. Dans-un, pour un champ imposé quelconque, le seuil critique du milieu effectif ne présente pas de singularité (ou " coin " ) et se rapproche d'un cercle dans la limite de perco- lation

B. Abramowitz, M. Stegun, and I. A. , Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1972.
DOI : 10.1119/1.1972842

A. A. Abrikosov, J. C. Campuzano, and K. Gofron, Experimentally observed extended saddle point singularity in the energy spectrum of YBa2Cu3O6.9 and YBa2Cu4O8 and some of the consequences, of YBa 2 Cu 4 O 6.9 and YBa 2 Cu 4 O 8 and some of the consequences, pp.73-79, 1993.
DOI : 10.1016/0921-4534(93)90109-4

B. Budiansky, On the elastic moduli of some heterogeneous materials, Journal of the Mechanics and Physics of Solids, vol.13, issue.4, pp.223-227, 1965.
DOI : 10.1016/0022-5096(65)90011-6

T. K. Ballabh and M. Paul, Theoretical multiple-scattering calculation of nonlinear elastic constants of disordered solids, Physical Review B, vol.45, issue.6, pp.2761-2771
DOI : 10.1103/PhysRevB.45.2761

M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. Peitgen, D. Saupe et al., The Science of Fractal Images, 1988.
DOI : 10.1007/978-1-4612-3784-6

R. Becker, A. Needleman, O. Richmond, and V. Tvergaard, Void growth and failure in notched bars, Journal of the Mechanics and Physics of Solids, vol.36, issue.3, pp.317-351, 1988.
DOI : 10.1016/0022-5096(88)90014-2

J. Belak, On the nucleation and growth of voids at high strain-rates, Journal of Computer-Aided Materials Design, vol.5, issue.2/3, pp.193-206, 1998.
DOI : 10.1023/A:1008685029849

D. J. Benson, An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals, Journal of the Mechanics and Physics of Solids, vol.41, issue.8, pp.1285-1308, 1993.
DOI : 10.1016/0022-5096(93)90080-Y

D. J. Bergman, The dielectric constant of a composite material???A problem in classical physics, Physics Reports, vol.43, issue.9, pp.377-407, 1978.
DOI : 10.1016/0370-1573(78)90009-1

J. Bernasconi, Conduction in anisotropic disordered systems: Effective-medium theory, Physical Review B, vol.9, issue.10, 1974.
DOI : 10.1103/PhysRevB.9.4575

N. Bilger, F. Auslender, M. Bornert, and R. Masson, New bounds and estimates for porous media with rigid perfectly plastic matrix, Comptes Rendus M??canique, vol.330, issue.2, pp.127-132, 2002.
DOI : 10.1016/S1631-0721(02)01438-9

URL : https://hal.archives-ouvertes.fr/hal-00111344

R. F. Bishop, R. Hill, and N. F. Mott, The theory of indentation and hardness tests, Proc. of the phys. soc. 57, pp.147-159, 1945.
DOI : 10.1088/0959-5309/57/3/301

M. Bornert, A generalized pattern-based self-consistent scheme, Computational Materials Science, vol.5, issue.1-3, pp.17-31, 1996.
DOI : 10.1016/0927-0256(95)00054-2

URL : https://hal.archives-ouvertes.fr/hal-00111510

V. A. Buryachenko, Effective elastic moduli of triply periodic particulate matrix composites with imperfect unit cells, International Journal of Solids and Structures, vol.42, issue.16-17, pp.4811-4832, 2005.
DOI : 10.1016/j.ijsolstr.2005.01.010

S. Childress, Viscous Flow Past a Random Array of Spheres, The Journal of Chemical Physics, vol.56, issue.6, pp.2527-2539, 1971.
DOI : 10.1063/1.1677576

R. M. Christensen and K. H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the Mechanics and Physics of Solids, vol.27, issue.4, 1979.
DOI : 10.1016/0022-5096(79)90032-2

R. M. Christensen and K. H. Lo, Erratum, Biochemical and Biophysical Research Communications, vol.207, issue.3, p.639, 1986.
DOI : 10.1006/bbrc.1995.1294

URL : https://hal.archives-ouvertes.fr/insu-00447063

I. Cohen and D. J. Bergman, Effective elastic properties of periodic composite medium, Journal of the Mechanics and Physics of Solids, vol.51, issue.8, pp.1433-1457, 2003.
DOI : 10.1016/S0022-5096(03)00054-1

A. R. Day, K. A. Snyder, E. J. Garboczi, and M. F. Thorpe, The elastic moduli of a sheet containing circular holes, Journal of the Mechanics and Physics of Solids, vol.40, issue.5, pp.1013-1051, 1992.
DOI : 10.1016/0022-5096(92)90061-6

J. M. Dewey, The Elastic Constants of Materials Loaded with Non???Rigid Fillers, Journal of Applied Physics, vol.18, issue.6, pp.578-581, 1947.
DOI : 10.1063/1.1697691

I. Dierking, Fractal scaling of surface degradation patterns formed by dielectric breakdown of liquid-crystal Hele-Shaw cells, Europhysics Letters (EPL), vol.67, issue.3, pp.464-469, 2004.
DOI : 10.1209/epl/i2004-10071-3

W. T. Doyle, The Clausius???Mossotti problem for cubic arrays of spheres, Journal of Applied Physics, vol.49, issue.2, pp.795-797, 1978.
DOI : 10.1063/1.324659

D. C. Drucker, On obtaining plane strain or plane stress conditions in plasticity, Proc. Second U. S. National congress of Applied Mechanics ASME, pp.485-488, 1954.

D. C. Drucker, The Continuum Theory of Plasticity on the Macroscale and the microscale, J. of Mat, vol.1, issue.4, pp.873-910, 1966.

A. Efros and B. I. Shklovskii, Critical Behaviour of Conductivity at Dielectric Constant Near the Metal-nonmetal Transition Threshold, Phys. Stat. Sol B, vol.76, 1976.

J. D. Eshelby, The Equation of Motion of a Dislocation, Physical Review, vol.90, issue.2, p.248, 1953.
DOI : 10.1103/PhysRev.90.248

J. D. Eshelby, Determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. Lond. A241, pp.376-396, 1957.

J. E. Flaherty and J. B. Keller, Elastic behavior of composite media, Communications on Pure and Applied Mathematics, vol.37, issue.4, pp.565-580, 1973.
DOI : 10.1002/cpa.3160260409

S. Forest, Homogenization methods and the mechanic of generalized continua, Geometry, Continua and Microstructure, 1999.

P. A. Fotiu, On averaged Eshelby tensors and bounds of periodic composites with cuboidal inclusions, Mechanics of Materials, vol.17, issue.1, 1994.
DOI : 10.1016/0167-6636(94)90010-8

P. Francescato and J. Pastor, R??sistance de plaques multiperfor??es: comparaison calcul???exp??rience, Revue Europ??enne des ??l??ments Finis, vol.2, issue.2, pp.421-437, 1998.
DOI : 10.1080/12506559.1998.10511311

P. Francescato, J. Pastor, and B. Riveill-reydet, Ductile failure of cylindrically porous materials. Part I: plane stress problem and experimental results, European Journal of Mechanics - A/Solids, vol.23, issue.2, pp.181-190, 2004.
DOI : 10.1016/j.euromechsol.2003.12.001

M. Frigo and S. G. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE, pp.216-231, 2005.
DOI : 10.1109/JPROC.2004.840301

P. Gilormini, M. Bornert, and T. Bretheau, Homogénéisation en mécanique des matériaux, Hermes Science, 2001.

M. L. Glasser, The evaluation of lattice sums. I. Analytic procedures, Journal of Mathematical Physics, vol.14, issue.3, p.409
DOI : 10.1063/1.1666331

R. Glowinski and P. Le-tallec, Augmented Lagrangien and Operator-Splitting Methods in Nonlinear Mechnanics, Studies in Applied Mathematics, SIAM, vol.9, 1989.

D. E. Grady, The spall strength of condensed matter, Journal of the Mechanics and Physics of Solids, vol.36, issue.3, pp.317-351, 1988.
DOI : 10.1016/0022-5096(88)90015-4

J. E. Gubernatis and J. A. Krumhansl, Macroscopic engineering properties of polycrystalline materials: Elastic properties, Journal of Applied Physics, vol.46, issue.5, pp.1875-1883, 1975.
DOI : 10.1063/1.321884

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth : part I. Yield criteria and flow rules for porous ductile media, J. Engrg. Mater. Technol, vol.99, pp.1-15, 1977.

H. Chen and A. Acrivos, The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations, International Journal of Solids and Structures, vol.14, issue.5, pp.349-364, 1978.

Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, Journal of Applied Physics, vol.33, issue.10, pp.3125-3131, 1962.
DOI : 10.1063/1.1728579

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of polycrystals, Journal of the Mechanics and Physics of Solids, vol.10, issue.4, p.343, 1962.
DOI : 10.1016/0022-5096(62)90005-4

Z. Hashin, Thin interphase/imperfect interface in elasticity with application to coated fiber composites, Journal of the Mechanics and Physics of Solids, vol.50, issue.12, pp.2509-2537, 2002.
DOI : 10.1016/S0022-5096(02)00050-9

R. Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, vol.13, issue.4, pp.213-222, 1965.
DOI : 10.1016/0022-5096(65)90010-4

J. Hoshen and R. Kopelman, Percolation and cluster distribution . I. Cluster multiple labeling technique and critical, Phys. Rev, pp.14-3438, 1976.

M. Idiart, P. Castañeda, and P. , Second-order estimates for nonlinear isotropic composites with spherical pores and rigid particles, Comptes Rendus M??canique, vol.333, issue.2, pp.147-154, 2005.
DOI : 10.1016/j.crme.2004.12.001

L. M. Kachanov, Fundamentals of the Theory of Plasticity, 2004.

J. B. Keller, Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Nonconducting Cylinders, Journal of Applied Physics, vol.34, issue.4, pp.991-993, 1963.
DOI : 10.1063/1.1729580

J. B. Keller and D. Sachs, Calculations of the Conductivity of a Medium Containing Cylindrical Inclusions, Journal of Applied Physics, vol.35, issue.3, pp.537-538, 1964.
DOI : 10.1063/1.1713410

E. H. Kerner, The Elastic and Thermo-elastic Properties of Composite Media, Proc. Phys. Soc. B XX, 1956.
DOI : 10.1088/0370-1301/69/8/305

S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.45, issue.4, 1973.
DOI : 10.1103/RevModPhys.45.574

J. Korringa, Theory of elastic constants of heterogenous media, J. Math. Phys, vol.34, issue.4, pp.509-513, 1973.

V. I. Kusch, Elastic equilibrium of a medium containing periodic spherical inclusions, Soviet Applied Mechanics, vol.27, issue.No. 4, pp.435-442, 1985.
DOI : 10.1007/BF00887036

N. Lahellec and P. Suquet, Nonlinear composites: a linearization procedure, exact to second-order in contrast and for which the strain-energy and affine formulations coincide, Comptes Rendus M??canique, vol.332, issue.9, pp.693-700, 2004.
DOI : 10.1016/j.crme.2004.04.004

URL : https://hal.archives-ouvertes.fr/hal-00088254

R. Landauer, The Electrical Resistance of Binary Metallic Mixtures, Journal of Applied Physics, vol.23, issue.7, p.779, 1952.
DOI : 10.1063/1.1702301

C. Licht and P. Suquet, Augmented Lagrangien method applied to a problem of incompressible viscoplasticity arising in homogeneization, Taylor ed., Numerical Methods for Nonlinear Problems, pp.106-114, 1986.

B. A. Lippman and J. Schwinger, Variational Principles for Scattering Processes. I, Physical Review, vol.79, issue.3, pp.469-480, 1950.
DOI : 10.1103/PhysRev.79.469

J. M. Luck, Conductivity of random resistor networks: An investigation of the accuracy of the effective-medium approximation, Physical Review B, vol.43, issue.5, pp.3933-3944, 1991.
DOI : 10.1103/PhysRevB.43.3933

J. Mandel, Cours de mécanique des milieux continus, p.737, 1966.

R. Masson, M. Bornert, P. Suquet, and A. Zaoui, An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, Journal of the Mechanics and Physics of Solids, vol.48, issue.6-7, pp.1203-1227, 2000.
DOI : 10.1016/S0022-5096(99)00071-X

URL : https://hal.archives-ouvertes.fr/hal-00114467

J. C. Maxwell, A Treatise On Electricity And Magnetism , 3rd, p.57, 1873.

D. R. Mckenzie and R. Mcphedran, Exact modelling of cubic lattice permittivity and conductivity, Nature, vol.6, issue.5590, pp.128-129, 1977.
DOI : 10.1063/1.1735816

R. C. Mcphedran, Transport Properties of Cylinder Pairs and of the Square Array of Cylinders, Proc. R. Soc. Lond. A 408 42, pp.3-43, 1986.
DOI : 10.1098/rspa.1986.0108

R. C. Mcphedran and A. B. Movchan, The Rayleigh multipole method for linear elasticity, Journal of the Mechanics and Physics of Solids, vol.42, issue.5, pp.71-727, 1994.
DOI : 10.1016/0022-5096(94)90039-6

R. C. Mcphedran, N. A. Nicorovici, and L. C. Botten, Neumann series and lattice sums, Journal of Mathematical Physics, vol.46, issue.8, p.83509, 2005.
DOI : 10.1063/1.1998827

R. C. Mcphedran, G. H. Smith, N. A. Nicorovici, and L. C. Botten, Distributive and analytic properties of lattice sums, Journal of Mathematical Physics, vol.45, issue.7, p.2560, 2005.
DOI : 10.1063/1.1755861

R. E. Meredith and C. W. Tobias, Resistance to potential flow through a cubic array of spheres, J. Appl. Phys, issue.7, pp.31-1270, 1960.

J. C. Michel, H. Moulinec, and P. Suquet, Effective properties of composite materials with periodic microstructure: a computational approach, Computer Methods in Applied Mechanics and Engineering, vol.172, issue.1-4, pp.109-143, 1999.
DOI : 10.1016/S0045-7825(98)00227-8

J. Michel, H. Moulinec, and P. Suquet, A Computational Method Based On Augmented Lagrangiens and Fast Fourier Transforms for Composites with High Contrast, Comput. Modelling Eng. Sci, vol.1, issue.2, pp.79-88, 2000.

J. C. Michel, H. Moulinec, and P. Suquet, A computational scheme for linear and non???linear composites with arbitrary phase contrast, International Journal for Numerical Methods in Engineering, vol.58, issue.12, pp.139-160, 2001.
DOI : 10.1002/nme.275

G. W. Milton and R. V. Kohn, Variational bounds on the effective moduli of anisotropic composites, Journal of the Mechanics and Physics of Solids, vol.36, issue.6, pp.597-629, 1988.
DOI : 10.1016/0022-5096(88)90001-4

G. W. Milton, The theory of composites, 2002.
DOI : 10.1017/CBO9780511613357

H. Moulinec and P. Suquet, A fast numerical method for computing the linear and nonlinear properties of composites, C. R. Acad. Sci, pp.1417-1423, 1994.

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.69-94, 1998.
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

H. Moulinec and P. Suquet, Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Physica B: Condensed Matter, vol.338, issue.1-4, pp.58-60, 2003.
DOI : 10.1016/S0921-4526(03)00459-9

H. Moulinec and P. Suquet, Intraphase strain heterogeneity in nonlinear composites: a??computational approach, European Journal of Mechanics - A/Solids, vol.22, issue.5, pp.751-770, 2003.
DOI : 10.1016/S0997-7538(03)00079-2

M. Murat, Dielectric breakdown between parallel plates, Physical Review B, vol.32, issue.12, 1985.
DOI : 10.1103/PhysRevB.32.8420

C. W. Nan and R. Z. Yuan, Multiple-scattering solution to nonlinear mechanical properties of binary elastic-plastic composite media, Physical Review B, vol.48, issue.5, pp.3042-3047, 1993.
DOI : 10.1103/PhysRevB.48.3042

S. Nemat-nasser and M. Taya, On effective moduli of an elastic body containing periodically distributed voids, Quarterly of Applied Mathematics, vol.39, issue.1, p.187, 1981.
DOI : 10.1090/qam/99626

S. Nemat-nasser, T. Iwakuma, and M. Hejazi, On composites with periodic structure, Mechanics of Materials, vol.1, issue.3, pp.239-267, 1982.
DOI : 10.1016/0167-6636(82)90017-5

L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Fractal Dimension of Dielectric Breakdown, Physical Review Letters, vol.52, issue.12, pp.1033-1036, 1984.
DOI : 10.1103/PhysRevLett.52.1033

K. Nunan and J. Keller, Effective elasticity tensor of a periodic composite, Journal of the Mechanics and Physics of Solids, vol.32, issue.4, pp.259-280, 1984.
DOI : 10.1016/0022-5096(84)90024-3

F. Oberhettinger, Tables of Mellin transforms, 1974.
DOI : 10.1007/978-3-642-65975-1

N. Ohno and . Hutchinson, Plastic flow localization due to non-uniform void distribution, Journal of the Mechanics and Physics of Solids, vol.32, issue.1, pp.63-85, 1984.
DOI : 10.1016/0022-5096(84)90005-X

J. Pastor, P. Castañeda, and P. , Yield criteria for porous media in plane strain: second-order estimates versus numerical results, Comptes Rendus M??canique, vol.330, issue.11, pp.741-747, 2002.
DOI : 10.1016/S1631-0721(02)01526-7

J. Pastor, P. Francescato, M. Trillat, E. Loute, and G. Rousselier, Ductile failure of cylindrically porous materials. Part II: other cases of symmetry, European Journal of Mechanics - A/Solids, vol.23, issue.2, 2004.
DOI : 10.1016/j.euromechsol.2003.12.002

Y. Pellegrini, Field distributions and effective-medium approximation for weakly nonlinear media, Physical Review B, vol.61, issue.14, pp.9365-9372, 2000.
DOI : 10.1103/PhysRevB.61.9365

URL : https://hal.archives-ouvertes.fr/hal-00130052

Y. P. Pellegrini, Self-consistent effective-medium approximation for strongly non-linear media, Phys. Rev. B, vol.64, issue.134211, pp.1-11, 2001.
DOI : 10.1103/physrevb.64.134211

W. T. Perrins, D. R. Mckenzie, and R. C. Mcphedran, Transport Properties of Regular Arrays of Cylinders, Proc. R. Soc. Lond. Ser. A369, pp.207-225, 1979.
DOI : 10.1098/rspa.1979.0160

P. Castañeda, P. Debotton, G. Li, and G. , Effective properties of nonlinear inhomogeneous dielectrics, Physical Review B, vol.46, issue.8, pp.4387-4394, 1992.
DOI : 10.1103/PhysRevB.46.4387

P. Castañeda and P. , Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, Journal of the Mechanics and Physics of Solids, vol.44, issue.6, pp.827-862, 1996.
DOI : 10.1016/0022-5096(96)00015-4

P. Castañeda and P. P. , Three-point bounds and other estimates for strongly nonlinear composites, Physical Review B, vol.57, issue.19, 1998.
DOI : 10.1103/PhysRevB.57.12077

P. Castañeda and P. , Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I???theory, Journal of the Mechanics and Physics of Solids, vol.50, issue.4, pp.737-757, 2002.
DOI : 10.1016/S0022-5096(01)00099-0

P. Castañeda and P. , Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: II???applications, Journal of the Mechanics and Physics of Solids, vol.50, issue.4, pp.759-782, 2002.
DOI : 10.1016/S0022-5096(01)00098-9

J. R. Rice, The localization of plastic deformation, Theoretical and Applied Mechanics, International Congress of theoretical and applied mechanics, 1976.

T. Richeton, P. Dobron, F. Chmelik, J. Weiss, and F. Louchet, On the critical character of plasticity in metallic single crystals, Materials Science and Engineering: A, vol.424, issue.1-2, pp.1-2, 2006.
DOI : 10.1016/j.msea.2006.03.072

URL : https://hal.archives-ouvertes.fr/insu-00375756

M. Sahimi, Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown, Physics Reports, vol.306, issue.4-6, pp.213-395, 1998.
DOI : 10.1016/S0370-1573(98)00024-6

B. Saint-venant, Theory of Plasticity, J. Math., Ser. II, vol.16, issue.16, p.373, 1871.

L. M. Sander, Fractal growth processes, Nature, vol.321, issue.6082, pp.789-793, 1986.
DOI : 10.1038/322789a0

URL : http://deepblue.lib.umich.edu/bitstream/2027.42/62937/1/322789a0.pdf

A. Sangani and W. Lu, Elastic coefficients of composites containing spherical inclusions in a periodic array, Journal of the Mechanics and Physics of Solids, vol.35, issue.1, pp.1-21, 1987.
DOI : 10.1016/0022-5096(87)90024-X

E. T. Seppälä, J. Belak, and R. E. Rudd, Threedimensional molecular dynamics simulations of voids coalescence during dynamic fracture of ductile metals, Phys. Rev. B, vol.69, 2005.

V. K. Shante and S. Kirkpatrick, An Introduction to Percolation Theory, Advances in Physics, 1971.

D. Stauffer and A. Aharony, An Introduction to Percolation Theory, 1985.

D. Stroud, Generalized effective-medium approach to the conductivity of an inhomogeneous material, Physical Review B, vol.12, issue.8, pp.3368-3373, 1975.
DOI : 10.1103/PhysRevB.12.3368

W. M. Suen, S. P. Wong, and K. Young, The lattice model of heat conduction in a composite material, Journal of Physics D: Applied Physics, vol.12, issue.8, pp.1325-1338, 1979.
DOI : 10.1088/0022-3727/12/8/013

P. Suquet, Une méthode simplifiée pour le calcul des propriétéspropriétésélastiques de matériaux hétérogèneshétérogènesà structure périodique, C. R. Acad. Sci. Paris Série II, pp.311-769, 1990.

P. N. Swarztrauber, FFT algorithms for vector computers, Parallel Computing, vol.1, issue.1, pp.45-63, 1984.
DOI : 10.1016/S0167-8191(84)90413-7

M. F. Sykes and J. W. Essam, Exact Critical Percolation Probabilities for Site and Bond Problems in Two Dimensions, Journal of Mathematical Physics, vol.5, issue.8, p.1117, 1964.
DOI : 10.1063/1.1704215

R. Tao and . Sheng, First???principle approach to the calculation of elastic moduli for arbitrary periodic composites, The Journal of the Acoustical Society of America, vol.77, issue.5, pp.1651-1658, 1985.
DOI : 10.1121/1.391963

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

V. Tvergaard, A. Needleman, and K. K. Lo, Flow localization in the plane strain tensile test, Journal of the Mechanics and Physics of Solids, vol.29, issue.2, pp.115-142, 1981.
DOI : 10.1016/0022-5096(81)90019-3

H. Tvergaard, On localization ductile materials containing spherical voids, Int. J. Fract, vol.18, issue.4, pp.237-252, 1982.

V. Tvergaard and C. F. Niordson, Nonlocal plasticity effects on interaction of different size voids, International Journal of Plasticity, vol.20, issue.1, pp.107-120, 2004.
DOI : 10.1016/S0749-6419(03)00036-6

L. Van-hove, The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal, Physical Review, vol.89, issue.6, pp.1189-1193, 1953.
DOI : 10.1103/PhysRev.89.1189

L. J. Walpole, Long elastic waves in a periodic composite, Journal of the Mechanics and Physics of Solids, vol.40, issue.7, pp.1663-1670, 1992.
DOI : 10.1016/0022-5096(92)90044-3

K. Walton, Elastic wave propagation in model sediments -- I, Geophysical Journal International, vol.48, issue.3, pp.461-478, 1977.
DOI : 10.1111/j.1365-246X.1977.tb03683.x

J. R. Willis and . Acton, THE OVERALL ELASTIC MODULI OF A DILUTE SUSPENSION OF SPHERES, The Quarterly Journal of Mechanics and Applied Mathematics, vol.29, issue.2, pp.163-177, 1976.
DOI : 10.1093/qjmam/29.2.163

J. R. Willis, Bounds and self-consistent estimates for the overall properties of anisotropic composites, Journal of the Mechanics and Physics of Solids, vol.25, issue.3, pp.185-202, 1977.
DOI : 10.1016/0022-5096(77)90022-9

J. R. Willis, Variational and Related Methods for the Overall Properties of Composites, Adv. Appl. Mech, vol.21, pp.1-78, 1981.
DOI : 10.1016/S0065-2156(08)70330-2

R. Wong, Asymptotic approximations of integrals, 1989.
DOI : 10.1137/1.9780898719260

X. C. Zeng, D. J. Bergman, P. M. Hui, and D. Stroud, Effective-medium theory for weakly nonlinear composites, Physical Review B, vol.38, issue.15, pp.10970-10973, 1988.
DOI : 10.1103/PhysRevB.38.10970

J. Zhang, Calculation of fractal di- mension of fractal surfaces using FFT, 2004.