M. Pichot, J. Pelletier, and Y. , Procédé et dispositif d'excitation d'un plasma par microondes à la résonance cyclotronique électronique, 1985.

A. Pichot, J. Durandet, Y. Pelletier, L. Arnal, and . Vallier, Microwave multipolar plasmas excited by distributed electron cyclotron resonance: Concept and performance, Review of Scientific Instruments, vol.59, issue.7, p.1072, 1988.
DOI : 10.1063/1.1139728

URL : https://hal.archives-ouvertes.fr/hal-00282399

G. Koch and . Matthieussent, Collisional diffusion of a plasma in multipolar and picket fence devices, Physics of Fluids, vol.26, issue.2, p.545, 1983.
DOI : 10.1063/1.864139

G. Matthieussent and J. Pelletier, Ambipolar diffusion model of multipolar plasmas, dans "Microwave Excited Plasmas, édité par M. Moisan et J. Pelletier, pp.303-349, 1992.

J. Pelletier, Distributed ECR plasma sources, dans "High Density Plasma Sources : Designs, Physics and Performance, pp.380-425, 1995.
DOI : 10.1016/b978-081551377-3.50010-4

J. Pelletier and G. Matthieussent, Homogeneity in multipolar discharges: the role of primary electrons, dans "Microwave Excited Plasmas, édité par M. Moisan et J. Pelletier, pp.351-384, 1992.

C. Courteille, J. Bruneteau, and F. P. Valckx, ion source, Review of Scientific Instruments, vol.64, issue.11, p.3265, 1993.
DOI : 10.1063/1.1144288

T. Lagarde, Y. Arnal, A. Lacoste, and J. Pelletier, Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field, Plasma Sources Science and Technology, vol.10, issue.2, p.181, 2001.
DOI : 10.1088/0963-0252/10/2/308

T. Lagarde, J. Pelletier, and Y. Arnal, Influence of the multipolar magnetic field configuration on the density of distributed electron cyclotron resonance plasmas, Plasma Sources Science and Technology, vol.6, issue.1, p.53, 1997.
DOI : 10.1088/0963-0252/6/1/008

R. Burke and J. Pelletier, Discharges confined by multipolar magnetic fields, dans "Microwave Excited Plasmas, édité par M. Moisan et J. Pelletier, pp.273-301, 1992.

T. Lagarde, Y. Arnal, and J. Pelletier, Influence of the applied field frequency on the characteristics of Ar and diffusion plasmas sustained at electron cyclotron resonance above multipolar magnetic field structures, Plasma Sources Science and Technology, vol.6, issue.3, p.386, 1997.
DOI : 10.1088/0963-0252/6/3/015

M. Pichot and J. Pelletier, Distributed electron cyclotron resonance plasmas, dans "Microwave Excited Plamas, édité par M. Moisan et J. Pelletier, pp.419-434, 1992.

T. Lagarde and J. Pelletier, Procédé de production de plasmas élémentaires en vue de créer un plasma uniforme pour une surface d'utilisation et dispositif de production d

A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, and J. Pelletier, Les plasmas multi-dipolaires : principe et performances, Le Vide, pp.284-295, 2002.

A. Lacoste, T. Lagarde, S. Béchu, Y. Arnal, and J. Pelletier, Multi-dipolar plasmas for uniform processing: physics, design and performance, Plasma Sources Science and Technology, vol.11, issue.4, pp.407-412, 2002.
DOI : 10.1088/0963-0252/11/4/307

R. Maurau, Caractérisation d'une source de plasma multi-dipolaire-Application à un réseau bi-dimensionnel, 2003.

S. Béchu, Mesures de sondes électrostatiques en plasma basse pression ; Plasmas Froids : Génération, caractérisation et technologies ; Publications de l, pp.159-223, 2004.

G. Hopkins, Electron energy distribution function measurements in a magnetic multipole plasma, Journal of Physics D: Applied Physics, vol.20, issue.7, pp.838-843, 1987.
DOI : 10.1088/0022-3727/20/7/004

A. Lacoste, Mémoire d'habilitation à diriger des recherches, ' La résonance cyclotronique électronique : des plasmas DECR aux sources d'ions multichargés, 2002.

D. Vempaire, Modification des propriétés magnétiques de couches minces de nikel et de manganèse et réalisation de microstructures magnétiques par implantation ionique en immersion plasma , thèse, 2004.

J. D. Swift and M. J. Schwar, Electrical Probes for Plasma Diagnostics, Journal of The Electrochemical Society, vol.118, issue.3, 1970.
DOI : 10.1149/1.2408098

J. G. Laframboise and J. Rubinstein, Theory of a cylindrical probe in a collisionless magnetoplasma, Physics of Fluids, vol.19, issue.12, pp.1900-1908, 1976.
DOI : 10.1063/1.861425

J. G. Laframboise and L. J. Sonmor, Current collection by probes and electrodes in space magnetoplasmas: A review, Journal of Geophysical Research: Space Physics, vol.93, issue.1, pp.1-337, 1993.
DOI : 10.1029/92JA00839

T. Lagarde, Y. Arnal, J. Lacoste, and . Pelletier, Determination of the EEDF by Langmuir probe diagnostics in a plasma excited at ECR above a multipolar magnetic field, Plasma Sources Science and Technology, vol.10, issue.2, pp.181-190, 2001.
DOI : 10.1088/0963-0252/10/2/308

G. Regnard, Passage micro-onde 200 W/ 2,45 GHz pour réacteur plasma, 2003.

J. L. Delcroix and A. Bers, Physique des Plasmas, Tome 1 et 2, Edition 'Savoir Actuel', InterEditions / CNRS Editions, 1995.

M. Moisan and J. Pelletier, Microwave excited plasmas, 1992.

M. Moisan and J. Pelletier, Physique des plasmas collisionnels. Application aux décharges haute fréquence, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-01017427

D. Meeker, Finite Elemnet Method Megnetics, 2003.

C. K. Birdsall, Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC, IEEE Transactions on Plasma Science, vol.19, issue.2, pp.65-86, 1991.
DOI : 10.1109/27.106800

J. P. Boeuf, Modelisation de la cinétique électronique dans un gaz faiblement ionisé, Thèse de Docteur d'état, 1985.

S. Longo, Monte Carlo models of electron and ion transport in non-equilibrium plasmas, Plasma Sources Science and Technology, vol.9, issue.4, pp.468-478, 2000.
DOI : 10.1088/0963-0252/9/4/303

M. Tiberiu and . Minea, Simulation particulaire d'une décharge magnétron radio-fréquence, comparison à l'expérience, these, 1998.

V. Vladimir, S. Serikov, K. Kawamoto, and . Nanbu, Particle-in-Cell Plus Direct Simulation Monte Carlo (PIC-DSMC) Approach for Self-Consistent Plasma-Gas Simulations, IEEE transactions on plasma science, vol.27, issue.5, 1999.

S. Kondo and K. Nanbu, PIC/MC Analysis of Three-Dimensional DC Magnetron Discharge, Rep. Inst. Fluid Science, vol.12, pp.111-142, 2000.

D. Boumhali, A. Saifaoui, B. Dezairi, and . Zine, Collision Simulation in Plasma Sheath Using the Monte Carlo Technic ; M, J.Condensed Matter, vol.5, issue.2, pp.177-180, 2004.

M. J. Brennan, Optimization of Monte Carlo codes using null collision techniques for experimental simulation at low E/N, IEEE Transactions on Plasma Science, vol.19, issue.2, pp.256-261, 1991.
DOI : 10.1109/27.106822

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 1981.
DOI : 10.1201/9781439822050

H. Takekida and K. Nanbu, Particle modelling of plasma confinement by a multipolar magnetic field, Journal of Physics D: Applied Physics, vol.37, issue.13, pp.1800-1808, 2004.
DOI : 10.1088/0022-3727/37/13/011

M. Yousfi, A. Hennad, and A. Alkaa, Monte Carlo simulation of electron swarms at low reduced electric fields, Physical Review E, vol.49, issue.4, 1994.
DOI : 10.1103/PhysRevE.49.3264

A. Lacoste, Amorçage et entretien en cavite resonnante d'une decharge microonde d'hydrogene en impulsions de haute puissance, Thèse de doctorat, 1998.

M. Surendra, D. B. Graves, and I. J. Morey, Electron heating in low???pressure rf glow discharges, Applied Physics Letters, vol.56, issue.11, pp.1012-1024, 1990.
DOI : 10.1063/1.102604

M. Surendra, D. B. Graves, and G. M. Jellum, Self-consistent model of a direct-current glow discharge: Treatment of fast electrons, Physical Review A, vol.41, issue.2, pp.1112-1125, 1990.
DOI : 10.1103/PhysRevA.41.1112

J. M. Dawson, Particle simulation of plasmas, Reviews of Modern Physics, vol.55, issue.2, pp.403-447, 1983.
DOI : 10.1103/RevModPhys.55.403

A. C. Paes, N. M. Abe, V. A. Serrao, and A. Passaro, Simulations of plasmas with electrostatic PIC models using the finite element method, Brazilian Journal of Physics, vol.33, issue.2, 2003.
DOI : 10.1590/S0103-97332003000200046

R. Rejoub, B. G. Lindsay, and R. F. , Stebbings; Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases? Physical Review A, 2002.

. Phelps, Collision data

V. P. Gopinath and T. A. Grotjohn, Three-dimensional electromagnetic PIC model of a compact ECR plasma source, IEEE Transactions on Plasma Science, vol.23, issue.4, pp.602-608, 1995.
DOI : 10.1109/27.467980

A. G. Litvak, A. M. Sergeev, E. V. Surovov, M. D. Tokman, and I. V. Khazanov, On nonlinear effects in electron???cyclotron resonance plasma heating by microwave radiation, Physics of Fluids B: Plasma Physics, vol.5, issue.12, pp.4347-4359, 1993.
DOI : 10.1063/1.860552

M. A. Lieberman and A. J. Lichtenberg, Theory of electron cyclotron resonance heating. II. Long time and stochastic effects, Plasma Physics, vol.15, issue.2, pp.125-150, 1973.
DOI : 10.1088/0032-1028/15/2/006

A. B. Petrin, Utilization of ECR mechanism of electrons heating in multipolar magnetic systems of low-pressure plasma Reactors, IEEE Transactions on Plasma Science, vol.34, issue.1, pp.70-79, 2006.
DOI : 10.1109/TPS.2005.863569

M. Hulin and J. P. Maury, Les bases de l'électromagnétisme, Dunod, 1996.