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Introduction

Cette thése porte sur une thématique fondamentale en traitement d’'image : la qualité des images
numériques. Les images numériques sont une représentation discréte des images continues. Cepen-
dant le passage d’une représentation continue a une représentation discréete conduit généralement
a un compromis entre différents types de dégradations d'image. Ce sont ces dégradations, liées a
I’échantillonnage d’une image continue, que nous étudions dans cette thése, et notamment leur impact
sur la qualité image. L’évaluation de la qualité image est essentielle a la validation de tout traitement,
par exemple pour les algorithmes de restauration dont le but est d’exprimer le mieux possible I'image
continue a partir de I'image discréte. L'ceil humain pergoit trés bien la qualité visuelle d’une image,
telle que le niveau de bruit et le niveau de flou, mais il en est tout autrement pour l'ordinateur. La
grande majorité des algorithmes de restauration sont paramétrés et nécessitent un choix des parametres
optimaux. Afin de faire le choix d’'une maniére automatique, il est nécessaire d'avoir des critéres de
qualité fiables et universels. De plus, I'automatisation est primordiale dés lors que I'on veut traiter
un grand nombre d'images. L’étre humain ne pouvant évaluer autant d’images, il convient d’utiliser
des outils mathématiques généraux qui soient capables de le faire. Pour atteindre ce but, nous avons
découpé ce probleme en trois sous-problémes, qui constituent les trois premiéres parties de ce mémoire.
Des applications sont étudiées dans la quatriéme partie.

La premiére partie définit exactement les critéres que nous utilisons pour I'évaluation de la qualité de
I'image. Pour ce faire nous caractérisons trois dégradations fondamentales de I'image numérique, c’est
a dire liées au caractére discret de la représentation d’un monde continu, nommées aliasing, flou et
ringing. La deuxiéme partie propose un traitement de réduction d’'images, c’est-a-dire une diminution
de la taille de I'image tout en conservant I'information essentielle, lors duquel la qualité image est
controlée. La troisiéme partie définit pour chaque critére des mesures qui soient applicables 3 tout
type d'image. Enfin en quatriéme partie de ce mémoire, nous proposons des applications concretes de
I’évaluation automatique de la qualité image a des enjeux majeurs en traitement d'image tels que ceux
de la restauration. Nous étudions plus spécifiquement les problemes de déconvolution aveugle et de
débruitage.

Artefacts dans les images numériques

Une image numérique est une matrice de valeurs codant I'intensité lumineuse en chaque pixel
(de I'anglais picture element). Dans cette thése, nous ne traitons que les images en niveaux de gris.
Chaque pixel code un niveau de gris, généralement compris entre 0 et 255. L’'image numérique est la
représentation discréte d'une image continue sous-jacente. Dans tout systeme de prise de vue, tels que
I'appareil photo numérique ou bien le satellite, I'image géométrique u, est obtenue par projection du
paysage observé (en trois dimensions) sur le plan du capteur. La réponse impulsionnelle de I'optique
hopt, puis celle du capteur hcapreur modifient I'image géométrique idéale en u = hcapreur * Popt * Ug,
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ou % est I'opérateur de convolution. Son échantillonnage construit I'image discrete ug, c'est a dire que
des points de I'image continue u sont sélectionnés selon une grille réguliere. Si I'échantillonnage n'est
pas adapté a wu, il peut introduire différents types de dégradations dans I'image. La structure de la
grille d'échantillonnage est déterminée par la géométrie du systéme du capteur. Il existe plusieurs types
de grille, telles que la grille hexagonale ou la grille carrée. Si la grille est carrée, alors I'image discréte
associée est ug[m,n] = u(m - s,n - s), ou n et m sont des nombres entiers et s représente le pas
d’'échantillonnage de la grille, c.a.d. la distance entre les points de la grille dans la direction horizontale
et verticale. Par exemple, la matrice de détecteurs des appareils photo numériques est une grille carrée.
[l existe différents types de matrices telles que les matrices C.C.D. (charge coupled device) ou C.M.O.S.
(complementary metal-oxide semiconductor). Dans I'ceil humain, le réseau de capteurs situés sur la
rétine a une distribution spécifique non réguliére, proche du réseau hexagonal en forme de nid d’abeille
[11] [34]. Dans ce mémoire, nous nous limitons au cas de la grille carrée, qui est caractéristique de trés
nombreux capteurs industriels.

Le passage entre le continu et le discret peut détériorer la qualité de I'image si la discrétisation est
trop grossiere, c’est-a-dire si les points de la grille sont trop éloignés. La théorie fondamentale sous-
jacente est celle de la transformée de Fourier, qui exprime un signal comme une somme de sinusoides.
Shannon a utilisé par la suite la transformée de Fourier pour trouver la finesse minimale de la grille
de sorte a avoir un processus d’'échantillonnage réversible [45]. Le passage de I'image discrete uy vers
I'image originale u n’est possible que si I'image discréte est échantillonnée sur une grille suffisamment
fine. La finesse requise dépend bien évidemment du contenu de I'image continue que I'on souhaite
retrouver. Si I'image contient de nombreux détails, alors la grille doit &tre fine, et vice versa. Si la
condition du théoreme de Shannon est satisfaite, alors I'image continue est retrouvée exactement par
interpolation avec un sinus cardinal.

Si la condition du théoréme de Shannon n’est pas satisfaite, alors il devient impossible de distinguer
certaines fréquences de I'image originale a cause du repliement fréquentiel. La Figure 1 montre comment
un échantillonnage trop grossier modifie une fréquence originale en sa version basse fréquence.

(a) (b)

Fia. 1 - (a) Graphe de la fonction =z + cos(z) et sa version discrétisée (o) avec un pas
d’échantillonnage s = 5.7. (b) Signal discret associé. Sa fréquence est plus basse que la fréquence
originale de la fonction cosinus.

Le probleme de I'échantillonnage est relié aux trois artefacts que nous étudions dans cette thése et
qui constituent des facteurs majeurs de dégradation d’image. Le premier de ces artefacts est I'aliasing.
Il est une conséquence directe du non respect de la condition du théoréme de Shannon. Le repliement
fréquentiel caractéristique de I'aliasing déforme I'image originale en créant des textures nouvelles ou
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bien en crénelant les contours des objets. L’aspect non naturel de I'aliasing est dévastateur du point de
vue qualité visuelle. L’aliasing a été essentiellement supprimé dans les filtres proposés dans la deuxieme
partie. Les deux autres artefacts, a savoir le ringing et le flou, sont reliés car il s’agit souvent de faire
un compromis entre ces deux dégradations pour respecter les conditions du théoréme de Shannon.
En effet, pour remplir ces conditions, il s’agit de ne conserver que les fréquences qui pourront &tre
exprimées dans I'image discréte, c.a.d. les basses fréquences. Les hautes fréquences sont atténuées par
un filtrage passe-bas. Selon la forme du filtre prés de la fréquence de coupure, I'image a du ringing
et/ou du flou. Il n'existe aucun filtre passe-bas qui n’introduise ni ringing ni flou, puisque conserver
toutes les fréquences intactes jusqu’a la fréquence de coupure ajoute du ringing et qu’au contraire
atténuer les hautes fréquences avant la fréquence de coupure floue I'image. Le flou se manifeste par un
adoucissement des transitions. Les contours des objets de I'image paraissent estompés. Le ringing se
caractérise quant a lui par une réplication des contours des objets de I'image. Souvent associé avec le
phénomene de Gibbs, le ringing se différencie pourtant du cadre du théoréme de Gibbs [20]. La présence
d’oscillations décrites par le théoreme de Gibbs se justifie par la non-convergence uniforme des séries de
Fourier des fonctions discontinues. Alors que pour le ringing, les oscillations peuvent apparaitre pour
des fonctions régulieres, et méme C'°.

Filtrage adapté a la qualité image souhaitée

Plusieurs facteurs peuvent intervenir dans la mesure de la qualité image. Dans cette partie, la
qualité image est estimée dans le cadre d'un filtrage passe-bas précédant un échantillonnage. Une
telle procédure peut étre utilisée dans deux situations bien différentes. La premiére situation est la
capture d’un paysage par un systéme optique, tel que celui décrit précédemment. L'image discréte ugy
est obtenue par filtrage puis échantillonnage de I'image géométrique continue u,. Le filtre est imposé
par la lentille et le capteur utilisés (kK = hcapteur * hopt), €t I'échantillonnage est celui de la grille de
capteur. La deuxiéme situation envisageable est la réduction d'une image, c’est a dire le passage d’une
image discréte ug a une autre image discréete vy plus petite. Contrairement a la premiére situation, le
filtre passe-bas précédant le sous-échantillonnage n’est pas imposé : il n'est plus lié a la physique des
éléments de la chaine optique. Selon le filtre choisit, I'image obtenue v, sera plus ou moins dégradée.
Dans cette partie, nous nous placons uniquement dans le cadre de la réduction d’'image : nous proposons
une méthode pour choisir un filtre & adapté a la nouvelle grille d’échantillonnage tout en contrdlant
la dégradation introduite. Le filtre et la grille d'échantillonnage constituent deux des éléments utilisés
par Rougé dans [42] pour définir la qualité image dans le cadre de la premiére situation (capture d’un
paysage par un systéme optique). Il note FTM (Fonction de Transfert de Modulation) la transformée
de Fourier de k et R le réseau local d’échantillonnage auxquels il ajoute un troisieme élément : la
statistique du bruit du systéme. Il note oy I'écart-type du bruit (qui est fonction de la fréquence) et
forme ainsi le triplet instrument-échantillonnage

(FTM,O’b,R) .

Dans cette thése, nous étudions uniquement les artefacts liés a I'échantillonnage (FTM, R) et pas
le bruit instrumental (o). Il est important de noter la différenciation faite ici entre les artefacts et le
bruit : les artefacts représentent une perturbation structurée du signal a la différence du bruit de type
bruit blanc. Le détérioration de la qualité image par le bruit n’a pas été I’axe de recherche principal de
cette thése bien que le cas des images légérement bruitées ait été analysé.

Réduire la taille d'une image discréte d’un facteur s dans les deux directions (horizontale et verticale)
est un probleme directement relié au théoreme de Shannon. Pour éviter les artefacts causés par I'aliasing,
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le sous-échantillonnage d’une image ug de taille N X N a une image vy de taille % X % nécessite en

amont un filtrage passe-bas : vy = (k*ug) | s, ob k est le filtre discret et | s le sous-échantillonnage
discret d'un facteur s dans les deux directions. Une coupure fréquentielle brute dans le domaine de
Fourier correspond au filtre sinus cardinal de Shannon dans le domaine spatial. Le caractére trés oscillant
de ce filtre introduit un fort ringing. Les filtres classiques tels que la prolate [48] ou la gaussienne
introduisent moins de ringing mais en contrepartie rendent I'image plus floue que le filtre de Shannon.
Etonnamment, la littérature ne donne aucune table de référence du niveau de flou et de ringing que ces
filtres introduisent. Nous proposons de répondre a cet oubli en suggérant une classification de filtres
classiques selon le double critére : ringing et flou. Cette table a un double avantage. Tout d’abord elle
permet d’évaluer quantitativement les niveaux d'artefacts introduit par le filtre. Mais elle permet aussi
en pratique de comparer les performances de différentes familles de filtres de sorte a choisir le meilleur
filtre pour les niveaux d'artefacts autorisés. L'étude est menée d'abord en une dimension et s'étend
simplement au cas bidimensionnel par produit tensoriel. Comme dans d’autres travaux, le contour est
modélisé par la fonction de Heaviside H.

Les deux artefacts s’ajoutent au niveau des contours rendant difficile leurs mesures indépendantes.
Nous définissons une mesure jointe par un systeme géométrique de boite montré sur les Figures 2
et 3. Le parameétre S mesure I'étalement du signal (en anglais spread) et R le ringing. Pour chaque
filtre, la mesure se définit par une courbe flou/étalement. La norme L permet de contrdler le rebond
maximal de kx H, car I'ceil est trés sensible aux fortes variations de niveaux de gris. D’autres mesures,
telles que la norme L' et L?, sont aussi testées. Cette modélisation permet de construire des filtres
optimaux selon notre définition de R et S. C'est-a-dire que pour une valeur donnée d’étalement S,
le filtre optimal donne la plus petite valeur de ringing R atteignable par n’'importe quel autre filtre
passe-bas imaginable respectant la méme fréquence de coupure. De maniere générale, la classification
montre que les filtres dont la transformée de Fourier est voisine du cosinus sont de bons filtres, proches
de I'optimalité. De plus ils ont I'avantage d’étre simple d’utilisation puisque leur expression analytique
est connue, a la différence d'autres filtres classiques.

La mesure jointe du ringing et du flou nous a permis d'étudier la dégradation de filtres classiques,
mais aussi la dégradation de systémes optiques réels. La construction de la courbe flou/étalement pour
le systéme optique positionné sur un des satellites du Centre National d’Etudes Spatiales (CNES) met
en évidence I'optimalité du filtre pour des couples (S, R) par rapport aux filtres appartenant a la méme
famille de filtres, bien que le filtre du CNES soit imposé par les instruments du systéme d’acquisition
d'image installé sur le satellite.

Les expériences numériques montrent que la mesure des artefacts associés a un filtre n’est pas
suffisante pour les contrdler sur les images filtrées. Ces observations proviennent du caractére additif
du ringing. En effet, des oscillations provenant de différents contours de I'image se croisent et peuvent
localement s’ajouter si elles sont en phase, créant a cet endroit de plus grandes oscillations. Une
évaluation directe basée sur les zones homogenes, ou le ringing est particuliérement visible, permet de
confirmer les bons résultats des filtres optimaux.

Mesure de la qualité image

Par association avec les trois artefacts étudiés dans cette thése : flou, ringing et aliasing, nous
définissons trois détecteurs. Le premier est un détecteur de netteté, par opposition avec le flou. Nous
basons notre approche sur les mesures de cohérence de phase introduites par Morrone [37]. L'idée
principale se fonde sur le fait que les composantes de la transformée de Fourier dans le voisinage d'un
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contour sont en phase. Notre mesure de netteté est basée sur la sensibilité de I'image a la destruction,
c’est a dire au déphasage aléatoire. Un contour prononcé est trés sensible a une telle destruction,
puisque le déphasage d'une seule sinusoide fait apparaitre des oscillations sur le signal reconstruit. La
sensibilité est mesurée en terme de variation totale (VT), classiquement utilisée pour évaluer le ringing.

V() = / |Dul

ol Du est la différentielle de u. Une approximation discréte de la VT est la moyenne de la somme des
sauts de I'image en chaque pixel dans les deux directions. De sorte a s’affranchir de paramétre, nous
avons utilisé une approche probabiliste. La cohérence de phase notée F.(u) est ainsi mesurée par

F.(u) = —logyg P (VT'(U:) <VT(u)),

ou U, est I'image construite par le déphasage aléatoire des phases de u dans [—em, e7]. Une image nette
a des phases cohérentes, donc la variation totale des images déphasées aura tendance a augmenter, ce
qui implique une forte valeur de F.(u). Lorsque ¢ tend vers zéro, F.(u) évalue la sensibilité de I'image
a un tres faible déphasage :

Fy+(u) = lim F,(u) .

e—0
e>0

Cette mesure s’avére €tre un bon détecteur puisque nous avons pu vérifier que les images nettes
ont une trés grande valeur de Fjy+ (u) contrairement aux images floues.

Le deuxieme détecteur est spécifique au ringing. Les mesures existantes de ringing mesurent les
rebonds de chaque c6té des discontinuités [31]. D’autres comparent la variance des niveaux de gris
autour des contours [39]. Ici, nous ne nous intéressons pas au caractére perceptuel du ringing, mais
plutdt a la présence d’une période particuliere d’oscillations sur toute I'image. La détection est faite a
contrario sous I'hypothése a priori qu'il n'y a pas de période particuliere d’oscillations sur une image
de bruit blanc ou sans ringing. De telles images ne contiennent pas d’oscillations et ne seront alors pas
détectées. Nous nous basons ici sur la méthode générale de détection a contrario [12] que nous rendons
spécifique au ringing. La longueur maximale des oscillations est calculée sur une ligne perpendiculaire
au contour de sorte a se placer dans la direction du ringing (Figure 4). Les expériences montrent une
période hautement représentée dans les images avec ringing ce qui permet de les distinguer des images
sans ringing. Les textures périodiques faussement détectées comme étant du ringing sont facilement
exclues car la détection est localisée sur la texture et n’est pas généralisée a I'ensemble de I'image.
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(a) (b) (c)

F1G. 4 — (a) image original u (b) image avec du ringing (c) I'étude du ringing ne s’effectue pas selon
les axes X et Y de I'image mais dans la direction v perpendiculaire au contour.

Le troisitme détecteur est spécifique a I'aliasing. La littérature n’offre pas de consensus pour la
détection de cet artefact. Or dans de nombreuses applications, les images sont aliasées. Il est donc
important de le détecter pour essayer de le supprimer. Dans ce mémoire, nous étudions dans ce
but trois approches : une approche fréquentielle, une approche géométrique et une approche basée
sur la sensibilité de la variation totale a la translation. Ces trois approches utilisent les différentes
manifestations de I'aliasing. Quelques unes sont montrées sur la Figure 5.

1. La premiére approche est basée sur I'étude fréquentielle puisque I'aliasing est défini comme un
recouvrement fréquentiel. De maniére générale, I'approche fréquentielle est difficile car la trans-
formée de Fourier est une opération globale. Le phénomene de repliement spectral, typique de
I’aliasing, est souvent caché par le contenu fréquentiel déja riche de I'image de départ. Cepen-
dant pour des cas trés particuliers d’images, telles que les images contenant un seul contour la
détection est visuellement possible sur sa transformée de Fourier. Si I'image n’est pas aliasée, la
transformée de Fourier a son énergie maximale selon une ligne dans la direction orthogonale au
contour. Si le contour est mal échantillonné, I'aliasing se visualise par un repliement fréquentiel
dans le domaine spectral de I'image : des lignes secondaires apparaissent paralléles a la ligne de
forte énergie spectrale.

2. La deuxieéme approche est basée sur I'étude géométrique des lignes de niveau de I'image le long
des contours. Ces derniers paraissent hachurés et les lignes de niveau associées sont crénelées.
Une étude statistique sur des lignes de niveau des images aliasées et non aliasées permet de
mettre en évidence la forte concentration de contours de type escaliers sur les images aliasées.
La détection est rendue systématique grace a la prise en compte de la longueur de la ligne de
niveau crénelée.

3. La troisitme approche est basée sur le postulat de Shannon qu'une image est équivalente a
ses versions translatées. Comme une image aliasée ne respecte pas le critére de Shannon, nous
mettons en évidence la non équivalence des images aliasées avec leurs translatées. De nouveau,
le critere employé est basé sur la variation totale puisque la translation ajoute des oscillations. Le
détecteur d'aliasing est défini de la méme maniére que le détecteur de netteté F.(u) pour lequel
nous avons proposé une méthode probabiliste sans parameétre basée sur le calcul des variations
totales :

G(u) = —logyy P (TV(Uy) <TV(u)),
ot Uy est I'image translatée de u avec une translation aléatoire uniforme dans [0, 1[2 (translation
sous-pixelliques).



Introduction

(2) (b) (c) (d) (¢) ()

F1G. 5 — Exemples d’aliasing : (a-b) exemple de changement de texture (c-d) exemple de pixellisation
des éléments filaires (e-f) exemple de contours de type escaliers. A chaque fois sont représentées I'image
originale et I'image aliasée a sa droite. L'image aliasée est construite par sous-échantillonnage spatial
d’un facteur 2 de I'image originale de taille 64 x 64. Pour la visualisation, I'image aliasée est zoomée
d’un facteur 2 avec une spline d’ordre 3.

Applications

Les applications de tels détecteurs sont nombreuses. Les détecteurs de netteté, de ringing ou d’alia-
sing sont directement utilisables dans toute méthode de restauration d’image paramétrée nécessitant
une automatisation. Les parameétres optimaux sont obtenus en détectant la meilleure image parmi
toutes celles obtenues avec les différents jeux de paramétres. L’application testée est la déconvolution
aveugle. Il s'agit de retrouver le filtre k& et I'image originale ug a partir du résultat u = k x ug. Ce
probleme a été étudié dans la littérature et connait un engouement particulier dans I'imagerie astro-
nomique. Un algorithme classique est celui de Lucy-Richardson [27][41], que nous comparons avec
I’approche proposée. Nous étudions deux familles de filtres positifs : les filtres a support compact 3 x 3
et a support non compact de type gaussienne. Ces filtres sont classiquement étudiés car ils ont de
bonnes propriétés et posseédent peu de paramétres [8]. Nous montrons que le détecteur de netteté
permet de retrouver le filtre £ lors d’une simple déconvolution régularisée. Les résultats obtenus per-
mettent de considérer que dans le cadre de I'analyse, le détecteur de netteté ouvre des possibilités
nouvelles pour la déconvolution aveugle.

La deuxiéme application testée est le débruitage automatique. Pour cela, nous testons un algorithme
de débruitage fort efficace basé sur la redondance spatiale dans les images appelé Non-Local Means
Algorithm, introduit par Buades et al. dans [6]. Il calcule la moyenne des niveaux de gris des pixels
qui ont un voisinage semblable. La distance entre ces pixels peut étre grande. Cet algorithme de
moyennes non locales débruite particulierement bien les structures périodiques. Cette méthode a quatre
parametres pour lesquels les auteurs nous donnent des suggestions d’initialisation basées sur I'évaluation
visuelle de ses résultats. Nous montrons que le détecteur de netteté permet d’optimiser d’une fagon
trés fiable et automatique les paramétres pour obtenir le meilleur résultat possible.

D’autres applications peuvent étre étudiées dés lors que I'optimisation automatique de la procédure
de restauration d'images est nécessaire. D’une fagcon plus générale, les mesures de qualité proposées
peuvent &tre utilisés dans toute problématique liée a la mesure d’efficacité d’un algorithme, ou bien
dans sa comparaison avec d’autres algorithmes.
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Introduction

The formation of a numerical image is the process of storing an observed scene on a numerical support
by using some optical devices. It can be modeled as governed by two major principles. The first one
is the geometry, which explains how the light rays coming from the scene points converge by passing
through the optical device. The second one is related to the sampling stage, which builds the discrete
image. We shall now describe successively these two stages.

We assume that the optical device is a simple convex lens of negligible thickness characterized by
its focal distance f and its diameter D when considering a circular lens. Its focal plane P is positioned
at a distance f from the lens optical center O = (0,0,0). It is defined as the plane where the image
of an object at an infinite distance focus. If one considers light rays coming from an object located at
a distance Zy > f from the lens, they all converge at a certain distance S behind the lens. Thus, we
speak about the geometrical image u, of the object, which is formed on the plane z = —S (Fig.6).

Let us consider the images formed on the focal plane P. They are represented by a two dimensional
signal which indicates the density of energy received at the position (z,y) on the plane P. A bright
spot in the scene yields a large value of uy(x,y). The three dimensional scene is thus projected onto
a plane. At that stage some background objects might be either totally or partially occluded by some
other objects closer to the lens. Some light rays coming from the background objects are stopped
by the foreground objects, so that they do not reach the lens. This is an important phenomenon,
especially the partial occlusion, since it is a major key of the human vision. Our eye is very sensible to
large intensity differences, such as the ones along the boundary between two objects.

This simple introduction of the geometrical principle is a theoretical approach which is valid only for
perfect lenses. Most of the lenses, including the lenses of the human eye, have some limitations that
deteriorate image quality. So the image observed on P is not u,4, the image obtained by the projection
of the 3D scene on P, but a degraded version u. The limitations of the lens due to focal length f and
diameter D degrade u, in the two following ways.

focal focal sensor
lens plane P lens planeP plane
) object
object at an lens
infinite distance
optical © image  optical g ) @
axisz axisz image
I
f
Z =infinity f z S
0 0

Figure 6: The geometrical principle of image formation and the lens properties.
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1. The image in the focal plane is focused for parallel light rays only, i.e. for objects at an infinite
distance. Points that are not at infinity are not focused in the plane z = f: they appear blurry.
This is the reason why the recording surface S of the camera (a charge coupled device C.C.D. for
a digital camera or a photographic film for classical ones) does not generally coincide with the
focal plane. As all objects of the scene do not have the same depth, the photographer adapts
the relative position of the sensor plane S with respect to the objects of interest. Its position is

given by the Gauss’ Formula:
1 1 1

F75%%
where Zj is the depth of the object to focus. As a consequence, all objects at a depth z = Zj
will be focused. Objects with a smaller or larger depth will appear more or less blurry.

2. Since we consider a circular lens, its aperture is a disc of diameter D. When D is small, the lens
introduces diffraction, slightly spreading the paths of the light rays. It means that the image of a
point source in the scene will not give a single point on S but a central bright point surrounded
by bright rings: the light rays spread out a little bit. This pattern is known as the Airy disc. Its
size depends on the wavelength A of the light and of the parameter D. The smaller the disc is,
the bigger the light ray spreading is. Less details of the original scene can be reproduced on S
since the image of two close bright points might overlap. The image of a point source is given by
the Point Spread Function (PSF) of the optical system, which represents the impulse response
of the system. Such a function is linked to the aperture size of the optical device and degrades
the geometrical image u,4 into u. This transformation can be approximated by the convolution
of u with the PSF of the device.

The sampling stage is usually performed by a matrix of small sensors that transforms u into its
digitalized version ug, such as C.C.D. sensors. A numerical value is associated to the average luminance
received by each sensor. The discrete image has the same size as the number of sensors in the C.C.D.
matrix. Note that when the C.C.D is a line sensor, such as in modern satellite imaging systems, the
discrete image is obtained by the combination of several C.C.D line sensors, each one building a row
of the image. The signal ug is the discretized version of the continuous original scene (Fig.7). A small
sampling step s is crucial to obtain good quality images. However it is technically difficult to reduce
the sampling step because it is directly related to the physical size of the sensors. If s is too large,
the discretized version ug has poor quality because details of u are lost. The optimal s is given by the
Shannon sampling theorem. It is related to the maximal frequency component describing u. Before
analyzing the theorem, let us first recall some elements of Fourier theory.

Fourier transform of functions in !

Let f be a real-valued function defined on R™. Assume f € L' which means that [, |f(z)|dz < cc.
The Fourier transform of f is the continuous function }”\ € L' defined by

fe) = [ e wyis

where < &,z >= Y"1 | &x; is the inner product in R”. When }”\ € L', the function f can be
reconstructed from f with the following formula

_ 1 pi<ET>TF
@) = s [ <T@,
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Extract of the
frontal view of the C.C.D
C.C.D.

light rays

)
.

Figure 7: The light rays coming from the lens hit the C.C.D matrix. The sampling step s is the distance
between the centers of the adjacent sensors. As the grid is square, the sampling step is identical in
the X and Y directions.

A very useful property of the Fourier transform is the fact that the convolution calculus, which is
relatively difficult to perform, in the space domain becomes a mere multiplication in the Fourier domain.
The computation of any convolution is time consuming especially when the convolution kernel K is
large. Note that this convolution kernel is also called filter in this thesis, and x denotes the convolution
operator.

Ve e R", fxK(z)= RnK(y)f(w—y)dy
FrR=7-K and f?{:(;)n}?*f?. (1)

The definition of the Fourier transform given above for functions in L' is also true for functions in the
Schwartz space S. Let us recall that S C L' and that it is the space of functions with fast decay at
infinity for all derivatives, i.e. it contains the functions f € C™ such that z* 9% f(z) — 0 as |z| = oo
for any multi-indices «, 8 € N*. The Fourier transform operation is an isomorphism of S so if f € S
then }”\ € S, and reversely. As v is an image, let us set the dimension n = 2. The frame of the sampling
theorem is now defined.

~

Theorem 0.1 (Shannon sampling theorem) Let f € S and s > 0. If supp(f) C [—E, %]2 then

S

. (T . (Y
e <R, - (£ e (21
(z,y) e R,  f(z,y) Zf(ks,ls) sinc (- k) sinc . l
(k1)
supp(?) is the support of the function f and sinc(z) = % for x # 0, and sinc(0) = 1 by continuous
extension. The proof is given in [32]. In other words, the theorem says that any continuous function

f(z,y) can be exactly reconstructed from its samples f(ks,ls) as long as its spectrum ?(gz,gy) is

included in [-Z, %]2 Note that in this configuration, i.e. when f has compact support, f is said to

be band-limited. From the theorem, we know that the coarsest grid necessary to perfectly reconstruct
f has the critical sampling step s. Any smaller sampling step, corresponding to a finer grid, is also
accepted but it is not necessary since it would reconstruct exactly the same function f than with the
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grid with the large sampling step s. A similar formulation of the theorem is given by Unser in [53]
which presents an account of the current state of sampling, 50 years after Shannon’s formulation of
the sampling theorem. It recalls the classical sampling theorem. It is important to note here that this
formulation is a weak version of the Shannon theorem, and that there is an other formulation that

~

adds a degree ofireedom in the hypothesis of the theorem: the constraint supp(f) C [—%, %]2 is
replaced by supp(f) C R, where R is called the reciprocal cell. If ' is the regular sampling grid in the
space domain and I'* is the dual grid in the Fourier domain (for example the case of the square grid is
explicitly defined by Almansa in [2]: T' = Z () +Z($) and T'* = 27 (Z(() + Z(2))), then by definition
the reciprocal cell R is a tile of I'*. Let us now give the complete formulation following the one given

by Morel et al. in [34] and Almansa in [2] in the two dimensional case:

Theorem 0.2 (Shannon-Whittaker in S) Given a function f € S(R?), a 2-dimensional sampling
grid T' and a compact reciprocal cell R C R?. If the following conditions are met

(S1) (R,T™) is a packing,
(S2) supp(f) C R (i.e. f is band-limited),

then f can be completely recovered from its samples in ', i.e. from

g = {f’)’}ryer

by the following convolution
f=sxg

of the sampled image g with the generalized sinc kernel s = % - F(1R).

Notations:
e F~1is the inverse Fourier transform,
e S* is the area of a cell of T'*,
e by definition: given a grid I'* and a set R C R?, (R,T*) is a packing, if

VYyeTl,y#20=RN(R+7v)=9.

Now that we have recalled the Shannon theorem, let us go back to u and uy. We have seen that
the continuous function u is obtained by the convolution of the geometrical image u, with the lens
PSF and the captor filter. Since this operation is a low-pass filtering, u is band-limited. The spectral
support of u can be deduced when the PSF is known. In the end, the sampling step s can be optimized
to satisfy the Shannon sampling theorem. However, when the spectral support of u is large, which
requires a very small sampling step to satisfy Shannon theorem, the actual technology might not be
able to produce sensors of such small size. This unavoidable physical limit may have disastrous effects
on images. However the sensor grid can still be used if the spectrum of v is forced to be band-limited
prior to sampling.

The band-limitation of an image is a classical processing, that is required in many cases. In order
to correctly define the band-limitation of an image, let us first specify the band-limited space.
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Definition 0.3 We define the space of band-limited functions in the L? sense by
Bw = {f € L*(R),supp(f) C [-W, W]}
where supp(f) is the support of f.

Fig.8 shows one example of function f € By, and one example of the projection onto By of a
function g, which is not initially in Byy. The band-limitation is done with a hard frequency cut-off:

— oy _ [ 9(&) for [¢] < W
gw(f)—{ 0 for|é|>W

N A N
f g G
1 i 1 1 ! !
-w wo ¢ -w wo ¢ -w wo¢
support support support

@ (b) ©

Figure 8: (a) f € Bw (b) g € Bw (c) the hard cut-off of high frequencies of g yields gy € By .

Band-limiting a signal prior to sampling may degrade image visual quality since it may introduce
two artifacts called ringing and blur in the literature, whereas avoiding the band-limitation prior to
sampling creates another artifact called aliasing. These three artifacts are fundamental degradations
linked to the sampling stage. It is essential to minimize them although we show that there is an
avoidable trade-off between those three artifacts in most cases. This is the reason why we study the
three of them in this thesis. Let us now recall some basic facts concerning these artifacts.



Chapter 1

Aliasing artifact

Since the sampling stage may introduce aliasing, let us formalize it. Preserving each value of f on an
uniform grid with element size equal to s can be rewritten by using the theory of distribution

g:f'Hs

or equivalently in the Fourier domain

Q)

1 -~
* 11
51+ I
where Il is the Dirac comb defined by TI; = Z(k,l)eZ2 O(ksyis)- Let S’ be the space of tempered
distributions, dual space of S. We note ¢ the Dirac distribution defined in S’ by < d,.,y, 0 >= ¢(x,y)
for any test function ¢ € S. As 1:[\8 = (2?”)21'[2,,/8, then from (1) it is clear that sampling a signal is
equivalent to the periodization of its spectrum. The periodized versions of}”\ are called aliases. When

the spectral support length is larger than the period, the alias will interfere, creating the so called
aliasing artifact. The Fourier transform of the aliased version g is defined by

V(fm,fy) € [—E,E]Q, fzafy Z f (fac —76 21{) :

S S
(k,l)ez?

The addition of the Fourier transform components results in overlapping high and low component
values. Fig.1.1 shows the representation of the phenomenon in one dimension , which has a simpler

expression
voe[-LT], a0-37(e+ %),

kEZ

Note that values of}”\ are complex. For the clarity of the presentation the ordinate in Fig.1.1 represents
the real part of the Fourier transform. The same figure we would also be correct for the imaginary part
of the Fourier transform. Fig.1.2 shows the same phenomenon in two dimensions. The periodization
results in disastrous visual effects on images, especially on textures. It may create textures with a very
different aspect (Fig.1.3). Some other negative visual aspects of the aliasing are discussed in detail in
Chapter 12.
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Chapter 1.  Aliasing artifact
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Figure 1.1: The aliasing process in 1D. The aliases are obtained by the 2{—periodization of }”\

initial spectral domain final spectral domain
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Figure 1.2: The aliasing process in 2D. Example of a downsampling by a factor three in both the z
and y directions: the frequency support is reduced by a factor three in the &, and &, directions.

The aliasing artifact may occur at two stages. The first stage is the formation of the discrete signal
on the C.C.D. grid from the continuous version. If the sampling step is too large, the conditions of
the Shannon sampling theorem are not satisfied. Consequently, the high frequencies are replicated into
low ones yielding aliasing. The second stage when the aliasing may occur is the post-processing of the
discrete signal. For some applications, it is useful to have smaller images. For example, one may want
to reduce the cost of the transmission of the signal, or its storage space. One can reduce the signal
size by downsampling it. During this operation one preserves only one sample over s in each direction.
It transforms an original discrete image of size N x N to another one of size | ¥ | x [ 2] (Fig.1.4). The
replication of the high frequencies into low ones can be seen on real images when the original image
has a highly represented high frequency. For example, the oscillatory structure of the roof in Fig.1.3
changes orientation after downsampling. The structure of the roof in the sampled image has a lower
frequency than in the original image and the orientation is nearly perpendicular to the original one.
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(a) (b)

Figure 1.3: Aliasing example on a real image: (a) original 128 x 128 image (b) its sub-sampled
version (s = 2). Observe the texture orientation change on the roof: the parallel lines have different
orientations in (a) and (b).

Figure 1.4: Original discrete grid on which the preserved samples are marked by e and the samples
marked by x are discarded. The downsampling by a factor 2 in both directions reduces the image size
from 6 x 6 to 3 x 3.

As we said above, there is no contradiction with the hypothesis of the Shannon sampling theorem
as soon as the signal is band-limited. Then one can assert the absence of aliasing after the sampling
stage. However if the projection is done with a hard frequency cut-off, it introduces the ringing artifact
which we will study in detail in Chapter 3. But let us first give some comments on the blur artifact,
since we will see that it is directly related to the ringing.



Chapter 2

Blur artifact

We have seen that a hard frequency cut-off makes zero the frequencies above the cut-off frequency W
and preserves the others. By comparison, a smooth frequency cut-off suppresses the discontinuity at
|€] = W by regularizing the transition to zero for |£| < W and preserving the zero aliasing condition:
F(€) =0 for |¢| > W. This can be done by applying a smoothing window on f.

1.4

Shannon fil ter
smooth filte
1.2 ¢

1l

FT(filter)
o o
o =]

°
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. .
-W 0 w
frequency

Figure 2.1: The Shannon filter (hard frequency cut-off) and a smooth filter represented in the Fourier
domain.

Fig.2.1 shows the hard frequency cut-off and an example of a smooth one. In latter one attenuates
high frequencies close to the cut-off. This artifact degrades the image quality, reducing its sharpness
and discarding small details that were initially present in the original image. Fig.2.2 shows the original
image and the resulting filtered images before their downsampling by a factor s = 3. The Fourier
transform modulus shown in Fig.2.3 featuring hard and smooth band-limitation illustrates the results.
The original image (a) has a wide spread Fourier Transform. Only few frequency coefficients are equal
to zero. On the contrary, both band-limited images (b-c) have a small frequential support. However
they do not have the same visual impact: image (b) looks sharp but has ringing around edges, whereas
image (c) is blurry since only the low frequency coefficients are kept: most of the textures and details
are lost. But it has no ringing. This example shows the possible trade-off between these two artifacts.
The second part of this thesis is devoted to this problem and we try to answer the crucial question:
which filter gives the best trade-off? One immediately remarks that there are filters whose Fourier
transform graph are between the two tested in the example in Fig.2.1 (the hard and the smooth ones).
Such filters would give a better spread/ringing trade-off. But choosing the best one is not obvious.
In fact, we show in Part Il that there is not one single best filter for any spread/ringing trade-off, but
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that there is a family of best filters. Each of them is the best one for either a given spread value or
a given ringing value. In order to formalize the criteria of choice, let us define in detail the ringing

artifact. This is done in the following chapter.

(a) (b) (c)

Figure 2.2: (a) Original image (b) Image filtered with the Shannon filter (c) Image filtered with a filter

with smooth Fourier transform.

(2) (b) (c)

Figure 2.3: Fourier transform modulus of the images in Fig.2.2. The representation here is unusual
since in these figures white pixels mean that the modulus is equal to zero and darker ones indicate
higher values of the modulus. As always in natural images, most of the energy is contained in low
frequencies. This is indicated by the dark spot in the center of the three spectral images.



Chapter 3
Ringing artifact

Origin and description of the phenomenon

We keep the notations of the introduction. In order to satisfy Shannon theorem conditions, the
continuous signal f is band-limited prior to sampling. A hard frequency cut-off of f is defined by

G=7F-1 . .p
9=S sy

where s is the sampling step. Thanks to (1), the equivalent formulation in the space domain is given
by
g=f*K,

where K is a convolution kernel defined as the inverse Fourier transform (F~!) of ]l[_,r =2

1 T . Y
K(z,y) = ;2 ' sinc (;) - sinc (;) . (3.1)
Proof of (3.1): Let us note £, and &, the frequencies in the z and y directions, respectively.
F-1 (]l . (€z,€y)) (z,y) = L // 1, , o - e@&tU&) de, dé,,
[-%:3] 2r)? Jr Jr [-5.5]
1 /s

™ w/s
_ iw@dw-/ ey ge
(27‘(’)2 /w/s ‘ - —n/s ¢ gy

The first integral is equal to

wls it /s | | -
/ ezzfm déy = [6 :| — i (ezzw/s _ e—zzﬁ/s) _ 2 sm(xﬂ/s)

—7/s 1T —7/s tz z
if z # 0. Hence,
. B 1 2sin(zw/s) 2 sin(yn/s)
F! (]l[_g’g](fwafy» (z,y) = (271')2 ) = ' y

_ sin(z7/s) sin(yw/s)
N T - TY
1 . T . Y
= 5 sinc (;) - sinc (;) . O
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The sinc function oscillates and even has negative values (Fig.3.1-(a)). As we will see, the convo-
lution with such a function might also oscillate if f has sharp transitions. (In images, sharp transitions
are located at the border between two objects. We shall call such borders equally well edges and
contours. It refers to the occlusion principle we described in the previous chapter.) The perceptual
impact on images is the edge replication. In the literature, this artifact is called ringing: objects seem
surrounded by rings. There are different intensities of ringing. The length and the amplitude of the
oscillations change the visual impact. A long oscillation is more noticeable than a short one. The
ringing is called an artifact since it adds to the image information that does not exist in the original
scene. The replications are spaced by a constant value 2s, which is directly related to the zeros of
the sinc function. Ringing is particularly disastrous for the post-processing as oscillations might be
amplified (Fig.3.1-(b)). The ringing is sometimes called “Gibbs phenomenon” in the literature because
of the oscillations. However, in Chapter 4 we will see that the ringing is not a consequence of the
Gibbs theorem. In an image, transition sharpness may be of different orders. However the sharper the
transition is, the more ringing occurs. In order to have a good understanding of the phenomenon, it
is essential to define the projection onto By of a discontinuous function in 1D such as the Heaviside
function (Fig.3.2-(a)).

(a) (b)

Figure 3.1: (a) Graph of the z + sinc(z) function (b) Example of ringing on a real image. The
replications of the plane’s edges come from the sharp transition between the plane bright value and its
shadow.

Definition 3.1 The step function (also called Heaviside function) in 1D is defined by

1 forx>0

0 forz <O (32)

Vz € R, H(:c):{
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(a) (b)

Figure 3.2: (a) Graph of H (b) Graph of Hy,. The projection of the Heaviside function H onto By
oscillates.

Unfortunately, H belongs to L. _(R) but not to L'(R). We recall that L' C L . So the classical

loc loc*

definition of the projection onto the band-limited space (in the L' sense) is not adapted to H. Since H
is slowly increasing, it is also in &', the space of tempered distributions. So let us recall the definition
of the Fourier transform in &'.

Fourier transform of function in S’ [5]

Let f € S'(R™). The Fourier transform of f is the tempered distribution defined by
Vo € S(R"), < [, >=<f,5>

where S is the Schwartz class of functions with fast decay at infinity for all derivatives (S C &).
Remark: S' is closed under Fourier transform. If f € &' then f € §'.

Proposition 3.2 H is equivalently defined in the Fourier domain by

vECR, H(¢) = %PV(%) + (€ (3.3)

where PV stands for Cauchy principal value, defining 1/¢ as a distribution.

By definition, for any test function ¢,

L 0©) o [T 0l8) — e(=¢)
<PVl st [ T

Proof: H is equivalently defined in the space domain by

H(z) = 5 (sign(x) + 1),
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where sign(z) is the sign function:

1 forz>0

Vz € R, sign(z) = { 1 form<0 (3.4)
Since the Fourier transform is linear, we have V¢ € R
~ 1] ——— 1 —— 71\
H(¢) = —sign(z) +1 = —sign(z) + | = | - (3.5)
2 2 2
It is well known that the Fourier transform of a constant is a Dirac distribution ¢
71\ 1
5 ) =g 2mé(§) = 7d(¢) (3.6)

and that the calculus of s@) is done by using the Cauchy principal value, to avoid the problem of

$=0 2 1
Sen()(©) = ; PV(g)-

Let us give some more details on the computation of sign(z).

e First we give the expression of the Fourier transform of the derivative of sign(x). For any test
function ¢

<sign',o > = <sign, ¢ >

“+o00
= 2 @i =2-4(0)

—_—

So Vz € R, sign’(z) = 2 - §(x). Consequently, V& € R, sign’(z) =2-d(z) = 2.

e The value of sign(z) is obtained by integrating the previous expression. To that aim, we recall
some properties of the Fourier transform. Let f € S, we have 0f = i¢ - f [5]. So by integration
we have

— 2 1
In the end, substituing (3.6) and (3.7) in (3.5) yields V¢ € R
1

§) + wo(€) .

(e = 5 (2Pvp) +7o6) = 1 PV

]

g

This framework allows us to define the band-limited space By and the projection on this space in
a new sense.

Definition 3.3 We define the space of band-limited function in the S' sense by
Bw = {f € 8'| supp(]) C [-W, W}

where supp(}”\) is the support of ?
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Proposition 3.4 Let F € S'. The projection of F in By is the distribution Fyy € By such that

Fy = arg min [|1F — fll2-
{f: féBw and F—feL?}

The band-limited expression of F' is explicitly given by
~ ~ 1 .
FW(.’E) =< F, _]]'[—WW] e > .
2w ’

Proof:

1. We first demonstrate the existence of Fyy .
Assume f € By such that g = F — f € L? then

gZF—fZF—Fw—I-Fw—f

The function g is the sum of F'— Fyy and Fyy — f. We shall now determine to which space they
belong.

e First we prove that F — Fyy € By~ N L%, where By~ is the orthogonal complement to
By . Indeed on the one hand, Fiy € By and F = Fyy+Fyy1,s0 F—Fyy = Fyy € Bwt.
On the other hand, Fyy is one of the function f such that F' — f € L2, so F — Fyy € L2

e Second, the demonstration of Fyyy — f € By is immediate since Fyy € By and f € By

We have
g =F—Fy +Fw—f.
N~ —— N —
€L?  eBytinL? €Bw

It means that g can be decomposed into the sum of an element in By and an element in Byy~.
Consequently, g has a projection in Byy. We conclude that any element f + g with f € By and
g € L? has a projection in Byy.

2. We now demonstrate the uniqueness of Fyy with a proof by contradiction.
Assume there are two possible decompositions:

(i) F = fo + go with fo € By and go € L?,
(II) F = f1 + g1 with fi € Byy and g1 € L2

From (i) and (ii), we have F = fo + (91 — fo + f1)- Then go = g1 — fo + f1. Since go € L2,
then g1 — fo+ f1 € L.
Since
fi—=fo=90—q
N N\
€Bw €L?
then f1 — fo € Bw N L% So (fi — fo)w = (fi — fo)- This result is useful to prove that

90 — (g0)w = 91 — (91)w.

go—(g)w = g—fo+fi—(g1—fo+fi)w
g —fo+rfi—(g)w—(fr — fo)w
= g—(g)w+fi—fo—(fi—fow=g9—(g)w-
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To conclude, since g9 — (go)w = g1 — (91)w, whatever the initial decomposition of F', the
projection is unique.
Let us give some more details:

F = fivtg=fH+9g —(g)w+ (g1)w
= fit(gw+g —(9)w
EEW EB:VJ‘
Fy = F—lg—(91)w]
= F—[go— (90)w]

As g1 — (91)w = g0 — (go)w, the projection Fyy is unique.

O
By Proposition 3.4, it is clear that the projection of H onto the band-limited space Byy exists and is
unique. Fig.3.2-(b) shows the graph of Hy . A devoted study of Hyy is given in Section 4.4, however
the presence of oscillations, typical characteristic of the ringing phenomenon, can be explained here.
We have seen in (3.1) that the Shannon filter is a sinc function. The convolution of H with a sinc
function reduces to a very simple form:

sincx H(z) = /RH(:I: —y) sinc(y)dy = /R]IR+(.’II —y) sinc(y)dy

_ / " sinc(y)dy (3.8)

—0o0

From the graph of sinc, it is not surprising that its integral from —oo to x oscillates.

Proposition of the ringing definition

We propose to define the ringing in both the continuous and discrete cases. Let us first explain the
motivation before giving the definitions. We observed that the ringing phenomenon adds oscillations
when band-limiting a signal. However the term “oscillations” is not well defined. They can be observed
either on a continuous function g, either on its discretized version g(kw/W). If we suppose here it
means that the function is alternatively increasing and decreasing (as commonly assumed), then there
are ‘continuous” and “discrete oscillations”. Continuous oscillations are the alternation of maximal
and minimal local extrema with a certain period. A good example is the sine or cosine function. For
the discrete oscillations, extrema are chosen among the samples and thus depend on the sampling grid.
They might not coincide with the extrema of the continuous function. There might even exist a grid
configuration for which a very oscillating function has very small discrete oscillations. (For example,
the sine function has no discrete oscillations if the sampling step is equal to 27r.) The sampling step
is in general fixed by W, however the grid can be translated. So translated versions of the grid result
in different configurations of oscillation. Such an example is given in Fig.3.4.

Let us now define the continuous and discrete ringing. Before giving the definitions let us first
give some preliminary explanations. We have seen that the word ringing means that the band-limited
signal oscillates while the original signal is not oscillating. Since we can work either with continuous
signal/oscillation or with discrete signal/oscillation for the original and band-limited signals, we for-
malize for both signals the type of considered oscillations. The original reference will always be the
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discrete signal f(kw/W). So the discrimination between the continuous and discrete ringing is done
with the band-limited signal. This leads to the two following definitions.

Definition 3.5 When we approximate a function f(R — R) by a band-limited function g(g € Bw), g
may have additional oscillations the sampled function f(kw /W) does not have: this is the continuous
ringing phenomenon.

Definition 3.6 When we approximate a function f(R — R) by a band-limited function g(g € Bw),
the sampled function g(kw /W) may have additional oscillations the sampled function f(kn/W') does
not have: this is the discrete ringing phenomenon.

Examples of continuous and discrete ringing are shown in Fig.3.3 and 3.4, respectively.

1 o+ 1

0.8 1 0.8

0.6 1 0.6

0.4 4 04

0.2 1 0.2

Ob+ + + + + + + + 1 0

-0.2 -0.2 -0.2
0 0 0

(a) (b) (c)

Figure 3.3: Example of the continuous ringing phenomenon: (a) original non-oscillating function f (b)
its sampled version f(kw/W') does not oscillate (c) the band-limited version g of f oscillates. The
function g has continuous ringing since it is a continuous functions and it oscillates by comparison
with f(kx/W') which has no (discrete) oscillation: there is no discrete ringing in (b).
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0.8

0.6

04

0.2

0.2

0.8

0.6

0.4

0.2

-0.2

Figure 3.4: Two examples of the discrete ringing phenomenon: (a) band-limited oscillating function g
and samples (o) (b) g(km/W) This is an example of the discrete ringing phenomenon since g(km /W)
has discrete oscillations on the contrary to the original discrete signal f(kn/W). Furthermore, the
discrete ringing value is maximal since g(kw/W') has the same local minima and maxima than the
continuous signal g. The second line displays another discretization of g which shows small discrete

(a) (b)
(c) (d)

ringing because the samples (o) are located between the extrema of g.
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Ringing and the Gibbs theorem

4.1 Gibbs theorem

The Gibbs phenomenon is associated with the overshoots and undershoots of the truncated Fourier
series or integrals when approximating functions with jump discontinuities. This phenomenon comes
from the lack of uniform convergence of the Fourier series in the vicinity of sharp transitions. A more
detailed historical note on the Gibbs phenomenon is given in [20]. Even if the phenomenon is named
according to the mathematician J. Willard Gibbs in 1906, H.Wilbraham was the first to discover the
phenomenon in 1848. The Wilbraham discovery was almost forgotten for about eighty years. It was
not until 1925 that Carlslaw brought it to light. In reference to its two discoverers, the phenomenon
is sometimes named “The Gibbs-Wilbraham phenomenon™.

Gibbs proved the presence of overshoots and undershoots in order to explain the experimental
results of Michelson and Stratton. Their “harmonic analyzer” was built to reduce the labor of the
Fourier analysis computations. This machine computed the Fourier coefficients given the function to
be represented. They tested the 1D square wave

o) = { o for [z| < & ' (4.1)

=T for T <|z| <7

“They were surprised when their (such perfect) machine did not predict the square wave shape near
the jump discontinuities, but rather added an overshoot and undershoot on each side of the jump
discontinuities at z = £7 ..."[20]

Gibbs gave the full explanation of the phenomenon in a letter to the Nature journal and described
exactly the limit curve of the graphs of some functions. He brought the attention to the difference
between the graph of the limit and the limit of the graph of the Fourier series partial sum. When a
function has a discontinuity, the graphs of the partial sum oscillates. On the limit of the graph remains
a single overshoot and undershoot which is localized at the discontinuity. In 1906, Bocher gave a
complete proof of Gibbs's assertion and greatly extended it as follows [16].

Theorem 4.1 (Bocher) Let f be a real-valued function on the real line R with period 2w, and
suppose that f and its derivative f' are both continuous except for a finite number of finite jump
discontinuities in the interval [0,27]. Let S,(z) be the n'" partial sum of the Fourier series of the
function f, computed at the point x. The graphs of the function y = S, (z) converge to curves as
sketched in Fig.4.1-(b): in this figure, a is a generic point of discontinuity of f. The vertical segments
are of length 2Si()|f(a +0) — f(a — 0)| and are centered at 3(f(a +0) + f(a —0)).

28
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Note: Si(x) := [ sin) gt for 0 < z < oo. Si(n) = [V sin®) gt ~ 1.851
0 1 0 1

y y
0 2,1 X 0 ; §
(a) (b)

Figure 4.1: (a) graph of the limit (b) limit of the graph. The limit of the graph has a taller vertical
segment than the graph of the limit. At z = a, the vertical segment is of length L = 2Si(7) |f(a +
0) — f(a — 0)| and centered at £(f(a+ 0) + f(a — 0)).

4.2 s ringing a consequence of Gibbs theorem ?

Overshoots and undershoots are visible in two phenomena: the Gibbs phenomenon and the ringing.
These artifacts are both a consequence of the hard frequency cut-off. However, even if these two
phenomena have oscillations (we shall call them Gibbs effect), it is important to understand that they
are not equivalent.

e The Gibbs phenomenon, as given by Gibbs in his theorem and even after by Bocher, refers to
the overshoots and undershoots of a discontinuous function, such as the Heaviside function or
the 1D square wave. The oscillation amplitude cannot be reduced even with a large number of
Fourier coefficients. This phenomenon is characterized by considering the limit behavior: the
graph of the limit and the limit of the graph are not the same.

e We have seen in Chapter 3 that the ringing phenomenon oscillations are of different kind. Ac-
cording to Definition 3.5, the ringing oscillations come from the hard frequency cut-off of a C*
function, with k € [0, +00]. They may appear on a continuous function, as long as transitions
are sharp enough. The limit behavior is not considered anymore. These considerations allow
us to state that the ringing is not a consequence of the Gibbs theorem.

In the following section, we consider ringing on a C* function, which does not match the frame of
the Gibbs theorem.



30

Chapter 4.  Ringing and the Gibbs theorem

4.3 Example of ringing on a C* function

4.3.1 Theorem
Theorem 4.2 Let G, be the increasing function defined by

G,: R - R .

t = fioo e_j_;da:

with o € R. Let (G,)w be its projection onto Byy (W € R) with a hard frequency cut-off. Then
i) (G,)w is not monotone on R,
ii) (G,)w is increasing on [—T, ], where T is a positive constant which only depends on o.
(see proof in Appendix 1)

: : 2 [t
Remark: note that G, is related to the standard “error function” erf(t) = 7/ e dy by the
m™Jo

following expression

erf(%) +1  G,(z)
= fn

4.3.2 Discussion

In the proof of Theorem 4.2, we defined two constant values g and «aq, the values of which we shall
state later in the paragraph. Now let us make several important observations on the theorem.

e We have considered an error function G,. Whatever its sharpness controlled by the parameter
o, its band-limitation always lead to the creation of oscillations. One should note that for
t>t)= % oscillations start at the position of the local maximum and persist as t — +o0,
although their amplitude grows smaller as t increases. The value of ¢y depends only on ¢ but
the position of the local maximum depends on both o and W.

e The interval [—7, 7], where (G,)w is proved to be monotone, only depends on o (7 = ﬁ)
Even for small W, which corresponds to keeping only the lowest frequencies, the underlying
regularity imposed by the small spectral support [—-W, W] forces (G,)w to be very smooth. It
also implies that the abscissa of the first extrema does not go to 0 (Fig. 4.2).

e We can estimate numerically the values of ag and a;. Theorem 4.2(i) states that (G, )w is not
monotone on R. We showed that the sign of ((G,)w) is related to the sign of ho (W) where

0_2

The function h,, has the two following properties

ho(2w) = 0,
A (2n) <0
do ¢ a=0 .

Then hq(27) < 0 for a € [0, o), where g is defined as the smallest « such that h,(27) = 0.
The constant value « is also given by the sign of ho (W), which is positive on (0, 2F). So the
largest t such that (G, )w remains monotone around 0 is 23—13{, Since ho(3L) > 0 for a > o,
then «; is defined as the smallest « such that h,(37/2) = 0.
Numerically, we find oy = 0.0588 and «; = 0.0753 (Fig. 4.3).
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T

13+ b
O<t<t >ty

1.2 + forall W, (Ggw if Wt in E, ((Gg)w)'(t)<O0. 4
is increasing

11t - — :

09 b

0.8 b

0.5

Tto t

Figure 4.2: Behavior of ((G,)w)(t) for ¢ > 0. The spread of the monotone zone around zero depends
on o but not on W. From Theorem 4.2, (G,)w is increasing on [—7,7]. Moreover there is at least
one overshoot for ¢t > tg and Wt € E.

0.2

0.15

0.1
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0.02 0.04 0.06 0.08 0.1

(a) (b)

Figure 4.3: Graphs of the function (a) hq(27) (b) ho(2F). The values of o and « are determined
such that ho(2m) =0 and ho(2F) = 0. We obtain ag = 0.0588 and a; = 0.0753.
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e The band-limitation of a monotone function does not necessarily introduce oscillations. It de-
pends on both the filter and the function itself. If the function has no frequency higher than
the frequency cut-off then the projection on By does not change the spectrum of the function.
Thus, if the original function is monotone, then the projected function remains monotone. On
the contrary, if the function has frequencies higher than the frequency cut-off, then the projection
on By may or may not add oscillations, it depends on the projection filter.

e We have seen with the G, function an example of a monotone C'® function which oscillates
after being band-limited. We shall now wonder if there are some C'°° functions f which are
both monotone and band-limited. Assume f is an increasing function, then we have to prove
that there is such a C* function that is band-limited and respects f'(z) > 0 for all z € R. For
example the function defined by

VEER, T(¢) = (1 - 5,—') L ww () = <. I w

or equivalently by

W 2
VzeR T@):%-(%)

is both positive in space (Vz € R,T(z) > 0) and band-limited thanks to the multiplication by
T_w,w(£). Consequently, we have found one possible f by setting f'(z) = T'(z). The function
f is monotone, because Vz € R, f'(z) = T'(z) > 0, and it is also band-limited since the property
of being band-limited is inherited from its derivative. Here we have

f(2) :/w T(t)dt = T x H(z)

— 0o
where H is the Heaviside function, so from (1) we deduce that

~ ~ ~

7O =7 8O =7 (- Prg+m)

Since T'(€) has non zero values only on [-W, W], this also true for 7(€), which is then said to be
band-limited. It is now clear that there are functions that are both band-limited and monotone.

Let us remark here that the previously defined function f = T x H(z) can also be interpreted
as the band-limitation of the Heaviside function by a filter with triangle shape in the Fourier
domain. We have already seen in (3.8), the band-limitation of H with the Shannon filter, which
represents a hard-frequency cut-off filter, and we observed that ringing occurs. It came from the
oscillations of the sinc function along the x-axis. Now, with the filter T', the ringing is avoided
because T is positive, then its integral is positive and increases with z.

Remark: for any non-negative function f € C'°°, the function T % f is band-limited and non-
negative.
4.3.3 Numerical experiments

Theorem 4.2 is validated experimentaly in Fig.4.4. The projection of G; onto Byy is represented for
different values of W. As expected, we can see that



4.3. Example of ringing on a C* function

33

e ((G1)w)(t) is increasing on [—7, 7] with

o 1
© 21 24/0.0753

T ~ 1.822

e the abscissa of the first overshoot reaches a minimum at 7,

e for the tested values of W, all the function have at least one overshoot at the position ¢ > g

with
o 1
to = ~ ~ 2.062 .
2/ 24/0.0588
1 [ —
/
081 J
06 |
> F
04
n=2
Al n:g
A n= -
02 ¢ ,% n=7
iy n=11 = e
n=21
Op n=31 -
RIS . n=1024 -----
10 ® T 0T 5 10

Figure 4.4: Example of functions ((G1)w)(t) for t € [—10,10]. Different values of W are tested.
Since the signal size is 1024, the frequency associated to each integer n is given by W = n - W where

_ 27
Wo = 1024 "

Note that for any fixed o, there is a value of W that minimizes the abscissa of the first overshoot.
We observe that for small values of W, which means that the signal is reconstructed only with small
frequency coefficients, the position of the first overshoot is far from the transition (Fig.4.5(a)). This is
not surprising since the oscillations of those sinusoids have large period, which directly fix the position
of the overshoot far from the transition.

When W increases of a small amount, which means preserving some high frequencies, the abscissa
of the overshoot decreases and goes to 7 (Fig.4.5(b-c-d-e)). However, when W increases two much,
we observe that the position of the first overshoot is pushed away to larger ¢ values (Fig.4.5(f-g)). In
fact, the addition of higher frequencies succeeds in canceling the first overshoot, but this is not the
case for other overshoots. The sharp transition of the signal is better reconstructed, but there are still
oscillations, more far away from the transition, which cannot be avoided because of the lack of the
highest frequencies. Note that this phenomenon is very different from the Gibbs phenomenon: here
the abscissae of the first overshoots do not tend to 0 as W — oo and their amplitudes depend on
W, whereas for the Gibbs phenomenon, as we will see in the next section, the amplitude of the first
overshoot is independent of W and its abscissa tends to 0.
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Figure 4.5: Zoom of Fig.4.4 around the first overshoot. (a) n =5 (b) n =6 (c)n=7(d) n =28
(e) n =9 (f) n = 10 (g) n = 11. For each function (G1)w, the first overshoot is marked by (e).
Their abscissae are 2.275, 2.021, 1.884, 1.826, 1.850, 3.144 and 2.910, respectively. They satisfy the
condition of the theorem |t| > 7 = 1.822.
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4.4 Gibbs effect on the Heaviside function

Consider the Heaviside function H. The projection of this discontinuous function onto the band-limited
space is described by Bocher theorem. This implies the first part of the following property.

Property 4.3 Let Hy be the projection of H onto Byy, then
(i) HW not uniformly H,
W—o0

(ii) the maximal overshoot of Hyy is located at = = Jj;. Its value is yo ~ 1.0892 and is independent
of W,

(iii) the maximal undershoot of Hyy is located at x = —{. Its value is y, ~ —0.0892 and is
independent of W,

(iv) Hyw () = Haw (2).

(see proof in Appendix 2). The graph of Hy is drawn in Fig.4.6. The positions of the maximal
overshoot and minimal undershoot correspond to those predicted by Property 4.3.

Yo =1.0892
1 .

0.8 -

0.6

04 -

0.2 r

0 L
y, =-0.0892

-TW 0 W

Figure 4.6: Graph of Hyy. The overshoot and undershoot values do not depend on W.

4.5 Appendix 1

Proof of Theorem 4.2
Let us first recall the theorem.

Theorem 4.4 Let G, be the increasing function defined by
Go: R - R
:(:2
t = ffoo e o2dx

with o € R. Let (G,)w be its projection onto By ( W € R) with a hard frequency cut-off. Then
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i) (G,)w is not monotone on R,
ii) (G,)w is increasing on [—T, 7], where T is a positive constant which only depends on o.

Let us now prove it.
Proof of (i):

e |t is equivalent to prove that the derivative of (G, ) with respect to ¢ changes sign. By definition

+W )
(Go)w)(t) = o= / (@)(€) e€tde.

+W

GO ((a,)w) (1 S ieGo© e (4.2)

Let us define g,(t), the derivative of G, (t) with respect to ¢:

d d t g2 g2
= — = — o2 — a2 |
9o (t) dt Ga (t) dt /_Oo e dr e

So, thanks to the well known property

90(8) =1 £ (Go)(£),

(4.2) can be rewritten
1 +Ww N it
(@) @) = 5= [ o) e,

2
From [5], we know that the Fourier transform of g,(z) = e 2 is Go (&) = /T 0 e /4 then

a?e?
(cos

o +Ww
(Gow) () = 57 [ 5 (cos (60) +isin (¢t
o +W 22
= ﬁ/o e cos (&t)d¢. (4.3)

e With the new variables u = &t, s = Wt and a = %, the study of the sign of ((Go)w) (t) with
respect to ¢ > 0 is simplified to the study of the sign of

S
ha(s) :/ e~ cosudu
0

with respect to s. First we show that h,(2n7) < 0 for small values of o and n > 0.
Let us set n > 0, we will discuss the case n = 0 later.
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As ho(2nm) = 0 and
d 2nm 2nm

<—ha(2n7r)> = —/ u? cosudu = / 2u sinudu = —4nw < 0,
dOé a=0 0 0

we obtain
Jag > 0,Ve,0 < a < g , ho(2nm) < 0. (4.4)
As coswu is positive for u € (2nm — 7/2,2n7), we deduce from (4.4) that Va < ay,Vs € E,
ha(s) < 0 with E = U [2nT — g,Zmr]. (4.5)
neN*

Now let us go back to ((G,)w) . For any given o and W, there is a value of ¢ such that 2722 < o

and Wt € B. From (4.5), we get ((Go)w) (t) < 0. Since (Go)w) (0) = % iV e de > 0

and ((G,)w) is continuous, we conclude that (G,)w is not monotone in R. This proves
Theorem 4.2-i).

O
Remark: the proof is done for n > 0. We have shown that there is at least one value of ¢ > 0 where
((G5)w) has an overshoot. Since we have not studied the smaller values of ¢, corresponding to the
case n = 0, there might exist another overshoot with small abscissa. So the overshoot obtained with
n > 0 might not be the first one (we will see in (ii) that the position of this first overshoot is bounded
from above by 7). We shall not prove here whether there is or not an overshoot for the small values
of ¢, since we have shown that there is at least one, which is enough to prove (i).

Proof of (ii):

1) We first prove that

3
Va > a1,Vs > % ha(s) > 0. (4.6)
For this purpose, we write
a6 = 1aC*T) + 3 (25 + gl — 2mor — ) @1)
aS—a2 gm\ 4T 9mo\S mom 9 -
m=0
A+t ) .
with g, (t) = / e cosu du, my = [2—7r2J where |z] is the floor function, and
A
A=2mr+ 37”
e Let us prove that
Vm € NVt € (0,27], gm(t) >0 (4.8)

— For t € (0, ], the proof is immediate as cosu > 0 on [A, A + 7].
- For t € (m,2m],

A+t—m ) A+4m ) A+t )
qm (t) :/ e cosudu + / e~ cosudu + / e cosudu
A A+t—m A+m

A+t—m 5 9 A+m 9
:/ (e — e ™M) cosu du + / e * cosudu
A A+t—m
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As e~ov’ —g=e(utm? > 0 and cosu > 0 on both (4, A+t—mx) and (A+t—m, A+7),

gm(t) > 0.
e let us prove that

3
day > 0, Va > a1, ha(g) > 0.

3

(4.9)

By definition hq(3X) = Jo? e " cosu du. Thus by Lebesgue’'s dominated convergence

2
theorem we have 5
lim ha(?ﬂ) =0.

a—oQ

Furthermore
d 3 .
%h]a(T) :—A U26 au COosSUu du

)
=—/ u2e " cosudu
0

Bl

! / " cos t{(m — )%™ 4 (m + )%+ ay
0

— On one hand, for ﬁ < %

™ 1
2 —ou? Ve —ou?
/ u?e™®" cosudu 2/ u?e™ cos(—=) du
0 0

1 I
:—cos(—)/ e Vdt ~ ©
0

ay/a Va a—00 ay/a
for some positive constant C. Hence
2 . C
—/ u?e™ "’ cosudu < —r(a) with rla) ~ ——.
0 a—00 a\/a

— On the other hand, we bound from above the second term

™

0
by
) _as? 1
4 =
8m“e WO (a\/a)'
Consequently,
d 37

30!1 > 0, Va 2 aq, Eha(y) <0 .

From (4.10) and (4.11), we deduce (4.9).
e From (4.8) and (4.9), we know that

(4.10)

(4.11)
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1. ha(%) >0,
2. Vm € {0,1,...,mo— 1} @gm(27) >0,
3. Gmo(s — 2mom — 3F) >0
(> 0if mg =0, 8>377r).
With (4.7), this ends the proof of (4.6).

2) Now let us study the sign of hq on the interval (0,2F). First, we have proven in (4.9) that
ha(325) > 0 for & > a1 and by definition we have hq(0) = 0. Then, from the sign of the cosine
function we know that h,(s) is increasing on [0,7/2] and decreasing on [7/2,37/2].
Consequently,

ha(s) >0 on (0, 3;) . (4.12)
3) From (4.6) and (4.12), we deduce that
Va > a; Vs € (0,+400) he(s) > 0. (4.13)
! 0'2
4) Now let us go back to ((G4)w) . By definition s = Wt and a = TR Thus

(Go)w) (1) = C - h 2 (W)

g
e

a

with a constant C positive. The condition o > 1 is equivalent to ¢t < 7 with 7 = Svar

From (4.13) — and (4.3) for the case ¢ = 0 — we conclude that

7

Vie[-1,7] ((Go)w) (t) > 0.

This proves Theorem 4.2-ii). O

4.6 Appendix 2

Proof of Property 4.3
Let us first recall the property.

Property 4.5 Let Hy be the projection of H onto By, then
(i) HW not uniformly H,
W—o0

(ii) the maximal overshoot of Hyy is located at x = y;. Its value is yo ~ 1.0892 and is independent
of W,

(iii) the maximal undershoot of Hyy is located at x = —{;. lIts value is y, ~ —0.0892 and is
independent of W,

(iv) Hyw () = Haw (2).



Chapter 4. Ringing and the Gibbs theorem

Let us now prove it.
Proof of (i): It is proved by Bécher theorem. R
Proof of (ii): The inverse Fourier transform (F~1) of H is by definition

- L Te 1 [ . .
f@) =7 [B©)] @) =5 [ e Bz,
™ —00
From (3.3), Vz € Rie > 0,
5 1 [ 1,1
H(r) = - €. (2 PV <
(z) o (z éL+m5> d¢
1 —€ ei{a: 1 +00 eifz 1 o0 ;
_ T T L ¢
gl [ Spdetorlm ) et o /_ooe mode (4.14)

From [5], we know that F(1) = (27) -6, so F 1(§) = 5. In the end, the last term of (4.14) is simply

1 . i 1
-1 _ i€x _ _
0) = — 0dé = — = —.
F o) 27 /_ooe mode 2r 2
Thus
~ I 1 .. [Toele 1
Heo) =gl | Ge®talin) w4ty
Let Hy be its projection onto Byy. Vx € R e > 0,
1 ¢ itz 1 W it 1 1 (W sin(¢x) 1
H = —1i d — i d -—= - d —.
w(z) gram | e tgpm ) ekt 7r/0 e %ty
By changing the variable t = £ z, we obtain Vz € R,
1 (" sin(t) 1
H == dt + —. 4.15
wie) = [ e+ (415)

This last expression proves (iv). Now let g(t) = % be the function defined for all ¢t € [0, +00). We
seek Wz, such as Hyy is maximal. Let us consider the integral:

Wz _:
/ S“;(t) dt = Agwa (4.16)
0

AO,Wac = AO,T( + A7r,27r + A27r,37r + A37r,47r +...+ Ak:ﬂ',Wm

where k € Z and Ay (naye = [T 520 gt with 7 € Z.

nmw t
As sign(g(t)) > 0 for ¢t € [0, 7] + k - 2w and sign(g(t)) < 0 for t € [m,27] + k - 2w (k > 0), then the
sign of A,r (ny1)r in (4.16) alternates: Ao >0 , Agpor <0, Aoz3: > 0, ... (Fig. 4.7). Let us

compare the values of two successive integral values A, (ni1)r and A 1)r (ng2)r-
Let ¢; € [nm, (n+ 1)7] and t2 € [(n+ 1), (n + 2)7] be such as ty = t; + 7, and let us compare their
associated values g(t1) and g(t2)

sin(t1)

g(t1) = 7 , g(t2) =

sin(t2)
ty
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positive integrals-

negative integrals

0 5 10 15 20 25 30

Figure 4.7: Graph of g(¢). The sign of the integral of g(¢) on each interval [0, 7] +2k7 and [m, 27|+ 2k
alternates.

As the sine function is odd and 0 < t; < t9,
sin(t1) sin(t9)
t1 to )

Indeed |sin(¢1)| = |sin(¢y + 7)| and |1/t1| > |1/(t1 + 7)|. Moreover by taking all possible ¢; €
[nm, (n + 1)w] and to = t1 + 7, we cover the whole integration space. We deduce:

|An7r,(n+1)7r| > ‘A(n+1)7r,(n+2)7r|'

We have also demonstrated that A, (4 1)r and A, 11)x,(nt2)r have opposite signs. If A 1 1), <0,
then A 1)r (ng2)r > 0, then A iy + At yr (ng2)r < 0. Consequently, the right term of (4.16)
is an alternate series of terms with the following particular property: the first negative integral is not
canceled by the next one, which is positive inevitably.

A0,7r + A7r,27r + A27r,37r + A37r,47r + A47r,57r +...+ Akﬂ,W.CC
v N ~~ - N -

>0 <0 <0

Consequently, as Ay > 0 and Ag 4 is increasing for z € [0, 7| (because sign(g(t)) > 0 on [0, 7]+k-27)
then the maximal value of Hyy is reached when Wz = w. So from (4.15), the maximal value is given

by
1 2 sin(t) 1 1 (™ sin(t) 1
H =_ dt+ === dt + =
w(@) 7'('/0 t + 2 7r/0 t + 2

which is independent of W.

Proof of (iii): As H is odd, then Hyy is also odd. Consequently, from (ii), Hy is minimal when
Wz = —7. The overshoot value is independent of W. This property is also valid for the undershoot
value.

Now let us consider a transition from 0 to 7. From Bocher theorem, the amplitude of the transition
is increased due to the band-limitation. We know that

2
L=2.8i(r) T ~1.1783804-T.
™

Hence,
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e the overshoot has ordinate

N
Do B

T
Yo = + E‘I'

2
— - Si(n)-T.
7r

N =

In our case T' =1, because H is a transition from 0 to 1, so

1 1 2 1

1
=-+gz-—8i(m)-1=-+--11 4 ~1.0891902.
Yo 24—2 - Si(m) 2+2 78380 089190

Since H = 1 at the overshoot, Hy increases the original value of H at this point by 1 —
1.0891902 ~ 0.0892.

e symmetrically with respect to the origin, the undershoot has ordinate

b = 3-5=p-3 Si(m) ~ —0.0891902 . (4.17)

Proof of (iv): It is already done in the proof of (ii).



Conclusion

This part presented the origin of the three artifacts studied in this thesis: aliasing, blur and ringing.
For this, we recalled some properties of Fourier transform theory. We stated that

e aliasing, defined as the overlapping of high frequencies onto lower ones, is perfectly predicted by
the Shannon sampling theorem,

e blur is understood as a lack of high frequencies, especially for the reconstruction of edges,
e ringing comes from a sharp low-pass filtering, which creates oscillations around edges.

Even if the three artifacts have their own definition and characterization, we have seen that they
are all linked to the sampling stage and that there is a trade-off between the three of them. Let us
recall here the main contributions of this part.

First, we extended the definition of the projection onto the band-limited space Byy in the L' sense
to the projection in the S’ sense, where S’ is the space of tempered distributions. This has the great
advantage for formalizing the projection of the Heaviside function into By, which is not possible in
the classical definition of the projection since this function does not belong to L'. This preliminary
formalization is important for the second part of this thesis, which is dedicated to the study of the
low-pass filtering of the Heaviside function.

Second, we proposed two definitions of the ringing phenomenon, depending on whether the os-
cillations of the band-limited function are analyzed in the continuous or in the discrete sense. This
distinction is inherent to the two possible definitions of the not well defined term “oscillation”, which
is associated to a visual feeling. We showed that there are continuous and discrete oscillations, which
might not coincide for the same continuous function.

Third, we showed that the ringing phenomenon is not a consequence of the Gibbs theorem. We
recalled that the Gibbs theorem refers to the overshoots and undershoots of the hard frequential cut-off
of a discontinuous function. Moreover, the Gibbs theorem analyses the non uniform convergence of
functions and shows that the graph of the limit and the limit of the graph are not the same. Thus
there are two reasons why the ringing phenomenon is not explained by the Gibbs theorem. First, the
ringing phenomenon may appear on a C* function. Second, the uniform convergence is not analyzed.
We are interested in the presence of oscillations for a given band-limiting projection, and not by its
limit behavior.

Fourth, we gave a complete study of an example of the ringing phenomenon. In order to prove
that the discontinuity of the function is not required, the chosen example is the C error function.
Theorem 4.2 states the non-monotonicity of its projection onto By, and gives the smallest possible
abscissa of its first overshoot. Numerical experiments confirm the theorem.

Finally, we concluded with the Gibbs theorem by studying Hyy: the projection of the discontinuous
Heaviside function onto Byy. As expected, Hyy oscillates. Property 4.3 gives the position and the

43



44

Conclusion

value of its first overshoot. This result is the mathematical justification of some results of the next part,
since the first overshoot is closely related to the level of ringing associated to this low-pass filtering.
The next part shows that the hard frequency cut-off gives very bad results in terms of the level of
ringing for a given blur level. This leads to the challenging goal of building new low-pass filters with
smaller ringing values.



Part Il

Ringing and blur control in the sampling
process
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This part is dedicated to the ringing control in the sampling process. Since it is essential to band-limit
the signal before sampling to avoid aliasing, we consider low-pass filters. Moreover the blur/ringing
artifacts are not specific to images, in comparison with one-dimensional signals, so the whole study
is done in one dimension and is generalized to the 2D case in Chapter 7. Some examples of one-
dimensional low-pass filters have already been given in the previous part. One of them is the sinc
function which is the optimal low-pass filter in the L? sense since it preserves all the frequencies in
the bandwidth. But it also has a major drawback: large ringing oscillations in the space domain.
As this artifact degrades image quality and might even be increased after a post-processing, it is a
paramount to reduce it as much as possible. Some filters such as prolates or splines introduce less
ringing. However in the Fourier domain they result in the loss of high frequencies, which blurs edges.
These filters allow a trade-off between blur and ringing. However in practice, we know neither how
much blur and ringing they add, nor which one is the best.

For example, in some applications, one may allow some ringing. It is the case in a noisy image
because the noise may hide the ringing. Since there is a blur/ringing trade-off and since the ringing
has to be under the level of noise in the image, the best filter is the one that adds small ringing (not
noticeable for this level of noise) and little blur. The zero ringing filter is not adapted, because this
unnecessary strong constraint on the ringing adds more blur in the image.

In this part we propose a unified approach of the ringing and blur measure. We control the level of
artifacts of a filter by its Spread-Ringing curve. This curve is interesting at different levels.

level 1 (the filter level) : the Spread-Ringing curve of a filter measures simultaneously its level of
ringing and blur. It is the trade-off curve.

level 2 (the filter family level) : the Spread-Ringing curve of a family of filter enables to choose
the best filter within a family.

level 3 (the filter family comparison level) : the comparison of the Spread-Ringing curve of filter
families enables to choose the best filter family out of classical ones.

A practical application of this joint measure of the ringing and blur artifacts to a real optical system
is given in Chapter 8. This is a special constrained case where the filter is fixed by the instruments of
the optical device and is optimal for a given blur/ringing trade-off among the associated filter family.
Finally in Chapter 9, some numerical experiments are presented for image reduction. This represents
the unconstrained case where the filter can be freely chosen. The filtered numerical images with the
optimal filter are compared to the results obtained with other classical filters.
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Classical filters

As mentioned before, we recall here some one-dimensional classical low-pass filters. This is not meant
to be an exhaustive review of the literature, but more an indication of aliasing-free filters. For example
we do not consider the splines typically used for image resizing (enlargement or reduction) [38] [54]
[51]. In this study, we focus on even filters because they are the most commonly used and enforce
the classical assumption that there are no privileged directions. It is well known that such filters have
a real and even Fourier transform. Some filters are already band-limited such as the Shannon filter.
Some others becomes band-limited by simply windowing the Fourier domain by 1;_yy y(£), where W
is the frequency cut-off. The considered filter families are parametrized by a. Here are the definition
of the filters in the Fourier domain, the graphs of which are shown in Fig.4.8:

1. the Shannon filter V¢ € R, sinc(€) = Ly, uy(6).
2. the frequency truncated trapezoid (o = (a1, @2) with ay € [0,1] and a2 € [0, W]):
-1
W — as
The parameter o determines the level of discontinuity at |€] = W. If @y > 0, then the modulus
is discontinuous, whereas if a; = 0, then T, € C?. Note that we obtain the Shannon filter

for a1 =1 or ap = W. Assume the ringing is correlated to the discontinuity amplitude in the
Fourier domain. Then the larger «; is, the more ringing the reduced image has.

To(6)= 11—y o) (€) + (1 rLgg o az)) g (6)

The parameter ay determines the level of continuity at £ = 0. For as = 0 and ay # 1, the
first derivative of T, (0) does not exist. The parameter ay is interesting because it refers to
the assumption of J.Buzzi and F.Guichard [8] that the blur is uniquely defined by the second
derivative at the origin of the Fourier transform (£ = 0) of the filter. Here we have two parameters
ag and «; to measure both the blur and the ringing.

The case a; = as = 0 build a special filter called “frequency triangle”.

sinc Ty T
1 1|22 1
i
-W w E -W w E -W w E

Figure 4.8: Visualization of low-pass filters in frequency space: sinc, To, and T filters. As filters are
even, Z(T,) = 0 and R(T,) = T, (idem for sinc and T').

Theorem 4.6 The frequency triangle filter T is equivalent to the Cesaro filter.

Proof: The Cesaro mean of a sequence {a;}32 is defined to be the average of the n first partial
sums. Let S) = Zk a; be the partial sum and ¢, = %22;8 S). the Cesaro mean. Then

=0
n—1
k
Cp = kz:o(l — ;) ay.
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Denote by gn the truncated Fourier series

gn(0) = % +3 [ax cos(k) + by sin(k6)].
k=1

The Cesaro regularization (hy) is a mean of the successive coefficients gn (6)

po g Nk k6 + by, sink6
hN()—? + Z ~ [ag cos kO + by sinkb).
k=1

. N -k k
The Fourier coefficients are weighted by the factor C(N, k) = = 1-—.
This factor is equal to the weight of filter T which can be rewritten by definition

() = ( - %) Apww)

O
Shannon coefficient Cesaro coefficient
e 1
(N-1)/N
\\\\\\\\\ k 1/N | | | | k
‘ LF HF LF HF
@) (b)

Figure 4.9: (a) Shannon filter (b) Cesaro filter. For both filters, the Fourier coefficients are set to zero
for high frequency & > W. The Shannon filter preserves Fourier coefficient from the low (LF) to the
high (HF) frequencies whereas the Cesaro filter has a triangle shape: it preserves better low frequency
coefficients.

This equivalence between the frequency truncated triangle filter 7" and the Cesaro filter is inter-
esting, because the Cesaro filter is often proposed in the literature to reduce the ringing artifact
[20]. But as we will see in the filter classification, the counterpart of this zero ringing filter is
the large amount of blur in the images. Most of the time, the perceptual results are better when
allowing some ringing and so preserving transition sharpness.

3. the frequency truncated cosine filter (« € R):

_ (1 + cos(ag)

Gal©) = () @

Notice that é;(O) = 1, as usually chosen for filter to preserve the mean of an image. This
filter is different from classical windows (Hamming, Van Hann, Blackman [29], Chebyshev... )
which have a similar definition in the space domain. For example, the Hann window (also called
Hanning window, in analogy to the Hamming window) is defined by

T 1+ cos(mz/T)

Vz € R, Ha(z) = cos? (E> A7) = (f) A ().
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4. the band-limited Gaussian filters for which « is the scaling factor. Let us recall that the not
band-limited Gaussian filter defined by

1 22
x = 8_20'_2
90(2) = 75

optimizes the spatial/spectral concentration according to Heisenberg inequality [32]:

Theorem 4.7 (Heisenberg inequality) /f f € L?(R), then

/IR efnd /]R EFEPe >3- ( /R f2(t)dt>2,
B

~—_—
spatial concentration frequential concentration

with equality if and only if f(t) = ae P for some o € R and 8 > 0.

The Fourier transform of an non band-limited Gaussian is also a Gaussian [5]
~ _o%¢?
ga(f) = \/7_'('6 2

The associated band-limited Gaussian filter is defined by

—~ 70-2)52

Go(§) =e 2 - Tww(€)

to satisfy both the band-limiting constraint and the image mean preservation (C:‘;(O) = 1).
However we will see that the blur/ringing trade-off will be measured on the graph of the function
resulting from the convolution of the Heaviside function and the filter, which in the case the
Gaussian filter can be expressed using the error function

erf: R — [-1,1]

t — %fg e dx

by using the following function
erf(az) + 1

2 7
the Fourier transform of which will be band-limited to [—W, W]. Its derivative with respect to
x is the associated filter called G,. Note that for this filter, the parameter « is directly related
to the sharpness of the transition of G, x H as shown in Fig.4.10. Large values of « yield
sharper transitions which have a larger spectral support than smooth transitions. Consequently
the band-limitation in [—W, W] adds more artifacts for large values of «.

(4.18)

5. and the prolate spheroidal function defined by Slepian, Pollak and Landau in [49] [25] [26] [47]
[48], also called simply prolate in this thesis. This filter does not optimize the spatial/spectral
concentration according to Heisenberg inequality, as the Gaussian does, but it maximizes the
concentration of its energy in a given spectral support, which is here D = [-W, W]. The spatial
support is fixed and parametrized here by « to build the prolate family. Let us call D, = [—«, ¢]
The energy being maximized in the given spectral support is

]_ —
||1/3\||2/D ‘Pa(£)|2d€:X2a
a 3

where P, is the prolate parametrized by « and x € [0,1] as close to 1 as possible. The iterative
algorithm to build the filter is given by Rougé in [42].
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Figure 4.10: Curve Gy x H(z) for a = 1,2.

It is also interesting to compute the inverse Fourier transform of those filters in order to have an
idea of the oscillating behavior of the filter in the space domain. The more oscillating the filter is,
the more ringing it may add. The band-limitation, achieved with a multiplication by 1;_yy(¢), is
equivalent to a convolution by a sinc function (%) (replace £ by W in (3.1)). So we expect
oscillating filters.

The expression of the filters in the space domain is well known in the literature. The prolate is
defined in [48]. The Gaussian case is studied in Theorem 4.2. Now let us give the explicit expression

of the truncated cosine filter.
Proposition 4.8 The inverse Fourier transform of 6‘;({ ) is

1 sin(W?) N 1 (sin((a+t)W) sin((a — t)W))

(Ca)W(t) = o~ a+i a—1

el 419
2T t 47 ( )

Proof: By definition

1 W — - 1 W »
(Ca)w(t) = o . (Ca)(€) - €% d{za/_wi(l+cos(a§))-elé d¢
1

= 1- i ettde + L /W cos(ag)e’t d¢ = L gsin(Wt) + L /W cos(af)ettde
i J_w i J_w 4T i |_w

Assume A is the last integral of the previous equation, then

W W w
A= cos(af)etde = cos(af)(cos(&t) + isin(ét))dE = cos(ag) cos(&t)deE
W -w

-w

as the function cos(a) sin(£t) is odd with respect to £&. Moreover cos(af) cos(&t) is even, hence

w w
A = 2/0 cos(a) cos(&t)dE = /o (cos(a€ + &t) + cos(a€ — &t))dE
. . w . .
4 - [sm(af + £t) N sin(af — §t)] _ (sm((a + )W) N sin((a — t)W))

a+t a—1 0 a+t a—t

This ends the proof of the proposition. O
From (4.19) can be deduced a very simple form of (Cy)w that show the oscillating characteristic of
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this filter. So let us remark that (4.19) is the sum of three sinc functions. Indeed

sin(t)

MW W sine(T) with sinc(t) = and T = 2
t Tt ™

So

T a+t + a—t

a2 e (520) e (7))

This last equation shows that (Cy)w is the sum of three sinc functions, centered int =0, t = —«
and ¢t = «, respectively. Note also that the central sinc function (centered in ¢ = 0) has a twice larger
weight than the side ones (centered in t = —« and t = ). Fig.4.11 displays (Cy)w with W = 5 and
a=6.

1 sin(Wt) 1 (sin((a +H)W)  sin((a— t)W))

NS ¥

0.8

0.7¢
0.6
0.5r
0.4¢
0.3r
0.2p

0.1p

-0.1f

0% 15 10 s é 5 0 15 20
Figure 4.11: Curve (Cy)w(t) for « = 6 and W = 5. The function (Cy,)w(t) is the result of the
addition of three sinc functions centered in t =0, t = @ = 6 and t = —a = —6, respectively.

As you can see from Fig.4.11, a large value of «, such as shown in the example, does not produce

an interesting function g = ¢ x H since it has visually three big steps where we wished a single one.
The side sinc functions are far from ¢ = 0. This result is confirmed in Chapter 6, where o ~ 0 yields
the best blur/ringing trade-off for (Cy)w * H.
Going back to the case a ~ 0, the position of the first overshoot can be deducted from (4.19).
Considering the filter, it is equivalent to find the abscissa of its zeros. Since, the three sinc functions
are centered in points very close to t = 0, their zeros are very close. In Property 4.3, we saw that the
first overshoot of the sinc function centered in ¢ = 0 has abscissa g = 7.

Remark: it coincides with the zeros of the sine function. For T' > 0, the smallest T such
that sinc(T") = 0 is also the smallest T' such that sin(nT) = 0, that is T = 1. Since T = £, it yields
t= -

Since « is very small, the position of the overshoot of the sinc function centered in ¢ = +aq, is also
very close to ty. Consequently, the first overshoot of the function g(t) = (Cq)w * H () has its abscissa
close t = ty (Fig.4.12). This property is also satisfied for large values of «, because the oscillations

of the side sinc functions have nearly no impact on g(t) for ¢ around zero. The case « € [g,4ty] with
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€ a small positive number, is the most difficult case, since the side sinc functions are centered close
enough to ¢ = 0 to interact with the overshoot of the central sinc function in ¢t = t;. Fig.4.13 shows
the filter (C,)w and its Fourier transform used in Fig.4.12.

1.2 T T

40 30 20 <10 0 10 20 30 40
Figure 4.12: Graphs of the function g(t) = (Co)w * H(t) and Hy (t) with o = 0.03. Both have the

first overshoot in ¢ close to #y. As expected, the filter (Cy,)w adds less ringing (smaller overshoot)
than the sinc one.

FT(filter)

- 600 - 400 -200 0 200 400 600 -W 0 w
X frequency

(2) (b)

Figure 4.13: Graph of (C,)w (a) in the space domain (b) in the Fourier domain, with o = 0.03.

The reduction method

In order to measure the amount of ringing after a low-pass filtering, we model image transitions by
the Heaviside function. Let us consider a filter ¢ € By, such as a classical filter mentioned above.
Applying this filter to the Heaviside function (H), yields a new signal ¢ = ¢ x H. This is the signal
the ringing of which we will now measure.



Chapter 5

Joint measure of ringing and blur
produced by a family of filters

5.1 The Spread-Ringing curve with the L* norm

A sharp edge, such as the Heaviside function, has neither blur nor ringing. There is no blur because
this function is discontinuous in z = 0 with lim,_,,- H(z) = 0 and lim, ,o+ H(z) = 1. So the
transition from 0 to 1 has zero spread. There is no ringing because H is monotonic. The filtered signal
g = ¢ x H may have both artifacts. Blur is localized at the transitions. They are smoothed yielding
a non-zero spread. The ringing phenomenon is localized around the transitions, adding some spurious
oscillations. Since it is difficult to define the distance from the edge where blur stops and where ringing
begins, we choose to measure simultaneously the spread of the transition (S) and the amplitude of the
oscillations outside the transition domain (R) by constraining the graph of g, I'y = {(z,g(z)); = € R}
to be contained in the domain Dg r (Fig. 5.1).

Definition 5.1 We denote Dg g the subset of R? defined by

< -5 and |y <R
Dsr=1 (z,y) | or|z| 5% and —-R<y<1+R
oer% and |1-y| <R

We observe that a small R prevents too large oscillations of g, while a small S ensures a sharp edge
approximation of the discontinuity of H. Hence, the couple (S, R) reflects the blur/ringing trade-off
to be satisfied by g. This leads to the following definition.

Definition 5.2 The Spread-Ringing domain associated to a filter ¢ € By is
D((P) = {(Sa R) € (07 —I—OO)2; FLp*H C DS,R}- (51)
The Spread-Ringing curve associated to ¢ is the boundary of D(y).

If (S,R) € D(yp), so does (S + p, R+ q) for any non-negative p and g. So the boundary of D(yp)
is obtained by taking the minimal possible value of R for any fixed S, or the minimal value of S for a
fixed R. The Spread-Ringing curve can be described by the graph of a function

r,(S) = min{R € (0,4+00); (S,R) € D(¢)}

53
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1.2
1t 2R |
| 2R 0.8 |
06 |

0.2 1

2R}

-0.2

Figure 5.1: Dg r domain Figure 5.2: T'y is included in Dg g

except when the Spread-Ringing curve has vertical edges, which never occurs with the filters we
consider. An example of the Spread-Ringing curve is shown in Fig.5.3 and Fig.5.4.

This definition of ringing has the drawback that no unique value of S and R are associated to a
given filter since, as we mentioned before, it is difficult to distinguish the edge from the ringing near
the transition. However, this construction has the advantage to remain very general, since it does not
rely on any arbitrary threshold.

0.1

| . ‘

Ringing /%

domain
0 U.‘S ‘1 1‘5 % 215 f; 35

Spread S (pixels)

Ringing R,

Figure 5.3: The Spread-Ringing curve and the Spread-Ringing domain associated to the filter (Cy)w
with a = 0.066.

Definition 5.2 can be generalized to a family of filters ¢, (« being in general a real parameter) and
still yields a single Spread-Ringing curve, as specified in the following definition.

Definition 5.3 The Spread-Ringing domain associated to a family of filters (¢u)aca S

D((¢a)aca) = |J Dl¢a). (5.2)
a€cA

Its Spread-Ringing curve is the associated boundary.
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Remarks:

1. From Definition 5.3, we can construct the Spread-ringing curve associated to each filter .

Consequently, the Spread-ringing curve of a family of filters (p4)aca is

T(va)aca (§)=min{R € (0,+00); (S, R) € D ((pa)aca)}- (5.3)

2. The curve ry, is decreasing with S. The larger the spread is, the smaller the oscillations, and then

the ringing, are likely to be outside the spread domain, because the amplitude of the oscillations
decays with the distance to the edge. This curve explains the trade-off between ringing and blur,
as no point on r, achieves minimum ringing and blur simultaneously. The curve 7, provides
the smallest reachable S by the tested filter ¢ for a given R value. Conversely, it provides the
smallest R associated to a fixed S. The curve r(,,) provides the smallest reachable S among
all tested filters ¢,. The filter, that minimizes S for a given R, is the filter ¢, that preserves
the best sharp transitions for this level of noise. An example of the Spread-Ringing curve of
the cosine filter family is shown in Fig.5.4. In order to explain the construction of this curve, it
also shows some Spread-Ringing curves of four cosine filter with a = 0.03,0.038,0.051,0.066,
which have worst or same results than the Spread-Ringing curve of the cosine filter family. The
comparison of the Spread-Ringing curves of all the filter families studied in this thesis is presented
in Section 6.2.

0.1 T T T T T T . T
i 4 Spread-Ringing curve
| 0=0.03
0=0.038 --------
0=0.051 -
0=0.066 -----
0.08 - _
0.06 - _ _
L‘Cg rrrrrrrrrrrrr B
j=2)
c
IS}
£
x
0.04 - B
0.02 - _
0 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35

Spread S (pixels)

Figure 5.4: The Spread-Ringing curve of the family of (C,)w filters is the boundary of the
union of the Spread-Ringing domain over all the o, some boundaries of which are plotted for
a =0.03,0.038,0.051, 0.066.

3. Since the value of the parameter a is not the same for all the couples (S, R) of the Spread-

Ringing curve r(, ), it is interesting to plot the curve of the associated couples (o, R). In
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practical applications it gives the values of « that gives the expected value of ringing. Fig.5.5
shows the couples («, R) for the cosine filter family (Cqo)w .

0.1 T T T T

0.08 - b

0.06 - b

Ringing R,,

0.04 - b

0.02 - b

0 0.02 0.04 0.06 0.08 0.1
o]

Figure 5.5: The curve of the parameter « associated to the Spread-Ringing curve of the cosine filter
(Co)w shown in Fig.5.4.

5.2 Other possible measures

This approach to define the ringing has been finalized after realizing that other direct measures of
ringing and spread were not satisfactory. Let us describe some of them.

The easy way is to decorrelate the estimation of S and R. For instance, one possibility is to evaluate
S with g'(g_l(%)), the slope of the function g = ¢ x H at the transition, which is related to the value
of (g7 1(3)). But this definition is not satisfactory in practice because it is too local to the transition
center gil(%) and does not give the global transition speed from 0 to 1. This measure is adapted
to filters ¢ with spatial unimodal shape, whose maximal value is ¢(g~!(%)). But this measure is not
satisfactory for the filters with non spatial unimodal shape, because the point g_l(%) may not have
the largest slope and then the spread estimation is corrupted by the local low value of the filter in
97 (3)-

A similar approach is the one proposed by Ladjal: the blur is measured locally around sharp tran-
sitions [23]. It is based on the study of the tangent of the inflection point of the transition g. Let us
recall the blur definition given by Ladjal and the corresponding figure (Fig.5.6). This method has the
same drawback than the previous one since it is localized to the inflection point and does not take into

account the behavior far from the edge, which could amplify or reduce the subjective blur.

Definition 5.4 Let g be a real differentiable function on R, not constant and bounded. The blur
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measure associated to g is defined by

max;eRr g(z) — mingeg g(z)
maXscr |9 ()|

F(g) =

inflection
point

0.8 1

0.6

0.4

0.2 ¢

Figure 5.6: Definition of blur proposed by Ladjal: here the blur F' is the abscissa spread of the tangent
to reach the transition height.

The approach proposed by Marziliano et al. [30] also measures the spread of sharp transitions.
The start and end positions of the edge are defined as the local extrema locations closest to the
edge. However this measure is not adapted to the our case since they did not consider the ringing
phenomenon, whose oscillations may change the local extrema locations.

Another possibility to measure S is to consider the value inf{z, g(z) =1 — v} — sup{z, g(z) = v}
parameterized with -y, or to compare the spread of the given function g with a parameterized function,
the spread of which we can estimate. Both possibilities were rejected as the choice of the parameter -,
the choice of the reference function and the choice of the parameter to measure the distance between
g and the reference function are arbitrary.

In order to have a parameter-free definition, here are two possibilities for a joined definition of S
and R using the local monotony of g.

1. The first one is to consider for S the value

S1(g) = 7 — 2~ = argmax g(z) — arg min g(z)
z€eR zeR

and the associated ringing value R;(g) = max(|g(z™)[, |1 — g(z™)|).
2. The second one is based on the upper and lower envelope.
g" (z) = inf(h(z); h non decreasing;h > g).

g (x) = sup(h(x); h non decreasing;h < g).

The associated spread S, is the maximal interval [z, 2] such that g~ (I) = g*(I). The ringing
value is then Ry(g) = max(sup,<,- [9(z)|,supg>,+ |1 — g()]).
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Figure 5.7: Example of function with a perceptual Figure 5.8: Graph of the function g(z) =
spread smaller than Si(g). ffoo sinc(t)dt. This increasing function has

a perceptual finite spread.

The first possibility is not satisfactory as the transition may look sharper than S (Fig. 5.7). The second
one returns an infinite spread value and no ringing (S1(g) = +o00 and R = 0) if g is monotone. This
is not coherent with the perceptual spread value (Fig. 5.8). We prefer to tolerate a positive ringing
value for monotone functions than an infinite spread value.

The Spread-Ringing curve has the advantage of avoiding this kind of problem. Moreover, it is
parameter-free and characterizes the ringing with the L norm. We chose naturally to control the
ringing with the L> norm (rather than with the L? norm for example) because our perception of
images is more sensitive to large local overshoots than to small oscillations (hidden by image noise
or textures) spread on a large domain. However experimental results (see Chapter 9) showed that
this norm has perceptual drawbacks. At equivalent L* norm, the eye detects the ringing where long
oscillations are. So it is also interesting to define the Spread-Ringing curve for other norms, such as
the L? or L' norms.

5.3 L? and L! norms to measure the ringing

In the previous section, the ringing was measured with the L* norm. We shall call SR, the associated
Spread-Ringing curve. Let us now define SRy and SR; which are the Spread-Ringing curve built with
the L? and L' norms, respectively.

Definition 5.5 The Spread-Ringing curve SRy associated to a filter ¢ € By is

-8 +0o0

(f(z) — H(z))* dz + / (f(z) — H(z))? dx}

SRy(p) = {(S, Ry) € (0,+00) where Ry :/ s
(5.4)

—0o0

Definition 5.6 The Spread-Ringing curve SRy associated to a filter ¢ € Byy is
SRi(p) = {(S, R;) € (0,+00) where R; :/

—00

f@) - H@)|ds + [

+S

|ﬂm—H@nm}.
(5.5)
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Now that we have defined the Spread-Ringing measures, we shall propose three algorithms, asso-
ciated to the three previously defined Spread-Ringing curves (SR, SR2, SR1) to design the three
corresponding optimal filters.



Chapter 6

Optimal filters for the Spread-Ringing
curves

6.1 Definition and construction

Optimal filters for the SR, curve

We now build a family of band-limited filters (¢g), called SR filters, having the best possible Spread-
ringing curve. These filters have minimal ringing R for a fixed spread S, or equivalently, minimal spread
S for a fixed ringing R. The algorithm proposed here sets S while minimizing R. We recall here the
two constraints that should be satisfied:

1. the filter is band-limited (¢ € By),
2. the signal ¢ x H minimizes R when S is set.

The design of the filter is based on the Alternative Projection Onto Convex Sets (POCS) [19]. This
method is commonly used for image restoration [59]. The filter contains the two latter desirable
properties by alternatively projecting onto the convex constraint sets. Let us now explain why the two
constraint sets are convex:

1. the first constraint is related to the band-limitation property of the filter. The convex signal sets
include the space of band-limited signals [19], so the sets of band-limited signals are convex sets.

2. the second constraint requires the projection of the graph of the function f = ¢ x H in the
domain Dg r. The set of functions

A={f|TyCDsgr}

is a convex set because for every f € A and every g € A, the function a-f + (1—a)-g € A for
all a € [0,1]. Indeed from Definition 5.1, if f € A, then for z < —3, f(z) € [-R, R]. Moreover
if g € A, then g(z) € [—R, R] too. By linearity, we obtain a- f(z) + (1 — «) - g(z) € [-R, R].
The property is preserved for all z < —5. The same reasoning can be applied for [z| < £ and
T > g So the property is satisfied for z € R.

For convexity reasons, this family exists and is unique. For each S, g can be computed by the
following iterative algorithm:
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Algorithm 1 (SR, optimal filter)
set ¢ = &y (Dirac)
assign a large value to R

repeat
set o5 = ¢
set N =1
repeat

force I'yur C Dg, g by thresholding
force ¢ € By, that is (&) =0 for £ & [-W, W]

set N=N+1
until convergence test or N > N4y
reduce R

until N > Npar

The thresholding of g, where ¢ = ¢ x H, produces ¢’ such that I'yy C Dg g and ||g — ¢'[|2 is
minimum. This is achieved by projecting I'y onto Dg . The convergence test is satisfied when the
two forcing steps have small enough effects on ¢, that is, when the first forcing step changes ¢ by less
than &1 (according to L norm) and the second forcing step changes ¢ by less than €5 (according to
the L? norm). In practice, we checked that convergence was undoubtedly attained with Ny, = 10000
and €1 = g9 = 0.001.

When looking at SR filters (obtained with this algorithm), we noticed that their Fourier transform
was real symmetric (as expected), but not unimodal (that is, not increasing on R~ and decreasing on
R*), due to large weights on the frequencies near the cut-off frequency W. This phenomenon, due
to the fact that the ringing is controlled through a L norm, can be undesired in some applications
(since for example, natural images generally have unimodal spectra). It can be avoided by building
unimodal SR filters, that is, whose Fourier spectrum is non decreasing on R~ and non increasing on
R™, obtained by adding a third forcing step in the algorithm (between the Dg g forcing step and the
By one) which changes ¢ into its L? unimodal regression. This is a isotonic regression problem, also
called monotonic regression in the literature. It involves finding the least square fit y to a vector z
with weight vector w subject to monotonicity constraints. A standard algorithm for isotonic regression
that find a piecewise constant solution is the pool adjacent violators (PAV) algorithm [3].

Algorithm 1bis (unimodal SR, optimal filter)
set ¢ = &y (Dirac)
assign a large value to R

repeat
set w5 =@
set N=1
repeat

force I'yp C Dg g by thresholding
force ¢ € By, thatis (&) =0 for £ & [-W, W]
force unimodality of ¢ by isotonic regression

set N=N+1
until convergence test or N > Nz
reduce R

until N > Npao
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Some results obtained with Algorithm 1 and 1bis are illustrated in Fig.6.1 and 6.2. The signal
¢ has N = 1024 samples and the frequency cut-off corresponds to a reduction by a factor 16, i.e.
W = N/2-1/16 = 32. The tested spread values are S = 1,1.5,2,2.5 pixels because we consider that
transitions larger than 2.5 pixels are very blurry.
Remarks:

e The value of W is arbitrary since different values of W simply mean different scales.

e In the algorithm, the projection onto By is performed after the thresholding, because the
constraint of band-limitation is more important than the ringing performance of the filter. After
convergence, one has to be sure the filter is in By to avoid aliasing. The unimodality constraint
has no influence on the filter’s bandpass once it is band-limited.

SR uni modal filter
SR filter (not uninodal)

0.8 -

0.6 |

FT(filter)
FT(filter)

-W 0
frequency

(2)

-W 0

frequency

(b)

Figure 6.1: Some SR filters in Fourier domain (a) with and without unimodal constraint for S = 2 pixels
(b) with unimodal constraint for different S. Note that the filter without unimodal constraint has an
unnatural shape.

Optimal filters for the SRy and SR, curve

The optimal filter for the SR, curve is calculated by constraining the spread value S while minimizing
the ringing R. A reverse approach could have been used: setting R while minimizing S. For the
L* norm, both approaches are equivalent because the ringing is related to the extremal values of
the signal, which are easily detected with the adopted geometrical definition of the ringing. For the
L? and L' norms, the “box” approach is only adapted to measure the spread and not the ringing.
Consequently the design of the optimal filters for the SRy and SR; curves is done by setting the
spread while minimizing the ringing. We used a gradient descent with a small step size €.
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Figure 6.2: Filters of Fig.6.1-(a): S = 2 pixels. (a) SR filter (not unimodal) (b) SR unimodal filter.
Oscillations decay faster with the SR unimodal filter.

Algorithm 2 (SR, optimal filter)
set ¢ = &y (Dirac)
fix S
fix €
repeat
minimize the L? error

| ¢oxH(z) —e(p*xH(z) — H(z)) for|z| > S
Ve ER, pxH(z) = { o * H(x) otherwise
force ¢ € By, thatis ¢(§) =0 for & & [-W, W]

until convergence

The design of the optimal filters for the SR; can be obtained with an algorithm similar to the SRo
case, except that it minimizes the L' error. As the SR; curves did not give a clearer classification
than the SRy curves we did not proceed further: we did not compute the associated optimal filter but
the SR; classification for the classical filters is given in Fig.6.12. The optimal filters for the SR» curve
are shown in Fig.6.3. Note that the Fourier transform of ¢ is already unimodal. This is the reason
why we did not add a monotonicity constraint as in Algorithm 1bis.
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Figure 6.3: SRy optimal filters ¢ for S = 2 pixels (a) in Fourier domain (b) in space domain.

R SRy | SRy unimod. || Gaussian | prolate cos T, sinc
opt. fil. opt. fil.

S=1 0.0555 0.0699 0.0766 | 0.0786 | 0.0769 | 0.0772 | 0.0892

S=1.5| 0.0212 0.0247 0.0314 | 0.0339 | 0.0328 | 0.0289 | 0.0892

S=2 0.0086 0.0096 0.0118 | 0.0155 | 0.0146 | 0.0160 | 0.0892

S=2.5| 0.0036 0.0039 0.0070 | 0.0062 | 0.0076 | 0.0115 | 0.0892

Table 6.5: R, ringing table for S = 1, 1.5, 2 and 2.5 pixels. A smaller ringing value indicates that
the filter adds less noise in the filtered image. “opt. fil.” stands for “optimal filter”.

6.2 Comparison with the Spread-Ringing curves of classical filters

6.2.1 SR, curves

One of the main contribution of this thesis is to give a blur/ringing measure to compare different filters.
Fig. 6.4 shows the Spread-Ringing curves of the prolate, Gaussian and sinc filter. The Spread-Ringing
curves of the Cosine and Frequency truncated trapezoid are not displayed for the sake of clarity, but
Table 6.5 shows some characteristics of all the filters.

We observe that for any S, the Shannon filter have the highest ringing value. This is not surprising
as this filter is highly discontinuous in the Fourier domain. Note that the ringing value is coherent
with Bdcher theorem (Theorem 4.1). We recall from Property 4.3-iii that a Heaviside function has a

ringing value of @ — % ~ (.0891902.

We observe that the band-limited Gaussian filter yields better results than the prolate: for small
spreads, i.e. S < 2.5 pixels, the ringing value with the Gaussian is smaller. If we consider that a
transition with a spread larger than 2.5 pixels is very blurry, then the band-limited Gaussian should be
preferred to the prolate in practice. On the same interval, the cosine and the prolate gives very similar
results. This unexpected result is interesting because the cosine has an analytic expression, unlike the

prolate, which is easy to use in practice and allows some mathematical calculus thanks to its continuity
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Figure 6.4: SR, Spread-Ringing curves. The unimodal and not unimodal SR filters perform better
than the other tested filters.

property.

However for larger spreads, the cosine is no longer optimal since it adds more ringing than the
prolate. The trapezoid filter in the Fourier domain T, is the only tested filter that performs better
than the band-limited Gaussian for small spread values S € [1.1,1.7]: this filter produces a slightly less
noisy image than a band-limited Gaussian, however it performs very badly for other spreads (Fig.6.6).

As expected, the SR filter shows optimal results, which confirms its optimality. It proposes the
smallest ringing measure. Of course the SR, unimodal filter shows worst results than the SR filter
since it is more constrained. For small S, this difference gets magnified. The unimodal constraint
penalizes the ringing performance as the spread of the resulting function is larger for equivalent R.

For practical applications, we shall give now the («, R) curves associated to two commonly used
filters: the band-limited Gaussian family G, (Fig.6.7) and the prolate family P, (Fig.6.8). The curve
of the cosine family C,, has already been given in Fig.5.5. As expected, the band-limitation in [-W, W]
with the filter G, has better results for small values of « since the large values of « correspond to sharp
transitions, which are more affected by the band-limitation in [-W, W] (i.e. adds more ringing) than
a smooth transition. We recall here that for the prolate filter P,, the parameter a does not measure
the sharpness of the transition as for G, but it gives the size of the spatial support. A small spatial
support is a bigger constraint than a large one. This is the reason why large « introduce less ringing.
Note that the spatial support is discretized so that the values of « are integer. In this experiment, the
tested signal P, has size 1024 and the tested values of o go from 3 to 150 which represent a spatial
spread support of [3-2 4 1,150 - 2 + 1] = [7, 301] samples.
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Figure 6.6: SRy, Spread-Ringing curves. The trapezoid filter in the Fourier domain performs better
than the band-limited Gaussian for small spread values S € [1.1,1.7].
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Figure 6.7: Curve of the parameter a associated to the Spread-Ringing curve of the Gaussian G,,.



6.2. Comparison with the Spread-Ringing curves of classical filters

67

0.1

0.09 -

0.08

0.07 -

0.06

0.05 -

Ringing R,

0.04 -

0.03 -

0.02 -

0.01 -

60

Figure 6.8: Curve of the parameter « associated to the Spread-Ringing curve of the Prolate filter P,.

Ry SRy SRy | SRy unimod. | Gaussian | prolate cos To sinc
opt. fil. || opt. fil. opt. fil.

S=1 0.0519 | 0.0817 0.0591 0.0552 | 0.0551 | 0.0551 | 0.0600 | 0.1162

S=1.5| 0.0115 || 0.0202 0.0143 0.0120 | 0.0117 | 0.0116 | 0.0157 | 0.1093

S=2 0.0023 || 0.0046 0.0033 0.0030 | 0.0024 | 0.0024 | 0.0064 | 0.0873

S=2.5 | 0.0004 || 0.0009 0.0007 0.0012 | 0.0005 | 0.0005 | 0.0046 | 0.0594

Table 6.10: Ringing table for § =1, 1.5, 2 and 2.5 pixels.

6.2.2 SR, curves

Fig.6.9 shows the SR, curves and Table 6.10 gives some values for specific spread. As expected the
SRy, filter gives the best results, i.e. the smallest Ry for any fixed S.

The prolate and cosine filter have similar ringing values for small spread values, i.e. for S € [0,2.5].
This confirms the previous results that a cosine filter might be a judicious filter choice since its SRy
curve is very close to the optimal one. However for larger spread values S > 2.5, the prolate should
be used instead of the cosine, because the prolate performs better in that case.

Conversely to the conclusion for the SR, curve, the SRo unimodal optimal filter introduces less
ringing Ry than the not unimodal one. The faster decay of the oscillations of the unimodal filter
reduces Ry, whereas this decay was no help for Ry, as only the maximum value did count.
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Figure 6.9: SRy Spread-Ringing curves. The SRj filter performs better than the other tested filters.
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Figure 6.11: SRy Spread-Ringing curves. Comparison of the cosine and prolate filters.
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6.2.3 SR; curves

The good results of the cosine filter are validated by the SR; curves (Fig.6.12). A zoom is given in

Fig.6.13.
7 T T T T T T
Prolate -
\ band-limited Gaussian
N cos (Fourier domain) --------
6 sinc —-—— |

Ringing Ry

trapezoid (Fourier domain) ---------

Figure 6.12: SRy Spread-Ringing curves.
trade-off similar to the one of the prolate.

1.5 2
Spread S (pixels)

For small spread,

the cosine filter offers a Spread-Ringing
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: SRy Spread-Ringing curves. Comparison of the cosine and prolate filters.



Chapter 7

Filter generalization to the 2D

There are several ways to generalize 1D filters to 2D. The most common one is to use the separable
convolution in both directions. This is how we reduced the images in the numerical experiments
(Chapter 9). Another possibility is to determine the 2D filter directly from the 1D filter. We note k
the 1D filter and [ its generalization to two dimensions. The aim of this chapter is to determine the
2D filter [ from the known filter k, such as the filter described in the previous chapters. This approach
requires some additional hypothesis on [. First we shall consider an additional isotropic constraint on
the spatial behavior of [ in order to have an identical filter response in all directions. In this chapter
the isotropic filters are also called radial shaped filters. Second, the result of the convolution of the
filter k and the Heaviside function (1D step function), which is kx H, is generalized to two dimensions
by considering the result of the convolution of the filter [ and the 2D step function Msp.

Definition 7.1 The step function in 2D is defined by

1 forz>0

0 forxz<0 (7.1)

Y(z,y) € B2, Mop(z,y) = {

The associated constraint is that the result in one dimension k& x H should be equal to any line y of
the result in two dimensions [ x Map(:,y). In practice, we use the following equivalent constraint in
two dimensions:

V(z,y) € R, Mapxi(z,y) = (k*x H) ® 1g(z,y) (7.2)

where ® denotes the tensor product.
In the first section, we present some mathematical results obtained on the Fourier transform of
those radial shaped filters. In the second section, we design the filter [ from a given filter k.

7.1 Radial shaped filter’s Fourier transform property

In this part, we use another definition of the Fourier transform which is equivalent to the one given
in Part | because we write now the transform in terms of oscillation frequency (u,v) instead of the
angular frequency (&;,&y) = (2mu,27v). This definition is more convenient than the one given at
the first place because the computations have a simpler form. In this section, we shall prove that the
Fourier transform of a radial function can be written with the Hankel function of its associated polar
expression. Let us first recall the considered Fourier transform and the Hankel transform pairs.
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Let f: R xR — R be a function and F' its Fourier transform
o0 o )
Fuo)= [ [ fy)e et dzay (7.3)
—00 J -0

with u € R and v € R the oscillation frequencies associated to directions = and y. We note H the
zeroth order Hankel transform. By definition, the Hankel transform pairs are

Hlf o) (0) = 27 /0 " o) - Jo(2mpr) r dr

Spai(r) = 2m /0 N H[fpatl(p) - Jo(2mpr) p dp

where Jj is the zeroth order Bessel function of the first kind defined by

Jo(r) = l/ cos(—rsinf) df.
0

™

Property 7.2 (Fourier transform of a radial function) If f is a radial function, f(z,y) = fpo(r),
with r = \/x2 + y? and fpo the associated polar function

fpoF R* - R
T = fpol(T)

then F' is radial and defined with the Hankel function (H):
F(u,v) = C[Fpa(p)] = C[H[fpa](p)]
where p = \/m and the transformation
C7: fzy) = fpolr).

Proof: We introduce the polar coordinates defined

e in the space domain by z = rcos(f), y = rsin(0)

e in the Fourier domain by u = pcos(p), v = psin(y).
Let note F' the expression of F in polar coordinates

F: RxR — R
(prp) = Flp,op)

and P the transformation from any function g(p, ¢) in polar coordinates to its expression g(u,v) in

Cartesian coordinates
P: R = R

glp,p) = g(u,v).

In polar coordinates, (7.3) becomes

F(u,v) = P[F(p, )] (7.4)
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with

oo 2
F(p7 <P) — / f(T, 6)6—27rirp(cos(cp) cos(#)+sin(y) sin(0)) rdr db.
0 0
If f has radial shape, then f(r,0) = fpol(r).

F(p, (P) — fO pol e—2mirp(cos(0—)) ¢ dr df
_ fo f m— (pfpol( ) —2mirp(cos(9)) y dr dO

_ fO 0 fpol —2mirpcos(0) . dr 16

as the cosine function is 27-periodic. Hence, Vg

Flog) = C{P(uy0)] = Fyalp)
_ fooo fpol(T)[fO% 6727rzrpcos(0)d9] rdr
= 21 [ fpot(r)Jo(2mpr) r dr
= H[fpoll(p)

This result shows that F(p, ¢) is independent of ¢.

7.2 Application to 2D radial filter design

(7.5)

In this section, we shall use Property 7.2 to design the desired 2D radial filter [ from the expression of

the 1D filter k. It is explicitly given in Property 7.3.

Property 7.3 Let k be the known 1D filter and K its Fourier transform. Let [ be the desired 2D
radial filter: 1(z,y) = lpoi(r) satisfying (7.2). The filter is obtained by applying the inverse Hankel

Transform on K.

Lpol(r) = H™'[K](r)

Proof: The constraint on both [ and k is (7.2), that is

V(z,y) € R?, Mop xl(z,y) = (kx H) @ 1r(z,y) .

Since Msyp is the 2D step function and H the 1D step function, (7.2) can be written

V(z,y) € RQ, Ir+yr * (z,y) = (kx1g+) @ Ir(z,y).

Taking Fourier Transform (FT) on both sides yields

V(u,v) € R2’FT(]1R+XR*I)(U’U) = FT((k*]lR+) ® nR)(U,U) -

Thanks to Fourier Transform’s properties,

(7.7) & VY(u,v) € R, FT(1g+yg)(u,v) - L(u,v) = FT((k* 1g+) ® 1g)(u,v)

FT((k* 1g+) ® 1r)(u,0)

& V(o) R, L(uw) = —paq e

From Property 7.2, we deduce that the Fourier Transform L of [ is radial and we have

L(u,v) = C[H [lpol] (p)]-

(7.6)

(7.7)

(7.8)

(7.9)
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Equation (7.8) only depends on the parameter u because

FT (15 ), v) = tPV - + 75(6)

1 1
FT((hx 154) ® 12)(0,0) = (PV - + 70(6)) - K(u)
where K is the Fourier Transform of the 1D kernel k. Hence, (7.8) becomes
Y(u,v) € R?, L(u,v) = K(u). (7.10)

The right term in (7.10) is independent of v then one can choose v = 0. It simplifies equations by
setting u = p and then (7.9) yields

L(u,0) = C [lpoi(w)] = C[H [lpa] (w)]-

Finally
lp0| (u) =H [ZP°|] (u)

and (7.10) is now
Vu € R, H [lpol](u) = K(u).

7.3 Numerical computations

In this section, a 2D kernel [ is computed from a known kernel k£ by using Property 7.3. Moreover we
check if k and the obtained filter [ satisfy the constraint (7.2).

Fig.7.1 and 7.2 show the chosen 1D filter k (it is a prolate of size 512) and the obtained 2D filter
[, respectively. The validation of the constraint (7.2) is done in Fig.7.3. In this last experiment, the
transition is from 0 to 100 for visualization reasons and not from 0 to 1 as it is for both H and Msp.
The comparison of one line of the image Myp x[ with the signal kx H shows very similar results. Note
that theoretical expression of [ given by Property 7.3 suppose that H and Msap have infinite support,
which is not possible in the experiments.
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Figure 7.1: Example of a 1D prolate kernel in the Figure 7.2: The associated 2D prolate kernel in
space domain. the space domain obtained with Property 7.3.
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Figure 7.3: Comparison of k x H (1D) and a line of Myp x [ (2D). Both signals are very similar as
imposed by the constraint (7.2) of Property 7.3.



Chapter 8

Application to a real optical system

8.1 Description of the system

In this chapter, we study one of the satellite optical system launched by the CNES. The two contri-
butions we will consider here are the optical and the physical sampling device. The optical system is
an isotropic low-pass filter. The sampling system is a CCD array which has a regular sampling grid.
There are possible other distortions due for example to the motion blur of the satellite, but we will
not take them into account. We keep the notations of the previous chapter and we set the frequency
cut-off W = % for normalization reasons. The Fourier transform of the filter family (parametrized by
a € RT) is modeled by

Balrr&y) = sinc(&,) -sinc(g,) -¢ToV e +HE) (8.1)

optical device

physical sampling device

with (&;,&,) € R%. For the CNES satellite, the parameter « is given by the lens geometry of the
satellite optical chain: o = 3.702.

In order to study the amount of ringing and blur of the filter family ¢, we compute its Spread-
Ringing curve. It also adds a new filter family into the filter classification and it shows that the filter
chosen by the CNES (a = 3.702) inside the (¢,) family has its own Spread-Ringing curve, that is
optimal for a given (S, R) couple.

In order to keep the framework of the previous chapter, we do not study ¢, but its 1D band-limited
version (to avoid aliasing) called h,. The Fourier transform of the filter is then set to

—

ha(€) = sinc(§) - e - Ly (8.2)

Note that the CNES’s filter defined by 3702 in (8.1) adds aliasing since the modulus of § is not zero
at the frequency cut-off. Indeed at the frequency cut-off ({,&,) = (W,0), we have

—~ (1 . 1 _
Pa (W,O) = Qa (550> = sinc (5) ‘e

sin(r/2) -31 01 40,
/2

N1

Its band-limited version (h3.702) is shown in Fig.8.1.
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o
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Figure 8.1: The band-limited filter h, with o = 3.702 (a) in the Fourier domain. (b) in the space
domain.

In this model, the high value of « enhances the exponential decrease of the Fourier modulus.
Prefiltering with such a filter creates a blurry image. Another example of h, is shown in Fig.8.2 with
a = 0.6. In this case, the shape of the filter Fourier transform is close to the triangle filter 7. The
quantity of blur due to the prefiltering stage might be similar to the one of the trapezoid filter T(,, ).

0.03 r

FT(filter)

0.01

-W 0 w - 600 - 400 - 200 0 200 400 600
frequency X

(2) (b)

Figure 8.2: The band-limited filter hy with @ = 0.6 (a) in the Fourier domain (b) in the space domain
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8.2 The Spread-Ringing curve of the system

The SR, curve of the h, filter family is compared to the one of the optimal SR filter and the prolate
(Fig.8.3). As expected the optimal filter has the best blur/ringing trade-off. The new filter family h,
performs better than the prolate on a small spread interval S = [1.24,1.5]. Fig.8.4 shows the Fourier
transform of one of this optimal filter. Note how close to a cosine shape it is. This result is not
surprising since the cosine filter C,, performs better than the prolate for small spread values. However
this filter family h,, gives bad results for small ringing values since it requires very large spread values.

0.1

@)
(©

0.08 -

0.06 -

Ringing R,

0.04 -

0.02 -

0 1 1 1 1 1 -
0 0.5 1 15 2 25 3 3.5

Spread S (pixels)

(a) Optimal for the L norm (unimodal)
(b) Optical system h, ----—--—-

(c) Prolate -~

Figure 8.3: SR, Spread-Ringing curves

Fig.8.5 shows the optimal parameter « for each ringing value. Small « values give the best trade-off.
The value o = 3.702 is not optimal in the considered spread range S € [0,3.5]. It is not surprising
since it is not exactly the configuration of the filter used by the CNES. First, the band-limitation of
the filter increases the blur, and consequently the spread. Second, this study is done only in 1D, and
the optimality of & = 3.702 should be measured in 2D. The results are even worse for the SRy curves
(Fig.8.6) since the spread/ringing trade-off of the h, family is far from the trade-off of the optimal
filter family (Fig.6.9). In this study, we allow no aliasing and we measure ringing. This is not exactly
the CNES configuration where the constraints of the optical devices introduce aliasing and no ringing.
Using h,, instead of ¢, is swapping aliasing for ringing. To be closer to the CNES configuration, which
is limited by the constraints of the instruments, and to show the optimality of the CNES filter, we
ought to plot a Spread-Aliasing curve instead of the Spread-Ringing curve. But such a measure has
not been defined in this thesis. Hence in this example, the approach with one dimensional filters and
no aliasing does not match the CNES filter case. We do not really answer to the evaluation of the ¢,
filters used by the CNES. However this example is an illustration of how the Spread-Ringing curve can
be applied to any practical application. The Spread-Ringing curve is a generic tool which can be used



8.2.  The Spread-Ringing curve of the system 79
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Figure 8.4: (a) The band-limited filter with a = 0.123 in the Fourier domain. This filter has a best

ringing trade-off than the prolate for the same spread value. (b) Comparison with the cosine filter.
Rl Sy
Note how hy—g.123 is very close to the cosine filter Cp—¢.043-

to characterize any filter of a real system.
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Figure 8.5: (a) Optimal parameter « for each ringing and spread value (b) SRo curves for o = 0.123
and a = 0.251 and the SRy curve of the family h,. The case a = 3.702 is not shown here since
the amount of blur introduced by the filter is bigger than S = 3.5 pixels. The curves of (a) can be
directly used in applications: when the maximum level of ringing is set then there is a unique value of
the filter parameter «, indicated by the curve “ringing”. Then this value of « gives the level of blur
introduced by this filter thanks to the “spread” curve.
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Figure 8.6: SRy Spread-Ringing curves. The spread/ringing trade-off of h, measured with the L2
norm is far from the optimal results and even far from the results obtained with classical filters such
as the prolate.



Chapter 9

Numerical experiments

Experiments are performed on synthetic and natural images. We compare the results between an
“optimal” filter and a classical one. Hence we consider two filters: the SR filter and the prolate filter.
We set the ringing level and we compare the blur of the filtered images. In each experiment, the
low-pass filtering reduce the frequency domain by a factor 16.

9.1 Text images

Text images are good test images to evaluate filters. The black letters on a white surface are disconti-
nuity examples. The white surface shows the visual impact of the ringing artifact. In this experiment,
we set the level of ringing R and we compare the sharpness of the images. Note that by definition
the ringing R is measured for a transition from 0 to 1, because it is the amplitude of the Heaviside
function. Since we consider now images with gray levels in [0, 255], and not in [0, 1], the corresponding
ringing on the text images is 255 - R. On Fig. 9.1, we set R = 0.003, which means a ringing of less
than one gray level (255 - 0.003 = 0.765), that is bellow the perceptible ringing level. Can you read
the following text ? 1

9.2 Natural images

In this part we consider two satellite images. Such images are usually corrupted with noise coming
from the instruments, unlike the synthetic text images. Since noise may hide the ringing phenomenon,
we allow a larger ringing value than in the previous experiments. On Fig. 9.2 and 9.5, the level of
ringing is fixed to R = 0.0124, because a higher value of R would be visible. For this value of R the
image noise hide the ringing phenomenon. Let us compare the sharpness of the transitions. We note
u the reference original image, up and ugg the prefiltered images with respectively the prolate and
the optimal SR filter. In all experiments, the size of u is 512 x 512. Consequently, the prefiltered
images have same size. The downsampled versions of the prefiltered images are not presented. We
only evaluate here the prefiltering process. The regions of interest and the gradient norm are shown
in Fig.9.3 and 9.4, respectively.

The amplitude of the transitions are better preserved with the SR filter than with the prolate (Fig.9.6-
(b)). The difference between u and both prefiltered images up and ugg confirms the improvement:

Solution: The rain in Spain stays mainly in the plain! Henry in Hartford, Hereford and Hampshire ...? Eliza Hurricanes
hardly happen How kind of you ..., which is a quote from “My fair lady”.
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(2) (b)

Figure 9.1: (a) prolate (b) SR filter. The text is more readable with the SR filter than with the prolate.

(a) (b) (c)

Figure 9.2: Harbor: (a) u (b) up (c) usg- Details (boats) are better preserved with the SR filter.
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Natural images
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(2)

Figure 9.3: Images from Fig.9.2 with regions of interest.

(a) (b) (c)

Figure 9.4: Gradient norm of the images from Fig.9.2.



84 Chapter 9.  Numerical experiments

(a) (b) (c)

Figure 9.5: Town: (a) u (b) up (c) usr . The white roof is better preserved with the SR filter: sharper
transitions.
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Figure 9.6: (a) Image u with the line 130 in white (b) Line 130 near the white roof. Note how the
prolate smoothes more sharp transitions than the SR filter.
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Figure 9.7: (a) Subpart of the image u with the region of interest defined by z € [180,240] and
y € [100,160] shown with the white square (b) zoom of up and ugg along line 130, showing an
undesired oscillation of uggr near the column 200. This effect is not related to the 2D filtering since
the image (a) shows no sharp transition in the vertical direction y.

llu—upll1 =90, ||u—ugsr||1 = 83, ||[u—up||2 = 150, ||u—usr||2 = 137. However we observed some
oscillations on ugg, even though the ringing level was chosen below the image noise level. Fig.9.7-(b)
and 9.8 show two oscillation examples on ugg which does not exist on % and up. This problem comes
from the additivity of the ringing. An image contains several edges. Each one may produce ringing.
At some points the overshoot of the oscillations coming from different edge locations may be in phase.
The addition of those overshoots creates larger ringing values than expected with the chosen filter.
This observation leads to evaluating the ringing directly on prefiltered images prior to sampling and not
from the filter. The evaluation cannot only rely on the filter model. However the ringing evaluation on
natural images obtained with the evaluation on filters is not generic, since it is specific to the tested
images.

9.3 Ringing evaluation on natural images

Procedure

We propose to measure the ringing by comparing the original image u with the prefiltered images uggr
and up. The comparison is done with a simple difference: ||u — up|| and ||u — ugg||, that will be
specified later. This operation is not done on the whole image but on subparts where ringing effects are
easily detected. For example, we shall select uniform zones where in general the presence of oscillations
are visually detected, since it adds a structure on a quasi-constant area. On the contrary, we shall not
select subparts with textures since they often hide the phenomenon (Fig.12.25). Let us note M the
mask of the selected subparts, which include as we have seen mainly uniform zones.

Before describing the procedure to build M, let us give some preliminary remarks. The mask is
built to compare the original image with the prefiltered ones. In order to have comparable results for
||lu —up||a and ||u —usg||a, the mask is computed from u and not from the prefiltered images. This
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Figure 9.8: Subpart of Fig.9.5. First line: u, up and uggr. Second line: the norm of their derivative.
Example of oscillations on ugg.

ensures that up and ugp are analyzed on the same regions. Let us now describe the construction of
M.

The first idea for finding homogeneous zones is to compute the gradient of the image and to keep
the pixels that have a gradient norm smaller than a threshold value. However, the construction of this
mask depends on the level of noise in u. Since noise increases the gradient norm on constant zones,
the mask does not contain those zones. Furthermore, the threshold value is a parameter that can be
avoided.

This leads to a second idea. Instead of measuring directly the gradient, which can be very chaotic
in noisy images, it is more judicious to measure the contrast level of the level sets of u. The level set
is defined by

By ={z; XA <u(z) < X'}

where z is any pixel of u and A\, X’ are two gray-level that satisfy A < ). Setting \' = X\ + « defines «
as the contrast measure. The smaller « is, the more homogeneous the region B) y/ is. The selection
of all the pixels having a contrast measure of « is the following three stage process:

1. the level set B, y is cleaned by erosion, which suppresses pixels close to the boundary of B .
The eroded level set is defined by

E,-(B)W\I) = {.T S B,\y)\l ; D(Z,T) C B,\,)\I}
with D(z,r) a disc with center = and radius .

2. the mask of all the image regions with small contrast « is the union of the mask E, (B} /) for
all A € [0,255]. This collection of disjoint pixel sets is defined by

R .= L/_\JET(B)")\/) -

Since this mask is obtained by the union of eroded masks, the distance between edges and
mask elements is generally more than r, i.e. pixels near edges are not selected. This is not
optimal to study the ringing since this phenomenon occurs near sharp transitions. The ringing
oscillations may decay very fast, so pixels near edges bring more information than pixels far from
the discontinuity. In order to include pixels near edges, the final mask is obtained by dilating R.
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3. the mask final, called M, is defined by
M = DTIR

where R is dilated with a disc shaped structuring element of radius r'. Setting 7’ < r ensures
that the mask does not dilate further than the edge lines. Dilating with 7/ > r may add pixels in
M that belong to other objects. These objects may hide the ringing phenomenon. So it is not
judicious to chose these pixels to measure the ringing. The image M is a binary image where
M (u)(z) = 1 means that the pixel z is selected, otherwise M (u)(z) = 0.

In practice, the image M is obtained with two basic operators of mathematical morphology called
erosion and dilation [44].

Definition 9.1 (Erosion and dilation) Let u(z) be an image and F a shape, i.e. a subset of R?,
then the erosion of u by the structuring element F' is the image v defined by

= inf d).
v(z) JlélF’U,(.’II +0)
The “inverse” operation, called dilation, is defined by

v(z) =supu(z + 9).
dEF

The mask R is obtained with the following proposition.

Proposition 9.2 Letu(z) be animage and A < X' two real numbers in [0, 255]. Let R be the collection
of pixels defined by
R - L)_\JET(B/\)\/)

where B) ' is the level set defined by
By = {z; A < ufz) <N}
and E, (B, y) its eroded version defined by
E,(Byxx) ={z € Bxx; D(z,7) C B\x}.

Then
R ={z;D;(u)(z) — Er(u)(z) < a}. (9.1)

Proof: By definition of E,.(B) ), the structuring element is the disc of radius 7. E,(B) x) contains
the pixels z € By y, such that D(z,r) C By x which means that Vé € D(0,r), £ + 6 € By y. Then
z + 0 satisfies

A<u(r+48) <. (9.2)

From Definition 9.1, the erosion and the dilation of u are

E(u)(z) = Jeli% " u(z +9),

D,(u)(z) = sup u(z+9).
6€D(0,r)
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The erosion darkens images since it preserves the inf value of the gray levels in the neighborhood of
x. Conversely the dilation brightens images. Satisfying A < u(z + §) for all values of § € D(0,7) in
(9.2) is equivalent to satisfy that the inf value of u(z + §) with respect to § is bigger or equal to A. So

Vo € D(0,7),A <u(z+9) <= A< Eq(u)(z).
The same reasoning can be applied to the inequality of (9.2) yielding
E.(Byx) = {z; Er(u)(z) > X and D, (u)(z) < X'}.

Since R is the collection of E, for all the values of A, the expression of R can be rewritten with
a = X' — X instead of the two values A and X'. We obtain (9.1). Indeed If = belongs to E,(Bj )
then it satisfies E,(u)(z) > X and D, (u)(z) < X which can be rewritten

D,(u)(z) — E.(u)(z) <N - A=a.

O
Notation: We define Z(u) the image wu restricted to the set of pixels corresponding to a constant
zone: M(u)(z) = 1.

Choice of «

In the experiments, we compute |Z(u) — Z(up)| and |Z(u) — Z(usg)|. Images u, up and ugg are
images from Fig.9.5. In order to have a global understanding of the influence of the parameter «, we
test different values of « in [0, 255] with step Aa = 1. Plotting directly the curves (o, |Z(u) — Z(up)|)
and (o, |Z(u) — Z(ugr)|) shows locally constant values when the mask does not change between two
steps of a (Fig.9.9-(a)). This drawback shows that « is not the best abscissa choice and it should be
replaced by another parameter that takes into account the evolution of the mask, that is the number
of points in M. For this purpose, we note P(«) the proportion of points in the mask
2 ken M (k)

Pl ="=ar—

where

e () is the image domain and || its cardinality. It is equal to the number of pixels in u or
equivalently in uggr or up. Its value is independent of a.

® > icoM(k) is the number of pixels in M belonging to an uniform zone, i.e. satisfying
M(u)(z) = 1. For small « values, only pixels in a poorly contrasted region belong to the
mask. In this case, >, . M (k) is small. For larger «, the mask may contain contrasted regions.
S0 D pecq M(K) increases with o and tends to |2|: lim, 255 P(a) = 1 (Fig.9.9-(b,c)).

Study of the sensitivity to the norm choice and the size of the structuring element

We recall that the sizes of the structuring elements are r and r’ which measure the radius of the
structuring element for the erosion and dilation, respectively. As mentioned before, ' < r ensures that
the mask M does not dilate further than the edge line, where the case ' = r means that the mask
contains both the uniform zones and the edge line. This latter example is shown in Fig.9.10.
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200 250 300 o 50 100 150 250 300 o 01 02 03 04 05
« P(a)

(2) (b) (c)

Figure 9.9: r = v = 2.5 (a) (o, ||Z(u) — Z(up)||1) and (o, ||Z(u) — Z(usgr)||1) (b) P(a) (c)
(P(a),||Z(u) — Z(up)||1) and (P(a),||Z(u) — Z(usr)||1). P(c) is not linear with respect to a.
The graph in (a) shows nearly constant value for @ > 50, which means that on this part of the graph
the same number of pixels were considered. This indicates that the graph of ||Z(u) — Z(up)|| should
take into account the number of considered pixels for each value of «, which is done thanks to P(«)

in (c).

Edge
¢ Texture

1/ \_A_

Mask R
Mask M

Figure 9.10: For » = 7/, the final mask M contains edges and the nearby uniform zones (here on the
left side of the edge). Texture regions are not selected because they have a high contrast level.
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Since the SR filter is optimal for the blur/ringing trade-off, the evaluation of ||Z(u) — Z(up)|| and
||Z(u) — Z(ugr)|| should take into account both the blur and the ringing on the prefiltered images
up and ugg. Hence the mask obtained with 7' = r is the most appropriate since it contains uniform
zones where the ringing can be measured and the edge line where the sharpness can be evaluated. The
results shown in Fig.9.11 validate the optimality of the SR filter since the image prefiltered with the
optimal filter is closer from the original image than the on prefiltered with the prolate filter

12 (u) = Z(usr)|| <||Z(u) = Z(up)|]

whatever the chosen norm (L*, L', L?) and for all @ (P(a) € [0,1]). We recall here that ugg and
up are supposed by construction to have same ringing R, and different sharpness values.

o 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09
P(0) Pla)

(2) (b) (c)

Figure 9.11: (a) L*® norm (b) L' norm (c) L? norm. All measures are done with 7 = ' = 2.5.

We obtain the same results independently of the size of the structuring element as long as r = r'.
More tests with several r are shown in Fig.9.13 and 9.14. For ' < r, which means that the mask
only contains constant regions and not edges, usgr shows worst results than up for small « values,
especially for the L? norm (Fig.9.12).

These results obtained here are not surprising for two reasons. First let us recall that usg and up
have same ringing measure Ry, and ugp is supposed to be sharper than up. Let us now explain the
two reasons.

o First, the optimality of the SR filter should be estimated in the vicinity of edges since ugg and
up have different sharpness levels. If v’ < r, pixels near edges are not studied because the mask
is not dilated enough to reach the edge line. This is also true for a small constrast measure «
because an edge increases locally the contrast.

e Second, the comparison of ugr and up with the L? norm may not show the optimality of ugr
since the SR filter may oscillate on his whole spatial support (Fig.6.2) and is more penalized by
the L? norm than the prolate (even if for both filters, the ringing oscillations have same maximal
amplitude Ry).

9.4 Discussion on the norm to measure the ringing

To each norm corresponds a different ringing model. Measuring the ringing with the L norm focus
on the overshoot, whereas L' or L? norms take into account the number of oscillations. Both models



9.4. Discussion on the norm to measure the ringing

91

prolate
SRfilter ——--

Zoom

Figure 9.12: L?-norm with r = 5.5 and ' = 0. For small «, up is closer to u than ugg is. Since
r' < r, the sharpness of the filtered image has not been measured.
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Figure 9.14: (a) L* norm (b) L! norm (c) L? norm with r = v/ = 9.5.
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are reasonable from a perceptual point of vue. Big overshoots attract attention, as do long oscillations
on a uniform zone. So a good model would consider both.

The previous section proved the good image quality of the image prefiltered with the optimal SR
filter (usg) with respect to the image prefiltered with the prolate filter (up). Whatever the three
tested norms, ugp is definitely the closest to u. However, there is a theoretical optimal filter for the
L? norm: the Shannon filter. Let us now study the image filtered with the Shannon filter, we note it ug.

Remark on the Shannon filter: by construction, the sinc filter minimizes the L? norm of the
energy loss. Indeed it preserves all frequencies up to the cut-off frequency. This filter adds a lot of
ringing but the prefiltered image ug is sharp. Fig.9.15 shows ug for a reduction of the frequency
domain by a factor 16.

From a theoretical point of vue, it is interesting to compare ugg with ug (Fig.9.16). We observe two
cases.

e For small values of P(«), which represents up to half the number of points in the image on quasi
uniform zones, ugg is better than ug. The very long oscillations of Shannon filter penalizes ug
on homogeneous zones.

e When P(«) tends to 1, the mask contains edges, which are sharp on ug. This explains the poor
results of ug for small P(«), and the good results when P(«a) tends to 1. As expected, when
the whole image is considered, ug performs better than ugp:

for P(a) =1, [|Z(u) = Z(us)ll2 < [|Z(u) — Z(usr)|l2-

Fig.9.17 displays images Z(u) for three different values of P(«).

Figure 9.15: Town image u prefiltered with the sinc filter.
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Figure 9.16: (a) L™ norm (b) L* norm (c) L? norm with r = 7/ = 3.5.

the L? norm when P(a) > 0.6.

Shannon filter is optimal for
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(b) (c) (d)

Figure 9.17: (a) Original image u (b-c-d) Mask M for a = 3,11, 60, which corresponds to P(«) ~
0.3,0.7,0.99, respectively. The selected pixels are indicated by a white value (M (u)(z) =1). A small
a selects small uniform regions, whereas a large one increases the mask area. When « is close to 1,
most of the pixels are selected, as in (d).



Conclusion

This part was devoted to the study of the band-limitation of a signal with a low-pass filter. Band-
limiting a signal is a common task in the image processing field required for example to enforce the
hypothesis of the Shannon Sampling theorem in order to avoid the aliasing artifact. It is well known
that the Shannon frequency cut-off filter degrades images with a strong ringing artifact, and should be
replaced by some other filters given in the literature. However these filters also add blur. Since it is not
clear how much artifact those filters introduce and which one should be chosen for a given application,
we have proposed in this part a unifying approach that defines a measure for the artifacts and that
allows to compare the performance of classical filters. Let us now successively recall the contributions
of this part.

In the introduction of Part Il, we recalled some classical low-pass filters of the literature, such as
the Shannon filter, the Gaussian or the prolate. We also studied some other filters, the geometry of
which has a simple expression in the Fourier domain.

We showed that the ringing and blur artifacts cannot be measured separately. Both measures have
to be joined. Thus we proposed a new measure that simultaneously evaluates the level of blur and
ringing introduced by a filter. The studt was done in one dimension. Since ringing occurs in the vicinity
of sharp transition, we studied the Heaviside function H which represents a very sharp transition from
0 to 1. The artifacts are measured on the signal ¢ x H, built by the convolution of the filter with H.
The double measure of the blur and the ringing on ¢ % H results in the construction of the so-called
Spread-Ringing curve, which characterizes the filter ¢. This measure is useful for practical applications
since it can be read in two ways: it gives either the level of ringing introduced by the filter for an
accepted level of blur or the level of blur for a fixed level of ringing. The blur is measured by the
spread of the transition, which is initially zero-valued on H. On the contrary, the ringing can be
measured differently depending on whether we focus on its overshoots/undershoots or on the length
of its oscillations. This is the reason why we proposed three norms, each one producing a different
Spread-Ringing curve. The L* norm is dedicated to the measure of the overshoots and undershoots,
whereas the L? and L' norms penalize long oscillating curves.

This leads us to the filter classification using their Spread-Ringing curve, the major contribution
of this part. We observed that when the ringing is measured with the L°° norm, the band-limited
Gaussian filter is competitive for small blur values since it gives small ringing by comparison with the
other tested filters. Moreover, we showed that the filter with a band-limited cosine shape in the Fourier
domain and the prolate filter yield similar results, which was unexpected. Since the computation of a
filter with a cosine Fourier transform is simple because it has an analytic expression, this filter has great
advantages for practical and theoretical studies. These good results of the cosine filter with respect
to the spread/ringing trade-off are confirmed when the ringing is measured with the L? or L! norms.
But they are not better than the optimal ones obtained with the new class of filters built in Chapter 6
for one of the three considered norms. By construction, they outperform any other filter tested in the
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first place. The best results of those so called optimal filters are confirmed when applied to images.
As observed in Chapter 9 for an identical ringing value, the prolate filter adds more blur in the image
than the optimal filter.

Chapter 7 gave the extension of the filters in two dimensions and Chapter 8 was devoted to a
direct application of the Spread-Ringing curve. We considered the filter family of the optical system
in one of the satellites launched by the CNES and we plotted its Spread-Ringing curve. We showed
that this filter performs well when a small blur value is authorized during the filtering stage, i.e. a
transition spread value in [1.24,1.5] pixels. But this filter is designed by the CNES to allow a small
amount of aliasing so it would be interesting to define another measure that takes into account not only
the ringing and blur artifacts but also the aliasing. This would lead to the criteria (Spread, Ringing,
Aliasing) to characterize filters. This remains an open problem.

This part was devoted to the study of artifacts introduced by a filter. Let us now assume we do
not know the filter, and we only have the degraded image. Some artifacts might reduce its quality,
such as the blur, the ringing and the aliasing. In the next part, we propose one detector for each of
the above-cited artifacts.



Part I

Image quality assessment
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Introduction

In the image processing literature, the term image quality refers to the quality of an image, not in
the sense of artistic beauty, but in the sense of artifact-free data. If the quality is low, it means that
the image has been strongly deteriorated. Being able to evaluate the quality of an image is essential
in most image processing applications. It gives information not only on the degradations during the
image formation (for example the ones described in Part 1), but also on the best adapted restoration
procedure, the efficiency of which can again be evaluated by measuring the quality of the restored
image. In this part, we propose several detectors to measure image quality. Each one is specific to the
artifacts we have been studying in this thesis: blur, ringing and aliasing. Let us now briefly describe
the three types of detectors:

e the first one is a sharpness detector, as opposed to blur. It is based on a frequential approach
introduced by Morrone [37]: it states that phase coherence is high in a sharp image. The sinusoids
of the Fourier transform have locally same phase on sharp contours. This comes from the ability
of the Fourier transform to express a discontinuity by the sum of sinusoids. The small phase shift
of a single sinusoid has a dramatic effect on the reconstructed edge, since the oscillations of this
sinusoid are not compensated by the others. The oscillations are locally visible. We propose a
detector that measures the effect of sinusoid small phase shift. We use the Total Variation since
it is computed by adding the amplitude of all the transitions of the image and is then adequate
for measuring oscillations, because the presence of oscillations increases the Total Variation. The
detector is tested on the LIVE image database [46].

e the second one is a ringing detector devoted to the ringing resulting from blind deconvolution.
We observe that oscillations around edges have the same period on the whole image, which makes
them visually noticeable. We use this deviation to ringing-free images to build a detector that
finds a highly represented oscillation period. For this purpose, we adopt a probabilistic approach.
The probability that many pixels have same oscillation period is computed a contrario, based
on the a priori statement that a white noise image has no particular oscillation period. This
approach follows the general method proposed by Desolneux et al. [13] used to detect point
alignments in image, but it is specific to the ringing artifact.

e the last one is an aliasing detector. Since the aliasing is defined in both the frequential and spatial
domains, we propose here three detectors: the first one detects aliasing in the frequential domain,
the second one in the spatial domain, and the last one combines both. We show that using the
frequency approach is adequate for a restrained number of images, for example small images
with a single edge. Since most natural images have more than one edge and have textures, it
seems that the Fourier transform is too “global” to detect aliasing. The other two approaches
give better results. They are based on studying the aliasing geometry, especially on the regularity
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of the level lines around edges, and on the Shannon postulate, respectively. All detectors are
tested on SPOT images.



Chapter 10

Sharpness detection

10.1 Classical measure of phase coherence

In the literature, the phase coherence defined by Morrone et al. in [35] [37] [36] to explain many
perceptual phenomena such as the Mach bands (edge enhancement illusion) has been used by different
authors. For example Kovesi detects different kind of image features like step edges or lines [22][21],
and Simoncelli et al. detect blur thanks to the phase coherence measure [55]. They show that very
localized features result in strong local phase coherence (calculated in the complex wavelet transform
domain) across scale and space. The perception of blur would come from the disruption of local phase.
This recent work shows that phase has a great influence on the perception of images and that the
coherence of phase qualifies images. Before defining the phase coherence as given by Morrone, let
us first recall the theoretical background. The idea that the Fourier components of sharp edges have
same phase is not new. Euler showed that some discontinuous functions can be written as the infinite
sum of cosine and sine functions. Some of them are recalled in [16].
For example, the square wave is the 2m-periodic function defined on (—m, ) by

1 forz>0

Vz € (-m,m), SW(z)= { -1 forz <0

(10.1)

Since it is an odd function, it can be written as an infinite sum of sines, given by

SW(z) = >2°, %ﬁl)x] [22]. When the number of sines is restrained to N + 1, we obtain the
oscillating function SWi(z) = S (0l (gig 10.1).
Morrone et al. define the phase coherence for each pixel z belonging to an image f by

pots) - L a0z

where

o A, (z) is the amplitude and ®,(z) the phase angle of the local Fourier transform of f in z.
The subscript 7 indicates, that we are considering the amplitude and the phase angle of the nth
component of the local Fourier transform: f,(z) = An(z) - €@,

o |E(z)| is the Local Energy at z. It is equal to the modulus of E(z) =), fn(z) (Fig.10.2).
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(a) (b) (c)

Figure 10.1: (a) Function STW3 obtained with four sinusoids (b) Plot of SW3 and the four sinusoids.
(c) Function SWyg. The sinusoids are all centered in z = 0, they have same phase.

PC(z) may take values from 0 to 1. If all sinusoids are in-phase (Vn, ®,(z) = ®(x)), then the phase
coherence is maximal (3, An(z) = |E(z)| so PC(z) = 1). On the contrary, PC(z) is minimal, i.e.
close to zero, if all the sinusoids have different phase.

As defined by Morrone, the phase coherence is not a global measure, since it gives a different value
at each pixel. It does not give the global sharpness of the image. This is the reason why we propose
another measure, which is global.

imaginary axis

A n(X

real axis

Figure 10.2: Representation of the elements to measure the phase coherence as defined by Morrone.
The energy |E(x)| is the modulus of E(z) = Y, An(z) - ().

10.2 New measure of phase coherence

10.2.1 Definition

In order to use the fact that phases are very coherent near sharp transitions, we consider the sensibility
of the image total variation to phase shift. A sharp transition can be expressed as the sum of sinusoids
which are in-phase. Even a small phase shift of a single phase would result in oscillations appearing on
the whole signal. For example the sharp step function H is shown in Fig.10.4-(a). Its total variation
is equal to 1 but it increases after the phase shift due to the oscillations of the dephased sinusoid.
A sharp transition total variation is sensitive to the phase shift of its sinusoids. Conversely, a blurred
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Figure 10.3: a) Real image [46] (b) Its phase coherence image. White points indicates high phase
coherence (PC(z) ~ 1). It is large in sharp regions, such as the wings of the butterfly, whereas the
blurred background has values close to zero.

transition is less sensitive. Only the first sinusoids of a blurred transition are in-phase. The high
frequency components vanish, so their phase shift is of no consequence.

1.2 1.2 12

0.8
0.6
0.4
0.2

-0.2 -0.2 -0.2

(2) (b) (c)

Figure 10.4: (a) sharp transition H (b) smooth transition (c) Example of the phase shift of one sinusoid
of H. Signals (a) and (b) have the same total variation as they represent the same transition from 0
to 1. Note how the total variation increases for (c).

These remarks lead us to propose the following definition of the phase coherence. In order to be
independent of the type of images and their normalizations, we define the coherence of phase in a
probabilistic framework.

Definition 10.1 (randomly dephased) Let u(z) be an image, the Fourier transform of which is
a(€) = M(€) ¢®©). Let U, be the randomly dephased of u. It is a random field given by

Uo(€) = M(£) - @) +&R(©) (10.3)
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where R(¢) are independent and identically distributed in [—m, ) for
Ee{(a,B); a>00r(a=0andp >0)}

and

since phases are anti-symmetrical.

In the following, we use the classical notation where the upper-case and lower-case letter indicate
the random field and one realization, respectively. For example here, U, is the random field and wu. is
one realization.

Property 10.2 Image u1 is a random phase image, which means that its phases are independent and
uniformly distributed in [—m, 7].

Proof: If ¢ = 1 then R() has a uniform distribution in [—7, 7]. As the phase is 27-periodic and as the
realizations of R(£) (noted r(&)) have already a range of 27 in each frequency direction, a maximal
phase shift of £ is possible. The resulting image has then random phases.

O

Remark: the interesting values of ¢ are the ones such that |¢| < 1. An image, which phases are
uniformly distributed in [—7, 7], is a random phase image (Fig.10.5). As a consequence, ¢ > 1 will
not produce a “more random” image than the one obtained for ¢ = 1.

(a) (b) (c)

Figure 10.5: (a) Original image u (b) One image u.—o2 (c) One image u.—1. This last image is a
random phase image. Even if it has same modulus of the Fourier transform than w, its objects are no
more recognizable.

Let us remark that for each fixed value of €, there is an infinite number of images u.. Images of
Fig.10.5 are one realization of U.. Now, the next step to measure the phase coherence of the image is
to compare the total variation of the original image u to the total variation of its randomly dephased
images.
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Definition 10.3 (phase coherence) Let u be an image and U, the associated random field. The
phase coherence F.(u) of u is defined by

F(u) = —log;y P(TV(Uc) <TV(u)), (10.4)

where P (TV (U.) < TV (u)) is the probability of the event “TV (U.) < TV (u)” and TV (u) is the
total variation of u defined by

TV (u) :/|Du|.
Property 10.4 F_(u) € [0, 00].

Proof: P (TV(U.) < TV (u)) € [0,1].

F.(u) = 0o represents the case of an infinite phase coherence. For sharp images, we expect large
values of F.(u). The total variation of such images typically increases with the random phase
shift thus making P (TV(U;) < TV (u)) =~ 0. This increase is validated on Fig.10.5 where
TV(u) =10.5 < TV(u()_Q) =123 < TV(ul) =16.1.

F.(u) small for blurred images. The random phase shift of such images changes the total variation
but it may decrease.

10.2.2 Estimation of phase coherence

The estimation of the probability P (TV(U.) < TV (u)) in an empirical way is possible only if
“TV(U.) < TV (u)" is not a rare event. If the event is rare, F.(u) is expected to go to infinity
but it cannot be estimated because one would need a huge number of u. images. However experimen-
tally, we observed that when the size N of the image is large enough, the distribution of TV (U;)n
has a Gaussian shape (Fig.10.6 and 10.7). We did not develop this theoretical aspect in this thesis,
however we shall give now some related remarks.

Remarks : By definition, the inverse discrete Fourier transform of u(&,,), &m € Z, is

N-—1

1 N 2inémk
U(k)ZNE u(m) e ¥
m=0

for k=0...N — 1. We note U, the image of size N, the Fourier transform of which is dephased by
R(&m) having uniform distribution in [—em, e7]:

N-1
1 N 2irémk
Uelk) = 5 D_ WlEm) e ¥ & ),
m=0

The difference between two values of u, in the vicinity of k is calculated by

D(U:)(k) = U: <k+g) - U. (k— g) . (10.5)

But Vet
h 1 «— Yimem (k+2)
v (’“ *‘) - Bem) e N ¢ RlEn)
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N-1

AN T = T
m=0

By inserting these two expressions in (10.5), we get

N—

[y

1 irém 2imém B —2intm bl
D(UE)(k) = ﬁ 'U(§m) 62 Jg\’ : (e N —e N . ) e’ R(&m)
m=0
L Nl e -
= N 2 w(ém) R 94 Sin(2ﬂ-§mﬁ) et Bém)

The perturbation R(,,,) is a random phase shift. If ¢ = 1, the distribution of R is uniform U ([—m, 7])
with E(R(&,)) = 0 and Var(R(&,,)) = % Since the discrete total variation of the signal u of size N

is given by TV (u)y = SN 1 |Du(k)|, the discrete total variation of U, is
k=0
N-1
TV({U)n = |D(U) (k)|
k=0
N-1 N-1
]. 1TEm h m
= — u(ém) N 94 s1n( mé ) iR(&m)
N
k=0 m=0
N-1 | N1
= N Xk:,m
k=0 m=0

where

im€m h )
Xiym = U(ém) . 2isin( ﬁm) ot Blém)

The Central Limit Theorem cannot be applied here to prove that the distribution of TV (U,) has a
Gaussian shape when N tends to infinity because the random variable X} ,,, are not independent and
identically distributed. So we shall not prove here the Gaussian shape of the distribution of TV (U.).
However in practice, all the experiments showed that the distribution of TV (U;) is very close to a
Gaussian. Some examples are proposed in Fig.10.6 and 10.7, for which a million different phase shifts
of the image from Fig.10.6(a) are done.

When P (TV(U.) < TV (u)) is estimated with a Gaussian model, the parameters of the model are
estimated empirically. Here we use classical estimators for Gaussian laws.

Proposition 10.5 Let u’ be the it" randomly dephased signal of e, that is the i*h realization of U..
The estimator of the total variation mean of n dephased images is

S :
= > TV (ul). (10.6)
i=1

The unbiased estimator of the variance is

n

n 2
o = - i - > (TV(ug) - % ZTV(@) : (10.7)
i=1

i=1
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Recentered Gaussian functions

TV(ug) =

202
0.399 04 0.401 0.402 0.403 0.404 0.405

(2) (b) (c)

Figure 10.6: (a) Image u of size 256x256 (b) Histogram example with ¢ = 0.4 and 10° images ug4
(c) Comparison of the Gaussian shapes from Fig.10.7. Image u contains N = 65536 pixels, which is
large enough to observe the Gaussian shape.

22 . X j os -
' » =
! 03
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> »
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0.001 0.01 0.1 1 ¢

Dephasing ¢ (log scale)

Figure 10.7: On the left: graph (¢,7V(uc)). TV (ue) increases with e. On the right: renormalized
histograms of TV (u.) for e = 0.02, € = 0.2 and € = 0.4. Each one is calculated with 10® images u.
In the center: the corresponding Gaussian functions.
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Proposition 10.6 The estimator of the mean ji defined by (10.6) has normal cumulative probability
function N (p, ";1—2)

Proof: E(ji) = £ 3°" | E(TV (UY)). Since E(TV (U?)) = u for all i, we have E(zz) = p.

—n

All TV (U?) are independent because the U! are, hence o?(i) = 5 >.»,0*(TV(UE)). Since

n
o?(TV (UY)) = o2 for all 4, then o%() = %2 The variance of the mean decreases with n.

O

The proposed definition of the phase coherence has the main advantage to use a probabilistic
framework which avoids the difficult problem of defining parameters and the justification of the choice
of their values.

10.2.3 Two estimation algorithms

Let u be the original image, the total variation of which is TV (u). For ¢ fixed, the estimation of F;
can be done from n different randomly dephased images ., if n is large enough.

Algorithm 1 (Empirical estimation)
1. Build n imagesul, i=1...n
2. Compute M = {number of ul such that TV (ul) < TV (u)}

3. Estimate P(TV (U!) < TV (u)) ~

3]

4. Deduce F.(u) = —log;, P(TV(U:) < TV (u)) = —logy, (X)

Algorithm 2 (Gaussian estimation)
We suppose that TV (ug) ~ N (i, 0?)

1. Build n imagesui,i=1...n
2. Estimate i and o empirically with (10.6) and (10.7).

3. Estimate P(TV (U.) < TV (u) ~ § (14 el Z07E) )

4. Deduce F.(u) = —logyy P(TV (U.) < TV (u)) ~ —logyq [% (1 + erf TVa(j};/f‘))]

Let us remark that for both algorithms, the first step is the slowest one, as the process of the Fourier
transform and the inverse Fourier transform for each image u, is time consuming. The complexity of
the Fast Fourier Transform (FFT) algorithm is O(N log, N) [29], so in practice we are often limited
to work with the images of small size. However the estimation of F.(u) is all the better since n is
large, which further increases the computational constraints.
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10.2.4 Comparison of the proposed estimation methods

In Fig.10.9, we compare the empirical and Gaussian estimations on three real images, one sharp and
two blurred, shown in Fig.10.8. Let us first consider the empirical estimation.

As announced in Subsection 10.2.2, the empirical estimation does not give correct values of the
phase coherence if the probability P (T'V(U,) < TV (u)) is too small, i.e. F;(u) is large. So we cannot
expect exact values of F;(u) for sharp images with the empirical estimation, because such images have
large phase coherence. This is observed in Fig.10.9(a). No image u. has a total variation such that
“T'V (ue) < TV (u)" (because the image u is so sharp that the phase shift increases its total variation
and the event "TV (u.) < TV (u)" is so rare, that the empirical estimation requires many trials u.) so
the empirical estimation yields F;(u) = —log;q0 — +o0, which has been thresholded to 100 for the
numerical applications. One can improve the empirical estimation by increasing the number of trials
of u..

When the image is blurred Fig.10.9(b-c), “T'V (u.) < TV (u)” is not a rare event and the empirical
estimation gives satisfactory results, which are similar to the ones of the Gaussian estimation. Moreover
for large F.(u) the Gaussian estimation is robust, contrarily to the empirical estimation. This is
the reason why the Gaussian estimation will be preferred to the empirical estimation in the next

experiments.
Fl

(a) (b) (c)

Figure 10.8: (a) Image u of size 128x128 with no additive Gaussian blur (b-c) Additive Gaussian blur
with standard deviation std = 0.5.

10.3 Probabilistic model for the sharpness of an image

In the previous section, we have proposed a definition and an estimation of the phase coherence of an

image u. It is defined by
F.(u) = —log,y P(TV(U.) <TV(u))

where |¢| < 1 is the parameter indicating the amplitude of the random phase shift of w.

Since we want to detect images which are sharp, we are not interested in all the values of ||, but
only in the smaller ones. Indeed, the idea is to measure the image sharpness from the sensitivity to the
random phase shift of the Fourier spectrum. Since the initial hypothesis is that a sharp image is very
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Figure 10.9: Comparison of the empirical and Gaussian estimation of F.(u): the curves (e, F.) for
both estimations associated to the images of Fig.10.8(a-b-c) are given with respectively 2000, 2000 and
1000 images u, tested for each value of €. The results obtained with the empirical and the Gaussian
estimation are similar when the value of P (TV(U,) < TV (u)) is large enough, that is for small values
of F(u). For smaller values of P (T'V(U.) < TV (u)), the empirical estimation fails because it requires
a huge number of images u. to have at least one image u. such that TV (u.) < TV (u). Note the
thresholded curve for the empirical estimation for large F(u).

sensible to the phase shift, we shall test very small phase shift to evaluate this sensibility, which leads
us to consider ¢ — 0. The detection of the sharpness of an image is then related to the measure of

Fy+ (u) = lim F (u). (10.8)
e>0

Lemma 10.7 and Proposition 10.8 give two results on the derivative of TV (u.) when ¢ — 0.

Lemma 10.7 The local estimator of TV (u.) is
TV (us) =TV (u) —e < curv(u),p > +o(e) (10.9)
where
e |c| <1 is the parameter indicating the amplitude of the random phase shift of u,
o u(k,l), k=0...M —1andl=0...N —1, is the considered discrete signal,

e q and b are the images of the local phase shift, that is each pixel is the realization of a uniform
distribution in [—%, | with the constraints

b(—p,—q) = —b(p,q) (10.10)

e © is the inverse Fourier transform of i (% + %) -u(p, q), with Uu(p, q) the Fourier trans-

formofu,p=0...M —1andgq=0...N —1,
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e curv(u) is the curvature of u defined by

u(k,l) = L > agp,q).

By definition, u. is obtained after a random phase shift of the Fourier transform of u, that is

~ —~ ie ((@@:0)p | b(p.a)a
u:(p,q) = u(p,q) ew( M Y )

Approximating the exponential function at the first order when ¢ — 0 yields

) = ) (1ei (U2 HEDT) 4 o))

M N
= u(p,q) +e9(p,q) ulp,q) + ofe) (10.11)

where G(p,q) =i (“(71’\’;)” + b(p];?)q). By linearity of the inverse Fourier transform, we deduce that

ue(k,1) = u(k,l) + € o(u) + o(e) (10.12)
where ¢(u) is the inverse Fourier transform of g(p, q) - u(p, q). Let us now compute the total variation
of ug as given in (10.12).

TV(ue) =TV (u+e p(u) +o(e)).

In order to compute TV (u+¢ p(u) +o(e)), let us first compute the more general term TV (u + ¢ v),
where v is another image.

TV(u+ev) = TV(u)+e <VITV(u),v > +o(e).
d
VTV(u) v = %TV(’U, +t-v)i—0

d \/|Du + tDv|?

dt ) \ \/Du?+2 < Du, Dv > +{2Dv?
t=0

< Du,Dv > . Du

By definition of the curvature of u we have

TV(u:) = TV(u)+e<VTV(u),p > +o(e)
= TV(u) —e < curv(u),p > +o(e). (10.14)
O

Now that a local estimator of TV (u.) has been given, we study the behavior of TV (u.) when ¢
tends to zero since we are interested in the sensitivity of the total variation for a very small phase shift.
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Proposition 10.8 lim,_,o w =0
Proof: From the proof of Lemma 10.7, we have

@.(p,q) =(p,q) o CH ),
where a and b are the images of the local phase shift, that is each pixel is the realization of a uniform
distribution in [—3, 3]. Let us note X the associated random variable X~U —2, 212, From (10.9),
Ex(TV(u:)) = Ex(TV(u)—e <curv(u),p > +o(e))
= Ex(TV(u)) —eEx < curv(u),p > 4o(e)
= TV(u) —eEx < curv(u),p > +o(e) (10.15)

since TV (u) does not depend on X. Moreover we have

vp.a) = 9lp,q) ulp,q) _
= %ﬂ(p, q)a(p,q) + %ﬂ(p, 7)b(p, q)
~ (.0, §i0.0)) - (@l 0,0)
? = Vu-X
Hence —~
Ex (TV (u.)) = TV (u) — e Ex < curv(u), IFT(Vu-X) > 4ole) (10.16)

where IFT is the inverse Fourier transform. To prove Proposition 10.8, we study now
E(TV (ue)) — TV (u)

lim .
e—0 3

Thanks to (10.16), we have
lim E(TV (ue)) — TV (u)

e—0 3
As X ~ U[—3,3]% we can replace X with —X in < curv(u), IFT(Vu - X) >, so that
< curv(uw), IFT(Vu- (-X)) > = < curv(u), IFT(—(Vu-X)) >
= <curv(u),—IFT(Vu-X) >
= —< curv(u),IFT(@-X:) >

= Ex < curv(u), IFT(Vu-X) > .

by linearity of the inner product and the inverse Fourier transform. Hence < curv(u),IFT(ﬂ . X) >
is odd with respect to X. Since X is uniformly distributed in [~3,2]?, the probability to have
< curv(u), IFT(Vu - X) > is equivalent to the probability to have — < curv(u), IFT(Vu - X) >, so
that Ex < curv(u), IFT(@-)?) >= 0. This result is confirmed by numerical experiments (Fig.10.10).

O

Proposition 10.8 shows that the behavior of TV (u.) is regular when ¢ tends to zero, which means
that the mean value of TV (u.) decreases regularly to TV (u). This result guarantees the stability of
the computation of Fj+ in the numerical experiments.

In this section, the probabilistic model for the sharpness of an image has been presented and the
associated detector Fj+ has been defined. It is based on the observation that the total variation of a
sharp image is more sensitive to a small phase shift than the total variation of a smooth image. The
following section presents some numerical experiments obtained with the detector Fy+.
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Figure 10.10: Visualization of TV (u.). For € fixed, the curve represents the mean over 10000 values
of TV (ug). As proved in Proposition 10.8, the derivative of TV (u.) has zero mean when ¢ vanishes.

10.4 Numerical experiments

As the Gaussian estimation has shown better results than the empirical estimation (Fig.10.9), we will
use this estimation in all the following experiments. In the first experiment, we compute the phase
coherence of blurred images in order to check that blurred images are not detected as sharp. In the
second experiment, we show that Fy+ is a good detector of sharp images.

Experiment 1

Fig.10.11 shows the relation between Fjy+(u) and the image blur value. The original image ug is a
subpart of a high-resolution satellite image. The studied images are built by convolution of uy with

several Gaussian kernels G, with variance o2.

u =ug*x Gy

The measure of Fy+ is sensitive to a small amount of blur. It allows to detect sharp images without
measuring precisely the blur.
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o (Gaussian blur)

(a) (b)

Figure 10.11: (a) Sharp image ug of size 128x128 (b) Curve showing the relation between the level of
blur of u and the value of the phase coherence Fiy+(u). The coherence of phase is estimated with 1000
images u.. The displayed limit value is —log;((0.5) = 0.3010 which corresponds to P (T'V(U;) <
TV (u)) =0.5.

Experiment 2

We present here a way to validate the detector Fiy+. This study should be completed in future work.
The ability of our sharpness model to detect automatically sharp images is tested on the image database
[46]. It contains 174 images:

e 28 images are reference images, which are not globally sharp but they contain sharp zones,

e 146 images are blurred images obtained by convolution of the reference images with Gaussian
kernels with different variances.

Let us first test the detector Fi+ on the reference images and then on the blurred images.

Test on the reference images The reference images are sharp images, but they are not globally
sharp since some out-of-focus zones, such as the background, may be blurred. In order to
test the ability of Fj+ to detect blurred zones in sharp images, the calculus of Fj+ is done on
sub-images of size 128x128. The choice of such a small sub-image size is motivated by a fast
computation of Fy+. The sharpness model succeeds in classifying correctly both sub-images of
Fig.10.12.

In order to take into account the disparity of the detector response for sharp and blurred zones
of an image, all the reference images are studied on a sharp 128x128 subpart. 18 images out
of the 28 are well classified by the detector since their chosen subpart have Fy+ > 100, which
indicates sharp images. Some examples are shown in Fig.10.13. The 10 other reference images
have a smaller Fy+ value as shown in Fig.10.14.
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Figure 10.12: This image classified as sharp in [46] has effectively sharp zones (the focus has been
done on the corpse of the butterfly) and some blurred zones (surrounding flora). The computation of
sharpness on both windows classifies the 'flora” as blurred (Fy+ (ufiora) = 2.03) and the 'wing of the

butterfly’ as sharp (Fo+ (twing) > 100).

Figure 10.13: Some 128x128 subparts of sharp images well classified by the detector (Fj+ > 100).
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(a) Fo+ =29 (b) For =75 (C) For =23 (d) Fy+ =113 (e) Fy+ =128

(f) F0+ =129 (g) F0+ =0.87 (h) F0+ =17.85 (I) F0+ =43 (]) F0+ =14.1

Figure 10.14: 128x128 subparts of sharp images with smaller Fy+.

Test on the blurred images The sharpness detector is also tested on the blurred images. The image
database [46] contains approximatively five blurred versions for each reference image. Here we
study the five blurred versions of the butterfly image (Fig.10.12). Fig.10.15 shows the Fy+
values obtained on the butterfly image blurred with a Gaussian kernel of standard deviation o.
As expected, the value of the phase coherence decreases with the level of blur, i.e. decreases as
o increases.

(a) ¢ =0.90 and (b) 0 =1.70 and (c) o =1.85 and (d) o = 2.85 and () ¢ = 11.33
F,+ =86 For =79 Fyr =76 Fp+ =59 and Fy = 3.1

Figure 10.15: The five 128x128 subparts of the database [46]. They have a decreasing phase coherence
as blur increases.
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10.5 Conclusion

In this section, we have presented a new tool to detect sharp images. The detection is based on a
new phase coherence measure. This approach is different from the one proposed by Morrone for two
main reasons. First the measure proposed by Morrone is computed locally to detect edges: to each
pixel is associated a phase coherence measure. On the contrary, the phase coherence defined in this
thesis is measured globally, a unique value is assigned for a given image or image subpart. Second,
the phase coherence, as defined by Morrone, is large if all the sinusoids of the Fourier transform have
same phase. Here the phase coherence is measured with the sensitivity of the image to small phase
shifts: the sharper the image is, the more sensitive to small phase shifts the image is. The sensitivity
is measured with the increase of the total variation since the phase shift of a single sinusoid may add
oscillations around sharp transitions.

The proposed sharpness detector has the nice parameter-free property which makes this detector
useful for many applications. This detector is not dedicated to a unique kind of image. Let us give
some examples of possible applications that may require automatic sharpness detection.

In the field of digital cameras, the detector could be useful to evaluate automatically the sharpness
of the image. The photographer might want to know if the image is sharp or not in order to take
another photograph if it is not sharp. To that aim, the detector should be put inside the camera and
it should warn the photographer if the image is not sharp. Of course, for some specific applications,
blurred images are also interesting and they should be kept. For example, blurred images may be
artistically beautiful and they should be preserved. However, in everyday life blur is often an undesired
effect of the bad stabilization of the camera during the image acquisition. A blurred image is often
not satisfactory and in such cases the detector can help the photographer.

Another application is the image classification. Assume that an optical device provide a very large
number of images and that only a small amount are sharp. The automatic detection of those sharp
images would save time, moreover since the detector is universal, the classification is still possible even
if the database contain different types of images (landscapes, indoor images, .. .).

Another application of the detector is the automatic detection of the region of interest in an image,
which are often the sharp zones. In most case, it is impossible to obtain a perfect focus for all scene
objects since they do have not the same depth. So the sharp zones can be detected and consequently
the regions of interest.

The last but not least application of the detector is the image restoration, especially the blind
deblurring. Recovering the sharp image from its blurred version without knowing the blur kernel is
a challenging problem. The restoration of a blurred image can be automatically done thanks to the
sharpness detector. Both the sharp image and the blur kernel can be identified. This major image
application in the image processing field will be studied in Part IV.
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Ringing detection

11.1 A description of classical methods

In the image compression literature, many papers refer to the measure of ringing, but they do not
detect it specifically. They measure the distortion between the original and the processed images. In
this thesis, we consider the more difficult problem of the ringing detection without a reference image.
Nevertheless, we recall here some ringing measures developed in the image compression framework.

The peak signal-to-noise ratio (PSNR) or the mean square error (MSE) are often used as objective
measures of image quality. However they are not adapted to measure the degradation introduced by
artifacts, because artifacts have a structure which can be considered as information instead of noise by
the PSNR measure. This remark is true for the ringing artifact, whose oscillatory structure is not well
measured with the PSNR. In the literature, new ringing measures have been specifically developed. The
underlying hypothesis is that the ringing appear near sharp edges of the image. The recent perceptual
measures are

e the VRM measure (Visible Ringing Measure) defined by Oguz [39] and recently used by Yang et
al. [58] to suppress ringing after a compression process. As the ringing appears as unexpected
oscillations around edges, the idea of the VRM is to measure the variance locally on small
size window (4x4) around edges. The regions near major edges are detected by a series of
morphological operations. First of all, an edge map is generated by a Sobel operator. Then,
this map is cleaned by applying successively a denoising filter and a line-curve linking algorithm.
Finally, a binary closing followed by a dilatation of the edge map produces the final edge map.

e the measure defined by P.Marziliano [31] takes into account the length and the amplitude of
the oscillations on each sides of the edge. The ringing measure is joined to the perceptual blur
measure.

11.2 Ringing resulting from blind deconvolution
The blind deconvolution problem consists in the removal of blur from an observed image u. Any
image acquisition system, which cuts off too many high frequencies, blurs images. Let us now model

this system to describe the degradation of the original image. First, the low-pass filtering is generally
modeled by the convolution of the “nice” and artifact-free original image ug with a filter ky. Second,

117
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as most acquisition systems add noise (n), this system can be modeled by
u=kyxuy + n,

or equivalently in the Fourier domain
G=ho-w + 7.

The brutal deconvolution consists in the evaluation of ug by the inverse Fourier transform of -&. But
0

this method is not efficient to deblur an image because of the noise term. When &g (€) is small (we note
€ the frequency), the term k%(f) may become very large and then the image may have a predominant

oscillation frequency &. In order to solve this ill-posed problem and to avoid those spurious oscillations,
one must necessarily introduce some additional assumptions. One of the classical method is called
Tikhonov regularization [52], which adds a regularization constraint on g to penalize the oscillations.
One of its simplest expression is given by the minimization of the energy

Buy) = /|Du0|2 +w /(u ~ ko % 1)
S— ~ ~ -
smoothness constraint data fidelity

where Dug is the differential of ug, and w € R* is the weight on fidelity term. The solution of the
minimization of E(ug) is given in the Fourier domain by
_ ko' _
Ve R, (e) = B 0‘2(5) a(©) (11.)
+

[4

—-
ko(§)| + 5

where kg is the conjugate complex of kg. In the literature, (11.1) is a special case of Wiener filtering,
and this is the case we will use in the experiments. Deblurring with such kind of filter may still introduce
oscillations, which is what we call the ringing resulting from blind deconvolution. An example of the
deconvolution with the Wiener filter is shown in Fig.11.1. As the convolution filter ky is unknown, we

have tested the Gaussian filter _
ko = e 29°m7 €1

with ¢ = 2 and w = 50. As the choice of the Gaussian does not correspond probably to the real
convolution filter and as the weight on fidelity term w is big, which penalizes more the fidelity term
than the smoothness of u, it is not surprising to observe ringing on the deblurred image.

Our goal here is to define a detector for this kind of ringing. It is based on the important particularity
that its oscillations have the same frequency modulus on the whole image.

11.2.1 Notations and definitions

We have observed that the oscillation frequency of the ringing occurring after a blind deconvolution is
the same on the whole image. We will now use this observation to detect automatically the ringing.
We want to detect the ringing by showing that its oscillations have same frequency, or equivalently
same period. Let us define some useful variables. In an image with ringing, one can observe that edges
are replicated into vanishing parallel edges. Even if some kind of oscillations are visible in the X and
Y axes, ringing has clearly its own direction: the gradient direction Dwu, which is orthogonal to the
object edges (Fig.11.2).
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(2) (b)

Figure 11.1: (a) Image u (b) Image improperly deblurred with a Wiener filter. Ringing appears on the
whole image.

Definition 11.1 (Ringing direction signal) For each point z € R? of an image u, we define the
ringing direction signal by

Du
VseR, v(s) =ulz+ s—
o = (4o )
As a first approximation, we can use the nearest neighbor approximation to estimate u at
(:p + s%). We note ¢ (integer number) the oscillation half-period. It represents the spread
of either a fall or a rise between two extremal values (Fig.11.3). In practice, we consider § € [1, D],
with D fixed to 20, which already represents a long distance between the extremal values. Indeed, in

most images, when the distance between two points is 20 pixels then these points may not belong to
the same object and can then be considered as independent.

Figure 11.2: Subpart of Fig.11.1-(b). We study Figure 11.3: Example of an oscillating signal
the ringing in the gradient direction and not along with half-period 4.

the X and Y axes. A cut v of the image is studied

in the gradient direction.

Now that the ringing direction signal has been defined, let us specify the term oscillation. Even if
oscillations are perceptually clear on images, we formalize mathematically this word by using points
of the ringing direction signal spaced by §. We shall say that points of v oscillate if their gray level is
alternatively larger or lower than the previous one.

Definition 11.2 (point oscillation) Let i € N. Let (§,a) € N> and v be the ringing direction signal



120

Chapter 11.  Ringing detection

at pixel © belonging to image u. The points v(0), v(J), v(20), ..., v(ad) oscillate if
Vi € [O,G— 1], Si - Sit1 <0,

where S; = sign (v(i6) — v((i + 1)d)) is the sign of the difference between two consecutive point gray
levels.

Notation: In this definition, the sentence “the points v(0), v(d), v(2d), ..., v(ad) oscillate” is
long and it will be replaced in all the following by the convenient notation E,, where a is an integer.
For a given pixel = belonging to the image u, with ringing direction signal v at z, we shall note F,
the event “v(0), v(d), v(20), ..., v(ad) oscillate” if a > 0. Symmetrically if a < 0, E, is the event
“v(0), v(—9), v(—2d), ..., v(ad) oscillate”. Hence depending on whether a is positive or negative,
we study the forward or backward oscillations.

It is important to understand here that the definition of oscillation does only compare the gray
level of points spaced by § in the gradient direction v and not the points between those considered
points. So there is no constraint on the monotonicity of v between two successive considered points.
Perceptually the longer the oscillations are, the more perceptive the phenomenon is. So this model of
the ringing should also take into account the length of the oscillations.

Definition 11.3 (maximal length of oscillation) Let us note Ns(x) the maximal length of oscilla-
tion at pixel x belonging to image u.

Nd(x) = Qmax t+ bmax;

where amax = argmax F, — 1 and by x = argmax E — 1.
a>0 <0

no oscillation 3 oscillations

| | | | | | |
( ‘—2&) v( ‘—5) v‘(O) v(‘6) v( ‘25) v( ‘36) v(‘46)
X

b=1 ! a=4

Figure 11.4: Example for the computation of Figure 11.5: Subpart of Fig.11.1-(b). For
Ns(z). On the right side of z, there are three points z of the image belonging to the
three oscillations. first: v(0),v(d),v(2d), second: hat edge, we have N3(z) = 5: the associ-
v(6),v(20),v(3d), third: v(2d),v(35),v(46). So ated oscillations are shown in black.

Gmax = 3.

An example in given in Fig.11.4 where Ns(z) = 3. Some oscillating points are represented in
Fig.11.5. In order to detect the half-period of oscillation J, we define

H(8) = Ny(=) (11.2)
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which is high for ¢ associated to long oscillations, and the histogram

H(n,d) = #{z; Ns(z) = n}, (11.3)

where # should be read as “the number of”. These two measures highlight the ringing frequency as
shown in Fig.11.6 and 11.7 (image of Fig.11.1-(b)). These measures are visually convincing, but the
ringing detector still has to be defined. Let us remark that no criterion has been given on z. All point
of the image are studied. We could have selected points with high gradient to consider points near
edges, where the ringing phenomenon is obvious in general. But we intend to build a parameter-free
detector, that is without parameter on the gradient modulus.

See also on Fig.11.7 the two local maxima of the curve H(d) in 6 = dp = 3 and 6 = 9. The
first maximum of H(§) corresponds to the oscillation period P = 2 x §y = 6. It indicates that the
distance between the local minimum and the next local maximum is §; and that the distance between
two local maxima (or two local minima) is P. The second maximum of H(d) is linked to the first one
by d = dp+ P =3 x § =9, which is the distance between the local minimum and the second local
maximum.

260000

0 240000 |
1 L
5 O o |
0 2 4 6 8 160 12 14 16 18 20
Figure 11.6: Histogram log(H (n,d)) with n € Figure 11.7: The maximum of H(d) is in
[0,30] and § € [1,20]. Line 3 (6§ = 3) highlights d = 3, which is the ringing oscillation half-
the oscillation half-period. period.

11.2.2 Statistical a contrario detection

Now that we have introduce some useful notations and definitions, let us describe the detector. Our
approach is based on a statistical a contrario detection. We observed that ringing is a periodic
phenomenon with the same frequency on the whole image. This particularity is used to detect such
images with an a contrario approach: we detect ringing when one half-period § of oscillation is highly
represented, which is an unlikely event with respect to a naive random assumption of the distribution of
the oscillation half-periods. As mentioned before, the oscillations are measured in the ringing direction.
Given the gradient direction for each pixel, the problem boils down to the study of the cuts of an image.
The length and the period of the oscillations of the gray levels along 1D lines are measured. We present
here two possible approaches, which are based on some independence assumption that represents a
simplified model of real images.



122

Chapter 11.  Ringing detection

11.3 Naive model 1

The first model is based on the study of S; with ¢ integer. From Definition 11.2, S; is the sign of the
difference between two consecutive point gray levels:

S;i = sign (v(i6) — v((7 + 1)9)) .

A positive and negative sign means a rise and a fall, respectively. This model is interesting since the
oscillations are the succession of rise and fall. In this model, the S; are assumed to be independent
and identically distributed (i.i.d.) variables. We shall not make any assumption on the distribution of
the v(id), since we only study S; in this model. The study of v(id) will be done in the naive model
2. The i.i.d. assumption on S; is a simplified model since in real images there is no distribution of v
that ensures the independence of the S;. However here we assume they are i.i.d., which means that

S; takes its value in the set {4+, —} independently of the values of S; with j # i. The distribution of
Si is a Bernoulli distribution with p = ¢ = :

P(S;=+)=P(S;=—-)=—.

For example the computation of P(F5), which is the probability to have at least one oscillation, is
immediate when assuming the independence of Sj and S; (see Table 11.8).
]P(EQ) = ]P((S() >0and S; < O) or (SO <0and S| > 0))
= IP’(SO>Oand S1<0) + IP’(SO<Oand S1>0)

_ (%%%G%) - L (11.4)

The negation of the previous assertion has same probability (P(E3) = 1 — %), which is the probability
to have no oscillation. Using the same reasoning, the probability to have one and only one oscillation
is

P(E and E3) = i (11.5)
as show in Table 11.9.
So | S1| S2
+ 1+ |+
So | 51 |+ -
+ [+ + |- |+
- |- R
+ - - - -
- |+ - -+
- + -
Table 11.8: The four possible combina- + ] - | -
tions of the signs of Sy and S;. The two
last ones (in bold) show at least one os- Table 11.9: The eight possible combina-
cillation. Hence P(E,) = 1. tions of the signs of Sy, S and Sz. The

two lines in bold show one and only one
oscillation. Hence P(E> and Ej3) = 1.

Adapting definition (11.3) to the one-sided oscillation,we get the following definition.
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Definition 11.4 (one-sided maximal length of oscillation) Let us note N} (z) the maximal length

of forward oscillation in u(z). Nj (%) = amax, where amax = arg max E, — 1.
a

So we can reformulate the results of (11.4) and (11.5) by

(114) & P(Ni(z)>1) =, (11.6)

NN SR

(11.5) & P(Ni(z)=1) = (11.7)

The generalization of (11.6) and (11.7) yields the following proposition.

Proposition 11.5 Let n € N and x belong to a random image where the gray level are uniformly
distributed in R. The distribution of P(N}(z) > n) is a geometric distribution with p = 1/2. The
expectation value is 1/p = 2. In particular, we have

P ) 20 = (3) (118)
and e
i@ =n=(3) - (11.9)

We study now a more realistic model based on the random assumption for the v(id), by opposition to
the random assumption for the S; of the naive model 1. However the naive model 2 is not the best
model for real images, since for small values of ¢ the random assumption for the v(id) is not true.
Two close pixels may belong to the same object and may be linked. However the naive model 2 is
more realistic than the naive model 1, and this is the model we describe now.

11.4 Naive model 2

The naive model 1, based on the random assumption for the S;, is not realistic because it does not
take into account that the gray level of an images are in [0,255] and not in R. For the naive model
2, we assume that the distribution of v(id) is uniform in [0, 255] and we assume that they are i.i.d. In
fact, we assume here that gray levels are in [0, 1] instead of [0, 255] but this linear contrast change has
no impact on the point oscillation. These assumptions change the probability calculus obtained with
the previous model. In the naive model 1, the succession of two rises has same probability than the
succession of a rise and a fall. But in real images, the finite range of gray levels makes the probability
depends on the pixel gray level at the end of the first rise. If this value is too close to the upper bound
of the gray level range then it is more likely to obtain a fall than a rise after the first rise. So the
succession of two rises is less likely than the succession of a rise and a fall. This is considered in this
new model. Let us give some theoretical results based on this remark.

We suppose that X1, X5, X3 are 3 independent random variables uniformly distributed in [0, 1].
The associated probability density function is Lg 1}. Let us calculate the probability that the observed
values z1, T2, T3 are not oscillating, i.e. P(NRj(z) = 0) (the additional letter R stands for restricted
gray level interval).

Remark: we recall here that N5 and N51 refer to the two-sided and one-sided oscillation model,
respectively. In the following, NR% refers to the one-sided oscillation model where gray level does not
belong to R, but to a restricted interval.
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P(X1 > X2 > X3) = / / / Liay>2, for a1 fixed} L{zo>as for 2o fixed} 423 dT2 dy
xr1=0Jx2=0 Jx3=0

T2 1 1 1
= / / / d:L‘g d:l?g d:l:l = / / x9 d.’EQ d:L'l = =
x1=0 Jx2 x3=0 x1=0 Jx2=0 6

1,1
P(NRi(z) =0) = P(X; > Xo> X3) + P(X; < Xo < X3) = 375 (11.10)

The probability to have no oscillation is smaller in this restricted model, P(NR}(z) = 0) = 1, than
in the previous model where P(E,) = P(N}(z) = 0) = 5. The computation of P(NR}(z) = n) has
no exponential behavior with n as in Proposition 11.5. Some computations of some more values of
NR}(x) are given here:

P(NR}(z) =1) = 2-P(X; > X5 and X3 < X3 < X4)

1
= / / / / drsdrsdrodzy = - = 0.25 (11.11)
x1=0 Jx2=0 Jx3=x2 J T4=23 4

P(NRi(z) =2) = 2-P(X; > X, and X3 < X3 and X3 > X4 > X;) = % =0.15(11.12)

The computation of NR%(ac) requires an iterative calculus. The unavoidable recursion formulae are
easily implemented on a computer. The formulae is given in Proposition 11.6, but let us first introduce
some notations. We note Py, (1) = sP(NR}(z) = 2n) and

Ton—2 1 T3 T2
Pgn / / / / . / / / d.’L‘leEQdLEg e d.’I,'gn_ld.’L'Qn .
Zon=0 Jz2p-1=0 Jxz2p—2=%2pn—1 JT2p—3=0 z3=x4 J22=0 J21=0

Proposition 11.6 The recursion formula for the calculus of Py, (t) is

P2n+1(t) = / Pgn )ds + tPgn( ) (11.13)

P2n+2 (t) == / P2n+1 (1114)

with Py = % and P; = t. Moreover, one has

P1(1) =0 and Py, ,(0) = 0. (11.15)

Proof: By definition

t 1 Tan 1 1 T3 T2
Pont1 (t) = / / / / - / / / dzidzoedxs . .. dxondxon 1
Toan+1=0 Jx2n=22n+1 Y T20—1=0 JT20—2=T2r—1 r3=x4 Jx2=0 Jx1=0

t
= / Pgn(l) — Pgn (.’L‘2n+1) d$2n+1 (11.16)
T2p+1=0
t
- / Py (w3ms1)dzoms1 + ¢ Pon(1) (11.17)
Tap4+1=0
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and

t Tont2 1 1 T3 T2
P2n+2 (t) = / / / . / / / d.’L'ldiL'Qd.’Eg . d$2nd$2n+1d$2n+2
Toan+2=0 Jx2n4+1=0 J T2, =T2n+1 r3=x4 Jx2=0J21=0
t

= / Pypi1(T2n+2) dTono - (11.18)
ZTan42=0

The justification of (11.16) comes from the rewriting of

t 1
Py (t) = / / q(z2n)drondzon 1
Tan4+1=0 J T2n=T2n+1

k

imon 1 @i (z2n)". The first integration is equal

where ¢ is a polynomial in zg, of order k: g(z2,) = >_
to

1 1 T2n+1
/ q(zon)dzoy = / q(zon)droy — / q(zon)dron, = Pop(1) — Pop(zon41) -
X

2n=T2n+1 T2, =0 T2,=0

Xq Xo X3 2n 2n+l 2n+2

Figure 11.10: Schematic graph of the oscillation for the calculus of Pay,2(t).

We can deduce the formula from (11.17) and (11.18). The first terms are

Py = %P(NR};(;E) =0) =

?

—
(= N

Py P(NRj(z) =1) = =,

— 3
and

_1 1 _ _ 2
Py = 5 P(NRj(z) =2) = 5

We can also deduce by derivation of (11.13) and (11.14)

Ppiq(t) = Pon(1) — Pon(t)
Ppio(t) = Ponya(t)

from which (11.15) follows.
]

We will give the numerical values of NR}(z) in the following, but let us first remark here the link
with a permutation counting problem.
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11.4.1 Link with the Euler Zigzag Numbers

For example, the computation of P(X; < Xy < X3) is related to considering the number of permuta-
tions of three variables X7, X3, X3 following the same law. Let us cite the 3! of them:

e X1 <Xo < X3,
o X1 < X3 < Xo,
e Xy < X3 < X,
e Xo < X1 < X3,
o X3 < Xi <Xy,
o X3 < Xy < Xj.

More generally, it is well known that the number of permutations of n elements is equal to nl!.
Consequently,

1
P(X; <Xz <...<Xp) =~
n!
Indeed, let us note o a permutation, and o, the set of permutations of n elements. Let X be the
random vector X = (X1, Xo,...,X},,), the subset indicates the position of the considered component.

Let X, be the permuted vector X, = (X,(1), Xo(2),---» Xo(n))-

Yo € oy, XaéX.

Hence
Vo€on, PXi<...<Xp)=PXy1) <...<Xgm))-

By summing over all permutations, we get

MP(X) <...<Xp) = Y P(X,0) <. < Xom))
ogEoy,
=P ( U Xy <. < X(,(n)]>
gC0On

Since n elements are all different with probability one, P (|J
P(X; <...<X,)=4.

[Xp1) <. < Xg(m]) = 1. Hence

oCon

In our case, this result is interesting for the computation of P(NR}(z) = 0) = P(X; > Xp >
X3) = 4 = . For P(NR}(z) = n) with n > 0, the model does not correspond since it only gives the
probability of ordered numbers and not oscillating ones.

In the literature, this problem refers to the alternating permutations. These are permutations in
which the difference between each successive pair of adjacent elements changes sign, that is each
rise is followed by a fall. For example, for the list {1,2,3}, the permutation {1, 3,2} is alternating,
while {3,2,1} is not. Fig.11.11 and 11.12 illustrate the four alternating permutations and the two
non-alternating permutations, respectively. So the probability of having an alternating permutation
with 3 elements is %. This number corresponds to the probability of having at least one oscillation:

P(NR}(z) > 1). Going back to previous notations, the four oscillating configurations are
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0X3<X1<X2,
OX1<X3<X2,
OX2<X3<X1,

o Xo < X7 < Xj.

They satisfy the conditions to have one oscillation, that is

e either X5 is bigger than X; and X3,

e either X5 is smaller than X7 and X3.

Figure 11.11: The two first alternating permuta- Figure 11.12: The two non-alternating permuta-

tions begin with a rise, the two following ones be- tions.

gin with a fall.

In the literature, the number of alternating permutations of n elements are called Euler Zigzag
Numbers, a short table of which is given in Table 11.13. It has been shown that the Euler Zigzag
Numbers are the coefficients of the expansion of 2 x (secz + tanz). The Maclaurin series of the

secant and tangent functions are given by:

1 5 61
sec(z) = 1+ 53:2 + Ix‘* + axﬁ
2 16 272
tan(z) = z+ 5563 + ﬁa:‘r’ ?aﬂ
Multiplying both sides of the equations by two yields
B 2 , 10 , 122,
2sec(z) = 2+5x -l-ﬂx +F$
2tan(z) = 2z + Tk + w? + T

We recognize here the Euler Zigzag Numbers given in Table 11.13. We note them a(n). The compu-

8!

7936 g

9!

1385
—LES...

+...

20055

8!
15872

9!

xg-l—...

2

3

4

5

6

7

8

9

10

11

12

a(n) |1

2

4

10

32

122

544

2770

15872

101042

707584

5405530

tation of P(NR}(z)

Table 11.13: Table of the first Euler Zigzag Numbers.

n) is given by the following Proposition.
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Proposition 11.7

~y_an+2) a(n+3)
Vn € ZT, P(NRj(z)=n)= mT (i3 (11.19)

where a(n) are the Euler Zigzag Numbers.

Proof: We note A,, the event “n elements form an alternating permutation”. The probability of such
event is the ratio between the number of alternating permutations of n elements (this number is the
Euler Zigzag Number a(n)) and the number of permutations of n elements:

The computation of P(NRj(z) = n) is the probability to have exactly n oscillations. The number
of elements v(id) necessary to have exactly n iterations is (n + 2) + 1. The first n + 2 elements
correspond to have at least n iterations and the last element corresponds to the stop of the oscillation
(two consecutive rises or two consecutive falls). For example, 4 elements can do exactly 1 oscillation:
the three first elements make the rise and the fall, and the last element makes the second fall (Fig.11.14-
left). Consequently, the computation of P(NR;(z) = n) requires n+3 elements. For the computation
of P(NR}(z) > n), the number of elements is equal to n + 2 since the last element is not considered.

a(n + 2)

P(NR}(z) > n) = P(Apy2) = (n+2)!

Since P(NRj(z) = n) is the probability to have exactly n oscillations, it is equal to the probability
to have at least n oscillation minus the probability to have at least n + 1 oscillations.

P(NRi(z) =n) = P(NRY(z)>n)— P(NRi(z) > n+1)
= P(Anps) — P(Anys)
_ an+2) a(n+3)
- (42! (n+3)

This ends the proof of (11.19).
g
As an example, the values of P(NR}(z) = 1) and P(NR}(z) = 2) are now computed thanks to
Property 11.7:

o P(NRY(z) = 1) = P(A;) — P(A,) = %) _all) — 4 10 _ 95,
(5
5!

3!
o P(NRL(z) = 2) = P(Ay) —P(45) = 4P — o) _ 10 _ 32 _ 15,

Remarks: 1t is important to observe here that we find the same results than the ones with the
previous computations with the uniform distribution restrained on [0,1]: (11.11) and (11.12). Note
also that the n'® Euler Number has the asymptotic expansion 4/7 - (2/7)" - n! (see [40]). Hence the
coefficient a(n)/n! has the asymptotic expansion 4/m - (2/m)".

Table 11.15 gives P(NR}(z) = n) for n € [0,10]. Note that we check the same probabilities for
the random image with uniform distribution: (11.10), (11.11) and (11.12). The results obtained with
Euler Zigzag Numbers are interesting because they are general to any random image as long as pixels
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Alternating permutations | Alternating permutations
of 3 elements of 4 elements

1 oscillation At least 1 oscillation At least 2 oscillations

Figure 11.14: Representation of the configurations, the probability of which are computed, to calculate
the probability to have exactly one-sided oscillation: P(NR}(z) = 1). The probability to have exactly
one oscillation is the probability to have at least one oscillation minus the probability to have at least

two oscillations.

n 0] 1 | 2 3 4 5
P(NR}(z) = n) | 0.33 | 0.25 | 0.15 | 0.0972 | 0.0615 | 0.0392

n 6 7 8 9 10
P(NR(z) = n) | 0.0249 | 0.0158 | 0.0101 | 0.0064 | 0.0041

Table 11.15: Table of the first P(NR}(z) = n).
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have same distribution (for example uniform or Gaussian), as we will show in the next section. But
this measure is also invariant under injective contrast change because the oscillations are considered
as alternating gray level rise and fall so that the relative difference of the gray levels between two
pixels are compared and not the absolute gray levels. This is perceptually relevant, since it is well
known that our perception is insensitive to contrast change and contrast invariant algorithms are often
seek in Computer Vision [15][33]. Let us give now some additive explanations of the reason why the
computations of P(NR}(z) = n) are distribution-free.

11.4.2 Distribution-free results

Let us now give the associated proposition.

Proposition 11.8 Let u be a random image such that each pixel has a random value. Assume that
the associated random variable X; has probability density function f and that the X; are i.i.d. Then
the values of P(NR}(z) = n) are independent of f.

Proof : We prove here that the computation of
P(NR}(z) =n) =2-P(X; > Xo < X3> ... < Xp > Xni1 > Xnyo > Xni3),

where X; has probability density function f, is f-free. To that aim, we consider the computation of a
simpler case n = 0, which we generalize latter to any n. The computation of P(NR}(z) = 0) requires
the computation of P(X; > X5), where X7 and X5 are i.i.d. random variables with probability density
function f. We first recall that the cumulative density function F' is defined by

t
F(t) = / f(x)de,

and that we have the nice following property:
if f is the probability density function of the random variable X;, then
F(X3) ~U([0,1]).

We will prove that P(X; > X5) = P(F(X1) > F(X2)) and since F(X;) has uniform distribution (that
is f-free), we will conclude that the computation of P(X; > X5) is also f-free. Let us now prove that
P(X1 > X9) =P(F(1) > F(X2)). Since we have

P(F(X;) > F(X;)) < P(X; > X;) < P(F(X;) > F(X;)),
we have to prove that P(F(X;) = F(X;)) = 0 in order to prove that P(X; > X,) = P(F (1) >
F(X3)).
PROG) = X)) = [ BUFOG) = FUX)IF(X;) = )di  because F(X) ~ (0, 1)
0

- /IIP’(F(Xi) = t) dt
0
= lim P(F(X;) <t) -P(F(X;) <t—e¢)

e—0
= lim t—(t—¢)=0

e—0
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This last result implies that P(X; > Xs) = P(F(1) > F(X2)). Since F is f-free, P(NR}(z) = 0)
is f-free. The same reasoning can be applied for the computation of P(NR}(z) = n) where the
probability with respect to X; can be replaced by the probability with respect to the f-free random
variable F'(Xj;).

([

Comparison of theoretical and experimental results

Fig.11.17-(a) displays the theoretical values of the naive model P(NR}(z) = n) and P(N}(z) = n)
for n € [0,30]. We compare those values with experimental results on a random image u (512x512).
The case n = 1 is the only value of n where both theoretical values are equal.

1
P(Nj(z) =1) = P(NRs(z) = 1) = ;
The model NR}; matches simulations. Two curves are displayed for the simulation on the random

image: one for § = 1 and one for § = 2. Indeed we distinguish two cases.
e The cases § > 1 have similar results as pixels are independent.

e The case § = 1 has a particular behavior, not described by the model. This comes from the
nearest neighbor interpolation of u. For some gradient values, the interpolation of points of v

refers to the same point of u (Fig.11.16). A typical example is a diagonal gradient direction:

% = (%, %) The points (1) and v(2) have the same interpolate u(z; + 1,29 + 1).

Indeed the nearest neighbor interpolation of v(1) = u (:1: + %) =u ((.ﬁEl,.’Eg) + (%, %)) ~
u(zy +0.7,z2 + 0.7) and v(2) ~ u(xy + 1.4,z9 + 1.4) yield both u(x; + 1,z2 + 1). This case
suggests to use another kind of interpolation, which has not been done in this thesis.

Y

V(23

v(3)

u(x)

Figure 11.16: Example with § = 1 where v(§) and v(26) have same interpolated value u(z + (}))

Note that the two-sided oscillation model N R can be deduced from the one-sided oscillation model
N R} if oscillations are supposed independent on both sides of the edge (Fig.11.17-(b)):

P(NR;(z) =n) = Y P(NRj(z) =r)-P(NR}(z) =1).
r+l=n
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Figure 11.17: Probability values of the oscillation length under a random assumption (a) one-sided
oscillations N} and NRj. The curves for NR} and § = 1 are not the same because of the nearest
neighbor interpolation, but we check that the curves for NR} and § = 2 are very close. (b) two-sided
oscillations N R;.

Now that the theoretical values of P(N}(z) = n) and P(N R}(z) = n) have been given and checked
by simulations, we propose to build ringing detectors based on these results. First, we have seen in
Proposition 11.5 that the computation of P(N}(z) = n) is easy, but does not totally match the cases
of real images since their gray level are restrained to a given interval, generally linked to the sensor
sensitivity in the optical chain. However since the mathematical computations are easy, we will propose
four ringing detector based on P(N; (z) = n). These detectors are presented in the Section 11.5. Then
we will give another detector based on P(NRj}(z) = n), which was easily computed thanks to the
Euler Zigzag Numbers. This detector is presented in the Section 11.6.

11.5 Detectors for the naive model 1

We propose here several detectors based on the naive model 1 (Proposition 11.5). Three detectors are
defined. Each one is based on different models called model A, B and C. All try to detect the ringing
oscillation half-period d. The model A and B are based on the study of the histogram H(n,d). Since
H depends on two parameters, the detection with respect to a single one is not direct. This is the
reason why we have had two approaches. The first one, called model A, consists in not detecting §
but any cell of H(n,d) which has a high value with respect to the naive random model 1. In practice,
it means testing each line of H(n,d). The second approach is the global detection of § with the
information theory. The model C is based on the study of H(4) (and not H(n,d) as for model A
and B) which has the advantage to depend on the single parameter §, and then to detect directly the
oscillation half-period.
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11.5.1 Model A: definition of detector 1

Detection on H(n,d) with ¢ fixed.

The aim is to detect high values of the histogram H(n,d) with respect to the naive random model.
Each line of H(n,d) is analyzed independently. In order to detect the meaningfulness of the values of
H(n, ), we compute the probability to obtain those values, that is P(H(n,d) = k), with the random
assumption described in the naive model 1.

We recall here that the probability that exactly k objects (independent and with Bernoulli distribu-
tion) out of the observed N have a considered quality is given by the binomial distribution

b(N, k,p) = (JZ) pr (1 —p)NF

where 0 < p < 1 is the probability that one object has the considered quality. The probability that
at least k£ objects out of the observed N have a considered quality is given by the tail of the binomial

distribution
N

B(N,k,p) =) (]D pr(1—-p)Nh

i=k
By definition of the naive model 1, we have from Proposition 11.9
P(Nj () = n) =2 (1)
so that the probability that a pixel z has the quality “N51 (z) = n" is equal to p = 2~ (1) Hence the

probability that k points out of the N (number of points in the image) have the quality “N}(z) = n”
is equal to

N N—k
_ _ —(n+1) — —k(n+1) _ o—(n+1)
P(H(n,d) = k) = b (N,k,2 ) (k>2 (1 2 ) .
The probability that at least k£ points have the quality is the tail of the binomial distribution, i.e.
P(H(n,8) > k) = B (N, k, 2—("+1)) . (11.20)

The Hoeffding’s inequality [17] gives a bound to the tail of the binomial distribution.

Proposition 11.9 ( Hoeffding’s inequality) Let X1,...,X; be independent random variables such
that 0 < X; < 1. We set §; = Y>'_, X; and p = E[%] Then forpl < k < 1,

p D (1 p\ 10
> < | — .
s i< () (1=

In other terms, setting r = k/I,

1—
P[S; > k] < exp [—r (Hogi + (1 —r)log 7")] .
p l-p
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From Proposition 11.9, we deduce a bound to (11.20):

k k k 1- £
—(n+1) _ _ N
B (N,k,Q ) < exp [ N ( log 5= (ntD) + (1 ) log — 2_(n+1)>]

1
k k k 1- £
— —(n+1) ~ log —— = - N
log B (N,k,Z ) > N (N log ey + (1~ ) log 1= 2(n+1)) (11.21)
The normalization of H by the number of pixels N of the image is H(n,d) = H(]\;"s). Hence

k k k 1- &
(11.21) & —logP(H(n,0) > k) > N (N logm +(1- ﬁ)log 7) .

Consequently, the “information” of H (n,d) is

I(n,6) ~ N (ﬁ(n,5) log Hn0) (1= H(n,6))log ﬂ) _

92—(n+1) 1 —2-(n+1)

Following the a contrario approach described in [12], we define the “number of false alarms” (NFA)
of the event "H(n,d) = k”. By definition, it measures the “meaningfulness” of the event, i.e. the
smaller the NFA is, the more meaningful the event is. In other words, a small NFA shows that the
event is unlikely to appear by chance. The meaningfulness is defined by —log NF A, which is a more
appropriate logarithmic scale.

Definition 11.10 (detector 1) The number of false alarms of the event “H(n,d) = k" is
NFA(n,8) = #n-#5- B (N,H(n,a),2—<"+1)) , (11.22)

where #n (resp. #0) is the number of different possible values of n (resp. &) that are tested. Their
product represents the number of tests Nyosr = #n - #6.

Remark on the calculus of the number of tests: N depends on the size of the image. As
the NFA is computed on lines of the image (in the ringing direction), we shall estimate the number
of tests in the 1D case. If we consider a square image u of size N = v/N -+/N = L? then
the one-dimensional signal has size in [L,+/2L]. But as we interpolate with the nearest neighbor
interpolation, we shall only consider here the length L (Fig.11.19).

As the image is discrete, the maximum number of oscillations n associated to a signal of size L

depends on the value of é. For a given value of § € [1, | £]], its value is

n(6) = {%J 1 (11.23)

For example, if L = 8 then (Fig.11.18)
8-1

e n(1) = |8L]| —1 =6: for § = 1, the signal of length 8 contains 8 tested points, which can give
up to 8 — 2 = 6 oscillations,
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e n(3) = |31 —1=1: for § = 3, the signal of length 8 contains 3 tested points, which can give
up to 3 — 2 =1 oscillation.

From (11.23), we deduce

1) 5 o
Ntest = n(é) = ([TJ —1) . (1124)
=1 =1
Gray level Gray level
MNW N
\ s N \ 5 N ,
@ (b)

Figure 11.18: Calculus of Ny in the 1D case Figure 11.19: The horizontal and diagonal
L =8.a)d=1Db)d =3. The maximal number segments have different continuous length
of possible oscillations (NR}) in both cases are but the number of associated discrete points
respectively 6 and 1. is identical (L = 5).

11.5.2 Model B: definition of detector 2

Detection on H(n,d) with J not fixed.

The first model detects ringing for each value of §. But as we have seen in Fig.11.6, the detector
should be global. Detector 2 is global because d not fixed. It is based on the Kullback distance between
the naive Bernoulli distribution and H.

Definition 11.11 (detector 2)

F()= Y H(n,d)log i ((m + (1 - H(n,d))log % Z (n,6)
nell,N] €[1,N
As we will see in the numerical experiments, this distance is not adapted to our problem, because
it is not precise enough to detect the ringing half-period. This result is not surprising since F(J)
is by definition the mean of I(n,J), computed for the detector 1. Furthermore detector 2 has the
disadvantage to be asymmetric.

Another model is studied now which is also valid for § not fixed. We will see that model C is not
precise enough to detect ringing oscillations, as model B. These results check that these approaches
based on the naive model 1 are not realistic enough to be applied, and that they should be replaced
by the naive model 2.
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11.5.3 Model C: definition of detector 3

Detection on H(§) with § not fixed.
In the previous model, we tried to detect the oscillation half-period from the histogram H(n,?).
Here we try to detect from

H'(6) =) Nj(z).

We have seen in Proposition 11.5 that P(N} = n) = 2=(™*1)_ If we note X; the random variable
associated to the number of oscillations NJ1 at pixel ¢, then

P(X; =n) = 2" (1) (11.25)

and
H'(6) =) Xi. (11.26)

From (11.25), note that X; has nearly a geometrical law G (3) and that (11.26), which is the sum of
X, has a simple expression if X; is a geometrical law. For these reasons we chose to study a simplified
version of the naive model 1 such that X; has exactly a geometrical law G (%)

P(X; =n)=2"". (11.27)

Hence, with our previous assumption, H' is the sum of independent random variables with geometric
laws. Since the sum of N independent geometrical laws has Pascal distribution [43], then H' has
Pascal distribution [43]. We recall here its definition and we give P(H' = k) for our special case.

Definition 11.12 The Pascal law of order N has probability distribution function

P(Y =k) = (2:11) PN (1 -pk N (11.28)

withp € [0,1] and k € {N,N +1,...}.

In our case p = % so that

P(H'(§) = k) = IP’(Z Xi=k)=PY =k) = (]’;__D 27k (11.29)

with k € {N,N + 1,...} and N the number of points in the image.

In fact, the geometric distribution hypothesis on N} (z) is not true because the event “Nj(z) = 0"
may appear (there might be no oscillation at pixel z) which is not possible with the geometric
distribution. Let us now successively explain why the geometric distribution is not totally adapted
to our case, define new variables to take into account this remark and propose a detector for the
model C:

e Remark on the geometric distribution: by definition, the geometric distribution is the proba-
bility distribution of the number Z of Bernoulli trials needed to get one success, supported on the
set 1,2, 3, .... If pisthe probability to get one success at each trial, then P(Z = 2) = p(1—p)*~!
with z =1,2,..., co. But in our experiments, the case N(}(ac) = 0 may appear.
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e Notations: the shift of 1 yields the following definitions:
Definition 11.13 N/(z) = N}(z) — 1.
Definition 11.14 H'() = Y, Ny(z).

e Detector: as for detector 1 and 2, we propose an a contrario detector. The measured value
h'(6) of H'(8) is meaningful if the probability that “H’(d) > h'()" is small.

Definition 11.15 (detector 3)
NFA(8) = #6 -P(H'(6) > h'(9))
where h'(§) is the observed value of H'().

The NFA is the product of the number of possible tests and the probability of the event. As in
the first model, § € [1, [%H so #6 = [%J

With these new variables, (11.29) becomes for any value of N
P(Y =k) = P(X|+X5+...4+ Xy =k)
= P(X1—1+X2—1+...—|-XN—1:]€)
= P(X1+Xo+...+Xyv=Ek+N)

_ (RN TN et
— ( Vo )2 . (11.30)

From (11.30), P(H'(6) = k) = (k;ﬁf) 2-(k+N)_ This is the expression of a negative binomial law,
because the Pascal distribution is linked to the negative binomial distribution, which is the law of Y —N.
Since detector 3 is based on P(H'(§) > h'(§)), its computation is the sum of negative binomial laws.
We will now see why this model is not adapted to the ringing detection and why numerical experiments

cannot be satisfactory.
First let us rewrite P(H'(6) > h'(9)):

M M
PHE) =HG) = > PHE=k= Y n (1131)
k=h'(9) k=h'(5)

where M is the maximum value of H'(d) and pg is P(X = k) for any random variable X with
negative binomial law. From (11.31), the detection of large values of h'(d) (that is small values of
P(H'(6) > h'(8))) is possible only if P(H'(§) > h'(d)) is sensitive to the measured values of h'(9),
which assume that there is no value of k such that py is far too large by comparison with other values
of pi. This hypothesis is not satisfied in reality, because there is a value of k bigger than the observed
values h/(J) in the experiments, such that py is very large by comparison with py(5). The following
property states that the maximum of py is reached for k = N — 2.

Property 11.16 Let X be a random variable with negative binomial law of order N with parameter
k+N-1
IP X = = 2_(k+N) = .
( k) ( N_1 ) Pr

Then py is maximum at k = N — 2.



138 Chapter 11.  Ringing detection

i o o N+k)! — N-1)!(k)! 1 1 N+k
Proof: Set t), = p’fl = (N£1)!(1c)+1)! - 27 (N ((N-Hc)_(l))! ST =3 Tl

Prt12>proth>16 N—-22>Fk

See the graph of p; in Fig.11.20.
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Figure 11.20: (a) Curve of A; =log,, P(X = k) = log;o pr with N = 512 x 512 = 262144 (b) zoom
in. The maximal value of pg is reached for &k ~ N.

As we will see now, the value K = N — 2 is smaller than M so the maximum value of py is always
added in (11.31), which yields bad detection results. Let us estimate the value of M for an image of
size N = L2. Suppose that for a given value of §, oscillations at each pixel have maximal length | £ ],
then M = ([%J — 1) x N > N. The numerical computation of H' shows values smaller than N. For
example, in Fig.11.7, H(§) € [0,246383] with N = 256 x 256 = 65536.

So H'(6) € [0,190168] <« N. Consequently, in the computation of P(H'(§) > h'(d)), the main
weight in }_ py is given by py_o and the neighborhood values. The values of pys are smaller than py_o.
So V4, P(H'(6) > h'(8)) = Cte. Consequently, this detector is not precise enough to differentiate the
ringing half-period from other § values. This is not really surprising since we used the nice properties of
the sum of geometric distribution, even if our random variables do not have a geometric distribution.

11.5.4 Numerical experiments with the detectors 1 and 2

We have seen that the first and third detectors require a threshold value. The same problem occurs
with detector 2. An example is given in Fig.11.21. Furthermore, the values of F'(§) for the random
image (Fig.11.21-(b)) are very similar to the ones of the image with ringing (Fig.11.21-(a)). So this
kind of detector would detect ringing in a random structure or no ringing at all. This major drawback
is avoided by characterizing the ringing from noise or natural images. Natural images contain objects
with smooth transitions, which reduces the number of oscillations especially for small §. This produces
small H(d) (Fig.11.22). Random images have far more oscillations for all values of § (Fig.11.23).
These two kinds of images (natural and random) have histograms H(n,¢) nearly independent of 4.
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By comparison, the histogram of an image with ringing has a larger value for the half-period of the
ringing oscillations, than for other values of § (Fig.11.6). The results of the detection with detector 1

NFA(n,8) = #n-#6- B (N,H(n,8),2™")

are shows in Fig.11.24. The value of H(n, ) is estimated by considering NR} and not N Rj, because
the theoretical values of NR% for random images are given in Section 11.4.1. The values of NR;
could be as well written but it has not been done in this thesis.
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Figure 11.21: (a) Curve F(9) of the Fig.11.1-(b). The maximum is reached for § =3
(b) Curve F(6) of a random image of size 256 x 256.

(2) (b)

Figure 11.22: (a) Natural image u (b) histogram
log H(n,6). There is no value of § for which the
histogram has far more longer oscillations than for
the other values of 4.

(a) (b)

Figure 11.23: (a) Image u with uniform random val-
ues in [0, 255] (b) histogram log H(n,d). Random
images have longer oscillations than natural images
(Fig.11.22-b).
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(2) (b) (c)

Figure 11.24: Detection associated to (a) the natural image (Fig.11.22), (b) the random image
(Fig.11.23), (c) the image with ringing (Fig.11.1-(b)). The values of —log;, NF A(n, ) larger than 15
are thresholded (white pixels). We observe that for the image with ringing, the detection is meaningful
for = 3, nearly the whole line is meaningful.

11.5.5 Model D: improvement of model A and definition of detector 4.

In order to detect ringing neither in ringingless images nor in random images, we propose a last detector
that takes into account the previous remarks. The new detector is based on the detector 1 built in
Model A. In practice, the computation of NF A(n,d) are done with the detector 1 and then they are
compared to the values of NF A(n,d) obtained for ringingless images. Let us define some variables.

Definition 11.17 The proportion of meaningful points in the N F A(n,d) image is defined by

number of meaningful points in the NF A(n,¢) image

Py = — -
M number of points in the NF A(n,d) image

Definition 11.18 The proportion of meaningful points in each line of the NF A(n, ) image is defined

by
number of meaningful points in the line § of the NF A(n, ) image

number of points in the line § of the NF A(n,¢) image

P(5) =

Definition 11.19 We define the curve of the difference with respect to the mean proportion value by
C(8) =P(d) — Py -
Definition 11.20 (detector 4) We shall say that an image u has ringing with half-period ¢ if
C(6)(u) > Cr

where

C, = 112?;* rngix C(9)(R;)

with r the number of tested random images R, r large.

The threshold value C; is defined in this way in order to avoid the detection of ringing in random
images. This is a very important criteria for our detector since we want to build a detector which
does not depend on the level of noise in the image. The constant C; is a threshold on C(§) which is
reached with very small probability when random images are considered. In practice, if this threshold
exists, it is obtained when an infinite number of random images are tested (r — +00).
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11.5.6 Numerical experiments with detector 4

In this experiment, the ringingless image u is the Lena image blurred with a Gaussian kernel with
standard deviation equal to 1. The images with ringing ug are built by deblurring u with a Wiener
filter where kg is the Gaussian kernel with standard deviation equal to 2. We recall here the definition
of a special case of the Wiener filter given in (11.1):

VEE R, ug(é) =

Different values of the Wiener filter parameter have been tested. They introduce more or less ringing,
depending on the value of w, weight of the fidelity term (Fig.11.25). Note that the computation of
the NF' A is done on the periodized version of the images in the X and Y directions, so the size of the
window does not reduce artificially the number of oscillations for large 6.

(2) (b) (c) (d)

Figure 11.25: Images 256 x 256 (a) blurred image, (b-c-d) deblurred images with w = 10, 20, 50.

The estimation of C) is done on random images of size 512 x 512. Points are considered as
meaningful if NFA < 1075, We observed that we obtained similar results with other values of NFA-
thresholds: 1075 and 10~1. We plot the values of C, obtained for different r € [1,1000], number of
tested random images for the NFA-thresholds 10715, The maximum value of C, for r € [1,1000] is
below 0.2, so that C, is set to 0.2 (Fig.11.26).

For the NFA-threshold 10™° and 107!, the C, values are 0.2 and 0.21, respectively. Detector 4
succeeds in detecting the image with ringing (Fig.11.27). Furthermore, it gives the period of ringing in
the images. For w = 10 and w = 20, we have § = 4. For w = 50, we have § = 3, which corresponds
to the ringing half-period observed on images.
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Figure 11.26: Estimation of C, on 1000 random images of size 512 x 512 for r € [1,1000]. C, increases
with r because if ' > r then Cpv = max{C}, max,;i<;<,» max; C(6)(R;)}. The value of C(0)(R;)
is smaller than 0.2 for the 1000 tested random images, so that the reference value C; is set to 0.2.

It is interesting to test detector 4 on a set of images having more and more ringing, i.e. for increasing
values of w. Fig.11.28 shows the detection with w € [1,14]. For w > 8, the image is said to have
ringing, which is perceptually convincing.

The last test checks if other kind of images without ringing are not detected by detector 4
(Fig.11.29). The detector classifies correctly those images except the image “room”. This last image
has an oscillatory texture (bottom part), which is detected as ringing. But a simple test on the locality
of the detection avoids this kind of problem. The ringing is a global phenomenon on the whole image.
A very localized detection is thus only a texture detection and is easily distinguished from ringing.

We also study the effect of noise on such images (Fig.11.30). We add a Gaussian noise with o = 2
(the case 0 = 1 has also been tested but we do not show here the results since they are similar to
the ones obtained with & = 2). Noise may add some extra oscillations which may increase C(¢).
The proposed detection is globally robust to noise except on images with oscillatory textures. Images
“room” and “house” have periodic structures (sweat-shirt in the room or bricks of the house) detected
as ringing.

11.6 Detector for the naive model 2

We consider a random image with gray level restrained to a closed interval. The calculus of
P(NR}(z) = n) is explicitly given in Proposition 11.7 thanks to the Euler Zigzag Numbers. Us-
ing the same a contrario approach, we can define another detector, which has the advantage to be
universal for any gray level distribution in the random image.

Definition 11.21 (detector 5) For a given value of 4, the number of false alarms of the event
“H(n,d) =k" is

NFA(n,8) = #n-#6-B(N,H(n,0),P(NRj(z) =n)) . (11.32)
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Figure 11.27: Curves C(d). (a) The curve C(d) of the blurred image and the random image is below
Cy, which indicates no ringing. (b) The curve C(§) of the images with ringing is above C,. These
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images are detected as having ringing, which checks the validity of the detector.
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Figure 11.28: graph (w, maxs C(d)) for deblurred images with different values of w. Note that this
graph only takes into account the maximum value of C(§), and not the number of § such that
C(8) > C,. The ringing is detected if max; C(6) > C,, which corresponds here to the images
obtained with w > 8 with the Wiener filtering.
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Figure 11.29: First line: images without ringing (lena, nimes, house, lacornou, room), second line:
graphs (0,C(d)). Only the image “room” is detected as having ringing, because of its oscillatory
structure in the lower part of the image. Others are correctly classified.
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(b) Ringing detected

Figure 11.30: Graphs (6, C(d)) of the ringingless images with Gaussian noise with ¢ = 2. In (a),
as expected there is no detection for the ringingless images. We obtain the same results than in
the noiseless case (Fig.11.29), which shows that the noise has little impact on the detection results
for these images. In (b), image “room” is detected as images with ringing because of its oscillatory
texture, but we obtain the same detection as in the noiseless case (Fig.11.29). Image “house” is now
detected as having ringing because the noise increases the oscillation length in the brick wall making

the oscillation detectable.
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Using the Hoeffding’s inequality, we get

H(n,s)
N[ B ( H(n,5) ) 1 H@8)Y 1- 2t
_]\]FA(n 5) < F#n-#5-e ( N 08 N-P(NR}(z)=n) +( N ) o8 1-P(NRL(z)=n)
’ - -

The detection is possible by setting a threshold value, which measures its meaningfulness. Here we set
the same threshold value in all the experiments. They confirmed that there are no false detections in
random images (Fig.11.31-a). The detector can be very sensitive to the level of ringing in the image,
especially when the image contains edges surrounded by large uniform zones (Fig.11.31-b-c).

Another example is shown in Fig.11.32. For the images (a-b), some oscillations are detected for
large value of §. The structure of the shelves has a periodic pattern which is detected as oscillating.
As the shelves are localized on a small part of the image, this detection is a false alarm. This kind
of false detection can also be seen on the image with ringing (c-d), but the ringing phenomenon is
predominant.

A last example is shown in Fig.11.33, which is the reference example in this chapter. Again the
period § = 3 of the ringing is detected, which validates the coherent results of this detector.
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(d) (¢) (f)

() (h) (i)

Figure 11.31: (a) random image with uniform distribution (b) original image without ringing (c)
deblurred images with a Wiener filter w = 0.2 (d-e-f) associated images log H(n, §) (g-h-i) associated
images — log;o NF A(n, ). The last image has ringing which is detected for § = 6.
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Figure 11.32: (a) original image ug (b) blurred image u without ringing: blurred version of (a) by a
Gaussian with standard deviation 1 (c-d-e) deblurred versions of u with a Wiener filter w = 1,5,25 (f-
g-h-i) images — log,, NF A(n, 0) associated to (b-c-d-e). Image (b) has no ringing, the detection of the
filter is for large d, which corresponds to the oscillation half-period of the shelf texture (36/2 = 18 = ¢).
Images (c-d) are not detected even if image (d) has some ringing. Image (e) has ringing and it is
detected with oscillations of half-period § = 3.
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[N

(a) (b) (c)

Figure 11.33: (a) Image with ringing Fig.11.1-b (b) log H(n,d) (c) —log;o NFA(n,d). The ringing
is detected for 6 = 3.

11.7 Conclusion

We have proposed several new ringing detectors based on an a contrario approach. This kind of
approach is really interesting since it generates parameter-free detectors and then is easy to use in all
applications. Moreover it is a reference-free method, which is a great advantage when the original
image is unknown.

The ringing studied in this chapter is the one issued from a deconvolution, i.e. which has oscillations
with same period around edges. In the recommended detector (detector 5 in Definition 11.21), the
detection is done by showing that there is a surprisingly large number of such oscillations on an image
with ringing by comparison with an image without ringing. In order to be robust to weak noise, the
latter image (the one without ringing) is generally modeled by a random image since the detector
should not take noise for ringing.

We computed the theoretical value of P(NR}(z) = n), the probability to have an oscillation of
length n and period 20 at the pixel z, for random images. We showed that the calculus of this
probability is independent of the gray level distribution, as long as all pixels are independent and
identically distributed, which makes this contrast invariant detector. In order to detect the ringing,
we compared the theoretical value of P(N R}(z) = n) obtained for random images to the number of
pixels of the tested image satisfying “NR}(z) = n”. The ringing is detected when this number is
much larger than theoretically expected. The proposed detector yielded good results in the numerical
experiments. This proposed detector, being-parameter-free and robust to noise may be a good choice
for all problems requiring post-deconvolution ringing detection.



Chapter 12

Aliasing detection

12.1 Using the frequential interpretation

We have seen that if the conditions of the Shannon sampling theorem are not satisfied before the
downsampling of a signal, aliasing artifacts may occur. It results a spectral overlapping between high
frequencies of the Fourier transform and low frequencies. This effect can be used to detect the artifact
because it introduces an unnatural aspect in the image. The addition of the original frequency and
its alias results in the superimposition of two waves on the object contours (Fig.12.1). An image is
not constructed by the superimposition of two images, so our eyes detect aliased images because they
cannot believe in the expression of two frequencies. For example, the grid pattern visible in Fig.12.1(b)
is highly unlikely in the nature. The detection of such superimposed frequencies in the Fourier domain
is difficult because of the global nature of the Fourier transform.

NN

(2) (b) (c) (d) (¢) ()

Figure 12.1: Three original images of size 64x64 (a-c-e) and aliased versions: (b) texture change (d)
thin structures are not preserved (f) contours have a staircase aspect. The aliased image is built by
a spatial downsampling of factor two. In each case, we observe the superimposition of the original
frequency and the aliased frequency.

For some special kind of images, it is possible to detect visually the aliasing artifact in the spectral
domain. Fig.12.2-(b) shows a good example of aliasing. It contains an large oscillatory structure in
the down left corner of the image. The associated oscillation frequency has a large Fourier transform
modulus, as shown in Fig.12.2-(a). We see the large value of |i| for the fundamental frequency &; and
the harmonics & = i - & for ¢ = 2 and 3. We can say that the image has small aliasing, because £3
is not contained in the spectral domain of u and we observe its alias. The overlapping of {3 can be
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easily shown by periodizing 4 and noticing the extension (Fig.12.3)

@ (®)

Figure 12.2: (a) |ul in log scale (b) the considered image u. The shirt on the couch has an oscillatory
structure which can be detected in the Fourier domain by the large values of [u] in & = &1,2€1,3&;. The
image has very small aliasing because the frequency 3¢; cannot be contained in the spectral support
of u and we observe its alias.

not—aliased pa
aliased part

Figure 12.3: The periodization of |u| from Fig.12.2 shows the extension of the line associated to 3¢;
outside the spectral support of the image. This kind of aliasing is visually easily detected. This artifact
could be removed if the spectral support was increased.

This kind of observation has already been done by Malgouyres [28] for the image restoration that
preserves cylindric functions when frequencies are extrapolated out of the initial spectral domain. An
example of application is the very special case of images containing a single edge. In this case, the
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aliasing can be visually detected by periodizing the modulus of the Fourier transform of the image.
We show some examples in Fig.12.4 and 12.5. The main frequency is clearly visible on the Fourier
transform of the image: it is a line orthogonal to the edge direction. The aliases are also visible: they
are lines parallel to the main one. The periodization of the Fourier transform shows immediately that
the alias are the extension of the main line. This point has been discussed during the aliasing definition,
see Fig.1.2. In log scale, the energy of the alias is bigger than the energy of the other frequencies. We
immediately detect aliasing by comparing the energy of the main and aliased frequencies, which are
close in log scale, to the energy of the background, which is small. Fig.12.5 shows two more examples.
In the first one (a), aliasing can be easily detected because the image contains a single line. In the
second one (c), the detection is difficult because it contains four line orientations, the alias of which
interact and are hidden by the four main frequencies of each direction.

(2) (b) (c) (d)

Figure 12.4: (a) aliased image 32x32 (b) modulus of the Fourier transform in log scale (c) periodization
of the modulus (d) mask of the main frequency (in gray) and of its aliases (in white). Aliases are
visually detected on (c) by the line extensions.

= A B

(a) (b) (c) (d)

Figure 12.5: (a) subpart of a SPOT 1 image 32 x 32 (b) modulus of its Fourier transform in log scale
(c) an other subpart (b) modulus of its Fourier transform in log scale. On (b), aliases are visible since
(a) contains a single line, but they are hidden in (d) since (c) has several edges.

As shown in Fig.12.5-d, the case of images which contain only one line is very special and the
aliasing detection in the Fourier domain is not visually possible when an image contains more edges,
as most natural images have. The problem of the aliasing detection in the Fourier domain comes from
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the globality of the Fourier transform, so that aliases are often hidden by the frequential components of
the other objects. Fig.12.6 shows an example of a very aliased image, the spatial image (b) is built by
a down-sampling of a factor four in both direction of Fig.12.2-b. Our eyes detect aliasing in this image
because of the unnatural shape of some objects. Some of the unnatural details are the electric wire is a
dot line whereas the eye expect a continuous line, the irregular structure of some oblique books on the
shelves and the stair-case effects along edges. The shirt on the couch still has an oscillatory structure
which could be true. The change of orientation of the oscillatory textures cannot be detected without
any other assumptions on the object geometry.

Even if our eyes detect aliasing in this image, the detection in the Fourier domain is not obvious.
Fig.12.6-b does not contain lines which extension are clearly aliased. This shows that the aliasing
detection should be done in the spatial domain. Such approach is presented in the next section.

(2) (b)

Figure 12.6: (a) |u| in log scale (b) the aliased image u built by a downsampling of factor four of
Fig.12.2-(b). The fundamental frequency of Fig.12.2 is aliased and the harmonics are hidden by low
frequencies. The aliasing is visually detected in the image u and not in the image |u|.

12.2 Using the geometry

In the previous section, we have defined an aliasing detector based on the frequential characterization
of this artifact. Now, we propose to detect the aliasing directly on the spatial image. One of the
characterizations, which is called the staircase effect, is the degradation of the contours of objects. It
reduces the regularity of the level lines. This is the reason why we propose to study the regularity of
the level lines of an aliased image in order to detect aliasing.

12.2.1 The level line approach

The Coarea formula links the total variation of an image f to the length of its level lines [14]. And in
a way, the longer the level lines are, the less regular they are. Before giving the Coarea formula, let us
define the level set Ej.

Let U be an open set in R?, BV (U) the space of functions of bounded variation and £! the one-
dimensional Lebesgue measure.
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Definition 12.1 (Level set) For f: U — R and t € R, define
E(f)={zcU|f(z)>1t}.

Theorem 12.2 (Coarea formula for BV functions) Let f € BV(U). Then

(i) E; has finite parameter for L' a.e. t € R and

(i) |DFI(U) = [25 |0B|(f) dt.

(iii) Conversely, if f € L'(U) and

| iomi@d < o

— o0

then f € BV (U).

Note: The expression “L! a.e.” means “almost everywhere with respect the measure £!,” that is,
except possibly on a set A with £1(4) = 0.
In this new approach, we try to prove that the level lines of aliased images have very special statistics.

12.2.2 Discussion

In aliased images, level lines are not regular. We observe this staircase structure along edges. Fig.12.7
shows the synthetic case of aliased and blurred steps with one level line. The level line discontinuity

AL kA

(a) (b) (c) (d)

Figure 12.7: (a) Aliased image 128 x 128. (b) blurred image 128 x 128. (c) One level line on the
zoomed version of (a). (d) One level line on the zoomed version of (b). Note the discontinuity and
the regularity of the aliased and blurred image level lines, respectively.

is a direct consequence of the local configuration of the gray level values. In the case of the bilinear
interpolation, level lines can be easily computed. Let us first recall the bilinear interpolation before
describing the equation of the level lines. By definition, the interpolation of the discrete samples u(i, )
(7,7 integers) gives the continuous function v(x,y) that coincide with u in (%,7). The computation of
v is done on each 1 X 1 square with discrete coordinate (4,7), (i +1,5), (4,7 +1) and (1 + 1,5 + 1),
the gray level values of which are a,b,c and d, respectively (Fig.12.8).

Definition 12.3 The bilinear interpolation of the discrete image u on the domain

S=[i,i+1] x[5,5+1]
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bx+a(1-x) | p=1-y

p=y

c+ 777777777777777777 {d

c x\ d

dx+c(1-x)

Figure 12.8: Bilinear interpolation. The value in (z,y) is obtained by giving a weight to the values of
a,b,c and d as given by (12.1).

is the continuous image v defined V(z,y) € S by

v(iz,y) = 1—-z+1i,x —i)(g ;) (1 ;g;—])
= (a(l—z+)+bz—9))(1—-y+j)+ (ci+1—2z)+dz—1))(y—j)

where the discrete samples of u are

o u(i,j) =a,

e u(i+1,7) =b,

e u(i,j+1)=c¢c,

e u(i+1,7+1)=d.
As expected, the corner values correspond to the discrete samples, that is

e corner 1: v(3,j) = a,

e corner 2: v(i+1,5) =b,

e corner 3: v(i,j +1) =¢,

e corner 4: v(i+ 1,5+ 1) =d.

The level lines, defined in the regular case by v(z,y) = k where k is a gray level in [0,255], are
pieces of hyperbola with horizontal and vertical axes centered in C = (z., y.), where
a—c a—>b

- = = =~ -  if . 12.1
a+d—c—>b and e a+d—c—0b if atd#btc ( )

Tc

From (12.1), the value of v in C'is v(z.,y.) = ajg:gib. The position of C with respect to S modifies

the level line smoothness within the pixel. Typically, we observe two positions of C":
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P1: C in S (Fig.12.9-(a,b)). The level line curvature is large. The extreme case, where C' = (7,0) is
a corner of S, gives right angle. This case is observed in Fig.12.7-(a).

P2: C outside S (Fig.12.9-(c)). The level lines are parallel and the curvature is small. This case is
observed in Fig.12.7-(b).

Definition 12.4 The “P1 points” are the points C = (z,y.) € R?, hyperbola center of the level
lines of v defined on S = [i,i + 1] x [j,7 + 1] by (12.1), such that C isin S.

(2) (b) (c)

Figure 12.9: Level lines (a) P1: C = (0.41,0.50) (b) P1: C = (0,0.91) (c) P2: C = (5.4,-2.2).
The level line curvature is large when the center C of the hyperbola is within the pixel, that is in the
S =[0,1]% domain.

The number of points satisfying P1 is generally large in aliased images. This comes from the local
configuration along edges. In the example of synthetic aliased edge in Fig.12.10, S contains only one
pixel of the edge, others belong to the background: a = b = d. The center C is a corner of S since

e g=>0,s0y.=0,

a—c _ a—c¢c __ 1

® d=b50%c= grg=cp = 4= =

This example results in a top right corner position. The rotation of the black pixel among the four
white ones, gives the four possible configuration associated to the four corner position of C.

a b a’”iﬁ*i‘b

c | d g

Figure 12.10: Example of P1 configuration. Among the four pixels, three of them have very similar
gray level values. They represents the background. The pixel from the edge has a different gray level
value.

The fact that the number of points satisfying P1 is generally large in aliased images can be useful
to detect aliasing. But to build the detector we do not use this number but an other number we shall
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define in the following that characterize the stair-case effect along edge, which is particular to the
aliasing artifact. In the stair-case effect, two points P1 with opposite corner position can be coupled
as shown in Fig.12.11. Let us name

e (1, Cy, C3 and Cjy the corner position of S: they are the center of the pixels with gray level a,
d, ¢ and b, respectively.

e C!, Ch, C% and C} the corner position of S’, where S’ is another square [0, 1]? adjacent to S
such that S and S’ have one common boundary or only a common vertex.

Fig.12.12 shows an example of configuration of S and S’. The common boundary is such that Cy = C
and Cy = O,

(2) (b) (c)

Figure 12.11: (a-b) Two level lines have opposite curvature. (c) The two associated hyperbola center
C (marked by a e) have opposite corner position.

cC, C,C  C,

S S

Cs C, C3 Cs
Figure 12.12: Both domains S and S’ have four corner positions called C;, C3, C3 and Cy for S

and C1{, C), C§ and C} for S’. In such configuration of S and S’, if there is P1 points in opposite
directions: (C1,C%) or (Cs,C}), then the couple can be counted for the aliasing detection.

The coupled point are noted C, and these are the points counted for the aliasing detection.
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Definition 12.5 Let S and S’ be two different domains having at least one common vertex. The
points C.. are the points for which S and S' have both a P1 point and this couple of P1 point should
satisfy one of the six configurations of Fig.12.13.

- », ,
N Lo 2 2

A =] N

Figure 12.13: The six possible couples of P1 points (a) 4 direct couples: S and S’ have one common
boundary (b) 2 diagonal couples: S and S’ have one common vertex.

The number of points C, can be useful to detect aliasing. Let us define the measure before defining
the aliasing detector.

Definition 12.6 The number of couples N, is the number of C. points in the image u.
The proportion of couples P(N,) is defined by

2

P(N,.) =100 - ==
(C) N’

where N is the number of tested pixels of u.
As we expect a large P(NN,) for aliased images, we define the new following aliasing detector.
Definition 12.7 (Aliasing detector) A given image u is aliased if
P(N.) > k,
where k is a threshold value.

The image is detected as aliased if the value of P(N,) is large. We introduce a threshold value &, which
is not satisfactory. This is a preliminary work which should be improved by defining a parameter-free
detector. As for the ringing detection, a probabilistic approach based on the NFA should be studied.

Now let us analyze the results obtained with the proposed aliasing detector in the numerical exper-
iments.

12.2.3 Numerical experiments

Here we compute the values of P(N,.) for two different sets of SPOT 5 image databases. The first
database is used to set the parameter k and the detection is tested on the second database. The
aliasing detector is also applied on a set of SPOT 1 image database. For all the tests, the computation
of the values of P(N,) is not done for the whole image but on some subimages. So before doing these
tests, a preliminary study of the stability of the P(N,) values on the subimages is done.
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Preliminary study of the stability of the P(N,) values on subimages

We propose to compute the histogram of the values of P(N,) for 1000 randomly chosen 256 x 256
subimages of a SPOT 5 image of size 1280 x 960. The considered image is a non-aliased image with
resolution 2.5 meters acquired above the town of Canberra. The values of P(N,) are in [0.35,1.47]
with a large number of values in [0.6,0.8], which represents a small enough interval for the detection
of aliasing since the spread is not bigger than the variability of the values of P(NN,) for different kind
of images: we will see in the test on the SPOT 5 image database that for non-aliased image, the value
of P(N,) can range from 0 to 6.

140 T T T T T T

120 | B

100 | 1 4
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40 + -

20 - .
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0.2 0.4 0.6 0.8 1 12 1.4 1.6

P(Nc)

Figure 12.14: Histogram of the values of P(N,) for 1000 randomly chosen 256 x 256 subimages of
Canberra. The histogram is narrow enough to chose either the median value or the maximal value of
P(N,) as a good representative number for the aliasing detection.

In order to have a better understanding of the relation between the values of P(N,) and the kind
of subimage, the subimages whose P(N,) values are extreme are analyzed in Fig.12.15. It shows that
the lowest values of P(N,) correspond to images with a lot of uniform zones, such as the see. Since
such kind of subimage does not characterize well the big image, the lowest values of P(N,) will not
be considered as a representative value of the P(N,.) of the big image. The same reasoning cannot be
applied to the highest value since the associated images are very structured part of the image which
contains useful information for the aliasing detection. The very geometrical structures have lines on
which the stair-case effect might be detected.

These last results indicate that a big image subpart should always be preferred to a small one
for at least two reasons. Firstly the problem of subimages containing only uniform zones has to be
avoided. Secondly the subimage should contain enough information to be a good representative of the
characteristics of the big image.
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(c) image C

Figure 12.15: Three subimages (256 x 256) of Canberra for which the values of P(N,.) belong to
different parts of the histogram shown in Fig.12.14. Two extremal values of P(N,.) are obtained for
images A and B. For image A, which contains a lot of uniform zones due to the see, the value of P(N,)
is small and belongs to the left part of the histogram: P(N.) = 0.49, whereas image B contains many
structure with geometrical parts so that the value of P(N,) is large and belongs to the right part of
the histogram: P(N.) = 1.14. On the contrary, image C is an example of the image for which the
value of P(N,) belongs to the very central part of the histogram: P(N.) = 0.73. It is a typical town
image.
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Test of the aliasing detector on a first SPOT 5 image database

We study three different SPOT 5 non aliased images with resolution 2.5 meters acquired above the
town of Canberra, Shanghai and Stockholm. For each image, the aliasing detector is applied on four
disjoint subparts of size 128 x 128 shown in Appendix (Section 12.5 Fig.12.33). Fig.12.16 displays the
proportion of couples P(N,) = 100- % where N is the number of tested pixels for 12 subimages. The
aliased images are built by downsampling the original image by a factor 2 and 3. N is smaller than
the number of pixels in the image as we consider pixels with non zero gradient. We focus on pixels
belonging to edges and we want to be noise independent. Fig.12.16 shows that P(IN;) increases with
the aliasing level. This information is not sufficient to classify correctly aliased images since texture
may increase the value of P(N.). Hence some textured not aliased images may have large P(N,).

20 T T T T T T T T T T T T
SPOT 5 non aliased images —+—
aliased x 2 X
aliased x 3 o] o
[o]
15 - x o
o]
x ] x
- 5 o o] x o
é) 10 © o) i
o
&
X
x x o
X X
5 - -
0 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13
images

Figure 12.16: Proportion of couples P(N,.) for 12 subparts of SPOT 5 images. Images are sorted
along the X-axis such that their P(N,) values are in nondecreasing order. The P(N,) value of each
original image is compared to the P(INV.) value of the aliased images. The aliased versions are built
by the downsampling of the original image by a factor 2 and 3. Original and aliased images have size
128 x 128. Note how P(N,) increases with the aliasing level.

Since we have seen that big image subparts are more representative of the image quality we do the
same experiment with larger image subpart. The size of the image subpart is increased from 128 x 128
to 256 x 256. We also add another measure on the image called L, defined as the longer succession
of C, along an edge. This parameter is based on the visual observation that aliasing is more obvious
when the aliased edge is long. This leads to the following procedure on each of the first SPOT 5 image
database:

1. draw four disjoint random subparts of size 256 x 256,

2. compute P(N,) and L for each of the four subparts.
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The algorithm for the aliased versions of the image is the same, except that the tested image is not
the original image of the second database but its aliased version built by a downsampling of factor
2 of the original image. The P(N,) and L results of the three images of the database are shown in
Fig.12.17. Experiments show that the aliasing detector with £ = 6 is a good detector for the satellite
images of the first database. The next test will check if this detector is not specific to the three tested
images of the first SPOT 5 image database. To that aim we test the detector on a second database,
which contains also SPOT 5 images but acquired at different places.
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Figure 12.17: Graphs (P(N,), L) of four disjoint subparts of size 256 x 256 of the SPOT 5 images
belonging to the first database: Canberra, Shanghai and Stockholm. The criteria P(N,) ~ 6 seems to
be adequate for this learning basis since aliased images have P(N,) > 6 and the original non-aliased
images have P(N,) < 6.

Test of the aliasing detector on a second SPOT 5 image database

We use the same experimental procedure than in the previous test but on the second SPOT 5 image
database. We apply the aliasing detector from Definition 12.7 with £ = 6. It shows that P(N.) ~ 6
seems to be a good delimiter between aliased and non-aliased images. The same criteria works for 2
others SPOT 5 tested images Fig.12.20-(a) and is confirmed for 21 others in Fig.12.20-(b). For both
categories of images, aliased and non-aliased, some of them have results close to P(N.) ~ 6. We shall
study now both categories to identify the corresponding images:

e the non-aliased image case: one can observe that some parts of non-aliased images have a high
value of P(N,) close to 6. As indicated in Table 12.18, they belong to a single image: Athens.
This is the only image with such a high value of P(N,). All the others have a value quite smaller
than 6. This can be explained by the fact that there might be some aliasing in the diagonal
direction on SPOT 5 images so the image of Athens has probably little aliasing. The subimage
of Athens and Amsterdam that gave the maximal value of P(N,) are shown in Appendix in
Fig.12.34.
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Original image | Athens | Amsterdam | Riga | Warsaw | Vienna | Madrid | Brussels
max P(N;) in % | 5.71 4.82 4.37 | 4.15 4.12 3.95 3.83

Table 12.18: Table of the highest value of P(N,.) among the four tested subparts of each non-aliased
images. All values are bigger than 6, so that the original images are well classified.

e the aliased image case: some have a small P(N,) close to 6, such as Washington or Tel Aviv
(Fig.12.35). However, the 19 others are clearly detected as aliased.

Aliased version

of Washington | Tel Aviv | Toulouse | Sdo Paulo | Istanbul | Budapest | Luxembourg

min P(N;) in % 3.14 5.60 6.10 6.12 7.14 8.09 8.53

Table 12.19: Table of the smallest value of P(N.) among the four tested subparts of each aliased
images. The aliased versions of Washington and Tel Aviv have P(N,) < 6, so they are badly classified.
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Figure 12.20: Graphs (P(N,), L) tested on SPOT 5 image subparts of size 256 x 256 (a) Berlin and
Copenhagen (b) Toulouse, Brussels, Prague, Washington, Istanbul, Budapest, Rome, Sdo Paulo, Val-
letta, Riga, Warsaw, Tel Aviv, Vilnius, Lisbon, Vienna, Amsterdam, Luxembourg, Athens, Bratislava,
Nicosia, Madrid. The only badly classified aliased image is the aliased version of Washington in (b),
which is a smooth image, others have P(N,) > 6.

We have not adopted a procedure for the analyze of the results. Each time we have plotted the
P(N,) values of the four image subparts that have been tested. The preliminary study of the stability
of the P(N,) values showed that we could followed a procedure that select for example the highest
value among all P(N,) results obtained for the different subimages. We could have also considered a
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median value if the number of tested images is large enough. These last considerations can be avoided
by considering directly the whole image and not its subparts. The associated procedure is

1. extract the down 1201 x 881 subpart of SPOT 5 image (the upper part, which represents 80
lines, are crop because some text has been overimposed and then cannot be considered as reliable
information),

2. compute P(N,) and L.

The results obtained on all the 26 images of the second SPOT 5 image database are presented in
Fig.12.22: Canberra, Shanghai, Stockholm, Berlin, Copenhagen, Toulouse, Brussels, Prague, Wash-
ington, Istanbul, Budapest, Rome, S3o Paulo, Valletta, Riga, Warsaw, Tel Aviv, Vilnius, Lisbon,
Vienna, Amsterdam, Luxembourg, Athens, Bratislava, Nicosia and Madrid. The results obtained on
the whole image confirm the results obtained on subparts given in Table 12.19: three aliased images
are badly classified:

Aliased version
of Washington
P(N.) in % 3.90

Canberra
7.18

Istanbul
6.86

S3o Paulo
6.09

Tel Aviv
5.64

Toulouse
5.90

Table 12.21: Table of the value of P(NN,) for each aliased images. The only badly classified aliased
images are the aliased versions of Washington, Tel Aviv and Toulouse. These results confirm the
previous results given in Table 12.19, for which these three aliased images had already a P(N,) value
smaller than 6 or very close to it.
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Figure 12.22: Graphs (P(N,), L) tested on 26 SPOT 1 images. The obtained results are very similar
to the one obtained on the image subparts shown in Fig.12.20-(b). Again there is an aliased image
with a very small value of P(N.), which corresponds to the Washington image. Two other aliased
image have P(N,.) ~ 6: Tel Aviv and Toulouse. These results obtained on the whole image confirm

the results obtained on subparts given in Table 12.19.

Now that the validity of the results on image subparts has been checked with the results obtained
on the whole image, the question of the detection of very small aliasing is analyzed. The aliased
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images generated in the previous experiments were strongly aliased since only one pixel over two in
each direction were preserved. The aliasing in satellite images might be more subtle. So the aliasing
criteria is tested on already aliased images such as most images acquired by the satellite SPOT 1.

Test of the aliasing detector on a SPOT 1 image database

In the experiments, we chose subparts of SPOT 1 images, which are generally aliased. Fig.12.23 shows
the results of three SPOT 1 images with resolution 20 meters. Detroit is a town image, whereas Chile
and Kuwait are geologic images. These images are not town images such as tested on the SPOT 5
database. So it is not surprising that some 256 x 256 sub-images are not detected as aliased. They
contain no sharp edge. However, the criteria performs well, as at least one of the sub-images detects
that the image is aliased.

50

T T T
aliased images spot 1 +
best aliased images spot1 &
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Figure 12.23: Graphs (P(N,), L) tested on SPOT 1 image subparts of size 256 x 256: Detroit, Chile
and Kuwait. The square symbol indicates the highest P(N,) for each three images.

This method is based on the spatial characterization of the aliasing artifact, especially the stair-case
effect and not the change of orientation for oscillating textures. We have seen that with the chosen
threshold the detection is coherent on SPOT 5 images. However this method should be continued to
propose a parameter free algorithm.

12.3 Using the Shannon postulate
12.3.1 Theory

The Shannon sampling theorem [45] is reformulated in [53] by

Theorem 12.8 (Shannon) If a function f(x) contains no frequencies higher than wmax (in radians
per second), it is completely determined by giving its ordinates at a series of points spaced T = 7 /wmax
seconds apart.

The reconstruction formula that complements the Shannon theorem is

f(@) =" f(kT)sinc(z/T — k) . (12.2)

kEZ
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This reconstruction formula 12.2 is exact if f is band-limited with wpax < 7/T. We call a “Shan-
non image”, a 2D signal satisfying the condition of Shannon theorem. An aliased image is built by
downsampling a Shannon image by a factor . This discrete image has less samples than the discrete
Shannon image. The reconstruction of the underlying continuous image f is then no more exact.

The formula 12.2 leads to the postulate which states that a Shannon image is equivalent to all its
subpixel translations. Then this equivalence between translated images may allow to detect aliased
images.

Definition 12.9 Let 7 be the set of translated images
T = {u; such that t = (t,,t,) € [0,1]*}

where u; is the image translated by t constructed from image u of size NxN:

N—1 N-1
k)l, kQ Z Z ml,mg SInch(k1 + 15 ml) SinCdN(kQ + ty — mz)

m1=0m2=0

or

=2im (p1to+paty)

ﬂ\t(phpQ) = a(plaPZ) .

We note sincdy the discrete cardinal sine of order N the N —periodic function defined in [32] by

sin(nt) if N is odd

Vt e R\ NZ, sinch(t):{ Nsin(mt/N) (12.3)

sin(t)

W if N is even

Let us recall that the subpixel translation of an image leads to ringing, which we will measure with
the total variation. Fig.12.24 shows how a sharp edge increases more the total variation after a subpixel
translation than a smooth transition. Ringing cannot affect images the same way. It is more visible on
cartoon images than on textured images. The first ones have constant zones where ringing oscillations
are very long whereas textures might hide the phenomenon (Fig.12.25).

We define an aliasing detector that compare the total variations of Shannon images to the ones of
aliased images. In a way, this detector is very similar to the previous one that was using the geometry.
We have seen in Section 12.2 that the Coarea formula links the total variation of an image f to the
length of its level lines [14], so here we replace the measure of the level line regularity by the measure
of the total variation. Moreover we replace the bilinear interpolation, which was necessary to estimate
the sub-pixel regularity of the level lines, by the sub-pixel translations.

12.3.2 Detector definition

We propose now a new definition of the aliasing detector. As we defined a parameter-free sharpness
detector based on a probabilistic model in Section 10.2

F.(u) =—logyy P(TV(U:) <TV(w)),
we define now a parameter-free aliasing detector based on a probabilistic model.

Definition 12.10 (Aliasing detector) Let TV (u) be the total variation of u and TV (U;) be the total
variation of its translated version U; where the translation is an uniform random variable in [0,1)?
We define the aliasing detector by

G(u) = —logy, P(TV(U;) <TV(w)).
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(c) (d)
Figure 12.24: (a) sharp transition (b) result after the translation of 0.5 (c) smooth transition (b) result
after the translation of 0.5. The original signals (a) and (c) have same total variation, which is equal

to one. Note how the amplitude of the oscillations are larger for the sharp transition, yielding a larger
increase of the total variation in (b) than in (d).

of Jad

(a) (b) (c) (d) (e)

Figure 12.25: (a) Image wuy, translated version by (¢; = t, = 0.5) of the “lena” image ug (b-d) Sub-
Images 64x64 of the upper left corner and the central down part of ug. (c-e) Sub-Images from u;. In
(c), the ringing is clearly visible in the upper left corner. In (e), the ringing is hidden by hat’s feathers
textures.
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The subpixel translation is done by the interpolation of the image with the Shannon filter. This step
inevitably creates overshoot and undershoot The sharper the transitions are An aliased image has sharp
edges, so that a subpixel translation increases the total variation. The interpolation with the Shannon
filter adds high

Experimentally, the computations of G are done with the following algorithm:

Algorithm 3 (Empirical estimation)
1. Build n images uf;, i=1...n
2. Compute M = {number of u} such that TV (u}) < TV (u)}
3. Estimate P(TV (Uy) < TV (u)) ~ M
4. Deduce G(u) = —log;, P(TV(Uy) < TV (u)) = —log;, (%)

In practice for all experiments, we test 20 different translations along the X-axis, and 20 different
translations along the Y-axis, which makes n = 20% — 1 = 399 translations (the translation (t,t,) =
(0,0) is not studied since in that case TV (u;) = TV (u)). Numerically, we threshold G to 100 if
M =0.

12.3.3 Numerical experiments

Experiment 1

The first experiment studies the image of Fig.12.2 which has small aliasing. In order to reduce the
computation times, we study a subimage of size 256 X 256 shown in Fig.12.26-b. For this image, we
compute G(u). For all tested u;, we obtain no translation such that TV (u;) < TV (u), so that

M =0 and G(u) = +o0. (12.4)

This result checks that u is aliased.

(2) (b)

Figure 12.26: (a) |u] in log scale (b) the image u with small aliasing

Now we test the aliasing detector on degraded versions of u.
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e First we study blurred versions of u obtained by the convolution of u with a Gaussian filter &,
with standard variation o:
Uy = UK Ky -

The stair-case effects along edges decreases when o increases, so that the image u, has less
aliasing along edges and we intend a small value of G. In fact, if u, is not aliased, we expect
P(TV(Uy) < TV (uy)) > 0.5 which yields G(u,) < 0.301. Of course the blur does not cancel
the low-frequency aliasing in u. Fig.12.27 shows the values of G(u,) for o € [0,4]. As expected,
G(ug) is small for large o.

2 T T T T T T T

15 r B

0.5 r b

Figure 12.27: Graph (o, G(u,)) for the Gaussian blur kernel with standard deviation o € [0,4]. For
o > 0.8, there is no aliasing detected because G(u,) is small. For o < 0.8, no aliasing is detected
because G(u,) >> 0.301. This result is coherent because when o increases the stair-case effect,
typical effect of the aliasing artifact, along edges is reduced.

(a)o=0 (b) o =10.5 (c) o =038 (do=1

Figure 12.28: Subparts of the images u x k,. Note how edges are very blurry for ¢ > 0.8, edges for
which the stair-case effect is canceled.

e Second we study an aliased version ug of u, which means that we downsample the image u by
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a factor two. Of course, ug will be aliased since u is already aliased. The image ug4 is detected
as aliased because

G(uq) = +00.

Figure 12.29: Subpart of the downsampled version ug of image u. The staircase effect is important
on this thin structure. This aliased image ug4 is detected since G(ug) = +o00.

Experiment 2

The second experiment studies the 21 SPOT 5 images described in Section 12.2. The aliasing detector
G is tested on these images and on their downsampled versions by a factor two in each direction. In
order to have images with comparable size, for each image (original and downsampled images) the
studied extract of the image is the largest central subpart of the image with dimensions power of two.
For all images, the resulting image has size 512 x 256, and it is symmetrized in both directions in order
to avoid the image boundary problems during the image translation. Moreover the total variation
measure has to be independent of the boundaries, so that a large image size is favorable.

The Y-axis of the graph in Fig.12.30 shows the values of G obtained on these two groups of images.
The aliasing detector allows the detection of two groups of images: one group with small values of
G and one group with values of G larger than 100. As expected the group with large values of G
corresponds to the group of aliased images: the total variation of the translated images is always larger
than the total variation of the original image.

One aliased image, which is the downsampled version of Lisbon shown in Fig.12.31, has an unex-
pected small value of G. This could be explained by its large proportion of horizontal and vertical
contours: the downsampling of this kind of contour looks often less aliased than diagonal ones.

Experiments showed that the characterization of the image with G does not completely solve the
aliasing detection problem: some images are badly classified. However it has the great advantage to
be a blind aliasing detection, i.e. without the reference non-aliased image, and to be parameter free.

Another interesting measure is the amplitude of the total variation with respect to the translations,
that is

TVmax(u) - TVmin(u) ,

where TVinax(u) and TViin(u) are defined by

TViax(u) = tg[loa}ﬁ2 TV (uy)

and

TVmin(u) = ten[%i,{lP TV (uy) .
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We observe that the aliased images have a large amplitude of the total variation, contrarily to the
non-aliased images. The value TVjax(u) — TViin(u) is the X-axis of the graph in Fig.12.30. This
indicator is useful for the detection of aliased images, such as the downsampled version of Lisbon
shown in Fig.12.31.

100 OO+ @ OO DOOO OO Qv .

0.1 ¢

001 I I I I I
0 0.2 0.4 0.6 0.8

TV TV

max” ' V'min
original image ~ x
downsampled image ©

Figure 12.30: Graph (G,TViax — TVmin) for 21 aliased and not aliased images with n = 10. The
aliasing detector G classifies correctly most of the images: all original images have G(u) < 1.7, which
indicates that images are not aliased, and all downsampled image except one (downsampled version of
Lisbon) have G(u) > 100 which indicates that images are aliased. The computation of TViyax — T Vinin
is also a good indicator since original images have a very small value of TViyax — TViin, i-€. less or
equal to 0.1, whereas most aliased images have a larger value, which classifies the downsampled version
of Lisbon as aliased.

12.4 Conclusion

We have tested three new approaches to detect aliasing in an image. The first one was based on the
frequential interpretation of this artifact. This approach seems natural since aliasing is defined in the
Fourier domain by the overlapping of aliases. However it did not give satisfactory results because the
Fourier transform is a global operation and the aliases are often hidden by other Fourier components.

Then we tested a new approach based on the effect of the aliasing in the spatial domain, especially
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Figure 12.31: Subpart of size 512 x 256 of the downsampled version of Lisbon: G = 0.11 and
TVmax — TVmin = 0.13. This image has a small value of G, but a sufficiently large enough value of
the total variation amplitude so that the image could be detected as aliased.

Figure 12.32: Subpart of size 512 x 256 of the downsampled version of Athens: G > 100 and
TVmax — TVmin = 0.34. The value of G is large enough to detect the image as aliased. This result is
confirmed by the large value of the total variation amplitude.
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along edges where it adds a staircase-like structure. This looks like a grid impression on the image.
This effect lowers the regularity of the level lines and increases locally their length. The proposed
detector counts the number of pixels P(N.) where the level lines are highly irregular, i.e. the level
lines which follow the sampling grid. The numerical experiments showed that on SPOT 5 images, the
P(N,) value is smaller for the original images than for the aliased images, built by a downsampling by
a factor two of the original images in both X and Y directions. Note that the value of P(N,) at the
frontier between the aliased and non aliased images has to be adapted to the type of images. In our
examples, we studied images of town obtained by the SPOT 5 satellite and have chosen the frontier
value of P(N,) =~ 6. For another type of images, this value will be different.

The third approach is based on the fact that if an image respects the Shannon theory then the
image is equivalent to all its translated versions by the Shannon filter. The new detector is not
designed specifically for the detection of aliased images but for the more global class of images that
do not respect Shannon theory. The same approach than for the sharpness detection has been used
to build the detector: the total variation of the translated versions of the image (and not the phase
coherence as for the sharpness detector) is compared to the total variation of the original image. The
total variation measure has been selected since translating an image produces ringing, due to the sinc
interpolation

Now that we have defined some detectors for the three major artifacts studied in this thesis,
let us discuss some applications of such detectors. The following part deals with two restoration
problems: deconvolution and denoising, where the automatic detectors can be efficiently used to
obtain a parameter-free process.
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12.5 Appendix

(i) image 9 (j) image 10 (k) image 11 (1) image 12

Figure 12.33: 12 subparts of SPOT 5 images of size 128 x 128 classified by the aliasing detector
(Definition 12.7) sorted with an increasing order of P(N.). Images 1,2,3,4 are subparts of Canberra.
Images 5,6,7,10 are subparts of Stockholm. Images 8,9,11,12 are subparts of Shanghai.



176 Chapter 12.  Aliasing detection

(a) Athens image subpart: P(N;) = 5.71 (b) Amsterdam image subpart: P(IN;) = 4.82

Figure 12.34: Subparts of SPOT 5 images of size 256 x 256. Both images have P(N,) < 6, so that
no aliasing is detected.

(a) Washington image subpart: P(N.) = 3.14 (b) Tel Aviv image subpart: P(N.) = 5.60

Figure 12.35: Subparts of aliased SPOT 5 images of size 256 x 256. Both images have P(N,) < 6,
so that no aliasing is detected.
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Introduction

The goal of restoration is to find a “nice” image, i.e. an artifact-free image, from its degraded version.
In this part, we study two types of restoration: the deblurring and the denoising, which consist in
removing the blur and the noise, respectively. The first chapter is devoted to the restoration of blurred
images, and the second one considers the denoising problem. Artifact detectors can be used for such
applications to obtain automatically the best parameter of the restoration method. In this part, we
shall use only the sharpness detector F' defined in Chapter 10, but the other detectors could be used
as well for some other applications. Let us now describe the two approaches discussed in Chapter 13
and 15.

Chapter 13 refers to the blind deconvolution problem. The restoration of a blurred image without
the knowledge of the blur kernel is not a new problem and there are already some methods in the
literature. One of them is the Lucy-Richardson algorithm [27] [41]. This is an iterative algorithm well
used in astronomy. Here we propose another method based on the deblurring with a Wiener filter and
the criteria is given by the sharpness detector F'. Here we consider two ways for the deblurring.

e The first one is the progressive deblurring. Some convolution filters are the iterated convolution
product of the same filter or filter of the same family. We try to answer the question: is it
possible to deblur the image continuously, that is by successive small deblurring steps? This
refers to the idea that there might be a simple deconvolution path from the blurred image to the
original sharp one. As an application to this question, we try to decompose the Shannon filter:
£ = L_w,w)(§) into the convolution product of a single filter. We will give some necessary
conditions for the progressive deconvolution with such a kernel. We also cite the results of
Abramatic and Faugeras on the filter decomposition [1], but we will see that these results cannot
be applied to our specific convolution model.

e The second type of deblurring is the complete one, that is one single convolution kernel between
the original image and the restored one. Both types of deblurring are linked if the single con-
volution kernel of the direct deblurring belongs to one of the following family. The first family
is the class of kernel with small support such as 3 x 3. Such a filter can be considered as an
element step of a continuous deblurring since it has typically the size of the filter element of a
decomposition. The second family contains the kernels which are intrinsically the convolution
of filters of the same class, such as the product of Gaussian functions in the Fourier domain.
Gaussian filters will be studied in this thesis because they are often used in practice to model
the image degradation [18].

We show that the sharpness detector performs well on the two filter families (kernel with 3 x 3
support and Gaussian functions) since it detects the blur on the degraded image. It also allows the
identification of the convolution filter since the corresponding deconvolved image is then detected as
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sharp. For both types of filter, we also compare the sharpness detector with the total variation measure.
It is adapted to measure the oscillations introduced by the deconvolution with a wrong filter, especially
in some special cases with a lot of oscillations, but in most cases it is not adapted since it prefers
smooth images to sharp ones.

Chapter 15 refers to the denoising problem. We do not propose a new denoising method. Instead,
our goal is to provide tools for automatic denoising. Among numerous denoising algorithms in the
literature, we have chosen a recent one called the NL-means [6]. Since it is a parametrized method, and
since the choice of the parameters is not obvious (they can be chosen with the subjective perceptual
evaluation), we propose here to use the sharpness detector to identify the best parameters. The best
parameter is found when the obtained denoised image is detected as sharp.

Let us now study the restoration of blurred images.



Chapter 13

Restoration of blurred images

13.1 Blind deconvolution

Blind deconvolution is a term given to an image restoration technique in which both the blur kernel
(or the point spread function of the imaging process) k and the original image ug are unknown. In the
simplest case, image blurring is associated with the 2D convolution. The cumulative effects of noise
during the acquisition process is very often modeled by an additional degradation. In the end,

U =k*xug + n.

Some non linear techniques have been proposed in the literature to find ug. Let us cite one example of
iterative method of maximum likelihood called Lucy-Richardson (LR). The LR method is an algorithm
of choice among optical astronomers because of the non-negativity constraint of u [27] [41]. It is
also popular in the field of medical imaging. This method is not new (early 70), however it is still
competitive because of its robustness in the presence of noise. The algorithm proposed by Richardson
assumes that u is unknown and k is known. The LR deconvolution has been extended by Ayers and
Dainty by alternately iterating on each of the unknowns: the filter and the reconstructed image [4].
At each iteration k, the filter and the deblurred images are computed with the following formula

L (k(@)rs1 = @), - ([ | * (wol@)r1)

2. (uo(z))r41 = (ug(z))y - ([%] * (k(_x))T) ’

where the recommended initial values of k& and ug are the dirac function and the constant image having
the mean value of u,, respectively.

This algorithm will be used later in chapter 13.3 for the automatic deconvolution with filters having
compact support and we will see how the sharpness detector can be added to this iterative algorithm.
But before studying the deconvolution with filters having compact support, let us first define what we
call progressive deblurring and let us see if the progressive deblurring of an image u is possible.
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13.2 Blind deconvolution with progressive deblurring

13.2.1 Continuous blurring/deblurring
Blur interpolation

Consider an original image u with no blur which has been blurred by a filter k:
v=uxk,

where v is the resulting blurred image. The idea of the blur interpolation is the existence of a path
between w and v with an increasing value of blur (Fig.13.1). The image with intermediate blur is
obtained by

Uk, = Uk k‘l s

where k1 is another filter. The difficulty is the constraint on the intermediate blur kernel k;: the idea
is not to give any kernel k; which produces less blur than k after the convolution with u but the idea is
to decompose the kernel k into the convolution of the filter k; and another filter ko (without excluding
the possibility that ko = k1)

];2 = kl * ]{72 .

uk]_

Figure 13.1: The path between u and v corresponds to an increasing blur value. The image u has
no blur, on the contrary to v. Interpolating the blur assume the existence of an intermediate blurred
version of u with less blur than v. We note u;, = u x k1 such image obtained with the filter k.

The blur interpolation is possible if the filter k can be decomposed as the convolution of two or
more filters. The idea is to decompose the filter & in small filters, either with the multiple convolution
of the same filter or with the convolution of several small different filters. For example, with n filters
we would have the following decomposition of &:

l}:kl*kz*...*kn,

or 3
k=kxkx...xk, (13.1)

if the small filters are identical: k = k; = ko = ... = k,,. From k, the idea is to give a continuous
interpretation of the blur process. Pushing a little bit forward this idea, one could even wonder if the
convolution with an infinite number of small kernels (n tends to infinity) has a sense ?

The iterative convolution of the same kernel as in 13.1 is studied now, where k is supposed to be
a small kernel.
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Let (Ck)kem, be the semi-group of translation invariant and linear operators. It is defined on
images u of size N X N by
Cr(u) =uxk.

If k& blurs slightly u, then continuous blurring is obtained by iterating the convolution process

up = Cklu)=uxk
Uz = Ck(ul)zu*k*k
ug = Cilug) =uxkxkxk

Writing u = wug for the initial image, this set of images wq, u1,u2,..uny can be considered as the
discretization of a continuous image flow u(t) for ¢ € [0,1]. We note At the non-negative time step
and Az the space step in the two directions, so

un(i,7) = u(iAz, jAz, nAt) = u(z,y,t) .

The process is equivalent to an evolution equation of u with respect to time ¢ being the most “regular”
as possible.

Proposition 13.1 The following scheme

Uit = tp % by = un % (Id + K.) (13.2)
is consistent with the PDE 5u
2 t) = unK(,01) (13.3)
where K'(z,y,t) := k'(azfg,t) and [ k(z,y,t)dzdy = 1.

Note: all convolutions marked by % are with respect to space variables, that is (7, ) in the discrete
space or (z,y) in the continuous space.

Proof: the consistency of (13.2) with (13.3) comes from the consistency of the scheme %
with the derivative operator
“"“(”)A; un(i:J) _ %(mx, jAT, nAt) + O(AL). (13.4)
From (13.2), we have
Unt1(3,7) = un(i,J) +Un*kln(7:aj)
Up+1(2,7) — Un (2,7 Lo
+1( J)At ( .7) — un*ﬁ(%])
= upx K" (i,4). (13.5)

Combining (13.4) and (13.5), we have

ou

E(.,.,t) =uxK'(,.,t).
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The other constraints on k' are set so that (13.3) has a unique solution. The equation (13.3) is a
Partial Differential Equation with a term linear with respect to u, which has a unique solution if some
constraints on k' are satisfied.

The solution of the PDE of Proposition 13.1 is given by the following proposition. -
Proposition 13.2 The explicit solution of (13.3) is given by
(., ., t) = ul.,.,0)xh(.,.,1), (13.6)
where .
Weort) = expl [ K(6 o)) (137)

with E(§$,§y, t) the Fourier transform of h(z,y,t).

Proof: Let us note v the image satisfying (13.6):
v(.y ) = ul.,.,0) xh(.,.,1).

To prove the proposition, we have to show that v also satisfies (13.3). To that aim, let us compute

a1 (0. o ) )
a—";(., 1) = g7 (w1, 0) % by 8)) = uley0) % 2h(, 1),

Let us now compute %h(a:,y,t).

~ t~
R(eorbpt) = expl /0 K (60, 8y, 5)ds )

—

%(ézagyat) = I/(\I(gac,fy,t)'ﬁ(ézagyat) (138)

Hence

ov ,

E(""t) = u(.,.,0)*xK'(.,.,t) xh(.,.,1)
= u(,.,0)*xh(,.t)*xK'(,.,1)
= v(,,t)xK'(.,.,1)

so that v satisfies (13.3). Moreover provided that u and v have the same initial conditions (i.e. u and
v being equal at time ¢ = 0), we obtain v = u since the PDE (13.3) has a unique solution.
O
Note that in the whole chapter, we will study only symmetric filters h.
Example
We study here the interpolation of the filter h between two moments:

e time t =0 : h(0) = dp, which we will note with the discrete representation ~h(0) =[0, 1, 0]
in the following,

e time t=1: h(1) = §(6_1 + 0o + 61), which we will note (1) = [ %, 1, 1] (the discrete
averaging horizontal filter),
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e with some regularity constraints: %—'t‘ “smooth”.
This formalization tries to answer the question: how to blur an image the most regularly as possible
and reach in the end the image that would have been obtained by a direct convolution of the original
image with a mean filter 7

h(t)=[%,1- % , £ and %—’t’ :.[ -2 11 A cI_oser look at the Fourier transform of h(O)
and h(1) shows the difficulty of the existence of a smooth interpolation. Let us replace now the time

variable ¢ in the definition of h
t 2t t ]

ht) =] =,1——, =
=5 1-53
by the variable a = % to simplify the writing by avoiding the division by 3, so that we have the new

filter called g defined by
g(a):[aa 1—2&, CL],

where g(t/3) = h(t).

Property 13.3 The Fourier transform of any filter g(a) =[a, 1 —2a, a]is

Va € R, §(a)=1— 4asin? % (13.9)
Proof: g(a) = ae ™ + (1 — 2a) + ae’® =1 — 2a + 2acos @ = 1 — 4asin® §.
O
We recall that the discrete Fourier transform of g of size N is the discrete signal defined by
N1
~ _ Zmpk
VpeZ, glp)= ) e ¥ g(k)
k=0

so that the discrete Fourier transform of g is obtained by replacing « by % in (13.9) yielding

e time t=0:seta="%=0in(13.9) then g(p,0) = ﬁ(p, 0) =1.

1, =~ 4 I
e time t=1:seta= :%then ’g\(p,g):h(p,l)zl—gsinZ (Wp>

Wl

The graphs of 1(p,0) and h(p,1) are displayed in Fig.13.2. For p = pg, h(p,1) = 0. For |p| > po,
ﬁ(p, 1) < 0. As interpolation between both filters has to be smooth, the filter Fourier transform should
evolve regularly from a strictly positive function (h(p,0)) to a partially negative function (h(p,1)).
But this is not possible because any zero value of the Fourier transform of the filter cannot evolve to a
positive or negative value, it remains positive and stops the evolution of the Fourier transform of the
filter at this point pg: the result of the convolution of this filter with any other filter preserves the zero

value of its Fourier transform at pg.

Filter decomposition with a frequential approach

Let us consider the problem of decomposing a filter into the convolution of small filters g of size 3 (or
3 x 3 in 2D if the associated 2D-filter is built by the tensor product g ® g), where g is a 1D normalized
filter defined by

gla)=[a,1-2a,a].
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Figure 13.2: Graphs of h(p,0) = §(p,0) and h(p,1) = §(p, 1) for N = 64 and p € [-N/2, N/2], i.e.
a € [—m,n]. Note that /i;(p, 1) is not positive and that }z\(p, 1) =0 for @ ~ £2.09.

Let @ € [—m, w]. From Property 13.3, the Fourier transform of g is
§(e) = 1 — 4asin? % . (13.10)

Here we use a frequential approach, which means that we will not study the decomposition of the
filter in the space domain but in the Fourier domain. Since a convolution in space is equivalent to a
product in frequency thanks to the property of the Fourier transform recalled in (1), we will study the
existence of filters whose Fourier tranform is the product of the Fourier transform of small filters g:

Fle) = J] (1 — 4aysin? %) (13.11)

kEZ
In the following, we shall answer to this question. But first let give us some notations. From (13.10),
theAright term of (13.11) can be rewritten [, ., gk(c) where g (a) = 1 — 4ay sin? £. The existence
of f(«) is proved in the following proposition.

Proposition 13.4 Let f be a filter defined in the Fourier domain by (13.11):

F(e) = [T — 4axsin® 3),

kEZ

~ ~\ !/
where the Fourier transform is positive (f(c) > 0), regular (( f) (0) = 0) and yields a normalized

~

filter (f(0) = 1). Such filter exists if the decreasing of the coefficients ay, when k tends to infinity

satisfies .
ap = 0 (W) .

Proof: ?(a) is defined as the product over k € Z. The product over k, when k tends to infinity,
converges if the Riemann criteria is satisfied, that is a = o(ﬁ). Moreover the first values
of ay, should be small enough, to preserves the positivity of the filter, since we have seen that the
decomposition of the Fourier transform of a filter is possible only if all small kernels have a positive
Fourier transform. The following property gives the condition on ay to obtain the positivity of gi(«)
for all frequency a.
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Property 13.5 The filter g, with k € Z, defined in the Fourier domain by

Va € [-m, 7], Gi(a)=1— 4ay sin® %

is positive if a, < 1/4.

Proof : Yo € [—m, 7], sin? § € [0,1]. Consequently 1 — 4ay sin®§ > 0 for all « if a; < 1/4.

—ac1B
— aFl4

Figure 13.3: Graph }\(a) for several ay.

The frequential approach did give some constraints on the Fourier transform of the filters to obtain
a continuous deblurring, more specifically the strong decreasing of the filter coefficient a;. We propose
now an new approach for the filter decomposition. It is based on the results in probability on the
infinite divisible law, where we use the analogy between a filter and the law of a random variable.

Filter decomposition with a probabilistic approach

The problem of decomposing a low-pass filter can be studied in a probabilistic approach by using
the analogy between the Fourier transform of a filter and the law of a random variable. Let us
consider a filter that preserves low frequencies in [—1,1]. We are interested in decomposing this
filter as the convolution of two other filters. Using the afore mentioned analogy, the problem is
equivalent to decomposing the law of the random variable X as the sum of two independent and
identically distributed (i.i.d.) random variables. Hence the filter decomposition can be written with
the probabilistic approach as the following problem:

Let X be a random variable taking values in I = [—1, 1] such that
1. X=1+Y,
2. Y1 and Y3 are i.i.d. random variables.

What is the law of X that can be obtained as close as possible to U([—1,1]) 7

It is a well-known fact that if ¥; and Y3 follow a uniform distribution /([—1/2,1/2]), then the
distribution of their sum X is triangular on 2-[—1/2,1/2] = I. The triangle distribution is far from
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the uniform distribution and we have seen in Chapter 2 and in the Introduction of Part Il that the
triangle filter is not satisfactory because it adds a lot of blur on the image. So we are interested in
filters whose convolution is close to the Shannon filter. Hence the question is: can the distribution of
the sum be closer from the uniform distribution than the triangular ?

The distance between those two distributions can be measured with the entropy of the random
variable. The entropy evaluates the disorder of X in the sense of Information theory. Among all
random variable defined on I, the uniform distribution has the highest entropy, because the distribution
is uniform on I. On the contrary, the triangle distribution has a lower entropy since the distribution is
bigger around zero than on the extrema of I (see Proposition 13.6 for the exact values and Fig.13.4
for the visualization). The differential entropy of a continuous random variable X is

H(X) = — / O; p(@) log(p(z)) dz . (13.12)
where p denotes the probability density function of X.

Proposition 13.6

(i) f X ~U([-1,1]), then H(X) = log(2).

(ii) 1Yy and Yo ~U([—1/2,1/2]), then H(Y; +Y5) = 5.

Proof:

(i) f X ~U([-1,1)),i.e. p(z) = §1_115(2), then

B 1
H(X) = _/1 §1Og <§> dz =log(2) ~ 0.69.

(ii)) The probability density function associated to U([—1/2,1/2]) is p(y) = L[_1/2,1/2)- Then, the
probability density function associated to Y; + Y5 is

pxply) = (1 —ly)) 1—1 1y(y) -

Indeed
1/2 y+1/2
pxp(y) = / L 1219y —t)dt = / T[_1/2,1/2)(t)dt .
~1/2 y—1/2

For y € [0, 1],

So the entropy is

1 1

HYi+Y:) = — /_1(1 — |z|) log(1 — |z|)dz = —2 -/0 ulog(u)du
1

— - [wtogt - | =3

o 2
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p(x)
1
Triangular
= Uniform
X
-1 1

Figure 13.4: Probability density function associated to ¢([—1, 1]) and the triangular one on I.

O

The decomposition with a probabilistic approach refers to the more general problem of the partition
of the uniform law.

Proposition 13.7 The uniform law U([—1,1]) is not divisible in law.

proof: Let us use here a method of proof by contradiction. Assume that X ~ U([—1,1]) is divisible
in law. Then Y7 and Y5 i.i.d., such that X =Y; + Y5, exist.

o If X =Y) + Y, then o(X) = (¢(Y))?, where p(X) (resp. ¢(Y)) is the characteristic function

of X (resp. Y).
Indeed by definition ¢y (u) = E[e’*Y]. Moreover Y; and Y; are i.i.d.

Y +Y, (u) _ E[eiu(Yl +Y2)] _ ]E[eiqu eiuYz] — E[eiqu eiuYQ]
= ¥n (u) " Py, (u) :
The calculus of p(X) comes immediately

) 1 iuzx 1 [etue 1 sin(u)
X = K uX = ¢ d = = -
o(X) ) /1 2 T2 s ],

u

So the characteristic function of Y is

o sin(u)
(py(u)” = -
u
As Sianu) has negative values for some u, ¢(Y’) is necessarily a complex number.
e X is symmetrical as X - x. Consequently, Y7 and Y5 have to be symmetrical too. But if

Y is symmetrical then its characteristic function is real.

(If Y is symmetrical then —Y and Y have same law, and then same characteristic function.
-y (u) = Ee™™] = Ele™"] = gy (u) )

The two conditions on ¢(Y") are incompatible. This is a contradiction, so the initial assumption must
be false. So U([—1,1]) is not divisible in law.

O
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Remark: note that Proposition 13.7 can be extended in the following way: the uniform law
U([-1,1]) is not infinitely divisible in law. We recall that by definition to say that a probability
distribution F' on the real line is infinitely divisible means that if X is a random variable whose distri-
bution is F, then for every positive integer n there exist n i.i.d. random variables X3,..., X,, whose
sum is X. Usually the random variables X1, ..., X,, do not have the same probability distribution that
X has. Now let us go back to the proof of “the uniform law U([—1,1]) is not infinitely divisible in
law”. It is based on the following fundamental result: a distribution with bounded support is infinitely
divisible if and only if it is degenerate ([50],p78). As the uniform law is not degenerate, then it is not
infinitely divisible in law. We recall that a degenerate distribution is the probability distribution of a
discrete random variable that assigns all of the probability, i.e. probability 1, to just one outcome of a
random experiment. By extension the degenerate distribution of a continuous variable is described by
the Dirac delta function.

In [10], Carasso studies the subclass G of the class of infinitely divisible densities. Its application
is the direct blind deconvolution. He defines the class G as the class of blurring kernel k(z,y) whose
Fourier transforms satisfy

(&, n) = e Ticy (€ 4n)s

with a; > 0 and 0 < B; < 1. The overall kernel corresponds to the convolution product of the
individual components kernels. Such individual component is a symmetric Lévy stable density k(z,y).
The Gaussian case corresponds to S = 1. It occurs in diverse contexts (such as undersea imaging,
nuclear medicine, computed tomography scanners, . ..) which makes the class G interesting to study.
Note that k(&,n) is positive which makes possible a evolution equation, contrarily to the previous
example with h(1) = [1/3,1/3,1/3].

We have seen three approaches (spatial, frequential and probabilistic) for the filter decomposition for
the continuous blurring/deblurring. The decomposition of a filter in elementary filters has already been
studied in the literature. Let us cite the paper of Abramatic and Faugeras on the small generating
filters [1]. We will see that the results on the small generating filters can be applied only for the
continuous deblurring of separable filters since the decomposition of 1D filters or for 2D separable
filters is always possible. We will not use this decomposition in this thesis since we want to study a
large class of 2D filters (not only separable), anyway we recall the method of Abramatic and al. for
the construction of small generating filters.

13.2.2 Generating filters

Abramatic and Faugeras showed interesting results on the decomposition of 1D-filters in [1], which we
recall in the following proposition.

Proposition 13.8 Let h(k) be any real valued impulse response of a 1D-filter and H (z) its z-transform

Q
H(z)= Y h(k)z"*. (13.13)
k=—Q
H can be decomposed as
Q
H(z) = [[ P(2). (13.14)
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where ' _ .
Pi(z) =d" 127 ' +a) +at2 . (13.15)

In other words, this means that i can be expressed as the convolution of n generating filters,
the z-transform of which is defined by (13.15). This is really useful for practical applications. The
decomposition of large kernel into the convolution of small kernels saves computation time.

The result comes from the fundamental theorem of algebra: it states that a polynomial of degree
n with real coefficients can be decomposed into the product of n polynomials with real or complex
coefficients. (13.14) comes from the gathering of conjugate complex coefficients and of pairs of real
coefficients. For example, the filter defined by h =[a, 1 — 2a, a] has the following z-transform

H(z) = Y hk)z" (13.16)
k=—1
= az '+ (1 - 2a) +azt (13.17)
= Pi(2). (13.18)
In the case of unilateral z-transform
Q Q Q
Hz) =Y hk) =+ = [[ A(e) = [[ Pi) (13.19)
k=0 i=1 i=1
with z = 1 = ﬁ = ;;;;,jg = ﬁz* z € C and P;(z) = z — a’. Coefficients a* may be complex
conjugate. In that case
Py(z).Pyi(z) = (z—a')(z—a'th) (13.20)
= (z—(a+1b))(z — (a — b)) (13.21)
2% - 2ax + a® + b? (13.22)

is associated to the filter h = [ a? +b? , —2a, 1]. To obtain real coefficients, there are two categories
of generating filters depending on the form of their unilateral z-transform

e Pj(x) =1z —a’ for a’ real,

o Pi(z) =z%+clz+c) fora’ and (a')” complex conjugate. The coefficients are given by (13.22)

¢ =—2R(@)  ad )= (R()) + (Z(a)’

where R denotes the real part and Z the imaginary part of the complex number a’.

Conclusion: if the number of roots of the z-transform of a filter h is even, then the filter is obtained
by the convolution of filters of size 3 with real coefficients. If the number of roots is odd, it suffices
that there is at least one real root to build the filter by the convolution of filters of size 2 or 3 with
real coefficients.

Remark: Abramatic and Faugeras define the term small generating kernel (SGK) for the 2D-case.
These small filters generate filters with large size impulse responses.

Even if the decomposition is possible, there is no condition on the generating filter properties. In
practice, we may require generating filters with positive Fourier transform or a normalized filter. These
conditions are generally not satisfied by generating filters. For example,
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e a filter of size 2 with the following z-transform

is defined by

where Y h # 1.

e a filter of size 3 with the following z-transform
H(z)=z?—dz! —d}

is defined by

h’:[_a’%a _a'zla ]-]7
where 3" h = —a} — a% + 1 is not a priori equal to one, but the normalization is possible.

This decomposition can be used for 1D filters or separable 2D filters. But the decomposition of other
2D filters is in general not available because 2D-polynomials of degree n cannot be written as a product
of polynomials with small degrees. This problem would force us to restrict our study to separable filters,
which is not what we want to do here. This is the reason why we will not consider in this thesis the
decomposition with the SGK.

In this chapter, we have studied some possible approaches for the blind deconvolution with progres-
sive deblurring. We have seen that the sign of the Fourier transform of the filter and the number of
its zeros indicate if the deblurring is possible. In Chapter 13.3, we study the deconvolution with the
special class of small filters with a compact spatial support of size 3 x 3, for which we give a global
analyze of the sign of its Fourier transform according to the sign of the filter coefficients.

13.3 Deconvolution with filters having compact support

13.3.1 Definition of the filters

In this part, we consider the ringing phenomenon occurring after a deconvolution process. The de-
blurring with a wrong filter may introduce oscillations that may dominate by far the true part of the
reconstructed image. (These oscillations are called ringing in the literature [24] and there are some
proposed methods that reduce this kind of ringing [56][57][24].) The mismatch between the convo-
lution and the deconvolution filter has clearly a frequential explanation. In order to understand the
phenomenon, we first study a restricted class of filters: the ones with small spatial support 3 x 3. The
convolution process is defined by

U =k*ug + n.

where wug is the initial image of size N x N, and n is an additive Gaussian noise. We note u the
reconstructed image.
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Definition 13.9 The isotropic filter k of size N x N is defined by

(0) . (0)
| (0) (0)

The constraints on k are the following

dc+4a+e=1,
8¢+ 4a = o2, (13.23)
a, c, e >0.

The constraints (13.23) are traditional in the literature [9]. The first equation imposes a normalized
filter. The second one defines the variance of the filter. This value is linearly related to the amount
of blur introduced by the filter. The third equation preserves the positivity of the filtered image if
the input image is positive and also ensures that the filter blurs the image. Moreover the filter is
chosen isotropic in order to reduce the number of parameters. The physical counterpart is that we
only consider the blur due to the focusing operation and not the motion blur. But this modeling
remains general enough for our problem.

From the definition of k, we specify the range of the variables o2,a,c,e in the following proposition.
We also characterize the Fourier transform k in order to study its sign (we recall the change of sign
of k may introduce oscillations on the image during the deconvolution process since a null value of k£
may vyield large frequency modulus after inverse filtering). The proof of Proposition 13.10 is given in
Appendix (Subsection 13.3.5)

Proposition 13.10 Assume k is the filter of Definition 13.9.

(i) The variance 0% of k is restricted to

0% €10,2].
(ii) The discrete Fourier transform of k is
k(a, ) = 4c(a —1)(B —1) + 1 — 02 + 4c — 4cl?, (13.24)
with (a, B) € [-1,1]2 = Q and ,
g
l=1-2 (13.25)

(iii) Assume o is fixed. c ranges in [cmin(0), cmax(0)], where

) a4 (13.26)

Amin\O :O,
{ (0) o X (13.27)
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and e ranges in

E = [1 —021— ";] n[o,1] . (13.28)

(iv) 1<0
(v) The branch of the hyperbola defined in (13.24) changes quadrants for

ot

L 13.29
16 (13.29)

C = Ccrit =

Remark: The formulation (13.24) is interesting because the parameters a and e are no more in the
equation of k. Furthermore the value of ¢ depends on o as given by Proposition 13.10-(iii).

From this proposition, we will distinguish different categories of filters. First we see that there are
two cases for [ that lead to two types of filters.

case A: filters with [ € [—1,0]. The asymptotes of the hyperbola intersect in 2. An example with
[ = —0.3 is shown in Fig.13.5-(a).

case B: filters with [ < —1. The asymptotes of the hyperbola do not intersect in 2. An example with
[ = —1.5 is shown in Fig.13.5-(b).

08
06
04f

02

-0.2f <0

-04f

—06

-0.81

Figure 13.5: Level lines of the hyperbola E(a,ﬂ) (13.24) in the domain
(a) case A: 02/8c = 1.3 < 2 with [ = —0.3, ¢ = 0.15 and o2 = 1.56.
(b) case B: 02/8¢ = 2.5 > 2 with | = —1.5, ¢ = 0.1 and 0? = 2.

These two types of filters will be used in the proof of the following proposition, which shows that
the quantity 02 = 1 is a very specific value, which divides the class of possible variances in two groups
yielding the class of filters with strictly positive Fourier transform and the class of filters with a Fourier
transform with some positive and negative values.

Proposition 13.11 Assume k is the filter of Definition 13.9 and % its discrete Fourier transform.
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(i) for o? < 1, ¥(n,p) € [-F, %}2 E(n,p) > 0.
(ii) foro® > 1, I(n,p) € [-F, %]2 such that E(n,p) <0.

Remark: the filter is normalized so E(0,0) = 1. So (ii) implies that % may be negative.

Proof: as 75(0,0) =1 > 0, let us first calculate the minimum value of % in order to determine if
the kernel remains positive or if it changes sign for some frequencies. The study is done on the two
previous cases:

case A: R R ) X
Emin = min k(a, B) = k(—1,1) = k(1,-1) =1 — 2.

B

case B:

Emin = mink(a, ) = k(=1,-1) = 4c- (1 + 1) +1 — 0% + 4 — 4cl?.

a,
From (13.25), we have 8¢l = 8¢ — 02, thus kmin = 16¢ — 202 + 1. But in case B, 02/8¢ > 2,
then kpin <1 — o?.
Cases A and B show that o2 = 1 determines the sign of k (Fig.13.6).
e For 02 < 1, (case A) kuyin > 0 and (case B) Emin < C with C > 0 . In order to prove (i), we
still need to show that in case B, ki, > 0.
Proof: The quantity o2 € [0,2], so 16c — 202 + 1 € [16¢ — 1, 16¢ + 1].

~

kpin >0 & 16c—1>0
& 16c>1 (13.30)

Since case B defines the group of filters such that o? > 16¢, so from (13.30), we have o >
16c > 1. To conclude, k is positive for 02 > 1. This ends the proof of (i).

e For 02 > 1, the filter of case A already has negative values in % because Emin = 1 — 02 < 0.
This ends the proof of (ii).

O
Remarks: as shown in Fig.13.6, the sign of the filter also depends on the sign of 16¢ — 1. We study
here the case 16¢ < 1 in order to complete our understanding of the sign of k.

e For 02 € [16¢, 1]

Fmin = 16c—20%+1 (13.31)
Fmin € [16c—1,1 —16¢]. (13.32)

As 16¢ < 1, I%min may be positive or negative.

Amin P 2 1 16c+1
{k >0 for o € [16¢, 5], (13.33)

Epin < 0 for 02 € [%, 1]

e For 02 > 1, results are similar as before: ki, < 0. Indeed if 2 > 1 then 16c—202+1 < 16c—1
(Fig.13.7).
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kmin=1-0%0 Remin= 16 ¢ - 20 241<0
k>0
| | | | 02
0 1 16¢ 2
(2)

Rmin=1-0%0 Rmir= 16 ¢ - 20 241
| 1 | | o2
0 6c 1 2
(b)

Figure 13.6: (a) Case A: 1 — o2 > 0 means a positive k. (b) Case B: 62 > 16¢. The sign of & depends

whether 16¢ is larger or smaller than 1.

16¢ 2 0'2
cmax(o©)= —
8
r 2 Kmin=1-02>0 Rin= 16 ¢ = 20 241
SR cmin(cz)zmax(o, (o -1)) min=1-0"> min=16¢c—-20 +
4
02
16c¢c<1 | | | |
1 16¢c 16c+1 1 2
2 2
16¢c 1 2 Renin 0 R0
(b)

Figure 13.7: (a) Case 16¢ < 1 (b) Associated sign of Emin
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Figure 13.8: Level lines of the hyperbola E(w,y) (13.24) in the domain Q: case A with [ = —0.3
(a) 0% = 1.56 and ¢ = 0.15 < cgir = 0.1512 [configuration 1],
(b) 02 =1.24 and ¢ = 0.12 > c¢ir = 0.0961 [configuration 2].
Note that the branch of the hyperbola changes quadrants between configuration 1 and 2.

For case A, the critical value ci; defined in Proposition 13.10 represents the value of ¢ for which
the branch of the hyperbola changes quadrants. An example is given in Fig.13.8. For a fixed value of
I, we show the level lines of two hyperbola.

o for the first hyperbola ¢ < cit [configuration 1],
e for the second hyperbola ¢ > cqit [configuration 2].

For ¢ > cerit values (Fig.13.9-(c)), the frequential area, where k is positive, is larger. On the one hand,
only high frequencies Fourier transform may vanish, introducing high frequency ringing. This kind of
ringing is less visible than a low frequency one. On the other hand, the restored image will be less
sharp than if ¢ < cgpit.

So a blind deconvolution, that tests the ringing artifact with o2 fixed, gives better results for large
values of c.

Conclusion: the critical value ¢t is very important. As we will see in the numerical experiments,
it classifies the filters in two groups, one group generating a lot of ringing [configuration 1] and one
other group generating little ringing [configuration 2].

13.3.2 Construction of the filters

Definition 13.12 We define K, the set of filters k with variance o.

In order to compare the impact of the filter after a deconvolution process, we analyze the results of
the filters k with a variance ¢/ which may be different from the variance o of the convolution filter k:
k € K. The values of the coefficients of k are chosen randomly while respecting constraints (13.23).
We propose here an algorithm to compute the coefficients.
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(c) (d)

Figure 13.9: Level lines of the hyperbola k\(n,p) in the domain [—m, 7]2: case A with [ = —0.3
(a) 0 = 1.56 and ¢ = 0.15 < ceir = 0.1512 [configuration 1],
(b) image k(n,p) and the thresholded image where k(n,p) < 0 is a black pixel,
(c) 0* =1.24 and ¢ = 0.12 > ccir = 0.0961 [configuration 2],
(d) image k(n,p) and the thresholded image where k(n,p) < 0 is a black pixel.
Note the difference between configuration 1 and 2:
the diagonal direction of the Fourier transform of the filter has negative values in the configuration 1.
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Proposition 13.13 Let k be the isotropic filter defined by

(0) RRTT (0)
a € d : (13.34)
(0) ... (0)

with the following constraints
4c + 4a' + € =1,
8¢ +4d' = (0')?, (13.35)
a,d, e >0.

The following algorithm samples the uniform law of the set of filters k as defined by (13.34) and
(13.35).

Algorithm 4 (random filter trial)

1. Draw a random number €' from a uniform distribution, whose support is
E= [1 —(0")%,1— %] n[o,1].

2. Compute
a = % (2 — (0’)2 — 26') ,
d=1 (e'+ (o")? — 1) )

Proof : The variance of the filter is equal to (o) so that the range of ¢ is given by (13.10)-(iii):
e/ € E. Hence the initialization of ¢’ with a trial having a uniform distribution in F is adapted. This
explains the first step of the algorithm. Let us now explain the second step. As Fig.13.24 shows, the
constraints defined by (13.35) make a line in the 3D space (€¢’,d’, '), so that the values of the three
random variables €/, a’ and ¢’ are linked. Consequently if ¢/ and o’ are fixed, then the values of a' and
¢’ are determined. First the value of a’ is obtained with the second equation of the system (13.35).
Second the value of ¢’ is obtained by substituting the obtained values of ¢’ and a’ in the first equation
of the system (13.35).
[l

13.3.3 Numerical experiments

The deconvolution with compact support filter is tested on images of size 128 x 128. We note u the
reconstructed image. Following our approach of the ringing detection (chap.11), the ringing of w is
measured with the total variation. We also add another criterion. Following the notations of chapter
12 we define the average amplitude of the total variation of an image after a random phase shift.

Definition 13.14
ATV (u) := E(TV (us) — TV (u))

As is chapter 12, in order to have stable results, the mean value is computed and not the maximal
value of the difference over several trials. In the experiments, we set n = 100, where n is the number
of trials, and ¢ = 0.4. This value of ¢ gives a good idea of the slope of TV (u.) with respect to ¢
(Fig.13.10).
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Figure 13.10: (a) Image u of size 128 x 128 (b) Graph (¢,TV (u.)). For each value of the phase shift
g, we plot TV (u.)) with n = 100, number of tested images u.. As explained in chapter 12, a phase
shift of ¢ > 1 is useless. € = 1 build a random phase image.

Experiment procedure

We note k, the convolution filter k& with variance o. We recall that the blurred image u. is the result
of a convolution by k..
U = kg xug + 1.

In blind deconvolution, the filter k, is supposed unknown. So the a contrario approach consists in
being surprised of the good quality of the reconstructed image u for a randomly tested deconvolution
filter. As o is unknown, the tested deconvolution filters &, may have a different variance. So there
are two problems in the blind deconvolution process:

o the identification of o,

e the identification of k € K.

Results

a) lllustration of the critical ¢ value

The blurred image is simulated from a initial image uy with the formula
U = ks *xug + n.

The aim is to estimate k from the blurred image u.. In this experiment we set o = 4/3 for the
convolution filter and we add a Gaussian noise n of standard deviation 1. The tested deconvolution
filters k& does not have the same variance than the convolution filter, since in practice the variance of
the kernel is not known. Here we set k € K, with (¢/)> = 0.85. From Proposition 13.29, we deduce
the critical value of c

_ (o))" 0.85?

Cerit = 16 16

Fig.13.11 shows the graph (T'V (u), ATV (u)) with € = 0.4 and ug image of Fig.13.10-(a). It shows
three groups of images u. The first group has little ringing (small TV (u)). This group is named “left

= 0.04515.
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group” on the image. It corresponds to large values of ¢ [configuration 2]. On the opposite, the “right
group” has a lot of ringing [configuration 1]. Between those two groups is the “transition group” with
C = Cerit -

1.2 T T T T T
1 - .
0.8 E
0.6 | i
0.4 ks _ 4
'_
<
0.2 -
O - .
0.2 ‘ o g
-04 | left group transition right group B
0.6 1 1 1 1 1
10 20 30 40 50 60 70
TV
(a)
0.0475 T T T T T 0.12
0.047 -, 0.1
, T ] AN
0.0465 ., o008 \
AN
2 o046 4 H \—Ieﬁ group
é t E 006 [
% oo | . |3 .
+ 0.04 | \\\ erit
0.045 - " \
o0us - . 002 | \‘\<— fight group
oos . . . . . 0 . . . ;
0.118 0.119 0.12 0.121 0.122 0.123 0.124 ) 0.05 0.1 0.15 0.2 0.25
coefficient a coefficienta
(b) (c)

Figure 13.11: (a) Points (T'V (u), ATV (u)) with (¢/)> = 0.85 < 02 = 4/3. We test 1000 random

filters k € K. (b-c) coefficient values of k: (b) values for the “transition group” (c) Values for the
“right group” and “left group”. Note the range of ¢ and a satisfying (13.26) and (13.27).
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b) Blind deconvolution experiments without noise: u. = k, x ug -

The deconvolution is done with the special case of the Wiener filter already mentioned in (11.1):

vee R, me) = —2 & . ap), (13.36)
k()] + 4

which allows a “regularized deconvolution” parametrized by w. The “deconvolution filter" called I;u/,
is a regularized version of the filter k= and k,, is defined by

*

ko ()
— 2 2
B + 4

w

so that

—

VEER, Tp(E) = ku(w) - Gu(€).

In order to validate the criterion Fj+ to restore images, we compare the results with a very simple
criterion: T'V. First let us study this criterion. Fig.13.12 and 13.13 yield the following conclusion.

Conclusion 13.15 In the case of blind deconvolution without noise
(i) for 0? < 1, the TV criterion does not detect k.

(ii) for o2 > 1, the TV criterion detects k. It is the filter that minimizes TV (u), total variation of
the restored image. o2 is the value for which the regularity of the TV minimum is maximal.

Remark: assertion (i) can be explained by Proposition 13.11(i). As the Fourier transform of the filter
is positive, only little ringing occurs so images are either blurred or sharp. T'V favors blurred images
(small TV') over sharp ones (large T'V). Consequently, the filter that minimizes the restored image
TV gives the most blurred image: it is not k.

Assertion (ii) can be explained by Proposition 13.11(ii). The convolution filter & may vanish for
some frequencies. To compensate %, a large weight should be given to those frequencies. Ringing may
occur if wrong frequencies are magnified.

In Fig.13.12 and 13.13, the coefficients are not chosen randomly, but linearly. That is, for fixed o2,
c is regularly sampled in [cmin(0), cmax(¢)]. In the experiments, we set w = 100000. This large value
of w permits to give more weight on the fidelity term, which permits to evaluate the filter itself, than
on the regularity term. ug is the image of Fig.13.10-(a).

We will see later that the nice properties of the T'V criterion are no longer valid in the presence of
noise. Now let us compare the results with Fy+. We test the case 02 < 1, which is unresolved with
the TV criterion. We set 02 = 0.6 with a = 0.025, ¢ = 0.0625 and e = 0.65. The reference image
ug is shown in Fig.13.16-(a). It is an extract of “lacornou” of size 64 x 64. The phase coherence are
Fy+(up) = 1.94 and Fy+(u;) = 0.33. This criterion detects the convolution filter even in the case
0? < 1. The precision in the detection is shown Fig.13.15. Furthermore, we tested filters k € K, with
o' # o in order to check that filters with wrong variance give small Fy+. Indeed for (¢/)2 = 0.55 < 02,
Fy+ €[0.28,0.36]. And for (¢/)? = 0.65 < 02, Fy+ € [0.27,0.37].

Conclusion 13.16 /n the case of blind deconvolution without noise, the Fy+ criterion detects the
convolution filter k independently of o.
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filter k: 6%=0.8 with a=0.12 filter k: 6°=0.6 with 2=0.025

0 002 004 006 008 01 012 014 016 018 02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
coefficient a coefficient a

(2) (b)

Figure 13.12: lllustration of assertion (i). k € K,. (a) 02 = 0.8 (b) 0> = 0.6. The convolution filter
is not detected. The minimal value of T'V is reached for small a, i.e. large ¢, as discussed above.

filter k: 0°=1.33 with 2=0.111 filter k: 0?=1.33 with a=0.125

0 0.02 0.04 0.06 0.08 01 0.12 0.14 0.16 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
coefficient a coefficient a

(2) (b)

Figure 13.13: lllustration of assertion (i)). k € K, with 6®> = 4/3. (a) a = 1/9 (b) a = 1/8. The
convolution filter is detected because the correct value of a minimizes TV (u). Note the regularity of
the curve near the minimum which allows the detection of the convolution kernel.
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filter k: 0%=1.333 with a=0.111. filter kiilde: (¢")?=1.2 ) filter k: 6%=1.333 with a=0.111. filter ktilde: (c)>=0.8 )

0 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 0.2
coefficient a coefficient a

(a) (b)

Figure 13.14: Results for k& ¢ K,. (a) (¢’)> = 1.2 > 1. TV (u) has local minima where the curve is
not regular. (b) (¢/)? = 0.8 > 1. The variance of the filter is too small, so the global minimum is
reached for ¢ = cmax(0), i.6. @ = amin(0).

" random  x
bestrandom ()

L L L L L L 02 L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 00246 00247 00248 00249 0025 00251 00252 00253  0.0254
coefficient a coefficient a

(2) (b)

Figure 13.15: Graph (a, Fy+). (a) 1000 filters k& € K, randomly chosen are tested. The best result
(Fo+(u) = 0.51) is for a = 0.0249, ¢ = 0.06254 and e = 0.6501, which is a kernel very similar to
k. (b) Zoom around the best random filter. Two hundred new filters are tested. Their coefficient a
are regular samples in [0.0247,0.0253]. The filter k is detected if there is at least one sample of a in
[0.0249 — 5.107%,0.0249 + 5.1071].
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A

(a) (b) () (d)

Figure 13.16: (a) uo (b) u. (c) restored image with the correct kernel (a = 0.025) (d) restored image
with the wrong kernel (a = 0.1). The mismatch between both kernels k£ and k produces ringing as
shown in (d) whereas the restoration with the correct kernel in (c) produces a sharper image.

Fy+ detects k for 02 < 1. Now let us study the case 62 > 1. We have seen that the total variation
criterion identifies the convolution kernel. But let us check that the Fj+ criterion gives coherent
results. We show here that the criterion identifies the convolution kernel, since the deconvolved image
is detected as sharp, but we also show that this criterion has to be coupled to the total variation
criterion for some deconvolution filters for which the deconvolved image has a pattern (which has a
large value of T'V') that could be taken for a sharp image.

The associated experiment is now described: the convolution kernel is fixed to 02 = 4/3, a = 0.1111
and 200 deconvolution filters are tested. The blurred image wu, is shown in Fig.13.19-(a) and the weight
on fidelity term in the Wiener filter to w = 10 is increased to have results very specific to the filters.
Fig.13.18 shows the Fj+ measures of the deconvolved images. It shows that most images are not
detected as sharp (one example is shown in Fig.13.19-(d) obtained with ¢ = .11006 which is not
sharper than u, and even worse it is degraded by an oscillatory pattern), except two of them:

e one is the expected sharp image which has been deconvolved with the correct filter (¢ = 0.1111).
Observe in Fig.13.19-(b) that this image has less blur than w,.

e one is an unexpected image which has not been deconvolved with the correct filter (a = 0.1107).
Observe in Fig.13.19-(c) that this image is very degraded. The very oscillating pattern is detected
as a sharp image.

As announced the detection of the convolution filter is done by computing also the total variation of
the deconvolved image. As showed in Table 13.17, the degraded image detected as sharp with the Fj+
criterion could be rejected because of its large total variation. Note that the same convolution filter is
identified if a larger range of a is tested, i.e. for a € [amin, Gmax]-

c) Blind deconvolution experiments in the presence of noise: u. =k, xug + n.

We test here the detector sensitivity to noise addition. We analyze first the T'V detector then the
Fy+ detector. We have seen that the T'V detector is effective in the case 0> > 1. So in the first
experiments, we set

e 02 =4/3 with a=c=1/9 ~0.11111,

e the standard deviation of the Gaussian noise n to o, = 1.
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Coefficient of &
a=.11110 | a = .11007 | ¢« = .11006
For 0.50 0.55 0.31
TV (u) 14 84 23

Table 13.17: Sharpness and ringing in reconstructed images. As expected the deconvolution with the
correct filter (a = .11110) builds a sharp image (large Fy+) with a small total variation (T'V'(u)). The
other tested filters are not selected because they give either a too large value of (T'V(u)) or a blurred
image (Fo+ ~ 0.3).

011 0.1105 0.111 0.1115 0.112
coefficient a

Figure 13.18: Graph (a, Fy+). 200 filters are tested. Their coefficient a are regular samples in
[0.11,0.112]. Two restored images have a large value of Fj+ (see Table 13.17). They are obtained
with ¢ = .11110 and a = .11007. The correct value of q, i.e. a = .11110, is detected as a = .11007
introduces too much oscillations in the restored image as shown in Fig.13.19-(c).

B\

(a) (b) (c) (d)

Figure 13.19: (a) blurred image u.. Restored image with (b) the correct filter a = 0.11110: the image
is sharper than wu., it as been well restored (c) a = 0.11007 (d) @ = 0.11006. On images (c) and (d),
the oscillations dominate the true image: the image has been degraded.
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-1

Of course, as noise changes 1., deconvoling u. with (kg) does not give the optimal result. Fur-

thermore, we decrease w, weight on fidelity term in the Wiener filter, to minimize the ringing coming
from the noise. Obviously, the value of w has to be adapted to the level of noise n. Let us compare
the results obtained with different values of w. Fig.13.20 shows that

o for large w (w = 10'*), the total variation is very large. The oscillations hide the true image.

o for smaller w (w = 102), the value a = 0.112 is a local minimum of T'V (u). The filter k with
(0')2 =4/3 and @ = 0.112 is the “good” deblurring filter. This result is confirmed by Fig.13.21.
For w = 102, @ = 0.112 is also a local minimum of ||u — ug||2, i.e. the reconstructed image is
the closest from the original among all the restored images with keK,.

e for even smaller value (w = 10), we cannot detect k.

Remark: the smaller w is, the more important the regularization with the Wiener filter is. Conse-
quently the more regular the graph (a, TV (u)) is.

13.04

13.03

13.02

™

4
1389
1388

1387

Figure 13.20: Graph (a,TV (u)) with 02 = 4/3, a = 0.11111 and k € K, (a) w = 10 (b) w = 102 (c)
w = 10, The detection of the blur filter is possible only in (b) where the total variation reaches a local
minimum for @ ~ 0.11111. It corresponds to a smaller value of w than in the previous experiments,
but a too small value of w, which means more regularization, does not allow to detect the convolution
filter k.

We have seen that the T'V criterion detects the convolution kernel only for 0> > 1. The case
0% < 1 should be done with the Fy+ criterion. We discuss this case in the next part.

13.3.4 Comparison with the Lucy-Richardson method

We compare the previous results with the Lucy-Richardson method. It is all the more interesting since
this algorithm is fast for small kernel. The tested filter has support 3 x 3 and variance 0? = 0.6.
The initial image ug is shown in Fig.13.22 and the blur kernel is the same than in the case studied in
Fig.13.15.
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Figure 13.21: Graph (a, ||u — ug||2) corresponding to Fig.13.20. This graph validates for w = 10, 10?
that @ ~ 0.11111 is the good filter parameter since ||u — uo||2 reaches a minimum. However the
detection with the total variation parameter as shown in Fig.13.20 was not possible.

c a c 0.0625 0.025 0.0625
ke=1 a e a | = 0.025 0.65 0.025
c a ¢ 0.0625 0.025 0.0625

Figure 13.22: Image ug of size 128 x 128

We used the function deconvblind implemented in Matlab. It is the adapted version of the Lucy-
Richardson algorithm when the convolution filter is unknown. For a reasonably small amount of
iterations, it respects the constraint 4c + 4a + e = 1 and the positivity of the filter (Fig.13.23).
We tested 7 € [1,10] iterations and we plot the output filter of the Lucy-Richardson algorithm. At
iteration %, it is characterized by the filter coefficients a;, ¢; and e;. From these values, we compute
s; = 4c¢; + 4a; + e; and o; = 8¢; + 4a;. We note u; the reconstructed image at iteration . The initial
kernel is set very close to the objective ag = 0.026, ¢y = 0.064, eg = 0.652 and 02 = 0.616.

As expected, the closest image wu; from wug is obtained by deconvoling with a filter very close to k.
lteration 4 gives the smallest difference in the L? sense between u; and ug. The corresponding filter
has a; = 0.0256, ¢; = 0.0626, e; = 0.6472 and UZ-Q = 0.6034. However obviously the algorithm has not
converged a the fourth iteration. We note that the variance o; tends to decrease with %, which is not
surprising because in this algorithm we only impose the spatial spread of the filter but the constraints
on the filter given 13.23 are not included in the algorithm. So we cannot expect the LR algorithm to
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find the convolution kernel k. More precisely the blur added with ko is probably superimposed with
the original blur of the tested image ug. So the LR algorithm may deblur both the original blur of
ug and the additive blur obtained with the convolution with k,. This test cannot really compare the
results of the coherence detector Fjy+ and the LR method. Even if we cannot really conclude on the
comparison, we can say that Fy+ determines precisely k., as shown in Fig.13.15, because the class of
possible kernel is fixed (the blur of the original image is probably not obtained with a 3 x 3 kernel),
whereas the LR algorithm as not converged in four iterations. However it would be interesting at
this stage to detect if the output image at each iteration of the LR algorithm is sharp. Applying the
sharpness detector would give additive information on the resulting images of the LR algorithm.

0.607| 0.648]
1.0002]

0.606] 0.6475|

1.0001] 0.605] 0647
0.604] 0.6465|
1.0001]

0.603] 0.646|

0.602| 0.6455)

1! . . L L . . . . 0.601! o
1

0.0257 0.0631 7.

0.0256|
0.063]
0.0256|

0.0256| 0.0629
65

0.0256|
0.0628|

© 0.0256 o 6

0.0627
0.0256|

55
0.0256 0.0626|
0.0256

0.0625|
0.0256|

o. 0.0624, a,

5 6 5 6
iterations iterations iterations

(d) (e) (f)

Figure 13.23: Graphs (a) (3, ;) (b) (3,04) (¢) (i,e;) (d) (i,a;) (e) (4,¢) (f) (4,]||u; — ugll|2). The
graphs (a-b-c-d-e) are direct outputs of the LR algorithms and the graph (f) allows the comparison of
the restored image obtained with the LR algorithm with the true original image ug. The convergence of
the algorithm is not reached in 10 iterations. The constraints on k are not respected since for example
in (b) the curve of o2 is always decreasing. However the LR method may deblur more than expected
because of the blur on the original image ug, so we cannot expect the algorithm to stop at k.
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13.3.5 Appendix
Proof of Proposition 13.10

(i) the proof of Proposition 13.10-(i) follows from the constraint equations of k. We have 8c+4a = o2
and a,c¢ > 0, so 62 > 0. From 8c + 4a = o2, the value of 2 is maximum when ¢ is maximum
too., i.e. when a is minimum. Let @ = 0 in 8¢ + 4a = 02, so 8¢ = ¢2. And let also e = 0 in
4c+4a+ e =1, so 4¢c = 1. Consequently, 02 = 8¢ = 2.

(iii) the discrete Fourier transform of k is
N kan | kpP
k(nap) = Z k kaakﬁ ZZW( N N )7
ka kg =0

where (n,p) is the frequential discretization in the space domain and (kq,kg) in the Fourier
domain. Injecting the coefficients of the filter implies

A _ 2mn 27p 2mn 27p
k(n,p) = 4ccos (T) cos(N>+2a (cos( N )+cos(N>>-|-e.
From (13.23), we have

2a = % —4c
’ 13.37
{6:1—02+4C. ( )

Then

- 2 2 2 2 2
k(n,p) = 4ccos (%) cos (%) + (% - 4c> (cos (%) + cos (%p)) +1—0? +4c.

By defining a = cos (217\’[") and 3 = cos (2]7\?’) we get the reduced Cartesian equation, with the
coordinate axes as its asymptotes, of an equilateral hyperbola

2

k(a,B) = 4cofB + <?—4c) (a+pB)+1—0?+4c.

The announced result in Proposition 13.10-(ii) will follow immediately by setting [ = 1 — Z-.

(iii) Let a = 0in 8c+4a = 02 (13.23). As o is fixed, we get the maximal value of c. That is cpax (o).
The minimum value of ¢ is deduced from (13.23). The associated geometric problem is shown
in Fig.13.24. For 0% < 1, cmin(0) = 0. For 6? > 1, cmin(0) = $(0? —1). The range of a comes
directly from the constraints on k (13.23), where a = 02/4 — 2c.

The minimal and maximal values of e are noted epin and emax. From (13.37), we have
e=1—0’+4c.

and from (13.26) we have (see Fig.13.25)

{cmin(a) 2& (O %(a2 — 1)) ,

Cmax(o') =g
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T c
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Figure 13.24: (a) Projection of the constraints (13.23), on the plane e = 0 (b-c) 3D visualization of

the constraints.

so that

emin(0) = 1 — 02 + 4emin(0) ,
emax(0) = 1 — 0% + demax (0) .

. . . 2
The value of epax is immediate since cmax(0) = % so that

emax(0) = 1—a2+4cmax(a)
2
o
= 1-02+4—
o” + 3
2
- 1-Z.
2
c
1/4
Crmax
"Cmin
f 2
1 2 9

Figure 13.25: Visualization of ¢ € [¢min, Cmax]-

The value of emin depends on the value of o2

o if 02 €[0,1], then cmin(c) = 0. Hence

emin(a) =1- 02 .

(13.38)
(13.39)

(13.40)
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o if 02 €[1,2], then
Cmin(0) = 1—02+4- %(02—1) =0.
To summarize
o if 02 €[0,1], then c € [1—02,1— f’;] :
e ifo? € 1,2 then ce [0,1- %],
so that we obtain the general equation

2
Vo2 €10,2], ecE= {1—02,1—%]0[0,1].

(iv) As cmax(o) = ”8—2 (Proposition 13.10-(iii)), then from (13.25), I < 0.
(v) The critical value of ¢ corresponds to Cte = 0 in (13.24) if (13.24) is rewritten
(o, B) = 4e(a — 1)(B — 1) + Cte.
Then

Cte=0 & 1—02+4c—4cd’>=0
& 1-0?4+4c(1-1)=0
o

1—0?+4c(l —(1—-——)%) =
& 1-0" +de(l—(1- )% =0

& ot =16¢.



Chapter 14

Deconvolution with filters having non
compact support

Now let us consider a more challenging blind deconvolution. The filters are no more 3 x 3 compact
support filters, but Gaussian filters. This kind of filter is interesting because it has a positive Gaus-
sian Fourier transform. The inversion of such Fourier transform do not vanish, so the deconvolution
introduces only little ringing. It is an analogy with the previous case o2 < 1.

The original image g (Fig.13.16-(a)) is blurred with a Gaussian filter. As the convolution in space
is equivalent to a product in Fourier domain, we use this equivalence to speed up computations. We
note p the standard deviation parameter of the Gaussian filter in Fourier domain.

e First test: the Gaussian filter in Fourier domain has standard deviation o, = 0.5. The blind
deconvolution is done with a Wiener filter with w = 106.

e Second test: o, = 0.8 and w = 10

Results of the TV and Fj+ detectors are displayed in Fig.14.1, 14.2 and 14.3. It shows that the
total variation is increasing with p. So the particular case p = oy is not detected. Whereas Fj+ is
locally maximal for p = o3, which coincide with the convolution filter. Consequently, Fy+ is a good
detector of sharp images in a blind deconvolution problem.

Remark: the increasing of w between both experiment produces a curve (p, Fy+(u)) more discon-
tinuous as the regularity term in the Wiener filter has low weight.

In the presence of noise, i.e. u. = ks x ug + n, the restored image with p = ¢, is not always the
sharpest one. It depends on the level of noise. For small noise values, we intend to find a filter very
close to the convolution filter. For larger values, the filter might be very different from the convolution
one. Fig.14.4 shows the results obtained with

e an additive Gaussian noise o, = 1,
e a Gaussian filter k& with standard deviation o, = 0.5,
e a Wiener filter w = 10'0 for the image restoration.

As observed before, total variation is not a good criterion for blind deconvolution. It increases with p
(Fig.14.4-(b)). On the contrary, Fy+ is more informative, as some images deblurred with p € [0.4,0.6]
are detected as sharper than the others (Fig.14.4-(a)). This is coherent with the convolution kernel
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Figure 14.1: Case o, = 0.5 (a) blurred image u. (b) graph (p, Fy+(u)) (c) graph (p, TV (u))
The value of p is regularly sampled in [0.499,0.50049]. 150 samples.
The sharpest image u is obtained for p = oy.
The total variation criteria does not allow the detection of p = 03, as T'V (u) increases with p:
there is no minimum of TV (u) for p ~ o, = 0.5.
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Figure 14.2: Case o, = 0.8 (a) blurred image u. (b) restored image u with p = 0.8 (c) graph
(p, Fo+(u)) (d) graph (p, TV (u)). p is regularly sampled in [0.799,0.80049]. 150 samples.
The sharpest image u is obtained for p = oy,.
The total variation criteria does not allow the detection of p = 03, as TV (u) increases with p.
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Figure 14.3: Same experiment than in Fig.14.2 for a larger parameter range. p is regularly sampled in
[0,1]. 100 samples. Even for a wider range of p, the restored image u obtained for p = oy is detected
as the sharpest. The total variation criteria does not allow the detection of p = o, as TV (u) increases
with p.

op = 0.5. To prove that such filters give “good” images, we plot the difference between the original
image ug and the restored image: ||u — ug||2. In practice, ug is unknown, but here it confirms the
results obtained with Fj+: images restored with p € [0.4,0.6] are the closest from the original one
among all images restored with p € [0, 1].

Figure 14.4: Graphs (a) (p, Fy+(u)) (b) (p, TV (u)) (c) (p,||u —ugl|2). The graph (c) is the reference
and it indicates as expected that p ~ 0.5 produces the best reconstructed image. The graph (b) shows
that TV (u) does not allow the detection since there is no minimum of the curve for p ~ 0.5. The
graph (a) shows that images obtained with p > 0.5 are not sharp (small value of Fy+(u)) but it makes
no difference between the images obtained with p < 0.5.

Remark: the phase coherence of the original image is Fy+ (ug) = 1.94. For the noisy blurred image,
Fy+ (uc) = 0.32. The restored image with p = 0.5 is not as sharp as ug. It comes from the regularity
term in the Wiener filter (even if it is nearly zero) and mainly from the noise component.

When the level of noise increase, p = oy is not the best filter parameter as noise may introduce
ringing. Fig.14.5 shows the results for g,, = 3. Restored images with p ~ 0.3 are closer from w1y than
with p = 0.5. As observed before, the T'V criterion only favors smooth images. The Fy+ criterion
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proposes several sharp images, some of them could be rejected because of their high T'V.

Fig.14.6 shows some reconstructed images. They have the highest phase coherence Fy+. The two
first can be accepted. The third and the forth ones have too much ringing. These results confirm that
in the presence of noise, restoring images with p = o} is not optimal (Fig.14.6-(c)).

Figure 14.5: Graphs (a) (p, Fo+(u)) (b) (p,TV(u)) (c) (p,|luw — wol||2). In the presence of noise
(o, = 3), restoring images with p = o, = 0.5 is not optimal as shown in Fig.14.6. None of the

variables (Fy+ or T'V') allow the detection of p = 0.5.

Nl

(c)

(d)

(2) (b)

Figure 14.6: Restored images with (a) p = 0.09 (b) p = 0.33 (c) p = 0.5 (d) p = 0.72. With
p = op = 0.5, the restored image has ringing. A smaller value of p produces images with less ringing.



Conclusion

We have studied in this chapter the deblurring of an original image with a regularized deconvolution.
It is well known that if the reverse operation is done with a wrong filter, images are highly degraded
and the restoration becomes impossible. On the contrary, when the correct convolution filter is used
for the deconvolution, the resulting image has better quality than the original blurred one.

Here, we proposed to use the sharpness detector, defined in the previous part, to deblur the image
in an automatic way, i.e. to detect the convolution filter. In all the experiments, we assumed that the
unknown filter belongs to a given class of filters. We tested the class of filters with compact support
and the class of filters with a Gaussian Fourier transform, which do not have a compact support. In
both experiments, we showed that the correct convolution filter can be found automatically, even when
the original image is degraded by a very small noise (typically a small noise has an amplitude smaller
or equal to the quantization step size when the discrete image is converted to a digital image). The
comparison with another approach of the literature was difficult since our tests are done on a special
class of filters (for example 3 x 3 filters satisfying some normalization and variance constraints) which is
a good indication of the blur filter, whereas most approaches in the literature do not make assumptions
on the filter. For example the Lucy-Richardson algorithm does not have the normalization and variance
constraints. We observed that the proposed detector makes automatic deblurring possible. No real
study on the sensitivity of the detector to the noise level was done here, but the experiments showed
that the filter detection is possible provided that the level of noise is small enough.

Another possible image restoration application of the sharpness detector is the denoising. Most
denoising methods are parametrized. Let us cite as an example the NL-means denoising method
recently defined by Buades et al. in [6] [7], which has four parameters. In most methods, the parameter
choice is often a problem, so the coherence measure could be used for an automatic parameter selection.
We propose some denoising results obtained with the sharpness detector in Chapter 15. This chapter
is not meant to be a detailed study of the denoising problem, since we will use the NL-means algorithm
and apply the sharpness detector as an additive tool to a restoration process. We will see in this
chapter how the sharpness detector coupled with the NL-means algorithm can help propose a coherent
denoised image.
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Chapter 15

Towards automatic denoising

Most denoising methods are parametrized. The parameter choice is often a problem. The coherence
measure can be used in such a purpose. We propose here an automatic parameter selection for the
NL-means denoising method defined by Buades et al. in [6]. This algorithm is designed for image
denoising. It gives good results by comparison with other denoising algorithm because it preserves
image features (textures, edges ...). This method takes advantage of the high degree of redundancy
of any natural image. It estimates the value of a pixel 7 as an average of the values of all the pixels
whose Gaussian neighborhood looks like the neighborhood of 7. Let us recall here the computation of
the average value as given in [6].

“Let €2 be the image domain, u be the original image denoted by u(x) for x = (z,y) € R? and u,
the noisy image, the NL-means algorithm estimates the value of x by

1 _ (Gax|un(et) —un(y+12)(0)
n2 v(y)dy,

NL(up)(x) = m

_ (Gaxlun () —un (z+.)|2)(0)
h2

where G, is a Gaussian kernel with standard deviation a, C(x) = e dz is the
normalizing factor and h acts as a filtering parameter.”

This algorithm is Non Local since pixels belonging to the whole image are used for the estimation
of 2. However in practice, in order to reduce the computation time, the seek of the neighborhood is
limited to a window around the pixel to be estimated, which may reduce the quality of the denoising.

The NL-means method has four parameters:

e the size of the window: (2ws + 1) x (2ws + 1). It is a subpart of the image where similar
neighborhoods are seek,

e the size of the neighborhood: (2p + 1) x (2p 4+ 1). In [6], they suggest a patch of size 7 x 7 or
9 x 9 (that is p = 3 or p = 4) for gray level images,

e the standard deviation of the Gaussian kernel a,
e the decay of the exponential function h: decay of the weights in the similarity measure.

Experimentally, the method restores very well images when the four parameters are appropriately
chosen. Buades proposes a perceptual evaluation of the parameters. He made some suggestions about
the size of the patch p and the value of h. He proposes a patch of size p =3 or p = 4 and h of the
order of noise standard deviation o [6] (note that in [7], Buades et al. have seen experimentally that
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h can take values between 10 - o and 15 - o). However, this recommendation depends on the type of
considered images and on the other parameter values. Experimental results showed that textures are
better preserved when considering a smaller value of p, for example p = 2. Moreover, the value of a,
the standard deviation of the Gaussian kernel in the similarity measure, may change the optimal value
of h. Such h restores the best as possible the noisy image. The modeling of this image is

Up = U+ Ng

where w is the original nice image, n, is a Gaussian noise with variance o2 and u,, is the resulting
image. We shall call u, the reconstructed image by the NL-means algorithm:

ur = NL(uy) .

As we shall test different values of h in the NL-means algorithm, let us add a subscribe h at u,. It
yields u, j,.

Experiments:

We propose here to study the case of a patch size 5 x 5 (that is p = 2) with a = 2 and w,; = 15.
Several noise variances are tested o = {3,5,10} (Fig.15.1). For each fixed o, we plot the phase
coherence of u,p (Fo(urp)) as a function of h. To simplify the notations, Fy(u,p) is noted Fp.
Results are compared with the mean square error E between u and wu,.;, (Fig.15.2). We have chosen
here the mean square error but other criteria could be tested.

The argmin of E(h) gives the true optimal value of h. Let us note

e hp the optimal h given by E, the mean square error between u and u,.,
e hp the optimal h given by Fj

The original image has size 128 x 128 (Fig.15.1). We summarize the hg and hp values for different
values of ¢ in Fig.15.5.

Remarks:

1. We measured the added noise with its standard deviation o. However the noise impact also
depends on u. This is the reason why the signal noise ratio (SNR) is also an interesting measure.
It takes into account both the standard deviation of the noise (o) and the standard deviation of
the image u denoted by o(u).
o(u)

SNR = —=
o

The empirical standard deviation of u is calculated by

1/2
olw) = | 5 S (i) - )’

1,J

where N is the number of pixels in u and u is the average gray value: & = % > uli, j). For
example, u in Fig.15.1 has standard deviation 60. This represents a good quality image [6]. The
SNR of the noisy images are simply SNR = i_—o. This means SNR = 20 when ¢ = 3.
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2. The sharpness measure Fjy detects the optimal value of h. Its value is maximal when the restored
image is the closest to the original (E minimal). Note that on the graphs, Fj is thresholded to
100.

3. For large values of h the coherence is also maximal as the restored image suppresses the “gran-
ularity” of the image. Flat zones seem more flat than on u. Edges are preserved which increases
the image sharpness perception.

4. hp is larger than the true one hg for large o. This comes from the fact that Fj is very sensitive
to the image sharpness whereas E really measures the proximity to u. Fj privileges sharp images
even if it means suppressing some textures or the granularity of flat zones. Whereas the loss of
these characteristics increases E. An example is given in Fig.15.6 where the initial noise is set
to 0 = 2 and the corresponding optimal values h are hg = 10 and hr = 14. We observe that
with hp (Fig.15.6-(d)) the image has lost more granularity than with hg (Fig.15.6-(c)).

For large o, the noisy image has already lost too much details. Even the NL-means algorithm
can not reconstruct them.

5. the optimal value of h in the L2 sense (mean square error between the original image u and
Ur.p) is shown by hg in Fig.15.5. Note how the curve of hg (o) is close to a line. It is coherent
that the value of h increases with the noise level o. Indeed if the image is very noisy, there is
good reconstruction, i.e. enough regularization of the image, if many points are used to compute
the average, even points with a slightly different neighborhood than the neighborhood of the
considered point. We do not give an explanation of the linear behavior of hg with ¢. It would
be interesting to check this characteristic for different kinds of image and to see how the line
slope depends on the images and the other parameter choices.

(a) (b) (c)

Figure 15.1: Images (a) u (b) us (SNR = 12) (c) u1o (SNR = 6)
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Figure 15.2: Noise variance: o = 3 (a) (E,h) (b) (Fo,h). The value of h that gives a sharp image
(jump of Fy) is very close to the argmin of E, i.e. hg ~ hp.
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Figure 15.3: Noise variance: o =5 (a) (E,h) (b) (Fo,h). Same comment as in Fig.15.2
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(a) (b)

Figure 15.4: Noise variance: o0 = 10 (a) (E,h) (b) (Fo,h). Same comment as in Fig.15.2
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Figure 15.5: Comparison of hg and hp for o € [0,20]. The phase coherence measure detects images
very close to the optimal image (the optimality being measured in the L? sense). Note also how hg(o)
is close to a line.
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‘

(2) (b)

‘

(c) (d)

Figure 15.6: Images (a) u (b) u2 (c-d) denoised with hg = 10 and hr = 14. | mage (d) has lost more
granularity than image (c).



Conclusion and perspectives

This thesis studies the question of the image quality. The quality of a numerical image is inherent
to its formation, i.e. to the production of a discrete version of the continuous world. All formation
processes are constrained to degrade the image quality by introducing some artifacts, so it is paramount
to reduce the amount of artifacts on the image. The major difficulties are the characterization and the
detection of such artifacts in images. Previous works in image quality showed that the question of the
evaluation of these artifacts is not solved. Some solutions already exist for the blur control of an image
formation process when the sampling grid of the image and the noise introduced by the instruments are
given. Firstly with the satellite SPOT 5, a global approach in the Shannon kingdom was performed,
where the sampling has been adapted to the support of the MTF. But the other artifacts have not
been studied simultaneously.

The objective of this thesis was precisely to study these artifacts directly linked to the formation of
a numerical image. Two major difficulties of the image quality question, which are the characterization
and the detection of artifacts, have been studied. They have been formalized for the three artifacts
directly related to the formation of a numerical image: the blur, the ringing and the aliasing. Contrarily
to some solutions of the literature, the question of the instrumental noise has not been analyzed for
the moment. In this work the focus was on the image degradation by the artifacts and not by the noise
because these two degradations have an essential difference. The noise has no structure, whereas the
studied artifacts have a characteristic structure: the ringing adds spurious oscillations, aliasing destroys
the regularity of the edges of the image and blur is a structured degradation which smoothes the image.
Since the framework has been the characterization and the detection of the artifacts in the presence
of a little amount of noise, the question of the stability of our results in the presence of moderate or
large noise would have to be studied. The evaluation of the noise impact on the perception of the
artifacts and the possible masking effect of the noise could also be considered in future work.

The underlying theory used in the whole thesis is the Shannon theorem, which is the foundation
of the understanding of the formation of the artifacts. Obtaining an artifact-free image is a difficult
problem because physically a real image acquisition device with numerical images is often an approx-
imation of the filter defined by Shannon, and mathematically the quasi-compacity in both the space
and the Fourier transform domain is difficult. We showed that there is often a trade-off between these
artifacts yielding to the idea of the study of the three artifacts in a united way.

Here this unified approach of the three artifacts was concretely expressed by first a methodology
to design an optimal filter given a sampling grid in the aliasing-free image context. The idea of a
blur/ringing trade-off has been pushed forward. Second new detectors have been proposed for each of
the artifacts. The detection is adapted to the artifact characterization and it is based on a statistical
a contrario approach following the work of Desolneux et al. [13], which has the advantage to be
parameter-free. This statistical approach has been used repeatedly all along this thesis.

Beginning with a formal definition of the ringing artifact, we discussed that the ringing artifact is
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neither a consequence of the Gibbs theorem nor a consequence of the Bocher theorem. To show the
difference, an example has been given where the projection onto the band-limited space of a given
C*® function oscillates. A general theorem that would identify the class of continuous functions whose
projection onto the band-limited space oscillates would be interesting. Knowing the position and the
amplitude of the overshoots and undershoots would also be a useful indication for the applications of
image low-pass filtering.

Following with the low-pass filter characterizations, the context of aliasing-free image reduction has
been studied. A new joint measure of the blur and ringing artifacts has been defined. This measure
was developed after realizing that ringing and blur are intimately linked around a low-passed sharp
transition and that it is not possible to measure the spread of the transition due to the blur without
considering the impact of the ringing oscillations on the perceived blur. The blur/ringing measure was
realized by a so called Spread-Ringing curve, assuming no aliasing, which completely characterizes a
filter or a filter family. The Spread-Ringing curves of classical low-pass filters have been compared
so that any user can objectively chose the best filter for the image reduction depending on its visual
constraints and the initial image quality. A table of the filter parameter with respect to the blur/ringing
measure has been proposed for an immediate application of the comparison results. With respect to
the Spread-Ringing curve the associated optimal filters have been proposed, which means that the
filter gives the best blur/ringing trade-off for our joint blur and ringing measure.

In many cases, the filter is unknown so that the filter characterization with respect to the artifacts is
not possible requiring a direct evaluation of the artifacts on the images. The evaluation on the image
is also useful to check the validity of a post-processing. Three new detectors have been proposed
for the three image qualifiers: sharpness, ringing and aliasing. Although the most straightforward
approach would be to consider only the spatial domain, the proposed sharpness detector considers
both the spatial and frequential domains. A new definition of the phase coherence has been proposed.
In this definition there is no direct test to know if the Fourier components are in-phase around sharp
transitions, as proposed by Morrone [37], but the estimation of the coherence of the transitions is done
by estimating the sensitivity of the total variation of the image after small random phase-shifts of its
Fourier transform components. The idea is that a sharp transition can be decomposed in in-phase
sinusoids, and a small phase-shift increases strongly the total variation of the image since the sinusoids
do not compensate anymore. Experiments showed that the detection of sharp images is possible with
the associated sharpness detector. For some special image cases, blurred images may be detected
as sharp if they are deteriorated by a very structured artifact. This observation has shown that the
detector response does not always match the visual criterion and that some other measures, such as
the total variation, can detect such unnatural images. For the ringing detection, the approach is an
a contrario method based on the detection of oscillations, which are specific to ringing in the spatial
domain. Moreover, this detector has three great advantages: it is parameter-free, robust to noise and
invariant under contrast change. For the aliasing, some approaches have been tested based on the
spatial domain or on the frequential one. The most promising approach we have proposed and tested
is a new method based on the fact that an aliased image is not described by Shannon theory and
that the postulate that the image is equivalent to its sub-pixel translations is not true for an aliased
image. The detectors have been tested on satellite images and still need to be tested on a larger image
database. Two possible applications of the detectors have been presented in the blind deconvolution
and denoising problems.

This review of the main points of the thesis has shown that the study is not close. We present now
some possible improvements. The characterization of a low-pass filter with its Spread-Ringing curve is
well adapted in the aliasing-free context. A nice generalization of the measure could take into account
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other possible image degradations such as aliasing and noise. So the first possible generalization
of the Spread-Ringing curve could be the addition of a third degree of freedom by substituting the
curve of two parameters (spread,ringing) by a curve of three parameters (spread, ringing, aliasing).
The associated Spread-Ringing-Aliasing measure would have practical applications. The first possible
application would be the image formation by an acquisition device. The instruments used in an optical
chain have intrinsic physical constraints that cannot always be changed. The physical constraints may
yield an image with at least one of the three artifacts. The Spread-Ringing-Aliasing measure would
be a tool adapted to the characterization and the specification of the acquisition devices. The second
possible application would be the post-processing of a discrete image, such as in the image reduction
case. In this application, the filter is not fixed by the instrumental constraints but by the application
and the Spread-Ringing-Aliasing measure would be useful to chose the most appropriate filter to obtain
an image that is the best adapted to the visual constraints. A possible refinement of the measure is
the addition of the noise measure, yielding maybe to a Spread-Ringing-Aliasing-Noise measure.

Some possible applications of the artifact detectors have been given in restoration. The idea is not
only to validate a restoration algorithm by checking its image output quality, for which the artifact
detector is already a nice automatic tool, but it is also the coupling of the detectors to the restoration
procedure. First, it could offer some nice perspectives for all parametrized algorithms, for which the
detector could help for the choice of the best parameters. Second, it could also be coupled to an
iterative algorithm, such as the well-known Lucy-Richardson algorithm, for which the detector could
help to stop the procedure when the output image has no artifact. More generally, the use of the
detectors as decision tools for the choice of the best filter/image could be coupled to any restoration
procedure.

This wide range of applications of the artifact detectors comes from the global approach that has
been adopted in this thesis. The artifacts have been characterized and studied simultaneously and
the detectors have been defined in a very general way, based on both the Shannon theory and the
spatial characterization of the artifacts, without any application specification. This new approach
of the image quality domain seems to yield interesting perspectives for the automatic image quality
assessment. This is the first time that a statistical a contrario approach has been used in the image
quality domain and it seems to be adapted. The second idea of coupling the spatial and frequential
characterization of the artifacts could be pushed forward in future works to measure and detect other
types of artifacts that should be taken into account in a more precise and global modelling of perfect
image quality.
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Etude des artefacts de flou, ringing et aliasing en imagerie numérique.

Application a la restauration.

Résumé : Cette thése aborde les problemes liés a la formation des images numériques. L'étape
d’'échantillonnage nécessaire a la formation d’une image discréte a partir d’'une image continue peut
introduire différents types d’artefacts qui constituent des dégradations majeures de la qualité de
I'image. La motivation principale de cette thése a été I'étude de ces artefacts que sont le flou, le
ringing et I'aliasing. Dans |la premiére partie, nous rappelons tout d'abord le processus de formation
des images numériques puis nous proposons des définitions de ces artefacts. Dans la deuxiéme partie,
nous définissons une mesure conjointe du flou et du ringing dans le cadre d'un filtrage passe-bas
précédant I'échantillonnage. La troisieme partie est dédiée a la détection automatique de ces artefacts
dans les images. Enfin, en quatriéme partie, la détection automatique est testée dans des applications
concretes de la restauration d'images : la déconvolution aveugle et le débruitage.

Mots-clefs : échantillonnage, artefacts, ringing, aliasing, flou, filtrage linéaire, déconvolution aveugle,
Gibbs, détecteur.

Study of the blur, ringing and aliasing artifacts in numerical imaging.

Application to restoration.

Abstract : This thesis deals with the problems related to the formation of numerical images.
Sampling, which is a necessary stage for the formation of a discrete image from a continuous one, may
introduce some artifacts that degrade the image quality. These artifacts are called blur, ringing and
aliasing. The main motivation in this thesis was the study of these three artifacts. In the first part,
we recall the image formation process and we define these artifacts. In the second part, we propose a
new measure of both the ringing and blur artifacts associated to a low-pass filtering prior to sampling.
The third part is dedicated to the automatic detection of these artifacts in images. In the fourth part,
the automatic detection is tested on two real restoration applications: the blind deconvolution and
the denoising.

Keywords : sampling, artifacts, ringing, aliasing, blur, linear filtering, blind deconvolution, Gibbs,
detector.



