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Introduction

It is well-known that the solution of a elliptic problem posed in a polygonal domain €2
of the plane, present singularities in the vicinity of the vertices; let us quote for example
the works of Kondratiev, Maz’ ya-Plamenevski, Grisvard, Dauge, Stupelis, Kozlov-Maz’
ya- Rossmann- - - . These singularities lead to a nonoptimal order of convergence if a finite
elements method P! or P? is used for the Laplace operator or if one uses the finite element
method of Hood-Taylor or the mini finite element for the Stokes system.

To cure this disadvantage, various methods have been proposed to restore the optimal
order of convergence. Let us quote for example the method of addition of singular func-
tions to the trial space (Strang and Fix, 1973), the method of the dual singular functions
(Blum-Doborowolski 1982) and the methods of refinement of grids (Babuska 1970, Raugel
1978, Doborowolski 1982). Lately, a particular interest has been devoted for the method
of the a posteriori error estimators. This interest is mainly due to the need to obtain
precise numerical results without high calculation effort. Indeed, the a posteriori error
analysis avoids the analytical study of singularities and allows to determine explicitly if
the computed approximate solution of the exact solution is an approximation with suffi-
cient precision for the needs of the applications. Moreover, the a posteriori error estimates
allows to use an adaptive procedure for automatic mesh refinement.

In this work, we study the refinement of grids for the dual mixed finite element method
for two types of problems: the first one concerns the linear elasticity problem and the
second one the linear elastodynamic problem. A number of reasons have been put forth to
prefer mixed methods over classical ones [3]. A commonly stated reason to prefer mixed
methods is that the dual variable (stress -strain in elasticity, flux for thermal problems
...) is often the variable of most interest. For the classical methods this variable is not a
fundamental unknown and must be obtained a posteriori by differentiation, which entails
a loss of accuracy.

Mixed methods are also a valid alternative to locking phenomena, as it is well known
that for nearly incompressible materials, i.e. for values of the Lamé coefficient A near to in-
finity (A — o0), finite element computations based on standard displacement formulation
fail.

For these two types of problems and in nonregular domains, the mixed finite element
methods analyzed until present relate to the primal mixed methods. Here, we analyze
the dual mixed formulation in ((o := 2ue(u), p :== —Adiv u), (u,w := 2curl u)), where the

1



Introduction

equations of the linear elasticity problem are rewritten in the following way:

([ —div (0 —pd) = f in €,
o = 2pue(u) in Q,
D = —Adiwu in (),
w = %curl u in €,
U = 0 on ['p,

| (c—=pd)n = 0 on [y,

and in ((o(t,.) == 2ue(u(t,.),p(t,.) == =Adw u(t,.)), (u(t,.),w(t,.) == scurl u(t,.))),
where the equations of the linear elastodynamic problem are rewritten in the following
way':

uy — div (o(t,.) — p(t,.)d) = f in [0,7] x€Q,
o(t,.) = 2pue(u(t,.)) in [0,7] x £,
p(t,.) = —Adivu(t,.) in [0,7] x €,
w(t,.) = seurlu(t,.) in [0,T]xQ,
< ult, ) — 0 on [0,7] x T'p,
(o(t,.) —p(t,.)0).n = 0 on [0,7T] x 'y,
u(0,.) = Ug in €,
\ u (0, .) = Uy in €,

where, n means the normal vector along I' oriented outside 2. These two methods are
justified primarily by the use of the stabilized BD M; element for approximating the strain
tensor o in the case of the linear elasticity problem and for approximating the strain tensor
o(t,.) in the case of the linear elastodynamic problem.

The main difficulty appearing in these problems is finding a way to take into account
the symmetry of the strain tensor. In our approach, the symmetry of of the strain tensor
is relaxed by a Lagrange multiplier, which is noting else than the rotation w in the case
of the linear elasticity problem or w(t,.) in the case of the linear elastodynamic problem.

For the elasticity problem, we are concerned firstly by an a priori error analysis when
using finite element approximation by stabilized BDM; element. In order to derive op-
timal a priori error estimates, we lay down refinement rules on the regular family of
triangulations which will be used to locally refine the triangulation and consequently, de-
rive some optimal interpolation error estimates which will be used to derive optimal and
global error estimates.

Then, we make an a posteriori error analysis for the dual mixed finite element method
for both a simply and a multiply-connected domain. In fact we establish a residue based
reliable and efficient error estimator for the dual mixed finite element method. This
estimator is then used in an adaptive algorithm for automatic mesh refinement. Conse-
quently, we refine locally and with precision the areas on which the error is significant, so
restoring the optimal order of convergence with lower cost of calculations.

For the elastodynamic problem, we make an a priori error analysis when using the
same finite element as for the elasticity problem, using a dual mixed formulation for the
discretization in the spatial variables and the explicit or implicit Newmark scheme for the
discretization in time. By adequate refinement rules on the regular family of triangulations
we derive optimal a priori error estimates.



In this context, this thesis is made up of three chapters whose contents can be sum-
marized as follows:

Chapterl

In this chapter, we introduce the considered linear elasticity problem and give the
dual-mixed formulation. We then show the equivalence between this formulation and the
standard one and establish an inf-sup condition and a coerciveness result uniform with
respect to Lamé coefficient \. We then discretize the mixed variational formulation by
conforming finite elements based on regular family of triangulations and show again a
uniform inf-sup condition and a coerciveness result uniform with respect to Lamé coef-
ficient A\. By studying some regularity results of the solution of our elasticity problem
in terms of weighted Sobolev spaces, we deduce the optimal order of convergence for a
regular family of triangulations satisfying adequate refinement rules. Finally, we present
some numerical tests which confirm our theoretical analysis.

Chapter2

In this chapter, we make the a posteriori error analysis for the considered linear elas-
ticity problem. We begin by establishing, in the case of a simply connected domain, some
results on tensor fields like some particular Helmholtz decomposition and a generalization
of the results of [8] concerninig the estimation of the trace of tensor fields. Then we recall
some standard tools, namely some inverse inequalities and interpolation error estimates
for Clément’s interpolant and finish by establishing the efficiency and reliability of our
error indicator 77. Then we treat the case of a multiply-connected domain by using an
adapted Helmholtz decomposition of tensor fields. To our knowledge this decomposition
seems to be new. Finally, we establish appropriate adaptive mesh-refinement algorithms
and present some numerical tests which confirm our theoretical analysis.

Chapter3

In this chapter we establish optimal a priori error estimates for the linear elastody-
namic problem. We begin by presenting the model evolution problem and recall two
comparison results concerning continuous and discrete Grounwall’s inequalities. We de-
fine the new dual mixed formulation of the elastodynamic problem. We give some reg-
ularity results of the solution of our elastodynamic system in terms of weighted Sobolev
spaces. Then we introduce the semi-discrete mixed formulation and prove the existence
and uniqueness of the solution. We then recall some results concerning the inf-sup and
coercivety conditions. Under some adequate refinement rules of grids, we establish some
error estimates on some interpolation operators and we prove an inverse inequality for the
divergence operator. By establishing some error estimates between the exact solution of
the mixed problem and the solution of the elliptic projection problem we derive the error
estimates between the exact and the semi-discrete solution. We then discretize completely
the mixed finite element problem. By the energy estimates we study the stability of both
our explicit and implicit scheme in time , and give an appropriate CFL condition for the
explicit scheme. We then establish optimal error estimates for the fully discrete problem.
Finally , we give numerical experiments to confirm our theoretical predictions.
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Dual MFE for the elasticity problem
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1.1 Introduction

A number of reasons have been put forth to prefer mixed methods over classical ones
[3], a commonly stated reason to prefer mixed methods is that the dual variable (stress -
strain in elasticity, flux for thermal problems ...) is often the variable of most interest. For
the classical methods this variable is not a fundamental unknown and must be obtained
a posteriori by differentiation, which entails a loss of accuracy.

Mixed methods are also a valid alternative to locking phenomenon, as it is well known
that for nearly incompressible materials, i.e. for a value of the Lamé coefficient near to in-
finity (A — 00), finite element computations based on standard displacement formulation
fail.



Chapter 1. Dual MFE for the elasticity problem with mized boundary conditions

Over the last two decades there has been considerable interest in the area of mixed
finite element discretizations of the system of linear elasticity; let us quote [24, 8, 22, 23].
The main difficulty appearing in this problem is finding a way to take into account the
symmetry of the stress tensor. In our approach, the symmetry of of the stress tensor is
relaxed by a Lagrange multiplier, which is noting else than the rotation.

The goal of this chapter is mainly to establish an optimal rate of convergence of the
numerical solution of the new dual mixed finite element method of the elasticity problem in
a polygonal domain, introduced by M. Farhloul and M. Fortin in [22] elasticity problem
with mixed boundary conditions in polygonal domains. The results shown during this
chapter are generalization of the results already obtained in the case of homogeneous
Direchlet boundary condition (see [24]).

The schedule of this chapter is the following one: In section 1.2 we introduce the
considered boundary value problem and give the dual-mixed formulation. We then show
the equivalence between this formulation and the standard one. We end this section by
establishing an inf-sup condition and a coerciveness result uniform with respect to Lamé
coefficient \. Section 1.3 is devoted to some regularity results of the solution of our
elasticity problem in terms of weighted Sobolev spaces. In section 1.4, one discretized
the mixed variational formulation by conforming finite element based one regular family
of triangulations and show again a uniform inf-sup condition and a coerciveness result
uniform with respect to Lamé coefficient A\. In section 1.5, with an aim of restoring
optimal order of convergence of our method we locally refine the triangulation and we
show some interpolation error estimates. In section 1.6 we present conclusions. In section
1.7, we present some numerical tests which confirm our theoretical analysis.

1.2 The new dual mixed variational formulation

This section introduces the dual mixed formulation of the elasticity boundary value prob-
lem and gives the equivalence between this formulation and the standard one. The ex-
istence and unicity of the solution is proved by establishing an inf-sup condition and a
coerciveness result uniform with respect to the Lamé coefficient A. Let us fix a bounded
plane domain () with a polygonal boundary. More precisely, we assume that €) is a sim-
ply connected domain and that its boundary I' is the union of a finite number of linear
segments [';, 1 < j < n, (['; is assumed to be an open segment). We also fix a partition
of 1,2,---,n, into two subsets Iy and Ip. The union I'p of the I';, j running over Ip, is
the part of the boundary I', where we assume zero displacement field. We assume that
meas(I'p) > 0. The union I'y, of the I';, j € Iy is the part of the boundary I' where we
assume zero traction field.

In this domain we consider anisotropic elastic homogeneous material. Let u = (uq, us)
be the displacement field and f = (f1, f2) € [L%*(Q2)])* the body force by unit of mass.
Thus the displacement field u = (u;, uq) satisfies the following equations and boundary
conditions:

—divos(u) = f in Q,
u = 0 on Ip, (1.2.1)
os(u)n = 0 on Iy.



1.2. The new dual mized variational formulation

where the stress tensor o,(u) is defined by
os(u) = 2pue(u) + Atre(u)d. (1.2.2)

The positive constants p and A are called Lamé coefficients. We assume that [7]

(A 1) € [Ao, 00 x [, o] (1.2.3)
where

0 < p1 < pgand Ay > 0.
As usual, €(u) denotes the linearized strain tensor (i.e.,e(u) = 2(Vu + Vu')) and §

the identity tensor. The classical variational formulation of the boundary value problem
(1.2.1) is the following |7, 11]:
find we [Hf (Q) :={ve [H(Q], vy , =0} such that :

T

/Q(Que(u) c€(v) + Atr e(u)tr e(v)) doe = /Qf.v dz, Yv e [H} (Q) (1.2.4)

Due to our hypothesis meas(I'p) > 0 and Korn’s inequality (cf. [7], corollary 11.2.22

p.285) , equation (1.2.4) possesses one and only one solution for every f € [H} (€)]*.
Introducing as new unknowns:

o :=2pe(u), p:=—Adiw (u) and w:= %mt (u) = %(g—f;i - g—z;)
and the spaces:
Sy = {(rng) € QP2 x Q] div(r—g0) € [PQF,  (1.25)

(t—q6)n = 0onTy}

VxW = {(v,0) € [L*(Q)* x L*(Q)}, (1.2.6)
we state the dual mixed formulation [22], [23], [24] :
Find (o,p) € £y and (u,w) €V x W such that :

i(a,ﬂ + %(p,q)+ (div (T —¢d),u) + (as (7),w) = 0, V(r,q) € %y

(1.2.7)
(div (0 —pd),v) + (as(0),0) + (f,v) = 0, V (v,0) € VxW.

Here, for a tensor 7, (.,.) means L*-scalar product, and (0,7) = [,0:7 dz whereo : 7
means the standard notation for the contraction of two tensors

. _ 2
g.T = Zi,j:lo—ij,rij‘

In the present approach, the symmetry of the strain tensor o is relaxed by a Lagrange
multiplier which is nothing else than the rotation w. Problem (1.2.7) will be approximated

7
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by conforming finite element spaces g 5, x V3, x W}, of £y x V x W based on a triangulation
7}, of the domain (2 from a regular family (regular in Ciarlet’s sense [11]).

Finally, let us precise some notations that will be used subsequently. For any tensor
field 7 € [HY(Q)]**?, for any vector field v = (vy,v2) € [H'(R2)]? and for any scalar
function ¢ € H'(Q), we define :

tr(t) = 711 + T,

. L 011 Oty Ot 0T ’
div (7—) o <8x1 + 8x2 ’ 81’1 + 8@) ’
as (1) = Ty — T2,

Sym (1) = %(T + TT),

t( ) L 67'12 . 67'11 67'22 . 67'21 r
roviT) = 0x; Oxy = 0Ox; Oxy )
G _On
Curl (v) = 8552 gﬁ; ;

dry  Ony
0 o \"
Curl () = ( a—i - a—jl ) ;
v Ov
rot (U) = a—xj — a—x;

Before proving the equivalence between the classical variational formulation (1.2.4) with
the mixed formulation (1.2.7), let us recall the following formula of Green formula (see

21))
Lemma 1.2.1. Let 7 € [H(div,Q))? := {7 € [L2(Q)]*? divT € [L*(Q)]*} and v €
[H'(2)]2. Then

(e(v),7) =<Tn,v > —(div 7,v) — %(as (1), curl v),

where Tn = (T11n1 + T1aNe, To1M1 + ToaNa).

For shortness we often write the pairs (o, p), (7,q) € ¥y by 0 = (0,p), 7 = (7,¢q) and
similarly the pairs (u,w), (v,0) € V. x W by u = (u,w), v = (v,0). We introduce two

bilinear forms a : 3y x ¥y — R, b : £ox (V xW) — IR and the linear form F : VxW — R
defined as follows

1 1
a(o,7) = ﬂ(a, T) + X(p7 q), Vo, T € Xy, (1.2.8)
b(r,v) := (div (T — ¢d),v) + (as (1),0), VreX, YveVxW, (1.2.9)

F) = (f.0)



1.2. The new dual mized variational formulation

With these notations the mixed variational formulation of problem (1.2.7) may be rewrit-
ten: Find o € ¥y and v € V x W such that

a(o,7)+b(t,u) =0, V71 € 3y,

~

(1.2.10)
blo,v)+ F(v)=0, YoeV xW

Let us first show the following equivalent result between the classical variational for-
mulation (1.2.4) with the mixed formulation (1.2.7).

Theorem 1.2.2. u € [H} (Q)]? is solution of (1.2.4) if and only if ((0,p), (u,w)) €
Yo x (V x W) is solution of (1.2.7), where

1
o=2ue(u), p=—-XAivu, w= §curl u

Proof: The proof is essentially the same as the proof of theorem 3.2 in [24]. Only some
small adaptation is necessary due to the boundary condition in the definition of the space
Yo (see 1.2.5) which was not present in the definition of ¥ (see (5) in [24]) n

The previous result guaranties in particular the well posedness of problem (1.2.7). But for
further purposes, we need that the so-called inf-sup condition holds for b(.,.), as well as
uniform coerciveness fora(., .) with respect to the Lamé coefficient A on the kernel of (., .)
(see Proposition 1.2.4). Before giving the result about the uniqueness of the solution of
(1.2.7), let us first check the inf-sup condition.

Proposition 1.2.3. There exists a positive constant C such that

b(7, )
sup == > C([Jollgg + [10lgq), Yo=(v,0) €V xW, (1.2.11)
T=(1,9)€ o HZHOQ ’ ’ ~

where

2 2 2
7l = lIllog + llallog-

Proof: The main idea of the constitutive proof is the following: given an arbitrary element
v =(v,0) € V x W, one may construct an element 7 = (7,0) € 3, such that

b(r,v) =lv> and || <ol .
~ o~ ~70,0 ~"0,0 ~70,0
In the whole proof we fix A* and p* independently of A, p and of v
i)Let w € [Hf_ ()] be the unique solution of the problem:
div (2p*e(w) + N divwd) = v in €

w = 0 on I'p,
2ure(w) + N divwd)m = 0 on Ty.
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By Korn’s inequality, w satisfies (the constant below depends on A\*, x* and on )
wlio S llvlloe- (1.2.12)

Setting 7! = 2u*e(w) + M\*div wé and Tt = (71,0), it’s clear that 7! belongs to ¥y and is
g I T T

symmetric (i.e. as (7') = 0). Consequently
b(zl,g) = (div 7',v) + (as (71),0)
= (div %, v).
And by the above problem solved by w, we get
b7 o) = o) (1.2.13)

The definition of 71, and the inequality (1.2.12) yields
1 < 1.2.14
T v . 2.
HN HO,Q ~ || ||O7Q ( )

ii) Since D(() is dense in L?((2), there exists a sequence (0))r>0 € D(£2) such that
0 — 0 in L*(Q), as k — oo.
Now, for each & € N, consider w; € [H[_ (€2)]* the unique solution of the problem:

div (2p*e(wy) + XNdivwyd) = 3Curlf, in Q,
Wi = 0 on FD,
(2ure(wg) + N divwpd)m = 0 on I'y.

The variational formulation of this problem is:
1
/Q(Qu*e(wk) D €(v) + Ntr e(wg)tr €(v)) doe = —§/§29k7‘0t vdr, Yve[Hp ().
Consequently by Korn’s inequality we have

wilio S [10kllo.q- (1.2.15)

Then we set 1
72 = 2u*e(wy) + N div wid + 56%)(,

where Y is the antisymmetric matrix defined by:
(0 -1
X=l1 oo
By the above problem we remark that

divti =0 in Q,
as (13) = 6 in Q,

72n =0 ony.

10



1.2. The new dual mized variational formulation

Moreover from (1.2.15), we clearly have
I — 7 HOQ 10k — Oillo0,  Vk,1 €IN.

This means that the sequence (77)x>o is a Cauchy sequence in H(div ,Q)?. Denote by 72
its limit. By the above properties of 72, 72 satisfies

divt®>=0 1in Q,
as (1) =0 in Q,

™?n=0 only,

||72H0,Q N ”9”0,0'
Now setting 72 = (72,0), it’s clear that 72 belongs to ¥ and we then have
b(1?,v) = (div 72, v) + (as (2), 0)
~o , (1.2.16)
= (0,0) = [10lo 0
as well as
172l =172l S 10lloq- (1.2.17)
~ 0,0
iii) The two preceding points suggest to set
=747
Indeed the identities (1.2.13) and (1.2.16) leads to

b(r,v) = |lv||”
~ OQ

while the estimates (1.2.14) and (1.2.17) show that

7l <l
~0,0 ~

Therefore we may conclude that

b(T U)

o N

sup
T=(1,q)€ To H ||

which means that the bilinear form b satisfies the inf-sup condition. [ ]

It remains to prove the uniform coerciveness of the bilinear form a on the kernel K of the
bilinear form b in >, defined by

K = {Z:(T,q) € ¥o; b, v) =0, Yv=(v,6)€V x W},

11
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Proposition 1.2.4. The bilinear form a is coercive uniformly with respect to X on K in

other words
a(t,7) > c||T||2 , VreK,

where c 1s a strictly positive constant independent of .
Proof: Let us consider 7 = (7,¢) € K. In particular
div (T —¢d) =0,

25 (1) = 0, (1.2.18)

By Lemma 3.3 of [8], it follows that
ltr (7 = q0)llo S (7 = 40)"llo g,
where we recall that 77 = 7 — $tr (7)d denotes the deviatoric of 7. Now
D 1
(1—q0)” =7 —qd — i(tr (1) — 2q9)
=P,
Combined with the previous inequality, this gives us :
ltr (7 = a)llo S 17" lloe S 17llog-

By the triangle inequality we get

lallog S M90lloq S Im = ¢dllgq + I7llo 0

and by the above estimate there exists a positive constant C' depending only on (2 such
that
lalloq < CliTllgq- (1.2.19)

This inequality implies that for 7 = (7,¢) € K we have:

2 2
A7) = g lloe + lalloe

1 1

> —||T > —||T 2

> lrla = gl
1 2 1 2

> —||7 + —||7 .
il + oIl

By using the estimate (1.2.19), we conclude that

1 1
o(7.7) 2 oIl + gy lalie

> O(p2)(II7llo + I7ll5.0)-

Therefore the coerciveness of the bilinear form a in K holds uniformly in . |

The inf-sup condition and the coerciveness being satisfied, a straightforward application
of Theorem II.1 of [8] leads to

12
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Theorem 1.2.5. There exists a unique solution (o,u) € Sg x (V. x W) of the mized

variational formulation (1.2.7) such that

1
+lu] S (14+%)? :
gl +lull = A+ 5 1 o

1.3 Regularity of the solutions

It is well-known (see [25] or [27, 28, 14]) that the solution of problem (1.2.1) presents
vertex singularities. To describe them, we need to introduce the following notations:

Definition 1.3.1. Let S; (1 < j < n.) the vertex of our polygonal domain <), at inter-
section of sides I'; and I';11 (I, 41 :=T'1). Les us denote by w; the interior opening of
at S; and by (r;,0;) the polar coordinates centered at the vertex S;. By the characteristic
equation associated to the vertex S;, we mean the transcendental equation in the complex
variable o:

A+

2
m} Cl{2 sin2 Wj, (131)

sin®(aw;) = {
if S; is a vertex of Dirichlet type i.e. j, j+1¢€ Ip
sin®(aw;) = a?sin® w;, (1.3.2)

if S; is a vertex of Neumann type i.e. j, j+1¢€ Iy

(A +20)* = (A + p)*a’sin’ wy
(A + 1) (A + 3p) ’

sin’(aw;) = (1.3.3)

if Sj s a vertex of mized type i.e. j € Ip, j+1€ Iy orje€ Iy, j+1€ Ip.
Let us recall the following theorem (see [25],P.53):

Theorem 1.3.2. Let us suppose that f € [H™(Q)]? (m = 0,1) and for every j (1 < j <
n.) the characteristic equations (1.3.1 - 1.8.3) has no root on the vertical line Reaw = m+1
in the complex plane. Then the weak solution u of the problem (1.2.1) admits the following
decomposition:

u=upr -+ Z Z s Z ok (7)) 05 0 1(6;), (1.3.4)

1<j<ne 0<Rea<m+1l  0<k<v(a)-1

where up belongs to [H*(Q)]? is the regular part of u, c;x € C is so-called coefficient of
singularity and ;1 is a smooth function (explicitly known, cf. [27]).

The above decomposition allows to show that u belongs to appropriate weighted
Sobolev spaces that we next define.

13
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I'nv

I'p

Figure 1.1: Polygonal domains with singularity

Definition 1.3.3. Let ¢ € C°(Q) such that ¢(z) > 0 for every x € Q\{S1, S, -+, Sne},
and any (m, k) € IN*, we define

H:;q’k(Q) ={ve H™(Q); ¢D" € L*(Q), VB € IN* such that m < |B| < m+k}.

H:;q’k(Q) is a Hilbert space equipped with the norm:
1/2
10llmaoe = (Pl + Y lleD%[5q) "
m<|B|<m+k

On this space, we also define the semi-norm:

o= (Y [l6D%]320)"%.

|8|=m+Fk

Let us pick some o; €lm +1—¢&;,m+1/2[if m+1—¢; > 0, and let us take a; =0
iftm+1-¢& <0, where

&= irlif{Re ajj; oy is solution of trancendantal equations (1.3.1 - 1.3.3) and Re a;; > 0}.

Then we have the following corollary of Theorem 1.3.2.

Corollary 1.3.4. Let us suppose that f € [H™(Q)]* (m =0,1) and for every j (1 <j <
n.) the characteristic equations (1.3.1 - 1.3.3) has no root on the vertical line Rea = m+1

14
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in the complex plan. Let ¢ € C°(Q) such that ¢(x) > 0 for every v € Q\{S1, Sz, -+, Sne}
and such that ¢(x) = rj(x)* in a neighborhood of the vertex S; of the polygonal domain
Q for every j = 1,--- ,n. where rj(x) = |x — ;| (].| means Euclidian norm). Then
u € [H;’mH(Q)]Q.

Consequently o € [Hg’mH(Q)P“, peE Hg’mﬂ(ﬂ) and w € Hg’mH(Q).

For further purposes, we need to give a meaning to the traces of functions in Hg’mH(Q),
namely we show the following Lemma:

Lemma 1.3.5. Let ¢ be a function like in Corollary 1.3.4. If w € Hg’mH(Q), then for
all K € Ty, it holds
w|p € LNE), VE € 0K.

Proof: If w € Hg’l(Q), then by Hélder’s inequality using the fact that o; < % (j =
1,2---,n,) it follows that there exists some § > 0 such that w € W13t9(Q). But
by Sobolev embedding Theorems W139(Q) < H27¢() for ¢ > 0 sufficiently small.
Thus Hg’l(Q) — H3t(Q) for e > 0 sufficiently small. Now if w € Hg’z(Q), then by
Hardy’s inequality (see [26], P. 28) w € Hg’l(Q), where ¢ € C°(Q), ¥(x) > 0 for every
z € O\{S1, S, -+, S, } and ¥(x) = r;(z)% in neighborhood of S; with 8; = a; — 1
if 1 <oa; < %, and 0 if not. Thus by the first case w € H%“(Q) for some ¢ > 0. In
conclusion, if w € Hg’ ™1(Q) (m = 0 or 1), w|g has sense in the sense of the trace theory
and is in L'(E). ]

1.4 Discretization

1.4.1 Discretization of the domain ()

We assume that € is discretized by a regular family of triangulations (7)p~o in the
sense of [11]. As usual as indicated by the context, the letter h will also denote h =
max hy, K € T,. The set of all interior and boundary edges of the skeleton of the trian-
gulation 7, will be denoted by &,. We then have &, = Eq U Ep U En where &, denotes
the set of all interior edges and £p, £y denotes the collection of all edges contained in I'p
and ['y respectively.

1.4.2 Discrete mixed formulation with mixed boundary condi-
tions
This section concerns the approximation of the dual mixed problem (1.2.7) by conforming

finite element. For each fixed triangulation 75, we introduce the finite dimensional spaces
Yop and Vi, x W), of ¥ and V' x W respectively, defined in the following way:

Yon = {(Th,qn) € Xo; VI' € T, qur € IP1(T) and

(s — @)y € [PU(T)>2 @ [R Curl b2y, )

15
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Vi, x W), = {(’Uh,tgh) eV xW; VT €7, : UpT € [Po(T)]2 and Qh\T € []Pl(T)} (142)

Note that by (7,—¢,0)r € [IP1(T)]***®[IR Curlbr]?, we mean that there exist polynomials
of degree < 1: pi11, pi2, P21, P22 and two real numbers oy, s such that

b b
Pur + Qiges Pior — Qig,:

(Th — qnd)ir = ob ob
| Povr + Qags Paor — Qo

where by denotes the bubble function for the actual element 7" defined by
br = 27T\ A2)3.

A1, A2, A3 denote the barycentric coordinates on 7. We introduce the discretized problem:
find (op,pn) € Xop and (up,wn) € Vi, x W), such that

5300 ) + X (Pran) + (div (7w — qnd),up) + (as (), wn) =0, V¥ (7h,qn) € Zop

(div (Uh —phé),vh) + (CLS ((Th),eh) + (f, Uh) = O, A (Uh,eh) € Vh X Wh.
(1.4.3)
With the notations (1.2.8) and (1.2.9) the above discrete problem can be restated:
Find o0 € Yy and u €V}, x W, such that
~h ~h

aloc ,7 )+b(r ,u )=0, V7 € Xy,
~h ~h ~h ~h ~h
(1.4.4)
blo ,v )+Fv)=0, Yo €V, xW,
~h

~h ~h ~h

To get appropriate error estimates, we need to show that the discrete inf-sup condition
holds, as well as uniform coerciveness on the discrete kernel of b. For these purposes, we
need a Lemma analogous to Lemma 4.1 of [24]. But the proof given in [24] is no more
valid so that we give another proof. We will use the BD M, interpolation operator I,
defined as follows (see [1, 8, 35]): for any € € (0, 1),

I [HE(O)P2 N [H(div , Q)] — Hy . 7+ I(7),

where I,(7) € Hj, is uniquely determined by the condition

/ In(T)n.py ds :/ .py ds, Vp € [Ri(OK)]?, VK € Ty,
oK oK

where
Ri(0K) = {¢ € L*(0K) : ¢\p € IP1(E), VE € 0K },

and
Hy, = {m € [H(div,Q)]*: 7x € BDM;(K)* = [IP1(K)]***, VK € T,}.

16



1.4. Discretization

If P? denotes the L*-orthogonal projection from L?({2) onto the subspace V;, then we
recall that the following diagram is commuting (see [8]):

[H(Q))* N [H (div , Q)2 —2 [L3(Q)]?

n| |7

Hy SN Vi,
Consequently
div I (1) = P)(div 7), V1 € [H(Q)])**N [H(div, Q)] (1.4.5)
In addition, the following approximation property holds (see Theorems 3.2 and 3.3 of [1])
|7 = In(T) oo S PITlIme @222, YT € [HE ()2 N [H(div , Q)]% (1.4.6)
Let us now prove the following inf-sup inequality:

Theorem 1.4.1. There exists a constant 3*, independent of h, such that

b(t ,v )
sup Nh ~h > 3" HU H o Yo = (vh,ﬁh) € Vi X Wy, (1.4.7)
T =(Th,qn)€ o, HT H ~h
~h ,Q
Proof: Let us fix v = (vp,0n) € Vi, x Wy As in the continuous case, we further fix

A*>0and p* >0 1ndependently of v and of A, p.
~h
i) Let w € [H]_ ()] be the unique solution of the problem:
div 2ure(w) + N'divwd) = v, in €,

w 0 on I'p,
2ue(w) + Ndivwd)m = 0 on I'y.

By the elliptic regularity of the Lamé system (see for instance [28]), there exists ¢y € (0, 1)
such that w € [H'<(Q2)]?, for all € € (0, ¢) and satisfies

Wl liz+enz S lvnlloo- (1.4.8)
We now fix ¢ € (0,¢), € # 3 and set 7! = 2p%e(w) + A div wd. As div T = v, € L*(),

we deduce that 7! belongs to [H¢(2)]**? N [H (div ,Q)]?. Therefore we may set 7} = I,7,
which then belongs to H;,. By the above commuting diagram we get

div = P)(div ) = P(vy) = v, = div 7.

By the triangular inequality we have

||7—I1HO,Q < ”7—11 - TlHO,Q + ||Tl||0,Q

E (1.4.9)
S T e @z + 17 o 0

17
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But, owing to (1.4.8), we have
T me@p=e S llwllim@e S lvalloq- (1.4.10)
On the other hand, by Korn’s inequality, we have

17 o0 S lwlliz@ye + lvallgg

(1.4.11)
S llonlloo-
Therefore using (1.4.9), (1.4.10) and (1.4.11), we get
T = || I (7
|| hHO,Q || h( )HO,Q (1'4.12)
S l[onllo.q-

Besides, by the definition of I},

/Ih(Tl)n.pl ds = /Tln.pl ds, Vp1 € [IPi(e)]?, Ve € 0K,

€ €

Taking e C I'y and recalling that 7'n = 0 on I'y, we deduce that
min=L(t"n =0 on y.

ii) Now we will construct a strain tensor 77 which depend on 7}, since as (7;!) does not

necessarily vanish; moreover 77 must satisfy the following conditions

(as (1), pn) = (On — as (1), ) Vi € Qp,
n =0 on Iy,

where ()5, denotes the following subspace:

Qh = {M€L2(Q)7ILL|K€]P1(K), VKEZL}
Let us then set v, = 6, — as (7;}), where 7} is previously determined. Contrary to [24]
vp, is no more vanishing mean. To correct that one will use the Lagrange interpolant of a
smooth function. For this purpose we consider the finite dimensional space:

X, = {Uh c HI(Q) DUnk € ]PQ(K) @IRbK}

Let us fix a nonempty open subset 'y of I'p such that I'y is included into one edge of T'.
Moreover by an eventual change of variables, we may suppose that the outward normal
vector along Iy is the vector (0, —1). Fix further another nonempty open subset I'gy such
that I'oy C I's. Now fix a smooth function 1 defined on  such that 0 < n < 1 and
satisfying
{ n = 1 onT\L,
n = 0 on Ly.
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Let us consider 7, € X}, the Lagrange interpolant of 7, which then fulfils 0 < 7, <1 and
n, = 1 on T'\I'y (remark that I'y C I'\I'y and consequently 7, = 1 on I'y). We now fix
the constant vector field
c= < 0 ) € R?,
e

/Q (yn — ¢.Vnn) da = 0. (1.4.13)

Indeed this condition is equivalent to

/% dx = /nhc.n ds. (1.4.14)
Q r

That is always possible one choosing the following condition

. fﬂ% dx
ff‘o(l — nh) dS‘

such that

(1.4.15)

Indeed by property of 7, we have

/nhc.n ds = / npen ds + / npen ds
T T'\lo T'o
:/ c.n ds+/ npen ds.
T\Io T'o

Moreover the property fQ div ¢ dr = 0 and Green’s formula yield

/c.n ds =0,

r

/ cnds = —/ c.n ds.
I'N\To o

Together with (1.4.14) lead to the condition

/ (nn — 1)en ds = / Y dx.
To Q

By the choice of the normal vector along 'y, we get the condition (1.4.15). Now as (1.4.13)
means that 7, — ¢.Vn, is vanishing mean in Q. By Corollary 1.2.4 of [25], there exists
p € [H}(Q)]? such that

and therefore

div p =y, — .V,

‘p‘l,Q Sl — C-VnhHo,Q'

By the definition of e, this estimate becomes
plia S lnlloq-
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Using the definition of v, and the estimates (1.4.12), we finally obtain

o110 S 10nllo.0 + lvallo o

We now look for wy, € [X},]? such that

{(divwh—%,lih) = 0 V€ Qn,

W, = ¢ only,

(1.4.16)

with the above vector c. For that purpose, using the fact that the discretization of the
Stokes problem (in primitive variables) by the pair ([X,]*N[Hg(2)]%, QN L3(€2)) is stable
(section I1.2.2 of [25]) and making use Fortin’s lemma (Lemma II.1.1 of [8]), there exists
pn € [Xn]? N [H(Q)]? such that

(div (p— pn)spn) =0V pp € Qp and |ppl, o S [ply - Let

Whp = Pr + NuC.
Hence wy, belongs to [X3,]? and satisfies, owing to the properties of p:

‘Wh|1,Q N ‘Ph|1,Q + |c|

(1.4.17)
S 0nllogq + llvalloo-

Further for any u, € Qy, one has

(div wn, i) = (div p + ¢.Vn, p1n) (1.4.18)
= (Vh, 1n)-

Besides
wph=pp+mc=0+c=c only,

hence wy, satisfies (1.4.16) . Setting
2 = Curl wy,
by (1.4.16), we remark that it fulfills

(as (12), ) = (divwn, pn) = (Vs i) Ytin € Qi
*n = 0 only.

iii) We are now able to define 7:
1, .2
Th = Ty, + T},
which satisfies

{ div () —

(as (7n), i) = (as () + as (70), jn) = (On, ptn)  Vpin € Qu,

by the definition of ~,. Choosing 7 = (7,,0) € Xy, and using the definition of b we
~h

obtain
2 2
b7 v ) = llonllo.q + 19150 (1.4.19)
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Finally the estimates (1.4.12) and (1.4.17), lead to

T = ||7
Iz 1l = lmallo

)

< 7illoq + Iz llog

S ||UhH0,Q + ||9hH0,Q‘

In conclusion the inf-sup condition follows from the identity (1.4.19) and the estimate
(1.4.20) n

We end this section by proving the discrete uniform coerciveness of the bilinear form «a
on the kernel of b

Proposition 1.4.2. The bilinear form a is coercive uniformly with respect to \ on

Ky = {:h = (Th, qn) € Zop; b(T ,v ) =0, V Eh = (U, ) € Vi ¥ Wh}v

~h ~h

in other words
a(r ;7 )=l |IF , V1 €K, (1.4.20)
~h ~h ~h 0,2 ~h

)

where ¢ is a strictly positive constant independent of \.

Proof: Let us consider 7 = (75, qx) € Kj. In particular (div (1, — gn0), vs) = 0 for every
~h

v € {vy, € L*(Q); VK € T, vy € IPo(K)}. But div (7, — ¢,0) is piecewise constant,
hence div (1, — ¢,0) = 0. The rest of the proof now follows the proof of the continuous
case (cf. Proposition 1.2.4). n

In particular this Proposition and Theorem 1.4.1 guarantee the existence and uniqueness
of a solution to problem (1.2.7).

1.5 A priori error estimates

In this section, we take advantage of previous results and will establish some interpo-
lation error estimates. In order to derive optimal a priori error estimates we lay down
refinement rules on the regular family of triangulations. Introducing first a kind of Fortin
interpolation operator (compare with Proposition 4.5 of [24]):

Proposition 1.5.1. Let ¢ = ¢,, be a function like in corollary (1.3.4). Then there exists
an operator
Iy : 2o N ([lllg’erl(Q)]2 X Hg’mH(Q)) — Xon

7= (7,q) > W7 = (7, an)
(m =0 or 1) such that

b(T — HhT,U ) =0 Yv = (vh,b’h) eV x W, (151)
~ ~h

NNh

21



Chapter 1. Dual MFE for the elasticity problem with mized boundary conditions

Proof: Les us fix (7,¢) € ¥y N [Hg’mﬂ(ﬂ)]2 X Hg’m+1(ﬂ). First let us define g,. Denote
by P! the L*-orthogonal projection from L*({2) onto the subspace Q. We set g, = Plq.
Before defining 75,, let us first define the intermediate tensor 7;. For each K € 7, :
o € [P1(K )]#*? and is uniquely determined by the requirement:

/a K[(T;;K — qud) — (1 — ¢d)|n.py ds =0, Vp; € [R1(0K)]% (1.5.2)

That the term in the left-hand side of (1.5.2) has sense follows from the fact that (1—q¢d) €
[Hy™ ()], and by Lemma 1.3.5, (T—¢6) . € [L(e)]?, for all edges e of the triangulation.
Let us set 7 = as (7 — 75). Since + is non necessarily of vanishing mean (contrary to the
one in the proof of Proposition 4.4 of [24]), as in Theorem 1.4.1 , we fix the constant

vector field
c= ( 0 ) e IR?,
e

such that (7, being defined in Theorem 1.4.1)

/ (v — e.Vmp,) dz = 0. (1.5.3)
Q
Indeed this condition is equivalent to
d
o — fQ Y ax

N fro(l — ) ds’
Now as (1.5.3) means that v — ¢.Vn, is of vanishing mean in €. By Corollary 1.2.4 of [25],
there exists p € [Ha(€)]? such that

divp =~ —c.Vny,

with the estimate
Pla S Vlloe < 117 =7 llo

with the above expression of e. Using once again the fact that the discretization of the
Stokes problem (in primitive variables) by the pair ([X,]*N[HJ(2)]%, Q,NL3(€2)) is stable
(section I1.2.2 of [25]) and making use of Fortin’s lemma (Lemma II.1.1 of [8]), there exists
pr € [ X3 N[H(Q)]? such that

(div (p— pn), ) =0V pp, € Qp and |pal, o < [pl; o- Let

Wp = Pp + NuC.
Hence wy, belongs to [X},)? and satisfies, owing to the properties of p:

‘Wh|1,9 N ‘Ph|1,9 + |c|
S llog (1.5.4)

St — T;;HO,Q'
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1.5. A priori error estimates

Further for any u;, € @, one has

(dZ’U Wh, :U/h) = (dZU Ph + C.V’f]h, ,uh)

(1.5.5)
= (77 ,th)
Besides
wp=pp+mc=0+c=c only.
We finally set 11, (7, q) = (74, qn), where
Th = 7';: + Curl Wh,
Clearly I1,(7, ¢) belongs to X, and satisfies
div (1, — qnd) = div (15 — qno),
as (11,) = as (77) + div wy,
Th = 71;n onI'y.
Now using all these proprieties we get
b(r — I, vh) = (div (T — 75 — (¢ —qn)d),vn) + (as (1 — 15;) — div wp, Op,).
But Green’s formula and the definition of 7 (1.5.2) yield
(div (7 — 7 — (g — an)d),vn) = > [ div (T =7 — (g — qn)d).vy, dz
KeTy, K
= Z / (=17 — (¢ — qn)d)n.v, ds = 0.
KeTy, oK
On the other hand, by (1.5.5), we have
(as (T — 1) — div wp, 0) = (v — div wy, 05) = 0.
Together these identities complete the proof of the Proposition. [ ]

Corollary 1.5.2. We keep the same context as in the preceding proposition. Then
Iz =Tl S (= a0) = (7 = and)lloe + lla — anlloo- (1.5.6)

Proof: By the construction of the operator II;, (see the proof of the Proposition 1.5.1)
and (1.5.4), we have

I7 = Mzll <l = 7hllo0 + lla = aalog

Sl — T;:HO,Q + |Wh‘1,Q +[lg — QhHO,Q
Sl — T;:HO,Q + [lg — QhHo,Q‘
The conclusion follows from the triangular inequality. [ ]

We now need to define some local weighted Sobolev spaces:
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Definition 1.5.3. Let K be an arbitrary triangle in the plane and A a vertex of K. Let
k=1or2andpecl0k— %[, we will denote

HPM(K) = {¢ € HM(K); |z — A°D* € L*(K), Yo € IN* such that 1 < |a| <k},

equipped with the norm:

o 1/2
[l = (W01 + D e —APDWIG )"

1<|a|<k

On this space, we also define the semi-norm:

Wl = (O e — APDW|2 )2,

la|=k

Thanks to the Lemma 1.3.5, the trace of an element of H'7"*(K) with 3 € [0, k — 5[

is well defined and is in L'(9K). Thus given a vector-field v € [H""?(K))?, its Brezzi-
Douglas-Marini interpolate pxv € BDM,(K) = [IP1(K)]? (see [8], p.125) is well defined
by the relations:

/ prU.Np; ds = / v.npy ds, Vp; € R (0K).
K oK
Lemma 1.5.4. Let (7)o be a regular family of triangulations of Q. For k = 1 or 2
and for any 5 € [0,k — % , it holds
1o = prevllone S R lolopssrc, Vo € [HY(K)P.

Direct consequences of this Lemma are the next global interpolation error estimates
between a vector field v € [Hg’mH(Q)P and its Brezzi-Douglas-Marini interpolate pjv,
under appropriate refinement rules of grids (imposing constraints on the diameter of the
triangle of the triangulations according to the geometrical situation of the triangle) in
order to recapture optimal order of convergence of the interpolates (see Theorem 4.13
and its Corollary in [24]):

Theorem 1.5.5. Let (7;)n>0 be a regular family of triangulations on 2 and m =0 or 1.
We suppose that (7,)n~0 satisfies the two following refinement rules:

Ry : if K is a triangle of Ty, admitting S; as a vertez, then
hy < pmtb/mtl=ag), (1.5.7)
where o has been defined just before Corollary 1.3.4,
Ry: if K is a triangle of T), admitting no S;(j =1,--- ,n.) as a vertez, then

hic < hiinf ¢)V/ (mtD) (1.5.8)
( ¢ has been defined in Corollary 1.3.4 ).
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1.5. A priori error estimates

Then for every vector field v € [Hg’mH(Q)]Q, it holds

o = putllog S B oloms oo (159
where ppv denotes the BD M, interpolate of v, i.e., for all K € Ty, (ppv)|x = prv.
Similarly for every ¢ € Hg’mH(Q), it holds

lq — Pﬁczllo,g N hm+1‘£]|0,m+1;¢,§27 (1.5.10)

where we recall that P! denotes the L?-orthogonal projection on Q.

Corollary 1.5.6. Under the same hypotheses as in Theorem 1.5.5 and for m = 0 or 1,
and for every T € [HY™ ' (Q)]*2 x HY™'(Q)

H: B HhZHO 0 S W ([ Tomsis.0 + [dlomi10.0)- (1.5.11)
Proof: By Corollary 1.5.2, we have
Iz =Tzl S0 = a0) = @ = ad)loa +lla — il

where (77, q,) satisfies (1.5.2). Notice that the definition of 7; in (1.5.2) means that each
line of 7 — g6 is the BDM;-interpolate of the corresponding line of the tensor 7 — ¢d.
Thus, by the theorem 1.5.5

I = a0) = (73 = and)llo S 2" 7 = @Blomsris0

N pH (\T|o,m+1;¢>,ﬂ + \(]|0,m+1;¢,9)-

The estimate (1.5.10) and (1.5.6) lead to the conclusion.

Remark 1.5.7. Regular families of meshes satisfying the refinement conditions (R; — Ry)
are easily built, see for instance [34].

We are now in a position to establish optimal error estimates. In the following, we
estimate the error between o = (0, p), u = (u,w) the exact solution of the mixed problem
(1.2.7) or equivalently (1.2.10) and 0 = (op,pn), v = (up,ws) the solution of the discrete

~h ~h
problem (1.4.3) or equivalently (1.4.4).

Theorem 1.5.8. Let (7;)n~0 be a regular family of triangulations on € and m = 0
or 1. We suppose that (T,)n>0 Ssatisfies to conditions R1 and R2 . We suppose that
f € [H™(Q))? and that the characteristic equations (1.3.1 -1.3.3) have no root on the
vertical line Re o« = m + 1 for each j = 1,2,--- n.. Then the following error estimate
holds for every A € [\, +00[

1 m
Hg B thOQ S (1 + X)h o [|u|1,m+1;¢,9 + ‘p|o,m+1;¢7g]- (1.5.12)
< 12
lu = unlloq + llw = wnllog S (1 + X) hlulymyrs0 T 1Plomite) (1.5.13)
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Proof: If we subtract (1.2.10) from (1.4.4), we get the system with the errors

CL(U—U,T)+b(T,U—U):O, V1 €3,
(1.5.14)

b(U—U ,U):O, Vo €Vyx W,
~h

~  ~h o~
Let us set [0 = 11, (0, p) = (0}, p;). Taking 7 =10 — o in (1.5.14), we get
~ ~h ~ o~

a(oc —o o —o )+ (div (o] —on — (P}, — Pr)d), u — )

+ (as (o}, — on),w — wp,) = 0.

Let (Plu, Plw) denote the L?*-orthogonal projection of (u,w) on the space Vj, x W}, we
have

a(oc —o o —o )+ (div (o] —on — (P}, — pr)d), u — Pu)
~~R~
+ (div (o}, — on — (P}, — pr)6), Pru — wy) + (as (o}, — op),w — Pyw) (1.5.15)
+ (as (o}, — on), Pw — wp) = 0.
Since div (o} — o, — (p}, — pr)d) is a constant vector field on each triangle K € 7, and
u — Pu is of mean value 0 on each triangle K € 7}, we deduce that

(div (o} —on — (py — pr)d), u — P,?u) =0.
From (1.5.1) and the second equation of (1.5.14), we have
(div (o5, — o — (b}, — pr)d), Pyu — wy) + (as (o), — 04), Pyw —wy) =0
Together with (1.5.15) we get

a(c—0 Mo —oc )+ (as (o] — on),w — Pyw) =0,
~  ~R o~

which yields

a(c—oc Mo —0o )= (as (on — 0}),w — Pyw). (1.5.16)
S

Using (1.5.16) and the triangular inequality we get
a(HhJ—a o — o ) :CL<HhU—U,HhO'—U )+a(0—0 o — o )
~ ~h o~ ~ o~ T~ ~  ~h o~ o~
1

1
= 5, (7~ 0.0 =) + 5 (2h — p.pi — ) (1.5.17)
+ (as (o4 — 03,),w — Pyw).

From (1.5.1) and the second equation of (1.5.14), we remark that II,0 — o belongs to K},
and by Lemma 1.4.2, we get

|lo — 0o ||2 Sa(ﬂha—a Ao —o ) (1.5.18)
~  ~h0Q ~  ~p o~
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1.5. A priori error estimates

It remains to estimate the tree terms of the right-hand side of (1.5.17). By Cauchy-
Schwarz’s inequality, we have

(5 = 0,73 = o] < 75 = Tllogllor = ol < Iz = || e =gl

)

|(Ph = 0Pk = )| < Pk = Pllogllon = Palloq < [Mho —o || |Tho —af
~ o ~Yho Y Y00

)

[(as (o0 = 7). w = Fiw)| < llow = ollogllw = Prwlloq < IThg = o |l llw = Fiwlog.

)

Using the interpolation error estimates (1.5.10) and (1.5.11), we get

(0, — 0,04 —on)| S hmHHth - gh||OQ<‘u‘1,m+1;¢,Q + |p|0,m+1;¢,9)=

)

(P — Py 2 — 1) S hmH”th - thO Q(‘u‘l,m-i-l;(b,ﬂ + |p‘0,m+1;¢,ﬂ)’

*

(05 (o = 07,0 = PRo) S Mg = | [ul s
Together with (1.5.17) and using the estimate (1.5.18) lead to

1
Hth - thOQ S+ X)hmﬂ(‘“h,mﬂ@,g + |p|0,m+1;¢,9)‘

Using once again the interpolation error estimates (1.5.11) and the triangle inequality,
we obtain (1.5.12). To prove (1.5.13), we shall use the uniform inf-sup condition (1.4.7).
First observe that

b(T ,(P,?u,P,}w) —u ) = —a(a—a T )

~h ~h ~  ~h o~
+(as (1), Pow —w), V7 € X
~h

Thus by the uniform inf-sup condition (1.4.7), we have

1P — unlloq + [ Prw — wallgq < sup - = (1.5.19)
7 ’ :h=(7'h7Qh)€ o,n

It follows from the first equation of the system with errors (1.5.14) that:

1 1
(div (Th — qnd), u —up) + (as (1), w —wp) = ﬂ(ah —0,7) + X(ph ~ P, h)-

Introducing PPu and Plw as intermediate quantities in the left member of this last equality
we get

(div (1, — qnd), u — Pyu) + (div (1, — qud), PYu — wy) + (as (1,), Prw — w)

1 1

1.5.20
:ﬂ(ah—aﬁh)+X(ph—p,qh)+(as (Th),Pf}w—w), ( )

27



Chapter 1. Dual MFE for the elasticity problem with mized boundary conditions

Remark that the first term in the left member of equality (1.5.21) is 0. Moreover

b(t (P,?u, P,%w) —u ) =0b(1 (P}?u — Up, P}}w —wp))

~h h h
= (div (Th — qnd), Pu — uh) + (as (), Prw — wh)
1 1
by (1.5.19) = ﬂ(ah —0,7) + X<ph —p.qn) + (as (1), Phw — w).

We have thus by Cauchy-Schwarz’s inequality

1 1
0
\b(zh, (Plu, Plw) — gh)\ < ﬂ”ah —ollgallmlloq + Xth = Plloallanlloq
+ V2| Pyw = wllgoll7llo0

1
S (14 llon =ollog + o = pllog + 1Piw = @l o) 17llg.0-

Hence by the estimates (1.5.12) we get

L2, ,,
‘b(zh7 (P}?uv Pﬁw) - }fh)‘ N (1 + X> pmt [|u|l,m+l;¢>,Q + ‘p|0,m+l;¢,Q] ||ThHo,Q

This estimate combined with (1.5.19) show that

L2, ,,
[P — uh”o,Q + || Pyw — whHO,Q S (1 + X) pm [|U|1,m+1;¢,9 + ‘p|0,m+l;¢,§2]‘ (1.5.21)

Moreover by standard scaling arguments (see [36], p.27) it holds
lu = Prullpg < hlul o (1.5.22)

Finally, (1.5.13) follows from (1.5.10), (1.5.21) and (1.5.22). n

1.6 Conclusion

Optimal and uniform error estimates in the Lamé coefficient A\ are obtained for nearly
incompressible materials, i.e. for A\ very large. The main ingredient is the knowledge
of singular behavior of the solution which allows to use appropriate refinement rules of
grids in order to recapture optimal order of convergence of the interpolates. By relaxing
the symmetry of the discrete stain tensor o; in the dual mixed finite element method we
obtain a stable numerical scheme.

1.7 Numerical Experiments

For the implementation of the mixed elasticity problem 1.2.7, a so called "Hybrid
formulation” [8, 15, 33] should be used. In this hybrid form, the continuity of the normal
trace (op, — ppd).n across interelement edges of the triangulation is relaxed by using a
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1.7. Numerical Fxperiments

Lagrange multiplier \,. The Lagrange multiplier )\, is an approximation of the trace of
the displacement field on the edges of the triangulation. This technique enables us to
eliminate the approximations of o, u, and w at the element level and leads to a linear
system that involves only the Lagrange multiplier \;, and p, as degrees of freedom. It
allows also us to treat non homogeneous boundary conditions on I'y [32].

The numerical results are presented on a L-shaped domain. Given f : Q — IR* and
a surface force density ¢ : 'y — IR?, the displacement field u = (u,us) satisfies the
following equations :

—diwos(u) = f in Q
u = 0 on Ip, (1.7.1)
os(u)n = g on Ty,

1.7.1 Hybrid formulation

We first introduce the enlarged space S (with respect to X,) by suppressing the re-
quirement for its elements to have continuous normal component in the interfaces of the
triangulation 7j:

S = Sh X Qn = {(h, qn) € [LX())>*? x L}(Q); YT € T, : qur € IPy(T) and
(th = @n0)r € [P1(K)]** @ [RCurl br)*},

and the space of Lagrangian multiplier:
Ay = {un € [L2(E% Lhle € [IP,(e)]* Ve € &, and pne =0, Ve € I'p}.

We introduce the following Hybrid formulation: Find (63, pn, A\n) € ih x A;, and
(ﬂh,(bh) € V), x Wy, such that

(1 1
@(Uh,Th) + X(phth Z / div (1n — qnd).up dx + (as (3,),wp)
KeT,

- Z )\h (Th — qu6).ng ds =0, ¥ (T, qn) € T,
KeT,

Z / div (o, — ppo).vp, dx + (as (01,),0,) + (f,on) =0, V (v, 0,) € Vi x Wy,
KEeT,

Z / pn(0n — pro).ng ds—/ pn-g ds N pp € Ap.
oK P

\ KeT,, KNI'n

(1.7.2)
It is easily proved that o, = o, pr, = pn, U = up, and 7, = wy, here ((op, pr), (up, wy)) is
the solution of the non-hybridized mixed formulation. Taking the advantage of the fact
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that f]h is a product space, we can thus uncouple the first equation of the system 1.7.2
and we get:

(

1
—/ ok : Tk dx + |K|div (Tx).uk —/ Mok Tr -NK ds +/ as (Tg )wg dx =0
20 i oK K

VT € [ﬂ)l(T)]2><2 D [RCUT‘Z bT]z

1

X/ PrqK dr — |K|Vag.uk —/ (Mox-nK)qrx ds =0, VYqx € IP1(K)
K 0K

fKCLS (O'K)QK dx:O, VQKE]Pl(K)
|K|div (0k). vk — |K|Vpg.vg = [, for de, Vug € IPo(K)?

/((UK‘f —ng5)-an + (UKg —ng(s)-an).Ma ds = /Ma-g ds.
\ aV,ua € [Py(a)]?ifa€ &, /Tp (Ha=0if a € Tp). ’

The basis functions implemented here are explicitly described in Annex. On each
element we consider the corresponding linear and bilinear form:

1

o Ax(og,Tx) == — | ok :7k dx,
2p Jk

® Bi(pk,vk) = |K|Vpk.vk,

[ ] OK(O'K,UK) = \K\dw (O'K).UK,

HK(O'K,QK) = / as (O'K) ‘9]( dl’,
K

1
PK(ZU(;QK) = X/quK dx.
K

FK(UK) = /KfK.’UK dx.

The corresponding linear and bilinear form on the collection of internal edges and edges
contained on I'y are of the form :

o Bg(ox. ) = / (ox-ni ) ds,

o Gy (pr;ta) = /pKnK.,ua ds,

a
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o T¢(p.) = /eg.,ue ds.
With these notation we can thus write the system 1.7.2 locally on the form:
(AKGK 4 (CK)TuK — (EKa)T\e — (EKO)T N0 — (BKe)T e 4 (HK)TWwK =0,
PEpK — (BE)TyK 4 (GKa)T AT 4 (GENT N 4 (GEe)T\e = 0,
HEoE =0, (1.7.3)

Kie K Koe K Ki,e K1 _ Ko, Ko __ e
EIUI—}-EQUQ—Glpl (;2]92_’177

\ CKO'K—BKPK: —FK,

where AX, BK CK, EKe GKe HK and PX denote there corresponding local stiffness
matrices corresponding to the previously defined bilinear forms. o, p¥, u®, w® and
A denote vectors of degrees of freedom corresponding to oy, pg, ug, wx and A.. The
explicit forms of these local stiffness matrices are shown in Annex A. Still noting o, p, u, w
and A the vectors of the degrees of freedom of the unknowns o, p, u, w and A , the global

algebraic system generated by (1.7.3) becomes in the following form:
(Ao +CTu— ET\+ HTw =0,

Pp— BTu+ GTA =0,

Ho =0, (1.7.4)
Eo—-Gp=T,
| Co—Bp=—F.

In the system (1.7.4), we start by eliminating o and « and after we eliminate w. These
eliminations are made element by element. After this procedure, we end to the following
system:
AN+ BTp = Fl,
(1.7.5)
B\ — Cp = Fz,

where the matrix appearing in this last algebraic system are of the forms

o A:=A— MWIMT,
® BZ:PQ—MW_lpl,

o C:=P,— PTW-'P,,
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® F1 = ]4 - MW_lfg,

® F2 = ]5 - PITW_IIQ),,
whith

A=EA'E" - EA'H"(HA'H"Y 'HAT'E",
M = EA'CT(CA ' CTYy 'CA'HT — EAT'HT,
W =HACT(CA'CT)y 'CA'HT — HAT'HT,
P, =HA'CT(CcA'CT) !B,
P, =FEA'CT(CAICT)'B -G,
Py =BT (CA'CT)'B+ P,
I, =T —EA'CT(CA'CT)F,
I;=HA'CT(CA'CT)'F,
Is =BT (CA'CTY'F.
Note that the matrix IV is bloc diagonal and that each bloc is positive definite. Thus W
is invertible (see Annex). The system of algebraic equations (1.7.5) is then resolved by
the use of the following extension of the Augmented Lagrangian algorithm (see [41]) :
A)\m + BTpm = F17
BM\, — (C+ €eD)p,, = F2 — eDp,, ;.

The convergence of this scheme is O(e™), for m = 1,2,---. Thus the parameter
¢ does not have to be chosen too much small so that the conditioning of the system
can be improved and a few iterations can reduce the error due to penalization. The
implementation issues is as follows:

1: Start with any py and fix a tolerance Tol > 0.

2: pm—1 being given we calculate )\, by

(A +B"(C+eD) 'B))\,, =F; + B"(C + D) }(F2 — €Dp,,_1),

3: A\, being now known, we calculate p,, by

pm = (C+ eD) Y (eDpy_1 + B\, — Fs),

4: i ||pm — pm-1ll/||pm|| < Tol, stop. Else, p,,_1 < pm, and we come back to step 2.
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1.7.2 Numerical test

We now present some numerical results on a test problem in the L-shaped domain 2 =
] — 1,1[2\[0, 1[x] — 1,0] which models one singularity arising at the re-entrant corner as
shown in figure 1.2. Using polar coordinates (r,6), 0 < 6§ < w := 37”, which are centered
at the re-entrant corner (see figure 1.2), the analytical solution is

u(r,0) = 1" u(0), (1.7.6)
where
Ea(é)l = Ci(p+ 7){cos(a —2)8 — cos(ab)} + Co((p + 7)sin(a — 2)0 + (T — 3p)sin(ad)),
Ea(e)g = Ci(—(p+7)sin(a—2)0+ (3p — 7) sin(ab)) + Ca(p + 7){cos(a — 2) — cos(ah)}.

The parameters are
C1 = (p+ 7)sin(a — 2)w — (37 — p) sin(aw),

Cy = (p+ 7){cos(aw) — cos(a — 2)w},

A A
:#(a—l)—l T:#(a—i—l)—l—l

where « is the smallest strictly positive solution of the transcendental equation (1.3.1) for
w = 37” With an aim of corroborating the robustness of our mixed method, we fix the
Lamé coefficient ¢ = 1000 and takes different values of A\ as shown below:

A o
1.E+014 | 0.544483736824905
1.E+012 | 0.544483737042583
1.E4+010 | 0.544483758810418
1.E4+008 | 0.544485935531526

We use two kinds of meshes. The first one (uniform) is obtained by dividing the
intervals [0, 1] and [—1,0] into n subintervals of length *, and then each square is divided
into triangles (see figure 1.3 where we have chosen n=10 ). The second kind of meshes
(refined) is obtained from the first one by refinement near (0,0) according to Raugel’s
procedure [34]. Namely, €2 is divided into six big triangles; on the three ones which do
not contain (0,0), a uniform mesh is used; each big triangle containing (0,0) is divided
according to the ratios (%)ﬁ, 1 <1t < n, where g > ﬁ along the sides which end
at (0,0) and finally divide uniformly each of these strips (see figure 1.3 where we have
chosen n=10 and 3 = 1.8). We then represent the variations of the errors |}, — ol ),
[P = pllo.» llun — ullgq and |lw, — wl|y, With respect to the mesh size h, in figure 1.5
and figure 1.6. A double logarithmic scale was used such that the slope of the curves
yields the order of convergence O(h) for refined meshes (see figure 1.6) according to the
theoretical results, and O(h3) for uniform meshes (see figure 1.5) due to the singular
behavior of the solution. In Table 1.5 - 1.8 we summarize the results of the errors for
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Figure 1.2: L-shaped domain

Table 1.1: Convergence results when using uniform meshes with A = 1. + 014

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.414214e-001

5.163859e-002

2.601827e-001

3.090242e-002

8.579546e-002

9.428090e-002

4.354295e-002

2.089409e-001

2.182452e-002

6.957428e-002

6.428243e-002

3.375359e-002

1.680380e-001

1.399730e-002

5.509209e-002

5.656854e-002

3.149908e-002

1.566222e-001

1.231011e-002

5.132011e-002

4.714045e-002

2.853792e-002

1.416981e-001

1.026146e-002

4.640283e-002
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Figure 1.3: Uniform meshes
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Figure 1.4: Refined meshes

Table 1.2: Convergence results when using uniform meshes with A = 1.E + 012

L
0.8

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.414214e-001

5.163858e-002

2.601830e-001

3.090301e-002

8.579590e-002

9.428090e-002

4.008911e-002

2.003295e-001

2.137504e-002

6.579243e-002

6.428243e-002

3.675379e-002

1.780374e-001

1.599629¢-002

5.509133e-002

9.656854e-002

3.149934e-002

1.566211e-001

1.230785e-002

5.131864e-002

4.714045e-002

2.853807e-002

1.416971e-001

1.025871e-002

4.640141e-002

the refined meshes and in Table 1.1 - 1.4 the results of the errors for the uniform meshes.
Finally we display the streamlines of the computational solutions (see figure 1.7, figure
1.8, figure 1.9, figure 1.10, figure 1.11, figure 1.12, figure 1.13 and figure 1.14).

Table 1.3: Convergence results when using uniform meshes with A = 1.E + 010

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.414214e-001

5.163953e-002

2.601799e-001

3.090034e-002

8.579277e-002

9.428090e-002

4.151113e-002

2.076128e-001

2.055004e-002

6.820973e-002

7.071068e-002

3.679594e-002

1.769789e-001

1.574209e-002

5.817971e-002

9.656854e-002

3.150377e-002

1.566104e-001

1.229235e-002

5.130741e-002

4.714045e-002

2.870350e-002

1.423981e-001

1.050813e-002

4.797506e-002
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Table 1.4: Convergence results when using uniform meshes with A = 1.E + 008

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.414214e-001

5.159269e-002

2.597236e-001

3.087883e-002

8.570153e-002

9.428090e-002

4.146930e-002

2.072321e-001

2.053559e-002

6.813217e-002

7.071068e-002

3.550324e-002

1.767544e-001

1.537506e-002

5.800856e-002

5.656854e-002

3.146816e-002

1.563070e-001

1.228360e-002

5.124399e-002

4.714045e-002

2.870350e-002

1.423981e-001

1.220813e-002

4.797506e-002

Table 1.5: Convergence results when using refined meshes with A\ = 1.F 4+ 014

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.727505e-001

2.479220e-002

1.039259e-001

2.709075e-002

3.218993e-002

1.167855e-001

1.672979e-002

6.856479e-002

1.803318e-002

2.146092e-002

8.819391e-002

1.261839e-002

5.175323e-002

1.351628e-002

1.619474e-002

7.084489e-002

1.016007e-002

4.169446e-002

1.094806e-002

1.328097e-002

5.919820e-002

8.550739e-003

3.480747e-002

8.992277e-003

1.085695e-002

Table 1.6:

Convergence results when using refined meshes with A = 1.F 4 012

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.727505e-001

2.467295e-002

1.021431e-001

2.702967e-002

3.193313e-002

1.167855e-001

1.663992¢-002

6.863181e-002

1.798801e-002

2.139741e-002

8.819391e-002

1.255935e-002

5.177089e-002

1.348680e-002

1.612946e-002

7.084489e-002

1.016007e-002

4.169446e-002

1.094806e-002

1.328097e-002

5.919820e-002

8.446944e-003

3.479323e-002

8.988435e-003

1.083321e-002

Table 1.7:

Convergence results when using refined meshes with A = 1.E 4 010

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.727505e-001

2.467223e-002

1.021420e-001

2.702977e-002

3.193291e-002

1.167855e-001

1.663157e-002

6.863619e-002

1.799182e-002

2.140394e-002

8.819391e-002

1.255929e-002

5.176968e-002

1.348637e-002

1.612834e-002

7.084489e-002

1.010000e-002

4.159641e-002

1.078532e-002

1.295108e-002

5.919820e-002

8.448403e-003

3.479281e-002

8.987573e-003

1.083218e-002

Table 1.8:

Convergence results when using refined meshes with A = 1.E 4 008

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

1.727505e-001

2.464250e-002

1.019259¢-001

2.702076e-002

3.188992¢-002

1.167855e-001

1.660903e-002

6.848025e-002

1.798592e-002

2.137182e-002

8.819391e-002

1.254092e-002

5.164626e-002

1.348198e-002

1.610233e-002

7.084489e-002

1.008196e-002

4.149613e-002

1.078278e-002

1.293147e-002

5.919820e-002

8.434122e-003

3.470283e-002

8.984371e-003

1.081153e-002
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Figure 1.5: Error on uniform meshes
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Figure 1.11: Streamlines of the Rota-
tional

Figure 1.13: Streamlines of the Dis-
placement in x direction

Figure 1.12: Streamlines of the Pressure

Figure 1.14: Streamlines of the Dis-
placement in y direction
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Chapter 2. A POSTERIORI ERROR ESTIMATION

The a posteriori error estimates were introduced in 1978 by Babuska and Rheinboldt
[4, 5]. At the difference of the a priori error estimates, the a posteriori error estimates
allows to control the exact error by a quantity depending only on the triangulation, of
the data of problem (member of right-hand side, boundary conditions, parameters of the
physical models) and of the computed solution (thus known). Since the work of Babuska
and Rheinboldt, the interest for such estimates has increased considerably. This interest is
mainly due to the need to obtain precise numerical results without high calculation effort.
Indeed, the a posteriori error analysis allows to determine explicitly if the computed
approximate solution of the exact solution is an approximation with sufficient precision
for the needs of the engineers. Moreover closely connected to optimize calculations, the
a posteriori error estimates allow to refine certain parts of the triangulation according to
the approximate solution.

In this chapter, we propose a residue based reliable and efficient error estimator for
the dual mixed finite element method. With the help of a specific generalized Helmholtz
decomposition of the error on the strain tensor and the classical decomposition of the
error on the gradient of the displacements, we show that our global error estimator is
reliable. Efficiency of our estimator follows by using classical inverse estimates.

The lower and upper error bounds obtained are uniform with respect to the Lamé
coefficient \, in particular avoiding locking phenomena.

2.1 Introduction

Several works have already been made on some various mixed finite elements methods
concerning a posteriori error estimators. D. Braess and R. Verfiirth [6] is apparently the
first paper introducing an error estimator for the dual mixed finite element discretization
of the Poisson equation. Similarly an error estimator for a mixed formulation which is
based on the mixed variational principle of Hellinger and Reisner for the linear elasticity
is established by D. Braess and al. in [37]. These estimators are efficient with respect to
mesh-dependent norms but only reliable in the standard norms of the given problem. A.
Alonso [2], C. Carstensen [10, 9] and M. Lonsing and R. Verfiirth [29] circumvent this diffi-
culty by the use of the Helmholtz decomposition of square-integrable tensor. In contrast to
C.Carstensen [10], M. Lonsing and R. Verfiirth [29] do not use differently weighted norms
for the upper and lower error bound and have found still supposing the H2-regularity
hypothesis of the solution an error estimator reliable and efficient and furthermore robust
for nearly incompressible materials. Wholmuth and Hoppe in [40] compare four different
kinds of error estimators for the dual mixed finite element discretization of linear second
order boundary value problems. In this section, we are concerned by the construction of
an efficient and reliable a posteriori error estimator for the new dual mixed formulation
introduced by M. Farhloul and M. Fortin [22]. A priori optimal error estimates uniform
in A have been proved in chapter 2 by imposing appropriate refinement rules near the
corners. In this chapter, we propose an a posteriori error analysis for the errors:

e=0—o0y, P:=p—p, r=w-—-w, and e:=u— uy,.
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2.2. Preliminaries and notations

Our analysis release on a residual error indicator 7, which is based on residues on each
triangle 7" € 7}, and jumps across the interelement boundaries £ € &, . Our goal in this
chapter is to prove reliabilty and efficiency of the indicator n uniformly in A and h, in
particular avoiding locking phenomena.

The proof of the reliability of our indicator is based on some generalized Helmohltz
decomposition of tensor fields. Efficiency follows by using classical inverse estimates [38|,
see paragraph 2.3.3 for more details.

Let us note that contrarily to [10] and [9], we do not suppose the HZ-regularity of
the displacement field and we estimate the error with respect to the L?-norm and not a
weighted norm.

The schedule of this chapter is the following one: Section 2.2 recalls the discretization
of our problem and we give some preliminaries and notations. In section 2.3 we establish
some results on tensor fields like some particular Helmholtz decomposition and a gener-
alization of the results of [8] concerninig the estimation of the trace of tensor fields. At
the end of the section we recall some standard tools, namely some inverse inequalities and
interpolation error estimates for Clément’s interpolant. In section 2.4 we establish the
efficiency and reliability of our error indicator 7. Section 2.5 treats the case of a multiply-
connected domain by using an adapted Helmholtz decomposition of tensor fields. To
our knowledge this decomposition seems to be new. Section 2.6 describes an appropri-
ate adaptive mesh-refinement algorithm. In section 2.7, we present some numerical tests
which confirm our theoretical analysis. We end this chapter by a conclusion in section
2.8.

2.2 Preliminaries and notations

Let us first recall that €2 is discretized by a regular family of triangulations (73)s~0
in the sense of [11]. The set of all interior and boundary edges of the skeleton of the
triangulation 7;, will be denoted by &,. We then have &, = &g U Ep U En where &g
denotes the set of all interior edges and £p, £y denotes the collection of all edges contained
in I'p and T'y respectively. The measure of an element or edge is denoted by |7'| and |E|,
respectively. For each F € &, we fix a normal n to E such that ng coincides with the
exterior normal to 02 if £ C 0f). Additionally, we denote by ¢ g, the tangent vector
tp = ng such that (np,tg) is a direct basis of IR%. The jump of some (scalar or vector
valued) function v across an edge E at a point y € F is then defined as

lim v(y + an) —v(y — an) for an interior edge E,

o]l = { Jim,

v(y) for a boundary edge E .

Given an T € 7, E € &, and o € N we then define wr, wg, and w, the union of all
elements having a common edge with 7', of all elements admitting £ as an edge and of
all elements admitting x as an vertex respectively (see figure 2.1).

We then state the continuous dual mixed formulation Find (o,p) € ¥y and (u,w) €
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Figure 2.1: domains wr, wg and w, left to right

M such that :

5(0,7) + $(p,q) + (div (1 —qd),u) + (as (1),w) = 0, V(r,q) € %o ( |
2.2.1
(div (0 —pd),v) + (as (0),0) + (f,v) = 0, V(v,0) € M.

For each fixed triangulation 7}, we introduce the finite dimensional spaces X j, and V}, x W},
of ¥ and M respectively defined in the following way
20711 = {(Th,qh) € 20; VT € % Y guT € IPl(T) and

(71— ad)r € PL (D2 & R curt by}, 557

Vi, x Wy, = {(’Uh,tgh) eV xW; VT €Ty : Up|T € [IPO(T)]2 and Qh‘T S [IPl(T)} (223)

We introduce the discretized problem: find (op,pn) € o4 and (up,wp) € Vi, x W), such
that

500 ) + X (nan) + (div (7w — qud),up) + (as (1h),wn) =0, ¥ (7h,qn) € Sop
(dZ’U (O’h —phé),vh) + (GS (ah),ﬁh) + (f, ’Uh) = O, A (Uh,tgh) S Vh X Wh.

(2.2.4)
Recall that

B o = Lot ) = 102 _ Om
0 = 2pue(u), p:=—Adiv (u) and w:= 5ot () := 2(8x1 8x2)

We close this section by introducing, for any bounded domain € in IR? with Lipschitz
boundary, the space

H(rot ,Q) = {7 € [L*(Q))*?% rot (1) € [L*(V)]*}.

We recall the following formula of integration by parts: for all p € H(rot ,€)) and for all
p € [H(QP

/ rot (p). dxr — / p:Curl p = / p.t @ ds. (2.2.5)
Q Q o9
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2.3 Analytical tools

2.3.1 Decomposition for tensor fields

For our further analysis, we require the following results on the decomposition of tensor
fields which are essential for the subsequent proofs:

Proposition 2.3.1. Let 7 € [L*(Q))**?. Then there exist p € [H'(Q)]*> withp =0 on T'p
and ¢ € [H'(Q)]? with ¢ = constant on each connected component of T such that

7 = Vp+ Curl ¢. (2.3.1)

with the estimate
VDl +1IVelloa S ITlloq- (2.3.2)

Proof: Let p € [H} (©)]* be the unique solution of the following variational problem:
/Q (r—Vp): Ve de =0 forall & € [H} (. (2.3.3)

This last equation implies in particular, that 7 — Vp is divergence free in the sense of
distributions and moreover by Green’s formula, we can now write

(7= VD), ) g-r200),m1200) = /Q(T — Vp) : V¢ dx + /Q div (1 — Vp).9y dx
= 0 forally e [H%D(Q)]z, (by (2.5.5)).

Thus
<(T - Vp)n, w>H71/2(FN)7H1/2(FN) =0 for all w < [H%‘D (Q)]Q

Applying Theorem 3.1 p.37 of [25] line by line to the tensor 7 — Vp we conclude that
there exist a function ¢ € [H'(Q)]? such that

7 — Vp = Curl ¢.
It remains to prove that ¢ = const on I'y. We have

((r — Vp).n, w>H*1/2(FN),H1/2(FN) = (Curl p.n, 7WH*I/?(1“N),11r1/2(1“N)
i
= <E’ ¢>H—1/2(FN),H1/2(FN)

0 forall ¢ € [Hf ()]

Thus, in the sense of the distributions

0
—9020 on 'y,

or

that is
@ =const on I'y.
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Now, let us prove the estimate (2.3.2). Taking as test function ¢» = p in (2.3.3), we obtain:

Vol = [ 2
Q

”VpHO,QHT”O,Q

2 2
sIVplloo + 517lo0-

IA A

Thus
VDl < lI7lloq-

On the other hand, we have
IVello = [[Curl ellgq =17 = Vpllgo < [IVPllog + [ITlloe < 2lI7llo0-

Consequently we have proved (2.3.2). [ ]

Proposition 2.3.2. Let 7 € [L*(2)]**%. Then there ezist z € [H*(Q)]* with z =0 on T'p,
Y € [HY(Q))? with 1 = constant on each connected component of U and q € L*(Q) such

that
T =2ue(z) — qd + Curl (V)
$q + div (2) = 0.

Moreover the following estimate holds:

le()lo.0 + VYoo +llallon < I7llo.0- (2.34)

Proof: Let z € [H} (Q)]* be the unique solution of the following variational problem:
/ (—2pe(=) — Miv ()5 +7) : Voo dr =0 for all ¢ € [H}, (. (2.3.5)
Q

This implies that —2pue(z) 4+ ¢d + 7, with ¢ = —Adiv u, is a divergence free tensor in the
sense of distributions. By Green’s formula, we can write

((—2p€(2) + 40 + 7).n, 0) g1/2000),112(00) = /(—2N€(Z) +qd+7): Vo dr+
0
/ div (—2pe(z) +qd + 7). dx
v
= 0 forall p € [H] (Q)]*.

Thus

((—2pe(2) + @6 4+ 7).0, @) gr-1/20 ) a2y = 0 for all p € [H'(Q)).

Applying Theorem 3.1 p.37 of [25] line by line to the tensor —2ue(z) + gd + 7 we conclude
that there exists a function ) € [H}._ (€2)]* so that

—2ue(z) +qd + 71 = Curl .
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It remains to prove that ¢ = const on I'y. We have

((—2pe(2) +¢6 + 7)1, @)H*1/2(FN),H1/2(FN) = ((Curly).n, 90>H*1/2(FN),H1/2(FN)
N

e <E,@>H71/2(FN),H1/2(FN)
= 0 forall ¢ € [H ().
Thus, in the sense of the distributions

oy

— =0 r
or oI

that is
¥ = const on ['y.

To prove the estimate (2.3.4), we take as test function ¢ = z in equation (2.3.5) and we
obtain

—2,u||(—:(z)H§’Q - )x/ |div z|?* dx + / 7:Vzdr=0.
Q Q
By Cauchy-Schwarz’s and Korn’s inequalities, we derive from the previous equation

2
2plle(2)llo0 < cllrlloalle2)lloq
which gives us by simplifying
le2) o0 < 3z l17llo 0
By Lemma 3.4 [30], there exists v € [H}_(£2)]* such that
divv = dwv z,
and
Vlloq < lldiv 2o -

Equation (2.3.5) with ¢ = v yields

)\/|divz\2dx = /T:Vvdx—Q,u/e(z):Vvdx
Q Q Q

7[00l Vollga + 26lle(2)llg oI Vol q
||T||0’QHdZ'U z||07Q by the above bound on He(z)”oﬂ.

AR AN

Thus
lalloo = lAdiv 2llg o < I7llo0-
By the triangle inequality, we get
ICurl ¢lloq < N7lloq + 26lle)loq +v2lallog
S llog:

~Y

Consequently, we have proved (2.3.4).

In the following, one will need to estimate the trace of a tensor field which is not
necessarily of null average. To do that, we adapt the proof of proposition 3.1 p.161 of |8|.
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2.3.2 Estimate of the trace of a tensor field

1

The following estimate of the trace of a tensor field holds. We recall that 72 := 7—3¢r (1)4.

Lemma 2.3.3. For every 7 € [H(div ,Q)]? := {1 € [L*(Q)]**?, div (1) € [L*(Q)]?} such
that 7.n =0 on 'y, the following estimate holds

ltr (NDllo < 177 lloe + lldiv (7)o,0- (2.3.6)

Proof: Let us consider 7 € [H(div ,2)]? such that 7.n = 0 on I'y. By Lemma 3.4 of [30],
there exists v € [H'(2)]? solution of the problem

{mum:w@>m9

v=20 on I'p

and
Wl o S NItr (7)o g (2.3.7)

Therefore
meﬁgzi/wumuwm
Q
= /(T :0)div (v) dx
Q
= 2/7 : 1tr (Vv)o dz
Q 2
= 2/7’:(VU—VUD) dx
Q

= —2/ P Vo do — 2/ div (T)v dz by Green’s formula
Q 0

AN

2 g alvlyq + 2lldiv (7)lloollvllo0- (2.3.8)

The estimates (2.3.8) and (2.3.7) give immediately (2.3.6). n

2.3.3 Bubble functions, extension operator, and inverse inequal-
ities

We briefly summarize the relevant results (see [17]| for more details). We need two

types of bubble functions, namely b7 and bg associated with an element 7" and an edge

E, respectively. Let A be the set of all (internal and boundary) nodes of the mesh.

Denoting by A\, 2; € NN OT, i = 1,2,3, the barycentric coordinates of an element T

;)

and by ¥ e NN E, i = 1,2, the vertices of the edge £ C 9T, we define
br = 2TAL AL AL and by = 4ATL ATy if 2 € T) (i = 1,2)
1 2

1’ X2 X3
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2.8. Analytical tools

where 77 and 75 are the adjacent triangles to the edge . One recalls that
bT = O on 8T, bE = O on &uE, ||bT||007T = ||bE'||oo,wE =1.

For an edge £ C 0T using temporarily the local orthogonal coordinates system (z,y)
such that E is included into the z-axis, then we define the extension operator F .y (see
figure 2.2)

Fext : C(E) — C(wg)

vp +——  Fexg(vp).
With F i (ve)(z,y) = vp(z) for every (z,y) € wg, wg denoting the union of the triangles

A
Y

Figure 2.2: Level lines of F..;(vg)

admitting £ as an edge. Now we may recall the so-called inverse inequalities that are
proved using classical scaling argument techniques [38].

Lemma 2.3.4. Let vy € IPy,(T) and vg € IPy, (E), for some nonnegative integers ky
and ki. Then the following inequalities hold, the inequality constants depending on the
polynomial degree ko or ki but not on T, E or vy, vg:

lorbi*lloz ~ lorlloz (2.3.9)
IV(rbr)lor S hztllorllor (2.3.10)
et llon ~ lvells (2.3.11)

| Fes(vp)bllor < hillvellos VT Cuwp (2.3.12)
IV Fealvr)bp)lor S hi*h'llvellos VT Cwp (2.3.13)
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2.3.4 Some interpolation operators

For the analysis we require some interpolation operator that maps a function from H'(2)
to some continuous, piecewise polynomial functions S(€2,7;). Hence Lagrange interpo-
lation is unsuitable, but Clément like interpolant is more appropriate. Recall that the
nodal basis function ¢, € S(2,7;,) associated with a node z is uniquely determined by
the condition

()Ox(y) - 5m,y Vy € N.

Now, let us recall the definition of the Clément interpolation opetrator

Definition 2.3.5 (Clément interpolation operator). We define the Clément interpo-
lation operator I, : H*(Q2) — S(Q,7,) by

Finally we may state the interpolation estimates [12].

Lemma 2.3.6 (Clément interpolation estimates). Let v € H'(Q)). If the triangula-
tion 7, is reqular then for any E € &, and for any T € 7T}, it holds:

1
hg®llv = I ovllop S IVl (2.3.14)

hi'llo = T oollgr S IVOllwy (2.3.15)

Now we recall that for any 7 € [H'(Q2)]**? the Brezzi Douglas Marini interpolate
BDM,T € Hj, of 7 is uniquely determined on each element T' € 7;, by the condition

/ BDM;(1)n.p; ds :/ ™.py ds, Vp € [Ri(OK)]?, VK € Ty,
oK oK

where we recall that
Ri(0K) = {¢ € L*(0K) : ¢\p € IP1(E), VE € 0K},
and
Hy, = {m, € [H(div,Q)]* : myx € BDM;(K)* = [IP1(K)]***, VK € T, }.
Now, let us recall the following interpolation estimate (see [8]).

Lemma 2.3.7. Let 7 € [H'(Q)]**2. If the triangulation T;, is reqular then the following
estimate holds

|7 = BDM\(T) o S hrlThr, YT € Ty
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2.4. Residual error estimators

2.4 Residual error estimators

In this section we propose a residual based error indicator for efficient and reliable
which we would like to use to perform local grid refinement where it is needed always with
an aim of increasing the accuracy of the finite element approximation. Different strategies
exist for the refinement of the triangulation , which are in detail presented in [38]. Note
that the characteristic to have a lower error bound for the error of the approximation is
called efficiency of the a posteriori error indicator. In addition the error indicator must
have additionally global upper error bound allowing it to be used in an adaptive procedure
of automatic mesh refinement.

We propose an a posteriori error estimator for the errors e =0 —op,, P=p—pp, r =
w — wp, and e = v — uy. For our further analysis, we will use the generalized Helmholtz
decompositon of tensor fields studied in subsection 2.3.1. The local estimator accounts for
the residues on the triangle 7" and the jumps across the edges £ C 07'. In the following ,
we denote the jump in the tangential direction of a discrete tensor p, by [[pn.tg]] 5. For
any T € 7, the local residual error estimator 7y is defined by:

2 2 2 2
nr: o= If = Biflor+ illas @u)llog + I5n + g5t (on)l . + hrllon + 2ponxlor +
2
h3||rot (oy, + 2,uwhx)||§’T + Z hel|[[(on + QNWhX)‘tEﬂEHO,E‘ (2.4.1)
Ecor

Here P denotes the L*-orthogonal projection onto the space of piecewise constant func-
tions on the triangulation 7,. Let us recall that x denotes the antisymmetric matrix

defined by: (1) _01

with respect to the div operator and that the two following terms have their analogues
null for the exact solution. Also rot (o4 + 2uwyx) and [[(on + 2pwsx)-te]] , have corre-
sponding terms zero for the exact solution. The global residual error estimator is simply

defined by:
=) i
TeT,

. Let us observe in (2.4.1) that f — P{f is the residual of o}, — p,d

2.4.1 Proof of the reliability of the estimator

In this section we establish the global upper error bound by the estimator 7.
Theorem 2.4.1 (upper error bound). The next estimate holds
lelloq + lIrlloq + [1Plloq + llelloq < n- (2.4.2)

The proof of this theorem is direct consequences of the following propositions. We
begin by bounding the error ¢ := o — 0;,. Let us point out that all the estimates which
will be established are independent of the Lamé coefficient X\ for A > .

Proposition 2.4.2. The following estimate holds

lelloq < - (2.4.3)

o1
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Proof: Proposition 2.3.2 implies the existence of z € [H(Q)]? with z = 0 on I'p, ¢q €
L*(Q) and ¢ € [H*(Q)]* with ¢ = const on T'y such that

e—zas (on)x = 2ue(z) — g0 + Curl (1)
Tq+dv(z) = 0.
Moreover the following estimate holds:
le()llo.0 + 1VUlloq + llallon S lle = 5as (o)Xl g (2.4.6)

It follows from € := o — 03, and equality (2.4.4) that Curl (¢)) is a symmetric tensor
field which implies that div ¢ = 0. By triangle inequality we have

lelog < lle - Las (@n)xll o + I5as (o)l

= Jle — as (0n)xlyq + 2543 (o). (24.7)

In view of the definition of the error estimator 7, it suffices to bound [le — Jas (o4)x]|, (-
The above decomposition allows to write

o= bas (ol = [ (6= dos (0w 2ne(z) =g+ Curl (1) do

[\

= /Qg : (2pe(z) — 0 + Curl (v)) dx
_% /Q as (o'h)X . (2,&6(2’) - Q(S + Curl W)) dx

_ / e (2ue(2) — g6 + Curl (v)) da
0
as 2ue(z) — qd + Curl () is a symmetric tensor field.

By (2.4.5) we may write
le — 3as (ah)x||§ﬂ = /5 2ue(z) do — / 2uP(5q + div (2)) dz — / £:q0 dx
’ Q Q Q
—l—/e: Curl (¢) dx
Q
= 2u/€:e(z) dm—Qu/Pdiv(z) dr — 2 qux—/tr(e)qu
Q Q Q Q
—l—/a: Curl (¢) dx
Q
= 2,u/5:6(z)dx—2u/P5:e(z)dx—27’“‘ qux—/tr(a)qu
Q Q Q Q

+ [ e: Curly dx

S~

S~

(e—Po):e(z) dv—2 | Pgdx+2 [ pg dx—l—/tr (on)q dx
Q Q Q

+ [ e: Curl (v) dz.

S~
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2.4. Residual error estimators

Using Green’s formula we may write:
le — 3as (ah)x||§Q = —2u/div (e = P§).z de + u/as (op)rot z de — £ Pq dx
’ Q )

+27“ pqd$+/tr(0h)qd9§+/5:Curlwd.r
) Q

Q

= 2u/(f—P,?f)zdm—l—u/as(ah)rot( )d:ﬁ——/qua:+ /pqd:l:
0
—l—/ tr (on)q dx+/a: Curl (¢) dz
Q 0

By P = p — pp,, we obtain the following decomposition formula:

e = bas Gl = 20 [(f = PRA) dot e fas (oot 2 do+ % [ d
’ Q Q Q

—l—/ tr (op)q dx + / e: Curl (¢) dx
Q 0
= 2,u/Q(f — P)f).z dx —|—u/as (op)rot z dx + /{2(27’“‘]% +tr (o1)) q d

Q

+/ e: Curl (v) dz. (2.4.8)

To transform the last term of the right-hand side, let us consider v, := I 1. By the
first equality of the continuous problem (2.2.1) with (7,0) = (Curl (v),0) € %o, we get

= [ o: Curl (v) dx=0.

2u
a Q

Thus
/5:Cu7‘lwdx = —/ah:Curlwdx
Q Q

= /ah . Curl (Y, — ) do — / op : Curl (Yy) de.  (2.4.9)
Q

Q

We now estimate separately the two terms of the right-hand side of (2.4.9) . For the first
one, using Green’s formula we get

/ah Curl (Yy, — ¢ dm—Z/mt on)-(y, — dx—Z/aht v, — ) ds

TeT), TeT,
—Z/mt on).-(Yn — dx—Z/ UhtE (Y — ) ds
TET;, E€&y

For the second term of the right-hand side of (2.4.9), taking as a test function (Curlvy,,0) €
Yo, in the first equation of (2.2.4), we get

/ op : Curlyy, de = —2@/ as (Curl y)wy, dx
Q Q
= —2@/ div (Yp,)wy, dx
Q

93
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Remembering that div (1) = 0, it follows that:

/ oy : Curl ¢y, de = —2;L/ div (Y, —Y)wy, dx
Q

= Z/Zuvcuh (p, — dx—Z/Zuwhwh— ).n ds

TeT), TeT,,
= Z /2,quh (Y, — ) dx — Z / 2pwpd.n.(vy — 1) ds
TeTy, TeT,,
= Z /2,quh (Y, — ) dx + Z / 2pwp X t.(Yn — 1) ds
TeT, TeTy
= —Z/rot 2uwpX)-(Yn — ) dx —i—Z/ 2u(wnx) tE (¢h — ) ds
TeT, Ecé&,

Combined with the previous equality and (2.4.9), we obtain:

/Qg : Curl (¢) de = Z / rot (o4 + 2pwp ). (Y — 1) da

TeT),

_ Z /E [(on + 2uwnX) te]] o-(bn — ¥) ds

Eeé&;,
< Y ot (on + 2pwn) lo 7 llbn — ¥llor
TeTy
+ > (on + 2uwnX)-t]] gl plvn — Vllo g
Ecé&y

Discrete Cauchy-Schwarz’s inequality and Clément inequalities (2.3.14), (2.3.15) yield

/5 : Curl (¢) de < {Z hZ||rot (o + 2,uth)||(2),T
Q TeT,

2 2

+ Z he|l[[(on + 2pwnx) te]| 4
Ecgy,

The first three terms of the right hand side of (2.4.8) can be estimated using simply

o4



2.4. Residual error estimators

continuous and discrete Cauchy-Schwarz’s inequalities:
2,u/(f — PYf).z dx + u/as (op)rot (2) dx + /(zy“ph +tr (o4)) q do
Q Q

:Z[ Q

2/,5/(]“ — Pf).z dx + u/as (op)rot (2) dx + /T(QT“ph + tr (on)) q dx

TeT, T T
< 5 120 = B2 el + s a)laliror 2l
TeT,
Hon+ o @)l
1 1
5 ]2 , ]2
< 2uf | 007 = PO Nolon+ | 3 Hlas (@0l ] ot Gl

TeT), TeTy

1
2 2
+| S o+ e @0l | lalls | (2411)

TeT,

By Korn’s, Poincare’s and (2.4.6) inequalities, we obtain

Ir0t ()l S IV2lo0 S €2 )lon S lle = 3as Xl (2412)

Izl S 1Vzlloq S le(2)llon < lle = zas (@)Xl o (2.4.13)

Equations (2.4.8), (2.4.10), (2.4.11), (2.4.12), (2.5.28) and (2.4.6), with the help of the
discrete Cauchy-Schwarz’s inequality, yield

2 2 2
le = 3as @l 5 | LI = BRI + Hlas @)+ + tr (00
TeT,

1
2 2
+hZ | rot (o), + 2uwhx)||(2),T} + Z he|| [[(ah + 2“th)'tEﬂEHo,E
Ecé&y

Now using the estimate (2.5.20) and this last bound, we obtain

lelloq < - (2.4.14)

We turn now to bound the error term P := p — p;, by the error estimator 7.
Proposition 2.4.3. The following estimate holds

1Pl < (2.4.15)

95
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Proof: From the second equations of the continuous problem (2.2.1) and the discrete
problem (2.2.4), we get
div (e — P8) + f — Py f = 0. (2.4.16)

By Lemma 3.4 of [30], there exists a tensor field { € [H'(2)]**? such that . =0 and
div (€) = f — P)f, (2.4.17)

with the estimate
1€l araiv ) S L= P flloo (2.4.18)
From (2.4.16) and (2.4.17) we obtain

div(e+&—Pj)=0.

Applying Lemma 2.3.3, we obtain

Itr (e +€ = P)llpo S lle+&=PO)Pllgq
= e +8)"log
S lle+<llog
S ||5H0,Q +If = Pf?fHO,Q

But

[tr (e =€ = Pd)lloq [t (PO)lloq = ltr (e = Ollog

>
2 2Plloq = lle = €llog
Combining with the previous inequality and (2.4.18), we obtain

1Pl < lellog +1f = Pifllog
7.

N 2

It remains to bound the errors e := u — uy and r := w — wy,. Throughout the rest of this
section, we use the notations (3, := o, +2uwnx, B = 0+ 2uwyx = 2uVu. Since proposition
2.4.2 bounds |le||; o = [|lo — oullyq by a constant times ), it suffices to bound [|3 — Gu[y g
in order to obtain an estimate for |w — ws||; - This will be also the main ingredient to
bound |lu — up, ¢, in terms of 1 as we will see.

Lemma 2.4.4. The following estimate holds

18 — 5h||0,9 S

Proof: In view of proposition 2.3.1, there exists v € [H'(2)]> with v = 0 on I'p, and
¢ € [HY(Q)]? with ¢ = constant on T'y such that

ﬁ(ﬁ — Br) = Vv + Curl (¢), (2.4.19)
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with the estimate
IVollgo +11VEllgq S 118 = Bullog- (2.4.20)

By Green’s formula, we have:
|Curl 6|2, = / Curl ¢+ (L (3 — ) — Vo) do
)
= /Curlaﬁ:Vudx—i/ Curl ¢ : By, dx—/ Curl ¢ : Vv dx
Q Q Q
—i /Q Curl ¢ : By, dzx.

Let ¢p, = I,,¢ be the Clément interpolation of ¢. By the first equation of the discrete
problem (2.2.4) with 7, = Curl (¢,,) and ¢, = 0, we have

—/ﬁh:Curlngdx:/ﬁh:(]url(qﬁh—qﬁ)dx
Q
=32 [ (ot (G)ton = 0) de = 3 [ [[-16]) lon = 0) s

TeT;, Ee&y
<Y hrlirot () llo 2l VEllwr + Zh [(Bn)-te]] lly IV llun
TeTy, Eegy,

by (2.3.14) and (2.3.15)
14

Z Billrot (B 60 + > el [(80)2s]) 55 ||V¢||o,g

-TeTy, Eeé&y,

2/\

1

= Zh Irot (Bu)lloz + D hell[[(B)- tEﬂEIIOE ||Curl¢||0,9'

“TeTy, Eeg&y,

Combined with the previous equality, this gives us

=

Curtollq 5 |3 bl (lEe + 3 mell[h)1e])ol ]
TeTy, Eegy
S N (2.4.21)
Taking the symmetric parts in (2.4.4) and (2.4.19) we get
Sym (¢) = 2ue(2) — qd + Curl 1,
as due to (2.4.4) Curl ¢ is a symmetric tensor field and
Sym (B — Br) = Sym (g) = 2ue(v) + 2 Sym (Curl (¢)).

Hence
2ue(z —v) — qd = 2p Sym (Curl (¢)) — Curl 9.
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Thus we may estimate
|12pe(z —v) — q(SHaQ :/ (2u Sym (Curl ¢) — Curl ) : (2ue(z —v) — ¢d) dx
0

:/ (2uCurl ¢) : (2ue(z —v) — qd) dx +/ Curl i : qd dx
Q Q

< 2u|| Curl (8)]]g.0lI121e(z — v) — 4]l + V2| Curl (¥)[lg.0llallo.q
<20%|| Curl ()5 o+ 120e(z — v) — 8|15 o +V2[| Curl (1)l o llallo0

The estimates above imply

12p€(z —v) = adllg o S Nl Curl llg g + || Curl g 6llallo g

By Korn’s and triangular inequalities we get

Volloo < lle@log

S 2ue(z = v) = ¢dllgq + le(2)lloq + llalloq
2
< (ICurt dllgq + | Curl ¥llggllallog|  + lle(2)lloq + lallog
S N Curl ¢llgq + llellgq +n by (2.4.6) and (2.4.1)
< nby (2.4.3) and (2.4.21). (2.4.22)

From (2.4.21), (2.4.22) and (2.4.19) we obtain by triangle inequality:

18— 5h||0,9 S

From the preceding Lemma and Proposition 2.4.2, we have immediately:

Proposition 2.4.5. The following bound holds

lw — uJh”o,Q S

It remains to prove also that ||u — usl, o < 7 in order to conclude that our estimator 7
is reliable. To be able to prove such an estimate, we will make some geometric assumption
on ) and I'y. We have the following result:

Proposition 2.4.6. Let us suppose that at each vertexr s € Iy, the angle is convez. Then
the following estimate holds

Ju — UhHo,Q S

Proof: Let D be a bounded domain such that I'v C 9D, D D Q, D\Q # @ and every
point of 9D\I'y is a smooth boundary point. We consider é € [L*(D)]* such that ¢, = e
and ¢ is of mean value 0. Let 2 € [H%(D)]?* be a solution of the elasticity problem

{ div (2ue(z) + Mre(z)0) =¢é in D
(2ue(z) + Atr e(z)0).n =0 on 0D.
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Let 7 := 2ue(z) + Atr €(z)0. Integration by parts yield (recall that u =0 on I'p):

lel2q = / (u — up)div (r) do
Q

= —/Vu:de—/uhdiv(T) dx.
Q Q

Now considering the global BD M, interpolation operator I, setting (75,,0) := (I,7,0) €
Yo,n, and using the fact that w,, is constant on each triangle of the triangulation, we get

He||(2)7Q = —/QVu:de—/Quhdiv (1) dx

= —/Vu:rdx—k%/ah:Thdx+/whaS(Th)dx
0 " Ja Q

by the first equation of the discrete problem (2.2.4)
—i/ﬁ:de—ki (on + 2uwpX) = T dx
Q Q
= —i (5—ﬁh):7da:—l—i/ﬁh:(7h—7)dx
Q Q

Now using Cauchy-Schwarz inequality and Lemma 2.3.7 allow us to obtain

2
leloe < 18 = Bulloallllon + D IBkllorhr!rlir

TeET,
l
< (18- Alos+ (X #10E) il
TeT,
But
1Tl S lI7llup S lIzllzp S lellon S llelloq-
In conclusion we have proved that
lelloo S 7

Comparing the above Proposition with Lemma 5.4 of [10] (see also [9]), we remark that we
have avoided the H?2-regularity requirement of the solution of (1.2.1), but that nevertheless
we need some geometric hypothesis on the boundary part I'y of .

2.4.2 Proof of the efficiency of the estimator

Recall further the notations 5 = o+ 2uwy, Bn = on +2uwpx, € =0 —0op, P=p—pp, r =
w — wy, and e = u — uy. We treat separately the various contributions appearing in the
estimator 7).

Theorem 2.4.7 (Local lower error bound). For all T € 7T, the following local lower
error bound holds:

nr S = Piflog + llellog + llellows + lIrllowr + 1 Pllor- (2.4.23)

29



Chapter 2. A POSTERIORI ERROR ESTIMATION

Lemma 2.4.8. The following estimate holds:
H%ph + itr (Uh)HOT Slp— thOT + [lo — UhHo,T'

Proof: The Cauchy-Schwarz’s inequality and the fact that ;p + itr (o) =0 yield

2
o+ tr @02, = = [ [30 =)+ htr (0 - o)) [3pn -+ o ()]
’ Q
< 10— pi) + &t (o — ol ot e ),
< (=2l + 1o = onll) 1 2on + ot (@),

Lemma 2.4.9. The following estimate holds:
hrllrot (o + 2oz S lor = ol + o = nllor
Proof: Inverse inequalities and Green’s formula yield
||rot (of + 2,uwhx)||(2),T < /TbTHrot (on 4 2uwnX)||? dv by (2.3.9)
= — /T brrot ((o — op) + 2pu(w — wp)x).rot (op + 2uwp)) dx
= — /T rot (B — Bp).brrot (By) dx

_ /T(ﬁ — By) : Curl (brrot (3,)) dx

||6 - ﬁhHo,THC'W'l (bTmt (ﬁh>>||0,T
18 = Bullo bz lIrot (Ba)llgr by (2.3.10)

(lo = onllor + llw = willg )bz l7ot (o1 + 2pwnx) o -

AN AN IN

This proves the Lemma.

Lemma 2.4.10. For all E € &, the following bound of the tangential jump error holds:
2
hil? (| [{(on + 2pwnx) t2]) lo.s S o= onllows + llw = whllowe

Proof: Let us set g := Fext([[ﬁh.tEﬂE).bE, which belongs to [H}(wg)]*. As (., €
[H(rot ,wg)]?, by integration by parts with ¢z, we obtain

/WE(T‘ot (8)-Yp dx — /WEﬁ . Curl (¢Yg) do = / (B.tg)bpds

aUJE
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As rot (8) = 0 and ¥g/s,, = 0, this gives us:

/ B Curl (vg) de =0

For (3, we integrate elementarily and obtain

1084] 50 = [ (90t e

= typ d
T;E 8Tﬂhth ’
- Wp dx — : Curl d
T%;E _/T(mt (Br))- Y dx /Tﬁh url (1) x]
= WY d — : Curl d
T%;E _/T(mt (Br))-YE x—i-/T(ﬁ Br) : Curl (Yg) :17}
< > ot Bl leellor + 18 = Bullg.rll Curl (wE)”O,T},
TC(.UE'

Lemma 2.4.9 and inverse inequalities (2.3.12), (2.3.13) lead to

2
1[8nte]] b2, Z[ he' (o = onllor + ko — wnllyr) A2 [Onte]) gl

TCwg

1/2, —
+ (o = onllor + o —wnllor) P> hz 1 [Bu-te]] gl 5

The regularity of the triangulation enables us to bound h}fmh;l S h,;l/ * for all E € 8T
with T" € 7;,. Thus

2 _
IIBn-te]] g0l S B (lo = onllows + Il = wallows) I [Bn-ta]] sl 5

We conclude by using the equivalence (2.3.11). [

Lemma 2.4.11. The following estimate holds

hrllon + 2MWhX||0,T S hr(llo — UhHo,T + ||lw — whHO,T) + Jlu — uhHO,T‘
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Proof: Recall that 8 = 0 + 2uwy = 2uVu. Now, we have
Jow-+ 20l S [ brhiBude by (239)
T

= —/bT(ﬂ—ﬁh)Zﬂhdl’—i‘/bTﬂiﬂhde’
T T

— [ 6203 =5 B o+ 2u [ br(Vw— ) : B do

—/ bT(ﬁ — ﬁh) . ﬁh dx — QILL/(U — uh).div (bTﬁh) dx
T T

18 = Bullorll Bullo,r + 2l — unllo plldiv (br6n)llo 7
18 = Bullo,rllBullog + bzl = unllopllBulloz by (2.3.10)

([lo — JhHo,T + flw — Wh“o,T + h}lHu - uh“o,T)HUh + 2NWhX||0,T'

AN JANRVAN

In conclusion we have proved that

hrllon + 2MWhX||0,T S hr(llo — Uh”o,T + ||lw — Wh“o,T) + flu — Uh“o,T'

We are now able to proof Theorem 2.4.7. Indeed it results from the sequence of Lem-
mas 2.4.8 - 2.4.11, and the fact that |as (04)|,, appearing in the estimator nr is easily
estimated as

las (an)llo.r = [I=as (0 = an)llox
= [I=as ()llor
< 2lello -

2.5 The case of a multiply-connected domain

The case of a multiply-connected domain is frequently used in mechanics. In practice the
majority of mechanic parts contains for examples holes. It is thus interesting to treat
this kind of domain by checking that our error indicator still reliable and efficient this
more general setting. We suppose in the whole of this section that every vertex of I'y is
a convex angle. Let us first introduce some notations (see Figure 2.3):

Let us denote by 'y the exterior boundary of  (i.e. T'y is the boundary of the only
unbounded connected component of ]RQ\Q) and by I';, 1 < i < p, the other connected
components of I'. We further fix a bounded simply connected open domain D such that
'y C 0D, D D Q, D\Q # @ and every boundary point of D is regular or convex angle.
Then the set D\Q is not connected and for any i € {1,---,p}, we denote by Q; the
connected component of this set bounded by I';. For all : € {1,---,p}, we now fix a
function v; € D(D) such that

U’i:O Onﬁ,
v; =0 ony, Vje{l,---,p}:j#i.
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2.5. The case of a multiply-connected domain

Figure 2.3: Multiply-connected domain

Moreover each function v; must satisfy

/vidleand /vida::().
Q D

Let I'p = 00\I'y and ¢; € H} (D) N L§(D) be the unique variational solution of mean 0
of the Poisson equation with homogeneous Neumann boundary condition:

(2.5.1)

% = 0 ondD.

{—qu = U; in D

Since every boundary point of D is regular or convex angle, it is well known that g;
belongs to H?(D). From the choice of v;, we remark that ¢; is harmonic in Q and by

Green’s formula we have for every i € {1,--- ,p}
Jq;
(Vgi).m ds = ds = Ag; dx = v; dx = 0;4, (2.5.2)
L L on Q; Q;

where we recall that n means the normal vector along I' oriented outside §2. Let § =
(81, B2)" € IR2. In the following, we will use the following notation

B* Vg = [&V%T}

B2Vl

With these notations, we are now able to formulate the Helmholtz like decomposition we
have in mind.
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2.5.1 Decomposition for tensor fields

To establish reliability of the residual based error indicator, we need to modify the
Helmholtz decomposition for tensor fields due to the multiply-connected geometry of
the domain. To our knowledge this decomposition seems to be new. Let us observe that
the proof of the efficiency of the error indicator must not be modified because we use
the Helmholtz decomposition only in the proof of the reliability. Although we will use
only in the sequel the Helmholtz decomposition mentioned in the Proposition 2.5.2, it is
worthwhile to note that we have also the following decomposition of Helmholtz type for
tensor fields.

Proposition 2.5.1. Let 7 € [L*(2)]**%. Then there ezist p € [H'(Q)]* withp =0 on T'p,
o € [HY(Q)]? with ¢ = constant on each connected component of I'y and 3; = (3}, 32)" €
IR? for alli € {1,---,p} such that

P
7 =Vp+ Curl p — Z 0G; x Vi, (2.5.3)
i=1
with the estimate )
198l + IVeloq + D151 S 7o (25.4)
i=1

Proof: As in the proof of Lemma 2.3.1 let p € [H}_ ()] be the variational formulation
of

/ (r—Vp):Vibde=0 forall g€ [H} (. (2.5.5)

This last equation implies in particular, that 7 — Vp is divergence free in {2 in the sense
of distributions but it does not necessarily satisfy

(T = V), ) vioqey ey = 0, Vi€ {1,---,p}, Vo € [Hp ()

Therefore we search vectors 3; = (8}, 32)7 € IR? such that
p

v:= (1t — Vp) —Zﬁi*v%
i=1

satisfies this property, namely
<’U.7’L, 1>H’1/2(Fi),H1/2(Fi) = O, Vi € {1, cee ,p} (256)
By property (2.5.2), this is equivalent to
ﬂi = <(T - Vp).n, 1>H_1/2(Fi),H1/2(Fi)‘
Condition (2.5.6) allows us to apply Theorem 1.3.1 of [25| line by line to the tensor
T —Vp—>" B * Vg which yields a vectorial stream function ¢ € [H*(Q)]* such that
p
T—Vp—Zﬁi*ti: Curl ¢.

i=1
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2.5. The case of a multiply-connected domain

This proves the expansion (2.5.3). Applying the same ingredient as in the proof of Lemma
2.3.1, we see easily that ¢ = const on I'y. The estimate

IVPlloo < lI7lloq: (2.5.7)

follows immediately from the variational equation (2.5.5) by taking ¢ = p as a test
function.
Moreover from the expression of (3; and the trace estimate [25], we have

18i| < 17 = Vp)nl|g-er,
Sl — VpHO,Q

S ||T||0,Q + ||VPH0,Q7

reminding that 7 — Vp is divergence free. Therefore estimate (2.5.7) allows to conclude
that
18i S MIllo.q (2.5.8)

Thus it remains only to prove that

IVelloa S I7llo0:

Since

p
IVelloq = lICurl ¢llyg = I = Vo= 5 * Vaill

=1 0,0

p
< IVpllog + lI7llog + > 181V aillo.0.

=1

the two estimates (2.5.7) and (2.5.8) allow to conclude that

IVelloa S lI7llo g

Proposition 2.5.2. Let 7 € [L*(Q)]**2. Then there exist = € [HY(Q)]? with = = 0 on
Ip, ¥ € [HY()]? with ¢ = constant on each connected component of Iy, q € L*(Q) and
B; = (B}, )T € IR* for alli € {1,--- ,p} such that

7= 2ue(z) — g6 + Curl () — S0 B % Vg;
{ Ly + div (2) = 0. ' (2.5.9)

Moreover the following estimate holds:

p
le)lloq + 1V¢llog + lalloq + Y161 S I7llog- (2.5.10)

i=1
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Proof: As in the proof of Lemma 2.3.2 let z € [H} (2)]* denotes the solution to the
variational formulation of the Lamé system

/ (—2pe(z) — Adiv ()5 +7) : Vo de =0 for all € [H}. Q). (2.5.11)
Q

This last equation implies in particular, that —2ue(z) + ¢d + 7, with ¢ = —Adiv z, is a
divergence free tensor in (), but z does not necessarily satisfy

((—2pe(2) + 6 + 7).n, V) g2y ey =0, Vi€ {1,--- . p} Vo € [H%D(Q)P‘
As before we fix the vector
Bi = ((—2ue(2) + 6 +7).n, 1>H*1/2(Fi),H1/2(Fi)a
such that
P
(—2pe(z) + g0 + 7+ Y Bi % V) m, L) vy ey = 0,Vi € {1+ ,p}. (2.5.12)
i=1
Applying Theorem 1.3.1 p.37 of [25] line by line to the tensor
p
—2pe(z) +q0 + 7+ Z Bi * Vi,
i=1
we conclude that there exists a stream function ¢ € [Hp (€2)]” so that
P
—2u€e(z) +qd + T+ Zﬁi * Vq; = Curl .
i=1
This yields the expansion (2.5.9). Similarly as before we can prove that
Y =const onI'y.

To prove the estimate (2.5.10), we take as test function ¢ = z in equation (2.5.11)and by
Cauchy-Schwarz’s and Korn’s inequalities, we get

le(z)llo0 S I17llo0- (2.5.13)
Now by using Lemma 3.4 [30], we can show as in Lemma 2.3.2 that
lallo.o = Adiv z[lg o S [I7]o0- (2.5.14)
As before, from the expression of (3; and the trace estimate [25], we have

16i S 11(=2pe(2) + g0 + 7).l g-1r2r,
S 1=2pe(2) + 90+ 7lloo
S Il + lel2)llo.q + llallo.o-
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Therefore the estimates (2.5.13) and (2.5.14) allow to conclude that

18i < MI7llo.q- (2.5.15)

Since

p
IVelloq = lICurllloq = lI-2ue(z) + g8 + 7+ D i * Vi
=1 0,Q

p
Slle@llog + lallog + 17lloa + Y 1811 Valloq.
i=1

the three estimates (2.5.13), (2.5.14) and (2.5.15) yield

IVYlloo < 7Moo

Consequently, we have proved inequality (2.5.10).

2.5.2 Proof of the reliability of the estimator

The new decompositions of tensor fields involve modifications in the proof of the
reliability of the error estimator. As only the upper error bound of |[e[|, o = [|e — enllyq
and |3 — Bully by n use the Helmholtz type decomposition, it is thus only on this level
that one must make the necessary modifications. Let us note that the upper error bound of
I7llo.o = llp — pnlloq and [lu — up ||y, remain still valid in spite of the new decompositions
of tensor fields. We begin with the following estimate:

Proposition 2.5.3. The following estimate holds
||5HO,Q S - (2.5.16)

Proof: Proposition 2.5.2 implies the existence of 2 € [H'(Q)]?> with 2 =0 on I'p, ¢ €
L*(2), ¢ € [H'(Q)]? with 1) = const on each connected component of I'y and 3; € R
such that

p
e—sas (op)x = 2pe(z) —qb — Zﬁz * Vq; + Curl ¢ (2.5.17)
i=1
Tq+div (z) = 0. (2.5.18)
Moreover the following estimate holds:
p
le()llog + IVellog + lallon + D 161 S lle = as (an)xll, - (2.5.19)

=1
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Setting
p
¢=— Z G * Vi,
i=1

it follows from € := ¢ + 03, and equality (2.5.17) that Curl (¢)) + ¢ is a symmetric tensor
field. By the triangle inequality, we have

lelog < lle—Las (@)xll, o + has (@)xll,

le = Las (n)xllgq + Z5llas (1) log- (2.5.20)

In view of the definition of the error estimator 7, it suffices to bound [|e — Jas (o4)x]|, (-
The above decomposition allows to write

o= bas il = [ (6= $as (200 s (Gpels) = a5+ Curl v+ 6) do
= /5 : (2ue(z) — g0 + Curl o + ¢) dx
Q
1 / as (o) : (2ue(z) — g6 + Curl ¥ + ¢) da
Q

= /5 c(2ue(z) —qd + ¢) dx
Q
as 2ue(z) —qd + ¢ + Curl ) is a symmetric tensor field.

By (2.5.18) we may write

le — 3as (ah)x||§ﬂ = /5:2,ue(z) dx—/2,uP(§q+div (2)) d:v—/e:qé dx
’ Q Q Q
+/5:(¢+Curlz/z) dx
Q
= 2u/€:e(z) dm—Qu/Pdiv (2) de — 2 | Pgq dx—/tr(e)q dx
0 Q 0 Q
+/€:(¢+Curl¢) dx
,u/a:e(z)dx—2u/P5:e(z)dac—27’“‘ qux—/tr(a)qu
Q Q Q Q

e:(¢p+ Curl v) dx

o)

|
b

+
S~

= QM/(a—Pé):e(z) dv—2 [ Pgdx+2 [ pq dx—i—/tr(ah)qu
Q Q

Q Q
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Using Green’s formula, we may write:

le — 3as (ah)x||§Q = —2u/div (e = P).z do + u/as (op)rot z dox — 27’“‘ /Pq dx
’ Q Q Q

+27u pqu—F/tT(Uh)qu—l—/a:(¢+Curlz/1) dz
Q Q Q

= QM/(f—P,?f).z dm—l—p/as (ah)rotzdm—%“/quij%“ pq dx
Q Q Q Q

_|_/Qtr(o'h)qu—|—/ﬂg(¢+ CUJ‘ZID) dx.

By P = p — pp, we obtain the following decomposition formula:

I = das (@l = 20 [(F = P22 dotp [as (on)rot = do % [ da
0 Q 0
—l—/ tr (on)q dm+/€ (¢ + Curl ) dx
Q 0
= 2,u/(f — P)f).z dx —l—u/as (op)rot z dx + /(%’“‘ph +tr (o1)) q dz
0

Q Q

+/ e: (¢ + Curl y) du. (2.5.21)
Q

To transform the last term of the right-hand side, let us consider ¢, := I % and ¢, = I¢
the BDM, interpolate of ¢. By the first equality of the continuous problem (2.2.1) with
(1,0) = (¢ + Curl ¢,0) € 3, we get

1

— [ o:(¢p+ Curlyp) de = 0.
2 ). ( )

Thus

/5:(¢—|— Curl ¢) dx
9)
:—/ah:(¢+0urlw) dx
Q
:—/QO'hZ<¢—¢h+C’U/f‘l (¢_wh)) dx—/ah:(¢h+0url¢h) dx (2522)

Q

:_/ah:C’url(iﬁ—%)dx—/ahi(¢—¢h)dx
Q

Q

— / Op - (Cbh + Curl wh) dzx.
Q

We now treat separately the terms of the right-hand side of (2.5.22) . For the first one,
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using Green’s formula we get

—/UhZCU,’I"l (v —p) do
Q
:—Z/rot on). (Y — y) dx+Z/0ht¢ Yn) d

TET, TeTn
:—Z/mt on). (Y —by) dx+Z/ UhtE (Y —tn) ds
TeT, E€&),

For the third term of the right-hand side of (2.5.22), taking as a test function
(¢n + Curl ¢y, 0) € Xg, in the first equation of (2.2.4), we get

— / on: (o + Curl iy) de = 2,u/ as (¢n + Curl Pyp)wy, dx
Q Q

Remembering that as (¢ + Curl ) = 0, it follows that:

—/ on: (on + Curl Yy) dax = 2u/ as ((Cbh + Curl i) — (¢ + Curl w))wh dx
Q Q
= 2,u/ as (ngh — ¢+ Curl (¢, — ¢))wh dx
Q

(2.5.23)
— 2 [ div (0= v)en do =20 [ a5 (6= dn)e da

Q

= —2;L/Q div (¢ — Yp)wp, do — 2#/9(¢ — ¢p) :wp) dx.

For the first term in the right-hand side of (2.5.23), using Green’s formula we get

—QM/Q div (Y — p)wy, dx

=3 [V @w-wde= 3 [ vy ds

TeTy, TeET),
= j{:t/ﬁ2uihuh ﬂ) wh d$'— j{:t/1 QMWhgn/@b wh)
TeT), TeTy
= Z/Zquh (1 — 1bn) dx + Z/ 2pwp Xt (¢ — ¢n) ds
TeT, TeTy,
= — Z/rot 2uwpx)- (Y — y) dx + Z/ 2p(wpX) tE (¢ Yn) ds
TeT, Eeé&,
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Altogether in the equality (2.5.22) yields

/Q (¢ + Curl y) d Z / rot (oy, + 2uwrx)- (Y — ) dx

TeT,

+ ) / (o + 2ponx) te]] 5 (0 — ¢n) ds
Ecé&y

- Z / o+ 2uwnx).-(¢ — ¢n) dz
TeTy

< > ot (on + 2pwn ) o218 = nllo s

TeTy,

£ 30 I on + 2pn) ]l 10 = el s
Ecé&y

+ 3 llow + 2uwnxllo ll6 — énllo -
TeT,

Now applying Cauchy-Schwarz’s inequality, Lemmas 2.3.6 and 2.3.7, we obtain

/ ¢+ Curl ) do S [Zh Irot (on + 2uonX)[Io
Q

TeET),

NI

+ Z hil|[[(on +2,UWhX)'tEﬂEH(2),E IVYlloq

Ecéy

+ 3 hrllow+ 2m0xllor [ VSl (2.5.24)
TeTy

The first three terms of the right hand side of (2.5.21) can be estimated using simply
continuous and discrete Cauchy-Schwarz’s inequalities:

QM/Q(f — P f).z do + u/gas (op)rot (2) dx + /(%“ph +tr (o1)) q dz

Q
= :,;h[zﬂ/T(f_P}?f) z dx—i—,u/as (op)rot (2) dx—i—/T(QT“ph—l—tr (04)) q dx
> [H2u(f P )l + llaas (@) gllrot (=)o 2
TeT,
2 ph+tr<ah>||0T||q||0T]
1 1
< 2u{ [Z I/ - Pﬁf)HéT] : 120 + [Z !las <o—h>||3,4 * ot (2) .0
TET, TeT,
1
+] 3 o+ e @0l |l | (25.25)
TeT,
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Since ¢; € H*(Q), for alli € {1,---,p} we have

p

||V¢||0,Q S Z |Bil- (2.5.26)
i=1
By Korn’s, Poincare’s and (2.5.19) inequalities, we obtain

lrot (2)lloq S 1V2llog S lle(@)llon < lle = 3as (on)xll o (2.5.27)

Izlloe S 1Vzlloq S lle(2)llon S lle = s (n)xllg q- (2.5.28)

Equations (2.5.26), (2.5.21), (2.5.24), (2.5.25), (2.5.27), (2.5.28) and (2.5.19), with the
help of the discrete Cauchy-Schwarz’s inequality, yield

2 2
o= 405 ol S | 3007 = PO+ Hlas (on)lo-+llkon + v (o),

TeT,
+@wHawmmrH@mu%+m%mmﬁ
1

+ 3 hul[[(on + 2uwhx>.tEﬂEH§,E} 2

Now using the estimate (2.5.20) and this last bound, we obtain
lelloq < - (2.5.29)

The proof that the error ||p — pp||,, is bounded by the error estimator 1 up to a mul-
tiplicative constant remains the same as in the Proposition 2.4.3. Thus we have the
following proposition:

Proposition 2.5.4. The following estimate holds

||P||0,Q S (2.5.30)

It remains to bound the errors e := u — u;, and r := w — wy,. As previously , we use
the notations (3, := o), + 2uwpx, B := 0 + 2uwx = 2uVu. Since proposition 2.5.3 bounds
lelloq = llo —onllyq by a constant times 7, it suffices to bound [|3 — B[, in order
to obtain an estimate for [[w — ws||; . This will be also the main ingredient to bound
lu — unllyq in terms of n as we will see. The preceding demonstration of the upper bound
of the term |3 — Bul|,, by the error indicator 1 does not work any more because of the
additional terms which appear in the decomposition of tensor field in the case of multiply-
connected domain. For this reason we propose a new shorter demonstration based on the
decomposition stated in Proposition 2.5.2.
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Lemma 2.5.5. The following estimate holds
18 = Bulloo < -

Proof: In view of proposition 2.5.2, there exists v € [H'(2)]?> with v = 0 on I'p, ¢ €
[H' (P, v € R?, v = (3,7])" € R? for all i € {1,---,p} and ¢ € [H'(Q)]* with
¢ = constant on I'y such that

P
B — Br =2pe(v) — qd + Curl ¢ — Z% * Vg, (2.5.31)
i=1
with the estimate
p
le(@)llo.0 + IVlloq + Y 1l S 18— Bullgo: (2.5.32)
i=1
Let us set
P
T = Z ¥ * V.
i=1
Hence

18 — 5h’|(2),9 = /(ﬂ — Bn) : (2ue(v) — qd + Curl ¢ — 7) dx
. (2.5.33)
= /Q(ﬁ — Bn) : (2ue(v) — ¢6) dx — /Qﬁh : (Curl ¢ — 1) du.

For the first term of the right-hand side of (2.5.33) we use the definition of 3 — /3, and by
Cauchy Schwarz inequality we get

/Q (6 Bn) : (2ue(v) — g8) d = / (e +2urx) - (2puclv) — gb) de

Q
= /Qe : (2ue(v) — ¢f) dx

< llello o ll2ue®) = gdllp -

For the second term of the right-hand side (2.5.33) we use the Clément and BDM,
interpolation. Let ¢, = I,¢ be the Clément interpolation of ¢ and 7; = I,7 the
global BD M, interpolate of 7. By the first equation of the discrete problem (2.2.4) with
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7, = Curl (¢r,) — 75 and g, = 0, we have
—/ﬁh :(Curl ¢ — ) d:p:/ﬁh: (Curl(gbh—(b)—(ﬁ:—ﬂ) dx
Q

—Z/rot (Br)- (o — @ dx—Z/ (Bn)-t5]] 5 (60 — @) ds

TeTy Ee&;,
— Z/ﬁh (1 — 1) dx
TeT, T
< Y hrllrot (Bl IV llor + ¥ [Bn)-te]] glly IVl
TeTy, Ee€&y
+ 3 bl Ballo 7 IVTllor by (2:3.14) and (2.3.15).
TeTy

By discrete Cauchy-Schwarz inequality we get

~ [ (G- a5 [zh Irot (8122 + 3 bl [(80) ] 112+

TeTy, Ee€&y
1 (2.5.34)
S HﬁhHOT} < (IVlo0 + 1V7loq):
TeET,

Since ¢; € H*(Q), for all i € {1,---,p} we have

p
IV7lo0 S il (2.5.35)
=1

Now the inequalities (2.5.35), (2.5.34), (2.5.34) in (2.5.33) yield

2
18— ﬁhHO@ S ||5||o,Q||5 - ﬁh”o,Q“'
1

[Z Rt ()2 + 32 hall[(B ]l I, + S0 42 HﬁhHOT] 16— Ballog

TeTy, Ecg&y, TeTy,

This last inequality with Proposition 2.5.3 yield

13— 5h||0,9 S

Remark 2.5.6. The preceding demonstration is also valid in the case of a simply con-
nected domain ). Thus we can also use the above technique to prove Proposition 2.4.4.

From the preceding Lemma and proposition 2.5.3, we have immediately:
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Proposition 2.5.7. The following bound holds

lo = wnlloq < n-

With the same techniques and geometric assumption on €2 and 'y as in the preceding
proof of Proposition 2.4.6, we get the following result:

Proposition 2.5.8. Let us suppose that each vertez s € I'y is convex. Then the following
estimate holds

Ju— Uh“o,ﬂ S

2.5.3 Proof of the efficiency of the estimator

As it were noted above, no modification in the proof of the efficiency of the estimator
will be necessary. Indeed, no decomposition of tensor fields was used in its proof. Hence
efficiency of our estimator 7 still hold. Consequently Theorem 2.4.7 remains true.

2.6 Adaptive algorithm

From our theoretical considerations, an adaptive mesh-refinement algorithm has to
use appropriately our global and local refinement indicators n and nx respectively. A
relatively general mesh-refinement algorithm is as follows:

1: Start with initial mesh 7}, o. Set i = 0 and fix a tolerance T'ol > 0.
2: Solve the discrete problem with respect to the present mesh 7, ;.
3: On each element we compute a local error indicator.

4: Compute the global error indicator

77:( Z 77K)

KGT]—LW;

NI

corresponding to the mesh 7, ;. Terminate if n < T'ol.

5: Else, with the help of these local error indicators, mark the elements K which need
further refinement.

6: Perform Red-Green-Blue refinement to avoid hanging nodes.

7: Generate the new mesh 7}, .1, set ¢ < 7 + 1 and come back to step 2.

Several strategies are possible at the step 5 when the new mesh is built starting from
the local indicators. A strategy frequently used in the applications consists in to distribute
in a balanced way the error on the mesh. The criterion of refinement is to refin those
triangles K € 7}, ; for which :

1
Nk > 5(%2%3,(1- nr).
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It is this strategy which is actually used in our adaptive algorithm. Details on the Red-
Green-Blue refinement can be found in [38]. The numerical performance of this algorithm
will be illustrated in Section 2.8.

2.7 Conclusion

A new a posteriori error estimator for a dual mixed finite element method of the elas-
ticity problem is introduced and analyzed. It is shown that this error estimator is reliable
and efficient for simply-connected domains and also for multiply-connected domains. The
lower and upper error bounds obtained are uniform with respect to the Lamé coefficient
A ( thus avoiding the so-called locking effect). The estimator allows an adaptive finite
element scheme which refines a given grid only in regions where the error is relatively
large. Finally, the technique developed to establish this estimator can be extended to the
three-dimensional case.

2.8 Numerical test

In this section we will corroborate our theoretical analysis by numerical tests. We investi-
gate three model problems to provide experimental evidence of the robustness, reliability
and efficiency of our a posteriori error estimator. On each example we exhibit in evidence
the good performance of the adaptive strategy of Section 2.6 in comparison with a uniform
mesh-refinement.

2.8.1 Analytic solution on a L-shaped domain

We consider as a first model example, the L-shaped domain shown in figure 1.2. With the
same analytical solution (1.7.6) used in the numerical test 1.7.2. We first investigate the
main theoretical results which are the upper and lower error bounds (2.4.2) and (2.4.23).

First, we define the ratio of the left-hand side and the right-hand side of the inequality
(2.4.2).
= lo = onlloa+ P = pullog+ llw —whllog + llu—unllyq
up .

Ui

The stability index g,, measures the reliability of the estimator and is related to the
global upper error bound. In figure 2.5, Table 2.1 and Table 2.2, the quotient g,,, is seen to
be nicely bounded from above. This confirms numerically the theoretical results obtained
in Theorem 2.4.1.

Now, we define the ratio of the left-hand side and the right-hand side of the inequality
(2.4.23):

nr
Qlow = Max .
o ren, || f = P fllor + lu—unllor + o = onllowr + llw = wallowr + lp = pallor

The efficiency index ¢, measures the efficiency of the estimator. In figure 2.4, Table
2.1 and Table 2.2, the quotient g, is seen to be nicely bounded from above as theoretically
predicted in Theorem 2.4.7.
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Table 2.1: g0 and g, wrt DOF for uniform meshes with A = 1.E+06

h [ DOF | dw | dw
1.414214e-001 | 5480 | 52.2825 | 3.796093
7.071068e-002 | 21760 | 51.2292 | 3.917217
4.714045e-002 | 48840 | 50.8841 | 3.962506
3.535534e-002 | 48840 | 50.6875 | 3.986473
2.828427e-002 | 135400 | 50.6055 | 4.001465

Table 2.2: g0, and g, wrt DOF for uniform meshes with A = 1.E+12

h | DOF | iow Gup
1.414214-001 | 5480 | 52.2808 | 3.791462
7.071068¢-002 | 21760 | 51.2224 | 3.912900
4.714045¢-002 | 48840 | 50.8700 | 3.958350
3.535534e-002 | 48840 | 50.6821 | 3.982366
2.828427¢-002 | 135400 | 50.5731 | 3.997484

The identical behavior of the errors [|o — o |g o, [P — Pullo.q, lu — unllg g lw —wnllgq
and the error estimator 1 with respect to h shown on the figure 2.6, highlights the relia-
bility and the efficiency of our error indicator 7.

The final mesh after 12 refinement steps is shown in Figure 2.7. A very strong refine-
ment is produced by the algorithm around the re-entrant corner.

2.8.2 Cook’s membrane problem

The well known Cook’s membrane problem [13] is shown in Figure 2.8. Here we consider
a panel maintained on an end and subjected to a shear loading on the opposite end with
A = 1000, p =500, f =0, g = (0,1000) on the vertical component of 'y and g = (0, 0)
on the remaining components of I'y.

This problem is useful for the comparative study of accuracy because there are available
numerical results from other sources. In figure 2.8 we summarize numerical results for the
vertical displacement at point B, calculated by using uniform or adaptive meshes. The
final and initial mesh after 10 refinement steps are shown in Figure 2.10.

2.8.3 Plate with an elliptic notch

As a final test case, we consider a plate with an elliptic notch with ¢ = 10 mm and
b = 2 mm, subject to the traction load g = (0, 1000) on the top and g = (0, —1000) on the
bottom. g = (0,0) on the remaining components of 'y and f = 0. We set A = 7.5E+003,
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44 mm
I'p

48 mm

Figure 2.8: Cook’s membrane problem

w1 = 3750 (see figure 2.11). Inhomogeneous Direchlet boundary conditions are enforced on
the lips of the notch: up(z,y) = (0,20va? — 2?) ify > 0 and up(x,y) = (0, —20va? — 2?)
if y <O0.

In figure 2.13 we have plotted the value o, ; at point P computed by an averaged strain
approximation using uniform meshes and adapted meshes. We observe that the Algorithm
of Section 2.6 generates a strong refinement around the notch. We may conclude that the
adaptively refined mesh is more efficient than the uniform one.
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Figure 2.11: Plate with an elliptic notch

Figure 2.12: Initial(right) and adaptive (left) mesh after 15 refinements with Algorithm
of Section 2.6
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Chapter 3. DUAL MFE METHOD FOR THE ELASTODYNAMIC PROBLEM

3.1 Introduction

The purpose of this chapter is the analysis of a finite element method for approximating
the linear elastodynamic system using a new dual mixed formulation for the discretization
in the spatial variables and the explicit or implicit Newmark scheme for the discretization
in time. The explicit scheme is shown to be stable under an appropriate CFL condition.

The analysis of a priori error estimates for the mixed finite element method of a
second order hyperbolic problem was initiated in [16, 18, 31] but to our knowledge a
similar analysis for the dual mixed formulation of the linear elastodynamic system was
not yet done. Therefore our goal in this chapter is to make this analysis.

The outline of this chapter is as follows: Section 3.2 defines some notations, present
the model evolution problem we shall consider and recall two comparison results concern-
ing continuous and discrete Gronwall’s inequalities. In section 3.3 we define the new dual
mixed formulation of the model evolution problem. Section 3.4 is devoted to some reg-
ularity results of the solution of our elastodynamic system in terms of weighted Sobolev
spaces. In section 3.5 we introduce the semi-discrete mixed formulation and prove the
existence and uniqueness of the solution, we begin by recalling some results concerning
the inf-sup and coercivety conditions. Then, under some adequate refinement rules of
grids, we establish some error estimates on some interpolation operators and we prove an
inverse inequality for the divergence operator. In subsection 3.5.1 we derive some error
estimates between the exact solution of the mixed problem and the solution of the elliptic
projection problem which will be used to derive the error estimates between the exact
and the semi-discrete solution. Section 3.6 is concerned with the fully discrete mixed
finite element scheme. We introduce in subsection 3.6.1 some notations for the discrete
derivatives in time and present the fully discrete problem. Subsection 3.6.2 is devoted to
analyze the stability of our explicit scheme in time , by establishing an appropriate CFL
condition. In subsection 3.6.3, we establish optimal error estimates for the fully discrete
problem. Subsection 3.6.4 is devoted to the implicit scheme. In section 3.7 we present
conclusions. The numerical experiments of section 3.8 confirm our theoretical predictions.

3.2 Preliminaries and notations

3.2.1 The model problem

Let us fix a bounded plane domain {2 with a polygonal boundary. More precisely, we
assume that €2 is a simply connected domain and that its boundary I' is the union of a
finite number of linear segments T';, 1 < j < n, (['; is assumed to be an open segment).
We also fix a partition of {1,2,---,n.} into two subsets Iy and Ip. The union I'p of the
I';, j running over Ip, is the part of the boundary I', where we assume zero displacement
field. The union I'y, of the I';, j € I is the part of the boundary I' where we assume
zero traction field.

In this domain 2 we consider anisotropic elastic homogeneous material. Let u =
(u1,us) be the displacement field and f = (fy, fo) € L([0, T]; [L*(©2)]?) the body force by
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3.2. Preliminaries and notations

unit of mass. Thus the displacement field u = (uy, uy) satisfies the following equations :
uy —divog(u) = f in [0,7] xQ,

u = 0 on [0,7]xTIp,
os(u).n = 0 on [0,7]xTy, (3.2.1)
u(0,.) = g in Q,
u (0, .) = in Q,

where uy and u; be the initial conditions on displacements and velocities. The stress
tensor o4(u) is defined by

os(u) = 2ue(u) + Atre(u)o. (3.2.2)
The positive constants p and A are called the Lamé coefficients. We assume that
(A p) € oy M) X [pa, o] (3.2.3)

where
0 < pp < poand 0 < Ag < Ap.

As usual, €(u) denotes the linearized strain tensor (i.e.,e(u) = 3(Vu + Vu')) and § the
identity tensor.

For reasons of simplicity we have chosen her homogeneous boundary conditions in
both Dirichlet and Newman boundary, the treatment of the inhomogeneous boundary
conditions is done without difficulty. Let us note in passing that the numerical test (see
section 7) are made under the inhomogeneous surface traction . In the sequel, we will
recall the following notations. For 7 = (7;;) € (H(div ;Q))?, we denote by

. 0T 1 0T 2 0o O0To.2
d — ) ] k] ]

w (7) (6951 + Oxy  O0xy + Oxs )’
as (’7’) =T21 — T1,2-

For v = (v1,v2) € [H'(2)]?, we recall that

rot 81)2 (9@1
U RS
81’1 (9x2
As usual, we denote by L?(.) the Lebesgue space and by H*(.), s > 0, the standard Sobolev
spaces. The usual norm and seminorm of H*(D) are denoted by || . ||s.p and | . |s p- The

inner product in [L?*(Q2)]? will be written (.,.) . If o = (0y;), 7= (7;) € [L*(22)]**?, then
we denote by
g . T = ZO’UTij,
i,J

(o,7) = / 0,jTij d.
Q
We now introduce the Hilbert space
[Hy, () = {ve [H(Q) vlr, =0}

Finally, in order to avoid excessive use of constants, we will use the following notations:
a < b stand for a < cb, with positive constants ¢ independent of a, b, h and At.

87
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3.2.2 Gronwall’s inequalities

In this section, we recall two comparison results, which will be useful in the stability
and convergence analysis of our problem. Let ¢ > 0 such that ¢;(t) < po(t) + n(t) for
0 <t < T, where p > 0 is some constant and 7(t) > 0, n € L'([0,T]), then

B(t) < et (¢>(0) + /0 ' n(s) ds) . (3.2.4)

Let (kn)n>0, (Pn)n>0 two non-negative sequences be given, gy > 0 given also and let us
suppose that the sequence (¢,,),>0 satisfies:

¢0 S 9o,

n—1 n—1 (3 9 5)
bn <go +D Dt > kits, Yn =1 &
s=0 s=0

Then

n—1 n—1
b < (go+zps) exp(zks), o> 1. (3.2.6)
s=0 s=0

3.3 The dual mixed formulation

We recall from chapter 1 the unknowns:
1
o :=2ue(u), p:=—Adiv (u) and w := irot (u),

and the spaces:
Lo = {(r.q) € [LAQP2 x [LAQ)); div (7 — g6) € [LAQ), (3.3.1)
(t1—@qd).n = 0on 'y}
VxW = {(v,0) € [L*(Q)]* x L*(Q)}. (3.3.2)

We state the dual mixed finite element method for our model hyperbolic equation (3.2.1):
Find (o(.),p(.)) € L*([0,T]; Zo), u(.) € H*([0,T];[L*(Q)]?) and w(.) € L*([0,T]; L*(2))
such that for all (7,¢) € ¥ , for all (v,0) € V x W and for a.e. t € [0, 7] we have:

(1
24
(ue(t),v) = (div (o(t) = p(t)d),v) = (as (a(1)),0) — (f(1),v) =0,

u(0) = ug, u(0) = uy.

(o(t),7) + %(p(t% q) + (div (T = ¢9),u(t)) + (as (7),w(t)) = 0,

(3.3.3)

\

We conclude this section by introducing some notations. We set
o(t) = (o(t),p(t), 7= (7,q), u(t) = (u(t),w(t), v=(v,0),
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1 1
a(g,:) = ﬂ(a, T)+ X(p, q), Vg, TE Yo, (3.3.4)

b(z,g) = (div (1 — q9),v) + (as (1),0), VT eXy, Wve [L(Q))* x L*(Q). (3.3.5)
With these notations, the mixed formulation (3.3.3) may be rewritten: Find g() =
(0(),p(-)) € L*([0,T]; Xo) and u(.) = (u(.),w(.)) € H*([0, TT; [L*(Q)]*) x L*([0, T]; L*(€2))
such that

a(o(t),7) +b(7, u(t)) =0, V7€ X, forae. tel0,T]

~

b(o(t),v) + (F(t),v) = (uu(t),v), Vve [L2(Q)]% x L?(Q), for a.e. t € [0,T]
(3.3.6)

~

3.4 Regularity of the solutions

Let u € L*(0,T;[H{,(Q)]?) such that 2 € L*(0,T; [L*(22)]*) be the solution of (3.2.1).
We consider the Lamé operator defined below

L:=—pA — A+ pn)Vdiv ().

Thus, equivalently u is solution of the problem

uy+L(uw) = f in [0,7] x €,
u = 0 on [0,7]xTIp,
os(u)n = 0 on [0,7]x Ty, (3.4.1)
u(0,.) = w in
u(0,.) = w in Q.

It is wellknown (see [25] or [27, 28, 14]) that the weak solution of the corresponding Lamé
system of (3.4.1) presents vertex singularities. We returns to the definition 1.3.1 for the
description of these singularities. Let us recall from the Definition 1.3.3 the following
weighted Sobolev Space:

For any scalar function ¢ € C°(Q) such that ¢(x) > 0 for every x € Q\{S1,S2, -+, Spe }
and any m, k € IN, we define

H;”k(Q) = {ve H™(Q); ¢D" € L*(Q), V8 € IN* such that m < |8] <m + k}.

Hglk(Q) is equiped with the norm:

1/2
\\v||m,k;¢,9:(||vu;,g+ 3 \wD%%@) .

m<|B|<m+k

and the semi-norm:

1/2
|v\m,kw=< 5 ||¢D%H%,Q) .

|8|=m+k
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The time space-norm is defined as

T 1/2
lollsingey = ([ 10l uadt)
L2(H]") ; i,

The usual modification is made for the time-space norm |[v|[ < gmr) - Let us set { =
¢

min;— ... », §; where

& = i%f{Re ajr; Re ajy, >0},

where «; is solution of the appropriate trancendantal equation appearing in definition
1.3.1. Let us pick some a €]1 — £, 1/2[if £ < 1, and let us take « = 0 if £ > 1.
Now we can give the following regularity result:

Proposition 3.4.1. Let us suppose that the appropriate characteristic equation among
1.8.1 - 1.3.3 for each vertex of 2 has no root on the vertical line Rea = 1 in the complex
plane. Let ¢ € C°(Q) like above in Corollary 1.3.4.

Let us suppose that:

f € H30,T;[L*(Q)])
ug, ui, f(0)— Lug € [Ht, ()] (3.4.2)
f:(0) — Luy, fu(0) — Lf(0) + L?uy € [Ht, ()]

Then u € C(0,T;[Hy ()]?) and uy € L*(0,T;[H, ' (Q)]?).

Consequently o € L>(0,T;[Hy' (2)]2%), p € L®(0,T; Hy'()) andw € L>(0,T; Hy' ().
Moreover oy € L*(0,T; [Hg’l(Q)]2X2), pu € L*(0,T; Hg’l(Q)) and wy € L*(0,T; Hg’l(Q)),
u € L*(0,T; [Ht (Q)]?) and uy € L*(0,T; [Hf (Q)]?).

Proof: According to Theorem 30.1 p.442-443 of [39] we have v € H*(0,T; [Hp,(Q)]?),
u® € L*(0,T; [L*(Q)]?) and u® € L*(0,T; [H~'()]?). In particular uy, € L*(0, T; [H} (22)]?)
and (ug)y € L2(0,T;[L*(Q)])?). Knowing that Lu = f — uy we have Luy = fir — (usg)u €
L2(0,T5 [L*(Q)]*). Thus uy € L*(0,T;[Hp ()]?) and Luy, € L*(0,T;[L*()]?). That is

uy € L*(0,T; D(L)) where D(L) denote the domain of the Lamé’s operator. But D(L) —
[H;’l(Q)P by adapting corollary 2.4 p.326 of [24]. Thus uy € L*(0,T; [H;l(Q)]z) and con-
sequently oy € L*(0,T; [Hy' (Q)]**?), pu € L*(0,T; Hy'(Q)), wy € L*(0,T; Hy'(2)). On
the other hand u, € H*(0,T; [H} (Q)]?) and Luy = fy — uwe € L*(0, T3 [L*()]?). So that

u; € L*(0,T; D(L)). and hence

ug € L*(0, T [Hy' ()]). (3.4.3)

Similarly we have v € H*(0,T; [H} (Q)]?) and Lu = f — uy € L*(0,T; [L*(Q)]?), so that
u € L*(0,T; D(L)), and hence also u € L*(0, T; [H;" (Q2)]?). From this and (3.4.3) we get

we CO, TS [HYQ)P) € 120,75 [HL (@))

Thus o € L>(0,T;[H ' (Q))*?), p € L=(0,T;Hy' () and w € L=(0,T; H)' (D).
Moreover u,u; € L*(0,T;[H}, (Q)]?) implies u € C(0,T; [Hf(22)]?). Thus

w € L0, T; [HE ()

90



3.5. The semi-discrete mized formulation

Proposition 3.4.2. Let us suppose that the appropriate characteristic equation among
1.3.1 - 1.5.8 for each vertex of 2 has no root on the vertical line Reaw = 1 in the complex
plane. Let ¢ € C°(Q) like in Proposition 3.4.1 Let us suppose that:

;

/ € H%0,T;[L*(Q)]?)
fo € L*0,T;[H(Q)]?)
U, ?(tl), f(0) = Lug € (A} ()]
f(0) = Ly € [HY, (Q)]?
< f@(0) — Lf(0) + L?uqg € [HE (Q))? (3.4.4)
fO0) — LfY(0) + L*uy € [HE (Q))?
FO0) = Lf@(0)+ L?f(0) — LPug € [Hy, (Q)]?
| FOA0) = LFP(0) + L2 fD(0) = LPuy € (L2 ()]

Then Ot € LQ(O, T, [Hg’l(Q)]2X2), Pttt € LQ(O, T, H271(9)> and Wt € L2(0, T, H271(9)>,
Ut € LQ(O, T, [HIle (Q)P) and Ut € LOO(O, T, [L2(Q)]2)

Proof: By once Theorem 30.1 p.442-443 of [39)], it follows that u € H®(0,T; [H} (Q)]%).
By the equation Lu® = f® — y©) and the hypothesis f® € L2(0,T;[H'(2)]?), it fol-
lows by corollary 2.4 p.326 of [24] that u® € L*(0,T; H,"(Q)). This implies the above
assertions. -

3.5 The semi-discrete mixed formulation

We assume that 2 is discretized by a regular family of triangulations (7})n0 in the
sense of [11]. We recall the finite dimensional subpaces ¥, and V}, x W), of ¥ and V' x W
respectively defined by

Zoﬁ = {(Th,qh) € Xg; VT € ’Z;l D gnr € IPl(T) and

(T — qnd)yr € [Py(T)]** & [R Curl br]*}, (3.5.1)

Vi, x Wy, = {(Uh,eh) S M; VT €17y, : Up|T € []P()(T)]2 and Qh‘T c []Pl(T)} (352)

Recall that by (7, — ¢40)r € [IP1(T)]*** @ [RCurl by]*, we mean that there exist polyno-
mials of degree < 1: pi1, pi2, P21, P22 and two real numbers oy, s such that

ob ab
pur + g Piar — Qag,s
dbr

b
Par + Qagl Paor — Qo

(Th - Qh5)|T =

Y

where by denotes the bubble function for the actual element 7" defined by
br = 27T\ 1A2);3.
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A1, A2, A3 denote the barycentric coordinates on 7. Now we introduce the following
semi-discretized problem: Find (oy,(.), pn(.)) € L*([0,T); Zo4), un(.) € H*([0,T];V4) and
wn(.) € L*([0,T]; Wy,) such that for all (15, q5) € Zo , for all (vy, 0;) € Vi, x W, and for
a.e. t € [0,T] we have:
(1 1

ﬂ(ah(t)ﬂ'h) + X(ph(t), qn) + (div (11 — qnd), un(t)) + (as (), wn(t)) =0,

(up4(t), vn) — (div (on(t) — pr(t)d),vn) — (as (on(t)),0n) — (f(t),vn) =0, (3.5.3)

\ up(0) = ug,p, upt(0) = uy p.

We may think to ug; and w; ) as approximations in Vj, of uy and u; respectively .
The precise definitions of wug, and wu;, will be given later. With the notations (3.3.4)
and (3.3.5), the mixed formulation (3.5.3) may be rewritten: Find o (.) = (o4(.), pr(.)) €

~h

L*([0,T); %0,4) and QNLh() = (un(.),wn(.)) € H3([0,T]; V3,) x L*([0,T]; Wy,) such that

((a(o (t),7 )+b(r ,u (t)) =0, V7= (Thqn) € Zop, ae. t €[0,7]
~h ~h ~h' ~h ~

blo (t),v )+ (F(t),v )= (unu(t),vn), VzNJh = (vp,0n) € Vi, x Wy, ae. t € 0,7,

~h ~h ~h

\ uh(o) = Uo,h, uh,t(()) = Upp-
(3.5.4)

The existence and uniqueness of a solution (o,(.), pa(.)) and (un(.),ws(.)) to (3.5.3) or
equivalently to (3.5.4) is shown in the following lemma:

Lemma 3.5.1. a solution (o,(.),pn(.)) and (un(.),wn(.)) of (8.5.8) or equivalently to
(3.5.4) exist and is unique.

Proof: The evolution problem (3.5.4) can be rewritten as

a(o (t),7 )+0b(t ,u (t)) =0, V7= (Th,qn) € Xop, a.e. t €[0,7T]
~hC~h ~h ~h ~

blo (t),v )= (f(t) — uns(t),vn), VzNJh = (vp,0n) € Vi, x Wy, ae. t € [0, 7).

(3.5.5)
We may think the solution (o ,u ) € ¥, x V), x W), of (3.5.5), for a fixed time, as a
~h ~h
solution of the stationary problem:
CL(U , T )+b(7' ,U):O, VT:(Th,qh)Eth,
(3.5.6)

b(U , U ) = (g7vh)a Vv = (Uhaeh) € Vh X Wh,
~h

~h' ~h
where g = f(t) —upu(t) € [L*(Q)]?. We consider the pair of operators (T}, S,) defined by
(Th> Sh) . [LQ(Q)P — EOJ1 X (Vh X Wh)

g +— (o ,u).
~h ~h
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3.5. The semi-discrete mized formulation

The evolution problem (3.5.5) can be rewritten as

(t) = Th(PPF(t) — Lo (r)),
(t) = Sp(PYf(t) — Lu(t)).

In particular:
0 d2uh
up(t) = Tha (PP f(2) — o (t)). (3.5.7)

Let us show that the operator 7}, 1|V}, : V}, — V}, is invertible. Suppose that fQ 9.Th19dx =
0. Then from (3.6.44) we get a(o ,0 ) =0 i.e.
~ho ~h

1 2 1 2
— o dr + — dz = 0.
2,u/Q| h| x )\/Q|ph‘ v

Hence o5, = 0 and p, = 0 i.e.

o =0. (3.5.8)

~h
By the first equation of (3.6.44) it now follows that:

b(’T , U ):0 V1 € 207]1.
~h ~h ~h

The inf-sup inequality (1.4.7) yields

u = (up,wp) = 0.
~h
Thus in particular, if [, g.7419 dz = 0, then T}, ;9 = 0.
Now, if g, € Vi, and [, gn.Th1gn dz = 0, then by (3.5.8) we have 0 = 0 and by the
~h

second equation of (3.6.44) we have (gp,vy) =0, VYov, € Vj,. Thus
gn = 0.

Finally, we have proved that T}, 1|V}, : Vi, — V}, is injective, thus invertible. From (3.6.43)
follows:
d2uh

2 (0) = (Tha[Va) ™ (un(1)). (3.5.9)

Pf(t) -

Hence
dQUh 0 1
() = PRA(E) — (Tual Vi)™ (1),
If we consider a basis of the subspace V},, we obtain an homogeneous linear system of
differential equations, and if furthermore we fix the initial conditions u;,(0) and 2 (0) in
Vi, problem (3.5.9) has a unique solution. [

Before discussing some error estimates between the exact solution and its elliptic
projection, we suppose that (7)o satisfies the following refinement rules:
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Ry: if K is a triangle of 7}, admitting S; as a vertex, then
hK < hl/(l—a),
where o has been defined just before Proposition 3.4.1,
Ry: if K is a triangle of 7}, admitting no S; (j =1,--- ,n.) as a vertex, then

hi S b inf §(x),

zeK
( ¢ has been defined in Proposition 3.4.1 );

Rs: for all K € T,
hg 2> h°,

where 5> 1/(1 — «).

Remark 3.5.2. Regular families of meshes satisfying the refinement conditions Ry — Rj
are easily built, see for instance [34].

We now recall, from the chapter 1, the two following Corollary:

Corollary 3.5.3. Under the hypotheses Ry, Rs, the following error estimate hold for
every q € Hg’l(Q),

lg = Pudllog S hldlorsa (3.5.10)
where P} denotes the L*—orthogonal projection on {0), € L*(Q); 04| € IP1(K),VK € Ty}

Corollary 3.5.4. Under the hypotheses R1 and R2, the following error estimate hold for
every T = (7,q) € [Hy ()] x HJ'(Q)

I =7l S hl7lonp0 + 19lo0)- (3.5.11)

By the help of the refinement rule R3, we show the following global inverse property:

Lemma 3.5.5. Let X}, be a finite dimensional subspace of vectofields of H(div ,<)) such
that VK € T, Vv, € Xp: vp|i is the image by the Piola transformation of a fized finite
dimensional subspace of H(div, K ). Then under the hypotheses R3, there exists a constant
Co > 0 such that, for every v, € X,

Idiv vallo,q < Coh™|vnllgq- (3.5.12)

Proof: Let K be an arbitrary triangle in the plane and K be the reference triangle. The
affine mapping R
Fr: K — K:2+—— A+ Bgz,

where A is a vertex of the triangle K and By is the matrix of the of the affine trans-
formation Fx with respect to the triangle K, is a bijection from K onto K. Let us
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3.5. The semi-discrete mized formulation

recall the definition of the Piola transformation 4.7 p.333 of [24]. The image by the Piola
transformation of any vector field v on K is the vector v on K defined by

8(2) = detBg Bi'v(Fg (%)), Vie K.

Reciprocally, the image by the Piola transformation of any vector field v on K is the
vector v on K defined by

1 P
v(x) = detBKBKU(FKl(x))’ Vo e K.

It is easy to see that
div v(z) = (div v)(F())det Bg .

Hence
/\dM\?(x) dx:/ \div v]2(Fie(3))|det Bic| di
K K

1 o X
:m/f{\dwv(xﬂz dz
c o N
< [ Ji O

& A _
_ W/K lboF M) da

= c/ |Bitv(x)|? dx
K
<clB P [ o) da
K
< ch[_f/ lv(x)|? da
K
Hypothesis R3 yields
/ |div v]?(z) dx < ch_%/ lv(z)]? do, VK € T,.
K K

Hence

/ \div v|?(z) do < ch_w/ |v(x)|? du,
0 0

i.e.
[div v]ly.q < Coh ™ol 0, Vv € X5,
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3.5.1 Continuous in time a priori error estimates
The elliptic projection error estimates

Our next purpose is to derive error estimates for both (o}, (%), pn(t)) and (up(t), wn(t)).
Firstly, we consider the “elliptic projection" of the exact solution. Let us introduce the
following discrete elliptic projection problem:

Find ’g\h(.) = (0n(.),pn(.)) € L*([0,T); Xon), @h() = (un(.),on(.)) € L*([0,T); V}, x Wy)

such that for all (7,,qs) € Xo, for all (vp,6,) € Vi, x W), and for a.e. ¢ € [0,7] we have:

1

~ L ) u w -
ﬂ(ﬂh(t)ﬁh) + X(ph(t), qn) + (div (7h — qud), un(t)) + (as (), Wn(t)) =0, (3.5.13)

(ust(t), vn) — (div (on(t) — Dr(t)6), vn) — (as (On(t)),0h) — (f(t),vn) =0

With the notations (3.3.4) and (3.3.5), the discrete elliptic projection formulation (3.5.13)
may be rewritten:

Find Eh(.) = (@n(.),pn(.)) € L*([0,T); Xo4), @h() = (un(.),on(.)) € L*([0,T); Vi, x Wy)
such that for all Th = (Th, qn) € Lo, for all vh = (vp, 0h) € Vi, x W), and for a.e. t € [0,T]

we have

(3.5.14)
b(@ (t),v )+ (F(t),v )= (ux(t),vs), Yv € [L*Q))* x L3(N).
~h ' ~h ~h ~h
We are now in a position to establish optimal error estimates. In the following, we
estimate the error between (o(.), p(.)), (u(.),w(.)) the exact solution of the mixed problem
(3.3.3) or equivalently (3.3.6) and (o4 (.), Pr(.)), (@wn(.),@n(.)) the solution of the discrete
elliptic projection problem (3.5.13) or equivalently (3.5.14).

Proposition 3.5.6. Let (7;,)n~0 be a reqular family of triangulations on ). We suppose
that (Tp)n>0 satisfies to conditions R1 and R2 . Under the hypotheses of the Proposition
3.4.1 the following error estimate holds for a.e. t € [0,T]:

lo(t) = an@)llgq + 1P() = Pa®)llg.0 S Alul®)] 1;6,0- (3.5.15)
Proof: If we subtract (3.5.14) from (3.3.6), we get the system in the errors
a(o(t) =5 (t),7 )+b(r ,u(t)—a (t)) =0, V71 €y, forae tel0,T]
~ ~he ~h ~h o~ ~h ~h

b(o(t)—7 (t),v ) =0, Vv €V,x W, forae. tel07T]
~ ~p ~h

(3.5.16)
Let (PPu(t), Plw(t)) denote the L2-orthogonal projection of (u(t),w(t)) on the space V}, x

Wy, and let us set I,0(t) = (o (t),p(t)) = (07 (t), p;(t)). The equation (1.5.1) and the
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3.5. The semi-discrete mized formulation

relation (3.5.16) yields

a<a(t) ~5 (1).Iyo(t) -7 (t)) — (as (Gu(t) — 0}(t)), w(t) — Plw(t)), for ae. t € [0,T]

b(th(t) -0 (t),v ) =0, V v € Vi x W, for ace. t € [0,T]

~h ~h

(3.5.17)
The first equation of (3.5.17) implies
oMo =7 (0.0 =7 () = 53-(7i(0) = o(0).03(0) = 34(1)

(3.5.18)

Thus due to proposition 1.4.2, we have
mngw—g;wmgs[mugw—gw%9+www—awumm]- (3.5.19)
Using (3.5.10) and corollary 3.5.4, we get

() =3 @ Sk [loWlo0+ POlyga + @00
S h|u(t)\171;¢79.

Finally, (3.5.15) follows from (3.5.20), Corollary 3.5.4 and the triangle inequality.

(3.5.20)

Proposition 3.5.7. Under the hypothesis of the Proposition 3.5.6 , the following error
estimate holds:

s () = Dnae(t) g0 + 1 PRuae(t) = Gnan()llgg S Pl (B)]; 16,0 (3.5.21)

) = Ol S [l 0+ ) ] (35.22)
Proof: First we consider the second derivative of the system with the errors (3.5.16)

a(a (t) -5 (t),7)+b(7 u () —a (t)) =0, V7 €
~tt ~h,tt ~h ~hot ~htt ~h

(3.5.23)
b(o -5 (t),v ) =0, Yu €Vix W

~it ~h,tt ~h
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Firstly, let us observe that with the same techniques as in the Proposition (3.5.6) we get
the following results

I, =3, O bl sn+ eloson) (35.24)

~tt ~h,tt 0,0

To prove (3.5.21), we shall use the uniform inf-sup condition (1.4.7). Firstly, it follows
from the second equation of (3.5.16) and (3.3.5) that

(7 . (Plun(t). Plwn() 0 () = a0 (-3 (0.7 )

~h,tt ~it ~h,tt ~h
—i—(as (Th), Pﬁwtt(t) — wtt(t)), Vzh c 207}1

Thus by the uniform inf-sup condition (1.4.7), we have

1P (8) = Tnu ()l o + [ Prewee(t) = Dnu(t)llo 0 S {Hgtt(ﬂ - §h tt(t)” 0
’ 0,

+ [ Pywn(t) — wiu(t)llo.q

]3.5.25)

Finally, (3.5.21) and (3.5.22) follow from (3.5.24), (3.5.25), (3.5.10), (1.47) p.27 of [36]
and the triangle inequality. ]

Remark 3.5.8. Under the hypothesis of Proposition 3.4.2, if we consider fourth order
derivatives with respect to t instead of second ones of the system of errors (3.5.16) and
using similar techniques as above, we obtain the following estimate:

e (t) = Unaee (Dl S 7| e ()] 1,90 + [ ()] o - (3.5.26)

Error estimates for the evolution problem

Before given optimal error estimates for our mixed method, we shall fix the two discrete
initial conditions g, and wu;, in problem (3.5.3) or equivalently (3.5.4) as the elliptic
projection of the two continuous initial conditions uy and wu; respectively. We can now
derive the following error estimates:

Theorem 3.5.9. Under the hypothesis of Proposition 3.5.6, the following error estimate
holds

HO' — O'h||Loo(L2) + ||p _thLoo(L2) 5 h[|utt|L2(H;,1) + |utt‘L2(H1) -+ |u|L°°(H3>‘1):| i (3527)

llw = whll oo z2y + [[PRU = | oo 2y S hlluel 2 grny + el g2y + (Ul oo g2 (3.5.28)
(L?) (L?) (Hg™) (H") (Hy)

Hu_uhHLoo L2 S_, h'|:|utt|L2 gblt + ‘utt‘Lz H + |u|Loo i1 + |u|Loo L2 i| (3529)
(12) (HY) (1) (HLY) (12)
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3.5. The semi-discrete mized formulation

Proof: Let (54(t),Du(t)), (©n(t), Un(t)) be the elliptic projection of (a(t), p(t)), (w(t), u(t))
and set

en(t) = on(t)—=on(t), xul(t) =un(t)=Un(t), ¥n(t) = wn(t)—wn(t) and r4(t) = pu(t)—pu(t).
We may then write the error system in the form

S0, + 5 (0 ) + (@0 (70— 0d), X (0) + (s (), (1)) =

2 (3.5.30)

(div (ep(t) — ra(t)0),vn) + (as (en(t)), On) = (wnu(t) — uw(t), vp).

Note that x,(0) =0, xn.(0) =0, £,(0) = 0 and r,(0) = 0 from the initial conditions and
the first equation of (3.5.30) at time ¢t = 0 with (75, ¢) = (4(0), 7,(0)).
We then differentiate the first equation of (3.5.30) with respect to time to obtain

1 1

ﬂ(éh,t(t)a h) + X(Th,t(t)a qn) + (div (Th — qn0), Xnt(t)) + (as (1n), ¥n.(t)) = 0.(3.5.31)

Now taking (74, qn) = (en(t), rn(t)) in this last equality, we obtain

i(am(t),sh(t)) + %(rm(t),rh(t)) + (div (en(t) — ra(t)0), xn.t(t)) + (as (en(t)), ¥n1(t)) = 0.(3.5.32)

The second equation of (3.5.30) with (vp, 0,) = (Xn.e(t), Yni(t)) gives

(div (en(t) = ra(t)d), Xna(t)) + (as (en(t)), Yne(t)) = (unpe(t) — un(t), xne(t)). (3.5.33)
Substracting (3.5.33) from (3.5.32) gives
1d , 14

0 dt” ent)lloq + Adt”rh( )HSQ =2(ug(t) — unge(t), Xne(t)) (3.5.34)

~ d
=2(u(t) — Unu(t), xnt(t)) — %Hxh,t(t)llé,g-
Using the Cauchy-Schwarz inequality to bound the right-hand side of (3.5.34) we obtain

1 d ) 1 d 2 d 2 e
o dt” en()llon + Adt”rh( Moo + %HXh,t(t)Ho,Q =2(uz(t) — Unu(t), xne(t)) (3.5.35)
<luw(t) — ah,tzt(t)H(Q),Q + Hxh,t(t)Hﬁ,Q-

Now applying the Gronwall’s inequality (3.2.4) to (3.5.35) we get

1 1 T N
—llen@®l0 + TIrn®lleq + IxneDllsq < € [ lwls) = Gnu(s)lyq ds
2u A 0

Thanks to (3.5.22) one can write
1 2 1 2 2
@Hﬁh(t)ﬂo,g + 3l @)llo,0 +lIxa. oo Sh [/ Juee ()13 1,00 d +/ Jue ()7 1 - (3.5.36)

99



Chapter 3. DUAL MFE METHOD FOR THE ELASTODYNAMIC PROBLEM

Taking the square root of (3.5.36) and using assumption (3.2.3) on A and p gives us

len@lloo + Irn®lloq < BTl oy + Tl 2y |- (3.5.37)
(HAY)
Therefore, (3.5.37), (3.5.15) and the triangle inequality, we get
lo(t) —on®lloq+ [P(t) —Pr®)llo.q S P|lwetl oo gry + el 2y + W)y 1.50]- (3-5.38)
(L) (H")

Taking the supremum over all ¢ € [0, 7 in this last inequality we get (3.5.27). Proceeding
similarly as in the prof of the Proposition (3.5.7) we get

() — wn(®llq + [ PP(t) — wnllon < [Hau) — olloa
+ [p(t) = pa()lo.0 (3.5.39)
[ Plw(t) — w(t)HO,Q]

This last inequality combined with (3.5.38), (3.5.10) and the triangle inequality we get

Jeo(t) = wn (Bl + 1PLu() = un (Bl S A lutel s, + il ooy + 1O 1] 43.5.40)

Taking the supremum over all ¢ € [0,7] in this last inequality we get (3.5.28) . Using
furthermore the bound on the error of the P projection (1.47) p.27 of [36] and the triangle
inequality, we obtain (3.5.29).

]

3.6 The fully discrete mixed finite element scheme

3.6.1 Notation

let At := % > 0 denote the time step size and define t; = iAt (i =0,1,--- ,N), ty =T
and ty = 0. For any function ¢ of time, let ¢™ denotes ¢(t,). We denote by

RNE IS e A W e L A
2 4
and we define the following discrete temporal derivatives:
¢n+l _ ¢n—1 1 ¢n+1 _ ¢n ) ¢n+l _ 2¢n + ¢n—1
At = —————— Aotz =2 7 A2p" —
t¢ 2At ) t¢ 2 At ) t¢ AtQ
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3.6. The fully discrete mized finite element scheme

We can easily see that we have

A — A

A+ A
At '

2 n .__
A2p" = 5

and A" = (3.6.1)

The fully discrete mixed formulation is as follows: Find (o} pit!) € %g,, and

(up ™, witt) € Vi, x Wy, such that

up = 1,(0), (3.6.2)

. ) ) At?
u;1 = Uh(—At) ~ Uh(O) — At Uhﬂg(O) + Tuhytt(O)J (363)

and for all (7, qn) € Xo 4, for all (vs,0,) € Vi, x W), we have

( 1 1 - n n
@(UZ—H?Th) + X(pZ—H? Qh> + (d’L’U (Th - Qh5)7 uh+1> + (as (Th>>wh+1> =0, n=>-1,

(as (07%1),0,) =0, n>-—1,

(AZup vy,) — (div (o — pd),vp) — (f™v5) =0, n>0.

\

The existence and uniqueness of a solution to problem (3.6.4) is provided by the
following lemma:

Lemma 3.6.1. a solution (o}, p}™) and (u}*', wi™) of (3.6.4) exist and is unique.

Proof: To every ((ah,ph), wh) € Yg,n X Vi, we associate the element of its dual X , x V},

< (Th,an) = 5;(0n, ) + 3 (Pns an) + (as (1), wn) )
o), — (as (on),0h) '

Let as call this mapping 7}; it is a linear mapping from ¥, 5, x V}, into its dual. We have to
prove that T}, is bijective. But the arrival and departure spaces has the same dimension.
Thus by a well known theorem of linear algebra it suffices to prove that T}, is injective.
Thus let ((oh,pr), wn) € Son x Vi, such that:

1 1

ﬂ(ahﬂ—h) + —(pn,qn) + (as (1), wn) =0,  Y(7h,qn) € Xop (3.6.5)

>~

(CLS (O’h),eh) =0. VO, W, (366)

From (3.6.44) it follows that (as (04),ws) = 0 and then by taking (74, qn) = (op,pp) in

(3.6.43) we get
1

1
2 2
ﬂ”ahHO,Q + XthHO’Q = 0.
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Which implies that
op — O, P = 0.

Thus (3.6.43) reduces to:
(GS (Th),wh) =0.

By inf-sup inequality (1.4.7), with (vs, 65) = (0,ws), we get w, = 0. Furthermore u, is
given explicitly by the last equation of (3.6.4). [ |

Note that it follows by uniqueness from the first two equations of system (3.6.4) with
n = —1 that

op = 6,(0), p) = pr(0) and w)) = Wy (0). (3.6.7)

3.6.2 Stability of the explicit scheme

Theorem 3.6.2. Under the hypotheses (3.5), the explicit scheme defined by 3.6.2 - 3.6.4
is stable if the following CFL condition is satisfied At < & \/ﬁhﬁ that is

N+1 1, N+t N4l
aol| Ay, H(),Q + 2_||Uh ’ HOQ + _th ’ HOQ
K 3.6.8
1 2 1 1 2 9 o ( "V )
1A oo + Slpallog + 5 HO'h HOQ +T( nax 1f)llo)”| x exp (Tag "),
w1, N+3 N+3 L N+l L Nt}
B llw, *llog + llwn *lloq) < 2M||<7h oo + 5 1Pn " lloa: (3.6.9)
where . 02 AP
t
a =3~ 7(2 A A)—= 728 (G is defined in R3)

and (B* is the constant of the inf-sup condition defined in (1.4.7).

Proof: Subtracting the first equation of (3.6.4) from itself in step n — 1, we get for all
(Ths qn) € Zon
1

n n— 1 n 77— n n
Qu(0h+l_ah L) + )\(phﬂ—ph Yan) + (div (1h — qnd), uptt —up™h)

(3.6.10)

+(as (m),wp ™ —wp ™) =0,

Taking (7, gn) = 5x; (07, py) in (3.6.10) and the fact that (as (o7),60,) =0 V6, € W), we
get

1

1 , §
Z(At(jg, on)+ X(AthapZ) + (div (o, — prd), Awuy) = 0, (3.6.11)

The second equation of (3.6.4) with v, = Asu}, 0, = 0 become
(AZul, Ault) — (div (o — pd), Awyt) = (", A}, (3.6.12)
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Adding (3.6.12) and (3.6.11), we get

1 1
(Afup, Avuy) + Qu(AtUZ,UZ) + X(AtPZJ?Z) = (", Awuy), (3.6.13)
from (3.6.1) we get

(Atun+2 Atun_% Atun+% +Atun_%) + i(AtU” o) + 1(Atp” 1)

IAL h ) h h Q,u h>“%h A hs’h (3614)
= (f", Aup).
Thus

A At L (Ao o)+ S (Al i) = (f7. Apul)(3.6.15
2At<H tUp, HOQ | Avuy, HO,Q)"‘E( t0h70h)+X( > Pn) = (f", Ay )(3.6.15)

Now we inspect the two last terms in the left hand side of this last equation, we have

a1 n—l
A UZ+1 . 02—1 n+1 ol — o "‘UZ 1 Uh+2 — o, 2
g g g g
o oAt oAt At
Un — n+l + O_h + O_z—l +O’Z B At2( n+l 20_5 +O_n—1>
h 4 At? ’

4 4

i(Ag" a")—i o, 2—a, 2 ot 4 op +ah_At2< optt — 207 4 o" 7!
ou TR g, At Y 4 4 At2
nil
1 0h+2 —o0, 2 ottt o7 +op AP A2
= g
2/ At ’ 4 4 4 !
1 0.""'% — g2 n+1 +on -1 + o7 A2 A nt3 — A n—jz
R h h ho tOp tOp
B zﬂ( At 4 4 4 At )
1 1
1 1 ntl n nti -1 1 At? At0n+§ - AtUn_§
ZZQAt( h ’ Op, Q’Uh 2—i_ah 2>_@T Ata}m L At .

n+i n—1
-5 T (17 o= o)

2u4 2

n+3 n—f
4 At(H h 2”09 th HOQ)

In the same way we get

n__

1
Sk 1) = 5z (0l — g

n+s n—2
1 At2 <At0h+2 +At0h 2

At

1 1
A n+s3 - A n—gz
, ~t%h N t7h ) form (3.6.1)

n+ n—% 2
16/11 HAtO—h HOQ ||At0—h HO,Q .

At 2 n—t 2
) - (nAtph T, 2!|0,Q).
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The equation (3.6.15) become

1 n—l—% 2 n—% 2 1 n—l—% 2 n—% 2
37 (1805l = 18053 l0) + 1o (107 lon = oy o)
At nal 2 ol 2 1 gl 2 a1 2
—@(HAM oo — 1Ay, 2”0,9) +—2)\At<”ph lloq = Ilpn 2llo.q) (3.6.16)
At

__An+%2_A”_%2 — (™ A"
o amy *llog = 18wy llog | = (f", Avu).

We then sum (3.6.16) from n =1,--- | N and we get

N+1,2 L, ~n42 2 At? N+3,2 I N4l 2 At? N+1 2
O R T I T I A

N 102 1 102 AtQ 1 2
= 200> (", Awup) + A o q + ﬂHUﬁ oo — gHAtUﬁ loo (36.17)
n=1
1, 1.2 At? 12
+ XprL oo — ﬂHAth lo.0-
We recall from (3.6.11) that
L(O_N-H _ CTN Th) + l(pN-l-l _pN Qh)
2# h h > )\ h h >
+ (div (1, — qnd), uhN+1 —ud)
+ (as (), w0y ™ —wi) =0,
Thus
1 N+L1 1 N+Ll
ﬂAt(AtUh 2 ,Th) + XAt(Atph e . qn)

+ At(div (1, — qnd), AtuhN+§)
+ At(as (1), Al F2) = 0.

1 1
We choose (73,,qn) = (Ata;:[JrQ,AtthJrQ) and then by Cauchy-Schwarz inequality and
(3.5.12)we get

i(AtaiL\H%, Ataf];”r%) + %(AtthJr%, AtaiLVJr%)
— —(dz’v (Ata,]lwr% — AtthJr%(S), AtuhNJr%)
< |ldiv (Ao 2 + Aepp 20 ool Aeup 2l
< Coh =By F 4 Ay 25y I Al

_ N+3 N+j N+3
< W (0 g+ 18y ) 1Ay
1
_ 1 Nyl 2 1 Nyl 2 \2 N1
< VoA 218 Pl + 3180 Floa ) 1 g,
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3.6. The fully discrete mized finite element scheme

Thus
1 N41 1 N41 _ N41
@HAtah ? Ho@ + XHAtph ? HO,Q S \/ih ﬁ\/ A+ 2N”Atuh : ||07Q'

From (3.6.53) we get

At? N+4L 1 Nyl 2 1. N+l 2
(1= 58 1A g+ ol o + 3 o

N " " 12 1 12 1,12
<2AEY (" Avup) + | Avui g g + ﬂllaﬁ llo.o + 5 1P llo.0

n=1
At? 102 At? 12
- @HAN; oo — ﬂHAtpﬁ lo.0 (3.6.18)

N N
2 12 12 1 12 1 12
<AL 10+ A AR o + 1AwE o + 2—||<fﬁ oo + 3 l1Pillog

n=1 n=1
At? 12 At2
— gHAtaﬁ HO,Q ||Atph ||0 o By Young’s inequality.
Moreover
1 _1 2
N [& 2 N zﬁtuz+2~+zﬁ¢uz 2
D N P B
0,9
n=1 n=1

IA

1 N 12 N-1 12
§(Z||Atuh oo + X 1Ay 2l q)
n=0 (3.6.19)

1 1 2 N+1 2 1 2
=5 ZHAtuh log + 180, 2 llo.q + 1A [lg0)
N—

IN

+1 1 N+
1A, HOQ Sl loq-

n=0

Thus (3.6.18) becomes

1 At?

2 1
(5_—02(2 A+ A) hw)HAt th2||o,sﬂL

+3 N+2
@HU}L 2HO,Q Xth 2H(),Q

n|2 — n+ 112
<Ayl HO,Q+AtZHAtuh2||OQ+||Atuhr|m sl (620

1 At? 12 At? 12
+ XHP;QL lo.o — aHAtUﬁ lo.o — KHAtPﬁHO,Q'

If we suppose that ag := 2 — 1C2(2u + \) 2L hw > 0 that is

At 1
— < 3.6.21
B Cb\/2u-+»A’ ( )
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we obtain
1 1 AtQ N+1 2 1 N+ 1 2 1, nyl 2
(5 - 5002(2,U + )‘)W) [PAVITI Ho,Q + ﬂ”ah ’ Ho,Q + Xth ’ ||07Q

N N-1 (3.6.22)

n|2 ntg? 3 Lo 52 e

<A 1 Mo0+ A 8w oo + [Awllgq + ZH% oo + S l1P2lloo-
n=1 n=0

Discrete Gronwwall’s inequality (3.2.6) to (3.6.22) yields

1
2p

102 1, 12 1, 12 al 2 — 1
< |18l + 30l + 5o lodla + 03 1 a] x exo (A0S a3?)
n=1 n=0

N+3,2 N+d 2 1, N4l 2
aollBeuy oo + 5 -llon oo+ lPn *lloo

12 1,12 1,12 2 ~1
< {HAtuﬁHo,gﬂLXHpﬁllo,gﬂL@HUﬁHo,g+T(tgg§] 1£(2)lo) ] < exp (Tag ).

Finally (3.6.9) comes from the inf-sup (1.4.7) condition and thus the temporal iterates
are bounded by the initial data. [ ]

3.6.3 Discrete in time a priori error estimates

Let us first precise that in the following the notation o;, means the function n — o}’ and
not oy, from the semi-discrete problem. similarly for p,, w;, and u;,. Now, we shall prove
the following optimal estimate for the error between the fully discrete and continuous
problems:

Theorem 3.6.3. Let (7;,)n~0 be a regular family of triangulations on 2 . We suppose
that (7,)n>0 satisfies to all conditions R1 - R3. Under the hypothesis of the Proposition

3.4.2 such that if At < —A—hP, the next error estimates holds
Cov2u+X

HU - O—hHLOO(LQ) + ||p - thLOO(LQ) S./ h|:‘u‘L°°(H;’1) + ‘utt‘Loo(Héwl) + |utt‘Loo(H1)

3.6.23
+ ‘Uttt‘Lz(H;,l) + ‘uttt‘Loo(Hl):| ( )

+ At2Hutttt||Loo(L2)7

|lw — whHLOO(L?) + ||P1?U - uhHLOO(L2) S bl poo gy + [l oo iy + |Utt|L<>o(H1)
(Hy") (Hy")

.6.24
+ ‘Uttt‘Lz(H;J) + ‘uttt‘Loo(Hl):| (3 6 )

+ At2Hutttt||Lm(L2)7
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3.6. The fully discrete mized finite element scheme

[l = unl| o2y S h |u|L°°(qu>’1) + ul o gy + \utt‘Loo(H;»l) + Jwet] oo a)
(3.6.25)

+ |Uttt|L2(H;v1) + |wett| oo g1y | + At2||uttttHL°°(L2)'
Proof: Let (63,(t,), Du(tn)), (@n(tn), @n(t,)) be the elliptic projection of (o(t,),p(t,)),

(w(tn), u(t,)) and set

en =05 —0n(tn), Xp =up —Un(ty), ¥y =wy —wu(ts) and 75 = pp — Pa(ts).

We may then write the error system in the form

(1
24

(as (5™1),04) =0,

1
— (et h)+/\( i an) + (div (1 — qud), X3 ) + (as (m), ¥ ) =0,

(3.6.26)

\ (div () — 170),v) = (—u(tn) + AfUn(tn) + A7XT, Un).

Note that € = 0 and r) = 0 from (3.6.7) . Furthermore % = 0 and x; ' = 0 from (3.6.2)
and (3.6.3) respectively and thus A;x, * = 0.
If we differentiate the first equation of (3.6.26) we obtain

A n+2 l A n—i—% . — a5 A n—i—% n—i—% _
2,u( t€}, ,Th)+>\( T 7Qh)+(dw(7h qnd), Arx,, )—i—(as (1), Ay, ) 0(3.6.27)

1
Now taking (73, qn) = (€Z+2 , 7“:+2) in this last equality and using the second equation of

(3.6.26), we obtain

o Laert oty 4 A(Atr’”? i) 4 (div (77— 1028), A7) = 0. (3.6.28)

The last equation of (3.6.26) with v, = %(AtXZ+§ + Ay, ?) gives

(div (e —r776), (A 2 + Arxyy 2))

o ,(36.29)
— (= unlta) + A2 (1) + AN HANLT + A

))-

(NI

Subtracting (3.6.29) from (3.6.28) we get

1 n natl n n4 1 n+l
2_(At +2’ en ) + A(Atr +2’ T )+ 2<d“’( e TZH(S)AtXthQ)
— §(dw (ef —rid), Avxy, ) = (utt( n) — Afn(tn) — AfXT, %(AtXth + Ay, ))

107



Chapter 3. DUAL MFE METHOD FOR THE ELASTODYNAMIC PROBLEM

2 (dw (eh ntl _ ”+15), AthJr%)

(div (g7 — 178), Arxy %) + (A0, LA T2 + AtXZ_§)53'6'30)

2
= (wltn) — AZA(t,), 5D 2+ Ay 2)).

We expand (3.6.30) to get

1 (e n+1 —Eh 5Z+1+5Z 1 TZ+1_Th TZ+1+TZ 1d ntl _ntlg) A n+3
" T ) AT a T ) Tl ) A )
1 N AXn—i-% AXn—% AXn—i-% +AXn—%
— Z(d — 8. Ay 2 tAn T StXh tXn tXhn
5 (din (e = 170). A )+ (BM_200 S
= (u (tn) - Afuh(tn)a %(AtXh ? +AtXh 2))
So that
1 n+1 ni 2 n+1 n 2 d n+1 n+15 A nJF%
7 (57U o = Ikl ) + 5177 ||OQ—||rh||OQ>) 5 (dio (<5 = 7:46), A )

(3.6.31)

n—= n—1

1 . n 7 3 3
— 5 (div (e} = 39), Ao, )+2At(|mtxh Hloa — 180 Hllp0)

= (usr(tn) — AZin(tn), 1(Aixh > +AtXn 2))-

Replacing n by j and then sum over time levels and multiplying (3.6.31) by 2At to get

1

n 2 1 nn2 2 . n n nl
ﬂ(”ghuo,g - ||5h||o,Q) + X(HthO,Q - ||7"2HO,Q) + At(dw (h — T46), Asxy 2)

_1 n—1 2 1 2
- At(div (eh = 770), A, 2) + [ A, ||o,Q — [ Aex;, HO,Q (3.6.32)

_AtZAt u (t;) — AZtn(ty), AtXh +Atxh 2).

Recall that €9 =0, r) = 0 and AtXT = 0. Thus (3.6.32) become

n—l ﬂ—l 2
— At(div (—ep +110), Awx,y, 2) + [[Avx,, * HO,Q

).

okl + 5l
(3.6.33)

[N

= A (ualty) — AZan(t)), Aexy * + Aex)y
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3.6. The fully discrete mized finite element scheme

By Cauchy-Schwarz and inverse inequalities (3.5.12) and choosing At < \Zﬁuﬁ we get

| At(div (—<f +r8), Axyy *)| < Atldiv (=] + 170) o 0l Aexy 2 IIO Q

< AtCoh™ P || —eft + Th5||O7Q||AtXh Ho,g

n—1
< V2AtCoh P (llello.q + I7hllo) 1A 2 g g

X (3.6.34)
< VEACU VB A (g lek o + 51 R) 1A g
\/5 n n n—3 2
< S (Galet o+ 31 e+ 180 H g
Thus we have
n—1
1 n 2 ~ j"‘l j_l
@Hfhnon HthOQ + ”AtXh 2||oQ < OAtZ‘ g (¢ Afuh(tj)aAtXh * A, 2)|
7=0
n—1 N .
SCN}:MHW—A%()%J&%Q+AMin
=0
n—1
< QCAtZ e (t5) = Afan(t) g ol | Aexnl] o (12):
=0
; j+1 3 j+i
since [ A¢x? 2||o,Q < ||Af XhHLoo(L2) = sup Ay, Ho,Q- Then
0<j<N-1
1 N-—-1
ﬂl\ﬁﬁllga IImHOQJrIIAtXZ QHOQ < 20AH|A] Xl poe(zzy D Nuee(ts) = Afan(t;) o g
7= (3.6.35)
N-—-1 2
<180 gy + O (3 uts) — A0l )
7=0
Taking the supremum on n on the left-hand side of (3.6.35) we get
1 9 1 9 1
ﬂthHLOO(LQ) + XHthLOO(L?) + |[A? xall oo (12
N—-1 2
< 18F0llm o + 088 (T () — Bl ) -
7=0
This last inequality and assumption on g and \ yields
N-1
llenllpoz2y + 1l g grzy S A D llun(ts) = Afan(t;) .0 (3.6.36)
j=0

Now it remains to bound |lu(t;) — Afﬂh(tj)HO’Q. We write
uee(t;) — Afta(ty) = un(t;) — Afulty) + Afu(t;) — Afun(t;)
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If we denote by R}, the elliptic projection operator we can write

AZu(ty) — A% (t;) = (I — Ry)A2u(t;) = (I — Rh)U(tm) —2u(t;) +u(tj1)

At?
By Taylor expansion we have
At? 1 [l 2
u(tj—1) = u(t;) — At w(t;) + Tutt(tj) + 5 (tj—1 — ) uu(s) ds.
tj
and
At? 1 [+ 9
u(tj+1) = u(t]) -+ At ut(t]‘) -+ TUtt(t]’) + 5 (tj—i-l — S) uttt(s) dS.
tj
So that
2 1 ti-1 2 ti+1 2
Atu(tj) = Utt(tj) + W(/ (tj_l — S) Uttt(S) ds + / (tj+1 — S) uttt(s) ds)
t; ts
. ]At J 0 (3.6.37)
= Utt(tj) + AR (/ (At — t)Quttt (t+ tj) dt — (At + t)2Uttt(t + tj) dt).
t 0 _At
Thus

(T~ Ra)ults) = (T~ Raualt) + 537 ( — [0 = Bt + )

+ /OAt(At — )2 (I — Rp)ug(t + ;) dt).

So that

(7 = Ru)Afu(ty)llgq < 11 = Ru)us(t;)lloq + %% [(/_Zt (1 — Rp)w(t + tj)”?),Q dt)%
a ;
(Pt s)

At 1
< (I = Rp)uw ()l o + ﬁ\/A_t(/_ (= Ba)uss (¢ + ;)15 dt)

2 V5 \ o
\/E Attt ) )
=|(I - R t; + — / I—-—R d .

1( n) e (t5)]]o.0 Vil ( s ( )i (8) o0 ds
Hence
VAL Attt 1
I = B AUl < 10 = Bty + s ( / 12— Ruyuan ()2 ds) .
—At+t;

From the estimate (3.5.22) for the elliptic projection we obtain:
107 = (6l S el + il
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3.6. The fully discrete mized finite element scheme
and in view of remark (3.5.8)

Attt
ar [

Attt
(I = Ri)uwe(s) |l ds < (At)h? Jueee (8)[7 150 + [t (5)]3 o) ds
b b 7¢7 b
At+t; —At+t;

S At*h? [|Uttt|2Loo(H;vl) + ‘utttﬁw(m)]‘
By the stability condition (3.6.21) we can write

VA < /_At-l-tj

1
2
(1 - Rh)uttt(5)||(2),9 ds) S Wt [|Uttt|L°°(H;'1) + ‘uttt|L°°(H1):|
At"rtj

S h’|i|uttt|Loo(H;vl) + ‘uttt‘Loo(Hl):| .
Combining these last inequalities, we get
N-1

Aty |1 = Ru)Aulty)lly g

< h
=0

Y

|i‘utt‘Loo(qu>,1) + |Utt|Loo(H1) + |uttt|Loo(qu>»1)

N-1
+ ‘uttt|Loo(H1):| X Z At
=0

S h’|:‘utt‘Loo(H;vl) + |utt|Loo(H1) + |uttt|Loo(H;vl) + ‘uttt|Loo(H1) .
Using once again Taylor expansion we get

At? At? 1 [l
U(t]’_l) = U(t]) — At Ut(t]’) + Tutt(t]’) - Tuttt(tj) + 6 / (t]’_l - S)Sutttt(S) ds.
tj
and
At? At
ultjen) = ulty) + At u(t;) + ——uu(t))

1 [ti+1
2 + ?uttt(tj) + 6 /t; (tj_;,_l — 8)3utttt(8> dS.
Thus
1 0 At
—At
So that

A7 u(t;) — un(t;)

LA [ : Al 2
lon < 322 ([ ate + ) )+ ([ e+ 613 )|
3(/'At
< At}

1

2
Hutttt(t + t])”(z),Q dt) .
At
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Hence
, At+t, ) 3
1A2u(t5) — w(t5)]lp o < A ( [ o)z ds) | (3.6.39)
—At+tj
So that
N—1 N—1
At Z [AZu(ts) = i (t)]lgq S A wrmeel] oo 12y Z At
j=0 Jj=0

S AL gt | oo 129

Then (3.6.36) become

||5h||Loo(L2) + ||Th“Loo(L2) SJ h/|:‘utt‘Loo(H;vl) + |Utt|Loo(H1) + |uttt|Loo(H;11) + ‘uttt‘Loo(Hl)

+ A8 Jutgaae|| oo 12y
By the triangle inequality and taking the supremum on t in (3.5.15) we then find
o — UhHLoo(Lz) +lp — PhHLoo(L?) S h{‘u‘Lm(H;’l) + ‘“tt‘Loo(H;»l) + |utt‘L°°(H1)
+ ] oo g1y + \Uttt\Loo(Hl)] + A |wgs ]| oo 12)-
By the inf-sup and the triangle inequality, we get
lw(ta) = witlloo + 1 Prults) — uilloo S {Ha(tn) = hllogo + Ip(ta) = Phlloq
+1Piu(tn) = wltn) o]
Taking the supremum on n we get
o= allm s+ 1= sy S (117 = iy + 1= pilim
1Pk = ellmn
By the propriety of the projection operator (3.5.10) we hence find
|Jw — Wh||Loo(L2) + || Pu — UhHLoo(L?) S h{‘“‘Lm(H;*l) + ‘“tt‘LOO(H;’l) T |u“|L°°(H1)
+ ] oo g1y + \Uttt\Loo(Hl)] + A [tggae| oo 2
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3.6. The fully discrete mized finite element scheme

The triangle inequality and the propriety of the projection operator (1.47) p.27 of [36],
give

u = un|| oo (r2) S h {|U|Loo(H;vl) + ] oo gy + \utt\Lm(H;vl) + [ttt poo gy + |uttt|L°°(H3>‘l)

+ ‘uttt‘Loo(Hl):| + At2Hutttt||Loo(Lz).

3.6.4 Implicit scheme

The implicit-in-time discrete mixed formulation is as follows: Find (o7 "', pi*h) € X4,
and (u} !, wit!) € V;, x W), such that

up = a,(0), u}L = ap,(At), (3.6.39)
and for all (74, qn) € o, for all (vy, 0,) € Vi, x W), we have
(1 1 . n n
() + S0 an) + (div (7 = ). ™) + (as (). ™) = 0, = 1,

(as (o7%1),0,) =0, n> -1,

[ (AFup,vn) = (div (0% = p,"8),00) — (/™5 00) =0, n>1.
(3.6.40)

Remark 3.6.4. Note that by the first two equations of system (3.6.40) with n = —1 (see
the proof of Lemma (3.6.1)) 0%, 1Y and w\ are defined. Similarly by taking n =0, o}, p),
and w; are defined. Moreover we have

op = 6,(0), p) = pr(0) and w) = @, (0), (3.6.41)

and
o = ou(At), p;, = pu(At) and wy = @ (AL). (3.6.42)
The existence and uniqueness of a solution to problem (3.6.40) is provided by the

following lemma:

Lemma 3.6.5. a solution (o)™ pi™) and (u}*', ™) of (3.6.40) exist and is unique.

Proof:
To every ((ah,ph), (uh,wh)) € Yop x (Vi x W), we associate the element of its dual
Yo X Vi x Wy

(Th,qn) ﬁ(ah, ) + 5 (on, an) + (div (1, — qud), up) + (as (73,),ws)
0, — (as (on),0h)
Uh — ﬁ(uh,vh) - i(div (on — prd),vp)
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Let as call this mapping T}; it is a linear mapping from % 5, x V}, into its dual. We have to
prove that T}, is bijective. But the arrival and departure spaces has the same dimension.
Thus by a well known theorem of linear algebra it suffices to prove that T}, is injective.
Thus let ((ah,ph), (uh,wh)) € Xon X (Vi x W) such that:

1 1 )
ﬂ(ah,Th)ﬂLX(ph,qh)—i—(dw (Th—qhé),uh)+(as (Th),wh) = O, \V/(Th,qh) c 207/1 (3643)
(CIS (ah),éh) =0, Vo, € W, (3644)
1 1, .
INE (uh, Uh) 4(d21) (O’h — phé), Uh) =0. VO,eV, (3645)

Then by taking (74, ¢n) = (opn,pr) in (3.6.43) and v, = uy, in (3.6.45) and the fact that
(as (op),wn) = 0, we get

1 , 1 1
sl + 5l + gl =0

Which implies that
op,=0, p,=0 and uy.

Thus (3.6.43) reduces to:
(as (1), wp) = 0.

By inf-sup inequality (1.4.7), with (vp,0) = (0,wp), we get w;, = 0.

3.6.5 Stability of the implicit scheme

As expected for such an implicit scheme this method is unconditionally stable, as provided
by the following theorem:

Theorem 3.6.6. The implicit -in-time scheme defined by 3.6.40 is unconditionally stable,
that is

N+ N+1 N+3
5”Atuh oo+ ﬂﬁ”o—h oo+ Xth ’ HOQ

R 2 (3.6.46)
80t o+ 110kl + 5107 o+ 7 s 150 1)’ | x e (2),
wril N4S N+3 1, N+l L, N4l
Bl o + llwn *llog) < Q,UHOh oo + 5 1Pn*llo0: (3.6.47)

where 3* is the constant of the inf-sup condition defined in (1.4.7).
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3.6. The fully discrete mized finite element scheme

Proof:
Subtracting the first equation of (3.6.40) from itself in step n — 1, we get for all

(Ths qn) € Son

1 +1 -1 1 +1 -1 1 1
ot — o) ) + I e div (1, — qnd), up ™t —up”
QM( h h ) )\(ph — Py > an) + (div (7h — gid), u n) (3.6.48)
+ (as (1), wp™ —wp™!) =0,
Taking (73, qn) = ﬁ(azé,pz&) in (3.6.48) and the fact that
(as (UZ),Q}L) =0 V@h S Wh,
we get
1 S N | I n,:
Z(Atgh’ o, ")+ X(Atph,ph )+ (div (o, * — py 5) Awuy) =0, (3.6.49)
The third equation of (3.6.40) with v, = Auj, become
(A2, ) — (dio (74 = p1o40), A) = (74, ), (3.6.50)
Adding (3.6.50) and (3.6.49), we get
2 n n 1 n ”v% 1 n ”v% n,+ n
(Afup, Aguy) + E(Ataiwah ) + X(Atpmph )= ("%, Auy), (3.6.51)

Now we inspect separately the three terms in the left hand side of this last equation, we
have from (3.6.1)

1 1 1
2, m n nt3 n—3 n+y n—j
(At Uy, s Atuh) (Atu Atuh s Atuh + Atuh )

2At

n+3 -12
(||Atuh QHOQ 1A, 2 o)

and )
n+1 n—1 n+1 n n n—1 +3 n—y
Ato_n:(jh “ % _ _ O +o, —o0, +0, _ % = T
h 2At 2At At ’

n+i n—
4M—A(H h 2”()9 ”Uh 2HO,Q)'
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In the same way we get

1 n g +3 n—3 2
X(Atphaph) 2)\At(th ||()Q [F2 HO,Q)'

The equation (3.6.51) become

+2 "_% 1 +2 ”_% 2
(1A, HOQ 1A, *lloq) + (llo, HOQ low *llog)
2At N (3.6.52)
1 n+31 -3 n,+ n o
+ o (197 o — I Hle) = (74, Aip).
We then sum (3.6.52) fromn =1,--- | N and we get
2 1 1
N+1 N+1 N+
[Avuy, ~* Ho ot ,UHUh ’ Ho,Q + Xth ’ Ho,Q
N y ) L2 1 12 L2 (3.6.53)
= 20 Y (f™5, Avp) + (| A g g + ZHO’E llo.o + 5 1P llo.0-
n=1
By Cauchy-Schwarz inequality we get
N+1 2 1 N+1 2 1, N+d n
HAtuh 2||07Q+ ZH% 2||07Q+ Xth 2”09 AtZHf 74||0§2—|_At§:HAtuhHOQ ( 4)
3.6.5

1 1, 1 1
T A HO,Q + 5”0’3 HO,Q + XHpi HO,Q

Moreover from (3.6.19) we get

Y - et} 1 N+l 2
9 1

> 1Akl < E 1A, QIIOQ sl log

n= n=0

Thus

N4i 2 N

2
+ +3 Ly N+j 1 "t
§HAtuh 2”079 Hah 2”07Q+X”ph 2HOQ < AtZ|’fn’4HOQ+AtZ HAtuh 2”09

n=0 (3.6.55)
12 1 2

+ HAtUEHo@ + EHUEHO,Q + 1 lPillo.g-
Discrete Gronwall’s inequality (3.2.6) applied to (3.6.55) yields
1

N+3% N+3
HAtu HOQ sl “loa+ 3lIpn QIIOQ

1 2 1 1 2 9
[AN HO,Q + XprQL HO,Q Hah ||OQ + T( Hfg%(] 1 (¢ )HO,Q) X €Xp (2T)-

This is inequality (3.6.46). Finally (3.6.47) comes from the inf-sup (1.4.7) condition and
the first equation of the system (3.6.40). Thus the temporal iterates are bounded by the
initial data. u
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3.6. The fully discrete mized finite element scheme

3.6.6 Discrete in time a priori error estimates

The following theorem provide a priori error estimates for the implicit-in-time scheme:

Theorem 3.6.7. Let (7;,)n>0 be a regular family of triangulations on Q) . We suppose
that (Ty)n>o satisfies to conditions R1 - R2. Under the hypotheses of Proposition 3.4.2,
the next error estimates holds

o — Uh||Loo(L2) +lp _ph||L°°(L2) S h{‘u‘Loo(H;J) + ‘utt|Loo(H;v1) + |utt‘L°°(H1)

- Jutte] oy + \um\m(m)} (3.6.56)

+ At2Hutttt||Lm(L2)7

|lw = uJh||Loo(L2) + || Pu — uhHLOO(LQ) S h|:‘u‘L°°(H;’1) + \Utt\Loo(H;vl) + |Utt\Loo(H1)

3.6.57
+ ‘uttt|L2(qu;1) + ‘uttt‘Loo(Hl):| ( )
+ AP [wgsst || oo 1.2)
Hu — Uh||Loo(L2) SJ h{|u|Lm(H;,1) + |u|Loo(H1) + \utt\Lm(H;J) + |utf|L°°(H1)
(3.6.58)

+ |Uttt|L2(H;v1) + |uttt|L°°(H1):| + At2||uttttHL°°(L2)'

Proof: Let (Eh(tn),ﬁh(tn)), (@h(tn),ﬂh(tn)) be the elliptic projection of (a(tn),p(tn)),
(w(tn), u(t,)) and set

n o~

en =05 —0n(tn), Xpn =up —Un(ty), ¥y =wy —&u(ts) and 7y = pp — Pa(ts).

We may then write the error system in the form

( 1 1 . n n

@(62“, )+ 5 (7 an) + (div (7 = and), X5 ) + (as (), 457) = 0,

(as (e5),00) =0, (3.6.59)
[ (div (e, =13,76), 0n) = (= (ua)™ s + AFa(tn) + AFXG, 0n)-

Note that € = 0 and r? = 0 from Remark 3.6.4 . Furthermore ) = 0 and x; = 0 from
(3.6.39) and thus A;x? = 0.
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If we differentiate the first equation of (3.6.59) we obtain

1

1
@(Ateﬁﬁh) + X(Atrﬁ’ qh) + (dz’v (Th — qnd), Atxﬁ) + (as (1h), Aﬂ/iﬁ) =0. (3.6.60)

1,1
Now taking (75,,qn) = (52’4,7“2’4) in this last equality and using the second equation of

(3.6.59), we obtain

1 n,+ 1 n,t . n,t
ﬂ(Até‘Z,gh%) + X(Atrﬁ,rh"‘) + (dZU (5h’4 — Th 5) AtXh) =0. (3661)
The last equation of (3.6.59) with v, = A;x] gives
(div (e, — 71, %0), Axp) = (— ()™ + AZy (1) + A2y, Arxy)- (3.6.62)
Substracting (3.6.62) from (3.6.61) we get
1

1 n, 1 1 ~
+ —(AtTZ,Th74) = ((Utt)n’z - Atzuh(t ) — AtXhaAtXZ>'

(Atgzv €Z7Z> A

24
nty 1
E(Atgzﬂfh )+ )\(Atrh,rh ) (A7XF Acxy) = ((ug)” 3 — A2 Tun(tn), Axiy)-(3.6.63)
We expand (3.6.63) to get
n n—1 n+1 n—1 n -1 n+1 n—
i €h+2 _ gh 2 €h+2 + Eh 2 +2 _ 2 Th+2 + ,r.h 2
20 At ’ 2 At ’ 2

1

)\

(Atxh — AtXh 2 AtXZ+§ + AtXZ_Q)
’ 2

ntl n—2L1
nl ~ Arxy, 2+ A, °
= ((u)™7 = Afun(tn), . 5 ).

So that
2

1 1 n+i 2 n1 2 1 n+1i n—1
77 (20 o = 15 ) + 55 (50 g = I )

n+i n_Ll 2
2At<”AtXh 2”00 1A, 2||o,9) (3.6.64)

AtXZ+5 + AtiZ_5

a—
Replacing n by 7 and then summing over time levels and multiplying (3.6.64) by 2At we
get

1 nt L 1 2 nt 1 2 +1 2 1 2
2M(H h 2H09 lerllon) + (||7”h 2||OQ I llo.0) + 1180 2o — 1A g

(3.6.65)

1

= ((ug)™3 = At (tn),

= ZAt utt J 4 — A uh( ) AtXh +AtX2_§).

7=1
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3.6. The fully discrete mized finite element scheme

1

1 1
Let us recall that ¢ =0, r7 =0 and A;x; = 0. Thus (3.6.65) become

n+i nti 2 = —1
—|| En 2||OQ+ I, 2||OQ+||AtX ||O,Q Z ()5 = A2 (1), A, F + Aix)?).(3.6.66)

Thus we have

n+i n+3 n+ 1
Hfh 2||09+ Hrh 2|\09+||Atxh QIIOQ<CAtZ| ()t = A3 (1), Ay ™ + Ay %))
j=1

i+ 1 i1
< CAtZ [ (uee)?5 — A (t MoallAaxg 2 + A, 2o
j=1

1
< ZCAtZ || utt j - AtUh( ‘)||O’Q||At2Xh||L°°(L2)'

Jj=1
Then
2 n
2_H5h+2 “09 +5 H7’h+2 HOQ + ”AtXh : ||07Q = 20At||At Xh||L°° L?) Z ugy)” E AT (t 5)”0@
=t (3,6.67)
< 18E sy + €08 (D ) = ATl
j=1
Taking the supremum on n on the left-hand side of (3.6.67) we get
1 2 1 2 i 2
2—||5hHLoo(L2) + XHthLOO(L?) + HAthHLoo(L?)
Lol 2 A 42 - j x 2 i
< 188wl + 02 (3 Nl = At
j=1
This last inequality and assumption on p and A yields
N
i1 ~
lenll o zey + Tl peqray S A8 ()™t = Afn(t)l0 (3.6.68)

=1
Now it remains to bound ||(ug )1 — Afun(t)l.q- We write
(e} = Afn (1) = ()™t — Afu(ty) + Afu(ty) — Afin(t;)

Like in the proof of Theorem (3.6.3), we denote by R, the elliptic projection operator.
We can write

ABult)) ~ A2(t) = (I - Ry)Afu(ty) = (1 — k) Ve = 2] Fullyo),

By Taylor expansion we have
At? 1

u(tj_l) = u(t]) — At ut(t]‘) + Tutt(tj) + = /t T (tj—l — 8)2uttt(3) ds.
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and

At? 1

ti+1
—utt(tj) + 5 / (tj+1 - $)2uttt(s) ds.
t

ultyer) = ulty) + At ulty) +

So that

1 tj-1 ti+1
Afu(tj) = up(t;) + AL </t (tj—1 — )2 uge(s) ds +/t (tjt1 — 8) gt (s) d8>

J J

) o A (3.6.69)
= ug(t;) + AR < - ~/7At(At + 1) 2w (t + t5) dt + /O (At — )2 up(t +t5) dt).
Thus
1 0
—At
At
+ / (At —t)2(I — Rp)ug(t + ;) dt).
0
So that

0= RS2 o < 10 = Rl + 32010 = Rt 612 )

+ (/OAt (T = Ru)usae(t + )12, dt)%]

At 3
e A N SO S ey

\/E At-i—t]- ) 3
=|(I - R t; + — / I—-—R d ) .
( n)ue(t5)]]o.0 VD ( s ( n)uit (5)[g.q ds
Hence
At At+t]‘ 5
I = R)AR () o < 10 = RiJuelts)log + 7 ( [ = Rau)li ds) .
10 —At+t;

From the estimate (3.5.22) for the elliptic projection we obtain:

||([ — Rh)utt(tj)noﬂ SJ h |:|utt|L°°(H¢1)’1) + ‘utt|Loo(H1):| )

and in view of remark (3.5.8)
At+t;

At+t;
At / 1 = Ru)us(s)|Eq ds < (AD)R2 [ /

Attt —At+t;

2 2
<|Uttt(5)|1,1;¢,g + |Uttt(5)|1,9> dS]
S A?h? [|Uttt\2Loo(Hq1;1) + |uttt|i°°(H1):|‘
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Thus

VAL ( /_At+tj

1
2
107 = Bl 5 ) s + sl
At+t;

Combining these last inequalities, we get

3.6. The fully discrete mized finite element scheme

Jj=1

N
ALY I = Ry)Afulty)]gq S h

|:|utt|Loo(H;,1) + ‘utt‘Loo(Hl) + ‘uttt|L°°(H1’1)

N
+ ‘uttt‘Loo(Hl):| X Z At
j=1

Sh |:|utt|L°°(H;’1) + [ute| poo gy + ‘uttt|L°°(H;’1) + |weet| poo (1)
Now, for the term (uy)"1 — A?u(t;), we can write

-1 -1
()T — Afulty) = (up)™® — un(ty) + un(t;) — Afu(ty).
Using once again Taylor expansion we get

(3.6.70)

t]'_l
utt(tj_l) = utt(tj) — At uttt(tj) +/ (tj—l - S)Utttt(s) ds
t
and

J

ti+1
Utt(t]’+1) = utt(tj) + At uttt(tj) + / (t]’+1 — S)utttt(s) dS
t
Together we get

J

J

J

tj+1 tj—1
utt(tj_;,_l) + utt(tj—l) = 2Utt(t]) +/ (tj_;,_l — s)utttt(s) ds -+ / (tj_l — S>utttt(s) ds
t; t
Thus

1
()"t — ug(ty) =

1 ti+1 ti-1
Z(/ (tj_|_1 — S)utttt(s) dS +/ (tj_l — S)Utttt(s) dS)
t; ts
1
4

(/OAt "0

—At

LA [ [° : At :
oo < o | Tttt 0 ) 4 ([ luete+ 180 )|
—At
5 At
gAtz(/

1

2
||utttt(t + t])||§79 dt) .
—At
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Hence

' At+t; 3
||<utt>ﬂ%—utt<tj>||0,gsm%( [ )l ds) . (3.6.71)

—At+t;

So that

N N
ALY ()™t = warlt)llog S A8t | e gy y At
= = (3.6.72)

S A utgare || oo 2

From (3.6.38) we get an estimation of the last two terms in the right-hand side of (3.6.70)
as

N
ALY T IAFuty) = wn(t;) g S ALl | oo r2)- (3.6.73)
j=1
Finally (3.6.73), (3.6.72) and triangle inequality in (3.6.68) yield

enll oo rzy T rall poonzy S Pf 1] poo ity + 10| poo gy + [ee] oo gty + [West] poo (1
(£2) (£2) (B (1) (H1) (1)
+ A [t | o 2.

By the triangle inequality and taking the supremum on t in (3.5.15) we then find
o — UhHLoo(L2) +lp— thLOO(L2) S h|:‘u‘L°°(H¢1;1) + ‘utt‘Lm(H;vl) + |utt‘L°°(H1)
+ |uttt|Loo(H(;xl) + ‘uttt‘Loo(Hl):| + At2Hutttt||Loo(L2)-
By the inf-sup and the triangle inequality, we get
lwta) = witlloq + 1 Prults) — uhlloq S {Ha(tn) = hlloq + lp(tn) = Phllogq
+ 1P (t) ~o(t)la)
Taking the supremum on n we get
|| — Wh||Loo(L2) + || Pru — uhHLoo(Lz) S {HU - U||Loo(L2) +lp —ph||Loo(L2)
1Pk = ellmen
By the propriety of the projection operator (3.5.10) we hence find
|| — Wh||Loo(L2) + || Pru — UhHLoo(L?) S h{‘u‘Lm(H;’l) + \Utt‘Loo(H;»l) + |Utt|Loo(H1) + |uttt|L°°(H;’1)

+ |uttt|L<x> 7l +At2||uttttHLoo 12)-
(H?1) (L?)
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3.7. Conclusion

The triangle inequality and the propriety of the projection operator (1.47) p.27 of [36],
give

HU - uh||LOO(L2) ,S h|:|u|Loo(H;vl) + |U|Loo(H1) + ‘utt‘Loo(H;vl) + |utt|Loo(H1) + |uttt|Loo(H;vl)

+ ‘uttt‘Loo(Hl):| + A152‘‘uttttHLOO(L?)‘

3.7 Conclusion

We have constructed and analysed a finite element method for approximating the
elastodynamic system using dual mixed formulation for spacial discretization. Our for-
mulation requires less regularity on displacement than standard one.

Optimal order L*>-in-time L?-in-space a priori error estimates are derived and a
quadratic convergence rate in time for the fully discretized scheme has been established
for both the explicit and the implicit numerical schemes.

3.8 Implementation and numerical results

In this section win view of testing our theoretical analysis, we first introduce the so
called "Hybrid formulation” [8, 15, 33| for solving the system of the mixed elastodynamic
problems 3.6.2 -3.6.4 and 3.6.39 -3.6.40 . The numerical results are presented on a L-
shaped domain. Given f : [0, 7] x Q —— IR? and a surface force density g : [0, 7| x Ty —
IR? and the initial conditions on displacements and velocities uq and w1, the displacement
field u = (uq, uq) satisfies the following equations :

uy —divog(u) = f in [0,T] xQ,

u = 0 on [0,7]xTIp,
os(u).n = g on [0,7]xTy, (3.8.1)
u(0,.) = in
u (0, ) = w in

3.8.1 Explicit-in-time scheme

Hybrid formulation

We first introduce the enlarged space S (with respect to X,) by suppressing the re-
quirement for its elements to have continuous normal component at the interfaces of the
triangulation 7j:

Y, = {(mh,qn) € L¥*(Q) x L*(Q); VT € Ty, : qnr € IP1(T) and
(Th — qnd)r € [P, (K)]*** @ [R Curl br)*}.
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We introduce the following hybrid formulation: Find (5771 i+, Aty € 3, x Aj, and

(@t o) € Vi, x Wy, such that

. — . . . At?
uy = 1,(0), uh1 = Up(—At) ~ 4, (0) — At 0p,.(0) + TU}L «+(0),

1
—@p ) + @)+ D / div (1, — @n6). @}t dx + (as (m,), 00
2 )‘ KeT,

-y / A (7 — qud) i ds =0, (i, qn) € Bh, 0> —1,
KeT,

4 (AZa} vy,) — Z / div (o pro).y dr — (as (o n+1) O) — (f",vp) = 0, (3.8.2)

KeT,

Y (Uh,eh) eV, x Wh, n > 0,

Z / pn (G = Do) e ds = Z / g™t ds, Yo € Ay, n> -1,
\ KGT 0K KeT 8KﬂFN

where
Ay = {un € [L2(E% hle € [IP,(e))* Ve € &, and pne =0 Ve € I'p}.

En denotes the set of all edges in 7, and V}, x W), is defined in (3.5.2). Let us note that
the hybrid formulation (3.8.2) is equivalent to the formulation (3.6.4) in the sense that
oy = oy, pp = p}, uy = u} and wy = wj. Taking as a test function (v, 0) in the third
equation of system (3.8.2) we get explicitly u} ™!

“Z?i(l At [div (T — ohxd) + P}?\Kfn} + 2up i — UZ\_KI, n > 0.
Still noting by o', pitt Wt Wit and A} the vectors of the degrees of freedom

of these same unknowns, the algebraic equations generated by (3.8.2) takes the following
form

( AUZ—H —ET)\Z—H HT n+l _Fn+1

Ppn+1 GT)\Z—H — F2n+1,
X (3.8.3)
Hol™ =0,

n+1 n+1 __ n+1
Eo, ™ — Gpy™ = F3™,

\

where A, E, H, P are the corresponding matrices of the bilinear forms of the different
terms in system (3.8.2), and FJ"*', FJ'™! are vectors at the n + 1 time step obtained by
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replacing the variable u}** in the first equation of system (3.8.2) by its value obtained

from the second equation and putting these terms in the right-hand side. Finally Fj'
correspond to the traction on the Neumann boundary I'yy at the n + 1 time step. In
the system (3.8.3), we start by eliminating o' and p}*' and after we eliminate w]'*'.
These eliminations are made element by element. This procedure done, we arrive at the

following system:
RN = ) (3.8.4)

where

R=EAT'E" —EAT'HY(HAT'H")'HA'ET + GP7'G7,
and
Fn+l _ EA_lF{H_l + GP_lF2n+l _ EA—IHT(HA—IHT)—lHA—lF{l-i-l + F??—’_l.

The matrix R is symmetric and positive definite.

Numerical test

We now present some numerical results on a test problem in the L-shaped domain €2 =
] = 1,1[2\[0,1[x] — 1,0] which models one singularity arising at the re-entrant corner .
The numerical tests are performed with 7' = 1s. Using polar coordinates (r,6), 0 < 6 <
W= 37”, which are centered at the re-entrant corner, the analytical solution is

u(r,8) = e g ,(6)

where
D a(0)1 = Cy(p+7){cos(a — 2)0 — cos(ad)} + Ca(p + 7)sin(a — 2)8 + (7 — 3p)sin(ad)),
EQ(Q)Q =Ci(—(p+7)sin(a—2)0+ (3p—7) sin(ab)) + Cao(p+ 7){cos(a — 2)0 — cos(ab)}.

The parameters are
Cy = (p+ 7)sin(a — 2)w — (37 — p) sin(aw),

Cy = (p+ 7){cos(aw) — cos(a — 2)w},

AR P S A Iy

f f

where a = 0.54872335366 is the smallest strictly positive solution of the transcendental
equation (1.3.1) for w = 2&, X = 1000, p = A\/49. We fix At = 10™°s and N = L = 10°.
All numerical results will be presented at the final time 7' = 1s (N = 10°). The initial
conditions uY and u; ' are chosen as the elliptic projection of u(0) and u(—At) respectively
as follows u) = ,(0), u,' = d,(—At). We use two kinds of meshes. The first one

(uniform) is obtained by dividing the intervals [0, 1] and [—1,0] into n subintervals of

p:
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Table 3.1: Convergence results when using uniform meshes at 7" = 1s

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

2.828427e-001

7.379843e-002

3.733002e-001

6.127325e-002

1.263216e-001

1.414214e-001

5.071551e-002

2.513737e-001

3.054023e-002

8.408249e-002

9.428090e-002

4.070448e-002

2.002361e-001

2.027724e-002

6.671641e-002

7.071068e-002

3.480387e-002

1.706050e-001

1.518150e-002

5.674623e-002

5.656854e-002

3.081811e-002

1.507419e-001

1.212897e-002

5.008866e-002

length %, and then each square is divided into triangles (see figure 3.1 where we have chosen
n=10 ). The second kind of meshes (refined) is obtained from the first one by refinement
near (0, 0) according to Raugel’s procedure [34]. Namely, €2 is divided into six big triangles;
on the three ones which do not contain (0,0), a uniform mesh is used; each big triangle
containing (0,0) is divided according to the ratios (;;)", 1 <4 < n, where 3 > ;= along
the sides which end at (0,0) and finally divide uniformly each of these strips (see figure 3.2
where we have chosen n=10 and $ = 1.8). We then represent the variations of the errors

1 1

0.8 0.8

0.6 0.6

0.4 04

0.2 0.2

0 0

-0.2 b -0.2

-0.4 4 -0.4

-0.6 b -0.6

“08 4 -0.8

1 L L L L -1 I I I I
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 3.1: Uniform meshes Figure 3.2: Refined meshes

o = (D)l 19~ P(T)llogs (@)l and w0 — w(T)]gg, with respect to
the mesh size h, in figure 3.3 and figure 3.4. A double logarithmic scale was used such
that the slope of the curves yields the order of convergence O(h) for refinement meshes
(see figure 3.4) according to the theoretical results, and O(h?) for uniforming meshes (see
figure 3.4) due to the singular behavior of the solution. In Table 3.1 and Table 3.2 we
summarize the results on the errors for both the uniform and refined meshes.

Let us mention that in order to fit the complex geometry of the boundary the mesh
may be refined according to the rules among R; - R3, and so contain element of very
small size, which imply, because of the CFL stability condition, the use of a very small
time step. Explicit in time scheme is thus more appropriate when we are interested by
the behavior of the wave in the neighborhoods of the initial conditions.
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Table 3.2: Convergence results when using refined meshes at 7' = 1s

h

Pressure errors

Strain errors

Displacement errors

Rotational errors

3.307907e-001

4.706629e-002

1.943443e-001

5.413231e-002

6.239506e-002

1.727505e-001

2.408332e-002

9.796571e-002

2.686243e-002

3.111419e-002

1.167855e-001

1.634564e-002

6.628362¢-002

1.806031e-002

2.100029e-002

8.819391e-002

1.219502e-002

4.939540e-002

1.340491e-002

1.563465e-002

7.084489e-002

9.788028e-003

3.962408e-002

1.072136e-002

1.253589¢-002

10

Errors
=
o
T

—-O- Rotational Error
—0~ Stress Error

Pression Error
Displacement Error

107
10

10

Figure 3.3: Errors as a function of 1/h for uniform meshes.

3.8.2 Implicite-in-time scheme

Hybrid formulation

The hybrid formulation corresponding to the mixed formulation (3.6.40) is of the following:

Find (37, 5"

~0

Up, = ah(())?

i,

= @h(

AT € 8 x Ay and (uptt ot

At?
2

) € Vi, x Wy, such that

) =~ 1,(0) + At G4 (0) + ——p4(0),
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Figure 3.4: Errors as a function of 1/h for refined meshes.
(1 ~n+1 1 ~n+1 ; ~n+1 ~n-+1
o @) + S a) + > div(m — )T dz + (as (), D)
K

2,[,6 KeT,

- Z / X (T, — qud)ong ds =0,V (Th,q) € Sy 1> —1,
KeTy, oK

(GS (52+1),9h) =0, V 0, € Wy, n>-—1,

(3.8.5)

4
n,t n,t n.L

(AZa} vy,) — Z / div (6, —p,*0).v, do — (f ’i,vh) =0,

KeTy, K
Y vy € Vh, n > 1;

~n+1 ~n+1 _ n+1

Z / pr(op ™ —pp o).k ds = Z / n.g" " ds, N opup € A, n>-—1.

| ez, JOK Koz, JoKNTy

The corresponding algebraic system takes the following form

128



3.8. Implementation and numerical results

( AO'Z—H 4 CT n+1 ET}\n—i—l 4 HT n+1 07
Ppn+l BT n+1 + GT)\n-i—l ’
Hol™ =0, (3.8.6)

MUZ—H OO’Z-H + Bpn+1 Fvn-i-l7

n+1 n+l __ 1
Eop™ — Gpy™ =1,

\

where A, E, H, P, M are the corresponding matrices of the bilinear forms of the different
terms appearing in system (3.8.5), and F™"! is the second member vector at the n + 1
time step obtained by putting, in the right-hand side of the fourth equation of system
(3.8.5), the massic force term and all terms former to the time step n+1. Thus we get
the explicit form of F™*1:

n n, n n n 1 7
FIKJrl = 4PO‘Kf 3+ div (2 (0h|K - Ph|K5) + (UhIK ph|1<15)> At? (2uh\K uh\Kl)'

Finally 7" *! corresponds to the traction on the Neumann boundary I'y at the n+ 1 time

step. The quantity o™, pi™' W and A\ for n = —1 and n = 0, needed to start
the implicit scheme (3.8.6), are obtalned by resolving the following system at n = —1 and
n =0:

( AUZ—H _ ET)\;L—H HTL n+1 Fn—i—l

P n+1 GT)\n-i-l }712114-17
] (3.8.7)
HUZJrl =0,

n+1 n+l __ 1
Eoyt — Gpy™ =1,

\

where F/"! F;"! are second members vector at the n+ 1 time step obtained by replacing
the variable u"Jrl by its initial value in the first and second equations of system (3.8.6)
and putting these terms in the right-hand side. In system (3.8.6), we start by eliminating

ot and p;t! and after we eliminate firstly w)™ and secondly u}*'. These eliminations
are made element by element. After this procedure, we find the following system:

RN = 7l (3.8.8)
where
R=GP'G" + EAT'ET — EAT'HT(HAT'H") '"HA'E" -
(EA7'HY(HAT'HNY'HA'CT — EAT'CT + GP'BY) (M + cA~'C”
+BP'BT —CA'HY (HAT'HY) '"HA'CT) " Y (CAT'H' (HAT'HY) 'HA'ET
— CA'ET — BP7'GY),
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and
Fril=1""" — (EA7'H"(HAT'H")'HA™'CT — EA™'CT
—GP'BT) (M +CA'CT + BP'BT — CAT'HT (HAT'HT) "HA™'CT) ' Pt

The matrix R is symmetric and positive definite.

Numerical test

We represent the variations of the errors |lo — o(T)l|o g, P2 — p(T)|lg.q» llun —u(T)llq
and ||wp — w(T)||,q», With respect to the mesh size h, in figure 3.5 and fig 3.6. The time
step At is selected7equally to the mesh size h. A double logarithmic scale was used such
that the slope of the curves yields the order of convergence O(h) for refinement meshes
(see figure 3.6) according to the theoretical results, and O(h3) for uniforming meshes
(see figure 3.5) due to the singular behavior of the solutions. In Table 3.4 and Table 3.5
we summarize the results on the errors in both the uniform and refined meshes. Let us
mention that the implicit in time scheme possesses no limitation on the time step and
convergence results seem to be better than ones in the case of explicit in time scheme.
That thus suggests that the implicit in time scheme is preferable to the explicit in time
scheme.

Table 3.3: Convergence results when using uniform meshes at 7' = 1s with At = h
h=At

Pressure errors | Strain errors | Displacement errors | Rotational errors

2.828427e-001

4.950115e-002

2.379090e-001

3.944810e-002

7.684252e-002

1.414214e-001

3.416687e-002

1.481635e-001

1.794047e-002

4.790442e-002

9.428090e-002

2.746780e-002

1.223985e-001

1.223487e-002

3.985001e-002

7.071068e-002

2.288484e-002

1.021814e-001

8.927111e-003

3.337248e-002

5.656854e-002

2.022493e-002

9.194350e-002

7.247770e-003

3.013416e-002

Table 3.4: Convergence results when using refined meshes at 7' = 1s with At = h

h=At

Pressure errors

Strain errors

Displacement errors

Rotational errors

3.307907e-001

2.957709e-002

1.164499e-001

3.349528e-002

3.736893e-002

1.727505e-001

1.574251e-002

6.344335e-002

1.751535e-002

2.017349e-002

1.167855e-001

1.017447e-002

4.111925e-002

1.124376e-002

1.304880e-002

8.819391e-002

7.523381e-003

3.039981e-002

8.271745e-003

9.635101e-003

7.084489e-002

5.969955e-003

2.412921e-002

6.540737e-003

7.641664e-003
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Figure 3.5: Errors as a function of 1/h for uniform meshes with time step At = h.
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Figure 3.6: Errors as a function of 1/h for refined meshes with time step At = h.
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4
Conclusions and perspectives

In this work, we study the refinement of grids for the dual mixed finite element method
for two types of problems: the first one concerns the linear elasticity problem and the
second one the linear elastodynamic problem.

For these two types of problems and in nonregular domains, the mixed finite element
methods analyzed until now relate to the primal mixed methods. Here, we have considered
a dual mixed formulation with reduced symmetry whose unknown factors are the tensor of
deformations, the pressure, the displacement and the rotational of displacement [24]. This
formulation is robust in the sense that it overcomes the locking phenomenon which appears
when the material is close to the incompressible state i.e. for A very large [7]. Because
of geometrical singularities and with the aim of restoring the optimal convergence rate of
the method, we impose a priori some refinement rules of the grids in order to recapture
optimal order of convergence of the interpolates. The main ingredient is the knowledge
of the singular behavior of the solution [27] in order to determine the real regularity of
the solution in terms of weighted Sobolev spaces. The finite elements considered are of
the BDM, family stabilized by the bubbles |3, 8|.

For the dual mixed finite element method for linear elasticity problem , a new a
posteriori error estimator is introduced and analyzed [20]. It is shown that this error
estimator is reliable and efficient for simply-connected domains and also for multiply-
connected domains. The lower and upper error bounds obtained are uniform with respect
to the Lamé coefficient A ( thus avoiding the so-called locking effect). The estimator allows
an adaptive finite element scheme which refines a given grid only in regions where the error
is relatively large and thus restoring the optimal convergence rate with a lower cost of
calculations. Reliability, efficiency and robustness of our estimator have been corroborated
by several numerical tests. A strategy based on the '"red-green-blue refinement" was
implemented successfully [38]. Finally, the technique developed to establish this estimator
can be extended to the three-dimensional case.

For the linear elastodynamic problem, we have constructed and analysed a finite ele-
ment method using dual mixed formulation for spacial discretization and the explicit or
implicit Newmark scheme for the time discretization [19]. Our formulation requires less
regularity on displacement than standard one.

Optimal order L*-in-time L2-in-space a priori error estimates are derived and a
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quadratic convergence rate in time for the fully discretized scheme has been established
for both the explicit and the implicit numerical schemes. From this point of view, the
complexity of certain physical models require an effective procedure based on the mixed
finite element method. On this I aim primarily two directives of research:

> Application of the mixed method to the mortar finite element:

136

the interest for the mortar method has increased considerably. Indeed mortar fi-
nite element, introduced Bernardi, Maday and Patera like a domain decomposition
method, offers the possibility of working with completely independent discretiza-
tions on the subdomains partitioning the domain ) without overlapping. This is
very effective if a strategy of mesh-adaptation is more requested on a particular
subdomain. An a posteriori error analysis is thus necessary to work out reliable and
effective errors indicators. I intend to extend my results already establish about a
posteriori error analysis for the mixed finite elements method for the linear elasticity
to the finite element mixed mortar. Possibly a parallel implementation of the code
by using the technique MPI (Passing Message Interfaces) could be done.

Application of the mixed method to the problem of propagation of waves:

One taking as a starting point my former work on modeling by mixed finite elements
the wave propagation in homogeneous, isotropic and elastic mediums, and works of
Bécache, Tsogka and Joly, I intend to extend this study to the time dependent
elastic wave propagation in complex media such as heterogeneous anisotropic media
of complex geometry. The use of the fictitious domain method for the resolution of
the elastic diffraction of wave by cracks, could be adopted. I then hope to establish
dynamic a posteriori error estimators for the automatic adaptation of grids.



Annex

1 Basis functions

Let K € 7, be a triangle with vertices v; = (v,,,vy,) ¢ = 1,---,3. We denote by

U1+ Vg + v .
LT 27 3 the center of mass. By (xi,y;) © = 1,---,3 we denote the

9= (91.92) =
midpoints of the three edges and by [y, 5 I35 the length of these three edges of the triangle

K (see Figure below)

(%1

Let us recall the finite dimensional subspace S

S = Sh X Qn = {(h, qn) € [LX())>*? x L}(Q); VT € T : qur € IPy(T) and
(th = @n0)r € [P1(K)]** @ [RCurl brl*},

We chose ¢1, - -, ¢14 as a basis of Sj:
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) GO
w=(18) w=(23)
(1) a-(02)
(B F) a-()
(1) e (00)
e (20) e (30)
wo(30) w-(f %)

The basis functions of (), are defined by @i, o, ¢3. The basis functions of the
rotations in W}, are the same ones as for (), . The basis functions of the displacements in
V), are denoted aq and «s. Finally the basis functions of the Lagrange multipliers in Ay,
are denoted by vy, , 74

ie=(o) «-(7)

(Wi e =1 = 03 =Y
’71:(2—3t)()61 ’}/2_(2—325)042

Ap,
3= (3t —1)ay 74 = (3t — 1)ay
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2. Local stiffness matrices

2 Local stiffness matrices

The components of the resulting local stiffness matrix AX are shown in

a 0 0 0 O O0OO0OO0OO0O O O O
6 o v 0 0 0 O O0O0OO0OO O O0 O
vy v wev 0O 0 0 n 0O0O0O0O 0O 0 O
000 a g ~ 0 0O0O0OO0 O O O
0 00pB o v -nnO00O0O0 0 0 O
0O 00~ v v 0O 0O0OO0OO O 0 O
AK K| O 0n O —-mn 0 p 0000 0 0 O

0000 0 0 0 ap~y0 0 0 O ’
O 000 0O 0 0 B ocwv 0 0 0 O
0o o000 0 0 0 ~~wvwv 0 0 0 n
0000 0 0 0 0O0O0a«a g v O
0000 0 0 0 0O0O0OpF ¢ v —m
0o o000 0 0 0 00O~y v v O
o000 0o 0 0 0O0mnO0 —mO0 p

where the remaining coefficients in the above matrix are denoted by

o [B]~rv] o | v | v . | n |

2 | 2| 20 | 6p>T) a? | 6>l w? | 6p > ways | M44OpIK] | 1204

The bilinear form By (px, v ) results into matrix BX, with components

010
BK:|K|(0 0 1)'

The bilinear form Ck (ok, vk) results into matrix C¥, with components

0 0
10/’

The bilinear form Hg (ok, 0 ) results into matrix HX, with components

01000 0
CK:|K|<0 000 1

o O

1 0 0 00
0 0 0 00
h

000 -1 h hy 0 1 —hy —hy 000 O
H¥ =|K|| 0 0 0 hy hy hy hg —hi —hs —hgy 0 0 0 0
000 00 h

he hy hs O —hy —hy —hs O 6

while the remaining coefficients are

(M [ he [ hs | M | hs | D |

3 3
—g1 | —92 —fo sz'yz‘ —Zy? _%
' i=1 i=1

139



Annex

1
The bilinear form Pk (px,qx) = X/ prqr dv results into matrix PX, with com-
K
ponents
b1 P2 P3
PY=IK[| p2 pa p5 |,
P3s DPs Ds
while the remaining coefficients are
ip 2o po | s | b ]
3 2 3 3 2
l gi | 92 Zi:1 xT; Zizl TilY; Zizl Yi
AL A A 3\ 3\ 3\
For an edge a € 0K, the bilinear forms E%(ok, ia) = fa(aK.nK),ua ds and
G% (P, ha) = fa PKNK-Ja ds result into two matrices EY and G respectively with

components

Ey Epp E13 Eiy E15 E16 0 0 0 0 0 0 0
l 0 0 0 0 0 0 0 Eu En Eiz By Eis Eg
2| Esi Esp Es3 Esg Eys E33 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 Es1 Esp FEzz k3 FEzs Es

By =

o O OO

while the remaining coefficients are

|Eu| By | Bis |FBu| Fis | By [ Esi| Esy | Ess | Esa| Ess | Es |

‘ sl ‘ N1Vg, ‘ N1 Uy, ‘ %) ‘ NnoVyg, ‘ N2Uy, ‘ ny ‘ N1Vg, ‘ 11Uy, ‘ Mo ‘ N2Vyg, ‘ T2 Uy, ‘

and
Gu G2 Gis
Ga — £ G21 G22 G23
K9 Gs1 Gz Gsz |’
Gu Ggp Gg

while the remaining coefficients are

‘Gu‘ Gia ‘ Gi3 ‘G21‘ G ‘ Gas ‘G31‘ G ‘ G ‘G41‘ Ga ‘ G ‘

‘ Ny ‘ N1V, ‘ Ny Uy, ‘ N9 ‘ Nz, ‘ NoVy, ‘ ny ‘ N1 Vgy ‘ N1 Vy, ‘ N9 ‘ N9y, ‘ MUy, ‘

where v1 = (g, 0y,), V2 = (Vay,y,), [ and (ny,ny) denote vertices , length and the
outward normal vector along the edge a.

3 Notes on the elimination procedure

In the elimination procedure, which is made element by element, one must show that all
matrices corresponding to the eliminations are at least invertible. Firstly let us note that
the matrix A is bloc diagonal, symmetric and positive definite. For the matrix CA~!C7
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3. Notes on the elimination procedure

it is easy to see that it is also bloc diagonal, symmetric and positive definite. Now let us
show that the matrix W defined by

W =HA''CY(CA'CTY 'CA'HT — HA'HT,

is symmetric and positive definite. Indeed, it is clear that W is symmetric. It remains to
prove that it is positive definite. Denoting by (.,.) the IR*-scalar product, S = HA ' H”,
L=CA'HT and K = CA~'C7, the matrix W may be rewritten:

W=8-L"K'L.
(WA X)) = (SAA) — (K'LA LA).
Let w = —K'L)\. Then L\ = —Ku and
(WA X)) = (SA ) — (Ku,u)
= (SAA) + (Ku,u) — 2(Ku,u)
= (Ku,u) +2(L\,u) + (SA\,A)

(5 9)()-())

We are thus brought back to show that the matrix

v (K LY_(cArct cAHT
“\ s )T\ HA'CT HA'HT )¢

is positive definite.

() ()~ (36 530 ) (2)-(3))
= (CA'CTu,u) + (CAT' H" A\ ju) + (HAT'CTu, \) + (HAT'HT ) \)

Let v = CTu and v = HT )\, then

<M(§),(j)>:@f%my+m4%w+¢ywwy+m4%@

= (A_l(v +v), (v+ V))
> cf|v+v||?
This prove that M is semi-positive definite. For proving that M is a positive definite

matrix, it suffice to show that it is invertible. By standard Theorem of linear algebra this
is equivalent to prove that the following form is injective

T: R°xR* — R?xIR?
CA-'CTy + CA HT¢
n,§)
HA 'CTp+ HAT'HT¢
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Let thus (n,€) = ((m, 72, m3), (&1.&)) € R? x IR? such that
CA-1CTy + CAVHTE = 0
HA'CTy+ HA'HT¢ = 0

Thus, we have
(n,CA'CTn+ CATTHTE) =0

((, HAT'CTn+ HAT'HTE) =0

Hence

(A7'CTy, CTy+ HTE) = 0

(A_IHTU, CTn+ HTS) =0
Summing the two equations of this system to get

(AN(CTn+ H'¢),C"n+ H'¢) = 0.
But the matrix A is symmetric and positive definite, thus
CTn+HT¢=0.

Using the explicit forms of the bloc diagonal matrices C' and H, we easily see that 1, =
7o = 0 and & = & = & = 0. This proves that the form 7" is injective and thus the matrix
M is invertible. Finally, we have proved that the matrix M is positive definite and thus
the matrix W is also positive definite.
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Résumé

Dans ce travail, nous étudions le raffinement de maillage pour des méthodes d’éléments finis mixtes
duales pour deux types de problémes : le premier concerne le probléme de 1’élasticité linéaire et le second
probléme celui de 1’élastodynamique.

Pour ces deux types de problémes et dans des domaines non réguliers, les méthodes d’éléments
finis mixtes analysées jusqu’a présent, sont celles qui concernent des méthodes mixtes "classiques".
Ici, nous analysons la formulation mixte duale pour les deux problémes de 1’élasticité linéaire et de
I’élastodynamique. Pour le probléme d’élasticité, nous sommes concernés premiérement par une anal-
yse a priori d’erreur en utilisant 'approximation par 1’élément fini BDM; stabilisé. Afin de dériver
une estimation a priori optimales d’erreur, nous établissons des régles de raffinement de maillage. En-
suite, nous faisons une analyse d’erreur & posteriori sur un domaine simplement ou multiplement con-
nexe. En fait nous établissons un estimateur résiduel fiable et efficace. Cet estimateur est alors util-
isé dans un algorithme adaptatif pour le raffinement automatique de maillage. Pour le probléme de
I’élastodynamique, nous faisons une analyse a priori d’erreur en utilisant le méme élément fini que pour
le probléme d’élasticité, en utilisant une formulation mixte duale pour la discrétisation des variables spa-
tiales. Pour la discrétisation en temps nous étudions les deux schémas de Newmark explicite et implicite.
Par des régles de raffinement de maillage appropriées, nous dérivons des estimées d’erreur optimales pour
les deux schémas numérique.

Mots-clés: MEF duale mixte, Espaces de Sobolev, Estimations d’erreur & priori, Estimations d’erreur
A posteriori, Probléme de 1’élasticité, Probléme de 1’élastodynamique, Décomposition de Helmholtz |,
Schémas de Newmark , Multiplicateurs de Lagrange, Formulation Hybride.

Abstract

In this work, we study the refinement of grids for the dual mixed finite element method for two
types of problems: the first one concerns the linear elasticity problem and the second one the linear
elastodynamic problem.

For these two types of problems and in nonregular domains, the mixed finite element methods ana-
lyzed until present relate to the primal mixed methods. Here, we analyze the dual mixed formulation for
both linear elasticity and linear elastodynamic problems. For the elasticity problem, we are concerned
firstly by an a priori error analysis when using finite element approximation by stabilized BDM; ele-
ment. Then, we make an a posteriori error analysis for the dual mixed finite element method for both a
simply and a multiply connected domain. In fact we establish a residue based reliable and efficient error
estimator for the dual mixed finite element method. This estimator is then used in an adaptive algo-
rithm for automatic mesh refinement. For the elastodynamic problem, we make an a priori error analysis
when using the same finite element as for the elasticity problem, using a dual mixed formulation for the
discretization in the spatial variables and the explicit or implicit Newmark scheme for the discretization
in time. By adequate refinement rules on the regular family of triangulations we derive optimal a priori
error estimates for the explicit-in-time and implicit-in-time numerical schemes.

Keywords: Dual mixed FEM, Sobolev spaces, a priori error estimation, a posteriori error estimates,
elasticity problem, elastodynamic problem, Helmholtz decomposition, Newmark scheme, Lagrange mul-
tiplier, hybrid formulation.






