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de l’Université de Nice-Sophia Antipolis

Mention : Automatique, traitement du signal et des images

présentée et soutenue par

Lucero Diana LÓPEZ PÉREZ
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et préparée à l’INRIA Sophia Antipolis, projet Odyssée

Date de soutenance : 15 Décembre 2006
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Abstract

We are interested in PDE-based approaches for regularization of scalar and
vector-valued images defined over non-flat surfaces and their applications
for image processing problems. We study the relationship between existing
methods and compare them in terms of performance and ease of implementa-
tion. We develop new numerical methods to tackle divergence-like operators
for regularization of images over triangulated surfaces. We generalize the
Beltrami Flow regularization technique to images defined on implicit and
explicit surfaces. Implementation schemes for these methods are proposed
and validated by experimental results. We also show an application of our
work to a concrete retinotopic mapping problem.

Résumé

Nous nous intéressons aux approches par EDP pour la régularisation d’ima-
ges scalaires et multivaluées définies sur des supports non plans et à leurs
applications à des problèmes de traitement des images. Nous étudions la
relation entre les méthodes existantes et les comparons en termes de per-
formance et complexité d’implémentation. Nous développons de nouvelles
méthodes numériques pour traiter des opérateurs de type divergence utilisés
dans les méthodes de régularisation par EDPs sur des surfaces triangulées.
Nous généralisons la technique de régularisation du Flot de Beltrami pour
le cas des images définies sur des surfaces implicites et explicites. Des im-
plémentations sont proposées pour ces méthodes, et des expériences sont
exposées. Nous montrons aussi une application concrète de ces méthodes à
un problème de cartographie rétinotopique.



Resumen

Nos interesamos en los métodos de regularización de imágenes escalares y
vectoriales sobre superficies no planas basados en EDPs y en sus aplica-
ciones en el área del tratamiento de imágenes. Estudiamos la relación entre
los métodos existentes y los comparamos en términos de funcionamiento y
facilidad de implementación. Desarrollamos nuevos métodos numéricos para
estimar operadores de tipo divergencia para la regularización de imágenes
definidas sobre superficies trianguladas. Generalizamos la técnica de regular-
ización del flujo de Beltrami para imágenes definidas en superficies impĺıcitas
y expĺıcitas. Esquemas numéricos para estos métodos son propuestos y
validados por resultados experimentales. También demostramos una apli-
cación de nuestro trabajo a un problema concreto de segmentación de mapas
retinotópicos del cortex humano.
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Chapter 1

Introduction

Image regularization is a branch of the digital image processing field, which
refers to processing digital images by means of a digital computer. Hence,
the history of digital image processing (see [39]) is intimately tied to the
development of the digital computer. Thus the field just appeared in the
early 1960s, when the first computers became powerful enough to carry out
meaningful image processing tasks for space applications, medical imaging,
remote Earth resources observations, and astronomy. Since then, the field
has grown vigorously and digital image processing techniques now are used
in a broad range of applications, from archeology (to restore blurred pic-
tures that were the only available records of rare artifacts lost or damaged
after being photographed) to military (three-dimensional scene reconstruc-
tion from aerial and satellite images to locate strategic targets, see [64]).
The continuing decline in the ratio of computer price to performance, the
broad access of digital cameras and video cameras to the general public and
the expansion of networking and communication bandwidth via the Internet
have created new opportunities for the growth of digital image processing.

Digital image processes can be characterized from low-level to high-level
processes: On low-level processes both inputs and outputs are images, they
involve operations such as image preprocessing to reduce noise, contrast en-
hancement, and image sharpening. On mid-level process inputs generally
are images, but outputs are attributes extracted from those images (as edges,
contours, individual objects), this kind of processes involves tasks such as
segmentation (partitioning an image into regions or objects) and classifica-
tion (recognition). Finally, higher-level processing involves giving sense of a
set of recognized objects, as in image analysis, and performing the cognitive
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functions normally associated with natural vision. Image regularization is
considered a low-level process.

We define by regularization of images a process that associates with a noisy
image a resulting image similar to the original one but where the noise
has been removed and the important features have been preserved. The
interested reader might wonder what exactly do we mean by “similar”, “im-
portant features” or “noise”? For the moment, we can only find answers
to these questions for a single image or a particular class of images, but
the more general answer is at the origin of a whole branch of the image
processing 1 field. Let us precise that this work has no pretension of going
one step further in answering these very difficult questions. Our aim is to
extend known regularization methods for images defined on flat surfaces to
the case of non-flat surfaces.

Wherever we look at, we see surfaces, colored surfaces, textured surfaces.
The visual images we get from our world are no more that flattening views
that glitter from the surfaces of the objects we perceive (with the exception
of translucent objects). There is an evident interest in digital modeling
of objects and scenes for the treatment of data over surfaces. But there
are also other less obvious applications, like denoising of electric impulses
or diffusion tensors on the human cortex surface, texture on human faces
for face recognition, applications on fluid mechanics, pattern formations, to
name but a few.

Most of the time, these data suffer from noise coming from numerous sources.
For instance, errors originated by the imaging equipment (CT, MRI, ultra-
sound, 3D laser scanners, etc.), numerical sensitivity (simulations by finite
element methods, recovery from photographs, recovery from a lossy data
compression). In these cases, some kind of regularization is needed for the
visualization or the processing of the image. Depending on the information
we might have concerning the noise that perturbs the functions of inter-
est, we can think of different regularization approaches in order to recover
exploitable data. Most common methods are based on the optimization
of a certain error-energy function. In a number of cases, this error-energy
function appears to be in relationship with the error functions produced by
stochastic methods or, more often, produced by the solutions of a particular
type of Partial Differential Equation (PDE).

1 General image processing also includes other processes such as optical filters, but
for the rest of this work, we use the terms image processing and digital image processing
indistinctly.
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In this thesis, we focus on PDE regularization methods. Most of this work
is centered on the reformulation of the regularization problem in terms of
surfaces and the way the new surface-intrinsic operators can be estimated. In
order to simplify our discussion, we deal with simple orientable surfaces, even
though several methods can be generalized to more complicated surfaces.

For computer vision matters, surfaces are modeled mathematically as dis-
cretized meshes, level sets, algebraic surfaces, tessellated surfaces, or other-
wise, depending on the particular application. Nevertheless, there are two
widely used representations: the triangulated meshes and the level sets. In
this work we use both of them. The PDE regularization methods differ
greatly depending on the representation of the surface.

But before going any further, let us ask the following naive question: why
spend so much time looking for relatively complicated non-planar operators,
intrinsic to the surface, if it is simply possible to apply known 3D operators
on the space surrounding the surface? Figure 1.1 illustrates an example of
what can happen if we do so.

Let us explain how we obtained the results presented in figure 1.1: we took
a knot as the interest surface, and the data set of a single point in this
knot. The original image is shown in the first row and in the second row
we show the image after application of a simple classical Laplacian operator
in the euclidean 3D space (this is the classical space, where the data and
the knot are embedded). In the third row, we show the results provided by
the application of the Laplace-Beltrami operator, which is a surface intrinsic
operator.

We can directly perceive the faulty results on the set of images corresponding
to the simple classical 3-D Laplacian operator: the data on the point has
been diffused out of its vicinity into a further region of the knot, that is in
fact close to it if we consider the 3D euclidean distance. But the natural
behavior we expect from a diffusion over a surface is the data to be diffused
over the surface, not out of it. This is what we obtained with the use of the
surface-intrinsic operator showed in the third row.

Situations like these are not exclusive to knots, they arise often when working
on folded structures as the human cortex. This is why it is interesting to
develop regularization methods that take the inner geometry of the surface
into account.

At the time the work presented in this thesis was started, regularization of
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Original Image Detail: Point in the knot

∆R3I - Diffusion on the space

∆SI - Diffusion on the surface

Figure 1.1: 3D euclidean Laplacian (∆R3I) vs surface-intrinsic Laplace-
Beltrami operator (∆SI)
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images defined on triangulated surfaces was limited to isotropic regulariza-
tion, and the first methods that make use of the level-set surface represen-
tation started to be known.

The main contributions of this thesis are:

• A numerical method for anisotropic regularization over ex-
plicit surfaces. We propose a method to locally estimate divergence-
like operators that gives the same estimation that the finite element
method and the discrete exterior calculus for the case of the Laplace-
Beltrami. We use this method to propose an implementation for the
Beltrami flow on triangulated surfaces.

• The generalization of the Beltrami flow regularization to im-
ages defined on surfaces. We reformulate the Beltrami Framework
for the case of images defined on explicit and implicit surfaces, and
propose and implementation. This regularization technique provides a
way to overcome the over-smoothing of the isotropic regularization and
the stair-casing effects anisotropic regularization by tunning between
the two approaches via the parameter β to control the edge-preserving
characteristic of the flow. The Beltrami flow is shown to act as the
linear isotropic diffusion (L2-norm) in the limit β → 0 and to the
strongly edge preserving anisotropic diffusion (L1-norm) in the limit
β → ∞. We illustrate the utility of this approach showing synthetic
and real examples on triangulated and implicit surfaces.

• The clarification of the relation between implicit and extrin-
sic approaches and a comparison of their performances and
implementation. We clarify the link that exists between the the
intrinsic Polyakov action of the Beltrami framework and the implicit
harmonic energy functional. It is found that although the functionals
are basically the same, there are differences in the way various prob-
lems are formulated and the way the functionals are applied. We also
discussed the passage between the two representations and the advan-
tages and drawbacks of the two associated methods, and compared
them for the case of the retinotopic map extraction problem.

• The application of these methods to a concrete retinotopic
mapping problem. We have detailed a method to obtain a human
individual retinotopic map of the occipital cortex using fMRI, which
makes use of surfaces-based regularization techniques rather than a
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volume regularization method leading to better results. We propose
alternative ways to improve the result using vector regularization over
the gradient data instead of the scalar regularization over its pro-
jected components. We show how the Beltrami flow regularization
can improve the resulting maps, tunning the β parameter to erase the
noise like the isotropic smoothing while respecting the edges like the
isotropic smoothing, without its associated stair-casing effect related
to the different resolution of the data sets.

This thesis is organized as follows:

• In Chapter 2 we present the two main surface representations and
discuss the existing bibliography.

• In Chapter 3 we present a numerical approach to deal with a cer-
tain type of PDEs regularization methods for images defined on tri-
angulated surfaces. We use this approach to propose an anisotropic
regularization technique. We generalize the Beltrami flow for images
defined on triangulated surfaces, and present a numerical implemen-
tation based on the previously explained approach.

• In Chapter 4 we present the generalization of the Beltrami flow for
images defined on implicit surfaces.

• In Chapter 5 we study the relationship between this methods and we
discuss their comparative performances and ease of implementation.

• In Chapter 6 we make an excursion into some regularization methods
for vector and color images defined on explicit and implicit surfaces.

• In Chapter 7 we present the results of our methods applied to images
of electrical impulses on the human and macaque cortical surface.

• In Chapter 8 we conclude and discuss future work and perspectives.

14



Introduction

La régularisation d’image est une branche du champ de traitement d’image
numérique. Ce champ s’occupe de traiter des images numériques (aussi
appellées digitales) à l’aide d’un ordinateur. Par conséquent, l’histoire du
traitement d’image numérique (voir [39]) est intimement liée au dévelop-
pement de l’ordinateur. Ce champ est apparu au début des années 60,
quand les premiers ordinateurs sont devenus assez puissants pour réaliser
des taches significatives de traitement d’image pour des applications aux
images spatiales, médicales, et des observations à distance de ressources ter-
restres. Depuis lors, le champ s’est développé vigoureusement et des tech-
niques de traitement d’image numérique sont actuellement employées dans
une large étendue des applications, de l’archéologie (pour reconstituer les
images brouillées qui étaient les seuls registres disponibles des objets an-
tiques perdus ou endommagés après avoir été photographiés) aux militaires
(reconstruction tridimensionnelle de scènes à partir des images aériennes et
satellites pour localiser les cibles stratégiques, voir [64]). La baisse continue
dans le rapport prix/performance de l’ordinateur, l’accès grandissant au
grand public des appareils photo numériques et des cameras, et l’expansion
des réseaux et de la largeur de bande de communication par l’intermédiaire
d’Internet ont créé de nouvelles occasions pour accrôıtre l’intêret du traite-
ment d’image numérique.

Les méthodes de traitement d’images digitales peuvent être caractérisés
selon son niveau de la manière suivante : aux processus de bas niveau les
entrées et les sorties sont des images, elles comportent des opérations telles
que le prétraitement d’image pour réduire le bruit ou améliorer le contraste.
Aux processus à mi-niveau les entrées sont généralement les images, mais
les sorties sont des attributs extraits à partir de ces images (comme ses
bords, contours, objets individuels), ce genre de processus implique des
tâches comme la segmentation (découper une image dans des régions ou
des objets) et la classification (identification). Finalement, le traitement de
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plus haut niveau implique donner du sens à un ensemble d’objets identifiés
(comme en analyse d’image) et en exécutant les fonctions cognitives normale-
ment liées à la vision naturelle. Dans cette classification, la régularisation
d’image est considérée comme un processus de bas niveau.

Nous définissons par régularisation d’image un processus qui associe à une
image bruitée une image résultante semblable à l’originale mais où le bruit a
été enlevé et les attributs importants ont été préservés. Le lecteur intéressé
pourrait se demander ce qui nous voulons signifier par “attributs impor-
tants”, “semblables” ou “bruit”? Pour le moment, nous pouvons seule-
ment trouver des réponses à ces questions pour une image simple ou une
classe particulière d’images, mais la recherche des réponses plus générales
est à l’origine d’une branche entière du traitement d’image2. Précisons que
ce travail n’a aucune prétention de répondre à ces questions très difficiles.
Notre but est de généraliser des méthodes connues de régularisation d’images
définies sur les surfaces planes au cas de surfaces non planes.

Partout où nous regardons, nous voyons des surfaces, colorées, texturées.
Les images visuelles que nous obtenons de notre monde ne sont que des
vues aplaties qui proviennent des surfaces des objets que nous percevons
(à l’exception des objets translucides). Il y a un intérêt évident dans la
modélisation numérique des objets et des scènes pour le traitement des
données définies sur des surfaces. Mais il y a également d’autres appli-
cations moins évidentes, comme le débruitage d’impulsions électriques ou
de tenseurs de diffusion sur la surface du cortex humain, la texture sur les
visages humains pour son identification, des applications sur la mécanique
des fluides, pour n’en nommer que quelques unes.

La plupart du temps, ces données contiennent du bruit venant de nombreuses
sources. Par exemple, des erreurs produites par l’équipement d’acquisition
de l’image (CT, MRI, ultrasons, scanners laser 3D) ou par la sensibilité
numérique des méthodes d’acquisition (simulations par méthodes d’éléments
finis, images reconstruites à partir de photographies, images reconstruites à
partir d’une image ayant subi une compression avec perte d’information).
Dans ces cas, une méthode appropriée de régularisation est nécessaire pour la
visualisation ou le traitement de l’image. Selon l’information que nous avons
sur la source du bruit qui perturbe les fonctions d’intérêt, nous pouvons
procéder à des différentes approches de régularisation afin de récupérer des

2Le traitement d’image en général inclut également d’autres processus tels que les
filtres optiques, mais pour le reste de ce travail, nous employons indifféremment les termes
traitement d’image et traitement d’image numérique.
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données exploitables. La plupart des méthodes sont basées sur l’optimisation
d’une certaine fonction d’erreur, associée à une énergie. Dans certains cas,
cette énergie semble être en rapport avec des fonctions d’erreur produites
par des méthodes stochastiques ou, plus souvent, produites par la résolution
d’un type particulier d’Équation Différentielle Partielle (EDP).

Dans cette thèse, nous nous concentrons sur les méthodes de régularisation
par EDPs. Une partie ce travail est porté sur la reformulation du problème
de régularisation pour le cas des supports surfaciques et la manière dont des
opérateurs intrinsèques à la surface peuvent être estimés. Afin de simpli-
fier notre discussion, nous traitons des surfaces orientables simples, quoique
plusieurs méthodes peuvent être généralisées sur des surfaces plus com-
pliquées. En ce qui concerne les problèmes de vision par ordinateur, les
surfaces sont modelées mathématiquement en tant que mailles discrétisées,
des ensembles de niveau, des surfaces algébriques, des surfaces tessellées,
ou autrement, selon l’objet modelé. Néanmoins, le plus souvent une des
deux représentations suivantes est utilisée : les maillages triangulés ou les
ensembles de niveau.

Dans ce travail nous employons les deux. Les méthodes de régularisation par
EDPs diffèrent considérablement selon la représentation de la surface. Mais
avant d’aller plus loin, posons-nous la question : pourquoi passer tellement
de temps à chercher des méthodes qui travaillent sur la surface, qui utilisent
des opérateurs non planaires relativement compliqués, au lieu d’appliquer
tout simplement les opérateurs 3D connus sur l’espace qui entoure la surface?
La figure 1.2 illustre un exemple de ce qui peut se produire si nous procédons
ainsi : nous avons pris un noeud comme example de surface, l’image sur
la surface étant un simple point. L’image originale est montrée dans la
première ligne, et dans la deuxième ligne nous montrons l’image une fois
appliqué l’opérateur Laplacian dans l’espace 3D euclidien. Dans la troisième
ligne, nous montrons les résultats fournis par l’application de l’opérateur
de Laplace-Beltrami, qui est un opérateur intrinsèque à la surface. Nous
l’employons ici au lieu du Laplacien classique pour comparer les différentes
images obtenues après application de ces deux méthodes.

Nous pouvons percevoir directement les résultats défectueux sur l’ensemble
des images correspondant au Laplacien classique : une region a été atteinte
en dehors du voisinage du point d’origine dans une partie du noeud qui se
trouve loin en termes de distance à parcourir sur la surface, mais qui est en
fait proche si nous considérons la distance euclidienne sur l’espace 3D. En
effet, le comportement que nous attendons d’une diffusion sur une surface
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Image originale Detail : Point sur le noeud

∆R3I - Diffusion dans l’espace Euclidien

∆SI - Diffusion sur la surface

Figure 1.2: Laplacien sur l’espace Euclidien (∆R3I) vs opérateur de Lapla-
ce-Beltrami (∆SI), intrinsèque à la surface
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est que les données soient répandues sur la surface et pas hors d’elle. C’est
justement ce que l’on obtient avec l’opérateur intrinsèque à la surface dont
le résultat est montré dans la troisième ligne.

Cette situation n’est pas spécifique aux noeuds, elle survient souvent lors
que l’on travaille sur des surfaces plissées comme le cortex humain. C’est
pourquoi il est intéressant de développer des méthodes de régularisation qui
tiennent compte de la géométrie de la surface. Lorsque le travail présenté
dans cette thèse a été commencé, la régularisation des images définies sur les
surfaces triangulées était limité à la régularisation isotrope, et les premières
méthodes qui se servent de la représentation par ensembles de niveau com-
men caient à être connues.

Les principales contributions de cette thèse sont :

• Une méthode numérique de régularisation anisotrope sur des
surfaces explicites. Nous proposons une méthode pour estimer lo-
calement des opérateurs de type divergence qui cöıncide avec l’estima-
tion donnée par la méthode d’éléments finis et le calcul extérieur dis-
cret pour le cas de l’opérateur de Laplace-Beltrami. Nous employons
cette méthode pour proposer une implémentation du flot de Beltrami
sur les surfaces triangulées.

• La généralisation de la régularisation par flot de Beltrami
aux images définies sur des surfaces. Nous reformulons le cadre
du flot de Beltrami pour le cas des images définies sur les surfaces
explicites et implicites, et proposons des implémentations. Cette tech-
nique de régularisation fournit une manière de surmonter le sur-lissage
de la régularisation isotrope et l’effet d’escalier de la régularisation
anisotrope en coordonnant les deux approches par l’intermédiaire du
paramètre β pour contrôler la caractéristique de préservation du bord
du flot. Il est montré que le flot de Beltrami se comporte comme la
diffusion isotrope linéaire (norme L2) dans la limite β → 0 et comme la
diffusion anisotrope (norme L1) qui préserve fortement les bords dans
la limite β → ∞. Nous illustrons l’utilité de cette approche avec des
exemples synthétiques et réels sur les surfaces triangulées et implicites.

• La clarification de la relation entre les approches implicite,
extrinsèque et explicite et une comparaison de leurs perfor-
mances et implémentations. Nous clarifions le lien qui existe entre
l’action intrinsèque de Polyakov dans le cadre du Flot de Beltrami et
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la fonctionnelle de l’énergie harmonique implicite. On constate que
bien que les fonctionnelles soient fondamentalement identiques, il y a
des différences dans la manière dont les problèmes sont formulés et la
manière dont les fonctionnelles sont appliquées. Nous avons également
discuté le transition entre les deux représentations et les avantages et
les inconvénients des deux méthodes associées, et les avons comparées
pour le cas du problème d’extraction de cartes rétinotopiques.

• L’application de ces méthodes au problème des cartes rétino-
topiques. Nous avons détaillé une méthode pour obtenir une carte
rétinotopique individuelle du cortex occipital humain en utilisant des
images fMRI, qui se sert des techniques de régularisation sur des sur-
faces plutôt que des méthodes de régularisation sur le volume envelop-
pant, avec des meilleurs résultats. Nous proposons des manières alter-
natives d’améliorer le résultat en utilisant la régularisation du champ
du gradient au lieu de la régularisation scalaire de ses composants pro-
jetés. Nous montrons comment la régularisation du flot de Beltrami
peut améliorer les cartes résultantes, en utilisant le paramètre β pour
effacer le bruit comme avec le lissage isotrope tout en respectant les
contours comme avec le lissage anisotrope, mais sans l’effet d’escalier
lié à la différence de résolution entre les données.

Cette thèse est organisée comme suit :

• Au Chapitre 2 nous présentons les deux principales représentations
des surfaces et la bibliographie existante.

• Au Chapitre 3 nous présentons une approche numérique pour des
opérateurs de type divergence utilisés par certains méthodes de régu-
larisation par EDPs pour des images définies sur les surfaces trian-
gulées. Nous employons cette approche pour proposer une technique
de régularisation anisotrope. Nous généralisons le flot de Beltrami
pour des images définies sur des surfaces triangulées, et présentons
une implémentation numérique basée sur l’approche précédemment
expliquée.

• Au Chapitre 4 nous généralisons le flot de Beltrami pour des images
définies sur des surfaces implicites.

• Au Chapitre 5 nous étudions le rapport entre l’approche implicite et
explicite et nous comparons leurs performances et facilité d’implémen-
tation.
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• Au Chapitre 6 nous discutons quelques méthodes de régularisation
pour des images vectorielles et de couleur définies sur des surfaces
explicites et implicites.

• Au Chapitre 7 nous présentons les résultats des méthodes exposées
précédemment appliquées aux images d’impulsions électriques sur la
surface corticale humaine et du macaque.

• C’est au Chapitre 8 que nous concluons et discutons les perspectives
de ce travail.
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Chapter 2

State of the art

We start this chapter by presenting the two most widely used representations
of a surface and its data. Then we review the literature available for the two
frameworks. In the third section we present these two approaches with the
example of the isotropic regularization via the computation of the Laplace-
Beltrami operator.

2.1 Surface representations: Introducing the co-

mmon frameworks

A two dimensional surface embedded on R3 can be represented in several
manners. It can be defined as the solution of a simple equation.

For instance, the set of points

S1 =
{

(x, y, z) ∈ R3 | x2 + y2 + z2 = 1
}

defines the unit sphere and S1 is an implicit representation of this surface.

The unit sphere can also be represented using a parametric function on the
space. Take

f(θ1, θ2) = (cos θ1 sin θ2, sin θ1, cos θ1 sin θ2)

= (x, y, z),
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then the unit sphere can also be defined by the set

S2 = {f(θ1, θ2) | − π ≤ θ1, θ2 < π} ,

and in this case S2 is an intrinsic representation of the unit sphere.

Of course S1 and S2 represent the same set of points. Thus, we have two
different possible representations of the same surface: one implicit and the
other intrinsic.

Implicit representations of 3-d surfaces are of the form

S1 = {X ∈ R3 | φ(X) = 0}.

In particular for closed surfaces, in the image processing field, the conven-
tions require that the function φ, that defines the implicit representation,
should be negative inside and positive outside the (possibly multiply con-
nected) region bounded by the surface. Let us call this region Ω. For
simplicity, we may also ask φ to be at least C2. Usually, we use for φ the
signed distance function defined

φ(X) :=





−Dist(X, S) if X ∈ Ω
+Dist(X, S) if X /∈ Ω

0 over the surface.

On the other hand, intrinsic representations are given under the general
form

S2 =
{
(x, y, z) = f(u, v)|(u, v) ∈ D ⊂ IR2

}

f(u, v) = (fx(u, v), fy(u, v), fz(u, v))

These are the two most common representations of mathematical surfaces.

However, the surfaces that can be found in computer vision problems are
rarely known through these ideal representations: most of the time we have
to face a discrete representation (a form given by a finite set of points) and
the connections between these points. We also may have some additional
information like the outing normal vectors at each points of the surface.
This is the case for data obtained by laser scanners. Other ways of obtaining
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Narrow band

Surface

φ > 0 φ < 0

Figure 2.1: Visualization of the signed distance to a brain layer

Figure 2.2: Triangulated cortex
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digital surfaces -digital approximations of real surfaces- take as input a set
of photographs of the surface, which are taken with a calibrated camera
(like the one proposed in [18]) or in more general conditions (as done in
[73]). In this case, we get as an output a volumetric scalar image whose
values approximate the distance to the surface, providing directly an implicit
discrete representation on the surface. Surfaces can also be approximated
as a result of segmentation from volumetric images (it is the case of most of
cortical images) and in this case the quality of the output may depend on
the method used in either representations. This list of surface sources is far
from being exhaustive and we gave examples of only a few of the intricate
ways some data, representing a particular surface of interest, can be given
in practice.

Most of the time, digitalized surfaces are given in one of these two forms:

• Triangulated Surfaces, Surface Meshes or Explicit Surfaces.
In this case, the digitalized surface is given as a set of indexed triplets
representing the vertex and a second set of vertex triplets that rep-
resent the triangles. Data on the surface is given as a set of values
(scalars, vectors, tensors..) where each value corresponds to a vertex
of the surface mesh. This is the most common representation for ob-
jects in 3D modeling and medical imaging. The traditional way to
deal with these data is using the parametric functions given by the
intrinsic representation1. Only recently, authors discovered (see [41])
that a discrete exterior calculus can be used for such matter (we will
touch this matter in section 3.1.2 of this thesis).

• Implicit Volumes or Level-Sets. In this case, the digitalized sur-
face is given as a scalar volumetric image, where each pixel value in
a narrow band is the signed distance function to the surface or some
other scalar function that is negative inside the surface and positive
outside. Since we are only interested in the zero level-set, we only need
the information in a band surrounding the surface. Data is stored in
another volumetric image (scalar or multivalued, depending on the na-
ture of the data) and also in pixels corresponding to the narrow band
around the surface.

The Implicit Volumes became commonly used as a result of the increasing
interest in Level-Set methods. Efforts are being made to find better ways of

1In this thesis we use the labels explicit and intrinsic indistinctly whenever there is no
confusion between the mathematical and digital representation
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storing the surface images. These do not use an entire volume to store the
information because this information is in fact only needed in a band around
the surface: this is the case of the RLE (Run-Length-Encoded) sparse level-
set structure ([43]), unstructured graphs, adaptive grids ([19]), etc. Another
inconvenient is that fine surface structures are not always captured by level-
sets, although it is possible to use adaptive and triangulated grids (see for
example [7] and [74]).

2.2 Bibliographical discussion

In this section we present the main aspects of the classical literature con-
cerning regularization on manifolds. We also present a list of useful works
that are strongly related to this subject and that we used for this work.

2.2.1 Explicit Surfaces

We start with a review of the works on surface regularization. It is indeed
often the surface regularization problem that is placed first and its solution
is closely related to the regularization of functions over manifolds when us-
ing PDE’s methods. Both methods need the estimation of surface-intrinsic
operators as the Laplace-Beltrami or Divergence operators: the first esti-
mation is needed over the geometry of the manifold, whereas the second is
needed over the set of functions defined on the manifold.

The surface regularization problem appears principally in two areas: error
optimization and PDEs. For the first approach we can briefly cite the works
from: [38, 42, 44, 60, 78, 101, 51, 49, 102, 56].

As the title of this thesis suggests, we are more concerned by the second cat-
egory. For a very clear explanation on PDE’s based regularization methods
for flat multivalued images, we recommend [96], and some references that
review the work on this area are [25, 3].

Following the path of the flat image regularization, the different works start
from the use of a Laplacian operator over the surface. This PDE-based
evolution technique was originally imported for image processing on flat
images by [68], [74], and [100].

In [31], [21], and [30] this idea is extended to smooth noised surfaces, propos-

26



ing to apply the surface-intrinsic Laplacian, namely the Laplace-Beltrami
operator over the geometry of the manifold, rather than a function over the
manifold which is our case of study (we introduce the Laplace-Beltrami op-
erator in the next section, but for a more proper definition we refer to [34]).
Numerical issues on the discretization of the Laplace-Beltrami operator are
discussed in [95]. In [50] and [51] the authors propose discrete approxima-
tions of the Laplace-Beltrami extended to arbitrary connectivity in a way
to deal with multi-resolution problems, far from the simple case of trian-
gulations that is studied in this thesis. In [29] an anisotropic technique is
presented for denoising height fields and bivariate data.

In [31], the authors used an implicit discretization of geometric diffusion
to obtain a strongly stable numerical regularization scheme. Afterward, in
[30], they propose finer computational methods of normals and curvatures
for discrete data with the objective to enhance and smooth triangulated
surfaces. In [21], anisotropic geometric diffusion is introduced to enhance
features while the smoothing effect occurs.

Note that we have not said anything about the anisotropic diffusion yet. It
is sufficient for the moment to say that this regularization technique permits
to smooth small irregularities of the function (in this case the geometric rep-
resentation) while it preserves and even accentuates the strong irregularities
that define its principal features (corners, edges, etc). This is a major con-
tribution in surface regularization techniques since earlier methods resulted
on images that shrunk as the evolution went on and some important edges
were not preserved.

The problems of regularizing the geometry of a surface and the data over
a surface are closely related, and the way the corresponding discretization
problems are solved is very similar. In [6], the authors propose an original
method for regularizing the surface and the data on the surface simultane-
ously, taking advantage of the fact that they share the same stiffness matrix.
This is useful when the noise in the surface and the data are related, a sit-
uation that is often seen when the surface and functional data is extracted
from the same original set, on the same process, or with the same equipment.
It is also useful when the data on the surface is related with the geometry
on the surface: for example, the color on the lips’ surface limits itself to the
lips’ corners. In [22] they use the data information to regularize the surface
anisotropically in order to follow discontinuities on the data.

Few works have dealt with the regularization of functions over surfaces,
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but we can cite [20], where the authors propose the two estimations of the
Laplace-Beltrami operator presented in the next section. More recently, in
[82] and [54] (a work that can be found in the second and last chapters of
this thesis), we presented the extension of the Beltrami Flow technique to
the case of triangulated surfaces.

It is also worth mentioning the recent work [106] where the convergence
of discrete Laplace-Beltrami operators over surfaces is studied, and where
it is concluded that the best discretization known for the Laplace-Beltrami
operator is the one obtained in [30], which is precisely the cotangents weights
formula (2.7) that we retrieved in the previous section. This formula can
also be found in [41] with a new approach: we focus ourselves on this new
approach in the last chapter of this work. Finally, in [92, 90] the author
shows segmentation of images defined on surfaces by an extension of the
geodesic active contours.

2.2.2 Level-Set methods

The level-set methods were first introduced in 1979 by Dervieux and Tho-
masset for applications on fluid mechanics ([26, 27]) , and later in 1987
by Sethian and Osher ([65]) for computer vision applications. Level-set
methods provide a very smart way to deal with moving interfaces such as
curves and surfaces, as the model allows changes in the topology without
major problems. Because of the importance of this discovery, these methods
began to be used in many other applications from the image processing
field such as segmentation ([45, 23, 62, 70]), motion estimation and tracking
([73, 61, 63]), front propagation ([65, 24, 36, 40, 71]), and many others.
The level set method also offers an easier alternative to solve problems on
fixed surfaces which before needed the entire and relatively complicated
discretization of all the triangles.

Just like what we did for the explicit methods, we start citing the works on
surface smoothing and reconstruction: [18, 66, 11, 75] (anisotropic geometric
diffusion), [107] and [108]. More recently, in [94], an anisotropic diffusion of
surface normals is investigated for features preserving surface reconstruction.
An evolution PDE (such as the one presented in the previous section) defined
this time on the whole volume governs the behavior of the level surface.

Concerning non-flat image regularization, the framework showed in [17],
[8], [10], and [9] was one of the starting points of this thesis: the authors
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present a level-set method to perform isotropic (see [17] for more details)
regularization on scalar images that was extended afterward to anisotropic
regularization for scalar and directional images in [8].

In [33], the authors show the use of anisotropic diffusion for vector field
visualization on surfaces.

In [83], [81] and [82] we have generalized the Beltrami Flow regularization
method for flat images for the case on non-flat implicit surfaces, and we
presented numerical methods and applications for the case of scalar images.
Another interesting contribution of these papers lies in the clarification of
the relationship between the implicit and explicit approaches.

2.3 The Laplace Beltrami operator (∆S)

A classical method to erase the noise of flat scalar images in order to obtain
a nice smoother function is the one based on the following PDE:

∂u

∂t
= ∆u, ut=0 = u0. (2.1)

Here, the scalar data u0 : R2 → R stands for the original noisy image
defined on the plane and the solution u : R2 → R of the PDE stands for the
regularized image: this is the one we are looking for.

This PDE is borrowed from physics, it is known as the heat equation. In
image processing, this regularization method is called isotropic diffusion,
because the process smooths the image with the same intensity in all spatial
directions without considering the fact that it blurs features of the image
as well as the noise. The anisotropic regularization, which we introduce
in section 3.2, on the contrary, privilege the smoothing effect in certain
particular directions that are determined by some other PDE regularization
model.

The isotropic method is equivalent to the convolution of the image function
with a normalized gaussian kernel of variance σ =

√
2t . It is also equivalent

to the minimization of the energy (variational approach) defined as:

1
2

∫

R2

‖∇u‖2 dxdy,
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This is due to the fact that Equation (2.1) actually defines the differential
gradient descent used to minimize the energy.

The regularization algorithm consists in transforming the original image
using PDE (2.1). The resulting process progressively smooths the image.
Small irregularities first disappear, the image then starts to appear blurred
and finally it converges to a constant image as t → ∞ (see fig. 2.3). In
practice, a human observer is needed in order to decide when to stop the
evolution.

We have chosen this classical regularization method to show how both dif-
ferent frameworks could be applied. Of course, we first have to define this
PDE on a manifold, which is the idealistic mathematical object for the rep-
resentation of surfaces embedded in R3.

2.3.1 The Laplace-Beltrami on explicit surfaces

A discretized surface is formed of a set of points in R3 and facets between
them. We will consider the case where these facets are triangles: the case
of triangulated surfaces. The function on the surface is defined as a value
attached to each vertex. These data can be the result of the application
of a scanner from an object, numerical simulations retrieved by 2D images
or various other extraction methods. It is the most simple and commonly
used representation for objects in 3D modeling and medical imaging. Its
portability and precision to represent detailed 3D objects are some of its
major qualities compared to the implicit methods.

We represent mathematically the surface given by this kind of data using a
parametrization. A parametrization of a certain surface S is a function

X : D → S, X ∈ C2(D),

X(y) =
{
x1(y), x2(y), x3(y) : y = (y1,y2) ∈ D ⊂ R2

}

such that (X1(p), X2(p)) = (Dy1X(p), Dy2X(p)) is a base for the tangent
plane TpS at the point p ∈ S.

Let us define the Riemannian metric g and the tensor l as:

g :=

(
〈X1, X1〉 〈X1, X2〉
〈X2, X1〉 〈X2, X2〉

)
and l :=

(
〈X1,1,n〉 〈X1,2,n〉
〈X2,1,n〉 〈X2,2,n〉

)
.
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Original noisy image Result of (2.1) after 3 iterations

Result of (2.1) after 10 iterations Result of (2.1) after 50 iterations

Figure 2.3: Heat regularization on scalar flat image
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For example, if the surface is of the form

x3 = β0 + β1x1 + β2x2 + β3x
2
1 + 2β4x1x2 + β5x

2
2 + . . .

the Riemannian metric tensor g and the tensor l become

g =

(
1 + β2

1 β1β2

β1β2 1 + β2
2

)
,

l =

(
β3 β4

β4 β5

)
.

In this context, the Laplace-Beltrami operator ∆X can be expressed as ([20]):

u : S → R,

∇X u = DyX
T g−1Dy u =

2∑

i,j=1

(
g−1

)
i,j

∂u

∂yj
Xi,

∆X u = ∇X · ∇X u =
1

|g| 12
2∑

i,j=1

∂

∂yi

(
|g| 12 (

g−1
)
i,j

∂u

∂yj

)
.

Using the Laplace-Beltrami operator, we can generalize PDE (2.1) from flat
images to parametrization in the following manner

∂u

∂t
= ∆X u, ut=0 = u0, (2.2)

where again u0 : S → R stands for the original noisy image and u : S →
R stands for the regularized image. To be able to perform finite space-
time differences methods and compute the evolution of the PDE we need to
estimate or discretize the Laplace-Beltrami operator. We now briefly explain
two known solutions (quoted from [20]).

Parametric method

This is a rather tricky method that makes use of a special intrinsic property
of the Laplace-Beltrami operator. Let us explain the idea.

If (y1, y2) is a conformal coordinate system, the Laplace-Beltrami operator
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becomes locally the planar Laplacian at y,

∆X =
1
λ

(
∂2

∂ (y1)
2 +

∂2

∂ (y1)
2

)

For an arbitrary surface S and a fixed point p ∈ S, we can always find a
conformal coordinate system by applying the affine transformation:

y := Q (x− p)

Q :=




n3 0 −
√

n2
1 + n2

2

0 1 0√
n2

1 + n2
2 0 n3







n1√
n2

1+n2
2

n2√
n2

1+n2
2

0

− n2√
n2

1+n2
2

n1√
n2

1+n2
2

0

0 0 1




y3 := z (y1, y2) ∼= β̂0 + β̂1x1 + β̂2x2 + β̂3x
2
1 + 2β̂4x1x2 + β̂5x

2
2

where the β̂i are found by a standard least square estimation procedure using
the neighboring points. We explain briefly this standard method below:

let p1, ..., pm be the m neighbors of the point p, and let yj = Q (pi − p). Set

X :=




y1
1 y1

2

(
y1
1

)2
y1
1y

1
2

(
y1
2

)2

y2
1 y2

2

(
y2
1

)2
y2
1y

2
2

(
y2
2

)2

...
...

...
...

...
ym
1 ym

2 (ym
1 )2 ym

1 ym
2 (ym

2 )2




Y :=




y1
3
...

ym
3


 .

β̂ is then obtained by solving the linear system

β̂ =
(
XTX

)−1 (
XTY

)
.

Now, if we have the parametrization W (y1, y2) := p + Q′(y1, y2, z(y1, y2)),
then, applying the linear transformation V (v1, v2) = W (Av) where A = g1/2,
we obtain a conformal coordinate system such that the Laplace-Beltrami
operator becomes ∇X = γ1 + γ3 where γ1, γ3 are defined as the solutions of

z(v1, v2) = γ1(v1)2 + γ2v1v1 + γ3(v2)2 + ...
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This allows us to retrieve proper data and start the computations.

Finite element method

A linear barycentric interpolation is used to find an approached solution.

Let ũ : (t, x) → ũ(t, x) be the approached solution to the diffusion equation.

Take the function ũ : (t, x) over each triangle:

ũ → ũ(t, x) =
NT∑

i=1

ũ|Ti(t, x)
4
=

NT∑

i=1

ũi(t, x)

On each triangle Ti (i ∈ {1 . . . NT }) composed by the nodes {pi1 , pi2 , pi3} we
have the barycentric coordinates functions

{ζi1 , ζi2 , ζi3} .

We look for ũi(t, .) of the form

ũi(t, x) = ζi1(x)ũ(t, pi1) + ζi2(x)ũ(t, pi2) + ζi3(x)ũ(t, pi3)

that is, we express ũi(t, .) in terms of a linear combination of the barycentric
coordinates functions, that we will later use as tests functions.

Now, let us focus on the linear system on each triangle Ti.

The functions

φ(x) =
NT∑

i=1

ζi1(x)φpi1
+ ζi2(x)φpi2

+ ζi3(x)φpi3

are used as test functions. We take the integral of the diffusion equation
∫

Ti

φ
∂ui

∂t
dT = −

∫

Ti

< ∇u,∇φ > dT (2.3)

where ui is replaced by the approached solution ũi in (2.3). Since we have
the expressions for {ζi1 , ζi2 , ζi3} and the equations holds for all ψ, the linear
system is verified for the vector

[ũi] = (ũi(t, pi1), ũi(t, pi2), ũi(t, pi3))
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Figure 2.4: Angles intervening in the Laplace-Beltrami estimation

and
d[ũi]
dt

= −A−1
i Ci[ũi] (2.4)

where the matrix Ai et C depend only on the areas and the angles’ cotan-
gents of the triangles Ti.

Now we assemble the equations on each node p = p0, taking t small enough
to take in account only the first neighbors of p. Taking the sum over all
neighboring triangles {T1, . . . , Tm} near p:

m∑

i=1

d[ũi]
dt

= −
m∑

i=1

A−1
i Ci[ũi] (2.5)

Writing (2.5) in matrix form, we find the importance of each neighbor for the
computation of ũ(t, p). This procedure simplifies considerably the equations
and we finally obtain

d[ũ(t, p)]
dt

=
m∑

i=1

wi (ũ(t, pi)− ũ(t, p)) (2.6)

where the weights wi are

wi =
cotθi + cotβi∑m

i=1 Ai
, (2.7)

where θi and βi are the angles opposite to the edge p, pi (see fig. 2.4).

This is the first but not the last time we find the cotangents of the interior
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angles of the triangles to be in the center of the Laplace-Beltrami estima-
tions. In particular, in Chapter 2, we will prove how this result is obtained
again and again with different methods.

The numerical solution of the problem is defined by

ũ(t + δ, p) = ũ(t, p) + δ

mp∑

i=1

wi (ũ(t, pi)− ũ(t, p)) (2.8)

with the initial condition ũ(0, p) = f(p). To guarantee the stability and
convergence of the finite element scheme, The iteration step should be in
the order of ([5, 20]):

δ < dnodal ·
∣∣∣∣

first derivatives of u

second derivatives of u

∣∣∣∣

where dnodal is the maximal distance between nodes.

The critical value of δ above which the numerical resolution will be unstable
for the diffusion equation depends on thermal conductivity, which can be
seen as conceptually equivalent to node distance: the closer the pair of nodes
is, the stronger their mutual influence, and this mimics the situation of high
thermal conductivity and fast heat propagation. Irregular node spacing,
thus, parallels a situation of varying thermal conductivity across the field.

The critical temporal iteration step is also directly proportional to the min-
imal node distance, because instability tends to spread over the whole lat-
tice, and therefore a single pair of nodes that are too close together will be
enough to globally affect the result. Lattices possessing nodes in these con-
ditions require very small iteration steps, and this may lead to exceedingly
long processing times. Hence, a double constraint operates at the level of
node separation: small inter nodal distance imply a small temporal iteration
step and long computation times; on the other hand, very large inter nodal
distances will eventually affect the reliability of the Laplacian estimations.
There is thus, a trade-off between processing speed and estimation accu-
racy. If computation time is not unreasonably large, a conservative value
for δ should be chosen.

Note that the finite element method is local in the sense that it is possible to
estimate the Laplace-Beltrami operator on a vertex, using the information
lying locally on its first ring neighboring triangles. On the other hand,
with the parametric method it is necessary to compute the Laplace-Beltrami
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estimator for all the vertex at the same time, which can be more costly if
we only want to work on part of the surface. The parametric method does
not provide local estimators.

For this work, we have implemented both approaches (appendix 10.5) to
work on general triangulated surfaces (in [20] an implementation is done for
closed triangulations where each vertex has a constant number of neighbors).

2.3.2 The Laplace-Beltrami on implicit surfaces

We will now introduce the implicit framework explaining the generalization
of the heat equation for scalar images defined on implicit surfaces, as done
by Bertalmio et al in [10] and [9].

Preliminaries for the implicit function approach

For a given vector w ∈ R3, we define Pw as the orthogonal projection matrix

Pw = I − w ⊗ w

‖w‖2 .

As a consequence, the components of the matrix are

(Pw)ij = δij − wiwj

‖w‖2 ,

with δij standing as usual for the Kronecker delta.

Let S ⊂ R3 a surface, and ν its normal at x ∈ R3. Pν is an operator that
projects vectors onto the tangent plane of S at point x.

Now, for X a vector field in R3, we may define the differential operator PX∇
as the projection on the X-tangent plane, i.e.

(PX∇)i =
3∑

j=1

(
δij − XiXj

‖X‖2

)
∂xj

where ∂xj is the gradient vector operator in R3.

Given a real valued function u on R3 and given a vector field Y on R3 we
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will indistinctly use the notations

(PX∇) u = PX (∇u) = PX∇u

PX∇ · Y =
3∑

i=1

(PX∇)i Yi.

Projectors are useful tools when applied for the vector field X = ∇ψ because
if we fix x ∈ R3, P∇ψ projects vectors into the level-set surface of ψ passing
through x. Therefore, if x ∈ S, P∇ψ projects vectors onto S at x.

Particularly, P∇ψ∇u evaluated on S is the projection of the gradient of u

onto S. As a matter of fact, we define through this procedure what will be
called in the remaining of this thesis the surface gradient of u on S or the
intrinsic gradient:

∇Su := P∇ψ∇u.

Let us now list some useful properties of this tool:

1. Pwv · z = v · Pwz = Pwv · Pwz,

2. (PX∇)i u = ∇u · PXei,

3. P∇u∇ · (P∇uX) = ∇ · (P∇uX ‖∇u‖) 1
‖∇u‖ .

We represent the surface S by the zero level-set of a higher dimension
function ψ : R3 → R, positive outside S and negative inside S, so that
S =

{
x ∈ R3 : ψ (x) = 0

}
.

In our implementation the function ψ is the signed distance function to S.

The scalar or vector data u (x) , x ∈ R3 is then smoothly extended to a
band surrounding S.

Data in Implicit form Usually, the input image data is defined only in
the surface, to extend the initial image u0 over R3, a method proposed by
Chen et al (1999) is to look for a u such as:

∇u · ∇ϕ = 0,

solving the PDE:
du

dt
+ sign(ϕ)(∇u · ∇ϕ) = 0
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(∇u · ∇ϕ)

−(∇u · ∇ϕ)

Figure 2.5: Data extension to implicit form

on a narrow band surrounding S.

Computation of the isotropic diffusion equation

If we want to smooth the data u (x) : S → R, where S is a surface, a way to
do it is to follow the variational approach which consists in minimizing the
corresponding 2-harmonic energy (see [10] and [9]):

1
2

∫

S
‖∇Su‖2 dS,

which is equivalent to

1
2

∫

Ω∈R3

‖P∇ψ∇u‖2 δ (ψ) ‖∇ψ‖ dx. (2.9)

This equivalence can be derived from the fact that ∇Su = P∇ψ∇u (as we
noticed in the previous section) combined with the fact that

∫

Ω
δ (ψ) ‖∇ψ‖ dx =

∫

S
dS.

The equation that minimizes this energy, i.e. the corresponding harmonic
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map is

∂u

∂t
= ∆Su (2.10)

= ∇S · ∇Su (2.11)

=
1

‖∇ψ‖∇ · (P∇ψ∇u) ‖∇ψ‖ (2.12)

∇S and ∆S stand here as usual for the intrinsic gradient and intrinsic Lapla-
cian (the Laplace-Beltrami operator). This can be obtained computing the
gradient descent of (2.9) (See [8] for details on this particular question).

Considering

E (u) =
1
2

∫

Ω∈R3

‖P∇ψ∇u‖2 δ (ψ) ‖∇ψ‖ dx

and µ a perturbation of u, we have that (for the complete computation see
appendix 10.2):

d

dt

∣∣∣∣
t=0

E (u + tµ) = −
∫

S

1
‖∇ψ‖∇ · (P∇ψ∇u ‖∇ψ‖) µdS (2.13)

and since the last term must be identically equal to zero for all µ, we can
conclude that at the zero level-set ψ,

1
‖∇ψ‖∇ · (P∇ψ∇u) ‖∇ψ‖ = 0.

We can now extend this to the whole domain Ω, as long as we assume that
‖∇ψ‖ 6= 0 at least in a band surrounding the surface.

Note that this result could have been intuitively predicted. Indeed, if we
replace the expressions in the PDE (2.1) with the intrinsic ones, meaning
that we start with the intrinsic problem

{
∂
∂tu(x, t) = ∆su(x, t)
u(x, 0) = u0(x)

, (2.14)

where ∆Su(x, t) is the Laplace-Beltrami operator:

∆Su(x) = ∇S · ∇Su(x),

and we arrive at the same result as in the Euclidean space case.

A numerical algorithm can be implemented using widely known numerical
schemes for 3D operators without special considerations of the fact that we
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Noisy stripes image Regularized image
over a torus dt = 0.1, 10 iterations

Noisy smiley image Regularized image
over a sphere dt = 0.1, 25 iterations

Figure 2.6: Examples of isotropic regularization on scalar images

are dealing with surfaces. Everything is made on the cartesian grid. This is
one of the reasons that makes this approach so attractive to implement for
more complicated PDEs.

2.4 Summary and conclusions

In this chapter we have introduced the implicit and explicit surface repre-
sentations, and discussed the related literature. We explained the general-
ization of the isotropic regularization of flat images to surfaces to images
defined for the two principal surface representations. We chose to explain in
detail the explicit (finite element and parametric approximation, [20]) and
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implicit ([8, 10, 9]) Laplace-Beltrami regularization, which in the addition
to the implicit anisotropic regularization, were the state of the art of image
surface regularization methods when this work began. In the next chapter,
we will show a new, simpler estimation for the Laplace-Beltrami operator
defined on triangulated surfaces, and two novel regularization methods: the
anisotropic regularization and the Beltrami flow for images defined on tri-
angulated surfaces.
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Chapter 3

Regularization on explicit

surfaces

In this chapter we develop our work done1 on scalar images regularization
over triangulated surfaces. We begin with the isotropic regularization, pre-
senting a new numerical approach for the estimation of the Laplace-Beltrami
operator. In the second part of the first section, we introduce the Discrete
Exterior Calculus approach ([41]), which results relate to our approach. In
the second section we use the same framework to deal with anisotropic reg-
ularization, and generalize the numerical method to estimate a whole class
of operators. In the third section we introduce the Beltrami framework and
generalize it for images defined on triangulated surfaces, proposing an nu-
merical implementation based on the previous sections. We also show results
on synthetic images.

We begin with the isotropic diffusion and present a different approach from
those shown in chapter 2. We then discuss the anisotropic case together
with the Beltrami flow regularization.

3.1 Isotropic diffusion

In this subsection, we present an original procedure to obtain a discrete
Laplace-Beltrami operator. We later extend this procedure to more general
differential operators and show that it is equivalent to the classical estima-

1Work published in [83, 82, 54].
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Figure 3.1: Area used for the average estimation and elements involved

tion shown in section ss:fem.

We then compare this procedure to recent results that use the Discrete
Exterior Calculus ([41]) as a major tool.

3.1.1 An area-averaged Laplace-Beltrami estimation

Let S be a triangulated surface, (u, v) 7→ x ∈ S a conformal parameteriza-
tion, and I : S → R a scalar image painted on the surface.

Using some ideas sketched in [30, 59] for surface fairing, we consider

ˆ∆SI(x) =
1
A

∫

A
∆SI(x)dx

= ( ∆SI(p) averaged over the regionA )

≈ ∆SI(p)

as our choice for a discrete Laplace-Beltrami on the node p, where A is
the area defined by the triangles surrounding p (see Figure 3.1). Let pi

for i =, 1 . . . , nneighbors be the neighboring points of p, ordered counter-
clockwise. Xi for i =, 1 . . . , nneighbors stands for the pi counterparts in the
parametric space, for an arbitrary conformal parametrization X : R2 → S,
i.e. X(Xi) = pi.

By the Gauss Theorem, using the fact that F is linear on each triangle and
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that ∇I(x) is constant, we have:

1
A

∫

A
∇S · ∇SI(x)dx =

1
A

∫

∂A
∇SI(x) · nu,vdl

=
1
A

∑

T∈A

∫

∂A∩T
∇SI(x) · nu,vdl

=
1
A

∑

T∈A

∇SI(x) · [Xi −Xi+1]⊥

x ∈ ∂A ∩ T for each triangle.

Now, let us consider a fixed triangle T . Since F is linear on its surface,
using the linear basis functions Bl over the triangle T and the fact that
(Bi + Bj + Bk)(u, v) = 1, we get that

I(x) = I(p)Bi(u, v) + I(pi)Bj(u, v) + I(pi+1)Bk(u, v),

∇u,vI(x) = I(p)∇u,vBi(u, v) + I(pi)∇u,vBj(u, v) + I(pi+1)∇u,vBk(u, v)

= (I(pi)− I(p))∇u,vBj(u, v) + (I(pi+1)− I(p))∇u,vBk(u, v).

Computing the gradients of the basis functions we obtain,

∇Bj(u, v) =
1

2AT
(X −Xi+1)⊥

∇Bk(u, v) =
1

2AT
(Xi −X)⊥

and as a consequence we obtain

∇u,vI(x) =
1

2AT

[
(I(pi)− I(p))(X −Xi+1)⊥ + (I(pi+1)− I(p))(Xi −X)⊥)

]
.

(3.1)
Since AT is proportional to the sine of any angle of the triangle we get

∇u,vI(x) · [Xi −Xi+1]⊥ = [cot(pi+1)(I(pi)− I(p)) + cot(pi)(I(pi+1)− I(p))]
(3.2)

and therefore

∆SI(p) ≈ 1
A

∑

T∈A

1
AT

[(Xi −X) · (Xi −Xi+1)(I(p)− I(pi+1)) +

(Xi+1 −X) · (Xi −Xi+1)(I(pi)− I(p))],
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or
∆SI(p) ≈ 1

A

∑

T∈A

(cotθi + cotβi)(I(p)− I(pi)). (3.3)

where θi, βi are the two opposite angles of the edge (p, pi) in the area A (see
fig. 3.1).
The conformal map preserves angles, so we can use the original triangle
(p, pi, pi+1) ⊂ S instead of the one in R2.

Remark As announced in the introduction of this chapter, we arrived to
the same expression than the one obtained by Chung et al. in [20] and [41].
This expression has been proved to be the best estimation for the Laplace-
Beltrami operator in [106] in terms of convergence.

Algorithm We first compute an estimation of the Laplace Beltrami we-
ights on each vertex p by

∆̂SI(p) =
1
A

∑

T∈A

(cotθi + cotβi)(I(p)− I(pi)) (3.4)

where θi, βi are the two opposite angles of the edges (p, pi) in the area A.

We then apply the following PDE using this approximation,

∂u(x, t)
∂t

= ∆Su(x, t) (3.5)

where u(x, 0) = I(x), x ∈ S using finite differences.

3.1.2 Discrete Laplace-Beltrami via Discrete Exterior Cal-

culus (DEC)

Introduction to DEC In [41] a Discrete Exterior Calculus theory is de-
veloped using only discrete combinatorial and geometric operations on a
simplicial complex and its geometric dual. The derivation of these may re-
quire that the objects on the discrete mesh, (not necessarily the mesh itself)
are interpolated. This theory includes not only discrete equivalents of differ-
ential forms but also discrete vector fields and the operators acting on these
objects. Definitions are given for discrete versions of all the usual operators
of exterior calculus.
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The presence of forms and vector fields allows us to address their various
interactions, which are important in applications. In many examples, it is
found that the formulas derived from DEC are identical to the existing for-
mulas in the literature. It is shown that the circumcentric dual of a simplicial
complex plays a useful role in the metric dependent part of this theory. The
appearance of dual complexes leads to a proliferation of the operators in the
discrete theory. There are many constraints in numerical algorithms that
naturally involve differential forms. Preserving those features directly on
the discrete level is an interesting achievement. The purely discrete point of
view is pushed as far as possible, using interpolation as a very useful device.

Even if this work ([41]) propose interesting new discrete operators to ap-
proximate EDPs over triangulations, a complete DEC theory has not been
fully developed. There are still missing some important points. There are
several definitions for the interior product, sharps and flats and it is unclear
how to combine them to obtain nice properties. The condition for the mesh
to be flat for the case of primal vector fields is very imitating. Discrete ten-
sors are still not well defined. And of course, the convergence and stability
study is still in progress. In [41] some hints are done on the direction to look
for, but the work is still waiting to be done.

Given a smooth manifold M the following spaces and operators are defined:

• p-forms in Ωp(M) and vector fields in ℵχ(M)

• Exterior derivative d : Ωp(M) → Ωp + 1(M)

• Hodge star ∗ : Ωp(M) → Ωn − p(M)

• Wedge product ∧ : Ωk(M)× Ωl(M) → Ωk+l(M)

• Sharp map ] : Ω1(M) → X(M)

• Flat map [ : X(M) → Ω1(M)

• Interior product (contraction) iχ of forms with vector field

• Lie derivative £χ of forms and vector fields

Simplicial and dual complexes represent the discretized smooth manifold.
Cochains represent the discretized differential form. A coboundary operator
models the discrete exterior derivative. All these assumptions are common
to the other DEC theories.
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For metric-dependent operators, they use circumcentric dual complex to
define metric-dependent operators of exterior calculus Hodge star (∗), ([)
and sharp (]). Then they use these to define metric-dependent operators
gradient, curl and Laplace-Beltrami. ∗ and [ are used to define divergence,
which should depend on metric only via the Lie derivative of volume form.

For the metric-independent operators, they define exterior derivative (d) as
coboundary, as usual in this field; the wedge product (∧). Define interior
product, c.a.d. contraction of a vector field and a form, in two ways once
via a new definition involving ∗,∧ and [, and once via the dynamic definition
of Bossavit [2003]. Define Lie derivative (£) in two ways once using interior
product and once via a dynamic definition. The two definitions of interior
product and Lie derivative may be the same.

Review of Smooth Flat and Sharp Smooth sharp (]) and flat ([) are inverses
of each other. For form α, vector fields X and V :

α]V̇ = α(V )

X[(C) = XV̇

(X[)]V̇ = X[(V ) = XV̇

(α])[(V ) = α]V̇ = αV.

Gradient ∆f = (df)] or equivalently (∆f)[ = df .

Discrete Laplace-Beltrami derivation In the smooth case the Laplace-
Beltrami on functions is a special case of the more general Laplace-deRham
operator ∇ : Ωk(M) → Ωk(M) defined by ∇ = dδ + δd.

Let us compute here ∇f on a primal vertex σ0 where f ∈ Ω0
d(K) and K is

a (not necessarily flat) triangle mesh in IR3. Suppose that K is oriented by
orienting all its triangles counterclockwise. Since δf = 0 by definition, we
have that

〈∇f, σ0
〉

=
〈
δdf, σ0

〉

=
〈∗d ∗ df, σ0

〉
.

Now by using the definition of discrete Hodge star followed by the discrete
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Stokes theorem we get

〈∗d ∗ df, σ0
〉

=
|σ0|

−| ? σ0|
〈
d ∗ df, ?σ0

〉

=
−1
| ? σ0|

〈∗df, ∂(?σ0)
〉
.

The explanation for the use of signed volume −| ? σ0| was given in Rem.
4.1.2 in [41]. Thus

〈∇f, σ0
〉

=
1

| ? σ0|
〈∗df, ∂(?σ0)

〉
.

By definition of the dual boundary,

∂(?σ0) =
∑

σ1Âσ0

?(sσ1σ1)

where sσ1 = ±1 is a sign that depends on the orientation of K and σ1. In
dimension 2, with triangles of K oriented counterclockwise, the definition
of dual boundary dictates that the edges sσ1σ1, which means that all edges
incident on σ0 are now all pointing outwards. Thus,

〈∗df, ∂(?σ0)
〉

=

〈
∗df,

∑

σ1Âσ0

?σ1

〉

=
∑

σ1Âσ0

〈∗df, ?σ1
〉
.

Another use of the definition of discrete Hodge star gives

〈∗df, ?σ1
〉

=
?|σ1|
|σ1|

〈
df, ?σ1

〉
.

But then by discrete Stokes theorem we have that

?|σ1|
|σ1|

〈
df, ?σ1

〉
= f(v)− f(σ0)

where σ1 = [σ0, v]. Putting all this together we get that

〈∇f, σ0
〉

=
1

| ? σ0|
∑

σ1=[σ0,v]

| ? σ1|
|σ1| (f(v)− f(σ0)).
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The above expression corresponds to eq. 2.7 found using the finite element
method.

3.2 Anisotropic diffusion

3.2.1 Anisotropic diffusion on flat images

A method to smooth images while preserving boundaries, called anisotropic
diffusion has been first proposed by Perona and Malik in [68]. This non-
linear method overcomes some limitations of the isotropic smoothing. Since
then, the idea has been widely used and extended by many authors, see for
instance [52, 86, 4].

These algorithms use a diffusion process, in which the diffusion coefficient is
chosen to vary spatially in a way that it encourages intraregion smoothing
in preference to interregion smoothing. It is called anisotropic because the
diffusion is made with different weights for different spatial directions.

In [68], the anisotropic diffusion flow for an scalar image I : IR2 → IR is
given in the form:

It = div (c(x, y, t)∇I) (3.6)

where c(x, y, t) can be chosen to be a function of the image gradient, for
instance,

c1(x, y, t) = exp(−(|∇I|/K)2)

c2(x, y, t) =
1

|∇I| .

Choosing these kind of functions leads to a diffusion flow that not only
preserves the edges, but sharpens them. See fig 3.2 for an example. In this
section, we study the simple anisotropic diffusion that corresponds to use c2

on the flat image case.

The Beltrami flow, which is presented below on section 3.4, provides a way to
perform image regularization between the isotropic and anisotropic diffusion,
using a parameter that tunes its behavior.

In [96], the idea of anisotropic regularization has been extended for far more
general models and for the case of multivalued images (including color im-
ages), defined on IRn (flat and volumetric images). With the approach de-
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veloped in that work, the anisotropy of the diffusion flow can be controlled
by defining a tensor field.

3.2.2 Area-averaged estimation

We want to obtain an approximation of ∇S · ( 1
|∇SI(p)|I(p)), (p being one of

the nodes of the triangulation), using a mean of this quantity in the area A

defined by the triangles immediately surrounding p,

∇S ·
(

1
|∇SI(p)|∇SI(p)

)
≈ 1

A

∫

A
∇S ·

(
1

|∇SI(x)|∇SI(x)
)

dx. (3.7)

Using again the Gauss Theorem and the fact that F is linear on the triangle
combined with the fact that ∇I(x) is constant we obtain,

1
A

∫

A
∇S ·

(
1

|∇SI(x)|∇SI(x)
)

dx =
1
A

∫

∂A

∇SI(x) · nu,v

|∇SI(x)| dl

=
1
A

∑

Ti∈A

∫

∂A∩Ti

∇SI(x) · nu,v

|∇SI(x)| dl

=
1
A

∑

Ti∈A

∇SI(x) · nu,v

|∇SI(x)| dl

for x ∈ ∂A ∩ Ti

Using Equation (3) we get

∇S · ( 1
|∇SI(p)|I(p)) ≈ 1

A

∑

Ti∈A

1
|∇SI(x)|∇SI(x) · [pi − pi+1]⊥

=
1
A

∑

Ti∈A

1
|∇SI(x)| [cot θi(I(pi)− I(p)) + cot γi(I(pi+1)− I(p))] .

for x in the triangle Ti, where θi is the internal angle of the node pi+1 and
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Original noisy image

Isotropic Diffusion Anisotropic Diffusion
using c2 in (3.6)

Figure 3.2: Isotropic vs Anisotropic diffusion
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γi is the internal angle of the node pi, and

cot θi =
< pi+1 − p, pi+1 − pi >

2ATi

,

cot γi =
< pi − pi+1, pi − p >

2ATi

,

ATi =
1
2
|(pi+1 − p)× (pi − p)|,

|∇u,vI(x)| =
1

2AT
|(I(pi)− I(p))(p− pi+1) + (I(pi+1)− I(p))(pi − p)| .

In the resulting algorithm, we compute the cotangents of the angles and the
triangles areas once and store the resulting values. At each time step, we
recompute the gradient’s norm. Unlike in the isotropic diffusion algorithm,
where the Laplace-Beltrami weights depend only on the surface geometry,
in the anisotropic case, the weights also depend on the image function. As
a consequence the weights need to be updated at each iteration, since the
image function itself changes at each iteration. For more details on the
algorithm, we reproduced our c++ code in the Appendix 10.5.

3.3 Extension to a more general case

We look this time for a local approximation of ̂∇S · (φ(|∇SI(p)|)∇SI(p)) on
the nodes of S . As usual, p stands for a node of the triangulated surface
and φ denotes a standard real function.

Following exactly the same method than before, we take the spatial mean of
this quantity in the area A defined by the triangles immediately surrounding
p (see fig 3.1)

∇S · (φ(|∇SI(p)|)∇SI(p)) ≈ 1
A

∫

A
∇S · (φ(|∇SI(x)|)∇SI(x))dx

and we retrieve that

1
A

∫

A
∇S · (φ(|∇SI(x)|)∇SI(x))dx =

1
A

∫

∂A
φ(|∇SI(x)|)∇SI(x) · nu,vdl
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=
1
A

∑

Ti∈A

∫

∂A∩T
φ(|∇SI(x)|)∇SI(x) · nu,vdl

=
1
A

∑

Ti∈A

φ(|∇SI(x)|)∇SI(x) · [Xi −Xi+1]⊥I∂A∩Ti(x)

where p, pi, pi+1 stand for the vertex of the triangle Ti. X, Xi, Xi+1 represent
the correspondences of the vertex in the (u, v) space; and I∂A∩Ti(x) stands
for the indicator function over the set ∂A ∩ Ti.

Let us now take a fixed triangle Ti. Let Bl, l = 1, 2, 3 be the linear basis
functions over the triangle Ti. Because of (B1 + B2 + B3)(u, v) = 1,

∇SI(x) = I(p)∇SB1 + I(pi)∇SB2 + I(pi+1)∇SB3

= (I(pi)− I(p))∇SB2(u, v) + (I(pi+1)− I(p))∇SB3(u, v)

=
1

2ATi

[(I(pi)− I(p))(X −Xi+1)⊥

+ (I(pi+1)− I(p))(Xi −X)⊥)]

and we find that

∇B2(u, v) =
1

2ATi

(X −Xi+1)⊥

∇B3(u, v) =
1

2ATi

(Xi −X)⊥

where ATi is the area of the triangle Ti. Using the fact that ATi is propor-
tional to the sine of any angle of the triangle,

∇SI(x) · [Xi −Xi+1]⊥ = [cot(pi+1)(I(pi)− I(p)) + cot(pi)(I(pi+1)− I(p))].

We get

∆̂gI(p) =
φ( ̂|∇SI(p)|)

A

∑

Ti∈A

{φ( ̂|∇SI(p)|) ·

[cot θi(I(pi)− I(p)) + cot γi(I(pi+1)− I(p))] }

for x in the triangle Ti, where θi is the internal angle of the node pi+1 and
γi is the internal angle of the node pi. Moreover,

̂|∇SI(p)| =
1

2AT

∑

Ti∈A

|(I(pi)− I(p))(p− pi+1) + (I(pi+1)− I(p))(pi − p)|
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Note that the approximation is independent from the chosen parametriza-
tion, and can be used to approximate other differential operators of the
form

∇S · (φ(|∇SI(p)|)∇SI(p)) (3.8)

for φ being a function φ : IR → IR.

3.4 Beltrami flow

3.4.1 Introducing the Beltrami framework

The problem of regularizing noisy data defined on non flat - either implicit
or intrinsic - surfaces has been tackled with two functionals that operate
on the space of embedding maps of Riemannian manifolds (see [48] for a
non-variational approach.)

• The Polyakov action: It was introduced in the Beltrami framework
for images over flat surfaces [85, 86, 89, 47, 84]. It uses a local and
intrinsic-parametric description of the manifolds and treats the metric
as a dynamic variable.

• Harmonic maps: It has been recently used to denoise images on
manifolds [10, 58, 12, 14, 79]. It relies on an implicit description of
the surface within which the noisy data are constrained to live. The
metric is a parameter of the process.

We clarify later in this chapter the relationship between the intrinsic Poly-
akov action of the Beltrami framework [85, 86, 89, 47, 84] and the implicit
harmonic energy functional [10, 58, 12, 14, 79].

Although the functionals are very similar, there are differences in the way
various problems are formulated. It has direct consequences on the way the
functionals should be applied. Specifically, for the case of denoising images
on non-flat surfaces, there are differences in the definition of the manifolds
and the embedding functions.

In many problems in computer vision, we usually have an underlying mani-
fold - that can be either flat or curved - over which the features are defined. A
typical situation is when the image rectangle is the underlying flat manifold
and when at each pixel, we assign values such as intensity, color, gradient
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value, gradient direction, motion vector, disparity vector, texture character-
istics, etc. This is easily described mathematically as a fiber bundle in
which a space is attached to each point in the base manifold. The spaces
at different points of the manifolds are isomorphic. A choice of one point in
the attached space for every point in the base manifold is called a section.
If the attached space is a vector space, then this section is called a vector
field.

In order to better understand the difference between the two formulations,
we consider the case of a gray-value image defined on a surface (flat or
not). In the harmonic energy approach, it is usually assumed that the map
is defined from the 2D surface (the base manifold) to the real axis (the
fiber). It means that the metric of the base manifold is used for the
derivatives and the fiber’s 1D flat metric is used for the values of the scalar
field. If the chosen norm is L2, we get a linear diffusion process whether the
base manifold is flat or not. In the case of L1 norm or the Φ formulation
[52, 77, 25] we get non-linear flows. These flows only depend on the absolute
value of the gradient, defined over the base manifold [14, 93].

In the Beltrami framework [85, 86, 47], the basic object is the section
embedded in the fiber bundle. For a flat gray-value image the graph of
the intensity function is thereby the section of this 3D fiber bundle and is the
primary object of interest. The metric of the fiber bundle induces a metric
on this section and both are used in the functional. The flow depends on the
geometry of the data and not only on the geometry of the base manifold.
This means that the image metric (i.e. the section metric) evolves
with the flow. It also means that the flow may depend on the direction
of the gradients and not only on their amplitudes. The Beltrami flow which
has been shown to interpolate, for flat gray-value images, between the L2

norm and the L1 norm [86, 88] is generalized in this work to images over
non-flat surfaces. This work show the way the Beltrami flow interpolates
between the L2 and L1 flows on non-flat surfaces (see [14, 93] for references).
A common feature of both frameworks is the ability to deal with non-flat
feature spaces as done in [89, 93, 84, 97, 15].

3.4.2 Beltrami flow over non-flat surfaces

Assume that we have a surface Σ and a Riemannian structure on Σ i.e
a metric (g̃ij). For cases where the surface is given as an embedding in
IR3 we can take, for example, the induced metric of Σ as in the previous
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Section. The regularization acts on the image only and does not change
the geometry of the surface. The metric (g̃ij) is constant with respect to
the time. In addition we are given a scalar field (image) i.e. a function U ,
defined on Σ. In a local coordinate system (x, y) of the surface Σ, the line
element is

dsΣ = g̃11dx2 + 2g̃12dxdy + g̃22dy2

We add now a third dimension, perpendicular to the surface and we describe
the scalar field U(x, y) as a surface S embedded in the 3D fiber bundle
M = Σ× IR. The surface S is a section of the fiber bundle. The embedding
coordinates are

(
x(u, v) = u, y(u, v) = v, X3(u, v) = U(x, y)

)

or by abuse of notations: (x, y, U(x, y)), where (x, y) are coordinates on S .

The line element in the manifold/fiber bundle M is

dsM = g̃11dx2 + 2g̃12dxdy + g̃22dy2 + β2dU2

or, in equivalent way, the metric of the 3D manifold M is

(hij) =




g̃11 g̃12 0
g̃21 g̃22 0
0 0 β2

.




Assuming an isometric embedding i.e. dsS = dsM, we obtain the induced
metric on the section S :

dsS = g̃11dx2 + 2g̃12dxdy + g̃22dy2 + β2
(
Uxdx2 + 2UxUydxdy + U2

y dy2
)

,

where β2 takes into account the differences in dimensions between the spatial
directions and the intensity one. The metric elements on S , are therefore:

gij = g̃ij + β2UiUj . (3.9)

Denote by G the matrix whose elements are gij . Using this metric we can
calculate the Laplace-Beltrami operator:

∆gU =
1√
g
Div

(√
gG−1∇U

)
, (3.10)
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where g = det(G). Note that here Div and ∇ are two-dimensional. The
equation of motion that results from the Polyakov action is:

Ut = ∆gU + Γ3
ab(∂iX

a)(∂jX
b)gij ,

where
Γc

ab =
1
2
hcd (∂ahdb + ∂bhad − ∂dhab) .

In our case

Γ3
ab =

1
2
h3d (∂ahdb + ∂bhad − ∂dhab) =

1
2
h33 (∂ah3b + ∂bha3 − ∂3hab) = 0,

where the second equality derives from the decoupling of the third dimension
from the other two (i.e. the independence of the fiber on the base manifold)
and the last equality comes from the fact that h33 = const and that the
other elements do not depend on U (note that ∂3 ≡ ∂/∂X3 = ∂/∂U) .

The motion equation is therefore

Ut = ∆gU ,

where ∆gU is given in (3.10) with the induced metric we derived in (3.9).

3.4.3 Example: Gray image on the sphere

In order to apply the above equations to an image “painted” on the sphere,
we need to compute the metric g̃ij of the sphere. We choose to represent
the sphere by stereographic coordinates from the south pole. The metric in
this case is (derivation on appendix 10.1)

g̃ij =
4

1 + x2 + y2
δij . (3.11)

In general we write
gij = g̃ij + β2UiUj ,

where Ui = ∂U/∂xi (we denoted here x1 = x and x2 = y for conve-
nience).Define

A(x, y) =
4

1 + x2 + y2
.

58



We find, consequently, that

g = det(gij) = A2 + Aβ2(U2
x + U2

y ) ,

and the motion equation becomes

Ut =
1√
g
Div

(
1√
g

(
A + β2U2

y −β2UxUy

−β2UxUy A + β2U2
x

)
∇U

)
.

3.4.4 Estimation of the differential operator

Let S be a surface parametrized by

P (u) = {x(u), y(u), z(u) : u = (u1, u2) = (u, v) ∈ D}.

Let G = (Gi,j), Gi,j = 〈Pi, Pj〉 be the Riemanian metric tensor for this pa-
rametrization.
Then, for a function I : S → R,

∇P I(x) = ∇u,vI(x) =
2∑

i,j=1

Gi,j ∂I

∂ui
Pi

where (Gi,j) = G−1. We will use the (u, v)-space with the metric induced
by the local parameterization so that (3.10) can be expressed as:

It = ∆gI =
1√

1 + β|∇u,vI|2
Div

(√
1 + β|∇u,vI|2∇u,vI

)
.

Note that if we take the limit

lim
β→0

∆gI = ∆u,vI

lim
β→inf

∆gI =
1

|∇u,vI|Div(|∇u,vI|∇u,vI)

we find the L2 and L1 flows respectively.
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Let us call ∇SI(x) = ∇u,vI(x) for x ∈ S. We then simply take

φ(|∇S(I(x))|) =
1√

1 + β|∇u,vI(x)|2 (3.12)

and replace it in the algorithm described in section 3.3.

Remark Note that if we take β → 0, we recover the expression 2.7 which
approximates the Laplace Beltrami operator in order to perform isotropic
smoothing:

lim
β→0

∆̂gI(p) = lim
β→0

1
A

√
1 + β|∇u,vI(x)|2

∑

Ti∈A

{ 1√
1 + β|∇u,vI(x)|2 ·

[cot θi(I(pi)− I(p)) + cot γi(I(pi+1)− I(p))] }
=

1
A

∑

Ti∈A

[cot θi(I(pi)− I(p)) + cot γi(I(pi+1)− I(p))].

This last expression can be found in [20] just like the expression of ∆̂u,vI(p)
given below

∆̂u,vI(p) =
∑

Ti∈A

wi(I(pi)− I(p))

with wi =
cot θi + cotβi

ATi

,

which is obtained using common trigonometric identities. As before, θi, βi

are the two opposite angles of the edge (p, pi) in the area A (see fig. 3.1).
Also note that, when the surface is flat, we find that the Laplace-Beltrami
estimation becomes a Laplacian discretization.

3.4.5 Implementation details

The implementation was done using the 3D visualization package plouvis
developed at Odyssée Lab. We compute the value of In

p , the value of I on
the vertex p of Σ at the nth iteration based on the values of In−1

pi
. As usual,

pi, .., pnb of neigh denote the vertex neighboring p.

First, we compute the cot θi,cot γ, and ATi for each node p only once. Then,
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for each iteration n, we actualize the flow as follows:

In
p = In−1

p + dt∆̂gI(p),

∆̂gI(p) =
φ( ̂|∇SI(p)|)

A

∑

Ti∈A

{φ( ̂|∇SI(p)|) cot θi(I(pi)− I(p))

+ cot γi(I(pi+1)− I(p))}.

3.4.6 Example

For this example (fig. 3.3) we use a triangulation from the Stanford Com-
puter Graphics Laboratory’s Data Base with the Japanese word for peace as
the data function. We added a gaussian noise with σ = 40. The first stage
of the algorithm takes about 2 minutes to be computed and the iterations
a few more minutes (from 1 to 5 depending on the value of our parameter
β). More examples on real images are presented in chapter 7.

For our experiments using the explicit framework, we used and developed
(with the exception of lapack and vtk) the c++ libraries:

• plouvis, an Image processing and 3D rendering library developed by
Robert Fourier at the Odyssée lab.

• lapack, fortran based linear algebra package.

• vtk, for the 3D visualization.

3.5 Summary and conclusions

In this chapter we have shown a novel numerical method for locally esti-
mating operators for images defined on triangulated surfaces that can be
used for a range of regularization techniques which involve operators of the
form (3.8. This estimation has successfully been used by Adde et al. in
[1, 2] to deal with the MEG/EEG inverse problem. For the case of isotropic
smoothing, it yields to the same expression for the estimation of the Laplace-
Beltrami operator obtained by Chung et al. in [20] and [41], which has been
proved to be the best estimation for the Laplace-Beltrami operator in [106]
in terms of convergence. In the second section we present a novel anisotropic
regularization method based on the same technique.
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Original noisy image β = 0 (Isotropic diffusion)

β = 0.01 β = 1 (Anisotropic diffusion)

Figure 3.3: Note the stair-casing effect on the anisotropic diffusion regular-
ization result and the blurry image obtained with the isotropic one.
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In the last section, we reformulate the Beltrami Framework for the case of
images defined on explicit surfaces, and propose an implementation. This
regularization technique provides a way to overcome the over-smoothing of
the isotropic regularization and the stair-casing effects anisotropic regular-
ization by tunning between the two approaches via the parameter β which
encodes the ratio between the data and spatial units. This parameter con-
trols the edge-preserving characteristic of the flow. The Beltrami flow is
shown to act as the linear diffusion (L2-norm) in the limit β → 0 and to
the strongly edge preserving diffusion (L1-norm for the scalar field) in the
limit β →∞ (up to time scaling). We have also illustrated the utility of this
approach showing synthetic examples. Examples on real images are shown
in chapter 7.
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Chapter 4

Regularization on implicit

surfaces

Since we have already introduced the implicit framework and the isotropic
diffusion using this method in the first chapter, we begin with the anisotropic
diffusion in the simplest case of the Perona and Malik regularization. In the
second section we generalize the Beltrami flow regularization for images
defines on implicit surfaces1. We then present some results on synthetic
images.

4.1 Anisotropic diffusion

We start by replacing the expressions on the P&M known PDE by the surface
versions explained in chapter 2, and using the properties given in subsection
2.3.2, we find that for the surface version of the anisotropic diffusion we have

∂u

∂t
= ∇ · ∇u

‖∇u‖ .

The gradient descent is

∂u

∂t
= ∇S · ∇Su

‖∇Su‖
=

1
‖∇ψ‖∇ ·

(
P∇ψ∇u

‖P∇ψ∇u‖ ‖∇ψ‖
)

.

1Work published in [83, 81, 82]
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This is quoted from [9, 10, 8, 58]. We implemented this method, and we
propose an alternative numerical scheme more stable that those given in the
cited works that can be found in appendix (10.4) .

4.2 Beltrami flow

In the previous chapter, we formulated the Beltrami flow for images defined
over non flat surfaces given in an explicit parametric form. In the following
section, we focus on the case where the surface is given in an implicit form.
In the implicit setup we are given an implicit surface Ψ(X1, X2, X3) = 0
and an implicit scalar image on the surface U(X1, X2, X3). We postpone
the treatment of this case to the next section and study first the easier case
of a one-dimensional manifold i.e. a curve on which a scalar field is given.

Although the derivation of the flow equations for scalar data defined over
a curve is very similar to the surface case, it is easier to get a clear image
of the situation for curves. We therefore describe first the derivations in
details in this simpler situation. The derivation in the first subsection is
purely geometric, and once the flow equation is established, it can be easily
generalized to higher dimensional manifolds, e.g. surfaces. An alternative
derivation can be found in [83].

4.2.1 Scalar field defined on a curve: Geometric derivation

The curve is given in the x-y plane and the data is pictured as the height in
the z direction. The data can be seen in that framework as a curve in IR3.
Note that this curve lies on the cylinder-like surface defined by Ψ(x, y) = 0.
We want to produce a curvature flow of this data such that it is confined to
the surface, which means that it is defined on the base curve. The projected
curvature on the surface is the geodesic curvature. Note however that the
fact that the data curve is on the cylinder-like surface, generated by the
base curve, is not enough in general to ensure that the data curve can be
represented as a function on the base curve since the evolution is not done
in the z direction only (compare with [12]). For a general flow, it may
happen that two or even more points of the data curve share the same x-y
values at different times. In order to avoid such problems and to get a flow
that respects discontinuities, we confine the flow by projecting the geodesic
curvature on the z direction. This procedure is analogue to the Beltrami flow
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σ = 50 dt = 0.7, 15 iterations

σ = 60 dt = 1, 40 iterations

σ = 30 dt = 0.5, 30 iterations

Figure 4.1: Examples of anisotropic diffusion of scalar images over implicit
surfaces
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which is a projection of the mean curvature flow on the intensity direction.

Formulating this geometric understanding, we represent the curve as the
intersection of two surfaces:

Ψ(x, y) = 0,
Φ(x, y, z) = z − βU(x, y) = 0. (4.1)

The surface defined by Ψ is a cylinder-like surface defined by the base curve,
which lies in the x-y plane. The second surface is the graph of the function U

which is defined over the x-y plane (and by restriction over the base curve).
The data function is modified along the flow in the z direction only. Thus,
it remains a function along the flow (see Fig. 4.2). We denote by D the
3D gradient D = (∂x, ∂y, ∂z)t, and by ∇ the 2D gradient ∇ = (∂x, ∂y)t. We
define the tangent vector to the curve by

T =
DΨ×D(z − βU)
||DΨ×D(z − βU)|| = [T1, T2, T3]t.

The curvature is then given by the second derivative of the curve.

kN = ∂sT = xs∂xT + ys∂yT + zs∂zT = T tDT

= (T ·DT1, T ·DT2, T ·DT3)t. (4.2)

The projection of this vector on the surface defined by Ψ(x, y) = 0 is ob-
tained by applying the projection operator PηkN . The normal to the surface
is

η =
DΨ
||DΨ|| .

We will write, abusing of the notation, PDΨ and P∇Ψ for the 3D and 2D
projections respectively. Keeping only the z component in (4.2) we get

Ut = (PDΨkN)z , (4.3)

which is the non-flat analogue of (5.14).

Let us calculate it explicitly. We have the following:

(DΨ×D(z − βU))t = (Ψy,−Ψx, β(ΨyUx −ΨxUy))
D(z − βU)t = (−βUx,−βUy, 1)

DΨt = (Ψx, Ψy, 0). (4.4)
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∇ψ

KN)
Z

U(X,Y)

Figure 4.2: The data curve as the intersection of the cylinder-like surface
induced by the base planar curve, extended to IR3, and the graph of the
function U .

Note that T does not depend on z. The projection operator is

PDΨ = I − DΨDΨt

||DΨ||2

=
1

||DΨ||2




Ψ2
y −ΨxΨy 0

−ΨxΨy Ψ2
x 0

0 0 ||DΨ||2




The equation of motion now reads

Ut =


PDΨ




T ·DT1

T ·DT2

T ·DT3







z

= T ·DT3.

Since T does not depend on z, only the x and y components enter the
calculation:

Ut = T1∂xT3 + T2∂yT3. (4.5)
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The gradient notation ∇ and all other vector notations are from now on
two-dimensional. We also denote the perpendicular gradient by

∇⊥Ψ = (Ψy,−Ψx)t.

Notice also that in the x-y plane we have the identities

||∇Ψ||2P∇Ψ∇U = (ΨyUx −ΨxUy)∇⊥Ψ
||∇Ψ||2||P∇Ψ∇U ||2 = (ΨyUx −ΨxUy)2. (4.6)

Define

g = ||∇Ψ||2 + β2(ΨyUx −ΨxUy)2

= ||∇Ψ||2 (
1 + β2||P∇Ψ∇U ||2) . (4.7)

We can finally write (4.5) as follows

Ut =
∇⊥Ψ√

g
· ∇

(
β(ΨyUx −ΨxUy)√

g

)

=
1√
g
Div

(
β||∇Ψ||2P∇Ψ∇U√

g

)
(4.8)

where we used the identities (4.6) and the fact that Div∇⊥Ψ = ∂x(Ψy) +
∂y(−Ψx) = 0.

In conclusion, this last equation allows us to denoise the scalar signal U lying
on the implicitly defined curve Ψ(x, y) = 0. This Beltrami flow defined on
implicit curve can also be generalized to the case of scalar field defined on
implicit surface. The form of the flow is identical. The only difference is the
dimension of the level set functions. For an n-dimensional manifold we use
an n + 2-dimensional level sets whose intersection gives the data section of
interest. An alternative derivation that coincides with this result is given in
[83].

4.2.2 The L1 and L2 limits

We show in this subsection that (4.8) interpolates between the non-flat L1

flow (5.8) and the L2 flow (5.5). Note that

lim
β→0

g = ||∇Ψ||2
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lim
β→∞

g = β2||∇Ψ||2||P∇Ψ∇U ||2. (4.9)

It is easily seen now that when β → 0, t →∞ (maintaining τ = tβ finite),
the implicit Beltrami flow defined in (4.8) tends to

uτ =
1

||∇Ψ||Div (||∇Ψ||P∇Ψ∇U) ,

which is the non-flat L2 flow. This fact was derived in a different manner
by Bertalmio and al [10].

The other case of interest, when β → ∞, t → ∞ (this time maintaining
τ = t/β finite), gives another flow as a result:

uτ =
1

||∇Ψ||||P∇Ψ∇U ||Div
( ||∇Ψ||P∇Ψ∇U

||P∇Ψ∇U ||
)

which is the non-flat L1 flow used in [10].

In one limit, we find the L2 norm which over-smooths the image while in
the other limit, we find the L1 flow with the notorious stair-casing effect.
Choosing for β intermediate values brings more degree of freedom in the
regularization of noisy data defined on surfaces. It opens new perspectives
with the advantage of smoothing anisotropically the image and conserving
the edges while avoiding the disadvantages of the total variation type of
flow. This is well illustrated with various synthetic and real images in the
next subsections that present our numerical results (figures 4.4, 4.5).

4.2.3 Implementing the regularization of scalar fields on sur-

faces

We compute the value of un
i,j,k, the value of u in the pixel (i, j, k) at the

nth iteration, based on the values of un−1 at the neighboring pixels. First,
we compute the vector ~N ' ∇Ψ (this is needed only once) using central
differences. Then, for each iteration n, we visit all pixels to compute:

• The gradient, its projection, and g.

• The divergence.

• The actualization of u.
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For the gradient ~vn
i,j,k we used backward differences

~vn
i,j,k = ∇+un

i,j,k =




un
i+1,j,k − un

i,j,k

un
i,j+1,k − un

i,j,k

un
i,j,k+1 − un

i,j,k

,




its projection on the surface

(
P ~N~v

)n

i,j,k
= ~vn

i,j,k −

3∑
m=1

~Ni,j,k[m] · ~vn
i,j,k[m]

∥∥∥ ~Ni,j,k

∥∥∥
2

~Ni,j,k,

and g,
gn
i,j,k = || ~Ni,j,k||2

(
1 + β2|| (P ~N~v

)n

i,j,k
||2

)
,

where square brackets represent the component of the vector. To compute
the divergence, we use backward differences,

∇− · ~wi,j,k = ~wi,j,k[1]− ~wi−1,j,k[1] +
~wi,j,k[2]− ~wi,j−1,k[2] +
~wi,j,k[3]− ~wi,j,k−1[3]

We switch forward differences and backward differences to avoid numerical
problems. Finally, the resulting flow implementation is:

un+1
i,j,k = un

i,j,k + ∆t
1√
gn
i,j,k

∇− ·

β

∥∥∥ ~Ni,j,k

∥∥∥
(
P ~N~v

)n

i,j,k√
gn
i,j,k


 .

We use a time step dt
β , adjusted accordingly as in the previous subsection.

For our experiments we used and developed (for yar++) the C++ libraries:

• yar++, an Image processing C++ library made by Gerardo Her-
mosillo at the Odyssée lab.

• The Visualization Tool Kit (VTK), for the 3D rendering.

For the visualization, we used the marching cubes algorithm [55] to obtain
a triangulation from our implicit representation of the surface, then to draw
the data on this surface.
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For the images defined on curves, the experiments were carried on matlab.

4.2.4 Examples

We present in this subsection some figures that illustrate the regularization
of noisy data on various implicitly defined curves and surfaces. The results
are given with various values of the parameter β. Note how the regular-
ization of the data is done isotropically or anisotropically depending on the
value of this parameter.

In the first set of images (fig. 4.3), the red curve is the original function,
the green curve is obtained by adding noise, and the blue curve is obtained
after regularization. For images (a) and (b), we added a Gaussian noise with
σ = 15.

Regarding the CPU time, for the tori (12500 pixels), it took less than 2
seconds for 20 iterations. Note that we used a color map from red to blue
in order to better see how the the discontinuities are treated. Regarding the
noise level, we have added a Gaussian noise with (σ = 40) to the grey level
images which scalar range is (0,256).

For the Ella image, illustrated in fig. 4.5 and defined in a solid that looks
like a quadratic, the image is much bigger (2744000 pixels). The time to
compute 20 iterations was almost 3.5 minutes in a 386 sun, 260 MB in RAM.

In strongly noised images such as these anisotropic regularization treat some
noise as part of the image discontinuities (the points under the left eye, for
example). The intermediate regularization with β = 0.1 gives a better result.

4.3 Summary and conclusions

At this point we have reformulated the Beltrami framework for the intrinsic
- parametric method, the implicit - level set method, and the explicit -
triangulated form of a surface.

We used the geometrical understanding of the flat Beltrami flow and gener-
alized it to a denoising flow over implicitly defined curves and surfaces. It is
shown that the resulting flows depend on β which encodes the ratio between
the data and spatial units. This parameter controls the edge-preserving
characteristic of the flow. The Beltrami flow is shown to act as the linear
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(a) β = 0.1
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(b)
β = 0 (Isotropic diffusion)

Figure 4.3: Beltrami flow regularization for scalar data defined on curves.
Results for different values of β
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Original noisy image Isotropic diffusion

β = 0.1 L1 anisotropic diffusion

Figure 4.4: Beltrami flow regularization of synthetic scalar data defined on
the torus, for different values of β

diffusion (L2-norm, isotropic regularization) in the limit β → 0 and to the
strongly edge preserving diffusion (L1-norm) in the limit β →∞ (up to time
scaling).

The implementation scheme of this flow is presented and various experimen-
tal results obtained (subsection 4.2.4) on a set of various synthetic images
(examples on real images are shown in chapter 7) illustrate the performances
of the approach as well as the differences with the harmonic map flows.
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Original noisy image β = 0 (Isotropic diffusion)

β = 0.1 Anisotropic diffusion
and detail and detail

Figure 4.5: Beltrami flow regularization with different values of β for an
Ella Fitzgerald photograph on a quadratic surface. Note the excellent result
for β = 0.1
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Chapter 5

Comparison of methods and

relationships

In this chapter we first clarify the relationship between both the explicit and
implicit approaches. In the second section, we discuss the passage between
the explicit and implicit representation and vice versa, and then examine
the respective advantages and drawbacks of the two principal frameworks,
in particular for an a application of analysis1.

5.1 From explicit to implicit via the Beltrami flow

There are two ways to write the geometric functional which is called har-
monic energy or Polyakov action. Both functionals are defined over the
space of embedding maps of Riemannian manifolds. We focus our attention
to the case of a gray-value image defined over a two- (or one-) dimensional
manifold i.e. a surface (or a curve). The first way is to represent the sur-
face implicitly i.e. as a zero section of a distance function, defined over IR3.
The other way is to choose a local coordinate system and define the surface
intrinsically in a parametric way. These ideas are developed in more details
in the next two subsections.

1Work published in [105]
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5.1.1 Implicit formulation

Suppose that we have a scalar data U defined on a known surface Σ, that
is we have a mapping Ũ : Σ → IR1 where Σ is a known surface, given by its
implicit representation

Ψ(X1, X2, X3) = 0. (5.1)

We extend Ũ to U : IR3 → IR such that Ũ is the restriction of U to Σ. The
Harmonic maps approach [10, 58, 12, 14] looks for the minimizer of the
following energy

Simp[U ] =
∫

IR3
|| ∇ΣU ||2 dΣ (5.2)

where dΣ is the surface element dΣ = δ(Ψ)||∇Ψ||dX1dX2dX3. We denote
here by δ the Dirac function and ∇ΣU denotes the gradient intrinsic to the
surface Σ i.e. the projection of the 3D Cartesian gradient of U on TΣ – the
tangent space to Σ. Clearly, ∇Ψ is normal to its zero level set, which is Σ.
It follows then that ∇ΣU = Pη∇U where P~η is the orthogonal projection
operator on the surface Σ. Here ∇U is the 3D Cartesian gradient of U :

∇U =
(

∂U

∂X1
,

∂U

∂X2
,

∂U

∂X3

)t

,

and η denotes the unit normal vector to the surface Σ with

η =
∇Ψ
||∇Ψ|| .

We can rewrite now the harmonic energy as follows:

Simp[U ] =
∫

IR3
|| Pη∇U ||2 dΣ

=
∫

IR3
|| Pη∇U ||2 δ(Ψ) || ∇Ψ || dX1dX2dX3 .

All the expressions above are considered in the sense of distributions. For a
given surface with a unit normal vector η, the orthogonal projection operator
P~η on that surface is given by

Pη = I − ηηt , (5.3)

where I is the 3 × 3 Identity matrix and ηt denotes the transposed of the
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vector η. The functional can rewritten as follows:

Simp[U ] =
∫

IR3
∇U t(I − ηηt)∇UdΣ . (5.4)

This functional is the generalization of the L2 norm from flat to non-flat
manifolds. The modified gradient descent equation reads:

Ut =
1

||∇Ψ||Div (||∇Ψ||Pη∇U) , (5.5)

where Div stands for the 3D Divergence operator, and ∇ is in IR3 as well.
The restriction of U to the surface Σ is the regularized image. This equation
can be generalized via the Φ formulation (see [52, 77, 25]) to

Simp[U ] =
∫

IR3
Φ(||∇ΣU ||) dΣ. (5.6)

In particular, for the generalized L1 norm

Simp[U ] =
∫

IR3
||∇ΣU ||dΣ (5.7)

we obtain the following minimization flow

Ut =
1

||∇Ψ||||Pη∇U ||Div
( ||∇Ψ||Pη∇U

||Pη∇U ||
)

. (5.8)

For the interested reader, we refer to [10, 58, 12, 14] for more details and
results on this implicit formulation and its various applications.

5.1.2 Intrinsic formulation

Suppose we have a 2-dimensional manifold Σ with local coordinates σ1, σ2

embedded in an 3-dimensional manifold M with coordinates X1, X2, X3,
the embedding map X : Σ → M is given explicitly by the 3 functions of 2
variables

X : (σ1, σ2) −→ (X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)) .

Note that the Xis are the solution of (5.1). A gray-value image is repre-
sented, in this framework, as the embedding (X1 = σ1, X2 = σ2, X3 =
βU(σ1, σ2)) (see Fig. 1).
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Denote by (Σ, g) the image manifold and its metric and by (M, h) the space-
feature manifold and its metric, then the map X : Σ → M has the following
weight :

Sint[U, g] =
∫

dσ1dσ2√ggµν∂µXi∂νX
jhij(X) (5.9)

where g is the determinant of the image metric, gµν is the inverse of the
image metric, the range of indices is µ, ν = 1, .., 2 and i, j = 1, ..3 and hij

is the metric of the embedding space. We use the summation convention:
indices that appear twice are being summed over. This functional was first
proposed by Polyakov in the context of high energy physics [69] .

Let us formulate the Polyakov action in the matrix form: (Σ, G) is the image
manifold and its metric as before. Similarly, (M, H) is the spatial-feature
manifold and its metric (it is simply IR with the usual Euclidean distance
for gray-value images). Define

Aij = (∂ΣXi)tG−1∂ΣXj ,

where ∂ΣXi = (∂σ1Xi, ∂σ2Xi)t.

The map X : Σ → M has a weight

S[Xi, G, H] =
∫

dσ1dσ2√gTr(AH),

where g = det(G).

1

2

d

σ

1

2

σ
σ

σ
d

y

x

I

dy
dx

dI
ds

d σσ dds  = g               =  dx   +dy   +dI   
ij

2 2 2i j 2

Figure 5.1: The graph of the intensity map as a surface embedded in IR3
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The gradient descent equations, with respect to the embedding functions,
result in

Xi
t = frac1

√
g∂µ(

√
ggµν∂νX

i) + Γi
jk(∂µXj)(∂νX

k)gµν . (5.10)

In our case X1 and X2 are fixed and we only change X3 = βU . The
embedding space is Euclidean and therefore the Levi-Civita Γ3

jk coefficients
are zero.

The flow, in matrix form, is therefore

Ut = − 1
2
√

g

δS

δU
=

1√
g
div

(√
gG−1∇U

)

︸ ︷︷ ︸
∆gU

. (5.11)

The extension for non-Euclidean embedding space is treated in [85, 86, 47,
88, 89]. Note that we did not specify the metric yet. If we choose for a metric
the first fundamental form of the base and non-flat manifold, then this flow is
the analog of (5.5). Both equations describe a linear operator that acts on
the image function U . One major difference between the Beltrami framework
and the harmonic map formulation is the way one chooses the metric. In the
harmonic map approach it is treated as data which is given beforehand. The
metric then is constant in time. In the Beltrami framework the metric
is a dynamic variable to be found by minimizing the functional.
Carrying out the calculation, we find the following equation (see [85] for the
derivation):

1√
g

δS

δgµν
= −1

2
gµνg

λρ∂λXi∂ρX
jhij + ∂µXi∂νX

jhij = 0. (5.12)

Albeit the complicated appearance of the minimization equation, it can be
solved analytically. The result is simply

gµν = ∂µXi∂νX
jhij .

This equation has a clear geometric meaning: it is the induced metric of the
section! In the simplest situation of flat domain with a scalar field i.e. the
intensity, the metric is find to be [86]:

(gµν) =

(
1 + U2

x UxUy

UxUy 1 + U2
y

)
. (5.13)
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where U denotes the intensity level. In the Beltrami framework, the manifold
of interest is taken to be the data surface i.e. the graph of the intensity
function. In other words we are interested in the structure of the section
of the fiber bundle and not in the base manifold. It means that the metric
itself depends on the data. This is the way non-linearities are introduced in
the flow.

Equation (5.11), with the induced metric (5.13), has a clear geometric mean-
ing. It is the projection of the mean curvature vector in the X3 = U direc-
tion:

Ut = KNÛ (5.14)

where K is the mean curvature magnitude. N is the normal to the surface
and Û is a unit vector in the X3 = U direction (see Fig. 2). This choice
of the induced metric gives a simple geometric meaning to the functional as
well. It becomes simply the volume of the section (area or length for the
two- and one- dimensional cases). It is important for the study below to
have the explicit form of the functionals for flat domain in the scalar and
vectorial cases:

Ss[U ] =
∫

dxdy
√

g =
∫

dxdy
√

1 + β2||∇U ||2

Z

X

Y
(KN)

Z

U(X,Y)

KN

Figure 5.2: The Beltrami flow velocity as a projection of the mean curvature
on the data = z axis
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Sv[U i] =
∫

dxdy

√
1 + β2

∑

i

||∇U i||2 + β4
∑

i,j

||∇U i ×∇U j ||2 ,(5.15)

where Ss corresponds to the functional for the scalar case, Sv for the vectorial
case, and β is the ratio between the distances taken in the spatial and
intensity directions.

We will use this geometric understanding in order to derive the Beltrami
flow on non-flat surfaces from pure geometric consideration. We also use this
simplified functional in our quest for implicit formulation of the Beltrami
flow on non-flat manifolds. But let us explain first the implicit-intrinsic
correspondence.

5.1.3 The implicit-explicit correspondence

We have shown two ways of writing the geometric functional, which is called
either harmonic energy or the Beltrami functional, and weights embedding
maps of Riemannian manifolds.

Let us work out the case of a painted surface. The mapping is U : Σ → IR1

where Σ is a known surface with metric G (first fundamental form).

One way is to represent the surface implicitly i.e. as a zero section of an
Osher-Sethian function, defined over IR3. The other way is to choose a local
coordinate system and define the surface intrinsically in a parametric way.

The implicit method consist of the equation

Ψ(X1, X2, X3) = 0. (5.16)

This equation is an implicit description of a surface. The functional is writ-
ten in that case as

Simp[U ] =
∫

IR3
∇U t(I− ηηt)∇Uδ(Ψ)||∇Ψ||dX1dX2dX3 (5.17)

where
η =

∇Ψ
||∇Ψ||

and the gradient is

∇U =
(

∂U

∂X1
,

∂U

∂X2
,

∂U

∂X3

)t
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The intrinsic way relies on the choice of (σ1, σ2) as local coordinates on
(possibly part of) the manifold. The surface is then given by the functions

(
X1(σ1, σ2), X2(σ1, σ2), X3(σ1, σ2)

)
. (5.18)

Note that these functions are the solutions of (5.16).

The functional is defined as

Sint[U ] =
∫

∂ΣU tG−1∂ΣU
√

gdσ1dσ2 (5.19)

where g = det(G) and

∂ΣU =
(

∂U

∂σ1
,

∂U

∂σ2

)t

.

We show the equivalence between these two ways of writing by deriving the
intrinsic formulation from the implicit one. To that purpose, we perform
the integration over the delta function and express all the three dimensional
objects intrinsically. Explicitly we prove the following technical lemma:

LEMMA:

1.
G = J tJ

where J is the Jacobian – a 3×2 matrix whose elements are

∂Xi

∂σµ
i = 1, 2, 3 µ = 1, 2

That is

J =




∂X1

∂σ1
∂X1

∂σ2

∂X2

∂σ1
∂X2

∂σ2

∂X3

∂σ1
∂X3

∂σ2




2.
∇U tJ = ∂ΣU t

3.
||∇Ψ|| = √

g

where g = det G.
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4.
J t · ∇Ψ = 0

Proof:

1. For an intrinsic surface the induced metric is

Gµν = eµ · eν

where e1, e2 are the tangent vectors to the surface. In our case

eµ =




∂X1

∂σµ

∂X2

∂σµ

∂X3

∂σµ




The Jacobian is simply written as J = (e1, e2) and we find

(J tJ)µν = eµ · eν = Gµν

2.

∂σµU = Ux1
∂X1

∂σµ
+ Ux2

∂X2

∂σµ
+ Ux3

∂X3

∂σµ
= ∇U teµ µ = 1, 2

This is written as
∂ΣU t = ∇U tJ.

3. The normal to the surface ∇Ψ is perpendicular to the two tangent
vectors eµ. The components of the vector product of two vectors V1

and V2 is given by (V1 × V2)i = εijkV
j
1 V k

2 where εijk = (−1)p and p is
the number of permutations needed to bring (ijk) to (123). We can
now compute

||∇Ψ||2 = ||e1 × e2||2 = εijke
j
1e

k
2εilmel

1e
m
2 .

We use the identity εijkεilm = δjlδkm − δjmδkl which can be verified
directly, and find

||∇Ψ||2 = (δjlδkm − δjmδkl) ej
1e

k
2e

l
1e

m
2

= e1 · e1e2 · e2 − (e1 · e2)2

= G11G22 −G2
12 = detG
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4.
J t · ∇Ψ = (e1, e2)t∇Ψ

but
et
i · ∇Ψ = ∂σiΨ = 0 i = 1, 2,

Since Ψ is constant in the tangent directions.

Inserting these results in 5.19 we find

Sint[U ] =
∫
∇U tJG−1J t∇Uδ(Ψ)||∇Ψ||dX1dX2dX3 (5.20)

All is needed now is to prove the identity

JG−1J t = Id− ηηt

In order to do that we start from property 1 in the Lemma: G = J tJ . We
take now the inverse of the two sides. Here we must proceed with care.
While G is positive definite and there is no problem, J has a non-trivial
kernel as we can see from property 4 of the Lemma. The Kernel is one
dimensional and is the normal direction to the surface. Its inversion should
be followed by a projection on the tangent space of the surface where J−1

is well defined. We get therefore

G−1 = (J tJ)−1 = J−1(Id− ηηt)t(Id− ηηt)J−t = J−1(Id− ηηt)J−t

and the identity follows.

5.2 Comparison of the two methods

5.2.1 From explicit to implicit

For simplicity, let us take the pixel length as the unity. To apply the implicit
method, first we need to obtain the distance function to the sphere. A
question that arises immediately is, which size are we gone to choose for
the box that will contain the zero-level surface? To properly conserve the
original topology, the resolution should be as fine as the shortest path in
the mesh. For a mesh such as the one illustrated in fig. 7.8 of 18979 vertex
and 37954 triangles this can yield to a 100003 = 1000000000000 pixels not
very convenient volume. But if we have homogeneous meshes with near-to-
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constant edges length, the volume size is friendlier, this suggest to choose
the size in relation with the homogeneity of the mesh. What we have chosen
to do for this work, is to take the product of the number or pixels and a
function of the variability of the edges length, as an indicator for the box
size.

Then how to obtain the level-set function? This can be done in several ways:
The brute force (compute directly the distance function), the closest point
transform ([57]), using a the classical Hamilton Jacobi equation ‖∇ψ‖ = 1
([98]), etc. This last method is very fast but has the inconvenience of chang-
ing the topology for folding surfaces as the human cortex. Computing the
distance function directly assure a good result but is very very slow: It has
to compute for each pixel the minimal distance to the surface, the straight-
forward computations gives Npixels × Ntriangles distance computations. In
this work we use a kind of brute force: We first create a binary volume with
the pixels “touching” the surface that is then use to look for the distance
function in its neighborhood. We use octree searches too to accelerate the
process. This way wee guarantee to maintain the topology.

Once we have our implicit surface, we’d like to pass the data too to an
implicit form, i.e. define the value of the function in each point of the narrow
band. A method first proposed in [16] consists in defining the function in the
pixels touching the surface as the interpolated value of the triangle touching
the pixel, then to apply the PDE

∂u

∂t
+ sign(ψ)(∇u∇̇ψ) = 0

to extend this data orthogonally to the surface.

5.2.2 From implicit to explicit

The passage to the mesh representation is mandatory at least once for an
implicit surface to be visualized. There exists several methods, the most
commonly used is the Marching cubes ([55]). Passing the data to this repre-
sentation can be done more easily, just taking the interpolated value of the
function in each vertex. The interpolation method used (linear, cubic, etc.)
can make great difference.
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5.2.3 Comments on the geometry of the mesh

In the case when our surface representation is a mesh, we observed that
the way the diffusion behaves on the data over the surface depends on the
geometry on the mesh.

A same surface can be triangulated in different manners: the triangles’ edges
can have all the same approximated size or not at all; some regions in the
surface may be very detailed and need tiny triangles while others may not
need but a single triangle; each vertex can have a fixed number of neighbors
or not at all, etc. It depends basically on the technique used to produce the
mesh.

The next example shows how the mesh influences a Laplace-Beltrami diffu-
sion where the discretization depends on a parametrization.

Take as base surface a simple plane, where it would be easy to paint the flat
image (in this example an uncolored Mondrian). We choose naturally the
vertex to be in the center of each pixel of the image. As a first meshing, we
join the pixels by squares and then divide the squares with a diagonal. As
second meshing, we connect the vertex in a more symmetrical manner.

We can see in image 5.4 the correspondent images and the results of the
Laplace-Beltrami diffusion using the parametric method explained in sub-
section 2.3.1. Because of the interpolation of the function over the triangles,
before we apply the diffusion it is already possible to determine which mesh
is symmetrical and which one is not. After the diffusion, the influence of
the connectivity between the vertex is very much more accentuated.

In theory, if the edges of the triangulation are small, this kind of behavior
will not be noticeable but very locally. However, it adds a supplementary
consideration: a re mesh of the triangulation may be needed before perform-
ing regularization.

Work has been done to avoid these problems with more careful discretization:
In [28], Desbrun et al. avoided the problem of the edge size variability
proposing a suitable parametrization. This particular parametrization can
be used in order to estimate the Laplace-Beltrami operator as explained in
[59]. But for more complicated regularization models, the task is not that
easy. That is why the regularity of the mesh can be an important issue to
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Figure 5.3: Original image on a flat triangulation

Meshing ∇̂S(I)

Figure 5.4: Different meshes give different diffusion results
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fix before doing any treatment of the data: for complicated PDE models it
may be better to go straight to the level-set representation.

5.2.4 Further comments and comparison for a particular ap-

plication

To decide which method is better for a particular application, we have to
ask several questions: What is the form of my input? What kind of regular-
ization do I need, a simple isotropic diffusion or more complicated PDE’s?
Is the surface going to be processed afterward itself? In some problems we
want to keep track of certain points during the process, in that case it may
be better to keep the mesh intact and use explicit methods straight on the
mesh. If the mesh is going to be transformed or for other reason an implicit
method will be used anyway, it may be simpler to use that framework from
the beginning, and make use of approaches that take care of point track and
correspondence as [72].

For a triangulated mesh, and a level set method, it will be needed the
computation of the distance function and the extension of the data to a grid.
If this is done the straight way, called brute force, it can be considerably long,
and longer if it is needed for a big set of surfaces. A lot of work has been
done to take care of this task and to reduce the computer time required to
produce appropriate level sets.

For the reverse process, to produce a triangulated mesh from a level-set rep-
resentation, the most common method is the one known as marching cubes
[55], but there too, there exists several alternative methods, for instance:
[76].

For the particular application of regularization as a intermediate process in
the task of analyzing fMRI data (to produce retinotopical maps of the brain,
for instance), a comparison has been made and presented in [105] (see fig.
5.5) by the author in joint work with Odyssée lab colleagues Nicolas Wotawa
and Jean Philippe Pons. More details can be found in [103].

This work is to our knowledge the first implementation of an fMRI smooth-
ing method based on the level set framework. The conclusion is that, since
the input and output is given in terms of volumetric images, the level set
method presents more advantages: the data does not need intermediate
processes as for the mesh-based approach, and it is numerically more ro-
bust. We find expected differences between both anisotropic methods that
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Mesh based approach Level Set based approach

Figure 5.5: Level set vs triangulation based regularization for fMRI data
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can be attributed to the use of different numerical schemes and, to a more
important degree, to the fact that the mesh-based approach is restricted to
projected voxels only whereas the level set based approach solves the PDE
equation continuously within a band around the GM/WM interface. The
approach is independent of a method assigning functional data to the corti-
cal surface, consequently, the choice of a projection method to visualize the
statistical results on the cortical mesh can be made a posteriori.

5.3 Summary and conclusions

We have first clarified the link that exists between the the intrinsic Polyakov
action of the Beltrami framework and the implicit harmonic energy func-
tional. It is found that although the functionals are basically the same, there
are differences in the way various problems are formulated and consequently
in the way the functionals are applied.

In the last section, we discussed the passage between the two representa-
tions and the advantages and drawbacks of the two associated methods,
and presented the results of a comparison made for retinotopic map ex-
traction. We conclude that it is preferable to keep the representation used
by the data whenever it is possible to avoid the error associated with the
passage between representations. Nevertheless, the implementation of new
PDEs methods remains easier using the implicit framework, and can be ad-
vised for explicit surfaces whenever the discretization of the PDE on the
triangulation becomes too itchy, or the triangulation itself is too coarse or
non-homogeneous (see section 5.2.3).
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Chapter 6

Vector image regularization

In this chapter we make an excursion into some vector image regularization
techniques using the explicit and explicit frameworks. In the first section
we generalize a method to perform unconstrained vector regularization using
the explicit approach, and apply it on synthetic examples. In the second
section we present some methods for color images regularization, starting
by the Beltrami Flow using an explicit framework, and then methods using
the implicit framework1. In the last section we show synthetical examples.

6.1 Unconstrained vector regularization

In this section we basically generalize some methods and discretization tech-
niques showed in Chapter 2, to the case of the target function being a vector
field, then we show implementation and examples for 3-D vector field syn-
thetic images. Unlike the color image case, which is much more complex, the
generalization to unconstrained regularization is relatively straight-forward.

6.1.1 Vector regularization: Explicit approach

Starting with the isotropic regularization problem, let us consider S be a
triangulated surface, X : (u, v) 7→ x ∈ S a conformal parameterization, and
U : S → Rn a vector image on the surface. Our data consisting on a set of
vectors where each vector is attached to a vertex of the triangulated surface.

1Work published in [81, 82]
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We are then looking to apply the next evolution PDE to the noisy data U0

∂U

∂t
= ∆X U, Ut=0 = U0, (6.1)

ˆ∆SI(x) =
1
A

∫

A
∆SI(x)dx

= ( ∆SI(p) average over the regionA )

≈ ∆SI(p)

If we look carefully at the discretization method presented in 3.1.1, we see
that it is possible to repeat every step considering U : S → Rn instead of
I : S → R since we only use properties fulfilled by vector spaces. We obtain

∆SU(p) ≈ 1
A

∑

T∈A

(cotθi + cotβi)(U(p)− U(pi)) (6.2)

where θi, βi are the two opposite angles of the edge (p, pi) in the area A. (see
image 3.1).

Image 6.1 shows an example of isotropic regularization over a triangulated
sphere using the PDE 6.2. An application of this method is shown at sub-
subsection 7.2.3.

6.1.2 Bi-dimensional vector field on a surface: Implicit ap-

proach

We have in this case an N-dimensional manifold which is described by an
implicit function on IRn+1: Ψ(x1, . . . , xn+1). On this manifold we have a
bi-dimensional vector field with components U1 and U2 extended to IRn+1

as well. We describe the data manifold as the intersection of the following
functions:

Ψ(x1, . . . , xn+1) = 0
Φ1(x1, . . . , xn+3) = xn+2 − βU1(x1, . . . , xn+1) = 0
Φ2(x1, . . . , xn+3) = xn+3 − βU2(x1, . . . , xn+1) = 0 (6.3)
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Figure 6.1: Isotropic regularization. The regularized vector field is in gray,
while the original noisy one is in a color that codes its angle displacement
from the original constant vector image.
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The functional is the volume of the manifold of intersection of these three
functions. It is given by

S[U1, U2] =
∫

δ(Ψ)δ(Φ1)δ(Φ2)||DΨ||||PDΨDΦ1||||PPDΨDΦ1PDΨDΦ2||
(6.4)

In order to write it in a simpler form we use the following identity. Let v1

and v2 be two vectors. then

||v1||2||Pv1v2||2 = ||v1||2||v2||2 − (v1 · v2)2 (6.5)

It follows that

||PDΨDΦ1||2||PPDΨDΦ1PDΨDΦ2||2 = ||PDΨDΦ1||2||PDΨDΦ2||2 −
(PDΨDΦ1 · PDΨDΦ2)2

Next we recall our distinction between the gradient D in IRn+3 and ∇ which
is the gradient in the first n + 1 coordinates. It follows that

PDΨDΦ1 = (−β∇U1, 1, 0)t

PDΨDΦ2 = (−β∇U2, 0, 1)t (6.6)

We arrive finally to a functional that reads

S[U1, U2] =
∫

δ(Ψ)||DΨ||
√

1 + β2
∑

i

||P∇ψ∇Ui||2 + β4||P∇ψ∇U1 × P∇ψ∇U2||2

(6.7)

This functional is the obvious generalization of the functional Eq. (5.15).

6.2 Constrained regularization: Color images

Color images are an important case of multivalued images that have to be
treated separately. Colors in digital imaging are usually modeled as triplets
of RED, GREEN and BLUE channels (RGB, see fig. 6.2), seen as vectors
in R3. There exist others, as the CMYK (cyan, magenta, yellow, ) model
used by printers, RYB (red, yellow, blue) used traditionally by artists, HSV
(hue, saturation, brightness), etc.
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Figure 6.2: RGB and CMYK color models

In order to regularize color images, we could try to apply scalar regulariza-
tion to each channel. This naif approach leads to a color blending effect that
segments the image by the color channels (see image 6.3). The first column
shows the original noisy color image, the second is the result of a channel
by channel approach, and the third row is the result of a vector regular-
ization approach (image from [96]). To get an acceptable result, we need
to define local vector geometries that describe vector-valued image varia-
tions and structures. One way to do this is to represent colors using the
unit direction vector and its norm, performing scalar regularization on the
norm image and regularizing the unit vector image separately, taking into
account the unit norm constraint. This is why color image regularization is
considered as constrained regularization.

6.2.1 Beltrami flow, explicit-intrinsic approach

We consider as the base manifold a two-dimensional surface. The fiber is the
color space. We will treat here, for simplicity, the case where the color space
is taken to be a Euclidean IR3 space with Cartesian coordinates (R, G,B).
One can also consider the color space to be a 3D Riemannian manifold [89].

Here we describe the color image on a surface as embedding of a 2D surface
S embedded in 5D manifold M = Σ × IR3. The metric in the embedding
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Figure 6.3: Channel by channel approach vs vector-valued PDE’s
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space is

(hij) =




g̃11 g̃12 0 0 0
g̃21 g̃22 0 0 0
0 0 β2 0 0
0 0 0 β2 0
0 0 0 0 β2




.

The line element is therefore

dsM = g̃11dx2 + 2g̃12dxdy + g̃22dy2 + β2
(
dR2 + dG2 + dB2

)
.

and the induced metric is
G = (gij)

=

(
g̃11 + β2

(
R2

x + G2
x + B2

x

)
g̃12 + β2 (RxRy + GxGy + BxBy)

g̃21 + β2 (RxRy + GxGy + BxBy) g̃22 + β2
(
R2

y + G2
y + B2

y

)
)

.

It is easy to see that the Levi-Civita connection coefficients vanish in this
case for the same reason it does in the scalar case. We finally obtain the
equations of motion

Ua
t = ∆gU

a =
1√
g
Div

(√
gG−1∇Ua

)
a = r, g, b

Example: Color image on the sphere

In order to apply the above equations to a color image “painted” on the
sphere we need the metric g̃ij of the sphere. We choose to represent the
sphere by stereographic coordinates from the south pole. The metric in this
case was calculated already in the scalar case (see appendix 10.1) and it is

g̃ij =
4

1 + x2 + y2
δij .

The induced metric of the two-dimensional section of this five-dimensional
fiber bundle is

G = (gij) =


g̃ij + β2

∑

a=R,G,B

Ia
i Ia

j


 ,
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where Ia
i = ∂Ua/∂xi with x1 = x and x2 = y. Define

A(x, y) =
4

1 + x2 + y2
.

With this notation the determinant read

g = det(gij) = A2 + Aβ2
∑

a

((Ua
x )2 + (Ua

y )2) + β4
∑

ab

|∇Ua ×∇U b|2 .

The evolution equations are

Ua
t =

1√
g
Div

(
1√
g

(
A + β2

∑
b(U

b
y)2 −β2

∑
b U b

xU b
y

−β2
∑

b U b
xU b

y A + β2
∑

b(U
b
x)2

)
∇Ua

)
.

6.2.2 Isotropic and anisotropic regularization of color images

on implicit surfaces

Here we represent the color images as functions u : S → S2 × R. These
functions take as values unit vectors on the R3 sphere whom represent chro-
maticity vectors, and a real component that represents the brightness (the
magnitude of the color vector) which we treat separately following the pre-
vious results. So we have to focus on the smoothing of the S2 component,
minimizing an harmonic energy of the form

∫

S
‖∇Su‖p dS, s.t. ‖u‖ = 1.

for u : S → S2.

The gradient descent is given by

∂ui

∂t
= divS

(
‖∇Su‖p−2∇Sui

)
+ ui ‖∇Su‖p , 1 ≤ i ≤ n. (6.8)

with p = 2 for isotropic and p = 1 for anisotropic diffusion. The first term
is obtained in the same way that the one for the scalar case, and the second
comes from the unit norm constraint (see appendix 10.3).

Implementation and examples

The program takes as input a color volume: to each pixel a triplet is assigned.
It first normalizes the data to obtain the chroma vector, and saves the norm
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in another volume. Then apply the numerical schemes explained in 10.4
to the chroma vector, and the ones of 10.4 to the brightness, to obtain the
diffused result.

Our first example (image 6.5) we use a normalized data, and apply an addi-
tive gaussian noise only to the chroma vector (before normalization), keep-
ing the brightness component unchanged. The second example (image 6.5)
shows isotropic and anisotropic diffusion, applied only in the chroma vector.
The noise is so strong that even after the anisotropic diffusion it succeeds
at breaking a border and change the color in blue. Despite the lost of the
contours with the diffusion, the original colors are very well restored. In the
next example the surface is the bombed “odyssee” word (surface modeled
using VTK), the data is again artificially generated as intersection of sets of
the form

{
ui,j,k[m] = c :

1
3

dimm (u) ≤ em · (i, j, k) ≤ 2
3

dimm (u)
}

,

c ∈ {1, ..., 255} and dimm (u) is the mth component of the dimension of the
volume u. Here we have applied separately a gaussian noise to the brightness
vector, the same σ.

The last example (6.6) is a flower image painted over a quadratic surface,
both the chroma vector and brightness have been passed by the anisotropic
regularization filter.

6.3 Summary and conclusions

In this chapter, we show an implementation of the regularization techniques
showed before extended to multivalued images and some synthetic examples
to illustrate this techniques are presented. We covered some theoretical as-
pects and presented methods for the Beltrami flow over color images and the
isotropic regularization on vector images. An application of this technique
for retinotopic mapping is illustrated later on chapter 7. We show synthetic
examples of the isotropic and anisotropic implicit regularization over vector
images.
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Original image

Added noise (detail)

Isotropic diffusion

Anisotropic diffusion

Figure 6.4: Example of isotropic and anisotropic diffusion over the colored
“Odyssee” surface
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Original image Image with noise added

Isotropic diffusion Anisotropic diffusion

Figure 6.5: Example of isotropic and anisotropic diffusion over a colored
sphere
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Original noisy image over quadratic surface

After anisotropic regularization

Figure 6.6: Example of anisotropic regularization of a color image: flower
painted on a quadratic surface
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Chapter 7

Application to cortical

images

In the first section of this chapter we explain the way the extraction of the
retinotopic areas is done (for more detail see [103], [104], [37]), starting by a
brief explanation of the visual system process on primates and then resuming
the extraction methodology. In the second section we show the importance
of the data regularization and our efforts to improve the way it is done to
obtain better retinotopic maps.

7.1 Occipital retinotopic areas extraction

The visual cortex is the most massive system in the human brain and is
responsible for higher-level processing of the visual image. It lies at the
rear of the brain, above the cerebellum. The portion of the cortex involved
in vision processing has been estimated to be around 50% in the macaque
monkey, with over twenty distinct areas identified. Some of these areas are
quite well understood, others are still a complete mystery.

Nearly all visual information reaches the cortex via the so called V1, the
largest and most important visual cortical area. Because of its stripy ap-
pearance this area is also known as striate cortex, among other things. Other
areas of visual cortex are known as extrastriate visual cortex; the more im-
portant areas are V2, V3, V4 and MT, also known as V5 (see fig. 7.1)

For this application, we are interested in labeling some areas of the visual
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Figure 7.1: Visual cortex and some of its principal areas (image from[53])

cortex using the retinotopic representation of the visual field. This criterion
has been used to reveal the “low level” areas first by Engel et al. in [35] and
later by [80, 32, 99, 104].

We now briefly explain the biological visual system process in primates,
more comprehensive explanations can be found in [104, 67, 13, 46].

7.1.1 Biological visual system

The visual process begins with the light entering the eye, first passing
through the cornea, then the aqueous humor, the pupil (controlled by the
iris) and is refracted by the lens before passing trough vitreous humor to
finally project an image onto the retina. The retina is covered with over
125 million photosensitive receptors of two families: the cones (around 8
millions, mainly concentrated in the center of the retina, the fovea) are
responsible for chromatic and normal lighting condition vision (called pho-
topic), and the rods (around 120 millions, found everywhere except in the
fovea), dealing with black and white perception and low-lighting conditions
(called scotopic). These receptors translate lighting information into electri-
cal information, transmitted to the optical nerves via the ganglion cells. The
two optical nerves cross, forming the optic chiasm, after which information
is transmitted by visual hemifield (separated vertically with respect to the
head position): the information from photons striking the left parts of both
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Figure 7.2: Visual process: eye

retina and corresponding to the right visual field is brought together to form
the left optical tractus.

Following some rudimentary processing (mostly involving color boundaries),
the information about the image received by the eye is transmitted to the
brain via the optic nerve. In humans, the optic nerve is the only sensory sys-
tem that is connected directly to the brain and does not connect through the
medulla, due to the necessity of processing the complex visual information
quickly.

The optic nerves from both eyes meet and cross at the optic chiasm, at the
base of the frontal lobe of the brain. At this point the information from both
eyes is combined and split according to the field of view (see figure 7.3). The
corresponding halves of the field of view (right and left) are sent to the left
and right halves of the brain, respectively (the brain is cross-wired), to be
processed. That is, though we might expect the right brain to be responsible
for the image from the left eye, and the left brain for the image from the
right eye, in fact, the right brain deals with the left half of the field of view,
and similarly for the left brain. The right eye actually perceives part of the
left field of view, and vice versa. Information from the right visual field
(now on the left side of the brain) travels in the left optic tract. Information
from the left visual field travels in the right optic tract. Each optic tract
terminates in the lateral geniculate nucleus (LGN) in the thalamus.

The lateral geniculate nucleus (LGN) is a sensory relay nucleus in the thala-
mus of the brain. The LGN consists of six layers in humans and some other
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Figure 7.3: Optic chiasma and lateral geniculate nucleus.
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primates such as macaques. The neurons of the LGN relay the visual image
to the primary visual cortex, and we arrive where we wanted to.

7.1.2 Extraction method

Occipital retinotopic areas are delineated using the classical fMRI method
used first in [35]. Phase-encoded stimulus for the retinotopic mapping con-
sisted of a 9Hz flickering black-and-white checkerboard into a 80◦ rotating
wedge or a varying size (depending on the eccentricity) ring. To get the po-
lar angle maps, 8 complete rotations, either clockwise or counter-clockwise,
were performed in each wedge scan. 4 complete rotations, either inward or
outward, were performed in each ring scan, to get the eccentricity maps (see
figs. 7.4 and 7.5). Retinotopic stimulus signals for each rotating sens were
modeled through a General Linear Model with a cosine and sine regressors
having the same period as the stimulus, followed by a voxelwise signal-phase
computation (including a hemodynamic response delay estimation) closely
related to the stimulus position in the visual field.

Figure 7.4: The wedge stimulus seen in different positions. It encodes the
polar angle coordinate θ in the visual field.

Figure 7.5: The ring stimulus seen in different positions. It encodes the
eccentricity coordinate ρ in the visual field.

The resulting phase maps were masked by a P < 0.001 threshold F-test on
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the estimates computed at each voxel. These maps were then projected as
color-coded maps onto models of the white-matter/gray-matter interfaces
(one topologically spherical surface by hemisphere) using a combination of
the Brainvisa software (http://brainvisa.info) and algorithms developed in
the Odyssée laboratory. Then the scalar maps of the ring and wedge data
are regularized using first an isotropical diffusion over the cortical surface
(see fig. 7.6)

For the purpose of ease the visualization, the models were further inflated,
and V1, V2v, V3v, V4v, V2d, V3d and V3A could be identified based on
the angular maps pattern.

The output of the process are the Visual field sign (VFS) maps. The VFS
is computed from the cortical surface-intrinsic gradients of the eccentricity
and polar angle (ring and wedge) using this formula:

V FS = sign(det(∇ρ,∇θ, N))

The data is from the MRI scanner located in the Timone fMRI center in
Marseille in France.

Results using isotropic smoothing in the regularization process are shown in
fig. 7.6: (A) shows a polar angle map projected on an inflated left occipital
cortex. The area boundaries were drawn by hand, based on the angular
gradients. Images (B) and (C) represent respectively the results of the visual
field sign computing, based on the original polar angle and eccentricity maps
and after a surface-based smoothing of the angular maps with a gaussian
kernel (σ = 3mm) in (C). Red (green) color indicates a non-mirror (mirror)
local representation. The smoothing does not globally improve the global
result; the red cross even shows a position where the original VFS (left)
performed better.

In the next subsection we show results of our experiments done on different
regularization methods used on these maps.

7.2 Regularization methods

In this subsection we will show different ways to perform regularization on
this problem. The experiments are done on different sets of data, unlike
the comparison experiment mentioned on subsection 5.2 where the purpose
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A) Polar angle map

B) VFS map C)VFS map after
angular maps smoothing

Figure 7.6: Visual field signed maps
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was to compare the explicit and implicit scalar diffusion methods on the
extraction problem (the same set of data was used), here we simply want
to see for different sets of data which regularization method can perform
better. The aim is to obtain a final map with clear boundaries between
the visual regions in terms of the prior knowledge we have from them. The
final contour extraction is supposed to look like the hand-drawings from fig.
7.6-A or fig. 7.1.

In the first two subsections we make use of the Beltrami Flow approach
applied on the scalar maps. In the third we are more interested on applying
the regularization on the gradient vector data rather than on the resulting
scalar maps only, with surprising results.

7.2.1 Implicit Beltrami flow scalar regularization

The surface is a slice from a cortex (97x222x143). It took less than 10
minutes to compute these results (fig 7.7). This is a retinotopic map i.e
a neural representation within the visual cortex that preserves the spatial
layout of the retina image. Notice the red holes in the noisy image. The small
holes have to be filled in the map. Our approach allows to fill in these holes
while preserving the important borders. While the isotropic smoothing also
performs this task, it does not allow to preserve important information like
the blue zone in the extreme right. With the L1 anisotropic smoothing, the
outer borders are thinner, but the inner holes rest. Our approach allows us
to deal with more degree of freedom in the process to manage the weighting
between the isotropy and anisotropy processes. Choosing beta in a range
from 0.1 to 0.5 allows to produce a whole set of interesting and better results
since the blue zone is kept and the holes are filled in.

7.2.2 Explicit regularization

The scalar data used in this experiment is very noisy because of the mea-
surement errors. Already from the beginning, we note a strong stair-casing
effect due to the differences of resolution between the anatomic (fig. 7.8)
and functional (fig. 7.9) brain images.

Even though we have no access to the original non-noisy image, we can
select a region where we know that the original image has null variance. We
can do this because we know that there should be no electric impulsions
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outside a certain region of the cortex. To compare the performance with
different values of β, we applied the flow until the variance measurement in
the selected region reaches a fixed threshold. Then we observed how different
values of β act on discontinuities on the image for the same amount of noise
reduction on the selected region.

7.2.3 Explicit vector regularization

For the examples in the two previous subsections we made the regularization
on the scalar wedge and ring maps. Here we try it on the ∇ρ and ∇θ fields
later used to compute the VFS, using the isotropic regularization method
proposed in section 6.1.1.

We show the VSF results using the vector regularization and compared
them with the polar angle scalar regularization on fig. 7.11: A) Polar angle
map overlaid on the in inflated left occipital cortex. The areas boundaries
were drawn by hand, based on the angular variations pattern. B) VFS
results based on the original polar angle and eccentricity maps. C) VFS re-
sults based on the surface-based smoothing of the angular maps (equivalent
Gaussian kernel with σ = 3mm. D) VFS results based on the surface-based
angular gradients field smoothed along the cortical geometry.

This 3D vector field smoothing step is followed by the classical VFS com-
putation. The resulting VFS maps are once again far less noisy than the
classical ones and also better than that obtained with the phase maps sur-
face smoothing, especially preserving better the stripes shape of V2 and
V3.

7.3 Summary and conclusions

We have detailed a method to obtain a human individual retinotopic map
of the occipital cortex using fMRI, which makes use of our surfaces-based
regularization techniques rather than a volume regularization method (see
image 1.1) leading to better results. The acquisition time is below what is
generally described and the resulting maps are consistent with those pub-
lished. These results furthermore show a reliable reproducibility, across and
among subjects.

In the second section we propose alternative ways to improve the result using
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vector regularization over the gradient data instead of the scalar regulariza-
tion over its projected components. We also show how the Beltrami flow
regularization can improve the resulting maps, tunning the β parameter to
erase the noise like the isotropic smoothing without letting the stair-casing
effect related to the different resolution of the data sets give faulty results.
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Original noisy image Detail

β = 0 (Isotropic diffusion) β = 0.1

β = 0.5 L1 (Anisotropic diffusion)

Figure 7.7: Retinotopic images regularized with different β
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Figure 7.8: Triangulation used: 18979 vertex, 37954 triangles
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Original noisy image Area of interest

β = 0 (Isotropic diffusion) β = 0.0001

β = 0.1 β = 1 (Anisotropic diffusion)

Figure 7.9: Eccentricity image of the visual areas on the cortex
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Original noisy image

Isotropic regularization
dt = 0.1, n = 10

Figure 7.10: Isotropic regularization on the vector field. The color of the
vectors is associated with their norm.
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A) Drown polar angle map. B) Original VFS map.

C) VFS map after 1D smoothing D) VFS map after 3D smoothing .

Figure 7.11: Comparison of the results: scalar vs vector regularization.
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Chapter 8

Conclusions

Contributions

In this thesis, we studied regularization methods for images defined on sur-
faces, focusing on PDE-based approaches.

First we introduced the most used surface representations, presented the
Laplace-Beltrami operator and the state of the art regularization methods,
and discussed the bibliography of this domain. Later we propose novel reg-
ularization techniques, starting by the anisotropic regularization on explicit
surfaces, then the Beltrami flow scalar regularization on implicit and explicit
surfaces.

This new regularization technique overcomes the over-smoothing of the L2

flow and the stair-casing effects of the L1 flow, that were suggested via the
harmonic map methods. We clarify the link between the intrinsic Polyakov
action and the implicit Harmonic energy functional and then use the geo-
metrical understanding of the Beltrami flow to generalize it to images on
explicitly and implicitly defined non flat surfaces. It is shown that, as in the
case of flat images ([47]), the Beltrami flow interpolates between the L2 and
L1 flows on non-flat surfaces.

The implementation scheme of this flow is presented and various experimen-
tal results obtained on a set of various real images illustrate the performances
of the approach as well as the differences with the harmonic map flows.

We also compare the performance and ease of implementation of scalar regu-
larization methods given the surface representation used. Then we made an
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excursion on some vector image regularization methods for the constrained
and unconstrained case, in particular the Beltrami flow regularization on
color images. Last we showed an application of our work to a concrete
problem, the extraction of the visual areas of the Cortex.

Our algorithms are also used for the estimation of differential operators
defined on triangulated surfaces in applications such as the the MEG/EEG
inverse problem (see [1, 2]). In [92, 91], the author propose an alternative
numerical method to the PDE gradient descent presented in this work for
the Beltrami flow, based on a short time kernel. This kernel enables the
implementation of the Beltrami Flow by a convolution of the image with the
kernel, similarly to the implementation of the heat equation by a convolution
with the gaussian kernel.

The main contributions of this work are:

• Comparison of scalar regularization methods given the surface sup-
port.

• Stable numerical schemes for isotropical and anisotropical regulariza-
tion on implicit surfaces.

• A novel discretization method for divergence-like operators for regu-
larization over explicit surfaces. Its relation to known methods.

• The extension to non-flat images of the Beltrami flow Regularization
technique.

• Implicit and Explicit numerical methods for the Beltrami flow regu-
larization.

• The clarification of the relation between implicit and extrinsic ap-
proaches.

• The application of these methods to a concrete retinotopic mapping
problem.

Future work

This thesis opened new questions that could be considered for future works
in the theoretical and applicative aspects. The discrete approximation for
a divergence-like operator proposed in section 3.3 and its relation to DEC
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operators points interest in this direction. Convergence and uniqueness of
our proposed schemes need to be covered. Work has been started on seg-
mentation methods over surfaces using our proposed PDEs.

For the multivalued image case, we have covered some theoretical aspects
and presented methods for the Beltrami flow over color images and the
isotropic regularization over vector images. There is still much work for the
case of tensor images, which gain interest because of their growing number
of applications in brain structure research. Numerical methods for more
general vector image regularization methods have to be developed.

For future work, it could be of interest to make further use of the Beltrami
flow techniques for the regularization step of segmentation applications such
as the cortex mapping and the MEG/EEG inverse problem. We have use the
Beltrami flow technique in the scalar regularization step of the retinotopic
mapping problem, but it could also be used for the regularization of the
gradient vector field.
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Conclusions

Contributions

Dans cette thèse, nous avons étudié des méthodes de régularisation pour des
images définies sur des surfaces, nous concentrant sur des approches basées
sur des EDPs.

Nous avons d’abord introduit les représentations des surfaces les plus uti-
lisées, présenté l’opérateur de Laplace-Beltrami et les méthodes de régula-
risation existantes, et discuté la bibliographie de ce domaine. Nous avons
proposé ensuite des techniques de régularisation innovantes, commen cant
par la régularisation anisotrope sur les surfaces explicites, puis la régulari-
sation scalaire du flot de Beltrami sur les surfaces implicites et explicites.

Cette nouvelle technique de régularisation surmonte le sur-lissage du flot
L2 et l’effet d’escalier du flot L1, qui ont été suggérés par les méthodes de
fonctionnelles harmoniques. Nous clarifions le lien entre l’action de Polyakov
intrinsèque et la fonctionnelle d’énergie harmonique et puis employons l’in-
terprétation géométrique du flot de Beltrami pour le généraliser aux images
définies sur des surfaces non planes explicites et implicites. Nous montrons
que, comme dans le cas des images planes ([47]), le flot de Beltrami interpole
entre les flots L2 et L1.

Une implémentation de ce flot est présentée ainsi que divers résultats expé-
rimentaux obtenus sur un ensemble d’images réelles que montrent les per-
formances de cette approche ainsi que ses différences avec les méthodes de
fonctionnelles harmoniques.

Nous avons comparé également les performances et les complexités d’im-
plémentation des méthodes de régularisation de données scalaires selon la
représentation de surface utilisée. Après, nous avons fait une discussion
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de quelques méthodes de régularisation d’images vectorielles avec et sans
contraintes, en particulier la régularisation du flot de Beltrami sur des images
de couleur. Nous avons aussi montré une application de notre travail à un
problème concret, l’extraction des régions du cortex relatives à la vision.

Nos algorithmes sont également employés pour l’estimation d’opérateurs
différentiels définis sur des surfaces triangulées dans des applications telles
que le problème inverse de la MEG/EEG (voir [1, 2]). Dans [92, 91],
l’auteur propose une méthode numérique alternative à la descente de gra-
dient présentée dans ce travail pour le flot de Beltrami, basée sur un noyau
à court terme. Ce noyau permet l’implémentation du flot de Beltrami par
une convolution avec l’image, de manière équivalente à l’implémentation de
l’équation de la chaleur par une convolution avec un noyau gaussien.

Les contributions principales de ce travail sont :

• Comparaison des méthodes de régularisation des données scalaires
selon la représentation de la surface d’appui.

• Des schémas numériques stables pour la régularisation isotrope et
anisotrope sur des surfaces implicites.

• Une méthode de discrétisation des opérateurs de type divergence pour
la régularisation sur des surfaces explicites, et sa relation avec les
méthodes existantes.

• La généralisation du flot de Beltrami aux images définies sur des sur-
faces non planes, implicites et explicites.

• Des méthodes numériques explicites et implicites pour la régularisation
du flot de Beltrami.

• La clarification de la relation entre les approches implicites et ex-
trinsèques.

• L’application de ces méthodes au problème de segmentation des cartes
rétinotopiques du cortex humain.

Perspectives

Cette thèse a posé des nouvelles questions qui pourraient être considérées
pour des travaux futurs, tant sur les aspects théoriques que sur les applica-
tions. L’approximation discrète des opérateurs de type divergence proposée
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dans la section 3.3 et son lien avec les opérateurs du Calcul extérieur discrèt
éveille notre intérêt dans cette direction. La convergence et l’unicité des
schémas proposés sont à étudier. Un travail sur des méthodes de segmen-
tation des images sur des surfaces qui utilise les EDPs proposées dans cette
thèse a été commencé.

Pour des travaux futurs, il serait avantageux d’utiliser davantage des tech-
niques du flot de Beltrami pour l’étape de régularisation dans des applica-
tions de segmentation telles que les cartes du cortex et le problème inverse
de la MEG/EEG. Nous avons utilisé le flot de Beltrami dans l’étape de
régularisation scalaire du problème des cartes rétinotopiques, mais il pour-
rait également être employé pour la régularisation du champ de vecteurs du
gradient.

Pour le cas des images multi-valuées, nous avons couvert quelques aspects
théoriques et présenté des implémentations pour le flot de Beltrami sur des
images de couleur et de régularisation isotrope pour des images vectorielles.
Il reste beaucoup de travail pour le cas des images de tenseurs, qui gagnent
en intérêt en raison du nombre de plus en plus important de leurs applica-
tions dans la recherche du fonctionnement du cerveau. Des méthodes plus
générales de régularisation d’image vectorielles doivent être développées.
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Chapter 10

Appendix

10.1 Stereographic direction diffusion

Refers to the derivation of 3.4.3, for more details see [87].

Every hypersphere Sn can be isometrically embedded in Ren+1. The hy-
persphere is realized as the place of all the points in Ren+1 that satisfy∑n+1

i=1 U iU i = 1. We denote by Y i for i = 1, . . . , n the cartesian coordi-
nate system on the subspace Rn that passes through the equator of Sn i.e.{

~U ∈ Rn+1|Un+1 = 0
}

. The stereographic transformation gives the values

of Y i as functions of the points on the north (south) hemispheres of the
hypersphere. Explicitly it is given as

Y i =
U i

1− Un+1
i = 1, . . . , n.

Inverting these relations we find

U i =
2Y i

1 +
∑n

i=1 Y i
i = 1, . . . , n

Un+3 =
−1 +

∑n
i=2 Y i

1 +
∑n

i=2 Y i

Now we can compute the induced metric of our feature space

gij =
n+1∑

k=1

∂Uk∂Uk

∂Y i∂Y j
=

4
(1 + A)2

δij i, j = 1 . . . , n,
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where A =
∑n

k=1(Y
k)2.

10.2 Computation of the implicit isotropic smoo-

thing PDE

Refers to the derivation of equation 2.3.2 (see [9]).

d

dt

∣∣∣∣
t=0

E (u + tµ) =
d

dt

∫

Ω
(P∇ψ∇(u + tµ) · P∇ψ∇µ) δ (ψ) ‖∇ψ‖ dx

=
∫

Ω

(
P∇ψ∇u ·

(
∇µ− ∇ψ · ∇µ

‖∇ψ‖2 ∇ψ

))
δ (ψ) ‖∇ψ‖ dx

=
∫

Ω
(P∇ψ∇u · ∇µ) δ (ψ) ‖∇ψ‖ dx

−
∫

Ω
(P∇ψ∇u · ∇ψ)

∇ψ · ∇µ

‖∇ψ‖2 δ (ψ) ‖∇ψ‖ dx

=
∫

Ω
(P∇ψ∇u · ∇µ) δ (ψ) ‖∇ψ‖ dx

= −
∫

Ω
∇ · (P∇ψ∇u ‖∇ψ‖) δ (ψ) µdx

−
∫

Ω
(P∇ψ∇u · ∇µ) δ′ (ψ) ‖∇ψ‖µdx

= −
∫

Ω
∇ · (P∇ψ∇u ‖∇ψ‖) δ (ψ) µdx

= −
∫

S

1
‖∇ψ‖∇ · (P∇ψ∇u ‖∇ψ‖) µdS

10.3 Implicit isotropic smoothing for color images

Refers to the derivation of the equation 6.2.2, for more details see [9].

We consider u to be data of the form u : S −→ Sn−1. For n = 3 we have
unite vector on the sphere: u = (u1, u2, u3), ‖u‖ = 1.

We define the norm of the vectorial gradient of u :

‖∇u‖ =
(
‖∇u1‖2 + ‖∇u2‖2 + ‖∇u3‖2

) 1

2
,
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and also the norm of the intrinsic vectorial gradient:

‖P∇ψ∇u‖ =
(
‖P∇ψ∇u1‖2 + ‖P∇ψ∇u2‖2 + ‖P∇ψ∇u3‖2

) 1

2
.

We want to minimize the energy

EA(u) :=
1
2

∫

Ω∈R3

‖P∇ψ∇u1‖2 δ(ψ) ‖∇ψ‖ dx,

with the constraint that u is of unit norm:

EB(u) :=
1
2
γ

∫

Ω∈R3

(u2 − 1)δ(ψ) ‖∇ψ‖ dx,

so in practice we want to minimize the energy E(u) = EA(u)−EB(u).

Applying to EA(u) the method described in Appendix A,

d

dt
|t=0 E(u + tµ) =

∫

Ω
(P∇ψ∇u1 · P∇ψ∇µ1)δ(ψ) ‖∇ψ‖ dx

+
∫

Ω
(P∇ψ∇u2 · P∇ψ∇µ2)δ(ψ) ‖∇ψ‖ dx

+
∫

Ω
(P∇ψ∇u3 · P∇ψ∇µ3)δ(ψ) ‖∇ψ‖ dx

we obtain that the gradient descent for EA is given by

dui

dt
=

1
‖∇ψ‖∇ · (P∇ψ∇u1 ‖∇ψ‖) ,

for each of the three components of u.

The gradient descent for EB is simply

dui

dt
= −γui.

So The composed gradient descent, for E, is

dui

dt
=

1
‖∇ψ‖∇ · (P∇ψ∇ui ‖∇ψ‖)− γui.

We must find the value of γ. Multiplying both sides of the last equation by
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ui, making a summation over i and bearing in mind that ‖u‖ = 1, we get

γ =
1

‖∇ψ‖
∑

ui∇ · (P∇ψ∇ui ‖∇ψ‖) .

Using the equalities

ui∇ · (P∇ψ∇ui ‖∇ψ‖) = ∇ · (uiP∇ψ∇ui ‖∇ψ‖)−∇uiP∇ψ∇ui ‖∇ψ‖ ,

uiP∇ψ∇ui = ui(∇ui − ∇ψ∇ui

‖∇ψ‖2 ∇ψ) =
1
2
(∇u2

i −
∇ψ∇u2

i

‖∇ψ‖2 ∇ψ),

∇ui · P∇ψ∇ui ‖∇ψ‖ = ‖∇ψ‖∇ui · P∇ψ∇ui = ‖∇ψ‖ ‖P∇ψ∇ui‖2

and the fact that
∑

∇u2
i = ∇

(∑
u2

i

)
= ∇ (1) = 0,

we finally obtain
γ = −‖P∇ψ∇u‖2

so the gradient descent for E is

dui

dt
=

1
‖∇ψ‖∇ · (P∇ψ∇u1 ‖∇ψ‖)− u ‖P∇ψ∇u‖2 .

10.4 Numerical schemes for implicit regularization

We work in a cubic grid, with ∆x = ∆y = ∆z = 1. We compute the value
un

i,j,k, the value of u in the pixel (i, j, k) at the nth iteration, based on the
previous values of its neighbors, i.e. forward time differences.

First, we compute the vector ~N (this is needed only once), the outward
normal to the surface by central differences,

~Ni,j,k = ∇ψi,j,k

=
1
2

(ψi+1,j,k − ψi−1,j,k , ψi,j+1,k − ψi,j−1,k , ψi,j,k+1 − ψi,j,k−1)

Then, for the iteration n, we first compute the gradient of u

~vn
i,j,k = ∇+un

i,j,k =
(
un

i+1,j,k − un
i,j,k , un

i,j+1,k − un
i,j,k , un

i,j,k+1 − un
i,j,k

)
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and its projection to the on the surface, to obtain the intrinsic gradient

(
P ~N~v

)n

i,j,k
= ~vn

i,j,k −




3∑
m=1

~Ni,j,k[m] · ~vn
i,j,k[m]

∥∥∥ ~Ni,j,k

∥∥∥
2

~Ni,j,k




where square brackets represent the component of the vector.

Finally, we use backward time differences to compute the divergence

∇− ~wi,j,k = ~wi,j,k[1]− ~wi−1,j,k[1]+ ~wi,j,k[2]− ~wi,j−1,k[3]+ ~wi,j,k[3]− ~wi,j,k−1[3]

We switch forward differences and backward differences to avoid numerical
problems.

Then the numerical implementation of the heat flow is

un+1
i,j,k = un

i,j,k + ∆t


 1∥∥∥ ~Ni,j,k

∥∥∥
∇− ·

((
P ~N~v

)n

i,j,k

∥∥∥ ~Ni,j,k

∥∥∥
)

 (10.1)

and for the embedding function being the distance function,

un+1
i,j,k = un

i,j,k + ∆t
(
∇− ·

((
P ~N~v

)n

i,j,k

))

Implicit anisotropic diffusion

For the anisotropic diffusion, we found that using

un+1
i,j,k = un

i,j,k + ∆t


 1∥∥∥ ~Ni,j,k

∥∥∥
∇− ·




(
P ~N~v

)n

i,j,k∥∥∥
(
P ~N~v

)n

i,j,k

∥∥∥

∥∥∥ ~Ni,j,k

∥∥∥






rather than the scheme proposed in [9] gives better results. This is illustrated
in fig.
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Numerical schemes for implicit color regularization

We use here the same notation as in 10.4, but now we have that un has three
components: un[m]. For the isotropic diffusion, we apply the next scheme:

un+1
i,j,k [m] = un

i,j,k [m] + ∆t
1∥∥∥ ~Ni,j,k

∥∥∥
∇−




∥∥∥∥
(
P ~N

(
∇+un

i,j,k[m]
))n

i,j,k

∥∥∥∥
∥∥∥ ~Ni,j,k

∥∥∥




+un
i,j,k [m]

∥∥∥
(
P ~N

(∇+un
i,j,k

))n

i,j,k

∥∥∥
2

where

∥∥∥
(
P ~N

(∇+un
i,j,k

))n

i,j,k

∥∥∥ = (
∥∥∥
(
P ~N

(∇+un
i,j,k[1]

))n

i,j,k

∥∥∥
+

∥∥∥
(
P ~N

(∇+un
i,j,k[2]

))n

i,j,k

∥∥∥

+
∥∥∥
(
P ~N

(∇+un
i,j,k[3]

))n

i,j,k

∥∥∥)
1
2

.

And for the anisotropic scheme we have

un+1
i,j,k [m] = un

i,j,k [m]

+ ∆t
1∥∥∥ ~Ni,j,k

∥∥∥
∇−




∥∥∥∥
(
P ~N

(
∇+un

i,j,k[m]
))n

i,j,k

∥∥∥∥
∥∥∥∥
(
P ~N

(
∇+un

i,j,k

))n

i,j,k

∥∥∥∥

1∥∥∥ ~Ni,j,k

∥∥∥




+un
i,j,k [m]

∥∥∥
(
P ~N

(∇+un
i,j,k

))n

i,j,k

∥∥∥

134



10.5 Algorithm for explicit anisotropic smoothing

Refers to the algorithm presented in section 3.2. Coded in C++, uses vtk,
lapack and the yar++ image library from the Odyssée project.

/*

INPUT:

"in": *.vtk vtkPolyData file containing a mesh and the

data related.

"dt": time step (float).

"n_time": number of steps (integer).

"param": in (0,1,2), to choose between the parametric

isotropic diffusion (param=1), the FEM isotropic diffusion

(param=0) or the anisotropic diffusion (param=2).

"mkmpg": choose mkmpg=1 to save all evolution images

in directory Seq/.

OUTPUT:

"out": *.vtk vtkPolyData file containing the same mesh

as "in" but where the data has been regularized using the

parameters dt and n_time and the param method.

#include <math.h>

#include <Usage.H>

#include <Matrix.H>

#include <LinAlg.H>

#include "vtkPolyDataReader.h"

#include "vtkCellArray.h"

#include "vtkPolyData.h"

#include "vtkRenderer.h"

#include "vtkRenderWindow.h"

#include "vtkConeSource.h"

#include "vtkPolyDataMapper.h"

#include "vtkActor.h"

#include "vtkPolyDataWriter.h"

#include "vtkDataArray.h"

#include "vtkFloatArray.h"

#include "vtkPointData.h"
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#include "vtkDataSetAttributes.h"

typedef Math::Matrix<double> MAT;

int main(int argc, char **argv) {

char *in,*out;

float dt;

int n_time,param,mkmpg;

Usage Call(argc,argv,"in out param mkmpg dt n_time",

in,out,param,mkmpg,dt,n_time); Call();

// Options

int normaliza = 0;

int i;

// Read the polydata structure

vtkPolyDataReader *pr = vtkPolyDataReader::New();

pr -> SetFileName(in);

vtkPolyData *p = vtkPolyData::New();

p = pr -> GetOutput();

vtkRenderer *ren2 = vtkRenderer::New();

vtkRenderWindow *renWindow = vtkRenderWindow::New();

renWindow->AddRenderer(ren2);

vtkRenderer *ren1 = vtkRenderer::New();

renWindow->AddRenderer(ren1);

// Read the polydata structure again

vtkPolyDataReader *pro = vtkPolyDataReader::New();

pro -> SetFileName(in);

vtkPolyDataMapper *coneMapper = vtkPolyDataMapper::New();

coneMapper->SetInput(p);

vtkPolyDataMapper *coneMappero = vtkPolyDataMapper::New();

coneMappero->SetInput(pro->GetOutput());

vtkActor *coneActor = vtkActor::New();

coneActor->SetMapper(coneMapper);
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vtkActor *coneActoro = vtkActor::New();

coneActoro->SetMapper(coneMappero);

// assign our actor to both renderers

ren1->AddActor(coneActor);

ren2->AddActor(coneActoro);

// set the size of our window

renWindow->SetSize(600,300);

// set the viewports and background of the renderers

ren1->SetViewport(0,0,0.5,1);

ren1->SetBackground(0.2,0.3,0.5);

ren2->SetViewport(0.5,0,1,1);

ren2->SetBackground(0.2,0.5,0.3);

renWindow->Render();

char name[250];

int ph = 0;

// Access the triangles

p -> Update();

p -> BuildCells();

int n_points = p -> GetNumberOfPoints();

vtkCellArray *tri = p -> GetPolys ();

int n_tri = p -> GetNumberOfPolys();

// Connectivity info

cout<<"Constructing the connectivity array"<<endl;

const int max_n_nbr = 15;

int j,k; //i,j contadores de puntos, k contador de vecinos

int i_tri;

int npts;

int *pts;

int yaesta;

int nbr1[n_points][max_n_nbr];

int m_nbr[n_points];

//Inicializar en -1
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for (i=0;i<n_points;i++) {

m_nbr[i] = 0;

for (j=0;j<max_n_nbr;j++)

nbr1[i][j] = -1;

}

cout<<"# points: "<<n_points<<endl;

cout<<"# triangles: "<<n_tri<<endl;

tri -> InitTraversal();

for(i_tri=0;tri -> GetNextCell(npts,pts)!=0;i_tri++)

for(i=0;i<npts;i++)

for(j = 0;j<3;j++)

if (pts[j] != pts[i]) {

yaesta = 0;

// Ya esta pts[j] en nbr[pts[i]][.] o no?

for (k=0;k<m_nbr[pts[i]];k++)

if (pts[j] == nbr1[pts[i]][k])

yaesta = 1;

if (yaesta == 0) { // o sea que noesta

if (m_nbr[pts[i]] == max_n_nbr)

cout<<"Maximum surpassed"<<endl;

nbr1[pts[i]][m_nbr[pts[i]]] = pts[j];

m_nbr[pts[i]]++;

}

}

int max_nbr = 0;

for (i=0;i<n_points;i++)

if (max_nbr < m_nbr[i]) max_nbr = m_nbr[i];

cout<<"Maximum number of neighbors: "<<max_nbr<<endl;

int nbr[n_points][max_nbr];

for(i=0;i<n_points;i++)

for(j=0;j<max_nbr;j++)

nbr[i][j] = nbr1[i][j];

cout<<"Reading Data"<<endl;
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float f[n_points];

float * actf;

actf = (float *) malloc (n_points * sizeof (float));

if (actf == NULL) {printf ("out of memory\n"); exit (-1);}

for (j = 0; j < n_points; j++) actf[j] = 0;

const float FWHM = 4*sqrt(log(2.0)*n_time*dt);

cout<<"FWHM = "<<FWHM<<endl;

float lap;

vtkDataArray *sca = p -> GetPointData() -> GetScalars();

int t;

for(i=0;i<n_points;i++) f[i] = sca -> GetComponent(i,0);

/************************************************************

*************************************************************

*** WEIGHTS COMPUTATION FOR THE Laplace-Beltrami *******

*************************************************************

************************************************************/

cout<<"Calculating the linear weights for the LB"<<endl;

MAT weight(n_points,max_nbr);

if (param == 1) {

// Parametric method

float *pt,*nbr_pt,*normal;

float deno;

int n_nbr;

for (i=0;i<n_points;i++) {

n_nbr = m_nbr[i];

MAT coord_nbr(3,n_nbr);

//Translate the origin

pt = p -> GetPoints() -> GetPoint(i);
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for (j=0;j<m_nbr[i];j++){

nbr_pt = p -> GetPoints() -> GetPoint(nbr[i][j]);

for (k=0;k<3;k++)

coord_nbr(k+1,j+1) = nbr_pt[k]-pt[k];

}

//Rotation by Eulerian Axis

MAT Q(Identity(3));

normal = p->GetPointData()->GetNormals()->GetTuple(i);

deno = sqrt(normal[0]*normal[0]+normal[1]*normal[1]);

if (deno >= 0.1) {

MAT Q1(3,3);

Q1(1,1)=normal[0]/deno;

Q1(1,2)=normal[1]/deno;

Q1(1,3)=0.0;

Q1(2,1)=-normal[1]/deno;

Q1(2,2)=normal[0]/deno;

Q1(2,3)=0.0;

Q1(3,1)=0.0;

Q1(3,2)=0.0;

Q1(3,3)=1.0;

MAT Q2(3,3);

Q2(1,1)=normal[2];

Q2(1,2)=0.0; Q2(1,3)=-deno;

Q2(2,1)=0.0;

Q2(2,2)=1.0; Q2(2,3)=0.0;

Q2(3,1)=deno;

Q2(3,2)=0.0; Q2(3,3)=normal[2];

Q = Q2*Q1;

}

MAT rot = Q*coord_nbr;

MAT X(n_nbr,5);

MAT z(n_nbr,1);

// Contruction of X, the design matrix and z

for (k=1;k<=n_nbr;k++) {

X(k,1) = rot(1,k);
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X(k,2) = rot(2,k);

X(k,3) = rot(1,k)*rot(1,k);

X(k,4) = 2*rot(1,k)*rot(2,k);

X(k,5) = rot(2,k)*rot(2,k);

z(k,1) = rot(3,k);

}

Math::LinearAlgebra<double> LinAlg;

MAT beta;

if (n_nbr >= 5) {

beta =

(LinAlg.Inverse(Transpose(X)*X)*Transpose(X))*z;

beta = LinAlg.SolveLinear(X,z);

}

else {

MAT beta2(5,1);

beta2(1,1) = 0;

beta2(2,1) = 0;

beta2(3,1) = 0;

beta2(4,1) = 0;

beta2(5,1) = 0;

beta = beta2;

MAT X2(n_nbr,n_nbr);

for (k=1;k<=n_nbr;k++)

for (j=1;j<=n_nbr;j++)

X2(k,j)=X(k,j);

beta = (LinAlg.Inverse(Transpose(X2)*X2)

*Transpose(X2))*z;

}

MAT g(2,2);

g(1,1) = 1 + beta(1,1)*beta(1,1);

g(1,2) = beta(1,1)*beta(2,1);

g(2,1) = beta(1,1)*beta(2,1);

g(2,2) = 1 + beta(2,1)*beta(2,1);
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MAT g_half; // principal sqroot of g

MAT D_vect,VR;

D_vect = LinAlg.eig(g,VR); //(2X1)

MAT D(2,2);

D(1,1) = sqrt(fabs(D_vect(1)));

D(1,2) = 0.0;

D(2,1) = 0.0;

D(2,2) = sqrt(fabs(D_vect(2)));

g_half =

LinAlg.SolveLinear(Transpose(VR),D*Transpose(VR));

MAT temp1(2,n_nbr);

for (k=1;k<=n_nbr;k++) {

temp1(1,k) = rot(1,k);

temp1(2,k) = rot(2,k);

}

MAT conformal_coord = g_half*temp1;

MAT X_act (n_nbr,5);

for (k=1;k<=n_nbr;k++) {

const double x_aux = conformal_coord(1,k);

const double y_aux = conformal_coord(2,k);

X_act(k,1) = x_aux;

X_act(k,2) = y_aux;

X_act(k,3) = 0.5*x_aux*x_aux;

X_act(k,4) = (x_aux)*(y_aux);

X_act(k,5) = 0.5*y_aux*y_aux;

}

MAT gamma = LinAlg.PseudoInverse(X_act);

// gamma is 5xn_nbr

// Saving the weigths

for (k=1;k<=n_nbr;k++)

weight(i+1,k) = gamma(3,k)+gamma(5,k);

if (max_nbr > n_nbr)

for (k=n_nbr+1;k<=max_nbr;k++)

weight(i+1,k) = 0.0;

}
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}

if ((param == 0) || (param == 2)) {

// FEM

cout<<"Ordering neighbors"<<endl;

int n_nbr;

//int n_pts;

short unsigned int n_cells;

int *tri_ady1;

int *tri_ady2;

int *tris1;

int flag1,flag2,flag3,flag4;

p -> BuildLinks();

for (i=0;i<n_points;i++) {

n_nbr = m_nbr[i];

for (int k_nbr=0;k_nbr<n_nbr-1;k_nbr++) {

// For each neighbor look for triangles

// that contain point i and k_nbr

p -> GetPointCells(i,n_cells,tris1);

// check on triangles neighboring point i

flag3 = 0; flag4 = 0;

tri -> InitTraversal();

for(i_tri=0;(i_tri<n_cells)

&&(flag4==0);i_tri++)

{

p -> GetCellPoints(tris1[i_tri],npts,pts);

flag1 = 0; flag2 = 0;

for(j=0;j<npts;j++)

if (i == pts[j]) flag1 = 1;

else if (nbr[i][k_nbr] == pts[j])

flag2 = 1;

if ((flag1 == 1) && (flag2 == 1))

// The triangle has both

if (flag3 == 0) {

// Is the first triangle it finds

tri_ady1 = pts;

flag3 = 1; }

143



else {

// Is the second (there can’t be

// more than 2 triangles adyacents

// to a vertex)

tri_ady2 = pts;

flag4 = 1;

}

}

int nei = 0;

if (flag3 == 0) // unclosed surface

cout<<"no tri for the pair "

<<i<<","<<nbr[i][k_nbr]<<"!"<<endl;

else if (flag4 == 0)

cout<<"unclosed surface!"

<<i<<","<<nbr[i][k_nbr]<<endl;

else {

for (int k1=1;k1<=3;k1++)

for (int k2=1;k2<=3;k2++)

if ((tri_ady1[k1-1]==i) &&

(tri_ady1[k2-1]==nbr[i][k_nbr]))

if (((k1-k2)==-1)||((k1-k2)==2))

{

// is tri_a, neighbor is

int k3;

if ((k1!=1) && (k2!=1))

k3 = 1;

else if ((k1!=2) & (k2!=2))

k3 = 2;

else k3 = 3;

nei = tri_ady1[k3-1]; }

if (nei == 0)

for (int k1=1;k1<=3;k1++)

for (int k2=1;k2<=3;k2++)

if ((tri_ady2[k1-1]==i) &&

(tri_ady2[k2-1]==nbr[i][k_nbr]))

{

int k3;

if ((k1!=1) & (k2!=1))

k3 = 1;

144



else if ((k1!=2) & (k2!=2))

k3 = 2;

else k3 = 3;

nei = tri_ady2[k3-1]; }

}

nbr[i][k_nbr+1]=nei;

}

}

// Ordering finished

cout<<"Cotan computation"<<endl;

float *pt;

float *nbr_pt;

for (i=0;i<n_points;i++) {

n_nbr = m_nbr[i];

MAT cotan(1,n_nbr);

MAT coord_nbr1(3,n_nbr);

//Translate the origin

pt = p -> GetPoints() -> GetPoint(i);

for (j=0;j<n_nbr;j++) {

nbr_pt = p->GetPoints()->GetPoint(nbr[i][j]);

for (k=0;k<3;k++)

coord_nbr1(k+1,j+1) = nbr_pt[k]-pt[k];

}

MAT coord_nbr(3,n_nbr+2);

for (k=1;k<=3;k++) { //circular array..

coord_nbr(k,1) = coord_nbr1(k,n_nbr);

for (j=1;j<=n_nbr;j++)

coord_nbr(k,j+1) = coord_nbr1(k,j);

coord_nbr(k,n_nbr+2) = coord_nbr1(k,1);

}

float area = 0;

for (int l=2;l<=n_nbr+1;l++) {

MAT a1 = coord_nbr.GetSubMatrix(1,l,3,l);

//xi

MAT a2 = coord_nbr.GetSubMatrix(1,l+1,3,l+1);

//xj
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MAT a3 = coord_nbr.GetSubMatrix(1,l-1,3,l-1);

//xk

MAT a4 = a2 - a1; // xj - xi

MAT a5 = a3 - a1; // xk - xi

MAT p = CrossProd(a2,a4);

MAT q = CrossProd(a3,a5);

const double area_p = sqrt(DotProd(p,p))/2;

const double area_q = sqrt(DotProd(q,q))/2;

const double dot_p = DotProd(a2,a4);

const double dot_q = DotProd(a3,a5);

if (param==2) {

MAT an = ((f[l]-f[l-1])*a4

+ (f[l+1]-f[l])*a5);

const double normag = an.Norm();

if (normag>0)

cotan(1,l-1) = (dot_p/(2*area_p) +

dot_q/(2*area_q))/normag;

else

cotan(1,l-1)=0;

}

else {

if (area_p*area_q > 0)

cotan(1,l-1) = dot_p/(2*area_p) +

dot_q/(2*area_q);

else

cotan(1,l-1)=0;

}

area+=area_p;

}

for (j=1;j<=max_nbr;j++)

if (j<n_nbr)

weight(i+1,j) = cotan(1,j)/area;

else

weight(i+1,j) = 0;

}

}
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/***********************************************************

************************************************************

*************** FINITE DIFFERENCES ***********************

************************************************************

***********************************************************/

cout<<"Finite Differences scheme"<<endl;

for (t=0;t<n_time;t++) {

if ((param==2)&&(t>0)) {

// WEIGHTS ACTUALIZATION

float *pt;

float *nbr_pt;

for (i=0;i<n_points;i++) {

int n_nbr = m_nbr[i];

MAT cotan(1,n_nbr);

MAT coord_nbr1(3,n_nbr);

//Translate the origin

pt = p -> GetPoints() -> GetPoint(i);

for (j=0;j<n_nbr;j++) {

nbr_pt = p->GetPoints()->GetPoint(nbr[i][j]);

for (k=0;k<3;k++)

coord_nbr1(k+1,j+1) = nbr_pt[k]-pt[k];

}

MAT coord_nbr(3,n_nbr+2);

for (k=1;k<=3;k++) { //circular array..

coord_nbr(k,1) = coord_nbr1(k,n_nbr);

for (j=1;j<=n_nbr;j++)

coord_nbr(k,j+1) = coord_nbr1(k,j);

coord_nbr(k,n_nbr+2) = coord_nbr1(k,1);

}

float area = 0;

for (int l=2;l<=n_nbr+1;l++) {

MAT a1 = coord_nbr.GetSubMatrix(1,l,3,l);

//xi

MAT a2 = coord_nbr.GetSubMatrix(1,l+1,3,l+1);

//xj

MAT a3 = coord_nbr.GetSubMatrix(1,l-1,3,l-1);

//xk
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MAT a4 = a2 - a1; // xj - xi

MAT a5 = a3 - a1; // xk - xi

MAT p = CrossProd(a2,a4);

MAT q = CrossProd(a3,a5);

const double area_p = sqrt(DotProd(p,p))/2;

const double area_q = sqrt(DotProd(q,q))/2;

const double dot_p = DotProd(a2,a4);

const double dot_q = DotProd(a3,a5);

if (param==2) {

MAT an = ((f[l]-f[l-1])*a4 +

(f[l+1]-f[l])*a5);

const double normag = an.Norm();

cotan(1,l-1)=(dot_p/(2*area_p) +

dot_q/(2*area_q))/normag;

}

else

cotan(1,l-1)=dot_p/(2*area_p)

+dot_q/(2*area_q);

area+=area_p;

}

for (j=1;j<=max_nbr;j++)

if (j<n_nbr)

weight(i+1,j) = cotan(1,j)/area;

else

weight(i+1,j) = 0;

} }

// END WEIGHT ACTUALIZATION

for (j=0;j<n_points;j++) {

lap = 0;

for (k=0;k<m_nbr[j];k++)

lap += weight(j+1,k+1)*(f[nbr[j][k]] - f[j]);

actf[j] = f[j] + dt*lap;

}

float * minf;

minf = (float *) malloc (n_points * sizeof (float));
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if (minf == NULL)

{printf ("out of memory\n"); exit (-1);}

for (j = 0; j < n_points; j++) minf[j] = 1000000.0;

float * maxf;

maxf = (float *) malloc (n_points * sizeof (float));

if (maxf == NULL)

{printf ("out of memory\n"); exit (-1);}

for (j = 0; j < n_points; j++) maxf[j] = 1000000.0;

for (j=0;j<n_points;j++) {

minf[j]=1000000.0;

maxf[j]=-1000000.0;

}

for (j=0;j<n_points;j++)

for (k=0;k<m_nbr[j];k++) {

if (minf[j] > f[nbr[j][k]])

minf[j] = f[nbr[j][k]];

if (maxf[j] < f[nbr[j][k]])

maxf[j] = f[nbr[j][k]];

}

for (j=0;j<n_points;j++) {

if (actf[j] < minf[j]) actf[j] = minf[j];

if (actf[j] > maxf[j]) actf[j] = maxf[j];

f[j] = actf[j];

sca -> SetComponent(j,0,f[j]);

}

p -> GetPointData() -> SetScalars(sca);

// Visualization

renWindow -> RemoveRenderer(ren2);

ren2 -> Delete();

vtkRenderer *ren2 = vtkRenderer::New();

renWindow -> AddRenderer(ren2);

ren2 -> AddActor(coneActoro);

renWindow -> RemoveRenderer(ren1);

ren1 -> Delete();

vtkRenderer *ren1 = vtkRenderer::New();
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renWindow -> AddRenderer(ren1);

ren1 -> AddActor(coneActor);

ren1->SetViewport(0.5,0,1,1);

ren1->SetBackground(0.2,0.5,0.3);

ren2->SetViewport(0,0,0.5,1);

ren2->SetBackground(0.2,0.3,0.5);

renWindow -> Render();

// END Visualization

cout<<t+1<<endl;

if ( mkmpg == 1 ) {

sprintf(name,"Seq/imagen\%03d.ppm",t+ph);

//renWindow->SetFileName(name);

renWindow->MappedOn();

//renWindow->SaveImageAsPPM();

}

}

ph += t;

if (normaliza == 1) {

float maxf = -1000000.0;

float minf = 1000000.0;

for (i=0;i<n_points;i++) {

if (maxf<f[i]) maxf = f[i];

if (minf>f[i]) minf = f[i];

}

if (maxf-minf>0.0001)

for (i=0;i<n_points;i++)

f[i]=255.0*(f[i]-minf)/(maxf - minf);

for (j=0;j<n_points;j++)

sca -> SetComponent(j,0,f[j]);

}

cout<<"Saving result"<<endl;

vtkPolyDataWriter *pw = vtkPolyDataWriter::New();

pw -> SetInput(p);
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pw -> SetFileName(out);

pw -> Write();

// Clean up

p -> Delete();

ren1->Delete();

ren2->Delete();

renWindow->Delete();

pr->Delete();

pro->Delete();

coneMapper->Delete();

coneMappero->Delete();

coneActor->Delete();

coneActoro->Delete();

}
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