. Démonstration, Considérons une solution obtenue avec l'algorithme glouton Notons a 1 , a k les lettres où il y a un changement : ces a i sont tels que pour w d(i) = w f (i) = a i , d(i) < f (i), w f (i)?1 et w f (i) sont de couleurs diérentes (d(i) comme début, f (i) comme n) On indexe les a i de manière à ce que les f (i) soient rangés dans l'ordre croissant

. Montrons and ?. Dans, est pas un sous-mot de w, alors les intervalles I i := {d(i), d(i) + 1, . . . , f (i) ? 1} sont disjoints. La proposition sera alors démontrée puisque toute solution optimale est supérieure ou

I. Il-sut-de-montrer-que, ?. I. , =. Pour-tout-i, and ?. , Comme les f (i) sont croissants, cela impliquera automatiquement que tous les I i sont disjoints. Par dénition de f (i) et f (i+1), le premier changement de couleur après w f (i) a lieu entre w f (i+1)?1 et w f (i+1) Donc les couleurs de w f (i) et w f (i+1) sont diérentes, de même donc que celles de w d(i) et w d(i+1) Il n'y a pas de sous

G. Même-dans-le-cas, planaire, la solution n'est en général pas gloutonne : par exemple pour w = ABACDCBD. G(w) est alors planaire puisqu'il a quatre sommets Cela dit, la solution optimale est 10000111, i.e. 2 changements de couleurs (on note 1 et 0 les deux couleurs). L'algorithme glouton donne : 11000101, i.e. 4 changements. Même dans le cas couvert par la Proposition 5.3, l'algorithme glouton ne fonctionne pas : w = ABACCB, la solution optimale est 011100

G. Soit, La réduction est alors la suivante : soit G 1 = (V 1 , E 1 ) et G 2 = (V 2 , E 2 ) deux copies de G. Soit F un couplage entre les sommets correspondant de G 1 et de G 2 . Le graphe?Ggraphe? graphe?G obtenu de cette manière est 4-régulier. Si ?(X) est une coupe maximum de G, avec X ? V , alors pour X 1 (resp. X 2 ) correspondant à X dans V 1 (resp, la coupe de?Gde? de?G ?(X 1 ? (V 2 \ X 2 )) est une coupe de cardinalité 2M (G) + |F |

X. Si and . Est-une-partie-de-e-un, 2 -espace vectoriel muni d'un produit scalaire, on dénit l'orthogonal de X par X ? := {x ? E : x, y = 0

R. Contrairement-aux and . Vectoriels, on peut avoir x, x = 0 avec x = 0. Il convient donc d'être prudent lorsqu'on cherche à étendre les propriétés connues pour les R-espaces vectoriels aux Z 2 -espaces vectoriels

C. Déterminant and . Lorsqu, on s'intéresse à l'inversibilité d'une matrice, plusieurs méthodes sont à notre disposition Une des plus naturelles est le calcul du déterminant. Il s'avère que dans le cadre des ?-jeu le calcul du déterminant a une signication graphique simple

G. Soit, Le déterminant de la matrice d'adjacence A G d'un ? ? -jeu est égal, Théorème 6.2

N. Alon, Splitting necklaces Advances in Math [2] N. Alon, Non-constructive proofs in combinatorics, Proc. of the International Congress of Mathematicians, pp.247-253, 1987.

N. Alon and D. West, The Borsuk-Ulam theorem and bisection of necklaces, Proc. Amer, pp.623-628, 1986.
DOI : 10.1090/S0002-9939-1986-0861764-9

A. T. Amin and P. J. Slater, All Parity Realizable Trees, J. Combin. Math. Combin. Comput, vol.20, pp.53-63, 1996.

A. T. Amin, L. H. Clark, and P. J. Slater, Parity dimension for graphs, Discrete Mathematics, vol.187, issue.1-3, pp.1-17, 1998.
DOI : 10.1016/S0012-365X(97)00242-2

URL : http://doi.org/10.1016/s0012-365x(97)00242-2

R. Bapat, A constructive proof of a permutation-based generalization of Sperner's lemma, Mathematical Programming, pp.113-120, 1989.
DOI : 10.1007/BF01587081

I. Bárány, A short proof of Kneser's conjecture, Journal of Combinatorial Theory, Series A, vol.25, issue.3, pp.325-326, 1978.
DOI : 10.1016/0097-3165(78)90023-7

P. S. Bonsma, T. Epping, and W. Hochstättler, Complexity results on restricted instances of a paint shop problem for words, Discrete Applied Mathematics, vol.154, issue.9
DOI : 10.1016/j.dam.2005.05.033

K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math, vol.20, pp.177-190, 1933.

L. E. Brouwer, Über Abbildung von Mannigfaltigkeiten Math, Ann, vol.71, pp.97-115, 1910.

C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, pp.193-217, 1911.

W. Y. Chen, X. Li, C. Wang, and X. Zhang, The Minimum All-Ones Problem for Trees, SIAM Journal on Computing, vol.33, issue.2, pp.379-392, 2004.
DOI : 10.1137/S0097539703421620

D. I. Cohen, On the Sperner lemma, Journal of Combinatorial Theory, vol.2, issue.4, pp.585-587, 1967.
DOI : 10.1016/S0021-9800(67)80062-0

S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing , STOC '71, 1971.
DOI : 10.1145/800157.805047

J. De-loera, T. Prescott, and F. E. Su, A Polytopal Generalization of Sperner's Lemma, Journal of Combinatorial Theory, Series A, vol.100, issue.1
DOI : 10.1006/jcta.2002.3274

M. De-longueville and R. T. Zivaljevic, The Borsuk???Ulam-property, Tucker-property and constructive proofs in combinatorics, Journal of Combinatorial Theory, Series A, vol.113, issue.5
DOI : 10.1016/j.jcta.2005.08.002

A. Dold, Simple proofs of some Borsuk-Ulam results, Contemp. Math, vol.19, pp.65-69, 1983.
DOI : 10.1090/conm/019/711043

H. Eriksson, K. Eriksson, and J. Sjöstrand, Note on the Lamp Lighting Problem, Advances in Applied Mathematics, vol.27, issue.2-3, pp.357-366, 2001.
DOI : 10.1006/aama.2001.0739

T. Epping, W. Hochstättler, and M. E. Lübbecke, MaxFlow-MinCut Duality for a Paint Shop Problem, Editeurs) : Operations Research Proceedings, pp.377-382, 2002.
DOI : 10.1007/978-3-642-55537-4_61

T. Epping, W. Höchstättler, and P. Oertel, Complexity results on a paint shop problem, Discrete Applied Mathematics, vol.136, issue.2-3, pp.217-226, 2004.
DOI : 10.1016/S0166-218X(03)00442-6

L. Euler, Solutio Problematis ad geometriam situs pertinentis, Commentarii academia scientiarum Petropolitanae, pp.128-140, 1736.

K. Fan, A Generalization of Tucker's Combinatorial Lemma with Topological Applications, The Annals of Mathematics, vol.56, issue.3, pp.431-437, 1952.
DOI : 10.2307/1969651

K. Fan, Combinatorial properties of certain simplicial and cubical vertex maps, Archiv der Mathematik, vol.56, issue.1, pp.368-377, 1960.
DOI : 10.1007/BF01236961

K. Fan, Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation, Journal of Combinatorial Theory, vol.2, issue.4, pp.588-602, 1967.
DOI : 10.1016/S0021-9800(67)80063-2

. Fleury, Deux problèmes de géométrie de situation, Journal de mathématiques élémentaires, pp.257-261, 1883.

M. Florence and F. Meunier, Symmetrical Patterns for ?-games, en préparation

R. M. Freund, Variable Dimension Complexes Part II: A Unified Approach to Some Combinatorial Lemmas in Topology, Mathematics of Operations Research, vol.9, issue.4, pp.489-509, 1984.
DOI : 10.1287/moor.9.4.498

R. M. Freund, Combinatorial Theorems on the Simplotope that Generalize Results on the Simplex and Cube, Mathematics of Operations Research, vol.11, issue.1, pp.169-179, 1986.
DOI : 10.1287/moor.11.1.169

R. M. Freund, Combinatorial analogs of Brouwer's fixed-point theorem on a bounded polyhedron, Journal of Combinatorial Theory, Series B, vol.47, issue.2, pp.192-219, 1989.
DOI : 10.1016/0095-8956(89)90020-8

R. M. Freund and M. J. Todd, A constructive proof of Tucker's combinatorial lemma, Journal of Combinatorial Theory, Series A, vol.30, issue.3
DOI : 10.1016/0097-3165(81)90027-3

D. Gale, Equilibrium in a discrete exchange economy with money, International Journal of Game Theory, vol.13, issue.1, pp.61-64, 1984.
DOI : 10.1007/BF01769865

F. Galvin, Solution to problem 88-8, Math. Intelligencer, vol.11, pp.31-32, 1989.

C. B. Garcia, A Hybrid Algorithm for the Computation of Fixed Points, Management Science, vol.22, issue.5, pp.606-613, 1976.
DOI : 10.1287/mnsc.22.5.606

C. H. Goldberg and D. West, Bisection of Circle Colorings, SIAM Journal on Algebraic Discrete Methods, vol.6, issue.1, pp.93-106, 1985.
DOI : 10.1137/0606010

S. Gravier, M. Mhalla, and E. Tannier, On a modular domination game, Theoretical Computer Science, vol.306, issue.1-3, pp.291-303, 2003.
DOI : 10.1016/S0304-3975(03)00285-8

URL : https://hal.archives-ouvertes.fr/hal-00427433

J. E. Greene, A New Short Proof of Kneser's Conjecture, The American Mathematical Monthly, vol.109, issue.10, pp.918-920, 2002.
DOI : 10.2307/3072460

T. Haynes, S. Hedetniemi, and P. Slater, Fundamentals of Domination in Graphs

J. Herings and K. Theorem, An extremely simple proof of the K-K-M-S Theorem, Economic Theory, vol.10, issue.2, pp.361-367, 1997.
DOI : 10.1007/s001990050161

T. Ichiisi, On the Knaster-Kuratowski-Mazurkiewicz-Shapley theorem, J. Math. Anal

A. Johnson, F. C. Holroyd, and S. Stahl, Multichromatic numbers, star chromatic numbers and Kneser graphs, Journal of Graph Theory, vol.26, issue.3, pp.137-145, 1997.
DOI : 10.1002/(SICI)1097-0118(199711)26:3<137::AID-JGT4>3.0.CO;2-S

Y. Kannai, The Core and Balancedness, dans : Handbook of Game Theory with Economic applications (édité par Aumann et Hart), pp.355-395, 1992.

R. M. Karp, Reductibility among combinatorial problems, dans : Complexity of Computer Computations, pp.85-103, 1972.

B. Knaster, C. Kuratowski, and C. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fundam. Math, vol.14, pp.132-137, 1929.

M. Kneser, Aufgabe 360, Jahresbericht des Deutschen Mathematiker-Vereinigung

H. Komiya and K. Theorem, A simple proof of K-K-M-S theorem, Economic Theory, vol.6, issue.3, pp.463-466, 1994.
DOI : 10.1007/BF01215383

S. Krasa and Y. C. , Yannelis, An elementary proof of the

S. Krynski, Remarks on Matroids and Sperner's Lemma, European Journal of Combinatorics, vol.11, issue.5, pp.485-488, 1990.
DOI : 10.1016/S0195-6698(13)80030-3

H. W. Kühn, SIMPLICIAL APPROXIMATION OF FIXED POINTS, Proceedings of the National Academy of Sciences, vol.61, issue.4, pp.1238-1242, 1968.
DOI : 10.1073/pnas.61.4.1238

C. Kuratowski, Sur le problème des courbes gauches en Topologie, Fundamenta Mathematicae, vol.15, pp.271-280, 1930.

G. Van-der-laan, A. J. Talman, and Z. Yang, Existence of Balanced Simplices on Polytopes, Journal of Combinatorial Theory, Series A, vol.96, issue.2, pp.288-302, 2001.
DOI : 10.1006/jcta.2001.3178

S. Lee and M. Shih, A Counting Lemma and Multiple Combinatorial Stokes' Theorem, European Journal of Combinatorics, vol.19, issue.8, pp.969-979, 1998.
DOI : 10.1006/eujc.1998.0247

S. Lee and M. Shih, Sperner Matroid, Archiv der Mathematik, vol.81, issue.1, pp.103-112, 2003.
DOI : 10.1007/s00013-003-0528-3

S. Lefschetz, Introduction to Topology, 1949.
DOI : 10.1515/9781400879946

B. Lindström, On Matroids and Sperner's Lemma, European Journal of Combinatorics, vol.2, issue.1, pp.65-66, 1981.
DOI : 10.1016/S0195-6698(81)80022-4

L. Lovász, Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory, Series A, vol.25, issue.3, pp.319-324, 1978.
DOI : 10.1016/0097-3165(78)90022-5

L. Lovász, Matroids and Sperner's Lemma, European Journal of Combinatorics, vol.1, issue.1, pp.65-67, 1980.
DOI : 10.1016/S0195-6698(80)80023-0

L. Lovász, Combinatorial Problems and Exercize, Elvesier Science Publishers, 1993.

J. Matousek, A Combinatorial Proof of Kneser's Conjecture, Combinatorica, pp.163-170, 2004.

J. Matousek, Using the Borsuk-Ulam Theorem, 2003.
DOI : 10.1007/978-3-540-76649-0

N. Meggido and C. Papadimitriou, On total functions, existence theorems and computational complexity, Theoretical Computer Science, vol.81, issue.2, pp.317-324, 1991.
DOI : 10.1016/0304-3975(91)90200-L

F. Meunier, A topological lower bound for the circular chromatic number of Schrijver graphs, Journal of Graph Theory, vol.229, issue.4, pp.257-261, 2005.
DOI : 10.1002/jgt.20079

F. Meunier, Sperner labellings: A combinatorial approach, Journal of Combinatorial Theory, Series A, vol.113, issue.7
DOI : 10.1016/j.jcta.2006.01.006

URL : https://hal.archives-ouvertes.fr/hal-00378010

F. Meunier, A combinatorial proof of a theorem of Freund, Journal of Combinatorial Theory, Series A, vol.115, issue.2
DOI : 10.1016/j.jcta.2007.04.003

URL : https://hal.archives-ouvertes.fr/hal-00363779

F. Meunier, Combinatorial Stokes formulae, European Journal of Combinatorics, vol.29, issue.1
DOI : 10.1016/j.ejc.2006.07.010

URL : https://hal.archives-ouvertes.fr/hal-00363784

F. Meunier, A Z q -Fan formula

F. Meunier, Discrete Splits of the Necklace

J. Munkres, Elements of Algebraic Topology, 1984.

C. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of existence, Journal of Computer and System Sciences, vol.48, issue.3, pp.498-532, 1994.
DOI : 10.1016/S0022-0000(05)80063-7

T. Prescott and F. E. Su, A constructive proof of Ky Fan's generalization of Tucker's lemma, Journal of Combinatorial Theory, Series A, vol.111, issue.2, pp.257-265, 2005.
DOI : 10.1016/j.jcta.2004.12.005

H. E. Scarf, The Approximation of Fixed Points of a Continuous Mapping, SIAM Journal on Applied Mathematics, vol.15, issue.5, pp.1328-1343, 1967.
DOI : 10.1137/0115116

H. E. Scarf, The Core of an N Person Game, Econometrica, vol.35, issue.1, pp.50-69, 1967.
DOI : 10.2307/1909383

A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd., III. Ser, vol.26, pp.454-461, 1978.

A. Schrijver, Combinatorial Optimization, 2003.

A. J. Schwerk and R. J. Wilson, On the Eigenvalues of a Graph, 1978.

L. S. Shapley, On Balanced Games without Side Payments, Mathematical programming, pp.261-273, 1973.
DOI : 10.1016/B978-0-12-358350-5.50012-9

L. S. Shapley and R. Vohra, On Kakutani's fixed point theorem, the K-K-M-S theorem and the core of a balanced game, Economic Theory, vol.6, issue.1, pp.108-116, 1991.
DOI : 10.1007/BF01210576

F. W. Simmons and F. E. Su, Consensus-halving via theorems of Borsuk-Ulam and Tucker, Mathematical Social Sciences, vol.45, issue.1, pp.15-25, 2003.
DOI : 10.1016/S0165-4896(02)00087-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.6111

G. Simonyi and G. Tardos, Local Chromatic Number, KY Fan's Theorem, And Circular Colorings, Combinatorica, vol.26, issue.5
DOI : 10.1007/s00493-006-0034-x

E. Sperner, Neuer beweis f??r die invarianz der dimensionszahl und des gebietes, Abhandlungen aus dem Mathematischen Seminar der Universit??t Hamburg, vol.6, issue.1, pp.265-272, 1928.
DOI : 10.1007/BF02940617

K. Sutner, Additive automata on graphs, Complex Systems, vol.2, pp.31-32, 1989.

K. Sutner, Linear cellular automata and the garden-of-eden, The Mathematical Intelligencer, vol.251, issue.2, pp.49-53, 1989.
DOI : 10.1007/BF03023823

K. Sutner, C. Sigma-automata, and . Polynomials, ??-Automata and Chebyshev-polynomials, Theoretical Computer Science, vol.230, issue.1-2, pp.49-73, 2000.
DOI : 10.1016/S0304-3975(97)00242-9

URL : http://doi.org/10.1016/s0304-3975(97)00242-9

A. W. Tucker, Some topological properties of disk and sphere, Proc. First Canadian Math. Congress (Montréal, pp.285-309, 1945.

A. Vince, Star chromatic number, Journal of Graph Theory, vol.20, issue.4, pp.551-559, 1988.
DOI : 10.1002/jgt.3190120411

K. Wagner, ??ber eine Eigenschaft der ebenen Komplexe, Mathematische Annalen, vol.114, issue.1, pp.570-590, 1937.
DOI : 10.1007/BF01594196

M. Yannakakis, Node-and edge-deletion NP-complete problems, Proceedings of the tenth annual ACM symposium on Theory of computing , STOC '78, pp.253-264, 1978.
DOI : 10.1145/800133.804355

L. Zhou, A theorem on open coverings of a simplex and Scarf's core existence theorem through Brouwer's fixed point theorem, Economic Theory, vol.1, issue.3, pp.473-477, 1994.
DOI : 10.1007/BF01215385

G. M. Ziegler, Generalized Kneser coloring theorems with combinatorial proofs, Inventiones mathematicae, vol.147, issue.3, pp.671-691, 2002.
DOI : 10.1007/s002220100188

URL : http://arxiv.org/abs/math/0103146