily the most efficient choice.

2-3.2.3. Principle of Memory (Content) Integrity Verification

The integrity of the memory content is ensured by checking that read data has not been

tampered with during external storage or transmission over the bus. Like for encryption, a

granularity of integrity checking must be defined. In this section the chunk is the atomic block

loaded on-chip to be authenticated on read operations.

To fulfill the integrity checking objective, a value is appended to each chunk stored in the

external memory. This value called tag (T) is usually computed on-chip with a MAC

(Message Authentication Code) algorithm on write operations (Figure 2-5a). Such algorithms

based on hash functions or on symmetric block encryption accept as inputs the chunk and a

secret key. Theoretically they create a unique chunk/tag pair and the generated tag must give a

Chapter 2. Security Concerns

 74

compact representative image of the chunk and of its source i.e. the processor. Moreover, only

the SoC is capable to compute this tag as the secret key is stored on-chip. On read operations

(Figure 2-5b), the integrity of the loaded chunk is checked by verifying the tag. To achieve

this task, a tag reference T’ is computed on the chunk and compared with the tag T retrieved

from the off-chip memory. If the tag matching process fails, an integrity checking flag

informs the CPU which in turn adopts an adequate behavior (for instance a HALT instruction

to stop processor execution).

Figure 2-5 Integrity checking principle of external memory

However, an efficient memory integrity checking engine must also verify that the memory

works as a valid memory, meaning that a value read by the processor at a given address is the

most recent value stored at this address (replay attacks). As explained in Chapter 3 (section 3-

2), the general principle presented above must be tuned to be compliant with the previous

requirement.

Note that for integrity checking the minimum chunk size is defined by the length of the

atomic block processed by the underlying MAC or hash functions. Nevertheless, when data

confidentiality and integrity is ensured the size of the chunk must be decided by also

considering the constraint imposed by the encryption scheme.

(a) Write operation: Tag computation

External memory

Chunk TAG

Trusted area: SoC

MAC algorithm
(K)

write data bus
 MMU

Cache
Memory

CPU
address bus

Comp

(b) Read operation: Tag verification

read data bus

Integrity
checking flag

Trusted area: SoC

 MMU

Cache
Memory

CPU address bus

External memory

Chunk TAG

MAC algorithm
(K)

T’

T

Chapter 2. Security Concerns

 75

2-3.3. Run-Time Performance Degradation Considerations

2-3.3.1. Data Properties

During software execution, two kinds of data are processed: Read Only (RO) data and

Read Write (RW) data.

Instructions or RO data are only written once in the off-chip memory at loading (from a

Non Volatile Memory - NVM - or from a network connection). As a consequence, latencies

introduced by the decryption and the integrity checking processes must be optimized on read

operations.

RW data are more difficult to secure because they are dynamically modified during

software execution: several data values can be stored at the same address in the off-chip

memory. Therefore RW data - contrarily to RO data - are vulnerable to replay attacks.

2-3.3.2. Sources of Time Performance Degradation

The run-time performance slowdown induced by the implementation of cryptographic

algorithms, has mainly two sources:

• the latencies introduced by the underlying functions involved in encryption and in tag

computation,

• the memory bandwidth pollution generated by the loading of meta-data such as tags.

However, the processing of data by the security engines generates specific operations

which represent another source of degradation. Whatever the size of the chunk and by

considering that data integrity and confidentiality are ensured, a performance overhead must

be expected on:

• Read operations of data smaller than a chunk: such operations occur mainly for non-

cacheable data10. It is required to i) load the whole matching chunk from external

memory with its tag ii) decipher it and check its integrity iii) and forward the

requested data to the CPU. In addition to the latencies introduced by the security

mechanisms, such a processing pollutes the memory bandwidth by loading data not

necessarily needed.

10 And only for non-cacheable data when the chunk is smaller or equal in size to the cache block length.

Chapter 2. Security Concerns

 76

• Write operations of data smaller than a chunk require to perform the following steps:

i) load the matching chunk with its tag from the off-chip memory ii) decipher it and

check its integrity iii) modify the corresponding sequence in the chunk iv) re-cipher it

and re-compute its tag v) write it back into memory with its new tag. This chain of

operations is called in the rest of the thesis a Read Modify Write (RMW). A RMW

operation is always required in the following cases:

(1) when the write-through policy is implemented

(2) for non-cacheable data

(3) on write miss – the data to modify is not in the cache - with the write-back

cache policy.

The additional performance slowdown implied by such an operation is mainly due to

the generation of a read/decryption/checking process.

Therefore, to reduce the run-time performance overhead introduced by RMW operations,

ideally the chunk size should be defined as small as possible without affecting security.

Note that those operations only concern RW data. This is one of the reasons – with the

specific countermeasure required against replay (Chapter 3 and 6) - why the overhead of the

hardware mechanisms designed for data security mainly emanates from the RW data

processing.

2-4. Conclusion

In this chapter we specified the targeted security level we want to achieve by defining the

kind of adversary we take into account. Moreover we presented our threat model where all

components (buses and off-chip memories) are considered as untrustworthy except the SoC.

This threat model is illustrated with an example of attack which shows that guaranteeing data

confidentiality often requires also checking their integrity. Then, we described the principle of

bus encryption and of memory integrity verification. Finally, we introduced the notion of

chunk (atomic block loaded on read operations to be decrypted or/and integrity checked)

essential to fix the trade-off between security and run-time performance.

Chapter 2. Security Concerns

 77

 78

Chapter 3. Related Works

 79

Chapter 3: Related Works

This chapter surveys the hardware cryptographic engines dedicated to protect the off-chip

memories of computing systems. It is organized as follows. Section 3-1 presents the existing

bus encryption engines. In section 3-2, the mechanisms for memory integrity verification

proposed in the literature are discussed with a specific emphasis on the schemes handling the

replay attack issue. Finally, section 3-3 describes the technique providing both data

confidentiality and authentication and the related schemes implemented in SoC.

3-1. Hardware Engine for Bus Encryption

The principle of bus encryption was first introduced by Best in 1979 [8, 9, 10]. Best fixed

the basic principles presented in Chapter 2 (section 2-3). Accordingly, a cipher unit is

implemented on-chip with a secret cipher key located in an on-chip register. The block cipher

chosen by Best is based on basic cryptographic functions such as mono and poly-alphabetic

substitutions and byte transpositions.

Today’s hardware engines for bus encryption still use Best’s principles but propose

improved security by implementing standardized encryption algorithms. Such engines use

symmetric rather than asymmetric cryptography for performance reasons; asymmetric

encryption or decryption on each external memory access would add a prohibitive latency.

Bus encryption engines are divided into two families. The first one is called direct encryption

Chapter 3. Related Works

 80

since the encryption and the decryption processes start only after receiving data; they use

block cipher in ECB or CBC modes. The second family, One Time Pad (OTP) engines, is

based on the CTR mode of encryption which enables to parallelize the keystream generation

with memory access latencies.

3-1.1. Direct Encryption

Mainly two academic works proposed a detailed description of engines based on direct

encryption: Gilmont and al. [34, 35, 36] and a first version of the AEGIS (Architectural

EnGine for Information Security) processor [12, 13, 37, 38] developed at the MIT

(Massachussetts Institute of Technology) by Suh and al.

Gilmont and al. implements a direct encryption/decryption scheme based on the DES

algorithm. The software code which is installed has already been ciphered. The encrypted

application and the secret key K are transmitted by the software provider using an asymmetric

mechanism as the one exposed in Chapter 2 (section 2-1). The encryption mode implemented

seems to be ECB since a pipelined DES is used. The chunk size is of 64 bits and the

encryption is salted with the virtual address. Therefore for RO data, this ensures that a same

plaintext encrypted twice yields two different ciphertexts. However it is not true for RW data:

a same value encrypted twice and stored at the same address results in the same ciphertext.

This could lead to information leakage: for instance an adversary can deduce when a loop

counter returns to a given value. Concerning performance cost, Gilmont and al. evaluates the

overhead implied by decryption on an ARM7 processor core to 1% in the best case and 12%

in the worst case. However it is not clear in [36] if they consider the encryption cost.

A first version of the AEGIS [12, 37] processor implements AES direct encryption and

uses two keys per application, Kstatic for RO data and Kdynamic for RW data. The program

received is already encrypted under Kstatic. Kdynamic is generated on-chip with a random

number generator [12, 37]. The granularity of encryption (chunk) is aligned on a L2 cache

block basis (512-bit). The cache block is broken into 128-bit sub-blocks B[1], B[2], B[3] and

B[4] and encrypted in CBC mode as depicted in Figure 3-1 (taken from [37] - || is the

concatenation operator). The initialization vector IV required for the CBC mode consists of

the address chunk and of a 32-bit value RV; the rest of the IV is padded with zeroes to be 128-

Chapter 3. Related Works

 81

bit. For RO data RV is set to zero and for RW data it is randomly generated on each write

operation to avoid the ciphering of the same plaintext twice leading to the same ciphertext. RV

is stored in the off-chip memory. On a read cache miss, RV and the chunk are loaded, if RV is

zero, the cryptographic engine uses Kstatic for decryption otherwise it uses Kdynamic. Such a

decryption (CBC) can be done in parallel.

Figure 3-1 Direct encryption scheme (AES-CBC) proposed in the first version of the

AEGIS processor

Suh and al. give a performance evaluation of the proposed scheme on a high-end

processor (1GHz) with two levels of cache (L1 I-cache = 64KB, L1 D-cache = 64KB, unified

L2 caches = 1MB), a 64-bit bus (200 MHz) and considering 80 cycles of memory access

latency and 40 cycles for the AES latency. The performance slowdown reaches 25% when the

whole external memory is encrypted and the memory overhead implied by RV storage is of

6.25%. In order to allow parallel decryption four AES cores are required [12].

This encryption engine is secure regarding data confidentiality. However, an adversary

has access to RV; hence the only information leakage comes from the possibility for an

attacker to know when a cache block has the same value at different times if the same random

vector (RV) is used. To circumvent this possible security hole, Suh and al. propose to replace

RV [12] by a counter incremented on each write operation and to re-encrypt (with a new key)

all the read write memory section when the counter reaches its limit.

Chapter 3. Related Works

 82

The main drawback of such a scheme is on write operations because CBC encryption is

done sequentially, drastically increasing the memory access latency. Moreover on write

smaller than 512 bits, a RMW operation is required; hence at least two AES blocks must be

loaded to be able to modify the matching data and to re-encrypt it. In the worst case, when the

write affects B[1], the whole chunk must be loaded and re-encrypted because with CBC

encryption a given ciphertext influences the encryption of the following ones in the chain.

A third work, called XOM (eXecute Only Memory) [11, 39, 40], implements a direct

encryption engine based on the 3-DES [51] block encryption algorithm. [41] proposes a

performance evaluation with the following parameters for the simulation framework: 32KB

separated L1 instruction and data cache and 256KB unified L2, 100 cycles of memory access

latency and 50 cycles for the encryption latency. The simulation results show a performance

slowdown of 20.8% on average and of 41.81% in the worst case scenario.

Concerning commercial devices, Dallas Semiconductors updated their family of secure

microcontrollers – DS5250[42] – by removing the address bus encryption and by

implementing a DES (and 3-DES) algorithm since the attack of Markus Kuhn (Chapter 2,

section 2-1.3). Moreover, several patents (VLSI Technology [43], General Instrument [44])

surveyed in one of our conference papers [45] propose encryption engines based on similar

schemes as the one presented above.

3-1.2. One Time Pad (OTP)

The implementation of One-Time Pad engines described in the literature are based on the

CTR block encryption mode (synchronous state cipher – Chapter 1). The main advantage of

such a scheme for memory encryption is that a preprocessing step corresponding to the

keystream (or pad) generation can be parallelized with the memory access latency if the

counter value is known by the processor. Hence, ideally, the latency overhead is only

introduced by the XOR operation between the ciphered data and the pad on read operations.

The XOR operation can be done in one cycle. However some key points must be respected to

securely implement an OTP engine in our application domain. First the engine must be able

to produce on decryption the same pad as the one used on encryption for any chunk by

considering that the memory is randomly accessed. As a consequence, it must be able to

Chapter 3. Related Works

 83

retrieve the counter position corresponding to any chunk. Then, as highlighted in Chapter 1,

for the schemes based on stream ciphers to be secured a key stream sequence must never be

used twice.

Figure 3-2 One-Time Pad encryption scheme (AES-CTR) proposed in the last version of

the AEGIS processor

Mainly two academic works propose the implementation of an OTP for memory

encryption. The first one is incorporated in the most recent version of the AEGIS processor

[13, 37]. As for direct encryption, the chunk is of a cache block size. Figure 3-2 (taken from

[37]) depicts an example of implementation for a 512-bit cache block (divided into 128-bit

sub-blocks: B[1], B[2], B[3], B[4]). The pad used to encrypt or to decrypt a sub-block in a

given chunk is generated by the AES decryption on (V || Add || TScounter || i) which

represents the counter value. || is the concatenation operator. V is a fixed vector randomly

chosen that makes the counter 128-bit. Add is the chunk address. i is the position of a 128-bit

sub-block in the chunk. TScounter is generated on-chip by a 32-bit global counter on each

write operation (encryption) of a RW data and is stored in the off-chip memory. TScounter

is equal to zero for RO data. On read operation, for RO data the keystream generation can be

fully parallelized with the memory access latency since all values composing the counter are

known on-chip. However for RW data the TScounter value must first be loaded from the

Chapter 3. Related Works

 84

external memory to compute the pad and hence to decrypt the requested data. Moreover, to

avoid the generation of the same pad twice when the global counter reaches its limit, Suh and

al proposes to re-encrypt the whole protected memory with a new key. Performance

evaluation of this OTP scheme alone has been done for high-end processors [13, 37] using a

256 bytes on-chip buffer for time stamps and with the same architectural parameters as the

one chosen for their direct encryption scheme. It is shown that the performance degradation

remains under 18% in the worst case scenario. However, it is not indicated if this evaluation

considers the re-encryption overhead. They estimate the re-encryption period between 35

minutes and 5.35 hours on a 1 GHz processor and that one re-encryption takes less than 300

million cycles. The memory overhead induced by the off-chip storage of TScounter is of

6.25% of the encrypted memory space dedicated to RW data.

A similar work is proposed by Yang and al. [41, 46]. The main difference comes from the

fact that they use one sequence number (16-bit) per chunk rather than a global timer

(TScounter of 32-bit) for RW data. As a consequence, it is required to load its value not only

for decryption as in the previous scheme but also for encryption in order to increment it.

Despite this disadvantage, the performance evaluation presented in [41] is better since they

use a large on-chip cache (64 KB) to store those sequence numbers. Another key point

explored by Yang and al. to improve performance is the exploitation of the “write buffer

storage waiting time” to hide encryption latency. In most processors, buffers are used to store

data to write until the bus is free. Hence, on encryption the pad generation is launched as soon

as the data to write enter the write buffer, profiting from the storage waiting time in this

buffer. The performance degradation is estimated to 6.7% in the worst case scenario and to

1.28% on average on a high-end processor with two levels of cache (L1 I-cache = 64KB, L1

D-cache = 64KB, unified L2 caches = 256KB with 1024-bit L2-cache block), and considering

100 cycles of memory access latency and 50 cycles for the AES latency. Those figures do not

consider re-encryption overhead when a sequence number reaches its limit. However the re-

encryption may occur less frequently than for Suh’s scheme since a sequence number should

be incremented slower than a global timer. The off-chip memory overhead, for the

architecture parameters chosen, is about 1.5% of the amount of the encrypted RW (16-bit

sequence number for each chunk). This low overhead is achieved by the use of large chunk

size: 1024-bit cache block. However, to maintain such performance, a large on-chip cache (64

Chapter 3. Related Works

 85

KB) dedicated to the sequence numbers is required whereas the AEGIS processor only uses a

small buffer (256 B).

Concerning security, Suh describes in [37] two potential security holes of the OTP

implementation proposed by Yang and al. Both security holes are due to the generation of a

same pad to encrypt (respectively decrypt) two different plaintexts (respectively ciphertexts).

First, the fact that the sequence numbers are stored off-chip allows an adversary to choose the

value used to generate a pad. Hence the attackers could replay the same sequence number on

each data read by forcing the same encryption pad to be used on write back. This attack is not

feasible in AEGIS since the TScounter value is generated on-chip, therefore the adversary

cannot tamper with it. A way to solve this security hole for the Yang OTP is to check the

integrity of sequence numbers. The second security weakness comes from the generation of

the seed used to produce the pad via its AES encryption. This seed is created by the addition

of the chunk’s (or cache block) virtual address VA and the sub-block sequence number SN. As

a consequence, the same seed is generated for two chunks with VA1 = a and VA2 = a + x if the

relative sequence numbers are equal to SN1 = b + x and SN2 = b, resulting in the same pad

after the seed encryption. A simple way to solve this security hole is to concatenate the virtual

address with the sequence number instead of adding both [37].

Both implementations require a RMW operation on write of data smaller than the chunk

size. However, the OTP schemes allow to reduce the corresponding performance overhead.

Indeed, in Suh’s OTP implementation, the use of an on-chip global timer enables the

generation of the pad for the chunk to write during the read memory access latency. Therefore

the re-encryption step of the RMW operation results simply in a XOR operation (1 cycle).

This also applies to the Yang scheme if the matching sequence number is in the dedicated

cache.

The Suh and al. encryption scheme is the most secure implementation of OTP but Yang

and al. propose an interesting trade-off between performance and security.

3-1.3. Summary

Table 3-1 sums up the characteristics of each family of memory encryption engines. The

preprocessing feature of OTP schemes makes them more efficient than direct encryption

Chapter 3. Related Works

 86

engines; however, their main drawbacks are the sensitive management of the counter and the

re-encryption requirement of the whole memory when such a counter reaches its limit.

Table 3-1 Summary of the existing memory encryption engines

Direct Encryption

(Gilmont, AEGIS 1st version,
XOM, DS5250)

One Time Pad – Counter
Mode

(AEGIS 2nd version, Yang)
Security + + + + + +

Performance (latencies) - +
Off-chip Memory

Consumption Low Low

Silicon Area Usage
-

(Block Encryption and
Decryption core)

+
(Block Encryption or
Decryption only core)

Comments • Straightforward
implementation (+)

• Sensitive management of
the counter (-)

• Require periodic memory
re-encryption (-)

3-2. Memory Integrity Verification Engines

The integrity checking objectives in our application context is to detect any code or data

injection or corruption on the processor-memory bus and thus to forbid the execution of

intentionally altered memory content.

Gilmont and al. [36] claims to protect the integrity of the data stored off-chip with

encryption at run-time. They base their theory on the fact that the encryption is salted with the

virtual address; therefore an adversary who wants to modify an encrypted data or to swap

memory blocks in the memory has little chance to induce a valid behavior. While this

assumption may be considered for static code since the key is different for each application

loaded in memory, it is not true for dynamic data because a replay attack could easily be

conducted with a predictable behavior. For example, a loop counter can be replayed by an

adversary to freeze the code loop execution or to control the number of loop iterations

wanted. Moreover, Markus Kuhn’s attack demonstrates that using the address in the

encryption does not provide a sufficient countermeasure against a ciphered instruction

searched attack. An efficient integrity checking engine must come with a tamper detection

Chapter 3. Related Works

 87

mechanism to avoid the feasibility of such kinds of attacks and to prevent the processing of

altered data.

In the following, we present a study of the schemes proposed in the state of the art to

check data integrity. We first discuss the MAC based solutions and we show their limitations.

Then we present hash tree schemes which allow to handle the specific issue of replay attacks.

3-2.1. Integrity Checking Engines Based on MAC algorithms

In the XOM project, the principle of memory integrity verification presented in Chapter 2

(section 2-3.2.3) is implemented. Therefore, the tag computed on the chunk thwarts spoofing

attacks since a modification of the data will be detected by the tag matching process. The

MAC algorithm used is not specified but to prevent splicing attacks, the address is enrolled in

the tag computation (Addressed-MAC).

Many embedded systems are running operating systems (OS) which are based on

preemptive multitasking: the OS periodically interrupts tasks, stores the context (on-chip

registers, stack pointer, frame pointer…) off-chip and restores it later. A possible attack

consists in replaying a previously recorded context. The countermeasure proposed by XOM to

avoid such a replay attack is to use a “register key”. The value of this register is modified on

each interruption and is given as an additional input of the MAC algorithm. However as stated

in [40, 47, 48] this countermeasure does not prevent other RW data from being replayed in the

external memory. For instance, a loop counter can be replayed in the external memory to

extend its duration. The integrity engine based on a addressed-MAC scheme implementation

cannot detect it since the information used for the tag computation – the replayed data and its

address - remains the same at a given address.

A solution might be to enroll secret random values in the tag computation. Such a solution

has never been explored in our application domain and will be deeply studied in Chapter 4, 5

and 6.

In [49] Merkle proposes a technique, called hash trees, which allows to solve the issue of

replay attacks. This technique, thoroughly implemented in our application domain in [13, 37,

47], is presented in the next sub-section.

Chapter 3. Related Works

 88

3-2.2. Hash Trees

A simple solution to thwart replay attacks would be to store the tags or the hashes of each

chunk on-chip. In this way tags or hashes are inaccessible from adversaries and any

corruptions of the loaded data are always detected by the tag (or hash) verification process. To

limit the on-chip memory overhead two options are possible: i) generate smaller tags ii) attach

a tag to a chunk composed of multiple cache blocks (extend the chunk size). While the

latter might induce a great loss of performance by increasing the memory bandwidth usage,

the former might dramatically reduce the robustness of the integrity checking engine since

more chunks would correspond to the same tag. However, even with a small tag or hash, the

on-chip memory overhead would be unaffordable.

Figure 3-3 A balanced 4-ary hash tree

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

H
A

SH

A chunk (4 hashes or 4 leaves 4 siblings)

Leaves (data to authenticate)

Off-chip stored and
untrusted:
hash tree

on-chip stored and
trusted:

hash-tree-root

Chapter 3. Related Works

 89

Merkle or hash trees solve the latter issue by securely storing chunk hashes off-chip. The

principle is to keep a trusted value (hash tree root) on-chip which reflects the current external

memory state. This value is updated on each write operation and checked on each read

operation through a tree11 of hashes computed over the memory to authenticate (Figure 3-3).

Each element of the tree has the size h (in bit) of a hash. The leaves are the h-bit data blocks

composing the memory. Each internal node is the collision-resistant hash of its children

chunks (containing m h-bit blocks or hashes). The elements issued from the same parent in the

tree are called siblings. It results in an m-ary hash tree.

The integrity checking process on each read operation works as follows:

i) Read the matching chunk - composed of the fetched data and its sibling in the tree

- and its parent hash in the untrusted memory

ii) hash the chunk

iii) compare it with its parent hash.

 The same steps are repeated with the parent hash and its parent until the root of the tree is

reached. Since the latter is stored on-chip, it cannot be tampered with by an adversary; hence

it is trusted. If one of the hash verification fails, this means that a data or a hash has been

corrupted in memory; the process stops and the integrity checking engine raises an exception.

On write operations, the tree must be updated, thus the following steps are required:

i) authenticate the matching chunk (with the process described for read operations)

ii) perform the write in the loaded chunk

iii) hash the chunk

iv) update the parent in the tree with the resulting hash

Similarly to read operations those steps are repeated with the parent hash all along the

path from the leave to modify to the root of the tree. The authentication of each chunk loaded

on write operations is mandatory otherwise an adversary could corrupt the sibling of the

fetched data during this process without detection.

11 Refer to Chapter 6 section 1 for the definition of a tree structure.

Chapter 3. Related Works

 90

The overhead in memory consumption to store an m-ary hash tree is constant and equal

to)1(
1

−m . The number of hash verifications on a read operation is of logm(N) with N the

number of h-bit block composing the memory to protect.

On read operations, the hash computations are parallelizable during the integrity checking

process and the degradation mainly emanates from the memory bandwidth pollution

generated by the huge amount of meta-data (hashes belonging to the same branch in the tree)

to load. Moreover, on write operations the update of the tree is a sequential process. All those

issues make the direct implementation of the hash tree principle clearly unaffordable for a

computing system. In [47] Gassend and al. show that the corresponding performance

slowdown can reach a factor 10. To decrease this overhead they propose to exploit the

principle of locality of cache memory and to apply it to hash values (Cached hash tree). When

a chunk of hashes is loaded on-chip it is stored in the cache memory after being checked. The

cached hashes are trusted since stored on-chip; as a consequence the integrity checking

process on read operations stops when a hash in the tree is fetched from cache. Such a

solution also improves performance on write operations if the intermediate hashes in the tree

branch to update are cached. However, this update process still requires serializing hash

computations.

Suh integrates cached hash tree principle in the AEGIS processor. A first implementation

of such a tree for embedded systems (25MHz processor, 12.5MHz SDRAM memory, 64-bit

bus width, 32KB I/D cache, 512-bit cache blocks) is proposed in [12, 37]. The scheme

protects 4MB of memory against replay and uses an additional hash cache of 16KB. The

performance slowdown is evaluated to 18.9% when the data cache miss rate is of 12.5%.

Concerning high-end processors, the performance slowdown is evaluated to 20-30% on

average and to 50% in the worst case scenario (256KB L2 cache used also to cache hashes) in

the same simulation framework as the one considered for their direct encryption scheme.

However, the performance overhead of hash trees greatly depends on several parameters:

cache block and chunk size, amount of memory to protect, hash length, processor-memory

bus width and data cache size. This point is further detailed in chapter 6.

Another scheme based on hash trees called Log Hash Tree is proposed in [13]. However,

the integrity checking is done at regular intervals, thus giving the adversary potentially

enough time to perform an attack.

Chapter 3. Related Works

 91

3-2.3. Summary

Among the existing solutions to check memory integrity (Table 3-2), only hash trees

provide a countermeasure against all active attacks presented in Chapter 2 (spoofing, splicing,

replay). However such a solution suffers from some drawbacks. First, the update of hash trees

on write operations is not a parallelizable process. Then, despite the cached hash mechanisms,

the memory bandwidth pollution generated by the loading of several hashes during data

authentication or the tree update remains high. Finally, large hash values are required to resist

collision, implying a non-negligible off-chip memory usage.

Table 3-2 Summary of solutions achieving memory integrity checking

 Addressed-MAC
(XOM)

Cached Hash Trees
(AEGIS)

Security
-

(no countermeasure against
replay

+ + +

Performance – Memory
bandwidth consumption + -

Off-chip Memory
consumption Low High

3-3. Memory Encryption and Authentication: Techniques and Related Works

In this section we present the three existing techniques providing data confidentiality and

integrity and the related engines implemented to protect the off-chip memory content. First

we present the principle of generic composition consisting in pairing an encryption mode with

an integrity checking technique. Then we present the concept of Added Redundancy Explicit

Authentication (AREA). Finally, the authenticated encryption mode candidates proposed to

the NIST standardization process are described.

3-3.1. The Conventional Way: Generic Composition Schemes

3-3.1.1. Principle

The conventional way to provide both data confidentiality and integrity is to pair a data

authentication technique and an encryption mode, and therefore to perform two passes on

Chapter 3. Related Works

 92

data. A first pass is dedicated to encryption and a second one is done to compute a tag with a

MAC (or a hash) algorithm. The three possible schemes defined in [50] are depicted in Figure

3-1:

• Encrypt-then-MAC (Figure 3-1a) encrypts the plaintext to get a ciphertext C, and

then appends to C a tag T computed with a MAC algorithm over C.

• MAC-then-Encrypt (Figure 3-1b) calculates a tag over the plaintext P, appends the

resulting tag to P and then encrypts them together.

• Encrypt-and-MAC (Figure 3-1c) encrypts the plaintext P to get a ciphertext C and

appends to C a tag T computed over P.

The main drawback of such techniques is that both security mechanisms (encryption and

MAC computation) are non-parallelizable on read or on write operations or on both. On write

operations, for the Encrypt-then-MAC scheme, the tag computation starts only at the end of

the encryption process while for the MAC-then-Encrypt, encryption only terminates after the

completion of the tag calculation. Concerning read operations, for the Encrypt-and-MAC and

the MAC-then-Encrypt schemes, the tag reference computation begins only when the

decryption process is completed.

MAC

Encryption
Ciphertext Tag

Ke

Km

Plaintext

(a) Encrypt-then-MAC

Encryption Plaintext Tag
MAC

Ciphertext

Km
Ke

Plaintext

(b) MAC-then-Encrypt

E(T)

(c) Encrypt-and-MAC

Ke

Encryption
Ciphertext Tag

MAC

Km

Plaintext

Figure 3-4 The conventional way to provide data confidentiality and integrity:

The generic composition schemes

In [50], Bellare and al. proved that the most secure way to pair an authentication technique

with an encryption mode is to use the Encrypt-then-MAC scheme and to enroll a different key

for each computation.

Chapter 3. Related Works

 93

3-3.1.2. Off-Chip Memory Protection Engines Based on Generic Composition

The works presented in this section aim to provide trusted processor architecture with

different objectives. However, they all need to protect the processor-memory transaction to

thwart non-invasive physical attacks. Thus, they all implement a generic composition scheme

by considering the same security perimeter: the System on Chip (SoC).

3-3.1.2.1. AEGIS

The AEGIS processor objective is to offer a trusted computing platform for a large set of

applications with a special focus on distributed computation. They consider software as well

as physical attacks. Concerning the latter issue, Suh and al. implement a generic composition

scheme constructed with the OTP engine presented in section 3-1.2 and a MAC algorithm for

RO data and a cached hash tree for RW data (as presented in section 3-2.2) in the Encrypt-

then-MAC fashion. For an embedded processor (50MHz) with 32KB of data cache, 16KB of

hash cache and 4KB of time stamp cache, the performance slowdown is low and evaluated at

25% for a data cache miss rate of 12.5%. However the memory region protected against

replay by the hash tree is limited to 16MB. By reducing the data cache to 4KB and the hash

cache to 2KB the degradation can reach 73%. Such an engine requires 3 AES “encryption

only” cores and 5 SHA-1 hardware copies. The off-chip memory overhead is of 33% of the

amount of memory immune against replay – hash tree storage - 25% of the RO memory

section – MAC (tag) storage - and of 6.25% of the RW memory region – time stamp storage.

For a high end processor (1GHz, 200MHz and 64-bit memory bus, 256B on-chip buffer

dedicated to time stamps) and in the case where all data and instructions are protected, the

performance slowdown is evaluated at 40% on average (256KB unified L2 cache) and at 60%

in the worst case scenario.

3-3.1.2.2. SP – Secret Protected

The SP (Secret Protected) architecture (formerly VSCoP – Virtual Secure Coprocessing)

focuses on the protection of critical information such as cryptographic keys contained in

mobile devices and of sensitive computations involving the management of those keys. Lee

and al. propose the concept of concealed execution where a Trusted Software Module (TSM)

handles the management of the sensitive information. TSM runs in a dedicated mode

Chapter 3. Related Works

 94

protecting its code and data from software attacks. The integrity of the TCM code is ensured

with a CBC-MAC (AES) scheme while for data, both confidentiality and integrity are

provided by pairing AES-CBC encryption and the AES-CBC-MAC with the Encrypt-then-

MAC construction. The chunk size in SP is of a cache line (512-bit). To thwart replay attacks

they propose to implement a hash-tree scheme similar to the one of AEGIS.

A particularity of SP is that the targeted device does not contain permanent secret (i.e.

private key). A secure I/O device is designed to record a pass-phrase entered by the user. This

pass-phrase is hashed to be used as the master key enrolled in the hardware cryptographic

computations. In this way the sensitive data are directly associated to the user rather than the

device.

The SP architecture fulfills its objective efficiently. Considering 100 cycles of initial off-

chip memory latency, separated L1 cache with 64KB of I-cache and 64KB of D-cache, and a

2 MB unified L2 cache, the performance slowdown is kept under 1%. The overhead is

negligible because the amount of data to protect is low compared to the unsecured ones,

inducing an increase of the off-chip memory latency only on a small number of memory

accesses. Those results do not consider the implementation of hash tree but for the same

reasons the overhead should remain of the same order.

3-3.1.2.3. XOM

XOM [11, 39, 40] aims to provide the same security features as the AEGIS processor with

countermeasures against software and physical attacks. The objectives are also similar:

software copy protection and tamper-resistant software distribution. To thwart physical

attacks, an Encrypt-then-MAC construction of a direct encryption mode paired with an

addressed-MAC is proposed. However, as highlighted in Chapter 2, XOM failed in preventing

replay attacks. Moreover, the architecture of the off-chip memory protection engine and its

performance evaluation are not detailed.

3-3.1.2.4. Summary

The most secure engines providing both data encryption and integrity checking are those

implementing hash trees because they offer a countermeasure against replay (Table 3-3).

However, only the SP architecture obtains negligible performance overhead by focusing on

the protection of critical information such as keys and code required to manage them.

Chapter 3. Related Works

 95

Table 3-3 Summary of the memory protection engine (encryption and integrity
checking) based on generic composition

Encrypt-then-MAC construction

XOM AEGIS SP

Security
-

(MAC - no protection
against replay)

+ + +
(Merkle Trees)

+ + +
(Merkle Trees)

Performance N/A - +
Off-chip Memory

Consumption N/A high low

Comments N/A

Performance
evaluation done

on complete
applications

Only information
related to secret keys

are protected

In the following, the underlying block cipher processes n-bit blocks under k-bit keys. EK

and DK are respectively the encryption and the decryption functions under the key K. The

message to encrypt M is divided into m n-bit plaintext blocks Pi with (1 ≤ i ≤ m). Similarly the

ciphered version of M is divided into m n-bit ciphertext blocks Ci with (1 ≤ i ≤ m).

3-3.2. AREA: Added Redundancy Explicit Authentication

The principle of the AREA schemes is to insert redundancy into the plaintext message

before encryption and to check it after decryption. Such a scheme is constructed with cipher

mode with infinite error propagation on encryption and on decryption (infinite two-way error

propagation). A cipher mode has infinite error propagation on encryption if a ciphertext block

Ci can be expressed as a function of all previous plaintext blocks Pi to P1 of the message M to

encrypt. Similarly, a cipher mode has infinite error propagation on decryption if a plaintext Pi

can be expressed as a function of all previous ciphertext blocks Ci to C1 in the encrypted

message Ek(M). For instance, CBC has infinite error propagation on encryption since a given

ciphertext block can be written as a function of all previous plaintext blocks, but has limited

error propagation on decryption since a given plaintext can be expressed as a function of only

two ciphertext blocks.

In order to authenticate a message in addition to encrypt it, a value Pm+1 – the redundancy

- is appended at the end of the plaintext message before encryption. In this way, the result of

the encryption of Pm+1, Cm+1 will depend on all plaintext blocks Pi composing the message to

Chapter 3. Related Works

 96

authenticate. If the error propagation of the underlying cipher mode is not infinite, distinct

messages leading to the same Cm+1 can be easily found. Pm+1 and Cm+1 are sent along with the

encrypted message. On decryption, the corruption of one bit in any ciphertext block Ci will

impact the decryption of Cm+1 since it depends on all previous ciphertext blocks (infinite error

propagation). The recipient can detect a malicious modification by comparing the decryption

of Cm+1 with Pm+1.

An example of cipher mode usable for an AREA scheme is the PCFB (Propagating Cipher

FeedBack) mode which is described in the following section.

AREA schemes seem really efficient since only one pass over the data is required to

provide both data confidentiality and authentication on encryption and decryption (i.e. on

write and read operations in our application domain). However, the infinite error propagation

is usually achieved by chaining encryption (e.g. CBC, PCBC12, and PCFB) or decryption (e.g.

PCBC, PCFB) operations, making parallelization impracticable.

3-3.3. Authenticated Encryption Modes

As shown in [50] and [53], providing both data confidentiality and authentication with

schemes based on generic composition or on AREA could be a risky task. Hence, an

important effort led by the cryptographic research community through the NIST's modes-of-

operation [54] activities is deployed to define Authenticated Encryption (AE) modes. It aims

at proposing a secure way to provide the confidentiality and authenticity security services to

data.

This section describes those modes while keeping our objectives in mind. For instance,

some of the presented AE modes, also called AEAD modes - where AEAD stands for

Authenticated-Encryption with Associated Data - allow authenticating some data without

having to encrypt them. However, the objective of this work is to provide data authenticity-

and-confidentiality, therefore this point is not furthermore developed in this thesis, for more

details see the corresponding reference. Moreover, one of our interests is to reach such an

objective by introducing low latencies on both write and read operations. Considering the

latter aspect this section is divided into three parts. First we give an overview of the AE

modes including an expensive non-parallelizable computation in their construction, either for

12 PCBC stands for Plaintext Cipher Block Chaining or for Plaintext-Ciphertext Block Chaining. It has never
been standardized as a cipher mode. Several versions and definitions of PCBC have been proposed as AREA
schemes. [53] presents the different existing PCBC modes and describes potential attacks.

Chapter 3. Related Works

 97

encryption or for tag calculation. Then we describe the operations of the AE modes classified

by the NIST as parallelizable. Finally, we discuss the implementation of the most relevant AE

modes for protecting the off-chip memory content of computing systems.

For clarity we do not detail the mathematical concept behind those modes in the following

section, we only sketch a simplified description of the proposed AE modes to allow the reader

to realize the cost of a hardware implementation in a SoC.

Moreover, the presented authenticated encryption modes are only described for messages

of length which is a multiple of the block size of the underlying block cipher.

3-3.3.1. Authenticated Encryption Modes with Non-Parallelizable Operations

3-3.3.1.1. CCM - Counter CBC-MAC

CCM [55] is a secure combination of two existing modes using a single key: CTR mode

for encryption and CBC-MAC for authentication. CTR is highly parallelizable and pre-

processing is feasible: as discussed in Chapter 2, keystream (or pad) sequences could be

generated in parallel before data is available if the counter initialization is known. The main

drawback concerning our application is the use of CBC-MAC which implies serialized block

encryption and prevents any parallelization. Moreover, CCM follows the Encrypt-then-MAC

construction and on write operations the tag computation can only start after the end of the

encryption of the first plaintext block.

3-3.3.1.2. EAX - Encrypt Authenticate Translate

Similarly to CCM, EAX [56] is the generic composition of an authentication mode,

OMAC (One key CBC-MAC [24, 57]), and of an encryption mode, CTR, in the Encrypt-then-

MAC fashion. EAX also uses a single key. It allows to enhance the security of CCM

regarding authentication particularly for messages of varying length [Dent]. However, such a

point is not of our concern since in our application domain we process blocks of fixed size

(usually defined by the chunk size). The same CCM drawbacks apply to EAX since OMAC is

still a recursive construction.

Chapter 3. Related Works

 98

3-3.3.1.3. PCFB - Propagating Cipher Feedback

PCFB [58] is a stream cipher which mixes OFB and CFB modes. The output algorithm is

an n-bit block cipher and the internal state is the concatenation of l-bit of the previous

ciphertext and of (n – l) bits of the previous key stream. In this way, it results in an infinite

two-way error propagation. In order to provide authentication, PCFB works like an AREA

scheme. Despite the fact that this mode is the only one to perform one pass over the data to

provide both confidentiality and integrity, its two-way error propagating inherent feature

makes it not parallelizable on both encryption - write operations - and decryption - read

operations: in order to generate a keystream for the current encryption (respectively

decryption), the previous ciphertext and keystream (respectively keystream) are required.

3-3.3.1.4. IACBC - Integrity Aware Cipher Block Chaining

IACBC [59] uses two keys (K0 and K1) and requires a random initialization vector r for

each message processed. It implements the CBC mode for encryption under K1 with post-

whitening (after encryption) with an n-bit vector Si: Ci = EK1(Pi ⊕ Ci-1) ⊕ Si with C0 = EK1(r)

(Figure 3-5). The whitening step consists in the addition of a key-dependent value to break the

pattern of the text on which it is applied. To obtain the set of Si, a subset of t = ⎡ ⎤)1(log2 +m 13

new random and independent vectors Wi is computed from the encryption of r under K0.

Then, a Gray code controls the generation of the pairwise independent Si vectors. To obtain

the authentication tag T, the checksum (XOR summation) of the plaintext block composing M

(checksum = ΣPi) is first xored with the result of the last plaintext block encryption before its

post-whitening step, then block encrypted and finally whitened with S0.

The shortcoming of IACBC is the use of the CBC principle which prevents any

parallelization during encryption (write operations). On decryption (read operations), IACBC

is parallelizable but after two serialized block cipher invocations: one to obtain r (assuming

that r is not known by the decrypting party) and one to obtain S1. The integrity checking

process is parallelizable with the ciphertext decryption since the verification can be done by

comparing the T decryption result with the checksum obtained at the end of decryption.

13 ⎡ ⎤X denotes X rounding up.

Chapter 3. Related Works

 99

Figure 3-5 IACBC - Integrity Aware Cipher Block Chaining

3-3.3.1.5. XCBC-XOR

XCBC-XOR [60] is very similar to IACBC since it is based on CBC principle and on

post-whitening. The main difference comes from the whitening step which is done with an

addition in the group of natural number modulo 2128 and not in a binary Galois Field. Whereas

the latter is simply performed with a bitwise XOR, the former requires managing a carry-bit

through the adder which is less efficient in hardware. Moreover, in XCBC-XOR the

whitening value is obtained by multiplying the position i of the currently processed block Pi

in the message M by the initialization vector r: Si = i x r.

3-3.3.2. Parallelizable Authenticated Encryption modes

3-3.3.2.1. IAPM – Integrity Aware Parallelizable Mode

IAPM [59] was proposed by Jutla (also inventor of IACBC) as the refinement of the

IACBC to make it parallelizable. The recursiveness of the CBC-like encryption was removed

and replaced by a pre-whitening step on the plaintext with the corresponding pairwise

independent vector Si: Ci = EK1(Pi ⊕ Si) ⊕ Si with C0 = EK1(r)(Figure 3-6). To obtain the

authentication tag T, the checksum (ΣPi) of the plaintext block composing M is processed like

a plaintext block with S0 as whitening value.

S0

r

C0

P1

C1

Pm

Cm

EK1 EK1 EK1

ΣP

T

EK1
EK0 EK0 EK0

r+1 r+2 r+t

W0 W1 Wt-1

S0, S1,… Sm

S1 Sm

Gray Code

Chapter 3. Related Works

 100

Figure 3-6 IAPM - Integrity Aware Parallelizable Mode

Similarly to IACBC, IAPM requires two serialized block cipher invocations before

starting data processing: one to obtain r (assuming that r is not known by the decrypting

party) and one to obtain S1. This non-parallelizable step can be considered as negligible when

long messages are processed and when the throughput is privileged to the latency.

3-3.3.2.2. XECB-XOR

Like IAPM for IACBC, XECB-XOR [60] removed the recursiveness of XCBC-XOR with

a pre-whitening step. However, XECB-XOR suffers from the same drawbacks as XCBC-

XOR: the underlying algebraic structure is not suited for hardware implementation.

3-3.3.2.3. OCB – Offset Code Book

OCB [62] is a refinement of IAPM, proposed by Rogaway. The encryption process

(Figure 3-6b) is the same; the differences come from the whitening values and the tag

generations. Moreover, OCB uses a unique encryption key K and requires an initialization

vector N which only needs to be a nonce (a Number used ONCE).

Let L be the encryption of the n-bit null vector under K: L = Ek(0n) and γi a Gray code with

i the position of the processed block in the message M. Moreover R is the encryption under K

of the addition (XOR) in the binary Galois Field addition GF(2n) of N and L: R = Ek(N ⊕ L).

Thus, the whitening value Si used in the encryption of Pi is computed by:

RLS ii ⊕⊗=)(γ

S0

r

C0

P1

C1

Pm

Cm

EK1 EK1 EK1

ΣP

T

EK1
EK0 EK0 EK0

r+1 r+2 r+t

W0 W1 Wt-1

S0, S1,… Sm

S1 Sm

Gray Code

S1 Sm S0

(a) Whitening values generation (b) Encryption process (c) Tag computation

Chapter 3. Related Works

 101

where ⊗ denotes the binary Galois Field GF(2n) multiplication. The ciphered text Ci is

obtained as for IAPM with:

iiiKi SSPEC ⊕⊕=)(

The tag results from the encryption under K of the XOR operation between the checksum

of the plaintext block (ΣPi) and the last whitening value Sm:

)(
1

m

m

i
iK SPET ⊕= ∑

=

Assuming that L is produced in advance and memorized, OCB is parallelizable on

encryption and on decryption after one block cipher invocation which corresponds to the

computation of R.

Rogaway proposes to truncate the tag T. If such an operation is performed the integrity

checking process is no more parallelizable with the decryption since the tag cannot be simply

decrypted and compared to the checksum of the decrypted block xored with the last whitening

value.

Note that IAPM as OCB are not collision-resistant since the tag is computed on a XOR

summation. As a consequence a bit flip in the same position in two plaintext blocks of a

message will yield in the generation of the same tag for the original message as well as for the

tampered one. However, it is not of our concern since in our context the adversary does not

have access to the plaintext. This attack does not apply to IACBC since the CBC-like

construction induces infinite error propagation until the checksum on encryption; hence a

modification of one bit in the message affects the tag computation.

3-3.3.2.4. GCM – Galois Counter Mode

GCM [63] is an Encrypt-then-MAC construction which uses the CTR mode for

encryption and a MAC algorithm based on the Carter-Wegman[64] design under a unique key

K.

Chapter 3. Related Works

 102

Figure 3-7 GCM -Galois Counter Mode (The message to encrypt is a multiple of the

block length of the underlying block cipher)

Let H be the encryption of the n-bit null vector under K: H = Ek(0n) and GHASH(x) the

function consisting in the multiplication in GF(2128) of x with H (Figure 3-7). To obtain a hash

of the ciphered message, GHASH(C1) is first performed and then GHASH(GHASH(Ci-1) ⊕

Ci) is recursively computed. The final tag T results from the encryption of this hash with the

CTR mode; hence T is computed with:

))(()0(1 mmK CCGHASHGHASHCounterET ⊕⊕= −

In GCM, the Encrypt-then-MAC scheme is implemented, thus encryption and tag

computation are not parallelizable. Moreover, the tag computation is a recursive process.

Nevertheless [65] shows that a multiplication over the binary Galois field GF(2128) can be

done in hardware in less than one cycle at 271 MHz, making GCM an efficient authenticated

encryption mode.

3-3.3.2.5. CWC – Carter-Wegman authentication with Counter

Similarly to GCM, CWC [66] pairs a CTR encryption mode with a Carter-Wegman MAC.

However, CWC suffers from many drawbacks when compared to GCM [67]. In particular,

the proposed implementation of Carter-Wegman MAC computes a hash consisting in a

C2

+ 1 + 1
Counter 0

EK

Counter 1

EK

Counter m

EK

+ (m-2)

P1

C1

H

Pm

Cm

Counter 2

EK

P2

H H

T Tag

Ciphered blocks

EK

H

0n

Chapter 3. Related Works

 103

multiplication in a prime Galois field GF(2127-1) which is less suitable in hardware than a

multiplication in the binary Galois Field GF(2128). In [68] they estimated the cost of the

integer-based hash function (CWC) to 100K gates while in [63] the hardware resources for a

binary field hash function are evaluated to 30K gates.

3-3.3.2.6. CS – Cipher State

Cipher State [69] mode proposes a totally different approach. Instead of pairing two

schemes, one for encryption and one for authentication, CS retrieves information during

encryption between the underlying block cipher rounds and computes an authentication code

from them. This technique seems interesting but does not catch the attention of the research

community since, contrarily to the other AE modes, there are no comments or proposed

implementation of such a mode.

3-3.3.3. Discussion

The NIST has recommended two modes: the CCM for short tag [71] and the GCM [72]

for long tag. Nevertheless CCM is discarded for our application due to its non-parallelizable

tag computation which would greatly increase memory access latencies. Concerning GCM,

[73] advises not to consider this mode when the tag should be truncated. Typically when

authentication is done on short memory blocks it is desirable for us to have a short tag to save

expense of off-chip memory.

Otherwise, IAPM and OCB is the NIST non-recommended14 AE mode which seems to be

the most relevant for our application because encryption and tag computation, and decryption

and integrity checking are strongly parallelizable. However, one block cipher invocation for

OCB and two for IAPM must be completed before those processes can start; such a non-

parallelizable computation could increase memory access latencies. Moreover, when the tag is

truncated, the integrity checking process is no more parallelizable with decryption.

The last comment on the AE modes is the fact that they all require to be tuned to prevent

replay and splicing attacks when implemented to protect processor-memory communications.

We did not find SoC implementation of Authenticated Encryption modes to protect the

off-chip memory content.

14 The main reason for this rejection is the fact that they are patented.

Chapter 3. Related Works

 104

3-4. Conclusion

In this chapter we have first presented the engines proposed in the literature to protect

separately the confidentiality and the integrity of the off-chip memory content. We have

highlighted that for two reasons the OTP encryption scheme (based on the CTR encryption

mode) is the most efficient technique to be used in our application domain. First, a

preprocessing step allows parallelizing the key stream preparation with the external memory

access latency (particularly on read operations). Secondly, such schemes only need

encryption-only cores which are less gate-consuming than encryption/decryption cores

required by direct encryption. Concerning memory integrity verification, we have showed that

hash trees are the only existing technique allowing to thwart replay attacks, but at a non-

negligible cost in term of performance. Finally, in the third part of this chapter, we have

described the techniques providing both data confidentiality and integrity: generic

composition scheme, AREA and authenticated encryption. The generic composition scheme

proposed by Suh and al. is secure but the main shortcomings are the hardware implementation

of two algorithms, one for encryption and one for the integrity checking, and the non-

parallelization of both processes (and the intrinsic non-parallelizability of hash trees) on write

operations. Concerning the AREA technique, the requirement of two-way infinite error

propagation leads to serialized computations, thus preventing latency optimization. Finally,

the most efficient authenticated encryption mode seems to be GCM despite the

recommendation of using long tag, because the tag computation is fast compared to classic

hash or MAC functions. The CTR mode is implemented in GCM allowing preprocessing and

mitigating the additional hardware cost of the multiplication over GF(2128) – required by the

GCM hash function. However, the GCM must be tuned to thwart splicing and replay attacks.

Chapter 3. Related Works

 105

 106

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 107

Chapter 4: PE-ICE - Parallelized

Encryption and Integrity Checking Engine

The proposed Parallelized Encryption and Integrity Checking Engine, PE-ICE, is a

dedicated solution guaranteeing the confidentiality and the authenticity of data transferred

onto the processor-memory bus of a computing system.

The first objective of PE-ICE is to perform encryption and integrity checking in a

parallelized way and hence to optimize latencies introduced by the underlying hardware

mechanisms on read and write operations. Moreover, we achieve this task by keeping in mind

a second goal which is to optimize the hardware resources usage. A third objective of PE-ICE

is to decrease the memory bandwidth pollution generated by the encryption and the integrity

checking processes on RMW operations.

This chapter is organized as follows. Section 4-1 gives an overview of PE-ICE. Section 4-

2 describes the integrity checking process in PE-ICE and the property of block cipher on

which it relies. Section 4-3 presents the encryption mode implemented and introduces the

notion of fine granularity of integrity checking. Section 4-4 deals with issues of PE-ICE

implementation in a SoC. Section 4-5 discusses the level of security offered by PE-ICE and

the implementation key points to maintain it. Section 4-6 describes how to retrieve data

processed by PE-ICE in memory. Section 4-7 evaluates the amount of on-chip and off-chip

memory consumed by PE-ICE. Finally, section 4-8 sums up terms and PE-ICE parameters

defined in this chapter and proposes a synthetic description of PE-ICE operations.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 108

4-1. General Overview

PE-ICE may be viewed as a black box implementing a block cipher and performing one

pass on the data to provide both confidentiality and authentication. On encryption (write

operations; Figure 4-1a), the inputs of PE-ICE are the data to protect PL
15 and a tag T –

composing a plaintext block - and a secret key K; the only output is a ciphered block C. On

decryption (i.e. read operations; Figure 4-1b), the inputs are a ciphered block C, a secret key

K and a reference tag T’; the outputs are a payload PL and an integrity checking flag which

informs the processor on the validity of PL regarding its integrity.

Figure 4-1 PE-ICE general overview

The block encryption provides the data confidentiality service. Data authentication is

ensured in PE-ICE by adding the integrity checking capability to the underlying block cipher.

4-2. Adding the Integrity Checking Capability to Block Encryption

4-2.1. The Diffusion Property of Block Ciphers

In order to verify the integrity of data, PE-ICE relies on the diffusion property identified

by Shannon [19] for block ciphers to be considered as secure. Theoretically a block cipher

must be indistinguishable from a random permutation with equiprobable outputs from an

adversary point of view, and the redundancy in the statistics of the plaintext has to be

dissipated in the statistics of the ciphertext. Therefore once a block encryption is performed,

the resulting position and value of each bit in a ciphertext block C are a function of all bits of

the corresponding plaintext block P. Suppose that P is composed of two distinct data (PL and

15 PL is named hereafter payload

Integrity
check flag

Payload (PL)Ciphered
block

(C)

Ciphered
block

(C) Tag (T)

Key (k)
Reference

Tag (T’)

(b) Decryption

Key (k)

PE-ICE
(Block

encryption)

Payload (PL)

(a) Encryption

PE-ICE
(Block

decryption)

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 109

T), after ciphering, it is impossible to distinguish the PL ciphered part from the T one in C

(Figure 4-2). Moreover if one bit is modified in C, after decryption there is a strong

probability that the resulting T will be impacted. This probability depends on the size of T.

Suppose that T is t-bit long and that the ciphered block length is n-bit. The number of

possible plaintext blocks with the same T resulting from the decryption of a tampered C is

equal to 2n-t. Hence the probability D that T remains the same after decryption is

tn

tn

D
2
1

2
2

==
−

.

Figure 4-2 The diffusion property of block ciphers

4-2.2. PE-ICE Encryption and Integrity Checking Process

PE-ICE is localized between the last level of cache memory and the memory controller on

the SoC (Figure 4-3). Data confidentiality is ensured by block encryption: on write operations

data are encrypted before being stored in the external memory and on read operations they are

decrypted before being stored in the cache memory. Concerning data authentication, the

previous property is used as follows to add the integrity checking capability to block-

encryption in PE-ICE.

On write operations (Figure 4-3a), a payload PL provided by the processor is concatenated

with a tag T to produce each plaintext block P to be processed by the block cipher. Such a tag

must theoretically be a nonce, a Number used ONCE, for a given encryption key and does not

need to be calculated over the data with a specific algorithm; for example it may be generated

by a counter. After encryption, an indistinguishable and unique pair PL/T is created and the

resulting ciphered block C is written in the external memory.

On read operations (Figure 4-3b) C is loaded and decrypted. The tag T issued from the

resulting plaintext block is compared to an on-chip re-generated tag called the tag reference

T’. If T does not match T’, it means that at least one bit of C has been modified during

PL T

Plaintext block (P) Ciphertext block (C)

Ciphered (PL ; T) Block Cipher
(K)

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 110

transmission on the bus or in the off-chip memory (spoofing attack), and PE-ICE raises an

integrity checking flag to prevent further processing.

Figure 4-3 PE-ICE Encryption and Integrity checking process

To summarize, PE-ICE could be seen as an AREA (Added Redundancy Explicit

Authentication – Chapter 3) scheme at the block level instead of the message level: the

redundancy is added in each plaintext block before encryption and checked for each

ciphertext block after decryption. The diffusion property of block cipher provides the two-

way infinite error propagation at the block level.

The PE-ICE principle presented above gives a countermeasure against spoofing attacks

considering that we are able to re-generate a tag reference on read operations which match the

tag used on write operations. The next sub-section describes the tag generation and how its

composition allows to thwart splicing and replay attacks.

4-2.3. The Tag Generation

In the processor-memory communication context, the SoC alone is achieving both the

encryption and the decryption. Therefore, the SoC has to hold the tag value T of each ciphered

Ciphertext
block C

PAYLOAD TAG
Block

Encryption

Address bus

Write data bus

Trusted area: SoC

Plaintext block P

External memory

(a) Write operations : tag insertion and block encryption

MMU

Cache
Memory

C
P
U

Ciphertext
block C

Block
Decryption

Address bus

Read
data bus

Trusted area: SoC

Plaintext block P

External memory

 MMU

Cache
Memory

C
P
U

Reference
Tag

PAYLOAD off chip
TAG

Comp

Integrity
check flag

T’

T

(b) Read operations : Decryption and integrity checking process
(tag matching)

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 111

block between the encryption and the decryption or must be able to regenerate it on read

operations to perform the integrity checking process. The challenge is to reach this objective

by storing as little tag information as possible on the SoC to optimize the on-chip memory

usage.

The composition of the tag is different for each kind of data, RO and RW, and depends on

their respective properties.

RO data are only written once in external memory and are not modified during run-time.

Therefore, such payloads are only sensitive to spoofing and splicing attacks. Thus, the tag

contained in each plaintext block of RO data can be fixed for a payload PL stored at a given

address. Moreover, it can be public because an adversary needs the secret encryption key to

create an accepted PL/T pair. However, this adversary must not be able to choose the reference

tag T’ or to influence its generation. Hence, PE-ICE uses the most significant bits of the

ciphered block address as tag (Figure 4-4a) to respect the nonce requirement. If an attacker

performs a splicing attack, the address used by the processor to fetch a block and by PE-ICE

to generate the reference tag T’ will not match the one loaded as tag T.

RW data are modified during software execution and are consequently sensitive to replay.

Using only the address as tag is not enough to prevent such an attack because the address bits

will not relate changes between write operations at run-time at a given location in memory

and thus, the processor cannot verify that the data stored at a given address is the most recent

one (temporal permutation). For that reason the tag is composed of a vector RV (T = RV -

Figure 4-4b) which is changed on each write operation. In the proposed definition of PE-ICE,

RV is a random value16 generated on-chip. In this way, the tag is unpredictable17 from an

adversary point of view making this latter unable to know when two ciphered blocks have the

same tag. However on read operations PE-ICE must be able to retrieve the correct random

values – called in the following the reference random values RV’ - to generate the reference

16 In this thesis, we suppose that a random number generator is embedded on-chip and that it does not leak
information on the produced value.
17 Unpredictability is not mandatory, a nonce like a counter is sufficient for RV- a random value is not a nonce
since a given value can arise twice. If a counter is implemented to generate RV, we must assure that the same
counter value is not used twice by changing the encryption key and by re-encrypting the corresponding memory
section once the counter reaches its limit. Otherwise an adversary can predict when a replay will succeed by
waiting that the counter generates the same value. However, re-encryption can be very expensive when the size
of RV is chosen small by the designer.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 112

tag T’ for the integrity checking process. On the other hand, the set of RV’ must be secret and

tamper-proof from an adversary point of view; otherwise he could perform a replay when he

notices that two blocks are authenticated with the same RV’ – if known – or he could choose

the data to replay by replaying it with the corresponding RV’ – if non-tamper-proof. In order

to solve this issue the random values generated on write operations are stored on-chip18 as

reference random values in a dedicated memory. Thus, they are trusted since the SoC is

trusted. Such a tag also protects against splicing attacks. However, instead of making this

attack impossible – as it is the case for RO data with the use of the address in the tag – the

security relies, as for replay, on the difficulty for an adversary to find two blocks processed by

PE-ICE which the reference random values match. The probability to overcome this difficulty

is the same as for replay attacks and is defined in section 4-2.1.

The size of RV fixes a trade-off between the strength of the countermeasure against replay

and the on-chip memory overhead (RV’ stored on-chip); that is why a second configuration of

the tag is proposed for RW data where the most significant bits of the address of each

ciphered block are concatenated with a RV (T = RV || ADD - Figure 4-4c). Such a

configuration decreases the strength against replay but maintains a countermeasure against

splicing and reduces the on-chip memory cost.

Figure 4-4 Plaintext blocks and tag composition before encryption

4-3. Encryption Mode and Chunk Definition

As highlighted in Chapter 2 the definition of the granularity of encryption and of integrity

checking – the chunk size – is essential to limit the memory bandwidth pollution on RMW

operations. When direct encryption is implemented the smaller size of the chunk for

encryption is the ciphered block length considering that the encryption is done in ECB. Thus,

18 This assumption is considered in Chapter 4 and 5. However Chapter 6 proposes a scheme to securely store the
random value off-chip and to save on-chip memory.

or PAYLOAD ADD PAYLOAD RV

Tag T

 A plaintext block of RO data

RV: Random Value

A plaintext block of RW data

ADD: Address most significant bits

PAYLOAD ADD RV

 (a) T = ADD (b) T = RV (c) T = RV || ADD

||: Concatenation operator

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 113

PE-ICE implements ECB19 mode. Such a mode also enables per-block integrity checking in

PE-ICE since the tag contained in each plaintext block is generated independently for each

plaintext block. This is the finest granularity of integrity checking allowed by PE-ICE; in this

way, when a RMW operation is required only the matching ciphered block is loaded to be

decrypted and checked. Hence, in the following, the chunk size is defined as the length of a

block processed by the block cipher implemented in PE-ICE

4-4. Protecting the Physical Address Space vs. the Virtual Address Space

In works like XOM [39], the OS is untrusted and responsible for controlling the MMU

(Memory Management Unit); hence an adversary can choose a block to load from memory by

modifying the entries of the table which manages the virtual/physical address translation.

Thus, he performs a splicing attack in the virtual address space. To prevent this attack the tag

must be produced from the virtual address; otherwise if the tag is generated from the physical

address, PE-ICE will not detect it because from its point of view the data is fetched from the

correct address.

The main advantage of using the virtual address comes from the fact that the application

can be loaded in memory already encrypted off-line by PE-ICE (following the principle

described in Chapter 2, section 2-3.1).

However, the use of the virtual address requires some deep processor core modifications.

As mentioned above, PE-ICE is localized between the cache memory and the memory

controller where the virtual address is usually not available. Therefore, such an

implementation could be impracticable when PE-ICE must be interfaced with a processor

core for which the source code is not easily obtainable (e.g. ARM). Moreover, for physically-

addressed cache memory it will be required to store the virtual address - particularly to be

able to write-back dirty cache block in the main memory – implying an additional on-chip

memory overhead. Finally, for shared libraries or data, the fact that several virtual addresses

map to the same physical address complicates [40] or prevents [41, 46] their protection. In

previous works [41, 46] this point remains an open question.

19 In [61, 74, 75, 83, 84, 85] PE-ICE is presented by using CBC mode for RO data. The use of CBC is secure and
does not induce additional performance overhead when compared to ECB mode. This is because only the
decryption process is required for RO data during run-time and such a process can be done in parallel. However,
it does not strengthen the encryption in comparison to ECB when implemented in PE-ICE. Indeed, the tag
(nonce) generated for RO data ensures that the same plaintext block does not occur twice (see section 5.2).
Therefore, for the sake of clarity, in this thesis we consider that all data are encrypted in ECB.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 114

Nevertheless, considering our threat model (OS trusted), an adversary could only perform

a splicing attack on the physical address space (physical relocation of memory block on the

bus or in the off-chip memory); as a consequence the address used in the tag is the physical

one.

The direct implication of such a choice is the need to decrypt and re-encrypt the code

when it is received already ciphered and when a MMU is implemented. Indeed, the physical

address is unknown until the translation of the address when the application is loaded in the

off-chip memory. Hence, the program must be first decrypted to be able to insert the physical

address in plaintext blocks and then re-encrypted. However, the cost of such a computation is

negligible since it occurs once at the application load-time. Else, in case of no MMU and of

static mapping of programs in the memory, the programmer might use the logical/physical

address to encrypt the software with PE-ICE prior to installing it in memory. The latter case

does not introduce performance overhead at load-time since the encryption of the executable

binary is done off-line.

On the other hand the use of the physical address solves the issue of shared data and of

shared libraries encryption and integrity checking. Two physical sections of memory can be

reserved, one for shared data and one for shared libraries, and handled by PE-ICE with a

dedicated encryption key (or keys, see section 4-5.3).

In the following when the term address is used alone we refer to the physical address.

4-5. Security Considerations

4-5.1. Active Attacks

The objective of active attacks is to challenge both data confidentiality and integrity. The

security level of the proposed scheme against the three active attacks (spoofing, splicing and

replay) described in the threat model and lead on a chunk depends on four parameters:

• t the size of the tag (in bits),

• a the number of address bits in the tag,

• r the size of the random value RV (in bit),

• and b the ciphered block length (in bytes).

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 115

Table 4-1 Security limitations of PE-ICE regarding active attacks led on a chunk
evaluated in chances to succeed

RW data Attack RO data t = a + r t = r

Spoofing attack t2
1 t2

1 t2
1

Inside a splicing segment 0 0 Splicing attack
Splicing-segment size:

ba ×2 bytes Outside a splicing segment 0 r2
1

t2
1

Replay attack N/A r2
1 t2

1

The probability for an adversary to succeed with a spoofing attack depends only on t.

Such a probability is defined in section 4-2.1 for spoofing and is equal to t2
1 .

Concerning replay, the outputs of the random number generator implemented to produce

RV are supposed equiprobable; therefore the probability to succeed a replay is equal to r2
1 and

is the same for a splicing attack when t = r (the tag T is only composed of a random value RV

– Figure 4.4c) .

When the address is used in the tag, the physical addressing space protected against

splicing attacks is determined by a and by b. It is equal to ba ×2 and is called in the following

splicing-segment. However, a might have a size which could be insufficient to cover the

whole address space20; hence a different key must be attributed to each splicing segment

contained in the application addressing space. The key is said splicing-segment-dependent. In

this way an adversary which swaps two memory blocks with the same address bits in the tag

from a splicing segment to another will be detected since the decryption of the fake block will

not be performed with the correct key. Such a requirement for the key only applies to RO data

since the tag for RW data already includes a countermeasure against replay which protects

against this attack. As a consequence, considering that the keys used to encrypt the RO

memory section are splicing-segment-dependent, an adversary cannot perform a splicing

attack on such a memory section. Thus, we consider that it is impossible to perform a splicing

20 For instance for 32-bit processor architecture with 4GB of address space, the minimum size for a to cover the
whole address space is 28-bit if b = 16 (AES).

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 116

attack on a chunk of RO data while for RW data a splicing attack led on a chunk from a

splicing segment to another has r2
1 chance to succeed and 0 inside a splicing-segment.

Table 4-1 summarizes the security limitations of PE-ICE regarding the attacks presented

in the threat model for each kind of data RW and RO.

4-5.2. Confidentiality and Passive Attacks

An interrogation concerning security might arise when considering PE-ICE: from the

confidentiality point of view, is the encryption robustness affected by inserting in the plaintext

blocks data potentially known by the adversary (the data address)?

Considering our threat model (SoC trusted), the adversary might only perform two passive

attacks, ciphertext-only attacks – the eavesdropper tries to deduce the secret key or the

plaintext by observing the ciphertext – and known plaintext attacks – the adversary

additionally knows a part of the plaintext – to challenge data confidentiality. Therefore, the

choice of the block cipher algorithm is essential and must be secure against these two kinds of

attacks. However, this is the minimum requirement for a block encryption algorithm, and in

the following the block cipher implemented in PE-ICE fulfills this necessary condition.

Moreover, inserting a tag that is a true nonce in each plaintext block removes the ECB

weakness when the same plaintext block is ciphered. Indeed, theoretically the tag is a number

used once and as a consequence is different for each plaintext block encrypted with a given

encryption key, making each plaintext block different from the others. Therefore this ensures

that the encryption of the same payload twice yields two different ciphertext blocks in ECB.

However, practically this is only true for RO data. The use of a random value to thwart replay

attack implies that for RW data the tag is not a true nonce since the same random value can

occur twice. Hence, such a random value strengthens the robustness of ECB modes by

ensuring that most of the time a same payload leads to different ciphertexts: statistically there

is little probability that the same plaintext block (payload + tag) should appear twice during

application execution. This probability depends on the size of r and on the way the payload is

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 117

generated. In such a case, the eavesdropper might only deduce that a same data has been

written at a given address and at two different times21.

4-5.3. PE-ICE Encryption Key Requirements

As previously mentioned, for PE-ICE to be secure an encryption key must be splicing-

segment-dependent. However, such a key must respect further requirement.

Different executables may be stored in the same physical splicing segment at different

times. As a consequence, the tag inserted in each RO chunk will be the same at a given

address for all those executables. Thus we need to avoid replay attacks of RO data from an

application to another. Therefore to detect such a kind of replay the encryption key must also

be application-dependent meaning that the key must be different for each application loaded

in memory.

Nevertheless, another attack remains feasible: an adversary may install an application in a

splicing segment and record the resulting RO ciphered blocks in the memory with their

corresponding address. Then, he resets the corresponding splicing-segment and re-installs the

same application but at a different starting address in the same splicing-segment. Hence, since

the secret-key is only application-dependent and splicing-segment-dependent, he could replay

the RO ciphered blocks from the first installation at the address they had been stored at

without detection. To thwart such an attack the key must be changed on each loading of an

application, in this case the key is said installation-dependent. Note that the notion of

installation-dependent includes the notion of application-dependent.

Those encryption key requirements only apply to RO data. Indeed a countermeasure

against replay during run-time is already foreseen for RW data and is valid for the different

kinds of replay presented above. Hence, the same key could be used for all RW data. In order

to fulfill all requirements for the secret keys – splicing-segment-dependent and installation-

dependent – dedicated to RO data, an encryption key is randomly generated on-chip on each

application loading and for each splicing segment contained in the physical addressing space

consumed by the application code. The key management is detailed in a use case proposed for

PE-ICE in Chapter 5.

21 For RO data the tag is a true nonce in a given splicing segment; hence if the encryption mode used for RO data
is CBC [61, 74, 75, 83, 84, 85] this tag allows to differentiate the first plaintext block of every CBC chains
avoiding the use of an IV.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 118

We consider that an application is always stored at the same address when no MMU are

implemented22; hence the encryption keys only need to be splicing-segment-dependent and

application-dependent23. In this case, the application might be encrypted off-line with PE-ICE

and stored as such in the off-chip memory if the set of encryption keys used respects the two

latter requirements.

Concerning the shared libraries, the solution proposed in section 4-4 must be carefully

implemented. In order to observe the key requirements, an encryption key must be dedicated

to each splicing segment contained in the reserved memory section, and each time a new

library is installed, the concerned splicing segment(s) must be re-encrypted with a new key.

4-6. Physical Address Computation

PE-ICE shifts the physical addressing by inserting tags between payloads. This shift must

be transparent for the CPU, thus PE-ICE handles the translation.

Figure 4-5 Off-chip Memory layout - Reorganization of the Protected Memory Regions

(PMR) in PE-ICE line by PE-ICE and shifting of the physical address. Example
depicted is a PMR containing five PE-ICE lines (five line-payloads seen by the CPU)

22 Operating Systems such as µclinux [70] provide the capability to dynamically store applications in memory.
23 The same remark applies if the virtual address is used in the tag.

PMR

Unprotected memory space PMR : Protected Memory Region

(a) Physical Memory seen by
the CPU through the MMU

(b) Physical Memory seen
by PE-ICE

AS = ACPU0

ACPU1
Line-payload 0

Line-payload 1

Line-payload 2

Line-payload 3

Line-payload 4

ACPU2

ACPU3

ACPU4

PE-ICE line 0
AS = AP0

AP1

AP2

AP3

AP4

PE-ICE line 1

PE-ICE line 2

PE-ICE line 3

PE-ICE line 4

Line-payload PE-ICE line (each one contains the
encryption of a line-payload and of a
line-tag)

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 119

To allow a straightforward computation of addresses PE-ICE reorganizes the Protected

Memory Regions (PMR) in sections called PE-ICE blocks or PE-ICE lines (Figure 4-5) in the

same way as the CPU organizes the off-chip memory in cache block. A PE-ICE line contains

a certain number Nc of chunks (ciphered blocks). In the following, a line-tag and a line-

payload denote respectively the amount of payload and tag contained in a PE-ICE line. All

PE-ICE blocks have the same layout defined by the distribution of the line-tag and of the line-

payload over the Nc chunks.

In order to retrieve an address AP of a PE-ICE block from the address ACPU provided by

the CPU, PE-ICE needs to hold in a register the starting address AS of the protected memory

region (PMR). Then, the number P24 of line-payloads between AS and ACPU in the address

space seen by the CPU is determined by:

pb

SCPU

l
AA

P
)(−

= (eq. 4.1)

lpb
 is the size of a line-payload in bytes. Hence, lpb must be a power of 2 to allow a simple

computation of P in hardware.

Considering ltb the size of the line-tag in bytes, AP can be computed as follows:

tbCPUP lPAA ×+= (eq. 4.2)

Similarly, ltb must be a power of 2.

In brief, a PE-ICE block is defined by the number Nc of chunks (or ciphered blocks) it

contains and both the length of its line-tag and line-payload must be a power of 2.

However, when an operation requires accessing data in a line-payload, we must be able to

retrieve the matching chunk in the corresponding PE-ICE block. This issue depends on how

the line-tag is spread in the chunk(s) contained in a PE-ICE block and on the underlying block

cipher implemented; therefore this consideration is dealt with in Chapter 5 which describes

the proposed PE-ICE configurations.

In the following APC denotes the address of a chunk in memory and lp
 and lt respectively

the size of a line-payload and of a line-tag expressed in bits.

24 It can be also expressed as the position of an lpb-byte block starting from AS in the address space seen by the
CPU, where lpb is the size of a line-payload.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 120

4-7. Memory consumption

The amount of memory consumed by PE-ICE comes from the tag storage for the off-chip

memory and from the storage of the reference random values for the on-chip memory.

The off-chip memory overhead is defined by the ratio ROF between the line-tag size (lt

bits) and the length of the corresponding line-payload (lp
 bits). ROF is equal to lt / lp.

The on-chip memory overhead is defined by the ratio RON between the bit-length of

random value used to protect a PE-ICE block against replay and the corresponding protected

payload (the line-payload) size. The bit-length of random value is obtained by multiplying the

number of chunks Nc contained in a PE-ICE block by the size r of a random value; hence RON

is equal to
pl

rNc× .

4-8. Summary

This section sums up the different definitions introduced in this chapter and lists the useful

parameters for the following chapters.

4-8.1. Definitions

Chunk: Atomic block processed by PE-ICE. Its size defines the granularity of encryption

and of integrity checking. In PE-ICE the chunk size is of b-byte, the length of the block

processed by the underlying block cipher.

Tag (T): AREA (and added randomness) contained in and independently generated for

each chunk on write operations.

Reference tag (T’): tag generated by PE-ICE on read operations to perform the integrity

checking process.

RV: Random value inserted in the tag dedicated to RW data on write operations.

RV’: Reference Random Values retrieved by PE-ICE on read operations to generate the

reference tag T’ for RW data.

PL: Payload contained in a chunk.

PE-ICE block or line: Atomic block size of the PE-ICE memory reorganization. Such a

block is defined by the number Nc of chunks it contains. All the PE-ICE blocks have the same

pattern of tag and payload distribution over the Nc chunks.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 121

Line-payload: Bit-length of payload contained in a PE-ICE line - must be a power of 2.

Line-tag: Bit-length of tag contained in a PE-ICE line - must be a power of 2.

PMR (Protected Memory Region): Physical memory region protected by PE-ICE. Such

a region is organized in PE-ICE line.

Encryption key requirements for RO data:

Application-dependent: The key must be different for each application loaded in

memory.

Installation-dependent: The key must be changed on each installation (loading in

memory) of a given application.

Splicing-segment-dependent: The key must be different for each splicing-segment used

by a given application.

4-8.2. PE-ICE Parameters

Table 4-2 summarizes the parameters used to define a PE-ICE configuration.

Table 4-2 Summary of the parameters defining PE-ICE

Parameter Unit Definition

b

n

byte

bit
Block size of the underlying block cipher and chunk length

t bit Size of a chunk tag

a bit Number of address bits contained in a chunk tag

r bit
Size of the random value (RV) contained in a chunk tag for RW

data and of its corresponding reference random value (RV’)

Nc - Number of chunks contained in a PE-ICE block

lt = 2c bit Size of a line-tag

lp = 2l bit Size of a line-payload

AS - Starting address of PMR

AP - Physical address of a PE-ICE line

APC - Physical address of a chunk

ROF - Ratio defining the off-chip memory overhead (ROF = lt / lp)

RON - Ratio defining the on-chip memory overhead (RON =
pl

rNc×)

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 122

4-8.3. PE-ICE Pseudo Codes

PE-ICE processing at run-time can be summarized for operations on a chunk payload PL

of RO data by the functions PE-ICE-read-ro and PE-ICE-write-ro described in

pseudo code in Figure 4-6.

Figure 4-6 PE-ICE operations on a payload of RO data contained in a chunk

Concerning RW data, the PE-ICE operations on data of a size smaller or equal to the

payload PL contained in a chunk can be summarized by the functions PE-ICE-read-rw

• Computation of the chunk address APC

ShiftAdd(ACPU)
1. AP [(ACPU – AS) >> (l - c)] + ACPU
2. APC SpecConfig(AP, ACPU)
3. Return APC

-- lt = 2c and lp = 2l
-- SpecConfig is a specific function defined with PE-ICE configurations to
retrieve APC from AP and ACPU

• Read of a chunk of RO data
PE-ICE-read-ro (PL, ACPU)

1. APC ShiftAdd(ACPU)
2. Read the chunk from APC in memory
3. Decrypt (chunk) = PL || T
4. T’ MostSignAdd(APC)
5. Check (T, T’); if T ≠ T’ raise the integrity checking flag else return PL

-- MostSignAdd is a function which selects the a most significant bits of the
address APC.

• Write of a chunk of RO data
PE-ICE-write-ro (PL, ACPU)

1. APC ShiftAdd(ACPU)
2. T MostSignAdd(APC)
3. chunk = Encrypt(PL, T)
4. Write chunk at APC in memory

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 123

and PE-ICE-write-rw described in pseudo code in Figure 4-7. We only considered the

case where the tag is only composed of a random value (t = r). |x| denotes the length of x.

Figure 4-7 PE-ICE operations on a RW data of a size smaller or equal to the payload
contained in a chunk

• Computation of the chunk address APC

ShiftAdd(ACPU)
2. AP [(ACPU – AS) >> (l – c)] + ACPU
3. APC SpecConfig(AP, ACPU)
4. Return APC

-- lt = 2c and lp = 2l
-- SpecConfig is a specific function defined with PE-ICE configurations to retrieve
APC from AP and ACPU

• Read of a chunk of RW data
PE-ICE-read-rw (data, ACPU)

1. APC ShiftAdd(ACPU)
2. Read chunk from APC in memory
3. Decrypt (chunk) = PL || T
4. T’ ReadOnChipMem(APC) (= RV’)
5. Check (T, T’) ; if T ≠ T’ raise the integrity checking flag

else if |data| < |PL|, retrieve data from PL
else return PL

• Write of a chunk of RW data

PE-ICE-write-rw (data, ACPU)
-- RMW operation

1. if |data| < |PL|, PL PE-ICE-read-rw(PL, ACPU) and write data in PL
-- |data| = |PL|

else APC ShiftAdd(ACPU)
2. Encrypt(PL || T)
3. T RV = RandomGen -- Generate a new random value
4. RV’ WriteOnChipMem(APC, RV) -- Update RV’ in the on-chip

memory with RV
5. chunk Encrypt(PL, T)
6. Write chunk at APC in memory

-- RandomGen is a random generation number call which allows generating RV.
-- WriteOnChipMem and ReadOnChipMem are the functions which allow to read
RV’ and to write RV in a dedicated on-chip memory.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 124

4-9. Conclusion

In this chapter, we have explored new directions to ensure data confidentiality and

authenticity. We have presented the formal definition of PE-ICE. PE-ICE is not a newly

proved authenticated mode but a dedicated solution to protect processor-memory

communications whose security relies on our threat model (SoC trusted and, ciphertext-only

and known plaintext attacks) and on the underlying block cipher security.

We showed that PE-ICE provides data confidentiality and authentication by performing

only one path on the data and by using a single block cipher algorithm. Data confidentiality is

guaranteed by block encryption while data authentication relies on the diffusion property of

block-encryption algorithms and by applying the principle of AREA at the block level. Added

redundancy before encryption enables to thwart splicing and spoofing attacks while added

randomness handles the issue of replay attacks.

Moreover, we introduced the notion of fine granularity of integrity checking which allows

to decrease the memory bandwidth pollution on RMW operations. Thus, PE-ICE proposes a

fine chunk size independent of the cache line length while offering a high security level

regarding the threat model defined in Chapter 2.

Finally, the use of the same algorithms to ensure data confidentiality and authenticity

allows to reduce the cost of hardware resources.

Chapter 4. PE-ICE Parallelized Encryption and Integrity Checking Engine

 125

 126

Chapter 5. PE-ICE Implementation

 127

Chapter 5: PE-ICE Implementation

In this Chapter we describe and evaluate different PE-ICE configurations, and we discuss

their implementations in a SoC. Note that we only consider 32-bit processor architecture.

This Chapter is organized as follows. Section 5-1 describes three PE-ICE configurations

based on different versions of the Rijndael algorithm. Section 5-2 presents the hardware

design of one PE-ICE configuration and gives the latencies introduced by all considered PE-

ICE configurations. Section 5-3 evaluates PE-ICE performance at run-time. Finally in section

5-4 a comparison with a generic composition scheme is proposed.

5-1. PE-ICE Configurations

A configuration of PE-ICE depends on the n-bit block length of the underlying block

cipher and is denoted PE-ICE-n. Moreover, a configuration is defined by the layout of a PE-

ICE line, meaning the pattern of the line-tag and of the line-payload distribution over the

chunks it contains.

In this section three PE-ICE configurations based on different versions of the Rijndael

algorithm are described and solutions are proposed to handle the issue of encryption key

managements.

Chapter 5. PE-ICE Implementation

 128

5-1.1. PE-ICE-128

PE-ICE-128 is the proposed configuration for the AES block cipher to be used in PE-ICE.

AES encryption processes 128-bit blocks (described in Chapter 1) and is the standardized

version of the Rijndael algorithm [15].

5-1.1.1. Layout of a PE-ICE-128 Line

As explained in Chapter 4, in order to allow a straightforward computation of a PE-ICE

line address, the line-payload and the line-tag lengths must be both a power of 2. Moreover

encryption forces a PE-ICE-128 block to be a multiple of the ciphered block length. As a

consequence, choosing a line-payload and a line-tag both of 64-bit or of 128-bit fulfills all

requirements but induces a huge off-chip memory overhead of 100%. Thus, to reduce this

overhead we define the line-payload and the line-tag length respectively to 256-bit and 128-

bit. The resulting PE-ICE-128 is therefore composed of three chunks and is defined by the

following parameters: lp = 256-bit, lt = 128-bit, and Nc = 3. The line-tag distribution among

plaintext blocks (chunks) composing a PE-ICE-128 block is depicted in Figure 5-1.

Figure 5-1 Layout of a PE-ICE-128 line before encryption

The tag of the third chunk in a PE-ICE-128 line contains 32-bit of padding (PAD section)

to make it 128-bit (ciphered block size). This choice could appear as a wasting of bits which

could be useful to strengthen the security of PE-ICE; for instance, these bits can be shared

Chunk 1 (Add1)

Chunk 2 (Add2)

Chunk 3 (Add3)

128 bits

Add1
Add2
Add3

RV1
RV2
RV3

Tag

Payload RV : Random value

(b) Read / Write data

r-bit

PAD : Padding

96 bits
96 bits

64 bits PAD

a-bit

128 bits
128 bits

A line-payload

128 bits
A line-tag

(a) Read Only data

128 bits

Chunk 1 (Add1) 96 bits Add1
Chunk 2 (Add2) 96 bits Add2
Chunk 3 (Add3) 64 bits Add3

32 bits

PAD

32 bits32 bits

Chapter 5. PE-ICE Implementation

 129

among the three chunk tags of a PE-ICE-128 block as presented in [74, 75]. However, this

implies that the size of PL is no more a multiple of 32-bit which makes the corresponding

chunk more difficult to address (see 1.1.4). Moreover, such a line-tag repartition may require

loading two chunks - instead of one for the proposed layout - on 32-bit read and on RMW

operations on 32-bit, leading to additional memory bandwidth pollution.

5-1.1.2. Security Limitations

Concerning RO data, the 32-bit address of each ciphered block is used as tag (Figure 5-

1a). Hence, a splicing segment is of the size of the addressing space (4GB) and thus only one

encryption key dedicated to RO data is required per application. KRO denotes such a key.

For RW data (Figure 5-1b), the strength of the proposed countermeasure against replay

and splicing attacks depends on the designer’s choice of the values of r and a. For example if

a = 24 and r = 8, a splicing segment is 256 MB long (224 x 16B); thus a replay attack has a

1/28 chance to succeed, while an adversary has a 1/28 chance to succeed with a splicing from a

splicing-segment to another and 0 with a splicing inside a splicing-segment. When t = r = 32,

for both replay and splicing attacks, the chance to succeed is of 1/232. One key is required for

all RW data stored off-chip and is denoted KRW.

Table 5-1 Security limitations offered by PE-ICE-128 and by PE-ICE-160 regarding
active attacks led on a chunk and evaluated in chances to succeed for an adversary

RW data Attack RO data t = a + r t = r = 32

Spoofing attack 322
1 322

1 322
1

Inside a splicing segment 0 0
Splicing attack

Outside a splicing segment N/A r2
1

322
1

Replay attack N/A r2
1 322

1

When r is chosen small to save on-chip memory, a simple trick enabling to improve the

strength against splicing and replay is to foresee in PE-ICE a counter which memorizes the

number of detected intrusions. When this counter reaches a value determined by the designer

or by the software programmer, the external memory space dedicated to RW data is zeroized

Chapter 5. PE-ICE Implementation

 130

and a new KRW is generated. However a scheme is proposed in Chapter 6 allowing to choose a

large value for r without generating on-chip memory overhead.

For both kinds of data the tag is at least 32-bit long, hence an adversary has a 1/232 chance

to succeed with a spoofing attack.

Table 5-1 summarizes the security limitations offered by PE-ICE-128.

5-1.1.3. Memory Consumption

The off-chip memory overhead of PE-ICE-128 is of 50% (lt = 128 and lp = 256 ROF =

½) therefore the tag storage takes up to 33% of the protected memory region (PMR).

The on-chip memory overhead is of 9.4% of the off-chip memory protected against replay

by considering r = 8 (Nc = 3, r = 8, lp = 256 RON = 32
3).

5-1.1.4. Computation of a Chunk Physical Address

The address of a PE-ICE-128 block Ap is obtained by applying to ACPU the equation

provided in Chapter 4 (eq. 4.1):

2

)(SCPU
CPUP

AA
AA

−
+= (eq. 5.1)

However, one of the objectives of PE-ICE is to load the minimum of data on small

transfers. Hence, PE-ICE-128 must be able to retrieve the address APC of the chunk in a given

PE-ICE-128 block which contains the requested data. To solve this issue, the less significant

bits of ACPU (ACPU[4;0]) addressing the data in the payload are used with an address decoder

(AD). The output of AD is an offset Oi (0, 16 bytes, 32 bytes) to add to AP and to determine

the matching chunk address.

 iPPC OAA += (eq. 5.2)

5-1.2. PE-ICE-160

The Rijndael algorithms support any key and block size that is a multiple of 32, between

128 and 256. For PE-ICE-160, we use Rijndael processing 160-bit blocks and using a 128-bit

key. This version of the algorithm is referred to as Rijn-160.

Chapter 5. PE-ICE Implementation

 131

5-1.2.1. Layout of a PE-ICE-160 Line

The definition of a PE-ICE-160 line is easier with such a block cipher. Indeed, the biggest

power of 2 contained in 160 is 128, hence we choose a line-payload of such a size and a line-

tag of 32-bit. All requirements are fulfilled: the PE-ICE-160 line is a multiple of the ciphered

block length (Nc = 1); lp and lt are both a power of 2. The resulting PE-ICE-160 line is

depicted in Figure 5-2. Note that for PE-ICE-160, a PE-ICE-160 line, a line-payload and a

line-tag are respectively equivalent to a chunk, PL and a chunk tag (Nc = 1, |PL| = lp , t = lt).

Figure 5-2 Layout of a PE-ICE-160 line before encryption

5-1.2.2. Security Limitations

PE-ICE-160 has exactly the same security limitations as PE-ICE-128 since the size of the

tag dedicated to a chunk is the same (Table 5-1).

5-1.2.3. Memory Consumption

The off-chip memory overhead of PE-ICE-160 is of 25% (lt = 32 and lp = 128 ROF =

¼) therefore the tag storage takes up to 20% of the protected memory region (PMR).

The on-chip memory overhead is 6.25% of the off-chip memory protected against replay

by considering r = 8 (Nc = 1, r = 8, lp = 128 RON = 16
1).

5-1.2.4. Computation of a Chunk Physical Address

An advantage of PE-ICE-160 is the straightforward computation of the address APC of a

chunk. Indeed, as mentioned above a PE-ICE-160 block is equivalent to a chunk, hence APC =

(b) Read / Write data

Chunk (Add)

(a) Read Only data

Chunk (Add)

Tag Payload RV : Random value

128-bit
A line-payload

160-bit

32-bit

r-bit 32 bits
A line-tag

128-bit Add

160-bit

a-bit

128-bit RV Add

Chapter 5. PE-ICE Implementation

 132

AP and is obtained by simply applying the equation (eq. 4.1) provided in Chapter 4 to the

address ACPU provided by the CPU:

4

)(SCPU
CPUPC

AA
AA

−
+= (eq. 5.3)

5-1.3. PE-ICE-192

PE-ICE-192 is the PE-ICE configuration with the Rijndael algorithm processing 192-bit

block and using 128-bit keys. Such a Rijndael version is referred to as Rijn-192.

5-1.3.1. Layout of a PE-ICE-192 Line

Similarly to PE-ICE-160 the bigger power of 2 contained in 192 is 128, hence we choose

a line-payload of such a size and a line-tag of 64-bit. The resulting PE-ICE-192 line is

depicted Figure 5-3. Note that for PE-ICE-192, a PE-ICE-192 line, a line-payload and a line-

tag are also equivalent respectively to a chunk, PL and a tag (Nc = 1, |PL| = lp, t = lt).

Figure 5-3 Layout of a PE-ICE-192 line before encryption

5-1.3.2. Security Limitations

Concerning RO data, a chunk tag T contains the 32-bit of the chunk address (Figure 5-3a),

thus it protects the whole address space (4GB) against splicing attacks (a = 32) and only one

encryption key dedicated to RO data is required per application during run-time.

The particularity of PE-ICE-192 is the fact that (Figure 5-3b) the size of the chunk tag (t =

64) prevents splicing attacks on the whole addressing space dedicated to RW data (a = 28)

(b) Read / Write data

Chunk (Add)

(a) Read Only data

Chunk (Add)

Tag

Payload

RV : Random value

128-bit
A line-payload

192-bit

r-bit 64-bit
A line-tag

192-bit

28-bit

PAD 128-bit Add

RV 128-bit Add[31;4]

32-bit 32-bit

PAD

PAD : Padding
64-bit

Chapter 5. PE-ICE Implementation

 133

while offering a large range of choice for the value of r. Indeed, r can be up to 36 without

decreasing the strength of the countermeasure against splicing. The chance to succeed with a

replay depends on the value of r and is equal to r2
1 . One key is also required for RW data but

for all applications.

For both kinds of data the chunk tag is 64-bit long, hence an adversary has a 1/264 chance

to succeed with a spoofing attack.

Table 5-2 summarizes the security limitations of such a configuration of PE-ICE-192.

Table 5-2 Security limitations offered by PE-ICE-192 regarding active attacks led on a
chunk and evaluated in chances to succeed for an adversary

RW data Attack RO data t = a + r

Spoofing attack 642
1 642

1

Inside the source splicing
segment 0 0

Splicing attack Outside the source splicing
segment N/A N/A

Replay attack N/A r2
1

5-1.3.3. Memory Consumption

The off-chip memory overhead of PE-ICE-192 is 50% (lt = 64 and lp = 128 ROF = ½)

therefore the tag storage takes up to 33% of the protected memory region (PMR).

The on-chip memory overhead is 6.25% of the off-chip memory protected against replay

by considering r = 8 (Nc = 1, r = 8, lp = 128 RON = 16
1).

5-1.3.4. Computation of a Chunk Physical Address

Like PE-ICE-160, the computation of the address APC of a chunk is straightforward since

a chunk is equivalent to a PE-ICE-192 line; hence APC = AP:

2

)(SCPU
CPUPC

AA
AA

−
+= (eq. 5.4)

Chapter 5. PE-ICE Implementation

 134

At this stage PE-ICE-160 and PE-ICE-192 seem to be the most straightforward PE-ICE

implementations. While the latter offers a high level of security by preventing splicing attacks

for all kinds of data on the whole addressing space the former proposes an optimum trade-off

between security and off-chip memory overhead with strong countermeasures against splicing

and replay when t = r.

5-2. Hardware Design and Latencies

AMBA [76] (Advanced Microcontroller Bus Architecture) are the most common on-chip

buses implemented in embedded processors. Thus, PE-ICE-128 has been designed compliant

with an AMBA bus in order to be easily portable on those processors and to evaluate the

latencies introduced on memory accesses.

5-2.1. The AMBA-AHB Bus

Figure 5-4 PE-ICE-128 localization on an AMBA-AHB bus

AMBA is the definition proposed by ARM of on-chip communication standards for

embedded processors. Mainly two standards are described in the AMBA specification: AHB

(Advanced High-perforance Bus) and APB (Advanced Peripheral Bus). APB is dedicated to

low-power peripheral accesses. AHB is a bus which supports processor connections to on-

chip memories and to off-chip memory interfaces. It is foreseen for high performance and

External
Memory

Controller

Central
Processing Unit

(CPU)
High- bandwidth

on-chip RAM

B
R
I
D
G
E

UART Timer

Keypad PIO

DMA bus master

AHB-32 APB

P
E
-
I
C
E

3232

Chapter 5. PE-ICE Implementation

 135

high clock frequency system modules. One of the specificities of AHB is the implementation

of burst transfers.

In the present work, we are particularly interested in AMBA-AHB since data exchanged

with the off-chip memory transit on this bus before leaving the SoC – write operations - or

before being processed by the CPU – read operations. PE-ICE-128 is therefore designed as an

interface between the off-chip memory controller and the rest of the AMBA-AHB bus (Figure

5-4). The protocol AHB is also used for communication between PE-ICE and the memory

controller.

5-2.2. Design Principle

PE-ICE-128 has been designed in VHDL to accurately measure the latencies introduced

on memory accesses and to be able to deduce the ones of the other PE-ICE configurations.

Figure 5-5 depicts an overview of this hardware design. The description of this figure is

detailed per operation:

(1) Write operations: The CPU transmits over the AMBA-AHB bus the controls signals –

ahb_ctrl – which describe the requested operation (Read or Write, size of the transfer, kind of

transfer: single or burst…) and the corresponding address – haddr. If PE-ICE-128 is free – pe-

ice_ready – it collects this information with two sequencers – SEQ_SLAVE and

SEQ_MASTER. SEQ_SLAVE stores the data to write – hwdata – in the register REG_IN,

translates the data address and launches a random number generation if the data to write is a

RW data in order to generate the tag. When enough payloads are ready in REG_IN to

constitute a plaintext block with the tag, SEQ_SLAVE activates AES encryption.

SEQ_MASTER also translates the data address – pe-ice_addr, waits for the AES_ENGINE

acknowledge which indicates that the ciphered data is ready in REG_OUT, and manages the

forwarding of the encrypted block to the memory controller – pe-ice_ctrl. Data to write in the

off-chip memory are sent over the mwdata bus.

Chapter 5. PE-ICE Implementation

 136

Figure 5-5 PE-ICE design principle on an AMBA-AHB bus

 : Write data pass and write control signals
 : Read data pass and read control signals
 : Control signals used on read and write operations
IC : Integrity Checking
RNG : Random Number Generator
RVM : Random value memory

SEQ_SLAVE

AHB_MASTER
(CPU)

AHB_SLAVE
(Memory Controller)

PE-ICE-128

SEQ_MASTER

AES_ENGINE

IC RNG

RVM

ahb_ctrlhaddr
hwdata hrdata

mrdata mwdata pe-ice_ctrlpe-ice_addr

pe
-ic

e_
ad

dr

ae
s_

ac
k

start

w
_e

na
bl

e

w
_e

na
bl

e
REG_IN REG_OUT

of
f-c

hi
p

ta
g

aes_ack

r/w r/w

r/w

pe-ice_ready

mctrl_ready

Chapter 5. PE-ICE Implementation

 137

(2) Read operations: The CPU transmits over the AMBA-AHB bus the control signals and

the corresponding address, respectively on ahb_ctrl and haddr. If PE-ICE-128 is free – pe-

ice_ready - SEQ_MASTER collects this information and translates the address to obtain the

off-chip memory address of the requested data: pe-ice_addr. It forwards the read request to

the memory controller via pe-ice_addr and pe-ice_ctrl. It waits for the memory controller’s

positive response – mctrl_ready – and stores the data coming from mrdata in REG_OUT.

When an AES block is ready in this register, it launches the AES_ENGINE for decryption. At

the same time, SEQ_SLAVE also translates the address and sends it to IC (Integrity

Checking). If the requested data is RW data, this address also serves to retrieve the random

value needed to form the tag in RVM (Random Value Memory). IC generates the tag

reference from pe-ice_addr and from this random value. When decryption is done, the

payload part of the plaintext block is stored in REG_IN and the tag part is transmitted to IC.

IC immediately compares it to the tag reference and depending on the comparison results

allows or not SEQ_SLAVE to forward the data in REG_IN to the CPU on hrdata.

(3) Read Modify Write operations: These operations occur for PE-ICE-128 when the size

of the data to write does not match the payload contained in one or two chunks. As presented

in chapter 2, on such operations it is first required to load the matching encrypted block(s) and

to decrypt it – and authenticate it – before starting the write operation. When PE-ICE-128 is

configured for 256-bit cache block, such operations are 8 to 32-bit write and 128-bit write.

For 8 to 32-bit write only the matching chunk is loaded from the off-chip memory whereas for

128-bit write two consecutive chunks are fetched. Therefore, as for normal write operations

SEQ_SLAVE stores data from the CPU in REG_IN but at the same time SEQ_MASTER

manages the read and the decryption of the matching chunks. The data to keep in the

decrypted block(s) are stored in REG_IN after being checked by IC. SEQ_SLAVE starts re-

encryption only after re-generation of a new tag. Finally, SEQ_MASTER writes the encrypted

chunk(s) in the off-chip memory.

Two versions of PE-ICE-128 have been designed by considering the principles exposed

above. The first one optimizes latencies introduced by PE-ICE-128 by considering all features

of the AMBA-AHB bus described in the specification [76]. Its purpose is to evaluate PE-ICE

in terms of performance. The second version is dedicated to an implementation on the LEON2

processor [77] and as a consequence takes into account the specific implementation of the

Chapter 5. PE-ICE Implementation

 138

AMBA-AHB bus on this processor. For instance, only single transfers and undefined bursts

are available; hence, it is not possible at the beginning of a CPU request to differentiate a 4-

word write from an 8-word write or a 4-word read from an 8-word read. Thus this version of

PE-ICE-128 implements all kinds of operations described above but always serializes

SEQ_SLAVE and SEQ_MASTER jobs to handle this LEON specificity. On all read

operations, a whole PE-ICE-128 block is loaded – three AES blocks – and on all write

operations the data is first stored in REG_IN and depending on the size of the write, a read is

requested or not by SEQ_MASTER to the memory controller.

Both versions of PE-ICE-128 do not include a random number generator. We use fixed

numbers instead of random values. However, such a component does not influence

performance since the random values could be generated in advance.

5-2.3. Latencies

In this section, we present the additional latencies introduced on off-chip memory

accesses by the different PE-ICE configurations and by AES encryption/decryption. The

underlying CPU considered in this study is the ARM9E for which the optimum frequency in

the 0.18µm CMOS technology is around 200MHz with an AHB bus running at 100MHz [78].

5-2.3.1. PE-ICE-128 Latencies

Our implementation of the AES algorithm is non-pipelined and takes 11 cycles to encrypt

one 128-bit block of plaintext in ECB (1 cycle per round plus 1 cycle to bufferise the result).

The AES implementation in the 0.18µm CMOS technology presented in [23] shows that such

a latency is valid until 330 MHz. Hence, in the following we consider two realistic cases for

the ratio RE/B (=
AHB

AES

F
F) between the AES frequency (FAES) and the bus frequency (FAHB): RE/B

= 1 and RE/B = 2. When RE/B = 2 the intrinsic latency of the AES encryption seen on the AHB

bus is of 6 cycles.

Table 5-3 summarizes the additional latencies seen on the AHB bus and introduced by

AES encryption in ECB mode – referred to in the following as the AES-ECB engine – and by

PE-ICE-128 on all operations requested by an ARM9E processor core during run-time. Figure

5-6 and Figure 5-7 depict how those latencies occur respectively on read and write operations;

Chapter 5. PE-ICE Implementation

 139

for the sake of clarity we do not show RMW operations (8 to 32-bit write and 128-bit write

for PE-ICE-128). The latencies seen on the AHB when no security engines are implemented

are referred to as the Base latencies25.

Table 5-3 Additional latencies introduced by PE-ICE-128 and by the AES-ECB engine
on an AMBA-AHB bus for the operations requested by an ARM9E core

The latencies on all read operations and on 256-bit write operations of RW data have been

verified by RTL simulation of the optimized version of PE-ICE-128 with the Modelsim

simulator [79]. An 8 to 32-bit write generates a RMW operation on an AES block for the

AES-ECB engine as for PE-ICE-128. A 128-bit write also generates a RMW operation but

only for PE-ICE-128 and this is due to the fact that such a payload is contained in two chunks

(Figure 5-1). The additional latencies of those two RMW operations are deduced from

previous simulation results and from the read memory latencies we have considered: 9 cycles

for the off-chip read latency. The choice of such latency is motivated in section 5-3 where

run-time performance evaluation is detailed.

Concerning the AES-ECB encryption (respectively decryption), the additional latencies

seen on the AHB bus (Figure 5-6 and 5-7), are due to the intrinsic latency of the AES plus the

time to collect one 128-bit plaintext (respectively ciphertext) block on the 32-bit bus.

Concerning PE-ICE-128, on write operations the overhead compared to the AES-ECB engine

comes from the tag encryption and storage; a plaintext block is collected in less than 4 bus

cycles (Figure 5-6), increasing the throughput of PE-ICE-128 and generating bus resource

25 To obtain the additional latencies introduced by the security engines from Figure 5-6 and 5-7: for each
operation subtract the Base latency from the ones induced by the security engines. Moreover, on write operations
the tag does not appear on Figure 5-6 since it is collected at the same time as the data.

AES-ECB PE-ICE-128
Latencies

(AHB cycles)
Latencies

(AHB cycles)
Overhead

vs. AES-ECB Operations

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2
8 to 32-bit Write 38 28 38 28 0% 0%
8 to 32-bit Read 15 10 15 10 0% 0%

128-bit Write 15 10 39 29 160% 190%
128-bit Read 15 10 16 11 6.5% 10%
256-bit Write 15 10 18 13 20% 30%
256-bit Read 15 10 17 12 13.5% 20%
512-bit Write 15 10 22 17 46.5% 70%
512-bit Read 15 10 21 16 40% 60%

Chapter 5. PE-ICE Implementation

 140

conflicts. On read operations (Figure 5-7), the inverse applies; the overhead is due to the tag

which increases the amount of data to load and to decrypt, pollutes the throughput of PE-ICE-

128 and creates wait cycles. 32-bit write operation does not generate additional latencies for

PE-ICE-128 compared to the AES-ECB engine because this RMW is performed for both on a

128-bit block.

However, the PE-ICE integrity checking process is almost negligible compared to AES-

ECB encryption alone (comprised between 0 and 47% for RE/B = 1) except for the 4-word

write RMW operation (153% for RE/B = 1). Doubling the ratio RE/B decreases the latencies of

the security mechanisms (of 29% on average for PE-ICE-128 and of 32% for AES-ECB) and

slightly increases the integrity checking cost of PE-ICE-128.

5-2.3.2. PE-ICE-160 Latencies

The difference between all Rijndael versions lies in the number of rounds required to

output a ciphertext block (or a plaintext block). This number of rounds Nr is defined in [15]

and is equal to: 6);max(+= NbNkNr where Nk is the number of 32-bit words in the key and

Nb the number of 32-bit words in the block processed. For Rijn-160, Nr is equal to 11. Hence

the intrinsic latency of Rijn-160 seen on the AHB bus is of 12 cycles and of 6 cycles

respectively for RE/B = 1 and RE/B = 2. Table 5-4 sums up the additional latencies introduced

by PE-ICE-160 on the AHB bus (expressed in bus cycles).

Table 5-4 Additional latencies introduced by PE-ICE-160 and by the AES-ECB engine
on an AMBA-AHB bus for the operations requested by an ARM9E core

AES-ECB PE-ICE-160
Latencies

(AHB cycles)
Latencies

(AHB cycles)
Overhead

vs. AES-ECB Operations

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2
8 to 32-bit Write 38 28 42 30 10.5% 7%
8 to 32-bit Read 15 10 17 11 13.5% 10%

4-word Write 15 10 17 11 13.5% 10%
4-word Read 15 10 17 11 13.5% 10%
8-word Write 15 10 18 12 20% 20%
8-word Read 15 10 18 12 20% 20%

16-word Write 15 10 20 14 33.5% 40%
16-word Read 15 10 20 14 33.5% 40%

Chapter 5. PE-ICE Implementation

 141

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Rijn-192 1
Rijn-192 2

Rijn-160 1
Rijn-160 2

Rijn-192 1
Rijn-192 2

AES 1
AES 2

Rijn-160 1
Rijn-160 2

AES 1
AES 2

AES 1
AES 2

AES 1
AES 2

AES 1
AES 2

Rijn-160 1
Rijn-160 2

Rijn-160 3
Rijn-160 1

AES 2
AES 3

AES 1
AES 2

AES 3
AES 1

AES 1
AES 2

AES 3
AES 1

Rijn-192 1
Rijn-192 2

Rijn-192 3
Rijn-192 1

X-bit read done

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

Base

AES-ECB

PE-ICE-128

PE-ICE-160

PE-ICE-192

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

AES-ECB

PE-ICE-128

PE-ICE-160

PE-ICE-192

(a) RE/B = 1

(b) RE/B = 2
32-bit word from Memory Controller and
intercepted by the security engines

32-bit word on the AHB bus and
transferred to CPU

Wait cycle

Intrinsic latency of the
underlying decryption
algorithm

Cycles

Figure 5-6 Latencies introduced on the AHB bus by the different PE-ICE

configurations and by the AES-ECB engine on read operations

Chapter 5. PE-ICE Implementation

 142

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

x

Rijn-192 1
Rijn-192 2

Rijn-192 1
Rijn-192 2

AES 2
AES 3

Rijn-160 1
Rijn-160 2

AES 1
AES 2

AES 3
AES 1

Rijn-192 1
Rijn-192 2

Rijn-192 3
Rijn-192 1

AES 1
AES 2

AES 3
AES 1

Rijn-160 3
Rijn-160 1

Rijn-160 1
Rijn-160 2

AES 1
AES 2

AES 1
AES 2

AES 1
AES 2

Rijn-160 1
Rijn-160 2

AES 1
AES 2

AES 1
AES 2

X-bit write done

256-bit 512-bit

32-bit 128-bit 256-bit 512-bit

Base

AES-ECB

PE-ICE-128

PE-ICE-160

PE-ICE-192

128-bit 256-bit 512-bit

128-bit 256-bit 512-bit

128-bit 256-bit 512-bit

128-bit 256-bit 512-bit

256-bit 512-bit

128-bit 256-bit 512-bit

128-bit 256-bit 512-bit

AES-ECB

PE-ICE-128

PE-ICE-160

PE-ICE-192

(a) RE/B = 1

(b) RE/B = 2
32-bit transferred to the
Memory Controller
32-bit on the AHB bus and
coming from CPU

Bus resource conflict cycle

Intrinsic latency of the underlying
encryption algorithm

Cycles

Figure 5-7 Latencies introduced on the AHB bus by the different PE-ICE

configurations and by the AES-ECB engine on write operations

Chapter 5. PE-ICE Implementation

 143

Compared to the AES-ECB engine the overhead of PE-ICE-160 is partially due to the

increase of the intrinsic latency of the underlying block cipher. Moreover, on read operations

(Figure 5-6) the tag generates wait cycles by polluting the PE-ICE-160 throughput while on

write operations the fact that a plaintext block is collected in 4 cycles – instead of 5 for a 160-

bit block - provokes bus resource conflicts (Figure 5-7).

The cost of the PE-ICE-160 integrity checking process is less important than the one of

PE-ICE-128. On average it is of 19.5% for RE/B = 1 and of 22% for RE/B = 2 whereas for PE-

ICE-128 it is respectively of 34.5% and 46%. This improvement comes from the 4-word write

operation which does not generate a RMW for PE-ICE-160 since such a payload is contained

in one chunk. Hence, like AES-ECB encryption, the 128-bit payload can be directly ciphered

and the matching chunk overwritten in memory. A second reason for this latency reduction is

the value of the ratio Payload / Tag which is higher for PE-ICE-160 than for PE-ICE-128 on

most of the operations, meaning that the amount of meta-data (tag) to process is lower on

average for the same amount of payload.

5-2.3.3. PE-ICE-192 Latencies

For Rijn-192, Nr is equal to 12. Hence the intrinsic latency of Rijn-160 seen on the AHB

bus is of 13 cycles and of 7 cycles respectively for RE/B = 1 and RE/B = 2.

Table 5-5 sums up the additional latencies introduced by PE-ICE-160 on the AHB bus

(expressed in bus cycles).

Table 5-5 Additional latencies introduced by PE-ICE-192 and by the AES-ECB engine
on an AMBA-AHB bus for the operations requested by an ARM9E core

AES-ECB PE-ICE-192
Latencies

(AHB cycles)
Latencies

(AHB cycles)
Overhead

vs. AES-ECB Operations

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2
8 to 32-bit Write 38 28 46 34 21% 21,5%
8 to 32-bit Read 15 10 19 13 26.5% 30%

4-word Write 15 10 19 13 26.5% 30%
4-word Read 15 10 19 13 26.5% 30%
8-word Write 15 10 21 15 40% 50%
8-word Read 15 10 21 15 40% 50%

16-word Write 15 10 25 19 66.5% 90%
16-word Read 15 10 25 19 66.5% 90%

Chapter 5. PE-ICE Implementation

 144

Similarly to PE-ICE-160, the overhead of PE-ICE-192 is due to the increase of the

intrinsic latency of the block cipher and to the tag which generates bus resource conflicts on

write operations (Figure 5-7) and wait cycles on read operations (Figure 5-6).

Despite the fact that the 4-word write operation does not generate a RMW for PE-ICE-

192, the cost of the PE-ICE-192 integrity checking process is slightly higher than the one of

PE-ICE-128. On average it is of 39.5% for RE/B = 1 and of 49% for RE/B = 2 whereas for PE-

ICE-128 it is respectively of 34.5% and 46%.

5-2.4. Silicon Area Usage

The hardware implementation of the same round is required for all versions of Rijndael.

Therefore, the hardware resources needed for all PE-ICE configurations and for the AES-ECB

engine to obtain the latencies listed above can be estimated in numbers of AES cores, NAES,

implementing such a round.

The processor can read or write a 32-bit data per AHB bus cycle. Thus, considering that a

plaintext (or ciphertext) block is collected in 4 bus cycles and that the AES intrinsic latency

seen on the AHB bus for RE/B = 1 (11 cycles) and for RE/B = 2 (6 cycles), the AES-ECB

engine must implement respectively three and two AES cores to reach the optimum

throughput of 32-bit per cycle.

For the PE-ICE configurations the same reasoning can not be followed since the tag

pollution makes their throughput per cycle different on read and write operations. For instance

for PE-ICE-160, on write operations, 4 cycles are required to collect a plaintext block on the

AHB bus and 5 cycles to output a ciphertext block to the memory controller while on read

operations, 5 cycles are required to collect a ciphered text block and 4 to output a plaintext

block. The maximum throughput theoretically required on write operations is higher than on

read operations. However, the available bandwidth between PE-ICE and the memory

controller limits the throughput on write operations: on read and on write operations a

ciphered text block is processed only every 4 cycles for PE-ICE-128. Hence, considering the

intrinsic latencies of the AES when RE/B = 1 and when RE/B = 2, to reach the optimum

throughput NAES must be equal respectively to three and two, as for the AES-ECB engine. By

reasoning similarly for PE-ICE-160 and PE-ICE-192, we obtain the same values for NAES.

For an atomic bus transfer the same key is shared by all implemented AES cores, hence

only one key expander core is needed for all PE-ICE configurations and for the AES-ECB

Chapter 5. PE-ICE Implementation

 145

engine. By considering the figures provided by Ocean Logic [80] an AES

encryption/decryption core with 11 cycles of latency takes 24 Kgates and the corresponding

key expander core 32 Kgates in the 0.18µ technology. This means that, like the AES-ECB

engine, the hardware cost of all PE-ICE configurations can be approximated to 104 Kgates

and 80 Kgates respectively for RE/B = 1 and for RE/B = 2.

5-2.5. Latency Optimization

Figure 5-8 Architecture using 64-bit processor memory bus

In previous works [12, 13, 37, 41, 46, 47] the off-chip memory bandwidth is increased by

using a 64-bit processor-memory bus. Hence to achieve the same objective, we propose an

alternative implementation where PE-ICE is interfaced with the memory controller with a 64-

bit AHB bus (AHB-64) and with the CPU with an AHB 32-bit bus (AHB-32 - Figure 5-8).

Therefore, the time to collect a ciphertext block on read operations is drastically reduced,

allowing for PE-ICE configurations to hide the wait cycles introduced with a 32-bit bus. On

write operations the former bus resource conflicts are removed since the bus can be released

faster after encryption. Thus the overhead compared to AES encryption is null for PE-ICE-

128 except for the additional RMW it generates (128-bit write); for PE-ICE-160 and PE-ICE-

192 it is only due to the increase of the intrinsic latency of the underlying block cipher.

By considering the assumption of a 64-bit bus between PE-ICE and the memory

controller, the latencies seen on the AHB bus are given in Table 5-6a for the AES-ECB

engine and in Table 5-6b for PE-ICE-160 and PE-ICE-192.

External
Memory

Controller

High-performance
processor

High- bandwidth
on-chip RAM

B
R
I
D
G
E

UART Timer

Keypad PIO

DMA bus master

AHB-32 APB

P
E
-
I
C
E

64 32

AHB-64

Chapter 5. PE-ICE Implementation

 146

Table 5-6 Additional latencies introduced by the PE-ICE configurations and by the
AES-ECB engine on an AMBA-AHB bus for the operations requested by an ARM9E

core with a bus width of 64-bit

(a) AES-ECB and PE-ICE-128

(b) PE-ICE-160 and PE-ICE-192

Concerning the AES-ECB engine the number of AES cores to implement remains

unchanged when compared to the architecture considered in section 5-2.4 since 4 cycles are

still required to collect one plaintext block on write operations and to output a deciphered text

on read operations.

For PE-ICE-128, the limiting factor is no more the bandwidth between it and the memory

controller but the AHB-32 bandwidth. Thus we must consider the higher throughput required

which is the one on write operations. Hence, considering the AES intrinsic latencies and that

on write operations a plaintext block is collected on average all 2.66 cycles (8 cycles to collect

AES-ECB PE-ICE-128
Latencies

(AHB cycles)
Latencies

(AHB cycles)
Overhead

vs. AES-ECB Operations

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2
8 to 32-bit Write 35 25 35 25 0% 0%
8 to 32-bit Read 13 8 13 8 0% 0%

4-word Write 13 8 34 24 161% 200%
4-word Read 13 8 13 8 0% 0%
8-word Write 13 8 13 8 0% 0%
8-word Read 13 8 13 8 0% 0%

16-word Write 13 8 13 8 0% 0%
16-word Read 13 8 13 8 0% 0%

PE-ICE-160 PE-ICE-192
Latencies

(AHB cycles)
Overhead

vs. AES-ECB
Latencies

(AHB cycles)
Overhead

vs. AES-ECB Operations

RE/B=1 RE/B=2 RE/B=1 RE/B=2 RE/B=1 RE/B=2 RE/B=1 RE/B=2
8 to 32-bit

Write 39 27 11,5% 8% 41 29 17% 16%

8 to 32-bit
Read 15 9 15,5% 12,5% 16 10 23% 25%

4-word Write 15 9 15,5% 12,5% 16 10 23% 25%
4-word Read 15 9 15,5% 12,5% 16 10 23% 25%
8-word Write 15 9 15,5% 12,5% 16 10 23% 25%
8-word Read 15 9 15,5% 12,5% 16 10 23% 25%

16-word Write 15 9 15,5% 12,5% 16 10 23% 25%
16-word Read 15 9 15,5% 12,5% 16 10 23% 25%

Chapter 5. PE-ICE Implementation

 147

the 256-bit line-payload contained in three chunks on the 32-bit AHB bus), it results26 that

five AES cores must be implemented when RE/B = 1 and three when RE/B = 2. For PE-ICE-

160 and PE-ICE-192 a plaintext block must be collected in 4 cycles. Therefore, by following

the same reasoning the number NAES of AES cores to implement to obtain the latencies listed

in Table 5-6 is given in Table 5-7.

Once again, PE-ICE-160 offers the best trade-off since the hardware resources required in

this implementation are the same as an AES-ECB encryption engine.

Table 5-7 Number of AES cores to implement for PE-ICE and the AES-ECB engine
when the off-chip memory bus width is of 64-bit

NAES

RE/B = 1 RE/B = 2

AES-ECB 3 2

PE-ICE-128 5 3

PE-ICE-160 3 2

PE-ICE-192 4 2

Another possible option to improve the latency is to run the hardware encryption core at

its maximum frequency (330 MHz).

5-3. Performance Evaluation

5-3.1. SoC Designer Tool Set

In order to evaluate the performance during run-time of the PE-ICE configurations

exposed above the SoC designer tool set [81] is used.

The SoC Designer Developer Suite provided by ARM consists in two separate

applications:

• SoCDesigner is used to integrate custom components modeled in SystemC (CABA

– Cycle Accurate Bit Accurate) into complex SoC platforms.

26 The reasoning on read operations with the objectives of reaching the optimum throughput of 32-bit per cycle
logically leads to the same result.

Chapter 5. PE-ICE Implementation

 148

• SoCExplorer is a cycle accurate simulator allowing to run benchmarks and to

profile the platforms defined with SoCDesigner.

5-3.2. Simulation Platform Modeling

The SoC platform designed to evaluate the performance overhead implied by encryption

and by PE-ICE is depicted in Figure 5-9. The libraries required to model the processor core

(ARM926EJ-S), the AHB-bus and the external memory (PMEM for RO data and DMEM for

RW data) have been provided by ARM with the SoC Designer tool set.

The component called Latency_comp is the modeling in SystemC of the off-chip memory

access latencies. It allows to set the number of wait cycles seen on the AHB bus for each kind

of operations requested by the CPU.

In the following we refer to the Base platform to denote the SoC platform which does not

include hardware mechanisms for data security (encryption and integrity checking engine).

Core (ARM926EJ-S) AHB_BUS

LATENCY_COMP

PMEM

ARM System

DMEM

Figure 5-9 Generic architecture of the simulation platforms

To define the Base latencies we use the figures provided in the datasheet of an AHB

compliant memory controller, the PL172[82]. We choose the lower read (9 cycles) and write

(1 cycle) latencies assuming the following parameters for the underlying SDRAM memory:

- Precharge latency = 2

- Activate latency = 2

- CAS latency = 2.

Chapter 5. PE-ICE Implementation

 149

 In this way, ideal memory accesses are defined and PE-ICE is pushed in the worst

simulation case. One simulation platform per security engine has been designed.

Latency_comp parameters for each platform are set by adding the latencies given in Tables 5-

3, 5-4 and 5-5 to the Base ones.

5-3.3. Simulation Framework

In [83, 84, 85] the proposed evaluation considers that the CPU, the AHB bus and the

hardware encryption core run at the same frequencies i.e. FCPU = FAHB = FAES. In this thesis

another realistic case for embedded systems is explored where FCPU = 2*FAHB = FAES (RE/B =

2) meaning that the latencies seen by the CPU are twice as big as the ones seen on the AHB

bus.

The architectural parameters defining the simulation frameworks are summarized in Table

5-8.

Table 5-8 Architectural parameters of the simulation platforms

Processor Core ARM926EJ-S
Processor-memory width 32-bit

AHB Clock ratio (FCPU / FAHB) 2
Cache line size 256-bit
Cache policy Write-back

RE/B (FAES / FAHB) 2
Base off-chip Read latency (in AHB bus cycles) 9
Base off-chip Write latency (in AHB bus cycles) 1

5-3.4. Results

Four EEMBC (Embedded Microprocessor Benchmarking Consortium [86]) benchmarks

(MP3 player, Huffman, CJPEG, DJPEG) and four software applications designed for

embedded systems at STMicroelectronics (ADPCM, FingerPrint, DES, MP2Audio) were

used in this evaluation. The simulation results for the Base platform serve as reference and are

shown in IPC (Instruction Per Cycles) in Figure 5-10 for two different sizes of data cache and

instruction cache (4KB and 128KB). We observed that the performance slowdown of the

studied hardware mechanisms for data security is mainly relative to the data cache miss rate;

Figure 5-11 gives this cache miss rate for each benchmark and for both sizes of the data

cache.

Chapter 5. PE-ICE Implementation

 150

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

ADPCM
DES

Finger
Prin

t

MP2A
udio

CJP
EG

DJP
EG

MP3 p
lay

er

Huffm
an

IP
C

 (I
ns

tr
uc

tio
n

Pe
r C

yc
le

)

4KB
128KB

Figure 5-10 Simulation results for the Base platform

0

5

10

15

20

25

ADPCM
DES

Finger
Prin

t

MP2A
udio

CJP
EG

DJP
EG

MP3 p
lay

er

Huffm
an

D
at

a
ca

ch
e

m
is

s
ra

te
 (%

)

4KB
128KB

Figure 5-11 Data cache miss rate for the set of benchmarks used for the performance

evaluation and for two different data cache sizes (4KB and 128KB)

Note that considering the low Base latencies and the fact that all applications are entirely

protected, the worst case results are presented in this section. Indeed, all data processed during

software execution do not require to be necessarily encrypted and integrity checked.

In order to illustrate the impact of the studied hardware mechanisms for data security we

show in Figure 5-12 the simulation results of the platforms emulating the AES engine, PE-

ICE-128, PE-ICE-160 and PE-ICE-192, in IPC normalized to the Base platform performance.

The AES-ECB engine performance clearly highlights that the overhead is mainly due to

Chapter 5. PE-ICE Implementation

 151

encryption; it is 50% in the worst case (CJPEG – 4KB) and, 31.5% and of 14.3% (Table 5-9)

on average respectively for 4KB and 128KB data cache. This quite important performance

cost can be drastically reduced by applying the improvements proposed in section 5-2.5 and

by using the encryption algorithm at its maximum frequency. Moreover, we did not explore

the exploitation of the waiting time in the write buffer and of the Base write latency. The

latencies introduced by the different security engines could be partially hidden on write

operations by starting the encryption before storing data in the write buffer or at least at the

same time as the memory access request.

Increasing the data cache size decreases the overhead of the security engines by reducing

the number of off-chip memory accesses (Table 5-9), except for the DES benchmark for

which the data cache miss rate remains almost the same (Figure 5-12).

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

Figure 5-12 Run-time overhead of AES encryption and of the PE-ICE configurations for

two data cache sizes (4KB and 128KB)

Table 5-9 Average performance slowdown implied by the AES-ECB engine
and by PE-ICE configurations

 4KB 128KB

AES-ECB 31,5% 14,3%
PE-ICE-128 32,7% 15,2%
PE-ICE-160 33,7% 15,7%
PE-ICE-192 37,6% 18,1%

Chapter 5. PE-ICE Implementation

 152

Nevertheless the interesting point is the low overhead implied by PE-ICE compared to the

AES engine. We evaluate the performance slowdown of the integrity checking mechanisms

proposed by PE-ICE when compared to AES encryption alone by normalizing the IPCs of the

PE-ICE platforms to the AES-ECB engine performance (Figure 5-13). The best results are

obtained with PE-ICE-128 since on average (Table 5-10) the degradation is 1.9% and 1.1%

respectively for a data cache size of 4KB and of 128KB and in the worst case it is 4.1% (DES

– 4KB) and. However PE-ICE-160 results are close since on average it implies a performance

slowdown of 3.3% for a data cache of 4KB and of only 1.7% for a data cache of 128KB.

Moreover for benchmarks requesting several 128-bit write operations PE-ICE-160 improves

the performance of PE-ICE-128 (DES – CJPEG and DJPEG for 128KB data cache).

Figure 5-13 Run-time overhead of the integrity checking mechanism of PE-ICE

configurations compared to AES-ECB encryption alone for two data cache sizes (4KB
and 128KB)

Table 5-10 Average performance slowdown implied by the integrity checking

mechanism of PE-ICE compared to AES-ECB encryption alone

 4KB 128KB

PE-ICE-128 1,9% 1,1%
PE-ICE-160 3,3% 1,7%
PE-ICE-192 9,9% 4,7%

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

A
ES

) I
PC

PE-ICE-128
PE-ICE-160
PE-ICE-192

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB

N
or

m
al

iz
ed

 (t
o

A
ES

) I
PC

PE-ICE-128
PE-ICE-160
PE-ICE-192

Chapter 5. PE-ICE Implementation

 153

In summary, PE-ICE-128 has the lowest overhead in terms of run-time performance when

compared to AES encryption while PE-ICE-192 offers the highest strength regarding the PE-

ICE security limitations. However, considering all evaluation aspects - security limitations,

off-chip memory overhead, additional latencies, run-time performance and hardware cost -

PE-ICE-160 is the configuration which offers the best trade-off. Therefore, in section 5-5 the

comparison with a generic composition scheme is done with PE-ICE-160.

5-4. Implementation Use Case

All applications stored off-chip do not necessarily require to be protected. Thus, PE-ICE

must determine at run-time if it has to handle the current memory access and which

encryption key to use. Several solutions are possible, but they are deeply dependent on the

underlying CPU and OS. Here we propose a use case where the design of the CPU core is not

legally modifiable or at a huge cost (e.g. ARM); nevertheless it can be surely optimized when

the target platform is fully specified and easily modifiable.

5-4.1. Protected Memory Region and Key Management

For clarity, in the following, we consider a simplified case where, the OS defines only two

contiguous physical memory sections at application load-time and sets the following access

rights in the page table (MMU) for the application (Figure 5-15):

• RO region: which contains the code and the read only data

• RW region: which contains the read write data

A straightforward solution for PE-ICE to identify the protected memory regions (PMR) is

to have one table per kind of memory section, Table_RO and Table_RW (Figure 5-14). Each

table entry corresponds to a given application and contains two parameters: As and Ae, the

start and the end physical addresses of each memory section seen by the CPU. Such table

entries are maintained by the OS that updates As and Ae, each time a new application is

loaded. Thus, when a memory request is issued, PE-ICE checks if the address falls into [As;

Ae] for one of the tables and, depending on the result, handles the corresponding transfer or

lets it transit normally.

Chapter 5. PE-ICE Implementation

 154

The same tables can be used to define the key to enroll in the encryption. As previously

shown, for all PE-ICE configurations the same key is used for all RW data stored in the off-

chip memory and one key per application is required for RO data. Thus for RW data a register

memorizes KRW and for RO data, each KRO is simply stored as additional information in each

Table-RO entry (Figure 5-13). Thus, depending on the address processed, PE-ICE selects the

correct KRO in Table-RO or KRW in the RW key register.

Figure 5-14 Tables used by PE-ICE to identify the Protected Memory Regions and to

select the correct encryption key

5-4.2. Physical Memory Management

As shown in Chapter 4, PE-ICE shifts the physical addressing and handles the physical

address computation. However, the system must be aware of the additional memory

consumption to avoid memory conflict.

Thus, the OS acts as usual at load-time i.e. it allocates an address space and sets the

relevant access permission bits in the Memory Management Unit (MMU) for each section,

RW and RO. However, when an application requires PE-ICE protection, the OS also

computes, for each memory section defined, the size of the additional memory required for

tags by multiplying ROF with the size of the corresponding section and reserves in the MMU a

consecutive dedicated address space AT (Additional memory for Tags) of such a size (Figure

5-15); nevertheless, access rights in the page table of the application are set to NO_ACCESS

for this memory section. This way, any access to this region will fail (it will be trapped by the

 As
(Starting address)

Ae
(Ending address

KRO
(Key for Ro data)

Application 1 AsR01 AeRO1 KRO1

Application 2 AsR02 AeRO2 KRO2

 As
(Starting address)

Ae
(Ending address)

Application 1 AsRW1 AeRW1

Application 2 AsRW2 AeRW2

(b) Table_RW

(a) Table_RO

(c) RW key register

KRW

Chapter 5. PE-ICE Implementation

 155

MMU), and will not be passed on to PE-ICE or to the memory controller. Moreover, the OS

is aware of the use of this section and will not map AT to any other application.

The solutions proposed above are transparent in terms of performance at run-time since

they are done at load-time or can be parallelized on read operations with the off-chip memory

access latency and on write operations with the bus cycles required to collect a plaintext

block.

Figure 5-15 Physical memory management for PE-ICE implementation

5-5. Comparison With a Generic Composition Scheme

In this section PE-ICE is compared to a generic composition scheme referred to as GC.

GC is the combination of AES-ECB encryption and of a CBC-MAC algorithm. The secure

implementation of this engine in our application context is first defined and evaluated in a

similar implementation context as PE-ICE (e.g. ARM9E and AHB bus). Then a comparison

with PE-ICE-160 is presented to highlight the respective advantages and shortcomings of the

described engines.

PMR-RO

PMR-RW

Unprotected memory space AT: Additional memory for Tags storage
PMR : Protected Memory Region

RO

AT-RO Inaccessible

RW

AT-RW Inaccessible

(a) Physical Memory seen by
the CPU through the MMU

(b) Physical Memory seen
by PE-ICE

AeRO

AsRO

AeRW

AsRW

AeRO

AsRO

AeRW

AsRW

Chapter 5. PE-ICE Implementation

 156

5-5.1. The Generic Composition Scheme: AES and CBC-MAC

5-5.1.1. Secure Implementation of GC

The tag required for the integrity checking process – described in chapter 2, section 2-

2.2.3 - is computed over a chunk with a CBC-MAC algorithm. The underlying block cipher

Ek for our CBC-MAC implementation is AES. The Encrypt-then-MAC construction is chosen

because it is the most secured conventional method to pair an authenticated mode and an

encryption mode [50]; therefore the tag is computed over the ciphered chunk composed of m

AES blocks (C1, C2, …, Cm) by using a different key than the one required for the encryption

[50]. The direct implementation of the CBC-MAC presented in chapter 1 (section 1-4.4.2) is

not secure since the generated tag depends only on the data and therefore is not resistant to

splicing and replay attacks. That is why a 128-bit vector N is additionally enrolled in the

CBC-MAC computation. N is composed of the 32-bit chunk address concatenated with an r-

bit vector RV and padded with zeroes to be 128-bit. The address serves to thwart splicing

attacks by making N different for each ciphered chunk stored off-chip. For RW data, RV is the

countermeasure against replay attacks, it is an r-bit random value generated on-chip, with its

reference RV’ stored also on-chip. Thus it can be retrieved for integrity checking on read

operations while making it secret and tamper-proof from an adversary point of view. For RO

data RV is padded with zeroes.

Figure 5-16 Insecure implementation of the CBC-MAC algorithm

The way N is involved in the tag computation must be carefully defined. An intuitive

solution would be to simply xor N with C1 (Figure 5-16); however such an implementation

leads to a simple splicing attack. Let X be the result of the xor operation between N and C1.

X

C1

Ek

C2

Ek

Cm

Ek

Tag

128 128

128

128

128

128

N
128

128

Chapter 5. PE-ICE Implementation

 157

Now suppose that an adversary wants to relocate the block C2 27 of a chunk (C1, C2, …, Cm) of

RO data previously recorded in memory with its tag T. This attacker knows N for RO data

since it is only composed of the address and of padding. Hence, he can tamper with C1 in

order to obtain the expected X allowing to produce the correct T’ corresponding to T. Such an

attack will not be detected by the integrity checking engine since T will match T’.

In order to avoid such an attack, the 128-bit vector xored with C1 must be unpredictable

from an adversary point of view; therefore, N is encrypted and enrolled in the first block

cipher invocation of the CBC-MAC. In this way the encryption of N is transparent since it can

be parallelized with the memory access latency on read operations and with encryption on

write operations28. The secure CBC-MAC implementation is described in Figure 5-17.

Figure 5-17 Secure implementation of the CBC-MAC algorithm

5-5.1.2. Optimized Definition of the Generic Composition Scheme

GC Encryption engine: AES encryption is done in ECB mode in order to perform a fair

comparison of the integrity checking process overhead between PE-ICE and GC. We consider

such an implementation secure even if the same block encrypted twice led to the same

ciphertext block, which is not the case for PE-ICE. To overcome this possible security hole,

CBC mode must be used with an IV containing a counter or a random value as proposed in

[12].

GC MAC engine: In the literature the chunk size is defined by the cache line length.

However, this choice for the CBC-MAC is inefficient for big cache block in terms of latency

due to the inherent recursiveness of such a MAC algorithm. Thus, we will define a granularity

27 Or another block after C1 in the chunk.
28 In [85] we enrolled N in the last block cipher invocation of the CBC-MAC computation. While secure this
implementation is not optimized since the encryption of N directly impacts the memory access latency.

C1

Ek

C2

Ek

Cm

Ek

Tag

128 128

128

128

128

128
N

Ek

128

128

Chapter 5. PE-ICE Implementation

 158

of integrity checking allowing an affordable trade-off between latency and hardware

resources.

The number of hardware cores required for the CBC-MAC engine depends on two factors:

the granularity of integrity checking (the chunk size) and the maximum length of the atomic

transfers performed during run-time29. Indeed, in order to optimize the latencies introduced on

off-chip memory access, the CBC-MAC engine must implement either the number of AES

hardware cores required to reach the optimum throughput of 32-bit per cycle independently

from the atomic transfer size or enough cores to be able to process in parallel all chunks

contained in an atomic transfer.

Figure 5-18 CBC-MAC implemented in the proposed

generic composition scheme (GC)

The ideal implementation would be to perform per-block integrity checking (chunk size =

one ciphered block C) with a tag computed on two blocks, N and C. The intrinsic latency of

such a CBC-MAC computation is of 21 cycles for RE/B = 1 and of 11 cycles for RE/B = 2.

Thus, the CBC-MAC engine would require respectively six and three AES cores to reach the

optimum throughput of 32-bit per cycle. In order to reduce this huge hardware cost we

increase the size of the granularity of the integrity checking to 256-bit (chunk size) and we

only consider atomic transfers limited to 512-bit; the resulting CBC-MAC engine requires

two AES cores for both values of R E/B. This is the minimum number of core to be able, on

RMW operations, to generate the new tag – for the chunk to write - and the tag reference – to

check the chunk loaded to be modified.

29 This factor is usually defined by the cache line size.

C1

Ek Ek Ek

Truncation

T

128

128

32

C2N
128128

Chapter 5. PE-ICE Implementation

 159

Finally, the tag is computed on M = (N, C1, C2) and is truncated to 32-bit to decrease the

memory bandwidth pollution generated by its transmission on the bus and to optimize the off-

chip memory overhead. The CBC-MAC implementation in GC is depicted in Figure 5-18.

5-5.1.3. Security Considerations

In the following, the defined CBC-MAC implementation is evaluated regarding the three

attacks exposed in the threat model (spoofing, splicing, replay) and led on a chunk.

CBC-MAC is based on block cipher encryption; therefore its outputs are equiprobable

from an adversary point of view. Concerning spoofing and splicing attacks, the chance to

succeed for an attacker depends on the size of the tag and is equal to 1/232; hence we consider

that the CBC-MAC scheme protects the whole addressing space against splicing. The strength

of the countermeasure against replay depends on r: the chance for replay to succeed is equal

to 1/2r. The latter probability is limited by the size of the tag, meaning that there is no sense in

choosing r > 32. Table 5-11 sums up the security limitations offered by GC.

Table 5-11 Security limitations offered by the CBC-MAC scheme
implemented in GC regarding active attacks led on a chunk and

evaluated in chance to succeed for an adversary

Attack RO data RW data

Spoofing attack 322
1 322

1

Splicing attack 322
1 322

1

Replay attack N/A r2
1

5-5.1.4. Memory Consumption

The off-chip memory overhead of GC is of 12.5% since it requires to store 32-bit of tag

for 256-bit of payload. The on-chip memory overhead depends on the size of RV and is

defined by the ratio between r and the protected payload. For r = 8, this overhead is of 3.1%.

5-5.1.5. Latencies

In this section we consider an implementation of GC on the AHB bus to evaluate the

latencies introduced on read and write operations.

Chapter 5. PE-ICE Implementation

 160

On read operations the encryption of N can be parallelized with the memory access

latency, hence the CBC-MAC latency seen on the AHB bus is only due to two consecutives

AES encryptions and resulting in 21 cycles of latency for RE/B = 1 and 11 for RE/B = 2 with 4

additional cycles to collect the first block. The integrity checking process is parallelizable

with decryption process since they are both performed on the ciphertext, therefore the

resulting latency for GC on read operations is of 25 cycles when RE/B = 1 and of 15 cycles

when RE/B = 2.

On write operations, the CBC-MAC has the same latency (21 and 11 cycles) since the

enrollment of N is hidden by the AES encryption. However, the data encryption process and

the tag computation latencies are only partially parallelized. Moreover, the CBC-MAC

generates a RMW write on the tag for the 8 to 32-bit and 128-bit write operations; this means

that the chunk and the corresponding tag are loaded and checked, to be recomputed by

enrolling the new 128-bit value in the CBC-MAC computation. Table 5-12 sums up the

additional latencies introduced by GC on the AHB bus.

On average the overhead of GC compared to AES encryption alone is of 77.1% for RE/B =

1 and of 52% for RE/B = 2.

Table 5-12 Additional latencies introduced by GC on an AMBA-AHB bus
for the operations requested by an ARM9E core

GC (AES + CBC-MAC)
Latencies (AHBcycles) Overhead vs. AES Operations
RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2

8 to 32-bit Write 58 38 +54% +36%
8 to 32-bit Read 25 15 +66% +50%

128-bit Write 32 20 +113% +100%
128-bit Read 25 15 +66% +50%
256-bit Write 29 14 +93% +40%
256-bit Read 25 15 +66% +50%
512-bit Write 29 14 +93% +40%
512-bit Read 25 15 +66% +50%

5-5.1.6. Hardware Cost

On read operations the processes are parallelized; thus despite the fact that they are both

based on the AES algorithm, the AES-ECB engine and the CBC-MAC scheme of GC cannot

share hardware.

Chapter 5. PE-ICE Implementation

 161

The AES-ECB encryption requires three AES encryption/decryption cores for RE/B = 1

and two for RE/B = 2. As exposed in section 5-5.1.2 the proposed CBC-MAC uses two AES

cores. However, only the encryption process is involved in the CBC-MAC computation,

therefore the hardware cost can be optimized by using an AES core implementing the

encryption process only. The silicon area consumed by such a core is estimated at 16 Kgates

by Ocean Logic [80] in the 0.18µ technology. Moreover, the AES-ECB encryption and the

CBC-MAC computation require separated key expansion cores since they enroll two different

keys. The resulting hardware cost for GC is of 168 Kgates when RE/B = 1 and of 144 Kgates

when RE/B = 2 in the 0.18µ technology.

5-5.1.7. Run-Time Performance

A simulation platform has been designed for GC by configuring the Latency_comp

component with the latencies given in Table 5-12 for RE/B = 2 added to the Base ones. The

simulation framework is the same as the one described in section 5-3. GC has also been

evaluated for two data cache sizes: 4 KB and 128 KB.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES
PE-ICE-160
GC

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES
PE-ICE-160
GC

Figure 5-19 Run-time overhead of GC, of the AES-ECB engine and of PE-ICE-160 for
two data cache sizes (4KB and 128KB)

Chapter 5. PE-ICE Implementation

 162

Similarly to PE-ICE configurations the overhead of GC compared to the Base

performance is mainly due to the encryption as shown in Figure 5-19 and in Table 5-13.

Nevertheless the additional performance slowdown of the integrity checking mechanisms of

GC (CBC-MAC) is non negligible (Figure 5-20) when compared to the AES-ECB engine

since it is of 18% in the worst case scenario (DJPEG – 4KB), and of 13.7% and 7.8%

respectively in average for a data cache of 4 KB and of 128 KB (Table 5-14).

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

A
ES

) I
PC

PE-ICE-128
PE-ICE-160
PE-ICE-192
GC(CBC-MAC)

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB

N
or

m
al

iz
ed

 (t
o

A
ES

) I
PC

PE-ICE-128
PE-ICE-160
PE-ICE-192
GC(CBC-MAC)

Figure 5-20 Run-time overhead of the integrity checking mechanism of GC

– CBC-MAC – and of PE-ICE configurations when compared to AES-ECB encryption
and for two data cache sizes (4KB and 128KB)

Table 5-13 Average performance slowdown implied by the AES-ECB engine
and by GC when compared to Base

 4KB 128KB

AES-ECB 31.5% 14.3%
GC(AES-ECB +CBC-MAC) 40.6% 20.7%

Table 5-14 Average performance slowdown implied by the integrity checking
mechanism of GC - CBC-MAC - compared to AES-ECB encryption alone

 4KB 128KB

GC (CBC-MAC) 13.7% 7.8%

Chapter 5. PE-ICE Implementation

 163

5-5.2. Comparison between GC and PE-ICE

To compare GC and PE-ICE-160, we evaluate their respective cost to ensure data integrity

in addition to data confidentiality. The AES-ECB engine is used as the reference cost to

provide data confidentiality since PE-ICE-160 and GC implement both the ECB encryption

mode. Table 5-14 shows the overhead implied by the integrity checking mechanisms in PE-

ICE-160 and in GC.

PE-ICE-160 does not require additional silicon area to achieve the integrity checking

process while GC implies an overhead of 68% and of 80% respectively for RE/B = 1 and for

RE/B = 2. Moreover, this feature is always valid for PE-ICE-160 while for GC it is dependent

of the cache line size which fixes the maximum size of the atomic transfer during run-time.

Table 5-15 PE-ICE and GC comparison: evaluation of the cost of the integrity checking
mechanisms of the two approaches when compared to the AES-ECB encryption

In term of latencies the overhead of GC reaches up to 77% on average while for PE-ICE-

160 it remains always under 22% on average. The additional performance slowdown when

compared to the AES-ECB encryption is roughly four times lower for PE-ICE-160 than for

GC. Note that all PE-ICE configurations always outperform GC during run-time (Figure 5-

17).

Concerning security, PE-ICE-160 has the same security limitations as GC regarding the

defined active attacks when r = 32. Moreover, PE-ICE-160 increases the robustness of the

ECB mode by introducing a random value – for RW data – or a nonce – for RO data. Hence

for RO data a same plaintext block encrypted twice never produces the same ciphertext block

GC (AES-ECB + CBC-MAC) PE-ICE-160

RE/B = 1 RE/B = 2 RE/B = 1 RE/B = 2
Hardware cost

(estimation in 0,18µ)
168 Kgates

 +62%
144 Kgates

 +80%
104 Kgates

~0%
80 Kgates

~0%

Latencies +77.1% +52% +19.5% +22%

DC = 4KB - +13.7% - +3.3% Run-time
slowdown DC = 128KB - +7.8% - +1.7%

Off-chip memory
consumption

+12.5% +25%

On-chip memory
consumption 256

r
128

r

Chapter 5. PE-ICE Implementation

 164

while for RW data there is a little probability that the same plaintext block ciphered twice

leads to the same ciphertext block. This is not ensured by GC.

The main advantage of GC concerns the memory consumption since for the same value

of r, GC implies an on-chip and off-chip memory overhead twice smaller than PE-ICE-160.

Indeed, to maintain a strong security level with a fine granularity of integrity checking (per-

block) PE-ICE requires having a dedicated tag to each processed ciphered block.

5-6. Conclusion

In this chapter we have proposed and evaluated different configurations of PE-ICE and we

have highlighted that PE-ICE using the Rijndael algorithms processing 160-bit blocks offers

the best trade-off between performance, security and off-chip memory consumption.

Moreover, we have showed that PE-ICE improves the robustness of AES-ECB encryption and

adds the integrity checking capability to block encryption without silicon area overhead and at

almost free cost in terms of run-time performance. Finally the comparison with a generic

composition scheme has demonstrated that the implementation of PE-ICE instead of a MAC

algorithm in addition to block encryption is more efficient in terms of hardware cost and of

latencies.

PE-ICE succeeds in efficiently thwarting spoofing and splicing attacks. However, as for

MAC algorithms, the countermeasure against replay attacks implied an unaffordable on-chip

memory overhead to store the set of reference random value when r is long and when a large

amount of memory must be immune against replay. The next chapter proposes a scheme to

overcome this issue and to reduce this on-chip memory cost to the storage of an r-bit value.

Chapter 5. PE-ICE Implementation

 165

 166

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 167

Chapter 6: PRV-Tree - Secure Off-chip

Storage of Reference Random Values

The principle proposed by PE-ICE to thwart replay attacks is to insert randomness in

plaintext blocks. However, as previously exposed the set of reference random value (RV’)

used for the tag matching process must be secret and tamper-proof from adversaries’ point of

view. The solution proposed in previous chapters is to store all RV’ on-chip. While secure,

this solution can be expensive in terms of on-chip memory consumption when a large amount

of off-chip memory must be replay immune and when a high security level is required (big

value for r). Hence, we present a secure way, the PRV-Tree (PE-ICE Protected Reference

random Value Tree) scheme, to store this set of reference random value off-chip by mounting

a tree of RV’ and by protecting it with PE-ICE.

Note that in this chapter we only consider PE-ICE configurations for which a PE-ICE line

is equivalent to a chunk i.e. PE-ICE-160 and PE-ICE-192. Thus, only the term chunk is used.

Moreover the term payload implicitly denotes PL as a line-payload.

 This chapter is organized as follows. Section 6-1 introduces the notion of m-ary balanced

tree. Section 6-2 shows how to securely store the set of reference random values off-chip.

Section 6-3 describes the tree of reference random values RV-Tree and the PRV-Tree scheme

allowing to store securely RV-Tree off-chip and to reduce the on-chip memory overhead to a

single r-bit value. Section 6-4 proposes a comparison between PRV-Tree using PE-ICE-160

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 168

and hash trees. Finally, section 6-5 updates the use case presented in Chapter 4 to incorporate

the PRV-Tree scheme.

6-1. m-ary Balanced Tree

A tree is a data structure which emulates a tree structure to link elements together. The

main difference with the tree in nature is the fact that the root is the element at the top of the

tree while the leaves are the elements at the bottom. The root and all the nodes of the tree

until the leaves (not included) have a certain number of children. A given child (nodes or

leaves) has at most one parent node and all children of the same parent node are called the

siblings. The only element which does not have a parent is the root.

In this thesis, we are particularly interested in m-ary balanced tree where all nodes of the

tree must have the same number m of children. Moreover, we only consider m values which

are of a power of two30. Figure 6-1 depicts a 2-ary (binary) tree with three levels of elements.

Figure 6-1 A balanced binary tree (2-ary tree)

The number L of level of nodes in the tree can be easily deduced from the number N of

leave elements and from the arity m:

 L = logm(N) (eq. 6.1)

30 This choice is motivated by the need of easily retrieving the nodes from a memory.

0

4

1

3 6

2

5

Root: 0
Parent nodes: 0, 1, 2
Leaves: 3, 4, 5, 6
Siblings: (1,2) (3,4) (5,6)

l =L = 2

l = 1

l = 0

l : Current level L : Tree-level

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 169

The number E of elements in the tree is computed by adding the number of nodes and

leaves at each level of the tree:

1

11

0 −
−

==
+

=
∑ m

mmE
LL

l

l . (eq. 6.2)

6-2. Secure Storage Principle of the Reference Random Values

As explained in Chapter 4, the set of reference random values used for the tag matching

process must be secret and tamper-proof from an adversary point of view. The solution

exposed in Chapters 4 and 5 – the set of RV’ is stored on-chip – is secure but could be

expensive when a large amount of memory must be replay immune with a strong level of

detection (large random value). For instance, if 256MB of RW data must be protected against

replay with 32-bit random values, 64 MB of memory must be embedded for PE-ICE-160 as

for PE-ICE-192. Hence, the set of RV’ should be stored off-chip while ensuring its

confidentiality – secrecy requirement – and its authentication – the tamper-proof requirement.

Therefore, we propose to apply PE-ICE to the set of RV’: the reference random values of

consecutive chunks of data – named in the following data-chunks - in memory are

concatenated to form a payload. Then this payload is processed by PE-ICE, meaning that it is

concatenated with a tag consisting partially (or totally) of a random value (RV) before being

encrypted. The resulting block is called an RVS (Reference random Value Storage) chunk or

an RVS-block and is depicted in Figure 6-2. The reference random value (RV’) of such a

chunk is stored on-chip.

Figure 6-2 An RVS-chunk before PE-ICE encryption (for t = r)

The size of RV used in the RVS-chunk must be at least equal to r, the size of the random

value used for the data-chunk; otherwise an adversary has more chance to succeed in a replay

of a data-chunk with its RVS-block than in a replay of the data-chunk alone. In the following

t-bit (t = r)

RV1’ RV2’ RVA’ RV

Tag RV’: Reference Random Value of a data-chunk

lp-bit

r-bit

RV: Random Value

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 170

we consider that the RV length is always equal to r whatever the payload processed (reference

random value or RW data) by PE-ICE. The number A of RV’ fitting in a RVS-chunk depends

on lp (payload size of the underlying PE-ICE configuration) and on r and is equal to31:

 ⎥
⎦

⎥
⎢
⎣

⎢
=

r
l

A p . (eq. 6.3)

Thus, for operations on a payload PE-ICE works as follows:

• On read operations:

i) load the data-chunk with the RVS-block containing the required RV’

ii) decrypt both chunks

iii) check that RV = RV’ for the RVS-block by reading RV’ on-chip

iv) retrieve the required RV’ in the RVS payload and check that RV = RV’ for

the data-chunk.

• On write operations of a payload:

i) encrypt PL with PE-ICE and a new RV

ii) write the resulting data-chunk in memory

iii) load the RVS-chunk containing the corresponding RV’ on-chip

iv) decrypt and authenticate it by checking that RV= RV’

v) update the reference random value (RV’ RV) of the data-chunk in the

RVS payload

vi) generate a new RV for the RVS-block and update RV’ in the dedicated on-

chip memory (RV’ RV)

vii) encrypt the new RVS payload with PE-ICE and the new RV

This scheme allows to reduce the on-chip memory overhead by a factor A. However, this

may be insufficient. Take up again the example of 256MB of RW data to protect against

replay with 32-bit random values, the amount of on-chip memory required is of 16 MB,

which remains unaffordable in a SoC. The solution is to recursively repeat the application of

PE-ICE on the set of reference random value RV’ used to authenticate RVS-chunks until

having only one RV’ to store on-chip. That amounts to creating an A-ary tree of Reference

random Values (RV-Tree) protected by PE-ICE (PRV-Tree scheme).

31 ⎣ ⎦X denotes X rounding down.

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 171

6-3. PRV-Tree scheme (PE-ICE protected of the Reference Value Tree)

6-3.1. Principle

The ultimate objective of PRV-Tree is to authenticate RW data and to securely store off-

chip the set of reference random value (RV’) required for this task by keeping only one

reference random value on-chip. By securely, we mean that the confidentiality and the

authenticity of the set of RV’ is ensured.

In the following, we call RV-Tree the structure which links the reference random values

together and with data while we call PRV-Tree the scheme allowing the secure storage of

RV-Tree and performing the authentication process.

Each element of an RV-tree is r-bit long. The RW memory section to protect is divided in

Nr r-bit blocks which are the leaves of the tree. Each node in the tree is the reference random

value used to authenticate the A-leaves or the A-nodes below it – its A children. The top of the

tree is the RV’-root which is kept on-chip where it cannot be tampered with. The resulting tree

is securely stored off-chip (PRV-Tree) by constructing payload with A-sibling nodes or leaves

and by encrypting them with PE-ICE resulting respectively in RVS-chunks or in data-chunks.

Note that data-chunks are the chunks processed by PE-ICE in previous chapters. A 4-ary RV-

Tree is depicted in Figure 6-3.

PRV-tree works as follows for RW data at run-time:

On read operations – authentication process:

i) Read the chunk to authenticate (and to decrypt) and its parent chunk in memory

which contains the required RV’

ii) Decrypt both chunks

iii) Retrieve RV in the chunk’s tag and RV’ in the parent’s payload

iv) Compare RV to RV’,

• if RV ≠ RV’ raise the integrity checking flag and stop execution

• else forward the payload for speculative execution and continue the

authentication process by rising up RV-Tree.

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 172

Figure 6-3 4-ary RV-Tree: Reference (random) Value Tree

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 173

This process is repeated to authenticate the parent chunk until the root of the tree. Note

that the first iteration concerns the authentication of a data-chunk while the following ones

concern the authentication of RVS-chunks. Moreover, starting from the second iteration only

the parent chunk needs to be loaded since the chunk to authenticate has already been read

during the previous iteration. The number of checks (iterations) to achieve the

authentication process depends on the number L of level of the RV-Tree that is easily

computed from Nr and from the tree-arity A:

 L = logA(Nr). (eq. 6.4)

On write operations the tree must be updated, thus the following steps are required:

v) read (authentication) the matching chunk (with the process described for read

operations)

vi) perform the write in the decrypted payload

vii) generate a new RV and concatenate it with the resulting payload

viii) Encrypt and store the chunk in the off-chip memory

ix) Update the parent node with RV’ (= RV) Write RV in the parent chunk.

Similarly to read operations, this process is repeated with the parent node until RV’-root.

Note that the first step of authentication is only required for the first iteration since it implies

the authentication of all the parent’s nodes belonging to the same tree branch.

The initialization of the tree is done at load-time by performing the write operations

described above on all the RW memory section to protect but by turning off the integrity

checking process (meaning without the first step of authentication).

6-3.2. Physical Address Computation

In this section we consider an A-ary RV-Tree of L level which protects Nr r-bit blocks of

data or in other words Nr/A payloads of data. Moreover, l denotes the level in the tree an r-bit

block of payload (of data or of RV’) belongs to.

For PRV-Tree to be efficient the computation of the parent’s chunk addresses must be

straightforward.

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 174

An RVS-chunk is retrieved in memory in two steps:

• First the address of the corresponding payload is calculated in the address space

seen by the CPU.

• Then, the physical address is computed by applying the shift implied by PE-ICE

processing.

 To achieve the first task we use the method proposed in [47]: all elements of a tree are

numbered consecutively starting from 0 from the root to the leaves as depicted in Figure 6-4

for a 4-ary tree. The position of a parent node can be easily found by subtracting one from one

of its children number, by dividing the result by the arity and by rounding down.

Figure 6-4 Principle of computation of parent chunk addresses on a 4-ary tree

The method exposed above can be easily applied to the tree constructed with the payloads

in the RV-tree. The payloads are numbered as depicted for the RV-Tree in Figure 6-3.

Considering AS the starting address of the PMR-RW and the address provided by the CPU, the

position P0 of a payload leave is computed by (as in eq. 4.1):

pb

SCPU

l
AA

P
−

=0 . (eq. 6.5)

Then the position of a parent payload Pl is recursively computed from the position of its

child Pl-1 or from the position of the payload leave to authenticate:

 ⎥⎦
⎥

⎢⎣
⎢ −

= −

A
P

P l
l

11 or ⎥⎦
⎥

⎢⎣
⎢ −

= ll A
lP

P 0 (eq. 6.6)

5 8 6 7 9 1210 11 13 1614 15

0

1 42 3

L = 2

L = 1

L = 0 17 20 18 19

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 175

When P becomes negative, this means that the parent node searched for is not in an off-

chip payload but is RV-root which is stored on-chip. The computation of P shows that A must

be a power of 2 to allow a straightforward hardware implementation.

Considering that the RVS-chunks are stored separately from the data-chunks starting from

address AT, the address ARVS of an RVS-chunk in the address space seen by the CPU can be

easily found with:

pblTRVS lPAA ×+= (eq. 6.7)

Finally, the shift provoked by PE-ICE processing can be applied on ARVS to retrieve the

physical address AP-RVS of an RVS-chunk (similarly as in Chapter 4 with ACPU = ARVS):

tblRVSRVSP lPAA ×+=− (eq. 6.8)

6-3.3. Off-chip Memory Consumption

The off-chip memory overhead of the PRV-Tree scheme corresponds to the amount of

memory required to store the RV-Tree starting from the first level of reference random value,

l = 1, to the penultimate one, l = L - 1, plus the consumption implied by the PE-ICE protection

of this amount of memory.

The cost of the RV-tree storage is defined by the ratio RTree between the numbers of nodes

stored off-chip (level 1 to level L-1) and the number of leaves (level 0):

1

1
1

11
1

1

−
≈

−

−
==

∑
−

=

AA
A

A

A
R

L

L

L

l

l

Tree (eq. 6.9)

 by considering LA
1 negligible.

Thus, the overall overhead of the PRV-Tree is equal to:

1

1
−

+
=− A

R
R OF

TreePRV (eq. 6.10)

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 176

6-4. Comparison between PRV-Trees (PE-ICE-160) and Hash Trees

Hash tree is the existing solution which handles the specific issue of replay attacks

without generating on-chip memory overhead. In this section, we present the PRV-Tree

scheme configured with PE-ICE-160 and we discuss its advantages compared to hash trees.

Table 6-1 shows the possible configurations of a PRV-Tree scheme working with PE-

ICE-160 depending on the value of r. Those r values have been deduced from eq.6.3 and from

the fact that A must be a power of 2.

The number of checks can be huge, for example when 256MB of RW data required to be

protected against replay, L is equal to 7, 9 and 13 respectively for r = 8, 16 and 32 (Table 6-

2). All tree schemes [37, 47] face this same issue and usually implement Authentication

Speculative Execution (ASE) meaning that data are forwarded to the CPU before the end of

the integrity checking process. But, PRV-Tree with PE-ICE-160 (except r = 32) or with PE-

ICE-192 offer the possibility of performing a first step of authentication (against spoofing and

splicing) by checking the address bits contained in the tag. In addition, the principle of cached

tree described in Chapter 2 and proposed in [47] can be easily adapted to PRV-Tree – by

caching intermediate reference random values – to reduce the number of checks to achieve.

Table 6-1 PRV-Tree with PE-ICE-160 for different r-values

 r = 8 r = 16 r = 32

A (RV-Tree arity) 16 8 4

L (number of check))(log 816 N)(log 168 N)(log 324 N

Off-chip memory overhead of PRV-Tree 8.3% 17.9% 41.7%
Overall off-chip memory overhead of PE-ICE-160

with PRV-Tree 33.3% 42.9% 66.7%

Moreover, the interesting point of PRV-Tree when compared to existing solutions like

Hash trees is the drastic reduction of the memory bandwidth pollution. The memory

bandwidth consumption of tree schemes can be approximated by multiplying C the chunk size

by L the number of checks required to reach the tree root and to terminate the authentication

process - one check requires loading at least one chunk. For PE-ICE the chunk length is

always of the block size processed by the underlying block cipher (for PE-ICE-160, C = 160-

bit). L can be adapted - for a given amount of RW data to be immune against replay - by

playing on the r value to change the arity of RV-Tree (Table 6-1) and to define the

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 177

performance-security trade-off wanted. On the other hand, the hash tree principle is based on

collision resistance to be secure; thus, to thwart the birthday attack the hash must be long. If

we consider the implementation proposed in [37, 47], hashes are 128-bit long and chunks are

512-bit long (A = 4). The modification of the chunk size influences the tree-arity (and vice

versa) but the memory bandwidth consumption is almost constant because the hash size

remains the same. Concrete examples are given in Table 6-2, the memory bandwidth

consumption of PRV-Tree (PE-ICE-160) and of Hash-tree are computed for two RW memory

region sizes to protect against replay (16MB and 256MB) and for different configurations of

both engines. We show that PRV-Tree reduces the memory bandwidth pollution by a factor 3

for a comparable security level (PRV-Tree with r = 32). By decreasing the security level, this

factor reaches 4.1 on average when r = 16 and 5.3 when r = 8. This improvement provided by

PRV-Tree is mainly the result of the fine granularity of integrity checking of PE-ICE.

Table 6-2 Memory bandwidth consumption of tree schemes for two different sizes of the
RW memory section to protect against replay, 16MB and 256 MB

(a) PRV-Tree (PE-ICE-160) for different r values

PE-ICE-160 with PRV-Tree C* = 160-bit
r = 8; A = 16:

)(log 816 NL =
r = 16; A = 8

)(log 168 NL =
r = 32; A = 4

)(log 324 NL =
RW=16MB RW=256MB RW=16MB RW=256MB RW=16MB RW=256MB

L value
(Number of checks) 6 7 8 9 11 13

Memory bandwidth
consumption for data

authentication
120B 140B 160B 180B 220B 260B

(b) Hash-Tree [37, 47] for different chunk sizes

Hash Tree (hash of 128-bit)
C* = 256; A = 2

)(log 1282 NL =
C* = 512; A = 4

)(log 1284 NL =
C* = 1024; A = 8

)(log 1288 NL =
RW=16MB RW=256MB RW=16MB RW=256MB RW=16MB RW=256MB

L value
(Number of checks) 20 24 10 12 7 8

Memory bandwidth
consumption for data

authentication
640B 768B 640B 768B 896B 1024B

* C is the chunk size in bit; Nr is the protected memory size expressed in r-bit blocks where r
is the size of the random values for PE-ICE and the hash length for hash tree.

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 178

Another non negligible advantage of PRV-Tree is that the update process of the tree on

write operations is fully parallelizable since the tag (random value and possibly address-bits)

in PE-ICE is produced independently from the payload it protects. For Hash trees, a hash

parent is computed over the data or over the hash children, thus the process is done in series.

Moreover, PRV-Tree does not induce an overhead in terms of hardware since it uses the

same hardware as PE-ICE.

The main shortcoming of PRV-Tree with PE-ICE to achieve both data confidentiality and

integrity is the off-chip memory overhead. For PRV-Tree plus PE-ICE-160 this overhead

reaches 66.7% while for a comparable security level the Hash-Tree scheme implemented with

an OTP engine in [37] consumes 41% of memory. Nevertheless, PRV-Tree can be configured

to achieve an acceptable security level (r = 16) while requiring almost the same memory

consumption of 42.9% (Table 6-1).

6-5. Implementation Use Case

In this section the use case presented in Chapter 5 (section 5-4) is updated to incorporate

the PRV-Tree scheme.

Figure 6-5 Physical memory management for PE-ICE with PRV-Tree

At load-time the OS computes the size of the additional memory required to store the

RVS-chunks (PRV-Tree starting from l = 1 to l = L - 1) by multiplying RPRV-Tree with the size

PMR-RW

Unprotected memory space AT: Additional memory for Tags storage

PMR : Protected Memory Region

RW

AT-RW NO_ACCESS

(a) Physical Memory seen by
the CPU through the MMU

(b) Physical Memory seen
by PE-ICE

AeRW

AsRW

AeRW

AsRW

PT NO_ACCESS PT (RVS-chunks)

data-chunks

AT

PT : PRV-Tree storage

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 179

of the RW memory section. Then it reserves in the MMU a consecutive dedicated address

space PT (PRV-Tree) of such a size (Figure 6-5); nevertheless, access rights in the page table

of the application are set to NO_ACCESS for this memory region. In this way, any access to

this region will fail (it will be trapped by the MMU), and will not be passed on to PE-ICE or

to the memory controller. Moreover, the OS is aware of the use of this section and will not

map PT to any other application.

The encryption key used for PRV-Tree can be KRW since RV’ values are processed like

RW data by PE-ICE (same tag generation). Moreover an entry must be added in Table_RW

(Figure 6-6) to store the start address of the PT region for PE-ICE to be able to compute the

address of the parent chunks.

Figure 6-6 Table_RW used by PE-ICE to identify the Protected Memory Regions of

RW data and to retrieve parent chunks in memory

6-6. Other applications of PRV-Tree

PRV-Tree can be used to reduce the on-chip memory overhead implied by security

mechanisms with replay attack countermeasures requiring to store reference values on-chip.

For example, the reference random values needed by the generic composition scheme GC -

presented in Chapter 5, section 5-5 – to thwart replay attacks can be stored off-chip by using

the PRV-Tree scheme.

Moreover, as mentioned in Chapter 4 the value used as tag in PE-ICE does not necessarily

need to be random. It could be a nonce. However, when the nonce reaches its limit, all the

memory protected with this nonce must be re-encrypted with a new encryption key.

PRV-Tree can also be used to protect reference value generated from nonces. However, as

for PE-ICE when the nonce reaches its limit, the whole tree must be re-encrypted with a new

As

(Start address of
RW section)

Ae
(End address of

RW section)

AT
(Start address of

PT region)

Application 1 AsRW1 AeRW1 AT1

Application 2 AsRW2 AeRW2 AT2

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 180

key. Otherwise, an adversary can predict when he can replay an old node of the tree with its

children.

6-7. Conclusion

In this Chapter we presented a scheme (PRV-Tree) allowing to efficiently protect RW

data against replay by allowing to store the reference values required to achieved such a goal

off-chip. Compared to existing tree schemes achieving the same objective – Hash trees –

PRV-Tree offers numerous advantages like the reduction of the memory bandwidth pollution

at run-time – thanks to the fine granularity of integrity checking of PE-ICE - the

parallelization of the operations on write (tree update) and the use of the same hardware as

encryption engines. Moreover, PRV-Tree allows the designer a scalable choice in the trade-

off between security and performance by playing on the r value. Finally, in certain

configurations of PE-ICE (tag for RW data composed of address bits with random bits), PRV-

Tree allows partial integrity checking: it gives a first response against spoofing and splicing

attacks.

PRV-Tree can be easily applied to existing integrity checking scheme requiring to store

reference values on-chip. Moreover, those reference values do not necessarily need to be

generated from random but can be also generated from nonces.

However, PRV-Tree must be implemented with the cached tree scheme to clearly quantify

its benefit when compared to Cached Hash trees.

Chapter 6. PRV-Tree – Secure Off-chip Storage of Reference Random Values

 181

 182

Chapter 7. Conclusion

 183

Chapter 7: Conclusion

This chapter concludes the thesis. Section 7-1 summarizes the contributions. Section 7-2

describes the remaining works. Finally, section 7-3 proposes further ideas to improve the

concept of PE-ICE and of PRV-Tree.

7-1. Contributions

The objective of countermeasures against physical attacks at the board level (bus probing

and memory tampering) is to provide a private and authenticated tamper resistant

environment to applications running on the targeted devices. Thus it is required to guarantee

the confidentiality and the integrity of data transferred between the processor and the off-chip

memory.

The conventional way to ensure those security services in a System on Chip is to design a

hardware engine dedicated to each security service. Such an approach leads to a non-optimal

usage of the required silicon area and implies non-parallelizable latencies generated by the

underlying computation: encryption/decryption, tag computation/tag matching process

(integrity checking).

In this thesis we explored the addition of redundancy and of randomness in block

encryption at the block level to efficiently ensure the confidentiality and the integrity of data

transferred on the processor-memory bus of embedded systems. By verifying such

redundancy and randomness after decryption, we add the integrity checking capability to

block encryption. In this way, a single algorithm is implemented to achieve both security

services. Moreover, the key point of the proposed engine PE-ICE is that the tag is generated

Chapter 7. Conclusion

 184

independently from the data it protects. As a result that PE-ICE enables the following

features:

• Latency optimization: The encryption (respectively decryption) and the tag

computation (respectively integrity checking) processes are done in parallel,

allowing to optimize the latencies introduced on write and read memory access

latencies.

• Hardware resources optimization: the same hardware resources are used to

achieve all processes: encryption/decryption and integrity checking.

• Optimization of the RMW operations processing: We introduced the notion of fine

granularity of integrity checking allowing to reduce the memory bandwidth

pollution on RMW operations.

The insertion of randomness dedicated to handle the specific issue of replay attacks in PE-

ICE generates a huge on-chip memory overhead to store the reference random value required

for the tag matching process (integrity checking). The proposed solution to reduce this

overhead to the on-chip storage of a single random value, PRV-Tree, relies on the PE-ICE

principle to mount a tree of reference random values and to securely store them off-chip.

PRV-Tree improves existing countermeasures against replay based on tree schemes (hash

trees) in the following aspects:

• Reduction of the memory bandwidth pollution: The authentication process relying

on a tree scheme requires successive loading of tree elements. PRV-Tree reduces

the memory bandwidth pollution by decreasing the size of the chunks (a chunk

defining the granularity of the integrity checking process).

• Full parallelization: PRV-Tree is parallelizable on read and on write operations.

This feature is enabled by the fact that the tags are generated in PE-ICE

independently from the data it protects.

• First step of authentication: Contrary to existing tree schemes, PRV-Tree does not

require the end of the whole authentication process to give a response to spoofing

or splicing attacks. If address bits are contained in tags, after the first check, PRV-

Tree is able to detect data relocation (splicing) or random insertion (spoofing).

• Scalability: By choosing the size of the random value the designer easily defines

the desired trade-off between security, performance and off-chip memory

overhead.

Chapter 7. Conclusion

 185

Moreover, PRV-Trees can be easily applied to integrity checking scheme requiring to

store reference values on-chip. In addition, the reference values protected by PRV-Tree do not

necessarily need to be random but can be generated from nonce.

PE-ICE and PRV-Tree are secured regarding the attacks described in our threat model if

the assumptions considered in this work are respected:

i) the SoC package must be tamper-resistant to be able to trust data stored inside.

ii) the random number generator must not leak information on the values it outputs.

Those values are used to construct tags for RW data which must be unpredictable.

In this way the security of the proposed mechanisms relies on the security of the

underlying block cipher since an adversary has only access to ciphertexts. Moreover,

concerning the three active attacks considered (spoofing, splicing, replay), the designer must

be aware of the security limitations given in this thesis.

7-2. Further Works

During this thesis the implementation of the concept of PE-ICE has been started on the

LEON2 processor. This hardware experimentation must be terminated to refine the SoC

integration issues of PE-ICE.

Moreover, the PRV-Tree must be evaluated at run-time to quantify its improvement in

terms of performance. An ideal implementation should include a cached tree mechanism to

efficiently decrease the number of checks usually required by a tree scheme.

In this thesis, our work focuses on uniprocessor systems. Recently several research

projects [87, 88] studied the off-chip memory protection of multiprocessor platforms. The

main additional issue of such platforms compared to uniprocessor is to distinguish a

modification performed by one of the CPU from a corruption conducted by a malicious party.

Thus, a challenge would be to explore how to extend the protection provided by our proposed

mechanisms to multiprocessor systems.

7-3. Further Idea: PE-ICE-OTP

The principle of PE-ICE cannot be simply extended to stream cipher since parallelizable

mode, such as CTR, does not provide error propagation or diffusion: a bit change in the

Chapter 7. Conclusion

 186

ciphertext only impacts the matching bit in the text resulting from decryption. Hence, if a tag

is appended to a payload before encryption, an adversary could localize the encrypted tag in

the ciphertext and replace it with a chosen one, thus inserting fake text at will (the tag is not

computed on data).

Figure 7-1 PE-ICE-OTP Principle

The idea is to work on an un-keyed diffusion function implemented before an OTP

encryption. This function must provide full diffusion meaning that every bit at its output must

depend on all bits at its input. For instance, the AES algorithm fulfills such requirement in

two rounds [15]. Thus PE-ICE-OTP could work as follows:

• On write operations (Figure 7-1a), the payload is mixed with a tag with the full

diffusion function in parallel of the OTP pad computation and before the

encryption step strictly speaking (xor operation).

• On read operations (Figure 7-1b), the ciphertext loaded is first decrypted with the

OTP scheme and then the inverse transformation of the diffusion function is

applied to the decrypted text. Finally, the tag matching process is done to

authenticate the payload. Thus, if an adversary tampers with or modifies one or

some bits in the ciphertext, the corruption will impact all plaintext bits and will be

detected during the tag matching process.

Ciphertext C

Payload Tag

OTP

Address bus

Write data bus

Trusted area: SoC

Plaintext P

External memory

(a) Write operations: Tag/Payload diffusion and OTP encryption

 MMU

Cache
Memory

C
P
U

Address bus

Read
data bus

Trusted area: SoC External memory

 MMU

Cache
Memory

C
P
U

Reference
TagComp

Integrity
check flag

T’

T

(b) Read operations: OTP Decryption, Inverse diffusion and tag matching process

“Full
Diffusion” Plaintext P

Payload Tag

OTP
Ciphertext C

“Inverse Full
Diffusion” Plaintext P

Chapter 7. Conclusion

 187

Contrary to PE-ICE, decryption and integrity checking processes are serialized but the

preprocessing feature of OTP compensates those non-parallelizable computations.

PE-ICE-OTP can further decrease the latencies on read and write operations when

compared to PE-ICE and speeds up the authentication process of PRV-Tree by profiting from

the preprocessing feature of the OTP scheme.

 189

UNIVERSITE MONTPELLIER II
SCIENCES ET TECHNIQUES DU LANGUEDOC

Résumé de thèse – French Summary

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE MONTPELLIER II

Discipline :Génie Informatique, Automatique et Traitement du Signal
Formation Doctorale : Systèmes Automatiques et Microélectroniques

Ecole Doctorale : Information, structures, Systèmes

présentée et soutenue publiquement

par

Reouven ELBAZ

Le 12 Décembre 2006 à Montpellier

MMééccaanniissmmeess MMaattéérriieellss ppoouurr ddeess TTrraannssffeerrttss
PPrroocceesssseeuurr MMéémmooiirree SSééccuurriissééss ddaannss lleess

SSyyssttèèmmeess EEmmbbaarrqquuééss

JURY

M. Jean Claude Bajard, Professeur, Université de Montpellier II, Président du jury

M. Viktor Fischer, Professeur, Université de St Etienne, Rapporteur

M. Olivier Sentieys, Professeur, Université de Rennes I, Rapporteur

M. Joan Daemen, Docteur, Société STMicroelectronics, Examinateur

M. Pierre Guillemin, Société STMicroelectronics, Examinateur

M. Jean Baptiste Rigaud, Maître de Conférence, Centre Microélectronique de Provence, Examinateur

M. Gilles Sassatelli, Chargé de Recherche CNRS, LIRMM – UMII, Examinateur

M. Lionel Torres, Professeur, Université de Montpellier II, Directeur de Thèse

 190

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 191

Sommaire

Liste des Figures .. 193

Liste des Tableaux... 194

1. Introduction ... 195

2. Modèle de Menace ... 197

3. Contexte et Etat de l’Art... 198
3.1. L’Outil Cryptographique... 198

3.2. Contexte .. 198

3.2.1. Emplacement des Mécanismes Matériels de Sécurité.. 198

3.2.2. Principe de chiffrement sur Bus ... 199

3.2.3. Principe de contrôle de l’intégrité du contenu mémoire 199

3.3. Etat de l’Art ... 200

3.3.1. Techniques Existantes .. 201

3.3.1.1. Composition Générique... 201

3.3.1.2. Technique AREA (Ajout de Redondance Authentification Explicite) 202

3.3.1.3. Mode de Chiffrement Authentifié ... 203

3.3.2. Engin de Protection du Contenu des Mémoires Externes 203

3.3.2.1. XOM (eXecute Only Memory) ... 203

3.3.2.2. AEGIS ... 204

3.3.2.3. SP – Secret Protected .. 204

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 192

4. PE-ICE - de l’anglais Parallelized Encryption and Integrity Checking

Engine ... 204

4.1. Confidentialité... 205

4.2. Vérification de l’Intégrité avec PE-ICE .. 205

4.2.1. La Propriété de Diffusion des Algorithmes de Chiffrement par Bloc.................. 205

4.2.2. Processus de Contrôle de l’Intégrité avec PE-ICE... 206

4.2.3. La Génération des Etiquettes.. 207

4.3. Analyse de la Sécurité ... 209

4.4. Exemple de Configuration .. 210

4.4.1. PE-ICE-160: Sécurité et Gestion des Clefs.. 210

4.4.2. Latences.. 211

4.4.3. Ressources Matérielles Requises ... 212

4.4.4. Dégradation des Performances durant l’Exécution.. 213

5. Conclusion.. 216

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 193

Liste des Figures

Figure 1. Attaque au niveau de la carte par observation de bus... 197

Figure 2 Localisation des mécanismes matériels de chiffrement et de contrôle de l'intégrité

sur le Système sur Puce... 199

Figure 3 Principe de contrôle de l'intégrité du contenu des mémoires externes 200

Figure 4 Approche conventionnelle pour assurer la confidentialité et l'intégrité de données

.. 201

Figure 5 Propriété de diffusion des algorithmes de chiffrement par bloc............................. 206

Figure 6 Principe de fonctionnement de PE-ICE.. 206

Figure 7 Composition d'un bloc de texte en clair et d'une étiquette avant chiffrement 208

Figure 8 Résultats de simulations des applications d’évaluation sur une plateforme définie

sans mécanisme de sécurité pour deux tailles de mémoire cache dédiée aux données

... 214

Figure 9 Taux de défauts de cache de données lors de l’exécution des applications utilisées

pour l’évaluation des dégradations des performances engendrées par les mécanismes

matériels de sécurité. ... 214

Figure 10 Dégradation engendrée par les mécanismes de sécurité (PE-ICE et AES-ECB) pour

deux tailles de mémoire cache dédiée aux données. Les résultats sont donnés pour

différentes versions de PE-ICE: PE-ICE-128 (AES), PE-ICE-160 (Rijn-160) et PE-

ICE-192 (Rijn-192). .. 215

Figure 11 Dégradation des performances engendrée par le mécanisme de contrôle de PE-ICE.

Les résultats sont donnés pour différentes versions de PE-ICE: PE-ICE-128 (AES),

PE-ICE-160 (Rijn-160) et PE-ICE-192 (Rijn-192) et sont normalisés par rapport au

chiffrement AES-ECB... 216

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 194

Liste des Tableaux

Tableau 1 Robustesse de PE-ICE évaluée en chances de réussir une attaque active (insertion

aléatoire, relogement ou rejeu)... 210

Tableau 2 Robustesse de PE-ICE-160 évaluée en chances de réussir une attaque active

(insertion aléatoire, relogement ou rejeu) .. 211

Tableau 3 Latences introduites par PE-ICE-160 et par un engin AES-ECB sur un bus AHB

pour toutes les opérations requises par un ARM9E au cours de l'exécution d'une

application .. 212

Tableau 4 Paramètres architecturaux choisis pour les simulations 213

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 195

Mécanismes Matériels pour des

Transactions Processeur-Bus Sécurisées

dans les Systèmes Embarqués

1. Introduction

Les systèmes embarqués actuels (téléphone portable, assistant personnel) ne sont pas

considérés comme des hôtes de confiance car le propriétaire ou toute personne y ayant accès,

sont des attaquants potentiels [1]. Les données contenues dans ces systèmes peuvent être

sensibles (données privées du propriétaire, mot de passe, code d’un logiciel…) et sont

généralement échangées en clair entre le Système sur Puces (SsP) et la mémoire dans laquelle

elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible : un

attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la possibilité

d’insérer du code afin d’altérer le fonctionnement d’une application s’exécutant sur le

système. Un exemple illustrant parfaitement cette problématique est l’attaque menée par

Markus Kuhn [31] sur un micro contrôleur 8 bits implémentant un système de chiffrement. Le

principe de son attaque est le suivant i) observer le bus ii) identifier les instructions qui

permettent de faire sortir des données de la mémoire externe sur le port parallèle iii)

construire un code qui fait sortir la totalité du contenu de la mémoire externe sur le port

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 196

parallèle iv) insérer ce code sur le bus lorsque le processeur adresse un emplacement mémoire

adéquat.

Afin de prévenir ce type d’attaque, des mécanismes matériels doivent être mis en place

afin d’assurer la confidentialité et l’intégrité des données. Dans notre contexte, garantir la

confidentialité consiste à rendre incompréhensibles les données circulant sur le bus ou

stockées en mémoire externe, tandis que la vérification de l’intégrité a pour but de détecter

toute insertion ou altération de codes ou de données.

Dans le domaine de la sécurisation des communications entre un processeur et sa mémoire

externe, les systèmes de protection des données utilisent la méthode conventionnelle, c'est-à-

dire un système matériel dédié à chacune des propriétés : confidentialité et intégrité. La

conséquence d’une telle approche est la réalisation en série des opérations requises par chaque

composant, et l’addition des surcoûts en performance. Par ailleurs, les ressources matérielles

ne sont pas optimisées car deux algorithmes doivent être implantés en matériel.

L’objectif de PE-ICE (Moteur de chiffrement et de contrôle d’intégrité parallélisé de

l’anglais Parallelized Encryption and Integrity Checking Engine) est de fournir une solution

dédiée aux transactions de bus entre un processeur et sa mémoire afin d’optimiser, d’une part,

les latences introduites par les mécanismes matériels de sécurité lors de tout type d’opérations

(lecture et écriture) et d’autre part la surface de silicium requise pour leur implémentation sur

un SsP. Son principe est basé sur l’utilisation d’un unique algorithme de chiffrement par bloc

afin de fournir aux données les propriétés de confidentialité et d’intégrité.

Cette thèse est organisée de la façon suivante. La section 2 présente notre modèle de

menace. La section 3 présente brièvement l’outil cryptographique, puis expose le contexte de

l’étude et enfin décrit les techniques permettant d’assurer l’intégrité et la confidentialité des

données ainsi que les engins dédiés à la protection des mémoires externes proposés dans l’état

de l’art. La section 4 explique les spécificités de PE-ICE permettant de conférer à un

algorithme de chiffrement par bloc la capacité de vérification d’intégrité. Un exemple

d’implémentation ainsi que son évaluation (en terme de performance et de surcoût mémoire et

en surface de silicium) sera également exposé dans cette section. De plus, une évaluation d’un

engin de chiffrement de bus ne garantissant que la confidentialité est proposée afin d’estimer

le coût de l’intégrité engendré par PE-ICE. Finalement, les perspectives et les futures

améliorations sont exposées en section 5.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 197

2. Modèle de Menace

Les attaques sur le Système sur Puce (SsP) ne sont pas considérées, seules celles menées

au niveau de la carte et plus particulièrement impliquant l’observation ou l’insertion de

données sur le bus entre le processeur et la mémoire ou directement en mémoire doivent être

contrées (Figure 1).

Figure 1. Attaque au niveau de la carte par observation de bus

La famille d’attaques appelée « l’homme au milieu » nous concerne tout particulièrement.

Son protocole comporte deux étapes. La première phase est passive et consiste à récupérer des

données sur le bus et à les analyser. Elle a pour objectif principal de mettre en défaut la

confidentialité des données. La seconde phase est active : l’attaquant remplace ces données

par d’autres de son choix, remettant en cause l’intégrité de ces données. L’observation de

l’exécution des blocs mémoire interceptés lors de la première étape de l’attaque peut aider

l’attaquant dans le choix de ceux à insérer sur le bus (ou en mémoire) lors de cette seconde

phase. Trois types d’attaques actives sont alors définis en fonction du choix fait par

l’attaquant du bloc à insérer sur le bus ou en mémoire:

• L’attaque par insertion aléatoire : l’attaquant remplace un bloc mémoire intercepté

sur le bus par un autre choisi aléatoirement.

• L’attaque par relogement : l’attaquant échange un bloc mémoire récupéré sur le bus

par un autre préalablement enregistré sur ce même bus. Cette attaque peut être vue

comme une permutation spatiale de blocs mémoire.

• L’attaque par rejeu : l’attaquant récupère un bloc mémoire à une adresse spécifique et

le réinjecte plus tard sur le bus lorsque le processeur adresse ce même espace

mémoire. Cette attaque peut être vue comme une permutation temporelle de blocs

mémoire.

 Bus d’adresse

SsP

Aire de confiance Mémoire
Externe Bus de donnée

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 198

3. Contexte et Etat de l’Art

3.1. L’Outil Cryptographique

La confidentialité des données est assurée par leur chiffrement avec des algorithmes de

chiffrement symétrique. Ce type d’algorithme est divisé en deux familles : le chiffrement par

flux – le texte en clair est traité bit par bit – et le chiffrement par bloc – le texte en clair est

dans un premier temps divisé en blocs de même longueur puis les blocs sont traités un à un.

Pour plus de détails sur les techniques de chiffrement consulter [16, 24].

Le contrôle de l’intégrité est effectué grâce à des fonctions dites de hachage qui

permettent de calculer une image compressée de la donnée à protéger. Cependant, il est

parfois requis d’identifier également la source qui émet ces données. Des algorithmes de

MAC (de l’anglais Message Authentication Code) sont alors utilisés ; ils consistent en une

fonction de hachage qui prend en entrée une clef secrète (détenue à la fois par l’entité source

et par le destinataire d’un message) en plus de la donnée. Lors de la transmission d’un

message M, une étiquette T est alors calculée par un algorithme de MAC et apposée à M avant

envoi. Le destinataire utilise alors le même algorithme de MAC et la même clef que celle

employée par l’entité source pour recalculer une étiquette de référence T’. Il compare T et T’.

Si elles sont différentes, cela signifie que le message a été corrompu au cours de sa

transmission.

3.2. Contexte

3.2.1. Emplacement des Mécanismes Matériels de Sécurité

Les mécanismes matériels de sécurité sont généralement placés sur le SsP entre la

mémoire cache et le contrôleur de mémoire externe (figure 2) pour les raisons suivantes :

• Performance : cette localisation permet de stocker les données déchiffrées et vérifiées

en termes d’intégrité, dans la mémoire cache embarquée dans le système sur puce. De

cette manière les latences introduites par les fonctions cryptographiques sous-jacentes

n’ont pas d’impact sur tous les accès mémoire.

• Sécurité : les valeurs qui doivent rester secrètes telles que les clefs de chiffrement

utilisées par les algorithmes de cryptographie, sont stockées sur l’aire de confiance (le

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 199

SsP). Elles peuvent ainsi être considérées comme inaccessibles et secrètes pour un

attaquant.

• Compatibilité : la conception des mécanismes de sécurité est complètement

indépendante du type de mémoire utilisée.

Figure 2 Localisation des mécanismes matériels de chiffrement et de contrôle de

l'intégrité sur le Système sur Puce

3.2.2. Principe de chiffrement sur Bus

Garantir la confidentialité du contenu des mémoires externes consiste à éviter toute fuite

d’informations sensibles sur le bus ou dans la mémoire. Par conséquent, les données transitant

sur le bus entre le processeur et la mémoire et stockées dans la mémoire doivent être rendues

incompréhensibles pour un attaquant. Le chiffrement du bus permet d’atteindre cet objectif.

Le concept a été introduit par Best [8, 9, 10] à la fin des années 70. Le principe est simple : les

données sont chiffrées lorsqu’elles quittent l’aire de confiance (SsP) lors des opérations

d’écriture et déchiffrées dans le SsP lors des opérations de lecture. De cette manière, les

données ne sont accessibles à un attaquant (sur le bus ou en mémoire) que dans leur version

chiffrée et donc théoriquement incompréhensibles.

3.2.3. Principe de contrôle de l’intégrité du contenu mémoire

La vérification de l’intégrité du contenu mémoire consiste à contrôler qu’une donnée n’a

pas été modifiée lors de sa transmission sur le bus ou directement en mémoire. Afin

d’atteindre cet objectif, une étiquette T est ajoutée à la fin de chaque bloc mémoire M lors de

C
ac

he

SsP: Aire de confiance

UCT

C
on

tr
ôl

eu
r

m
ém

oi
re

MCCI
Mémoire
Externe

Aire de confiance

Bus

Données déchiffrées et vérifiées

Données chiffrées et protégées en intégrité

Zones d’attaques potentielles

MCCI: Mécanismes matériels de Chiffrement et de Contrôle d’Intégrité

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 200

son écriture (Figure 3a). Cette étiquette est destinée à identifier le contenu et la source du bloc

mémoire auquel elle est rattachée lors de la lecture de ce dernier. Il faut donc être capable de

créer une relation unique entre M et T. Pour cela, T est calculée avec des algorithmes de MAC

(de l’anglais Message Authentication Code, c.à.d. Code d’Authentification de Message).

Le processus de vérification de l’intégrité a lieu lors de la lecture (Figure 3b) de M. Il

consiste à rapatrier T correspondant au M chargé, puis à recalculer une étiquette de référence

T’ sur le SsP et enfin à comparer T à T’. Si les deux étiquettes sont différentes, cela signifie

que la donnée a été modifiée. Généralement dans ce cas, un drapeau est prévu dans le

dispositif pour prévenir l’UCT (Unité Centrale de Traitement) de ne pas traiter la donnée

correspondante.

Figure 3 Principe de contrôle de l'intégrité du contenu des mémoires externes

3.3. Etat de l’Art

Dans cette partie, les techniques permettant d’assurer aux données les deux services de

sécurité, à savoir confidentialité et intégrité, sont tout d’abord décrites. Ensuite, les engins

basés sur une de ces techniques et destinés à la protection des mémoires externes sont

présentés.

(a) Opération d’écriture: Calcul de l’étiquette

Mémoire Externe

M T

SsP : Aire de confiance

MAC (K)

Bus de donnée
 MMU

Mémoire
Cache

UCT
Bus d’adresse

Comp

(b) Opération de lecture: Vérification de l’étiquette

Bus de donnée

Drapeau
d’intégrité

SsP : Aire de confiance

 MMU

Mémoire
Cache

CPU Bus d’adresse

Mémoire Externe

M T

MAC (K)

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 201

3.3.1. Techniques Existantes

3.3.1.1. Composition Générique

M : Message en clair

MAC

Chiffrement
C T

Ke

Km

Chiffrement

MAC

Km
Ke

M

M

(a) Chiffrement-puis-MAC

(b) MAC-puis-Chiffrement

(c) Chiffrement-et-MAC

Ke

Km

Ke : Clef secrète de chiffrement
Km : Clef secrète de MAC

E(T)

E(T): Version chiffrée de l’étiquette

T M C

M
Chiffrement

MAC
C T

T : Etiquette
C : Message chiffré

Figure 4 Approche conventionnelle pour assurer la confidentialité et l'intégrité de

données

Dans notre contexte, les systèmes proposés dans l’état de l’art [12, 13, 37, 39, 40, 52, 14]

utilisent l’approche conventionnelle pour assurer l’intégrité et la confidentialité des données.

Cette approche consiste à implémenter un algorithme consacré au chiffrement

(confidentialité) et un autre dédié au calcul de l’étiquette (intégrité). Trois possibilités

d’implémentation s’offrent alors au concepteur. La première « Chiffrement-puis-MAC »

(Figure 4a) consiste à chiffrer le texte en clair M puis à calculer l’étiquette T en appliquant le

texte chiffré C à l’entrée de l’algorithme de MAC. Concernant la seconde méthode « MAC-

puis-Chiffrement » (Figure 4b), T est d’abord obtenue en appliquant M en entrée du MAC,

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 202

puis est apposée à la fin de M. Finalement M et T sont chiffrés. La dernière possibilité

« Chiffrement-et-MAC » (Figure 4c) consiste à procéder au calcul de T à partir de M et à le

placer à la fin de C - texte résultant du chiffrement de M.

Le principal inconvénient d’une telle approche est son caractère non parallélisable lors des

opérations de lecture ou d’écriture. En effet, concernant la méthode « Chiffrement-puis-

MAC », lors d’une opération d’écriture, il faut attendre la fin du chiffrement de M pour

commencer le calcul de l’étiquette. Pour les deux autres possibilités, il faut attendre lors d’une

opération de lecture la fin du déchiffrement de C pour démarrer le calcul de l’étiquette étant

donné que cette opération requiert le texte en clair.

Bellare et al. ont prouvé dans [50] que la méthode de composition générique la plus

sécurisée est « Chiffrement-puis-MAC ».

3.3.1.2. Technique AREA (Ajout de Redondance Authentification Explicite)

La technique AREA (de l’anglais Added Redundancy Explicit Authentication) consiste à

insérer de la redondance dans le message en clair avant chiffrement et de la vérifier lors du

déchiffrement. De tels mécanismes sont construits à partir de modes de chiffrement avec

propagation d’erreurs infinies en chiffrement et en déchiffrement. La propagation d’erreurs

est infinie en chiffrement si un bloc de texte chiffré peut être exprimé en fonction de tous les

blocs de texte en clair. De même, la propagation d’erreur est infinie en déchiffrement

lorsqu’un bloc de texte en clair peut être exprimé en fonction de tous les blocs de texte

chiffré. Des exemples de modes de chiffrement ayant de telles propriétés sont PCFB [58] et

PCBC[53].

Pour authentifier un message en plus de le chiffrer en utilisant la technique AREA, une

valeur choisie par l’émetteur du message est ajoutée à la fin du texte en clair. Son chiffrement

dépendra de tous les blocs de texte en clair contenus dans le message. Cette valeur est

envoyée en clair avec le message chiffré. De cette manière le destinataire peut vérifier que le

déchiffrement du dernier bloc lui correspond bien.

Ce type de technique paraît très efficace car une seule passe sur les données est requise.

Cependant, afin d’obtenir une propagation d’erreurs infinie, les opérations de chiffrement et

de déchiffrement doivent être réalisées en série, rendant toute parallélisation impraticable.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 203

3.3.1.3. Mode de Chiffrement Authentifié

Dans [50] et [53], il est montré qu’il peut être dangereux de garantir la confidentialité et

l’intégrité des données avec des schémas de construction AREA et des compositions

génériques. C’est pourquoi, la communauté de recherche en cryptographie travaille sur

l’élaboration de modes de chiffrement authentifié à travers le processus de standardisation du

NIST [54].

Deux modes ont récemment été recommandés par le NIST : CCM [55] (Counter CBC-

MAC) et GCM [63] (Galois Counter Mode). CCM implémente une composition générique

d’un mode compteur de chiffrement et de l’algorithme de MAC CBC-MAC. Son principal

inconvénient est le fait que le calcul de l’étiquette avec un CBC-MAC est réalisé en série.

Concernant le GCM, ce mode authentifié est extrêmement performant (mode compteur [16] et

fonction de hash réalisé en moins d’un cycle) mais le NIST ne recommande pas son

utilisation lorsque les étiquettes doivent être courtes. Dans notre contexte, il est préférable

d’avoir des étiquettes les plus petites possibles car elles sont stockées en mémoire externe. Par

ailleurs tous les modes proposés au processus de standardisation du NIST doivent être

améliorés afin de répondre à la problématique des attaques par rejeu.

3.3.2. Engin de Protection du Contenu des Mémoires Externes

Les engins de protection mémoire assurant l’intégrité et la confidentialité des mémoires

externes sont tous basés sur des compositions génériques. Les travaux présentés dans cette

partie ont pour objectifs de fournir une architecture sécurisée ; cependant ils ont été conçus

pour des applications différentes.

3.3.2.1. XOM (eXecute Only Memory)

XOM [39, 40] propose une architecture sécurisée avec des contre-mesures aux attaques

logicielles et physiques pour des applications telles que la distribution sécurisée de propriétés

intellectuelles ou la protection contre la copie de ces dernières. Les données stockées en

mémoire externe sont chiffrées puis protégées en intégrité par un algorithme de MAC adressé

(l’adresse est ajoutée en entrée de l’algorithme de MAC) (Chiffrement-puis-MAC).

Cependant, l’architecture de l’engin de protection mémoire n’est pas décrite et les

dégradations correspondantes ne sont pas détaillées. Concernant la sécurité du système, un

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 204

algorithme de MAC adressé seul protège contre les attaques par insertion aléatoire et par

relogement mais pas contre le rejeu. En effet, l’étiquette ne dépendant que des données et de

l’adresse, il est impossible de différencier deux données stockées à une même adresse si elles

sont rejouées avec leur étiquette.

3.3.2.2. AEGIS

L’objectif du processeur AEGIS [12, 13, 37] est de fournir une architecture sécurisée

généraliste avec une attention particulière portée aux applications de calculs distribués. Les

attaques logicielles comme les attaques physiques sont considérées. Concernant ce dernier

type d’attaque, Suh et al. implémentent une composition générique en Chiffrement-puis-MAC

d’un « One Time Pad » (OTP, chiffrement par bloc en mode compteur chiffrement par

flux [16]) et d’un système d’arbre de hash (ou arbre de Merkle [49]). Les pertes en

performance sont évaluées à 25% en moyenne pour un système embarqué et à 73% dans le

pire cas. Le surcoût en mémoire externe est d’environ 40% (stockage de l’arbre de hash et de

meta-data utiles pour l’implémentation sécurisée d’un OTP).

3.3.2.3. SP – Secret Protected

L’objectif des travaux menés par Lee et al. à travers l’architecture SP [52, 14] est de

fournir une solution matérielle permettant de protéger les données critiques, telles les clefs de

chiffrement, requises par les applications sécurisées. Par conséquent, seules ces données et le

code permettant de les traiter, sont chiffrés et déchiffrés (et vérifiés) lors des échanges avec la

mémoire externe. L’unité matérielle se chargeant de cette tâche est la composition générique

en « Chiffrement-puis-MAC » d’un chiffrement par bloc en CBC et d’un CBC-MAC. Les

pertes en performance sont évaluées à moins de 1%. Pour contrer les attaques par rejeu,

l’implémentation d’un système d’arbre de Merkle est proposé mais n’est pas compris dans

l’estimation donnée.

4. PE-ICE - de l’anglais Parallelized Encryption and Integrity Checking Engine

L’objectif de PE-ICE [61, 74, 75, 83, 84, 85] est de fournir une solution permettant

d’assurer la confidentialité et l’intégrité des données transmises sur le bus

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 205

processeur/mémoire ainsi que d’optimiser, d’une part, les latences introduites par les

mécanismes matériels de sécurité lors de tout type d’opérations requises par un processeur, et

d’autre part, la surface de silicium requise pour leur implémentation. Pour cela, PE-ICE utilise

uniquement un algorithme de chiffrement par bloc. La confidentialité est alors garantie par le

chiffrement, tandis que la vérification d’intégrité s’appuie sur la propriété de diffusion des

algorithmes de chiffrement par bloc et sur l’utilisation des ressources disponibles sur le SsP.

4.1. Confidentialité

PE-ICE assure la confidentialité des données par leur chiffrement à l’aide de l’algorithme

Rijndael [15] ; c’est un algorithme de chiffrement par bloc qui traite des blocs et des clefs de

taille comprise entre 128 bits et 256 bits et multiple de 32 bits. Pour PE-ICE, nous nous

intéresserons aux versions de cet algorithme qui utilisent une clef de 128 bits et des tailles de

blocs de 128, 160 et 192 bits. A noter que le Rijndael chiffrant des blocs de 128 bits avec une

clef de 128, 192 ou 256 bits est l’algorithme standardisé par le NIST (National Institute of

Standard and Technology) sous le nom AES [20] (Advanced Encryption Standard).

4.2. Vérification de l’Intégrité avec PE-ICE

4.2.1. La Propriété de Diffusion des Algorithmes de Chiffrement par Bloc

Le principe de contrôle de l’intégrité des données dans PE-ICE repose sur la propriété de

diffusion des algorithmes de chiffrement par bloc. Cette propriété a été identifiée par

Shannon comme nécessaire au chiffrement par bloc pour qu’il soit sécurisé. Théoriquement,

un chiffrement par bloc doit être équivalent à une permutation de bits aléatoires avec des

résultats en sortie équiprobable. En d’autres termes, après un tel chiffrement, chaque bit d’un

bloc de texte chiffré C dépend de tous les bits du bloc de texte en clair P correspondant. Par

conséquent si P est composé de deux parties Pu et T, il est impossible après chiffrement de

distinguer dans C la partie correspondant à Pu de celle correspondant à T (Figure 5). Par

ailleurs, si un seul bit est modifié dans C, il y a une très grande probabilité que, par exemple,

la partie T résultante du déchiffrement soit erronée. Cette probabilité dépend de la taille de T.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 206

P u

Chiffrement
par bloc

 (k)
T

Bloc de texte en clair (P)

Bloc de texte chiffré (C)
 (Pu.T) Chiffré

Figure 5 Propriété de diffusion des algorithmes de chiffrement par bloc

En supposant que t soit la longueur de T en bits et que n soit la taille d’un bloc de

chiffrement, le nombre de textes en clair comportant la même partie T après le déchiffrement

d’un bloc C corrompu est alors de 2n-t. Par conséquent, la probabilité D que T ait la même

valeur après déchiffrement est de tn

tn

D
2
1

2
2

==
−

 et la probabilité D que T soit erronée est

de D−1 .

4.2.2. Processus de Contrôle de l’Intégrité avec PE-ICE

Figure 6 Principe de fonctionnement de PE-ICE

La propriété précédente est utilisée afin d’ajouter la capacité de vérification de l’intégrité

au chiffrement par bloc. Ainsi le principe de contrôle d’intégrité du contenu mémoire avec

PE-ICE fonctionne comme suit:

• Opérations d’écriture (Figure 6a) : La donnée à écrire Pu est concaténée avec une

étiquette T afin de produire un bloc de texte en clair P. En théorie, une telle

Bloc
chiffré C

Pu T
Chiffrement

par bloc

Bus d’adresse

Bus de donnée

SsP : Aire de Confiance

Block en clair P

Mémoire Externe

(a) Opérations d’écriture : Insertion de l’étiquette et chiffrement

 MMU

Mémoire
Cache

U
C
T

Bloc
chiffré C

Déchiffrement
par bloc

Bus d’adresse

Bus de
donnée

SsP : Aire de Confiance

Bloc en clair P

Mémoire Externe

 MMU

Mémoire
Cache

U
C
T

Etiquette
réference

Pu T

Comp

Drapeau
d’intégrité

T’

T

(b) Opérations de lecture : Déchiffrement et contrôle d’intégrité
(Comparaison des étiquettes)

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 207

étiquette doit être un nombre utilisé une seule fois – appelé nonce – pour une clef

de chiffrement donnée et ne nécessite pas d’être calculée avec un algorithme

spécifique ; elle peut par exemple être générée avec un compteur. Après

chiffrement, une unique paire Pu/T est créée et le bloc chiffré résultant est écrit en

mémoire externe.

• Opérations de lecture (Figure 6b): C est chargé sur le SsP et déchiffré. L’étiquette

T provenant du bloc déchiffré est alors comparée à une étiquette de référence T’

re-générée sur le SsP. Si T et T’ ne sont pas égales, cela signifie qu’au moins un bit

de C a été corrompu durant sa transmission sur le bus ou directement en mémoire.

PE-ICE lève alors un drapeau pour prévenir le CPU afin qu’il n’exécute pas la

donnée correspondante.

En résumé, PE-ICE peut être vu comme l’application de la technique AREA au niveau du

bloc de chiffrement plutôt qu’au niveau du message, la propagation d’erreurs infinie étant

assurée par la propriété de diffusion des algorithmes de chiffrement par bloc.

On notera que le mode de chiffrement utilisé est ECB – Electronic Code Book. Par

ailleurs le bloc chiffré résultant est appelé un chunk. Un chunk peut également être défini

comme le bloc atomique chargé lors d’opérations de lecture pour déchiffrement et vérification

d’intégrité.

Le principe exposé au-dessus n’est une contre-mesure que contre les attaques par

insertions aléatoires mais ne précise pas comment les étiquettes sont générées ni comment

fonctionnent les contre-mesures contre le relogement et le rejeu. La section suivante traite de

ces problématiques.

4.2.3. La Génération des Etiquettes

Dans notre contexte, le SsP est le seul à réaliser les processus de chiffrement et de

déchiffrement. Par conséquent, le SsP doit conserver en mémoire la valeur de l’étiquette de

chaque bloc chiffré entre le chiffrement et le déchiffrement ou alors doit être capable de le re-

générer pour procéder au contrôle de l’intégrité. Le challenge est d’atteindre cet objectif en

stockant le moins d’informations possibles sur l’étiquette dans le SsP.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 208

La composition de l’étiquette est différente pour chaque type de données traitées par le

processeur - donnée en lecture seule (RO) et donnée en écriture / lecture (RW) - et dépend de

leurs propriétés respectives.

Les données RO sont écrites une seule fois en mémoire externe lors du chargement d’une

application et ne sont pas modifiées au cours de l’exécution. Par conséquent, l’étiquette

dédiée à un bloc de texte en clair RO peut être fixe pour une charge utile donnée. De plus, elle

peut être publique car un attaquant a besoin de la clef secrète pour créer une paire charge utile

/ étiquette Pu/T acceptée. Cependant, cet attaquant ne doit pas pouvoir choisir l’étiquette de

référence ou ne doit pas influencer sa génération. C’est pourquoi l’étiquette, pour les données

RO, est constituée des bits les plus significatifs de l’adresse de chaque charge utile stockée en

mémoire (Figure 7a). De cette manière, si un attaquant essaie une attaque par relogement

l’adresse utilisée par le processeur (SsP) pour charger une donnée RO et pour générer

l’étiquette de référence ne correspondra pas à l’étiquette T contenue dans le bloc déchiffré.

Figure 7 Composition d'un bloc de texte en clair et d'une étiquette avant chiffrement

Les données RW sont modifiées au cours de l’exécution d’une application et sont donc

sensibles aux attaques par rejeu. L’utilisation de l’adresse seule comme étiquette ne suffit pas

pour prévenir une telle attaque car les bits d’adresses ne rendent pas compte d’une

modification de la charge utile entre deux écritures. Pour cette raison, l’étiquette est composée

d’un vecteur RV qui est changé à chaque écriture (Figure 7b). RV est une valeur aléatoire

générée sur le SsP. De cette manière l’étiquette est imprédictible pour un attaquant qui ne peut

deviner lorsque deux blocs chiffrés ont la même étiquette à partir de l’observation de ces

textes chiffrés. Cependant lors des opérations de lecture PE-ICE doit être capable de retrouver

valeur aléatoire correspondant au bloc chargé – nommé par la suite la valeur aléatoire de

référence RV’ – afin de reconstituer l’étiquette de référence T’ pour le processus de contrôle

d’ intégrité. Par ailleurs, l’ensemble des valeurs aléatoires de référence RV’ doit être gardé

orPu ADD Pu RV

Etiquette T

Un bloc de texte en clair P de
données RO

Un bloc de texte en clair P de données RW

Pu ADD RV

 (a) T = ADD (b) T = RV (c) T = RV || ADD

RV: Valeur aléatoire ||: Opérateur de concaténation

ADD: Bits d’adresse les plus significatifs

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 209

secret et infalsifiable. En effet, si RV’ n’est pas gardé secret, un attaquant peut prévoir son

attaque et rejouer un bloc chiffré s’il s’aperçoit que deux blocs sont authentifiés par la même

RV’, et dans le cas où RV’ est falsifiable, il peut choisir la donnée à rejouer en rejouant la RV’

correspondant. Afin de remplir toutes ces conditions, l’ensemble des valeurs aléatoires de

référence est stocké sur le SsP.

Cette étiquette permet de contrer tous les types d’attaques présentés dans le modèle de

menace (insertion aléatoire, relogement et rejeu). Cependant, le niveau de sécurité

correspondant dépend de la longueur de RV. Or plus RV est grand plus le surcoût en mémoire

embarquée est important (stockage de RV’). C’est pourquoi nous proposons une seconde

configuration pour la construction de l’étiquette où une valeur aléatoire (RV) est concaténée

avec les bits les plus significatifs de l’adresse (Figure 7c). De cette manière il est possible de

diminuer le surcoût en mémoire interne tout en maintenant une forte contre-mesure à

l’encontre des attaques par relogement.

On notera que l’adresse utilisée dans la génération de l’étiquette est l’adresse physique.

4.3. Analyse de la Sécurité

Concernant les attaques passives remettant en cause la confidentialité des données, seules

les attaques à texte chiffré connu – l’attaquant ne connaît que le texte chiffré – et à texte en

clair connu – l’attaquant connaît le texte chiffré ou une partie du texte en clair, en

l’occurrence l’adresse contenue dans l’étiquette pour ce dernier cas – peuvent être menées.

C’est pourquoi le choix de l’algorithme de chiffrement par bloc utilisé pour l’implémentation

de PE-ICE est primordial : cet algorithme doit être résistant à ces deux d’attaques. Les

algorithmes de chiffrement par bloc utilisés pour configurer PE-ICE dans la suite de ce

document remplissent ces conditions minimales.

Concernant les attaques actives définies dans le modèle de menace, la résistance de PE-

ICE dépend de quatre paramètres : la longueur t en bit de l’étiquette, la longueur r en bit de la

valeur aléatoire RV, le nombre de bits d’adresse a contenus dans l’étiquette et la taille du bloc

chiffré b en octet de l’algorithme de chiffrement sous-jacent à PE-ICE.

Lorsque des bits d’adresse sont utilisés pour construire une étiquette, l’espace mémoire

immunisé contre les attaques par relogement est calculé à partir de a et de b et est égal à

ba ×2 . Cet espace mémoire est appelé par la suite un segment de relogement.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 210

Nous estimons la résistance de PE-ICE aux attaques actives en chances de réussite pour

un attaquant (Tableau 1).

Tableau 1 Robustesse de PE-ICE évaluée en chances de réussir une attaque active
(insertion aléatoire, relogement ou rejeu)

Donnée RW Attaque Donnée
RO t = a + r t = r

Attaque par insertion aléatoire t2
1

t2

1

t2
1

A l’intérieur d’un segment

de relogement 0 0 Attaque par
relogement

Taille d’un segment de
relogement en octet:

ba ×2

En dehors d’un segment de
relogement 0 r2

1

t2
1

Attaque par rejeu N/A r2
1

t2

1

4.4. Exemple de Configuration

Dans cette section nous présentons une configuration de PE-ICE avec l’algorithme

Rijndael qui traite des blocs de 160 bits et avec une clef de 128 bits (Rijn-160). Cette

configuration est appelée PE-ICE-160. PE-ICE-160 est évalué en terme de surcoût mémoire,

de latences introduites et de dégradations de performances. A titre de comparaison, la même

évaluation est proposée pour un chiffrement AES (version standardisée de l’algorithme

Rijndael – qui ne procure que la confidentialité des données) en mode ECB dans les mêmes

conditions. Cet engin de chiffrement est nommé par la suite AES-ECB.

4.4.1. PE-ICE-160: Sécurité et Gestion des Clefs

Un chunk ou un bloc de texte en clair de PE-ICE-160 est composé de 128 bits de charge

utile et de 32 bits d’étiquette comme décrit Figure 8.

L’étiquette est de 32 bits donc un attaquant à 1/232 chances de réussir une attaque pas

insertion aléatoire. Par ailleurs, pour les données RO, les 32 bits de l’étiquette sont des bits

d’adresse. Par conséquent, si l’architecture de processeur utilisée est de 32 bits une telle

étiquette protège tout l’espace d’adressage (4GB) contre le relogement de données RO et une

seule clef est nécessaire par application.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 211

Tableau 2 Robustesse de PE-ICE-160 évaluée en chances de réussir une attaque
active (insertion aléatoire, relogement ou rejeu)

Données RW Attaques Données
RO t = a + r t = r

Attaque par insertion aléatoire 322
1 322

1 322
1

A l’intérieur d’un segment
de relogement 0 0 Attaque par

relogement
Taille d’un segment de

relogement en octet:
ba ×2

En dehors d’un segment de
relogement 0 r2

1

322
1

Attaque par rejeu N/A r2
1

 322
1

Pour les données RW, les chances de réussir pour un attaquant dépendent de la définition

par le concepteur de PE-ICE des paramètres a et r. Dans le cas où t = r = 32, tous les types

d’attaques actives (insertion aléatoire, relogement, rejeu) ont la même chance de réussir :

1/232. Dans le cas où t = a + r = 32, les chances de réussir une attaque par insertion aléatoire

ou par rejeu sont respectivement de 1/232 et de 1/2r. Une seule clef est également requise pour

les données RW.

Le Tableau 2 résume la résistance fournie par PE-ICE-160 aux attaques actives (insertion

aléatoires, relogement et rejeu).

4.4.2. Latences

Les latences introduites par PE-ICE-160 entre la mémoire cache et le contrôleur mémoire

sont évaluées sur un bus AHB (de l’anglais Advanced High-perforance Bus [76]) de 32 bits.

Ces latences sont données dans le Tableau 3 pour toutes les opérations demandées pas un

processeur ARM9E [89] et pour deux valeurs différentes du rapport R entre la fréquence de

l’algorithme de chiffrement sous-jacent (Rijn-160) et la fréquence du bus AHB : R = 1 et R =

2. Une évaluation des latences introduites par un chiffrement AES (confidentialité

uniquement) dans les mêmes conditions est également indiquée dans le Tableau 3.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 212

Tableau 3 Latences introduites par PE-ICE-160 et par un engin AES-ECB sur un bus
AHB pour toutes les opérations requises par un ARM9E au cours de l'exécution d'une

application

4.4.3. Ressources Matérielles Requises

Les ressources matérielles requises pour l’implémentation de PE-ICE peuvent être

estimées en nombre de cœurs de chiffrement Rijn-160 ou AES32 à prévoir pour atteindre le

débit maximum à la sortie de PE-ICE ou de l’AES-ECB en lecture ou en écriture.

Pour AES-ECB, le débit maximum en sortie est défini par celui du bus AHB qui est de 32

bits par cycle. Sachant que l’AES traite des blocs de 128 bits et que sa latence intrinsèque en

mode ECB [23] vue du bus AHB est de 11 cycles pour R = 1 et de 6 cycles pour R = 2,

respectivement trois et deux cœurs AES doivent être implémentés pour atteindre le débit

optimum de 32 bits par cycle.

Pour PE-ICE-160, le débit est plus important en écriture qu’en lecture car l’étiquette de

référence est collectée en parallèle de la charge utile, ce qui n’est pas le cas en lecture où les

données arrivent en série de la mémoire externe. Le calcul du nombre de cœurs de

chiffrement se fait donc par rapport au débit requis en écriture. PE-ICE-160 doit être capable

de collecter 128 bits de charge utile tous les 4 cycles de bus sachant qu’un chiffrement avec

32 Etant basé sur le même algorithme, un cœur Rijn-160 et un cœur AES requièrent les mêmes ressources
matérielles. Par conséquent, dans la suite du document nous ne ferons référence qu’à des cœurs AES.

AES-ECB PE-ICE-160
Latences

(cycles AHB)
Latences

(cycles AHB)
Surcoût

vs. AES-ECB Opérations

R = 1 R = 2 R = 1 R = 2 R = 1 R = 2
Ecriture de 8 à 32

bits 38 28 42 30 10,5% 7%

Lecture de 8 à 32
bits 15 10 17 11 13,5% 10%

Ecriture de 4 mots
de 32 bits 15 10 17 11 13,5% 10%

Lecture de 4 mots
de 32 bits 15 10 17 11 13,5% 10%

Ecriture de 8 mots
de 32 bits 15 10 18 12 20% 20%

Lecture de 8 mots
de 32 bits 15 10 18 12 20% 20%

Ecriture de 16 mots
de 32 bits 15 10 20 14 33,5% 40%

Lecture de 16 mots
de 32 bits 15 10 20 14 33,5% 40%

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 213

Rijn-160 demande 12 cycles de latences (vues du bus AHB) pour R = 1 et 6 cycles pour R =

2. Le nombre de cœurs Rijn-160 est alors de trois pour R = 1 et de deux pour R = 2.

En considérant les évaluations en nombre de portes d’un cœur AES (et de son cœur

d’expansion de clef) de la société Ocean Logic [80], l’implémentation matérielle de PE-ICE-

160 et d’un AES-ECB demande une surface de 80 K portes en technologie 0,18µ.

4.4.4. Dégradation des Performances durant l’Exécution

Les dégradations engendrées par un chiffrement AES-ECB et par PE-ICE-160 ont été

évaluées en utilisant l’outil de simulation SoCDesigner [81] fourni par ARM. Le cœur de

processeur simulé est le ARM9E et les paramètres architecturaux choisis sont indiqués dans le

Tableau 5. Les latences d’accès mémoire dites de base – sans mécanismes matériels de

sécurité - en lecture et en écriture émanent de la documentation d’un contrôleur mémoire

compatible AHB : le PL172 [82]. Les latences les plus petites ont été choisies afin d’estimer

la dégradation de performances impliquée par PE-ICE dans le pire cas.

Huit logiciels (MP3 player, Huffman, CJPEG, DJPEG, ADPCM, FingerPrint, DES,

MP2Audio) destinés aux systèmes embarqués ont été utilisés afin d’évaluer les dégradations

engendrées par les différentes versions de PE-ICE et par un chiffrement AES-ECB. Deux cas

ont été considérés : une cache destinée aux données de 4 Ko et de 128 Ko ; le taux de défauts

de cache relatif à chaque application d’évaluation utilisée est indiqué Figure 9. Les résultats

de simulation (Tableau 4 : paramètres architecturaux) de l’AES-ECB et de PE-ICE-160 sont

donnés Figure 10 en les normalisant par rapport aux résultats de simulation obtenus sur une

plateforme conçue sans mécanismes de sécurité (Figure 8). Nous indiquons également en

Figure 10 les évaluations d’autres configurations de PE-ICE : PE-ICE-128 (configuration

avec l’AES comme algorithme de chiffrement par bloc sous-jacent) et PE-ICE-192

(configuration avec le Rijndael traitant des blocs de 192 bits).

Tableau 4 Paramètres architecturaux choisis pour les simulations

Processeur ARM926EJ-S
Bande passante du bus processeur mémoire 32 bits

FCPU / FAHB 2
Cache line 256 bits

R = FAES / FAHB 2
Latence d’accès mémoire en lecture de “Base”

(en cycles de bus AHB) 9

Latence d’accès mémoire en écriture de “Base”
(en cycles de bus AHB) 1

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 214

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

ADPCM
DES

Finger
Prin

t

MP2A
udio

CJP
EG

DJP
EG

MP3 p
lay

er

Huffm
an

IP
C

 (I
ns

tr
uc

tio
n

Pa
r C

yc
le

)
4KB
128KB

Figure 8 Résultats de simulations des applications d’évaluation sur une plateforme
définie sans mécanisme de sécurité pour deux tailles de mémoire cache dédiée aux

données

0

5

10

15

20

25

ADPCM
DES

Finger
Prin

t

MP2A
udio

CJP
EG

DJP
EG

MP3 p
lay

er

Huffm
an

Ta
ux

 d
e

dé
fa

ut
 d

e
ca

ch
e

do
nn

ée
 (%

) 4KB
128KB

Figure 9 Taux de défauts de cache de données lors de l’exécution des applications
utilisées pour l’évaluation des dégradations des performances engendrées par les

mécanismes matériels de sécurité.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 215

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

B
as

e)
 IP

C

AES-ECB
PE-ICE-128
PE-ICE-160
PE-ICE-192

Figure 10 Dégradation engendrée par les mécanismes de sécurité (PE-ICE et AES-ECB)
pour deux tailles de mémoire cache dédiée aux données. Les résultats sont donnés pour
différentes versions de PE-ICE: PE-ICE-128 (AES), PE-ICE-160 (Rijn-160) et PE-ICE-

192 (Rijn-192).

La Figure 10 montre clairement que les dégradations de performances sont principalement

dues au chiffrement car les différents engins de sécurité (PE-ICE et AES-ECB) implémentent

tous un chiffrement ECB et engendrent une perte en performance relativement similaire. Le

chiffrement AES-ECB implique une dégradation de 50% dans le pire cas (CJPEG – 4KB) et

de 31,5% et de 14,3% en moyenne respectivement pour une cache de donnée de 4 KB et de

128 KB. Augmenter la taille de la mémoire cache diminue logiquement les dégradations en

réduisant le nombre d’accès à la mémoire externe.

Concernant PE-ICE, les dégradations engendrées par rapport à un chiffrement AES-ECB

correspondant au contrôle d’intégrité des données ont été évaluées en normalisant les résultats

des différentes versions proposées (PE-ICE-128, PE-ICE-160 et PE-ICE-192) à ceux obtenus

avec l’engin AES-ECB. La Figure 11 montre que le surcoût en performance est négligeable

par rapport à un chiffrement des données seules : en moyenne PE-ICE-160 rajoute une

dégradation de 3,3% et de 1,7% pour une cache de données de respectivement 4 Ko et 128

Ko.

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 216

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(a) 4KB

N
or

m
al

iz
ed

 (t
o

A
ES

) I
PC

PE-ICE-128
PE-ICE-160
PE-ICE-192

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

ADPCM
DES

Fing
er

Prin
t

MP2A
ud

io

CJP
EG

DJP
EG

MP3 p
lay

er

Huff
man

(b) 128KB
N

or
m

al
iz

ed
 (t

o
A

ES
) I

PC

PE-ICE-128
PE-ICE-160
PE-ICE-192

Figure 11 Dégradation des performances engendrée par le mécanisme de contrôle de
PE-ICE. Les résultats sont donnés pour différentes versions de PE-ICE: PE-ICE-128

(AES), PE-ICE-160 (Rijn-160) et PE-ICE-192 (Rijn-192) et sont normalisés par rapport
au chiffrement AES-ECB

5. Conclusion

L’objectif des mécanismes de protection contre les attaques physiques au niveau système

(observation du bus ou corruption du contenu mémoire) est de fournir aux applications

exécutées sur un processeur un environnement confidentiel, authentifié et résistant aux

falsifications. Un tel environnement requiert d’assurer la confidentialité et l’intégrité des

données transférées entre un processeur et sa mémoire externe.

La méthode conventionnelle utilisée dans les Systèmes sur Puces (SsP) est de dédier un

engin matériel à chaque objectif sécuritaire : confidentialité et intégrité. Cette approche mène

à une utilisation non optimisée des ressources matérielles et implique des latences générées

par les calculs sous-jacents au chiffrement/déchiffrement et aux calculs d’étiquettes, non

parrallélisables.

Dans cette thèse, nous proposons d’explorer l’ajout de redondances et d’aléas dans chaque

bloc de texte en clair avant leur chiffrement - par bloc - afin d’assurer efficacement la

confidentialité et l’intégrité des données transitant sur le bus processeur mémoire des

Mécanismes Matériels pour des Transferts Processeur Mémoire Sécurisés dans les Systèmes Embarqués

 217

systèmes embarqués. En vérifiant la redondance ou l’aléa après déchiffrement, nous ajoutons

la capacité de contrôle de l’intégrité au chiffrement par bloc. De cette manière, un unique

algorithme de chiffrement est implémenté pour garantir les deux services de sécurité. De plus,

un point clef de PE-ICE est le fait que la génération de l’étiquette se fait indépendamment des

données que ce dernier protège. Il en résulte que PE-ICE offre les avantages suivants :

• Optimisation des latences : Les processus de chiffrement (respectivement de

déchiffrement) et de calcul de l’étiquette (respectivement de contrôle d’intégrité)

sont réalisés en parallèle, permettant d’optimiser les latences d’accès mémoire en

écriture et en lecture.

• Optimisation des ressources matérielles : le même matériel est utilisé pour assurer

la confidentialité et l’intégrité des données.

Nous avons également mis en place un mécanisme permettant de stocker les valeurs

aléatoires de référence en mémoire externe (PRV-Tree ; voir version de la thèse en anglais)

afin d’annuler le surcoût engendré par leur stockage sur le SsP. Par ailleurs nous

implémentons actuellement PE-ICE sur un processeur LEON2 [77].

 218

References

 219

References

[1] Paul Kocher, Ruby B. Lee, Gary McGraw, Anand Raghunathan, and Srivaths

Ravi, “Security as a New Dimension in Embedded System Design”,

Proceedings of the Design Automation Conference (DAC), pp. 753-760, June

2004.

[2] S. Ravi, A. Raghunathan and S. Chakradhar, “Tamper Resistance Mechanisms

for Secure Embedded Systems,” IEEE Intl. Conf. on VLSI Design, January

2004.

[3] C. Tang, "Summary of Mobile Threats for Year 2005", available at:

http://www.it-observer.com/pdf/dl/mobile_threat_sum.pdf.

[4] Tiago Alves and Don Felton. "Trustzone: Integrated hardware and software

security", ARM white paper, July 2004.

[5] Trusted Computing Group. "TCG Specification Architecture Overview

Revision 1.2." , April 2004, available at:

https://www.trustedcomputinggroup.org/groups/TCG_1_0_Architecture_Overv

iew.pdf.

[6] A. Huang. "Keeping secrets in hardware the microsoft xbox case study". MIT

AI Memo, 2002.

[7] S. W. Smith and S. H. Weingart, “Building a High-Performance,

Programmable Secure Coprocessor”, in Computer Networks (Special Issue on

Computer Network Security), volume 31, pages 831–860, April 1999.

References

 220

[8] R. M. Best, “Microprocessor for Executing Enciphered programs”, U.S. Patent

No. 4 168 396, September 18, 1979.

[9] R. M. Best, “Crypto Microprocessor for Executing Enciphered Programs”,

U.S. Patent No. 4 278 837, July 14, 1981.

[10] R. M. Best, “Crypto Microprocessor that Executes Enciphered Programs”, U.S.

Patent No. 4 465 901, August 14, 1984.

[11] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan

Boneh, John Mitchell, and Mark Horowitz, “Architectural Support for Copy

and Tamper Resistant Software”, in Proceedings of the 9th Int’l Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS-IX), pages 168–177, November 2000.

[12] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:

Architecture for Tamper-Evident and Tamper-Resistant Processing”, in

Proceedings of the 17th Int’l Conference on Supercomputing, June 2003.

[13] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “Efficient

Memory Integrity Verification and Encryption for Secure Processors”, in

Proceedings of the 36th Int’l Symposium on Microarchitecture, pages 339–

350, December 2003.

[14] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey Dwoskin, and

Zhenghong Wang, “Architecture for Protecting Critical Secrets in

Microprocessors”, in Proceedings of the 32nd International Symposium on

Computer Architecture (ISCA 2005), pp. 2-13, June 2005.

[15] Joan Daemen, Vincent Rijmen, “AES Proposal: Rijndael”, March 1999,

available at:

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[17] Auguste Kerckhoffs, “La cryptographie militaire”, Journal des sciences

militaires, vol. IX, pp. 5–38, Jan. 1883, pp. 161–191, February 1883.

References

 221

[18] G.S. Vernam, “Cipher printing telegraph systems for secret wire and radio

telegraphic communications”, Journal of the American Institute of Electrical

Engineers, vol. 45 (1926), pp. 109--115 or US patent #1,310,719.

[19] Claude Shannon, “Communication theory of secrecy systems”, Bell System

Technical Journal, 28, 1949.

[20] National Institute of Science and Technology (NIST), FIPS PUB 197:

“Advanced Encryption Standard (AES)”, November 2001.

[21] National Institute of Science and Technology (NIST), FIPS PUB 46.2: “Data

Encryption Standard (DES)”, December 1993.

[22] Cracking DES - Secrets of Encryption Research, Wiretap Politics & Chip

Design by the Electronic Frontier Foundation (ISBN 1565925203).

[23] Alireza Hodjat, David Hwang, Bo-Cheng Lai, Kris Tiri and Ingrid

Verbauwhede, “A 3.84 gbits/s AES crypto coprocessor with modes of

operation in a 0.18-µm CMOS technology” ACM Great Lakes Symposium on

VLSI 2005: 60-63.

[24] A. W. Dent and C. J. Mitchell, “User's Guide to Cryptography and Standards”,

Artech House, 2005.

[25] W. Diffie and M. E. Hellman, “New Directions in Cryptography”, IEEE

Transactions on Information Theory, vol. IT-22, November 1976, pp: 644-654.

[26] R. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”, Communications of the ACM,

Vol. 21 (2), pp.120–126. 1978.

[27] C. Mclvor, M. McLoone and J.V. McCanny, “Fast Montgomery modular

multiplication and RSA cryptographic processor architectures”, in Proceedings

of the 37th IEEE Computer Society Asilomar Conference on Signals, Systems

and Computers, Monterey, USA, pp379-384, November 2003.

[28] National Institute of Science and Technology (NIST), FIPS PUB 180-2:

“Secure Hash Standard”, August 2002.

References

 222

[29] Youtao Zhang, Jun Yang, Yongjing Lin, Lan Gao, "Architectural Support for

Protecting User Privacy on Trusted Processors", The Workshop on

Architectural Support for Security and Anti-Virus, In conjunction with the 11th

ASPLOS, Boston, MA, October 2004.

[30] DG Abraham, GM Dolan, GP Double and JV Stevens, “Transaction Security

System”, in IBM Systems Journal vol.30 no2 (1991) pp 206-229.

[31] M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption Security

Microcontroller DS5002FP”, IEEE Trans. Comput., vol. 47, pp. 1153–1157,

October. 1998.

[32] David A. Patterson and John L. Hennessy “Computer Organization and

Design: The Hardware/Software Interface”, Morgan Kaufmann Publishers,

1997.

[33] John L. Hennessy and David A. Patterson, “Computer Architecture: A

Quantitative Approach”, Morgan Kaufmann Publishers, 2002

[34] Tanguy Gilmont, Jean-Didier Legat and Jean-Jacques Quisquater, “An

Architecture of Security Management Unit for Safe Hosting of Multiple

Agents”, pages 79-82, November 1998.

[35] Tanguy Gilmont, Jean-Didier Legat and Jean-Jacques Quisquater, “Hardware

Security for Software Privacy Support”, In IEE Electronics Letters, Volume

35, pages 2096-2098, January 1999.

[36] Tanguy Gilmont, Jean-Didier Legat and Jean-Jacques Quisquater, “Enhancing

the Security in the Management Unit”, in Proceedings of the 25th EuroMicro

Conference, pages 449-456, January 1999.

[37] Gookwon Edward Suh, “AEGIS: A Single-Chip Secure Processor”, PhD

thesis, Massachusetts Institute of Technology, September 2005.

[38] G. Edward Suh, Charles W. O'Donnell, Ishan Sachdev, and Srinivas Devadas,

“Design and Implementation of the AEGIS Single-Chip Secure Processor

Using Physical Random Functions”, in Proceedings of the 32nd Annual

International Symposium on Computer Architecture.

References

 223

[39] David Lie, Chandramohan Thekkath and Mark Horowitz, “Implementing an

Untrusted Operating System on Trusted Hardware”, in Proceedings of the 19th

ACM Symposium on Operating Systems Principles, October, 2003.

[40] David Lie, “Architectural Support for Copy and Tamper-Resistant Software”,

Ph.D Thesis, Stanford University, December 2003.

[41] Jun Yang, Lan Gao, and Youtao Zhang, “Improving Memory Encryption

Performance in Secure Processors”, IEEE Transactions on Computers. pp. 630-

640, Vol. 54, No. 5, May 2005.

[42] “DS5250 - High-Speed Secure Microcontroller” available at:

http://www.maxim-ic.com/products/microcontrollers/secure/

[43] Richard Takahashi and Daniel N. Heer “Secure Memory Management Unit for

Microprocessor”, U.S. Patent (from VLSI Technology, Inc.) No. 5 825 878,

October 20, 1998.

[44] Brant Candelore and Eric Sprunk. “Secure processor with external memory

using block chaining and block re-ordering”, U.S. Patent (from General

Instrument Corporation) No. 6 061 449, May 9, 2000.

[45] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, C. Anguille,

Michel Bardouillet, Christian Buatois, Jean-Baptiste Rigaud, “Hardware

Engines for Bus Encryption: A Survey of Existing Techniques”, DATE 2005,

p. 40-45.

[46] Jun Yang, Youtao Zhang and Lan Gao, “Fast Secure Processor for Inhibiting

Software Piracy and Tampering”, ACM/IEEE 36th International Symposium

on Microarchitecture, pp. 351-360, December 2003.

[47] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas

Devadas, “Caches and Merkle Trees for Efficient Memory Integrity

Verification”, In Proceedings of Ninth International Symposium on High

Performance Computer Architecture, February 2003.

[48] David Lie, John Mitchell, Chandramohan Thekkath and Mark Horowitz.

“Specifying and Verifying Hardware for Tamper-Resistant Software” In

References

 224

Proceedings of the 2003 IEEE Symposium on Security and Privacy. May,

2003.

[49] R. C. Merkle, “Protocols for Public Key Cryptography” In IEEE Symp. on

Security and Privacy, pages 122–134, 1980.

[50] M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among

Notions and Analysis of the Generic Construction Paradigm”, In T. Okamoto,

editor, Asiacrypt 2000, volume 1976 of LNCS, p. 531- 545. Springer-Verlag,

Berlin Germany, December 2000.

[51] NIST Special Publication 800-67: "Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher", available at:

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf

[52] John Patrick McGregor and Ruby B. Lee, “Protecting Cryptographic Keys and

Computations via Virtual Secure Coprocessing”, Computer Architecture News,

vol. 33., no. 1, pp. 16-26, March 2005, and Proceedings of the Workshop on

Architectural Support for Security and Antivirus (WASSA) held in conjunction

with ASPLOS-XI, October 2004.

[53] Chris J. Mitchell, “Cryptanalysis of Two Variants of PCBC Mode When Used

for Message Integrity”, ACISP 2005: 560-571.

[54] C S R C (Computer Security Resource Center) - Modes of Operation at

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/

[55] D. Whiting, R. Housley, and N Ferguson, Counter with CBC-MAC (CCM),

available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm.pdf.

[56] M. Bellare, P. Rogaway, and D. Wagner, “EAX: A Conventional

Authenticated-Encryption Mode”, Cryptology ePrint Archive, Report

2003/069, 2003, available at: http://eprint.iacr.org/2003/069.

[57] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC MAC”, March 2003,

available at: http://eprint.iacr.org/2002/180.pdf

References

 225

[58] H. Hellström, “Propagating Cipher Feedback”, 2001, available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/pcfb/pcfb-spec.pdf.

[59] C. S. Jutla, “Encryption Modes with Almost Free Message Integrity”, available

at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/iacbc/iacbc-spec.pdf.

[60] V. D. Gligor and P. Donescu, “Fast encryption and authentication: XCBC

encryption and XECB authentication Modes”, 2001, available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/xcbc/xcbc-spec.pdf.

[61] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin and M. Bardouillet, “MC-VIP:

Moteur de Chiffrement et de Vérification d’Intégrité Parrallélisé”, 9iemes

édition des Journées Nationales du Réseau Doctoral en Microélectronique

JNRDM, May 2006.

[62] Phillip Rogaway, Mihir Bellare, John Black and Ted Krovetz, “OCB: A Block-

Cipher Mode of Operation for Efficient Authenticated Encryption”, 2001,

available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ocb/ocb-spec.pdf.

[63] David A. McGrew and John Viega, “The Galois/Counter Mode of Operation

(GCM)”, March 2005 available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-revised-

spec.pdf.

[64] M. N. Wegman and J. L. Carter, “New Hash Functions and their Use in

Authentication and Set Equality”, Journal of Computer and System Sciences,

22:265–279, 1981.

[65] Bo Yang, Sambit Mishra, and Ramesh Karri, “High Speed Architecture for

Galois/Counter Mode of Operation (GCM). Cryptology ePrint Archive, Report

2005-156, May 2005, available at: http://eprint.iacr.org/2005/146.

[66] T. Kohno, J. Viega, and D. Whiting, “The CWC Authenticated Encryption

(Associated Data) Mode”, May 2003, available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/cwc/cwc-spec.pdf.

References

 226

[67] Dana Neustadter, Michael Bowler, Tom St. Denis and Mike Borza,

“Comments on CWC and GCM Modes for Authenticated Encryption”, June

2005, available at:

http://csrc.nist.gov/CryptoToolkit/modes/comments/CWC-GCM/Elliptic-

Semiconductor.pdf.

[68] T. Kohno, J. Viega, and D. Whiting, “The CWC-AES Dual-use Mode”,

Internet Draft, Crypto Forum Research Group, May 20, 2003. Work in

progress, available at: http://www.zork.org/cwc/draft-irtf-cfrg-cwc-01.txt.

[69] W. Erik Anderson, Cheryl L. Beaver, Timothy J. Draelos, Richard C.

Schroeppel and Mark D. Torgerson, "Cipher-State (CS) Mode of Operation for

AES" available at:

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/cs/cs-spec.pdf.

[70] http://www.uclinux.org/.

[71] Morris Dworkin, NIST Special Publication 800-38C: “Recommendation for

Block Cipher Modes of Operation: The CCM Mode for Authentication and

Confidentiality”, May 2004, available at:

http://csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-

38C.pdf.

[72] Morris Dworkin, NIST Special Publication 800-38D DRAFT (April, 2006):

“Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) for Confidentiality and Authentication”, available at:

http://www.csrc.nist.gov/publications/drafts/Draft-NIST_SP800-

38D_Public_Comment.pdf.

[73] Niels Ferguson, "Authentication Weaknesses in GCM", May 2005, available at

http://csrc.nist.gov/CryptoToolkit/modes/comments/CWC-

GCM/Ferguson2.pdf.

[74] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and J.B.

Rigaud, “How to Add the Integrity Checking Capability to Block Encryption

Algorithms”, In Proc. Of the IEEE International Conference, PhD Research In

Microelectronics and Electronics, PRIME, June 2006.

References

 227

[75] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin and M. Bardouillet, “PE-ICE:

Parallelized Encryption and Integrity Checking Engine”, In Proceedings of the

9th IEEE workshop on Design & Diagnostics of Electronic Circuits &

Systems, DDECS, April 2006.

[76] AMBA (Advanced Microcontroller Bus Architecture) Specification available

at: http://www.gaisler.com/doc/amba.pdf.

[77] http://www.gaisler.com/.

[78] http://www.arm.com/pdfs/ARM9E_flyer_063_4.pdf

[79] http://www.model.com/products/default.asp.

[80] AES Core family Rev 1.5 - available at:

http://www.ocean-logic.com/pub/OL_AES.pdf.

[81] http://www.arm.com/products/DevTools/MaxSim.html

[82] ARM PrimeCell MultiPort Memory Controller PL172 - Technical Reference

Manual, available at:

http://www.nalanda.nitc.ac.in/industry/appnotes/arm/soc/DDI0215B_MPMC_

PL172.pdf.

[83] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “A Comparison of Two Approaches Providing Encryption and

Authentication on a Processor Memory Bus”, In Proc. Of the Power And

Timing Modeling, Optimization and Simulation International workshop,

PATMOS September 2006.

[84] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “A Parallelized Way to Provide Data Encryption and Integrity

Checking on a Processor-Memory Bus”, In Proceedings of the 43rd Design

Automation Conference DAC July 2006.

[85] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “Efficient Combination of Encryption and Integrity Checking for

Embedded Systems”, In Proceedings of the Reconfigurable Communication-

centric System on Chip workshop, ReCoSoC July 2006.

References

 228

[86] The Embedded Microprocessor Benchmark Consortium (EEMBC).

http://www.eembc.org/.

[87] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and Chenghuai Lu,

“Architectural Support for High Speed Protection of Memory Integrity and

Confidentiality in Multiprocessor Systems”, in Proceedings of the International

Conference on Parallel Architecture and Compilation Techniques, pages 123–

134, PACT September 2004.

[88] Youtao Zhang, Lan Gao, Jun Yang, Xiangyu Zhang, and Rajiv Gupta,

“SENSS: Security Enhancement to Symmetric Shared Memory

Multiprocessors”, in Proceedings of the 11th International Symposium on

High-Performance Computer Architecture, pages 352–362, February 2005.

[89] ARM926EJ-S: Technical Reference Manual available at:

http://www.arm.com/pdfs/DDI0198D_926_TRM.pdf.

[90] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message

authentication”, Advances in Cryptology - Crypto 96 Proceedings, Lecture

Notes in Computer Science Vol. 1109, pp1–15, N. Koblitz ed, Springer-

Verlag, 1996.

Bibliography Relative to the Study

 229

Bibliography Relative to the Study

Publications in International Conference Proceedings

[DATE05] Reouven Elbaz, Lionel Torres, Gilles Sassatelli, Pierre Guillemin, C.

Anguille, Michel Bardouillet, Christian Buatois, Jean-Baptiste Rigaud,

“Hardware Engines for Bus Encryption: A Survey of Existing

Techniques”, DATE 2005, p. 40-45.

[DDECS06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin and M. Bardouillet, “PE-

ICE: Parallelized Encryption and Integrity Checking Engine”, In

Proceedings of the 9th IEEE workshop on Design & Diagnostics of

Electronic Circuits & Systems, DDECS, April 2006.

[PRIME06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and J.B.

Rigaud, “How to Add the Integrity Checking Capability to Block

Encryption Algorithms”, In Proc. Of the IEEE International Conference,

PhD Research In Microelectronics and Electronics, PRIME, June 2006.

Golden Leaf.

[DAC06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “A Parallelized Way to Provide Data Encryption and Integrity

Checking on a Processor-Memory Bus”, In Proceedings of the 43rd

Design Automation Conference DAC July 2006.

[RECOS06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “Efficient Combination of Encryption and Integrity Checking

for Embedded Systems”, In Proceedings of the Reconfigurable

Communication-centric System on Chip workshop, ReCoSoC July 2006.

Bibliography Relative to the Study

 230

[PATM06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A.

Martinez, “A Comparison of Two Approaches Providing Encryption and

Authentication on a Processor Memory Bus”, In Proc. Of the Power And

Timing Modeling, Optimization and Simulation International workshop,

PATMOS September 2006.

Patent

Patent pending:

PE-ICE-OTP: Stream Encryption Combined to a Full Diffusion Function to Provide

Data Integrity in Addition to Confidentiality

Publications in National Conference Procedings

[JNRDM06] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin and M. Bardouillet, “MC-

VIP: Moteur de Chiffrement et de Vérification d’Intégrité Parrallélisé”,

9iemes édition des Journées Nationales du Réseau Doctoral en

Microélectronique JNRDM, May 2006.

 MECANISMES MATERIELS POUR DES TRANSFERTS PROCESSEUR MEMOIRE SECURISES DANS LES

SYSTEMES EMBARQUES

RESUME

Les systèmes embarqués actuels (téléphone portable, assistant personnel…) ne sont pas considérés
comme des hôtes de confiance car toute personne y ayant accès, sont des attaquants potentiels. Les données
contenues dans ces systèmes peuvent être sensibles (données privées du propriétaire, mot de passe, code d’un
logiciel…) et sont généralement échangées en clair entre le Système sur Puces (SoC – System on Chip) et la
mémoire dans laquelle elles sont stockées. Le bus qui relie ces deux entités constitue donc un point faible : un
attaquant peut observer ce bus et récupérer le contenu de la mémoire, ou bien a la possibilité d’insérer du code
afin d’altérer le fonctionnement d’une application s’exécutant sur le système. Afin de prévenir ce type d’attaque,
des mécanismes matériels doivent être mis en place afin d’assurer la confidentialité et l’intégrité des données.
L’approche conventionnelle pour atteindre cet objectif est de concevoir un mécanisme matériel pour chaque
service de sécurité (confidentialité et intégrité). Cette approche peut être implantée de manière sécurisée mais
empêche toute parallélisation des calculs sous-jacents.

Les travaux menés au cours de cette thèse ont dans un premier temps, consisté à faire une étude des
techniques existantes permettant d’assurer la confidentialité et l’intégrité des données. Dans un deuxième temps,
nous avons proposé deux mécanismes matériels destinés à la sécurisation des transactions entre un processeur et
sa mémoire. Un moteur de chiffrement et de contrôle d’intégrité parallélisé, PE-ICE (Parallelized Encryption and
Integrity Checking Engine) a été conçu. PE-ICE permet une parallélisation totale des opérations relatives à la
sécurité aussi bien en écriture qu’en lecture de données en mémoire. Par ailleurs, une technique basée sur une
structure d’arbre (PRV-Tree – PE-ICE protected Reference Values) comportant la même propriété de
parallélisation totale, a été spécifiée afin de réduire le surcoût en mémoire interne impliqué par les mécanismes
de sécurité.

MOTS-CLES: Architecture des processeurs, Systèmes embarqués, Sécurité, Confidentialité, Intégrité,
Authentification, Cryptographie, Systèmes sur Puce, Observation de bus, Attaques, Mémoire, Performance.

HARDWARE MECHANISMS FOR SECURED PROCESSOR-MEMORY TRANSACTIONS IN EMBEDDED SYSTEMS

ABSTRACT

Today’s embedded systems are considered as non trusted hosts since the owner, or anyone else who
succeeds in getting access, is a potential adversary. The bus between the System on Chip (SoC) and the external
memory is one of the weakest points of such systems because external memories contain sensitive data (end
users private data, software code…) which are usually exchanged in clear form over the bus. Therefore an
adversary may probe this bus in order to read private data or to retrieve software code (data confidentiality
concern). Another possible attack relies on code injection (data integrity concern). Thus, hardware mechanisms
must be designed to ensure data confidentiality and integrity. The conventional way to reach such a goal is to
implement a dedicated hardware engine for each security service. Being secured, this approach prevents
parallelizability of the underlying computations.

In this thesis, after a study of existing techniques and engines guaranteeing data confidentiality and
integrity, two hardware mechanisms dedicated to the security of processor-memory transactions are proposed.
First, a Parallelized Encryption and Integrity Checking Engine (PE-ICE) has been designed to provide an
effective solution to ensure both security services to data. PE-ICE allows full parallelizations on processor read
and write operations while optimizing the hardware resources required. Then, a technique based on a tree
structure (PRV-Tree – PE-ICE protected Reference Values) with the same property of full parallelization, is
specified to decrease the on-chip memory overhead implied by security mechanisms.

KEYWORDS: Processor Architecture, Embedded Systems, Security, Confidentiality, Integrity, Authentication,
Cryptography, System on Chip, Board level attacks, Memory, Performance.

DISCIPLINE : Microélectronique

Université de Montpellier II: Sciences et Techniques du Languedoc
LIRMM : Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier

161 Rue Ada - 34392 Montpellier Cedex 5

