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Chapter 

INTRODUCTION

– Ainsi, il y a trois sortes de lits ; l’une qui existe dans la nature des choses, et nous

pouvons dire, je pense, que Dieu est l’auteur – autrement, qui serait-ce ?... [...] Et Dieu,

soit qu’il n’ait pas voulu agir autrement, soit que quelque nécessité l’ait obligé à ne faire

qu’un lit dans la nature, a fait celui-là seul qui est réellement le lit ; mais deux lits de ce

genre, ou plusieurs, Dieu ne les a jamais produits et ne les produira point.

– Pourquoi donc ? demanda-t-il.

– Parce que s’il en faisait seulement deux, il s’en manifesterait une troisième dont ces

deux-là reproduiraient la Forme, et c’est ce lit qui serait le lit réel, non les deux autres.

Platon, La République, Livre X.

. What is a shape?

There are certainly many ways to define what a shape is. And the same remark holds, even if we

restrict ourselves to geometric shapes, which are the object of this work. However, no matter what

definition is adopted, one can hardly imagine a shape without thinking of comparison, similarity or

recognition. It is a fact that in order to recognize a shape, we need some a priori knowledge of what

that particular shape is. Having that knowledge assumes that, in an earlier stage, we have learned

something about this shape that enables us to recognize it. Following this point of view, phenome-

nologists [Att54, Met75] conceive shape as a subset of an image, digital or perceptual, endowed with

some qualities permitting its recognition. Such a perceptual object is called a planar shape. In that

sense, it is sound to define shapes as any part of an image that can be recognized in another image.

Consider now a recognition process defining a shape. Identify that shape and apply to it, for instance,

a rigid transformation. One could say that the resulting shape is a different one. However, according

to our perception, this new shape will still be recognized as the original one. In that sense, these

two shapes should be considered to be equivalent. Hence, a notion of invariance is underlying to the

definition of shape. It is a well known fact that humans recognize shapes undergoing a wide range of



 Chapter 1. Introduction

transformations and perturbations, that we will describe later. The ideas presented up to here lead

us to a general definition of shape:

Definition 1.1 (General definition of shape) Let W be a set of reference images (“the world of

possible images”). Let I and I ′ be any pair of images in W . We call shape any common part between I
and I ′, modulo a class of invariance.

From a practical viewpoint, this definition is still too general: “common part” has not yet a precise

meaning, and the class of invariance has not been specified.

Let us start by specifying the invariance class. In other words, we will present a set of invariant prop-

erties of shapes, according to perceptual principles. We will be naturally led to define a representation

of images, that complies with some requirements derived from invariance. This image representa-

tion will furnish concrete “shape candidates” or “image parts” to the recognition processes leading to

shape definition. Then, in the next subsection, we will come to precise what we mean by “common

part” in a recognition process. The conjunction of these two analyses will lead us to a more precise

definition of shape.

.. Invariant properties of shape recognition and a well adapted image repre-

sentation

Since shapes are defined as the parts of an image being recognized in another image, by identify-

ing what are the perturbations or transformations that, applied to those images, do not change the

recognition result, we will be naturally led to a more precise definition of shape. Following Lisani et

al. [LMMM03], the main classes of perturbations which do not affect recognition are:

. Changes in the color and luminance scales (contrast changes). According to gestaltists At-

tneave and Wertheimer, shape perception is independent of the grey level scale or of the mea-

sured colors:

“The concentration of information in contours is illustrated by the remarkable similar appearance

of objects alike in contour and different otherwise. The “same” triangle, for example, may be

either white on black or green on white. Even more impressive is the familiar fact that an artist’s

sketch, in which lines are substituted for sharp color gradients, may constitute a readily identifiable

representation of a person or thing.” (Attneave [Att54], ).

“I stand at the window and see a house, trees, sky.

Theoretically I might say there were  brightnesses and nuances of colour. Do I have “”? No. I

have sky, house, and trees. It is impossible to achieve “” as such. And yet even though such droll

calculation were possible and implied, say, for the house , the trees , the sky  – I should at

least have this arrangement and division of the total, and not, say,  and  and ; or  and

.” (Wertheimer [Wer23], ).
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. Occlusions and background modification. Shape recognition can be performed in spite of

occlusion and background, as shown in Figure .. The phenomenology of occlusion was thor-

oughly studied by Kanizsa [Kan79] and his school. Kanizsa argues that occlusion is always

present in every day’s vision: most objects we see are partially hidden by other ones. Our

perception must therefore perform a recognition of partial shapes. Conversely, if a shape oc-

cludes a background, its recognition is invariant to changes in the background. The recog-

nition problem in this condition is known in perception psychology as the figure-background

problem, studied by Rubin [Rub21]. It is the other face of the occlusion problem: a shape is

superimposed to a background, which can be made of various objects: how to extract, to single

out, the shape from that clutter? This can also be viewed as a dilemma: do we first extract the

shape and then recognize it or, conversely, do we extract it because we had it recognized?

Figure .: Left: According to the theory of G. Kanizsa and his school, shapes can be recognized even when they

undergo several occlusions. Our perception is trained to recognize shapes which are only seeable in part. Here the

occluded cross can be easily recovered. Right: the figure-background problem. Our perception is adapted to recover

a figure on the foreground, independently from the background.

. The classical noise and blur, inherent to any perception task and to any image generated ac-

cording to Shannon’s theory.

. Geometrical distortions or deformations. The effects of perspective are deeply incorporated

in human perception. Humans can recognize objects and shapes under perspective distortion,

as long as perspective is not too strong. Recognition is also invariant to elastic deformations,

always within some limits.

The four invariant properties we have just described fix some rules or requirements a good image

representation should comply with. In the remainder of this subsection we present a derivation of a

well adapted image representation, which consists in analyzing these requirements one by one.
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. (a) The local contrast invariance requirement. We define a digital image as a function u(x),

where u(x) represents the grey level or luminance at x. According to the contrast in-

variance principle, our first task is to extract from the image a topological information

fairly independent from the varying and unknown contrast change function of the opti-

cal and/or biological apparatus. One can model such a contrast change function as any

continuous increasing function g from R
+ to R+. The real datum corresponding to the

observed u could be as well any image g(u). This simple argument leads to select the level

sets of the image [Ser82], or its set of level lines, as a complete contrast invariant image

description [CCM99].

The family of the connected components of the level sets of u, [u > λ], λ ∈ R, is called

upper topographic map. An image can be reconstructed from its upper level sets by the

formula

u(x) = sup{λ, u(x) > λ}.

We define the level lines as the boundaries of the level sets. There are several frameworks

to define the level lines: if u is considered to be a function with bounded variation, the

level lines can be defined as a set of nested Jordan curves [ACMM01]. The set of all level

lines is called the topographic map of the image.

(b) The concentration of information requirement. The local contrast invariance require-

ment led us to define the set of the image level lines as a complete contrast invariant

information. Somewhat in contradiction with this contrast invariance principle, many

authors assert, like Attneave, that “Information is concentrated along contours (i.e., regions

where color changes abruptly)”. One can argue that not all the level lines are really needed

to have a complete description in terms of perception. Some of them are due to noise or

to small, hardly noticeable, changes in illumination. Thus, it makes sense to prune the

tree of level lines by only keeping a selection of the most contrasted level lines. Such a

selection (and any other) is not invariant to any contrast change, since it explicitly uses

the gradient value. However, it can be shown that it is invariant to affine global contrast

changes. Besides, it is probably the most stable selection, in the sense these lines will not

vary significantly when “not too strong” contrast changes are applied. A simplification

of the level lines tree can be performed by using the method proposed by Desolneux et

al. [DMM01], which greatly reduces the number of level lines, while preserving the main

structures in the image. Figure . shows an example of such level lines selection (see

caption for details).

. The occlusion and figure-background requirements. Even the best adapted choice of level

lines is not totally suited to describe image parts. Indeed, when a shape A partially occludes

a shape B, the level lines of the resulting image are a concatenation of pieces of the level lines

belonging to A and to B. This is shown with a very simple example in Figure .. Even if

a shape is not occluded, but simply occludes its own background, there may be no level line
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Figure .: Original image on the left (83, 759 level lines). Middle: meaningful boundaries (851 level lines).

Right: reconstruction from the meaningful boundaries. Only 851 boundaries remain, while the structure of the

image is preserved and perceptual loss is very weak.

surrounding the whole shape, as shown in figure .. These remarks show us that the Jordan

curves of the topographic map, as a whole entity, do not furnish all “shape candidates”. In

order to overcome this obstacle, a segmentation of these level lines into their parts belonging to

different objects is needed. However, since we assume we do not know which are the different

objects in the considered images, such a segmentation of level lines is impossible. All we can

do is segmenting the level lines in small enough pieces, expecting that most of these pieces will

not go through more than one object’s boundary.

Figure .: Left: oval occluding a cross, right: the level lines of the resulting image. While the oval’s boundaries can

be recovered as a full level line, the boundary of the cross concatenates with the oval’s boundary. Thus recognition

cannot be based on complete level lines, but it can still be based on pieces of level lines.

. The smoothing requirement. If “common parts” in images subject to noise are still recog-

nized, this means shape information has not been affected by that noise. In that sense, noise

can be viewed as introducing details which are much too fine (in relation to the essential shape

information) to be perceptually relevant, in terms of recognition. This idea was also pointed

out by Attneave in : “It appears, then, that when some portion of the visual field contains

a quantity of information grossly in excess of the observer’s perceptual capacity, he treats those
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Figure .: Left: Cross on a background with an oval occluding a rectangle. The cross is wholly in view. All the

same, its shape does not appear as a level line because of the background. As in Figure ., one sees that the level

lines must be broken into pieces to get clues of each single shape.

components of information which do not have redundant representation somewhat as a statis-

tician treats “error variance”, averaging out particulars and abstracting certain statistical homo-

geneities.” Hence, a correct image representation, which does not get lost in textural details,

asks for a previous smoothing. Figure . illustrates recognition in the presence of noise. The

object on the right was obtained by smoothing the one on the left. By comparing them, we

immediately recognize the same shape.

Notice that the smoothing requirement is somehow consistent with the concentration of infor-

mation requirement.

Figure .: One can immediately see that both objects are disks, with approximately the same size. The second one

is obtained from the first by the affine curvature equation [AGLM93]. The main ideas behind such a curvature

equation was anticipated by Attneave, who proposed to smooth silhouettes by blurring and then enhancing the

resulting image to get a smooth silhouette: “somewhat as if the photograph of the object were blurred and then

printed on high-contrast paper”.

. Geometric invariance requirements. Image representations (a set of meaningful level lines,

for instance) have to be invariant to weak projective transforms. Allowing invariance to any

projective transformation does not make sense, since we cannot recognize shapes under strong
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perspectives. Besides, it can be shown that all planar curves within a large class can be mapped

arbitrarily close to a circle by projective transformations. This result was reported by Aström

in [Åst95], where it is also shown that given a finite set of m Jordan curves C1, . . . , Cm, one

can find a Jordan curve C and m projective transformations p1, . . . , pm, such that pi(C) is

arbitrarily close to Ci, for all i ∈ {1, . . . ,m}. Hence, in general, schemes based on projective

normalization of Jordan curves are not possible. Another argument against general projective

invariance is that, despite some interesting attempts [FK95], there is no practical way to define

a projective invariant local smoothing. From this viewpoint, affine invariant smoothing is the

“best” we can do [AGLM93]. The two arguments we have just presented indicate that affine

invariance is a reasonable geometric invariance requirement. Indeed, since we are interested in

weak perspective distortions, we can use local affine transformation approximations, for which

invariant smoothing is possible. Thus, affine invariant smoothing and affine normalization of

meaningful level lines are requested.

Deriving an image representation

To end with this subsection, let us summarize the four invariance requirements, and the constraints

they impose to an image representation based on shape information. The local contrast invariance

led us to define the topographic map as a complete contrast invariant representation. Then, the con-

centration of information requirement asked for selection of a set of meaningful level lines, that are

roughly the level lines which are long and contrasted enough (a more precise definition is not nec-

essary for the moment, and will be given later). It follows, from the occlusion and figure-background

requirements, that small pieces of meaningful level lines are to be considered. Finally, by combining

the smoothing requirement and the geometric invariance requirement, it follows that pieces of mean-

ingful level lines should be smoothed with a local scheme invariant to affine transformations, and

then local affine normalization of these pieces has to be performed, leading to the representation

we propose. Now we are able to define shape elements, elementary structures which are likely to be

recognized in images:

Definition 1.2 We call shape element of an image any piece of meaningful level line of the image, affine

invariantly smoothed.

.. Defining the “common parts” of two images

At the very beginning of this chapter, we defined a shape as any common part between two images,

modulo a class of invariance. The first precision we have to make is that here, “common” does not

mean “identical”. In the preface to his book “The Statistical Theory of Shape” [Sma96], Christopher

G. Small also defines shapes based on invariance: “In general terms, the shape of an object, data set,

or image can be defined as the total of all information that is invariant under translations, rotations,

and isotropic rescalings. The two objects can be said to have the same shape if they are similar in the
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sense of Euclidean geometry. For example, all equilateral triangles have the same shape, and so do all

cubes. In applications, bodies rarely have exactly the same shape within measurement error. In such

cases the variation in shape can often be the subject of statistical analysis.” While we do not totally

agree with Small’s first assertion (in our opinion the Euclidean group is not large enough and some

affine transforms or even weak perspectives should be included), we think that the very last sentence

clearly represents what we mean by “common”. Hence, underlying this notion, there is a recognition

threshold ε and a resemblance measure (up to invariance) between parts in images I and I ′, such that

if this measure is less than ε, the considered parts are said to be “common parts”. Besides, it seems

natural to model the resemblance measure not only as a function of the considered parts in I and I ′,
but also on the context, which is given by the world of possible images W .

Now that we have chosen to represent image parts as sets of shape elements, we need a resemblance

measure between two such elements S in I and S ′ in I ′, up to an affine transformation. This measure,

which we will denote by NFA, can be defined as a function NFA(S,S ′,W ), where affine normal-

ization of S and S ′ before comparison is implicit. This function is defined to have this property: the

lower the NFA is, the more the resemblance between shape elements is confirmed.

.. A more precise notion of geometric shape

All discussions made up to here motivate the following definition.

Definition 1.3 (ε-meaningful match) Let W be a set of reference images (“the world of possible im-

ages”). Let I be any image in W , and S a shape element from I . Let also S ′ be a shape element within

images in W . Denote by ε a fixed positive real number. We say S and S ′ match ε-meaningfully if

NFA(S,S ′,W ) 6 ε.

An ε-meaningful match between two shape elements is a consequence of a recognition process, since

shape elements are image structures likely to be recognized, and the fact they match ε-meaningfully

means they are among the “common parts” between some images.

Definition . is much more precise than Definition ., but is general enough to be at the origin of

several conceivable applications. Let us briefly describe some of them, that were explored in this

work.

Autosimilarity

By autosimilarity we mean identification of shapes that are repeated within an image. Figure .

shows examples of images having the autosimilarity property. Taking W = {I} and S,S ′ both in I ,

Definition . leads to the autosimilarity application.

Image comparison

If one takes W = {I, I ′}, S in I and S ′ in I ′, Definition . corresponds to an image comparison

problem. Finding the common structures between the two images in figure . could be a possible ap-
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Figure .: “Pegasus” (left) and “Development II” (right), by M.C. Escher. In the “Pegasus” painting, the tiling is

obtained just by translation of shape elements. In “Development II” the underlying transformations are much more

complex. The transformations between lizard at close scales seem to be well approximated by similarity transforms

(changes in orientation, rotation and scale). It is clearly not the case when lizards are at very different scales.

plication. At first sight this problem looks rather simple, since we immediately recognize the similar

parts between these two images. However, people from the computer vision field know that compar-

ing images like these two paintings is not that easy. Contrast in both images is significantly different,

and most part of the boundaries are in fact subjective contours (see the corresponding meaningful

level lines in figure .).

Figure .: Two versions of Saint Jerôme by Georges de la Tour.

Shape recognition applications

If one chooses W to be a generic, representative database of images, and takes S in I , and S ′ in

I ′ spanning the database W , Definition . leads to a shape retrieval application. If instead of that
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Figure .: Meaningful level lines of the images in figure .. Many contours are not real but subjective.

W one takes a database of images containing only variations of S , the resulting application should

be “discrimination” or “precise recognition”. Let us illustrate the two different approaches with an

example. Assume one wants to find the letter “m” in a database composed by: (a) pages scanned from

a book, (b) a dictionary of fonts for “m”. While both problems admit the same formulation, different

choices for the database act as different context information, and recognition should depend on that

choice. What we want the recognition method to do is to retrieve all letters “m” in the (a) case, and

only the most similar fonts in the (b) case.

. Towards a higher level description of shapes

Looking at figure ., one can recognize on the right image, a detail of Uccello’s painting shown on

the left. These two images were taken from different websites on the Internet, and present different

colors and different compression rates. They are also at very different scales. If we look at their

meaningful level lines in figure ., we see that, while some parts are similar, the majority of these

level lines are significantly different. Despite of that, shape information in the common parts of the

images seems to be almost identical. This analysis shows that some kind of coarser, or more global

description of shapes is needed.

Up to here we have only considered recognition processes involving partial shape information, since

the notion of ε-meaningful match relies on shape elements. Given the amount of differences between

the level lines of both images, we can by no means pretend to recover the whole common structure

by recognizing shape elements, without using any context information. However, even if a few shape

elements in common are found, it can be enough to get sure detections of the global common struc-

tures, by combining the spatial information furnished by these shape elements. The idea is then to

find spatial coherence between shape elements, and hence to define “shapes” as groups of shape ele-

ments. In order to do it, we can proceed in a similar way as we did for the definition of ε-meaningful

matches.
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Figure .: Left: “St. George and the dragon”, by Paolo Uccello. Right: detail of the painting.

Figure .: Meaningful level lines of the images in figure .. The right image are the level lines of the detail image.

Left: a zoom on the meaningful level lines of the corresponding part from the complete painting. Because of the

different scales and the jpeg compression, the level lines differ significantly.
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To begin with, we have to define a measure of resemblance between groups of shape elements. It is

sound to do it, indirectly, by considering the affine transformations between pairs of pieces of level

lines defining shape elements. Hence, instead of defining a measure of resemblance between groups

of shape elements, we will define a spatial coherence measure on groups of affine transformations. To

each ε-meaningful match (S,S ′), we can associate an affine transformation T . The spatial coherence

measure of a group of transformations G included in T , where T is the set of all affine transforma-

tions associated to ε-meaningful matches, will be denoted byNFAg(G). This measure function is to

be defined to give the following information: the lower is NFAg, the more the resemblance between

two groups of shape elements is confirmed. As an indirect resemblance measure involved in a recog-

nition process, a recognition threshold εg on the spatial coherence measure has to be derived, in order

to decide if two groups of shape elements must be matched. This discussion motivates the following

definition.

Definition 1.4 (εg-meaningful group) Let I , I ′ be two images in the “world of images” W . Let T
be the set of all affine transformations associated to the ε-meaningfully matched shape elements between

I and I ′. We say a subset G ⊂ T is an εg-meaningful group of transformations if NFAg(G) 6 εg.

Notice that an εg-meaningful group of transformations is, by definition, associated to a group A

of shape elements in image I and another group B of shape elements in image I ′, such that shape

elements in B match ε-meaningfully with shape elements in A, and all matches exhibit a spatial

coherence property. Therefore, in the sequel, we will refer indistinctly to meaningful groups of matches

or meaningful groups of transformations, the sense being clear from the context.

. A method to define shapes by recognition

Shapes can be defined by means of recognition processes, as any part of an image that can be recog-

nized in another image. Hence, every shape recognition algorithm that is able to automatically give

sure recognition thresholds, can lead to a method to define shapes. Deriving unsupervised decision

thresholds involved in shape recognition is one of the central problems of this thesis.

Each step in a shape recognition method is an interesting problem per se, and is the object of a deep

study in this work. Among these steps, some of them deal with decision thresholds, and we have

done significant efforts in order to establish a methodology leading to sure, unsupervised decision

thresholds. In this section we briefly describe and illustrate with an example, the main steps of a shape

recognition algorithm. Many processes are involved in each of these steps, thus requiring several

parameters. The majority of them are related to practical aspects of the method, and can be fixed

once for all by numerical arguments. The rest of the parameters are decision parameters, which are

the most delicate ones. In the recognition method we propose, all these thresholds are automatically

derived by statistical arguments based on perceptual principles, and lead to sure detections. Hence, in

that sense, the method we propose is a robust and parameterless method, and can then be considered

as a method to define shapes.
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. Shape extraction.

In section ., following Lisani et al. [LMMM03], we presented a representation of image con-

tents based on shape elements. This representation is well suited for shape recognition prob-

lems, since it is based on perceptual principles. Shape elements were defined as small pieces of

level lines, smoothed with an affine invariant filter. Many steps are involved in the extraction

of shape elements. The first one consists in extracting the topographic map. This can be done

with fast a numerical method proposed by Monasse and Guichard [MG00]. The second step

consists in selecting a subset of “perceptually significant” level lines from the topographic map.

Indeed, as we said in section ., considering all level lines in an image is neither feasible (from

a computational viewpoint), nor desirable (because the provided information is highly redun-

dant). We therefore aim at extracting the interesting (i.e. constrasted and long “enough”) level

lines from any image. We propose an algorithm to automatically extract these meaningful level

lines, which improve the method presented by Desolneux et al. in [DMM01]. Figure . shows

that the extracted meaningful level lines outline objects in images, and considerably reduce the

amount of information to deal with (the number of level lines is usually reduced by a factor

between  and , depending on the structure of the image). This step involves a single

decision parameter whose value is fixed once for all, based on statistical arguments derived

from perceptual principles.

. Shape smoothing.

Most of the time, the meaningful level lines extracted in the preceding step suffer from image

quantization and noise, and smoothing is required (see figure .). Smoothing reduces also

the amount of information endowed in the level lines to the “essential” shape information.

The Geometric Affine Scale Space [ST93, AGLM93] smoothing is fully convenient here, since

it commutates with affine transforms. The affine curve shortening equation characterizes this

filter:
∂x

∂t
= |Curv(x)|

1
3 n(x),

where x is a point on a level line, Curv(x) the curvature and n(x) the normal to the curve,

oriented towards concavity. We use a fast implementation due to L. Moisan [Moi98]. This step

is also parameterless, since the scale at which the smoothing is applied is fixed and given by the

pixel size.

. Shape local invariant encoding.

Once meaningful level lines are extracted and smoothed, several shape elements are derived

from each of them. Shape elements can be considered invariant to contrast changes, and

can deal with occlusion. In order to comply with the geometric invariance requirement (sec-

tion ..), shape elements have to be affine normalized with respect to affine transformations

(similarity normalization can be enough for many applications). The extraction of shape ele-

ments from smoothed, meaningful level lines is based on bitangent lines (a straight line which
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is tangent to the curve at two different points) and flat pieces (a piece upon which the curve

can be approximated by a segment).

Bitangent lines have been widely used to build local invariant descriptions of curves (Lamdan

et al [LSW88], Rothwell [Rot95], Lisani [Lis01]). Let us remark that the affine shortening

reduces the number of bitangents in the curve (this fact is mathematically proved in [AST98]).

Thus, smoothing speeds up the encoding step.

If local description is only based on bitangents, no shape element in convex curves can be

extracted. This can be solved by considering also lines given by flat pieces on curves (i.e. a

curve piece on which the direction of the tangent does not vary too much). Coupled with

bitangent lines, flat pieces on curves allow to locally describe nearly all kind of curves.

For computational reasons, each normalized shape element is uniformly subsampled, leading

to a representation we will call code. To give an idea of orders of magnitude, the target image

in figure . leads to  codes, while the database image leads to  codes. This step only

involves a few normalization parameters, which do not have to be tuned by the user since they

are fixed once for all, according to requirements of the following shape matching step.

. Shape Matching.

When the three preceding steps are applied to an image, its shape contents is represented by a

set of codes, corresponding to all normalized shape elements in the image. Then a fundamental

problem is to decide whether or not two shape elements, extracted from images within the

“world of images”W , are alike. While extraction of boundaries, smoothing and normalization

of curves have been widely addressed in several research fields such as image processing or

computer vision, the decision step has not been the subject of a deep and systematic study in

shape recognition. In this thesis we propose a decision rule that permits to answer yes or no to

the question “does that shape look like a target shape?”. This rule is derived from an a contrario

model of matching process in “random” situations. The general use of a contrario models is

in keeping with a general detection methodology developed by J.-M. Morel’s group [DMM04,

DMM03a, DMM00]. The list of codes extracted from images in W that match codes in a given

image I can thus be drawn up. For each match, a quality or resemblance measure (the number

of false alarms, that was denoted by NFA in sections .. and ..) is estimated. The NFA

of a match between a target shape element S and a shape element from W , can be interpreted

in statistical terms, as the average number of shape elements in W that look like S “just by

chance”. This provides a way to control the number of false alarms, and matching decision

can be made by thresholding the NFA. Notice that codes are only matched according to a

similarity criterion, and up to this step without taking into account the relative positions of

shape elements. See figure ..

. Shape grouping.

Each pair of matching codes (or the corresponding pair of shape elements) leads to a single



1.3. A method to define shapes by recognition 

transformation between the two images, which can be represented as a pattern in a parameter

space. The grouping step consists in identifying meaningful clusters among these transforma-

tion patterns, based on the ideas we presented in section .. Data clustering methods have

been widely studied in many research fields [JMF99]. The goal is to find “natural” groups in

a set of data, so that patterns within each clusters are more closely related to one another than

to patterns assigned to different clusters. A central problem in clustering methods is cluster

validity assessment. All clustering algorithms produce clusters, whether they exist or not; do

the detected clusters correspond to “natural” clusters? How many “natural” clusters are in the

data?

In this work we propose a method to assess the validity of clusters detected by a hierarchi-

cal clustering algorithm. This method is also in keeping with a general a contrario detection

methodology. We build up a background model which assumes, roughly speaking, that patterns

are thrown in the parameter space at random. This background model is “data-influenced”,

unlike the one proposed by Desolneux et al. in [DMM03a] for the detection of clusters of dots

in a plane. Then, clusters are detected a contrario, as large deviations from the background

model. A number of false alarms NFAg is associated to each cluster issued from the hierar-

chical clustering algorithm. The number NFAg of a group G is a measure of how likely it is

that a group showing similar characteristics to G was generated “by chance”, as a realization

of the background process. The lower is NFAg(G), the more unlikely G is generated by the

background, and hence, the more meaningful is G.

A threshold on NFAg(G), automatically set once again by statistical arguments, decides if

G can be a “natural” cluster or not. Clusters whose NFAg is below the threshold are called

meaningful clusters or meaningful groups. Consider now the following situation. Assume three

meaningful groups A, B and C, are found on a data set, such that A and B are included in

C. The problem consist in making a choice between two possible data representations: two

separate clusters A and B, or one single cluster C. Decision rules for this problem are known

as local validity rules in the cluster validity literature [Boc85, Gor99]. In this work we propose

a novel local validity rule that, combined with the measure NFAg, proved to be very efficient

in detecting clusters of transformations.

Figure . illustrates the result of our method when applied to the comparison of the original

images in figure .. The validity assessment led to two meaningful clusters of transformations,

corresponding to the two groups of shape elements shown in figure ..

. Shape recognition verification by registration.

To each identified group of transformations, we can associate the transformation that provides

the best fit between corresponding groups of shape elements (in the least squares sense). Map-

ping the target image on the database image by this transformation allows to check that two

similar objects are retrieved in both images. Figure . illustrates the result of this registration

step.
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All these steps will be detailed and widely discussed along the following chapters. To end with this

chapter, in the next section we briefly describe the plan of this dissertation.

Figure .: Two examples of level lines extraction. Left: original images. Middle: a subset of the level lines

(quantization step for the gray levels is 20). Right: local meaningful level lines, obtained by the algorithm described

in Chapter . The upper image will be referred as the “target image”. It generates 385 local meaningful level lines

(among 359, 263). The lower image will be referred as the “database image”. This latest image generate 577
local meaningful level lines (among 462, 912). We aim at matching shapes in the target image with shapes in the

database image. Looking closer to the images, we notice that the images show in fact dissimilarities: the actors’

faces are stylized in the database image whereas they correspond to a photography in the target image, the word

“Casablanca” slightly differs, etc.
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Figure .: Zoom on the extracted level lines (on the left). Quantization effects can be seen. After a slight smooth-

ing, these effects disappear (on the right).

Figure .: Meaningful matches between codes of the target image (on the left) and the database image (on the

right). Each piece of shape in the left image matches with a piece of shape in the right image, up to a certain

similarity transform. Some false matches can be seen, as predicted by the theory (“AR” matches with the piece of

shape on the right of Humphrey Bogart’s head for instance).



 Chapter 1. Introduction

Figure .: Two maximal meaningful clusters are identified in the transformation space. This figure shows the

pairs of shape pieces corresponding to each of them (top and bottom). The first group was generated by the shape

pieces that belong to the word “Casablanca”. The second group was generated by the actors’ faces. “Casablanca”

and actors’ faces respective position and scale is actually not the same in both images. At this step of our algorithm,

wrong matches are eliminated since they do not make up a meaningful cluster on their own.
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Figure .: For each identified transform cluster, an “average” similarity transform is estimated. In order to check

the consistency of the method, the target image is mapped over the database image, with each estimated transform.

On the left, the average transform corresponding to the first maximal meaningful cluster maps both “Casablanca”

word one on the other. On the right, the transform corresponding to the second maximal meaningful group maps

the faces. Note the difference in scales.
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. Overview of this thesis

This dissertation is organized in two main parts, separated by a small intermezzo. The first part

deals with the extraction of shape information from images, and with the representation of such

information based on the shape elements defined in the previous sections. Then, the remainder of

this part is devoted to the problem of finding correspondences between shape elements, with a special

emphasis on the matching decision problem. A short intermezzo made of two chapters, explores the

matching decision when alternative representations of the shape information are used. The second

part addresses the recognition of shapes by grouping those matches between shape elements that

show some spatial coherence property. As much as it was done in the first part, a major importance

is accorded here to decision models. All along this thesis, decision issues involved in the detection of

correspondences are analyzed following the general a contrario detection methodology.

Part I: The recognition of partial shapes

This part (Chapter  to Chapter ) covers the following topics: shape extraction, shape smoothing,

invariant encoding of shapes, shape matching and matching decision.

Chapter  presents a large survey of general shape recognition theory. As we already mentioned

in the previous section, shape recognition methods consist, in general, of three interdependent main

steps: encoding of shapes (possibly an invariant encoding, up to a transformation class), shape com-

parison, and matching decision. We describe the weaknesses and strengths of frequently used algo-

rithms, then we explain why and how we build up our recognition method.

Chapter  is devoted to the topographic map and to the bilinear interpolation of grey level images.

The complete image representation given by the topographic map is well suited for shape analysis and

recognition, since it is based on the geometrical information of images, and can be embedded in a

tree structure. However, since the level lines of digital images (zero order interpolates) suffer from

pixelization effect, shapes cannot be accurately described. Higher order interpolates are then to be

considered.

Not all the level lines contained in the topographic map of an image are really necessary to have

a complete description in terms of perception. Chapter  presents a method to select the most

meaningful level lines based on perceptual principles. The selection and extraction of level lines is

based on statistical arguments, leading to a parameter free algorithm. It permits to roughly extract

all pieces of level lines of an image, that coincide with pieces of edges. The proposed method aims

at improving the original method proposed in [DMM01]. We introduce a multiscale approach that

makes the method more robust to noise. A more local algorithm is introduced, taking local contrast

variations into account. The contents of this chapter corresponds essentially to the article [CMS04],

co-written with F. Cao and F. Sur.

The set of meaningful level lines is a good compromise between compactness and completeness of

shape information in an image. However, since these lines may be subject to noise affecting the
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essential shape information, a good shape representation asks for a previous smoothing. In Chapter 

we describe the affine scale space, a scale space fully consistent with affine invariant recognition.

Moisan’s fast implementation of the affine shortening [Moi98] is also presented.

This chapter does not contain original contributions, but we include it here for the sake of complete-

ness of this dissertation. Sections . and . closely follow the article “On the theory of planar shape”

by Lisani, Moisan, Monasse and Morel [LMMM03], and the book in preparation by Guichard, Morel

and Ryan [GMR04].

In Chapter  we present an algorithm to detect flat pieces in curves. Bitangent lines are well-known

to be of high interest to build up local invariant curve descriptions [LSW88, Rot95], but they do

not enable to encode convex curves (which show none). Moreover, some non-convex curves may

show some small oscillations over a straight portion on which numerous bitangent lines are detected,

leading to unstable and unreliable invariant descriptors. Another robust direction which is useful to

build local invariant descriptions is given by flat pieces on curves (i.e. a piece of curve on which

the direction of the tangent lines does not vary too much). Coupled with bitangent lines, flat pieces

enable to encode nearly all kind of curves.

The work presented in this chapter (joint work with F. Cao, J.-M. Morel and F. Sur) will soon be

submitted and available as a preprint.

Chapter  presents two methods to encode shapes elements. Both methods build representations

invariant up to either similarity or affine transformations. The first one is semi-local, and can deal

with occlusions. However, as we will see, it does not allow to encode all of the extracted bound-

aries. We then introduce a second algorithm to globally encode those boundaries that have not been

encoded by the semi-local method. Both algorithms are based on bitangent lines and flat pieces,

making the encoding very stable.

While shape comparison, shape matching and shape extraction have been the subject of many re-

searches, the decision step has been rarely addressed. In Chapter  we present a general matching

decision framework. Concerning shape elements, this framework permits to answer yes or no to the

question “does a shape element S ′, extracted from the world of images, looks like a target shape ele-

ment S?”, and to measure the confidence level in this answer. A database of shape elements extracted

from the world of images being given, with each target shape element S and each distance δ we asso-

ciate its number of false alarmsNFA(S, δ), namely the expectation of the number of shape elements

at distance δ from S in the database. Assume that the NFA(S, δ) is very small with respect to 1,

and that a shape element S ′ from the database is found at distance δ from S . This match could not

occur just by chance and is therefore a meaningful detection. Its explanation is usually the common

origin of both shape elements. This a contrario detection framework is in keeping with the general

detection methodology followed in this thesis.

The a contrario model proposed in this chapter was presented in Icip 2003 [MSCG03]. The contents

of this chapter mainly corresponds to the preprint [MSC+04]. Chapters  and  were also partially

extracted from this preprint.

To end up with the first part of this dissertation, Chapter  presents several experiments that il-
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lustrate and validate all the stages of the shape element matching method, proposed in the former

chapters.

Intermezzo: Meaningful matches based on alternative descriptions

This short part is independent of the general line followed in this thesis.

The method presented in Chapter  can be adapted to shapes described by other features, when-

ever these features are (almost) statistically independent. When such a set of features is available,

low numbers of false alarms can be reached. In Chapter  we address the shape matching problem

in this framework, by representing shape elements with sets of features provided by principal com-

ponents analysis (PCA). Although these features are not necessarily independent, they are at least

uncorrelated. Experiments show that a PCA method based on shape elements is not as well adapted

as the strategy proposed in Chapter .

Chapter  addresses also the shape matching problem based on the general framework presented in

Chapter , but the considered shape features consists here in size functions [FL99, FL01]. The results

seem to be still valid in spite of the uncompleteness of the shape description given by size functions.

This chapter presents some preliminary results of a work in progress (Galileo project with P. Frosini’s

group in the University of Bologna; joint work with P. Frosini, M. d’Amico, D. Giorgi, F. Tomassini

and F. Sur).

Part II: Shape recognition as a grouping process

This part (Chapters  to ) is devoted to the detection of shapes as groups of shape elements. It

covers the following topics: clustering or grouping of patterns, clustering algorithms and cluster va-

lidity analysis. These general techniques from pattern recognition theory are applied here in order to

detect groups of spatially coherent matches between shape elements.

In Chapter  we present a method to detect natural groups in a data set of patterns, based on

hierarchical clustering. A measure of the meaningfulness of clusters (the NFAg), derived from an

a contrario model assuming no structure in the data, provides a way to compare clusters, and leads

to a cluster validity criterion. This criterion is applied to every cluster in the nested structure. While

all clusters passing the validity test are meaningful in themselves, the set of all of them does not

necessarily reveals the structure of the data set. However, by selecting a subset of the meaningful

clusters, a good data representation can be achieved. We propose a method combining a new local

stopping rule (a merging criterion, also derived from the a contrario model) with a selection of local

maxima of the meaningfulness with respect to inclusion in the nested hierarchical structure.

In Chapter , the general method to detect cluster of patterns, developed in Chapter , is adapted

to the recognition of shapes in images. The first part of this dissertation deals with local represen-

tations of shape contents in images. Consequently, common parts between images were described

in terms of matched shape elements. The recognition of “global shapes” needs for an integration of

the recognized partial shapes. Each pair of matching shape element leads to a unique transformation
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between images, which can be represented as a pattern in a transformation space. Hence, spatially

coherent meaningful matches correspond to clusters in the transformation space, and their detec-

tion can then be formulated as a clustering problem, which can be solved as a particular case of the

theory developed in Chapter . By this means, shapes can be detected with extremely high levels of

confidence.

Chapters  and  correspond to joint work with F. Cao, J. Delon, A. Desolneux and F. Sur. They will

soon be submitted and available as preprints.

Chapter  presents several experiments that illustrate the whole recognition method presented

in this thesis. The pretty good results validate the theory.

Finally, in Chapter  we present some conclusions, as well as perspectives and future work.
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Part I

THE RECOGNITION OF PARTIAL SHAPES





Chapter 

SHAPES: FEATURE EXTRACTION AND

RECOGNITION

Abstract: This chapter is a large survey of general shape recognition theory. Shape recognition algorithms

generally consist of three interdependent steps, namely shape encoding (possibly an invariant encoding, up to

a transformation class), shape comparison, and matching decision. We explain the weaknesses and advantages

of the commonly used algorithms, then we explain why and how we build up our algorithm.

Résumé : Ce chapitre est une revue de la reconnaissance de forme en général. Les algorithmes de reconnais-

sance de forme consistent en trois étapes interdépendantes : le codage des formes (éventuellement un codage

invariant selon certaines classes de transformations), la comparaison des formes, et la décision d’appariement.

Nous expliquons les forces et faiblesses des méthodes les plus classiques, et nous expliquons nos choix pour

l’algorithme proposé.

. Shape recognition general outline

In its general form, recognition can be defined as the ability to identify elements based on prior

knowledge. If we restrict the scope to visual recognition, prior knowledge comes necessarily from

images. In that sense, in the former chapter, we defined (geometric) shapes as some geometric in-

formation from an image, that can be recognized in another image. The geometric information in

an image is completely described by its topographic map [CCM99], and, from a perceptual view-

point [Wer23], the information is in fact concentrated in a reduced subset of level lines. Shapes, as

perceived geometric structures, should be contained in this subset of level lines. Assume that, based

on some knowledge derived from previous recognition or identification experiences, we have already

extracted a large set of shapes, from the “world of images”. Then, in such conditions, shape recogni-

tion is the process aiming at finding out whether a given shape lies or not in a set of shapes, up to a

class of invariance imposed by perceptual principles (see chapter ).

Shape recognition is a complex task, involving several “sub-tasks”. In this work, we are particularly
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interested in the decision process of shape recognition. We want to derive methods or rules to decide

whether two shapes are alike or not. Since the decision process cannot be conceived as a process

isolated from the other tasks involved in recognition, a previous analysis of these tasks is needed.

Indeed, the decision process widely depends upon the former steps of shape recognition process.

Thus, in a method for recognizing shapes, each step is crucial, and any wrong choice for one of them

would spoil the final result. General shape recognition methods can be decomposed into three main

stages:

. Feature extraction. What enables shape recognition is the fact that shapes have specific char-

acteristic features. Shapes, or shape elements, have to be described in a suitable way. In general,

dealing with exhaustive descriptions is computationally unfeasible, and a set of features has to

be extracted from shapes. Hence, the feature extraction / selection problem consists in defin-

ing a set of features (as small as possible) leading to a high discriminatory power: the more

different two shapes are (in a certain sense), the more different their sets of features should be.

This requirement can be thought as a completeness requirement: two shapes are close if and

only if their sets of features are close. As an example, a small set of invariant moments is not a

complete representation of a shape, since quite different shapes may have similar moments.

Shape features can be either global (the value of each feature depends on the whole shape), ei-

ther local or semi-local (each feature is based on a particular point, or on a part of the shape).

Descriptions based on sets of local features are to be preferred, because of the occlusion prob-

lem. Features can also be classified according to their degree of geometric invariance. Since

shape recognition has to be invariant up to a certain group of geometric deformations, when

features are not invariant, the further comparison process has to take invariance into account.

We will thus give some details on the various usual shape features.

. Matching. This second stage strongly depends on the feature extraction step. The core of this

step is the definition of a distance or dissimilarity measure between features describing shapes.

When each shape is represented as a set of n global features, distances between whole sets of

n features are to be considered. Among the most commonly used distances are Lp distances,

Mahalanobis distance [DHS00] or Hausdorff distance. When shapes are characterized by se-

quences of n local features, considering distances between the whole set of n features does not

make much sense, because they do not exploit the advantage of local features in dealing with

occlusion. Hence, dissimilarity measures dealing with subsets of features, such as the partial

Hausdorff measure [HKR93, Vel01], or voting schemes may be more adapted to find partial

matches between shapes.

The comparison strategy also depends on whether the considered features are invariant or not.

If features are invariant, then comparison between shapes can be achieved as we have just de-

scribed. If instead the features are not invariant, the matching procedure must take invariance

into account by checking many configurations, what makes this approach computationally

heavier.
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. Decision. This third and last step is crucial, and is usually the Achilles’ heel of shape recogni-

tion methods. Once two shapes are likely to match, how is it possible to come to a decision?

Several authors have proposed probabilistic or deterministic distances, or voting procedures as

well, to sort the matches. Now, to our knowledge, the best methods only succeed in ordering

the candidates to a match. In other terms, shape recognition methods usually deliver, to any

query shape, an ordered list of the shapes which are likely to match with the query. When re-

jection thresholds exist, they are very specific to a particular shape recognition algorithm, and

mainly consist in an arbitrary threshold over the ordering quantity.

It is worth noting that in general, the local (or semi-local) or global nature of features determines

if the shape recognition method is local (or semi-local) or global, but this is not always the case.

Indeed, while senseless, some methods do not use partial distances or dissimilarity measures (or

voting schemes) between the sets of local features, and thus they are not local methods in the sense

they do not allow for partial matching. Concerning global features, when used, the corresponding

method cannot be but global.

Each of the three described steps is crucial for a proper achievement of a shape recognition task.

We will then discuss, in the following sections, the most common methods for each step. Other

particular approaches or marginal methods, are described in surveys by Alt et al. [AG99], Veltkamp

et al. [VH01, Vel01], Loncarnic [Lon98] and Dryden [Dry96]. A review of more applied methods,

involved in “Content-based image retrieval systems”, can be found in [VT00, VC00].

. Feature extraction

As we just said, a shape recogntion method can be based on local (or semi-local) or global features.

Before addressing the feature extraction problem, let us make some remarks about the role of shape

extraction in shape recognition methods, and recall some issues on geometric invariance require-

ments for recognition.

.. Some comments on the shape extraction problem

Prior to feature extraction, shapes must be extracted from images. While this should be the “step ”

of every shape recognition method, shape extraction is in fact a rarely addressed problem in the

context of shape recognition. Indeed, most works on shape recognition assume shapes were al-

ready extracted [GW99], or, at most, they extract them but from images that are not particularly

challenging from the shape extraction viewpoint [Mok95, Rot95]. While even if shapes are given

the shape recognition problem is hard and deserves a particular analysis, approaches disconnected

from the shape extraction issue may mislead to shapes that would be rarely present in real images.

For instance, in Mokhtarian’s approach [Mok95, MAK96a, MAK96b], shapes are extracted by sim-

ply thresholding dark objects over a bright background. The further steps, which will be described
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later, are very sound when shapes are curves representing objects boundaries, but will probably fail

when objects are occluded (and occlusion is always present in every day’s vision, as pointed out by

Kanizsa [Kan79]). Rothwell proposes a whole recognition system, based on shapes, applied to the

recognition of objects on uniform background [Rot95]. This recognition method is based on con-

sidering shapes as Jordan curves corresponding to the objects boundaries. Rothwell’s work is very

interesting and inspired some of the techniques we propose in this work, but the extraction of shapes

is once again neglected. Indeed, Rothwell’s method builds object boundaries by extracting edges

using Canny’s edge detector [Can86]. Canny’s filter performs well in Rothwell’s framework, where

objects are well-contrasted over a uniform background, but in general, it suffers from several prob-

lems: while edges are usually thought about as curves, it detects sets of points with an orientation

(edgels) that have to be connected afterward. Moreover, it requires different thresholds since contrast

has no absolute meaning. In addition, Canny’s filter is very sensitive to noise (since it uses deriva-

tives of the image) and can only be considered through a multiscale process. The choice of these

thresholds depends on the observed image, and is not that easy.

We will not discuss shape extraction further in this chapter. The aim of this subsection was to show

that shape recognition should not be addressed independently from the shape extraction problem.

The extraction of shapes from images will be analyzed in depth in chapter .

.. On the geometric invariance of features for shape recognition

When shapes are subject to weak perspective distortions, human perception is still able to recognize

them. Geometric invariance requirement for shape recognition was already discussed in chapter ,

section ... We claimed that in a general setting, affine invariance should be considered, while

similarity invariance could be enough for a large class of particular applications. Such a claim was

based on the following arguments:

• Projective transformations are shown not to behave well with regard to shape matching, be-

cause they permit to map a large class of curves arbitrarily close to a circle, and thus to map a

finite number of curves arbitrarily close to a given curve (for example, a rabbit and a duck are

“almost” projective equivalent [Åst94, Åst95]).

• Despite some interesting attempts [FK95], there is no practical way to define a projective in-

variant local smoothing. From this viewpoint, affine invariant smoothing is the “best” we can

do [AGLM93].

• Projective transformations can be locally approximated by affine transformations (for which

invariant smoothing is well defined), and these approximations are particularly accurate under

weak perspective distortion.

Notice that, in general, the affine approximation does not hold unless it is conceived to be local. This

is not really a restriction, since locality of shape representation was already required in order to deal

with occlusion and with the figure-background problem (see also chapter , section ..).



2.2. Feature extraction 

In what follows we present a few features used to describe shapes. We organize the presentation into

global features (each feature is computed over the whole shape) and local or semi-local features (each

feature stands for a special point or region in the shape). The geometric invariance of the presented

features is also discussed.

.. Global features

Several recognition methods are global, in the sense the extracted features are computed over the

whole shape. Since they mix global and local information, they are sensitive to occlusions (a part of

the shape is discarded) or insertion (a part of the shape is added). This makes them inappropriate for

general applications, and restrict their use to a very few particular applications, where the observed

shapes do not overlap with one another.

Global features are in general scalar numbers computed over the entire shape. In the case of closed

curves, Fourier descriptors [KLS89, LC86, PF77, ZR72] or invariant moments [DBM77, Mon99]

(following Hu [Hu62]) can be used. Affine invariant scalars for global shape representation can

also be derived from wavelet coefficients [KB01, SI99]. Using wavelets allow to capture some local

information of the shape, but not to the point to be able to deal with occlusion (the invariant scalars

are computed by using coefficients from different scales). Another well-known, moment related,

global method is modal matching, by Sclaroff and Pentland [SP95]. In the modal matching method, a

finite element, physical model of solid shapes (given by its boundaries) is considered, and shapes are

represented by ordered sets of eigenvalues associated to their models.

An original approach using size functions is proposed by Frosini et al. [FL99, FL01]. Size functions

can be seen as tools to get information about the topology of any graph. A size function is a mapping

from R
+ × R+ into N that to each couple (x, y) associates the number of connected components

of the graph such that D 6 y and such that at least one point of it satisfies D 6 x, where D is

some “measuring function” defined on the graph vertices. The provided description is not complete

(in the sense a shape could not be reconstructed from its representation), so several size functions

(depending on different measuring functions) have to be computed. Applied to shape recognition,

size function theory leads to nearly-invariant descriptors, which can be well adapted to perceptual

matching since they rely on structural information.

Methods based on moments or Fourier descriptors, as well as size function methods, face the same

problem: how to define the relative weights of each moment, or size function, in a shape comparison

distance? This choice is in general arbitrary, or based on ad hoc arguments. Robustness against noise

is another aspect of this problem. Since high order moments (or high frequency modes for the modal

matching method) represent details or fine information of the shape, they can be contaminated by

noise and they should not be considered. But up to what order should moments be considered? As

for the weights, this choice is arbitrary or based on ad hoc arguments.

A totally different approach for global description of shapes are the so called normalization methods.

These methods allow the transformation of any element of an equivalence class of shapes under a
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group of geometric transforms (up to affine transforms) into a specific one, fixed once for all in each

class. As every global method, global normalization methods are not robust against occlusions. They

usually rely in the computation of high order moments, what makes them also sensitive to noise. In

his PhD thesis [Coh94], T. Cohignac proposes an affine normalization global method, that we discuss

in chapter . This method presents an inherent drawback: shapes showing a “quasi-symmetry” are

represented by an unstable normalization (see chapter , figure . for an example).

Scale-space representation of shapes can also be used to derive invariant representations. One such

method can be found in Alvarez et al. [AMS02], where shape invariants are based on the evolution

of area and perimeter of shapes under the affine scale space. In the seminal work by Mokhtarian and

Mackworth [MM92], shapes (Jordan curves corresponding to objects boundaries) are described on

the mean curvature motion scale space. A shape is represented as follows. At each scale, the curve

is reparametrized by the normalized arclength, and the position of inflexion points (zero-crossings

of the curvature) is tracked. If we denote by σ the scale and s the corresponding normalized ar-

clength, the proposed multiscale representation of the shape consists in the set of -tuples (si, σi),

corresponding to the position and the scale at which two inflexion points meet and vanish. This rep-

resentation is similarity invariant. It can also be robust to noise, if one only considers the information

given by the scale space for scales larger than an ad hoc or abitrarily fixed threshold. At first sight, this

method seems to be able to deal with occlusion, since curvature is a local property of curves. This is

not the case, however, since at each scale curves are reparametrized by the normalized arclength, and

occlusions or insertions can drastically modify the positions of points (si, σi).

.. Local and semi-local features

While global features are in general defined to be geometrically invariant up to, at least, rigid transfor-

mations, the local or semi-local features defined in the shape recognition literature can be invariant

or not.

Commonly used non invariant features are, for instance, sets of edges [Mar82, MH80]. Groups of

features are more informative than individual local features, and consequently enhance the match-

ing stages: chained edges [Wol90b] or edgels [OH97] (an edge element with a direction) can be

considered.

In order to achieve (geometrical) invariant recognition, non invariant features must be compared by

means of strategies dealing with invariance, thus leading to more time consuming algorithms. We

will not discuss further non invariant features, since in this work we are concerned with invariant

features.

Invariant local features may be computed directly on the image, or after the shape has been ex-

tracted. Features can be differential or integro-differential invariants at some special points (like

corners [SM97]) or regions (e.g. coherent regions [BCGM98, WN99]) of the image. The computa-

tion of differential invariants is very unstable, even after smoothing the image, since it involves high

order derivatives.
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I. Weiss [Wei93] proposes local projective invariants needing fourth order derivatives of curves. This

is of course out of range for contours of shapes derived from images. Sato and Cipolla [SC98] propose

semi-local quasi-invariants of curves, which do not need high order derivatives. Nevertheless, their

affine quasi-invariants need to compute at least second order derivatives, what is still too large to deal

with curves extracted from real images. F.S. Cohen et al. [CHY95, HC96] propose to approximate

curves with B-Splines, leading to a compact representation. This interpolation appears to be robust

to noise, and an adequate matching algorithm permits to deal with occlusions. Although this method

seems promising, it suffers from the interpolation in itself, which depends on the original sampling

of the considered curve.

Most local recognition methods involve curvature extrema of the shapes, which are not only affine in-

variants of curves, but are certainly, from the perceptual viewpoint, the most salient point of shapes.

This was already pointed out by Attneave in his  paper [Att54]: “Information is concentrated along

contours (i.e., regions where color changes abruptly), and is further concentrated at those points on a con-

tour at which its direction changes most rapidly (i.e., at angles or peaks of curvature)." (See Figure ..)

In such local shape recognition methods, shapes are represented by a finite code, composed by the

coordinates of curvature extrema points. Two variations based on this general method, leading re-

spectively to a similarity invariant and to a translation-rotation invariant recognition methods, can

be found in [AD90, GW99]. Cohignac et al. [CLM94] propose a multiscale curvature representation

for shape recognition, by considering curvature extrema of surfaces derived from a shape with the

affine morphological scale space. This leads, for each shape, to a set of points of interest in R3.

Figure .: (From [Att54]) Curvature extrema concentrates a large amount of shape information. Quoting At-

tneave: “Common objects may be represented with great economy, and fairly striking fidelity, by copying the points

at which their contours change direction maximally, and then connecting these points appropriately with a straight-

edge.”

Up to here we have mainly discussed local invariant features. Since invariants which are too local,

such as differential invariants, suffer from noise, and those being too global (e.g. moment invariants)

suffer from occlusions, a suitable trade-off solution can be semi-local features.

Lamdan et al. [LSW88], followed by Rothwell [Rot95, RZFM95], have proposed semi-local descrip-

tors of shapes, invariant up to similarity or affine transformations (Rothwell et al. also propose pro-

jective invariant representations). These features are based on the description of pieces of non-convex

curves lying between two bitangent points (i.e. points at which the same straight line is tangent to the

curve). Such features are affine invariant and the use of bitangent lines ensures robustness to noise.

Lisani et al. [Lis01, LMMM03] improved this bitangent method by associating, with each bitangent
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to the shape, a local coordinate system and defining a local affine or similarity normalized piece of

curve. They have also added to the representation, similar local invariant descriptions based also on

tangent lines to the curve at inflexion points, leading to a more complete representation of shapes.

We give more details on Lisani’s local invariant normalization along the following chapters.

. Features matching

From the point of view of matching procedures, three different feature extraction strategies are to

be distinguished: extraction of global features without shape normalization, shape normalization

(applied to global or semi-local features) and local invariant feature extraction. The order in which

we mention them coincides with an increasing complexity of the subsequent matching procedure.

When shapes are described by sets of global features, the comparison between them is simply achieved

by evaluating distances between corresponding vectors of features. When features are not of the same

nature, combining them in a matching distance is not trivial. Mahalanobis distance [Sma96, DHS00]

attempts to achieve this combination, by taking the covariances between features into account. An

ad hoc “probability” upon which curves are supposed to match may also be derived [Sch99]. Some

global features allow to match shapes based on other criteria than invariance with respect to a pro-

jective subgroup. For instance, a lot of work has been done on methods for matching shapes by min-

imizing the deformation energy involved in aligning one shape with another. One such method is

modal matching [SP95], which takes into account a certain physical plausibility of the deformations,

and accepts thus a larger class of invariance than geometric groups. Methods minimizing non-rigid

energy deformations can also be based on local features, but they do not allow for partial matching,

since all features are involved in the deformation energy. As an example, Belongie et al. [BMP02]

propose to estimate the transformation leading from one shape to another, when each shape is de-

scribed by some points with a “shape context” (information about the points vicinity). M. Miller,

L. Younès and A. Trouvé [MTY02, MTY03] study the orbit of shapes via the action of diffemorphic

transformations, allowing by this way non-rigid transformations.

When shapes have been subject to a (global or semi-local) normalization method, matching is sim-

ply reduced to a comparison between normalized curves. This comparison is straightforward, since

normalization eliminates ambiguities such as the choice of the starting point. Normalized curves

can be compared using Lp, Hausdorff or Fréchêt distances [AKW01]. In the normalization method

introduced by Lisani et al. [Lis01, LMMM03] the curve matching procedure is as follows. Each nor-

malized piece of curve is represented in a hash-table, leading to a fast pre-identification of matches

(pre-matches). This identification of pre-matches is made by using a large enough distance thresh-

old, in order to ensure that all true matches are kept, even if some wrong matches pass the test. Then

the actual distance between them is computed, and prematches are rejected if this distance is larger

than some threshold. As a last step, the matching beyond the initial portion of curves are extended,

provided that the distance between the corresponding points in the curves is below the distance

threshold. This method gives a very accurate local estimation of the matching of two curves.
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If the features are local and invariant, then the matching process consists in comparing two sets of

local features (the coordinates of curvature extrema points, for instance). This can be done by consid-

ering Procrustean distances [Sma96], or by means of voting schemes. The three most popular voting

schemes are Geometric Hashing [LW88, Wol90a, WR97], the Generalized Hough Transform [Bal81]

and the Alignment method [HU87]. Given two shapes, the Geometric Hashing method aims at

determining if there is a transformed subset of the features from one shape, that matches a subset

of the features of the other one. Geometric Hashing algorithm is presented in figure ., for affine

transformations. The Generalized Hough Transform method, instead of voting over all possible

configurations of shapes, consists in voting over all possible transformations mapping a shape to an-

other one. Alignment method is a similar hashing method [HU87]. Like for all techniques based

on histograms in multidimensional spaces, these voting methods are very sensitive to the choice of

quantization precision (too large bins may lead to false matches, and too small bins may produce

misses). Besides, most of the time, the size of the hash table and the amount of parameters (size

of the bins in the voting stage, threshold for the amount of votes in each bin, etc.) are crippling.

The complexity of these voting schemes increases with the invariance degree; affine invariant shape

retrieval in large databases is intractable. All these properties make the local features not suitable for

shape retrieval in large databases.

. Decision

A general theory of perceptual recognition thresholds is provided by neuroscientists through the ideal

observer theory [Gei03, LKK95, OK04]. A theoretical “ideal” device is designed as the best device

performing a classification or recognition task. It often consists on a Bayesian analysis, trained over

a data set. Nevertheless, ideal observer depends on the training stage and on some parameters (such

as the coefficients of an utility function which penalizes wrong classifications). This theory does

not derive any perceptual thresholds, but gives a framework to compare performances of human

recognition and classification task.

Up to our knowledge, nobody has yet proposed a generic acceptance / rejection decision method for

shape matching. In general, matches with a query shape are, at most, only ranked (for example along

a distance, or along some probability [Sch99]). The question of how to fix a decision threshold in

order to assess whether or not two shapes are alike, is never addressed. While some works have stud-

ied the problem of observing wrong detections due to random (“hallucinating a wrong fit” [Ste95]),

and some of them even quantify a false alarms rate [GH91, HJ95, OH97], none of them propose an

automatic decision rule.

Let us specify what we mean by “automatic decision rule” for shape matching. Assume we are looking

for a query shape S , in a large set of shapes extracted from W , the “world of images”. A distance be-

tween shapes is available, so that the smaller the distance, the more similar the shapes. The question

is: what is the threshold value for that distance to ensure recognition?



 Chapter 2. Shapes: feature extraction and recognition

Geometric Hashing: A target shape S is searched in a set of shapes

Preprocessing (off line) For each shape S ′i in the set of shapes:

() Extract local invariant features from S ′i. Assume n such features are found.

() For each local basis bj (e.g. a pair of points for similarity transformations, three non-collinear points for

affine transformations) of features:

(a) Compute the quantized coordinates (u, v) of all the remaining features, in the local basis.

(b) Use the couple (u, v) as an index in a hash table, and write the information (i, bj) in the corresponding

bin (i is the index that identifies S ′i).

Recognition stage (on line) For the target shape S :

() Extract local invariant features from S . Assume n such features are found.

() Choose arbitrarily a local basis (two or three points, depending on the considered invariance).

() Compute the quantized coordinates (u, v) of all the remaining features, in the local basis.

() For each of these coordinates, go to the corresponding bin in the hash table, and cast a vote for each pair

(i, bj) inscribed in the bin.

() Keep only the pairs (i, bj) which received more than a certain number of votes: each of this pairs stands

for a potential match.

() For each potential match, compute the best transformation (in the least squares sense) between all corre-

sponding features, and check if the target features and the features from the corresponding shape, are well

aligned. If not, go to () and choose another basis.

Figure .: Geometric hashing algorithm. For affine invariant shape recognition, time complexity for the prepro-

cessing stage is O(n4) for each shape in the set of shapes, and, if the access time to the hash table is O(1), time

complexity for the recognition stage is betweenO(m) (when the first target basis chosen at random corresponds to

a model in the set of shapes) andO(m4) (when no basis from the target shape corresponds to a model in the set of

shapes).
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Given two shapes and an observed small distance δ between them, there are only two possibilities:

. Both shapes lie at that distance δ because they ‘match’ (that is, they are similar because they are

two instances of the same “ideal shape”).

. The set of shapes extracted fromW is so large, that, just by chance, one of these shapes is close

to S (there is no underlying common cause between them, and they do not correspond to the

same “ideal shape”).

As we will more precisely discuss in the following chapters, our aim is to evaluate, for any δ, the

probability (or rather the expectation) of the second possibility. If this number happens to be very

small for two shapes, then the first possibility is certainly a better explanation. Hence, pairing both

shapes would make sense, because this match is not likely to happen by chance.

In order to fix this decision threshold, the distribution of distances between shapes from W and

S must be learned. This distribution yields the probability that a shape from W lies at any fixed

distance from S . If a match between two shapes is very unlikely to be due to chance then pairing

them is highly relevant.

Let us review and discuss some previous methods, similar to the one that we will propose.

.. Probability of wrong match or number of false alarms?

Some authors have addressed this question of ‘wrong matches’ occurring purely by chance, but the

proposed models do not lead to an automatic recognition criterion. Let us discuss two interesting

examples.

Olson and Huttenlocher [OH97] present a method for automatic target recognition under similarity

invariance. Objects and images in which the objects are sought are encoded by oriented edges, and

compared by using a relaxed Hausdorff distance. Modeling the matching process by a Markov process

leads to an estimation of the probability PK(t) of a false alarm between K consecutive edges for a

given transformation t. The authors give an estimate of the probability of a false alarm occurring

over the entire image by computing 1 −
∏

t(1 − PK(t)), which is used to take a decision. Let us

quote the authors: “One method by which we could use the estimate is to set the matching threshold

such that the probability of a false alarm is below some predetermined probability. However, this can be

problematic in very cluttered images since it can cause correct instances of targets that are sought to be

missed.” This methods raises several problems. Finding a false alarm at a given location is clearly not

independent of finding it at a close location. Besides, the real handy quantity to be controlled is not

the false alarm probability, but the expected number of false alarms.

Grimson and Huttenlocher [GH91] propose to fix a threshold on the proportion of model features

(edges) among image features (considered in the transformation space) upon which the detection

is sure. Their main assumption is that the features are uniformly distributed. This can look odd,

because images are precisely made of non-uniformly distributed features (for instance, the edgels
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are along edges, etc.). Let us quote Grimson and Huttenlocher’s answer: “Although the features in

an image appear to be clustered (e.g. shadow edges and real edges), this does not necessarily mean that

a uniform random distribution is a bad model. Even under a random process, clusters of events will

occur. The question is whether the degree of clustering of features more than one would be expected from

a random process.” The last sentence is exactly the formulation of an a contrario model, whose notion

we will soon define. This framework allows the authors to estimate the probability that a certain

cluster is due to chance (due to the “conspiracy of random” in their words). Fixing a threshold on

this probability gives sure detections: rare events are the most significant ones. The ideas developed

in [GH91] inspired several papers [AL00, Ols98].

Following Huttenlocher and Grimson’s work, X. Pennec [Pen98] presents a method to compute the

intrinsic false alarm rate of commonly used methods such as Geometric Hashing and Generalized

Hough Transform, by incorporating the uncertainty of measurements. The proposed computation

relies on several limitative assumptions (exact model, uniform distribution of features), as in Hutten-

locher and Grimson’s work. As pointed out by X. Pennec: “[These limitations] are hardly ever verified

in real cases. For instance in medical images of the head, extremal points are not uniformly distributed

in the image, but more or less uniformly distributed on the surface of the brain and the skull [. . . ]. A very

interesting extension would be to compute the probability of false positives online, during the recognition

itself. This would allow us to take into account the specific distribution of the model and scene features.”

This is precisely what we aim to achieve (see chapter ).

In the following, we intend to make such probabilistic methods reliable and to give the right matching

thresholds.

) Instead of defining a threshold distance for each given shape S , we define a quantity (namely the

Number of False Alarms) that can be thresholded independently of S .

) This quantity can be interpreted as the expected number of appearances of a shape at a certain

distance from S . Even if thresholding this number naturally leads to thresholding the matching

distance, we get an additional information about how likely the matching is, and therefore about

how sure we are that the matching is correct.

.. Previous methods based on false alarm rates

A contrario detection frameworks have been widely used in signal processing theory, in which the

concept of controlling the detection quality by the “Number of False Alarms” was introduced. Let us

give a precise description. In [ACDH99], a method to detect gravitational waves is presented. The

basic assumption is that the detector noise is white, stationary, and Gaussian with zero mean and

standard deviation σ. The problem consists in separating signal from noise. A signal (xi)16i6N of N

data samples being given, they count the number of samples whose values exceed a threshold s · σ.
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In the absence of signal, the noise being Gaussian:

Pr(|xi| > sσ) = 2

∫ +∞

s

e−x
2/2

√
2π

dx.

If Nc is the number of samples above threshold, one has:

Pr(Nc = n) =

(
N

n

)
pn(1− p)N−n,

where p = erfc(s/
√

2), erfc is the complementary error function. Under limit considerations, if

µc = Np and σc =
√
Np(1− p), the normalized random variable Ñc = (Nc − µc)/σc is well ap-

proximated by a standard normal random variable. The threshold s being set by physical arguments,

the following relation between the detection threshold η (the number of samples upon which it is

unlikely that the signal was generated by the noise) and the false alarm rate rfa holds:

2 · 1√
2π

∫ +∞

η

exp

(
−x2

2

)
dx = rfa.

The authors fix rfa by converting it to the number of false alarms per hour for their sampling rate,

and thus deduce a handy value for η. Of course, the lower the threshold, the higher the number of

false alarms, and conversely. To summarize, a detection threshold is deduced by the imposed value

of the number of false alarms of the detection algorithm.

Another example where an a contrario model is applied in image processing can be found in [CBCN01].

This work aims at detecting small targets in natural images, which are modeled as texture images (the

targets are supposed to be rare enough in order not to disturb this model). After a suitable trans-

formation is applied to the original images, the grey level distribution over the resulting images is

assumed to be a zero-mean unit-variance Gaussian. Grey levels in small windows are then observed.

Although there is no reason why the grey levels over a fixed small window should follow a Gaussian

distribution, the authors observe that the Gaussian model fits well the data. In other words, they

build a background model for these small windows. A rare window with regards to this model (i.e.

whose probability is less than a certain threshold) is supposed to correspond to a detection. The

detection threshold is fixed in such a way that the false alarms rate is low enough.

An example of target detection in non-Gaussian images is given in [WW96]. The authors model the

background of the considered images with a fractal model based on a wavelet analysis. Targets are

detected as rare events with regard to this model.

. Conclusion

General shape recognition methods can be decomposed into three main stages: shape feature ex-

traction, matching and decision. But before dealing with shape recognition, shape information has

to be extracted from images. Global representations are not well adapted to the recognition prob-

lem, since they are not robust to occlusions. From the perceptual viewpoint, shape information is
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concentrated along contours (and particularly in high curvature points) [Att54], which are generally

detected using edge or edgel detectors, corner detectors, etc. These procedures do not give global

structures, but only clouds of points. The provided description is consequently quite rough and the

only possible matching procedure is geometric hashing, or similar voting techniques. However, these

methods show serious drawbacks, such as space and time complexity or numerous thresholds which

endanger the robustness of the process. Reducing and organizing the mass of information thus ap-

pears as essential: the higher level the features, the more robust the comparison (this statement is

accurately formalized in [Pen98], where it is shown that the false alarm rate of matching algorithms

decreases when using more discriminative features). For example, chains of edges are much more

discriminative than a simple, unstructured collection of edges. Unfortunately, chaining edges is

an unstable procedure, depending on several thresholds (see for example [Gir87], or Chapter  in

Pavlidis’ book [Pav80] for an overview of “edge tracing” algorithms). Hence, reducing and organiz-

ing the information to get higher level features is very problematic in practice, since each involved

step introduces many interdependent thresholds. This makes the acceptance / rejection decision all

the more delicate.

To summarize, the alternative is as follows. Either, primitive parameterless extraction procedure

(edgels) followed by intensive search like geometric hashing: in that case, because of the computa-

tional complexity, we can attain at most rotation-translation invariant recognition. Either, one needs

a more sophisticated extraction, followed by a normalization procedure. However, chained edgels,

although more discriminative, are not reliable since they are very dependent on parameters fixed “by

hand”. One way to bypass the chaining problem is to represent the geometric shape information by

an appropriate set of meaningful level lines. The parameterless method proposed by Desolneux et

al. [DMM01] can be applied for that purpose. Sets of pieces of meaningful level lines yield signifi-

cant, stable shape information, that meet the image representation requirements presented in chap-

ter . In [Lis01, LMMM03], Lisani et al. represent shape information based on normalized pieces of

meaningful level lines (up to similarity or affine transformations), but the decision problem is not

addressed, in the sense no automatic decision rule for matching is proposed. All along this thesis, we

shall explore decision issues, in order to derive automatic matching decision rules.



Chapter 

THE BILINEAR TREE

Abstract: The topographic map provides a complete representation of an image. This representation is well

suited for shape analysis and recognition, since it is based on the geometrical information of images, and can

be embedded in a tree structure. However, since the level lines of digital images (zero order interpolates) suffer

from pixelization effect, shapes cannot be accurately described. Higher order interpolates are then to be con-

sidered. In this chapter, the bilinear interpolation of gray level images is described. Then, following [LMR01],

a fast numerical method for extracting the topographic map is presented.

Résumé : La carte topographique fournit une représentation complète des images. Cette représentation est

bien adaptée à l’analyse et à la reconnaissance de formes, et peut être présentée comme une structure d’arbre.

Cependant, les lignes de niveau des images numériques (des interpolées d’ordre zéro) sont affectées par l’effet

de pixelisation, et les formes ne peuvent donc pas être décrites fidèlement. Des interpolations d’ordre supérieur

doivent donc être considérées. Dans ce chapitre, nous décrivons l’interpolation bilinéaire des images en niveaux

de gris. Ensuite, suivant [LMR01], nous présentons une méthode numérique rapide pour extraire la carte

topographique.

. Introduction

It is a well known fact that shape information in images is concentrated along regions where color

or gray level changes abruptly [Att54, Mar82]. Since Marr and Hildreth’s seminal work on edge

detection [MH80], the effort on extracting shape information from images has been mainly concen-

trated on local methods. Among these methods, which are commonly referred as edge detectors,

Canny [Can83] and Canny-Deriche [Der87] filters are certainly the most widely used.

Classical edge detectors suffer mainly from two problems. The first one is that they depend on (at

least) a threshold on the contrast, which is hard to estimate and is usually fixed arbitrarily. The

difficulty in fixing the contrast threshold is a consequence of the fact that contrast has no absolute

meaning. Indeed, as noticed by phenomenologists like Attneave and Wertheimer, shape perception

is independent of the gray scale (see Chapter ). The second problem of these methods is that all they
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detect are sets of points with an orientation. Since we do not think of edges as collections of isolated

points but as curves, these points have to be connected afterwards, and this procedure is known to

be very unstable.

Following [LMMM03], in Chapter  we claimed that the set of level lines of a digital image was

a natural representation of its shape contents, since it provides topological information invariant

to contrast changes. Moreover, no chaining procedure is needed since level lines are already curves.

However, the level lines representation of digital images presents essentially two drawbacks: level lines

are restricted to lie on the initial grid (pixelization effect), and only a small subset of them is relevant.

Both these problems are illustrated in Figure .. The selection of meaningful level lines is addressed

in Chapter , where a method based on perceptual arguments is presented. All the remainder of the

current chapter is devoted to present a solution to avoid pixelization effect, proposed by Lisani et

al. [LMR01].

Figure .: Level lines from a digital image (zero-order interpolation). Left: original image. Middle: all level lines

for the small image inside the rectangle (the quantization step for the gray level is 1). Right: level lines for a gray

level quantization step of 10. Level lines are restricted to lie in the original grid, and the majority of them provides

no useful information from the perceptual viewpoint.

The plan of this chapter is as follows. Section . deals with level lines in digital images and bilinearly

interpolated images. Then, in section ., some properties of the tree structure in which level lines

are embedded are presented, and a fast algorithm to extract the level lines based on this tree, due to

Monasse and Guichard [MG00] is described. This last section was extracted from [LMR01].

. Level lines and bilinear interpolation

.. Level lines: the topographic map

A family of binary images obtained by thresholding an image at given values provides a complete

representation of the image [Mat75, Ser82]. This is equivalent to considering level sets; the (upper)

level set of a gray level image u : R2 → R at the value λ is

χλ(u) = {x ∈ R2, u(x) > λ}.
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An image can be reconstructed from the whole family of its level sets, by

u(x) = sup{λ ∈ R, x ∈ χλ(u)}.

The geometrical information in images can then be reduced to the topological boundaries of con-

nected components of level sets, referred to as level lines. The topographic map of an image, defined

as the collection of all its level lines, gives a complete representation of an image, and verifies two

main properties:

• It is invariant with respect to contrast changes. Indeed, if g is an increasing function fromR to

R, u and g(u) have the same topographic map,

• It is a hierarchical representation: since level sets are ordered by the inclusion relation (and so

are there connected components), the topographic map may be embedded in a tree structure.

The first property is very interesting since it means that level lines are features that do not depend

on the contrast in the image, and allow to bypass the thresholding problem from classical local edge

detection methods. The second fundamental property is at the origin of the algorithms presented in

section ..

In practice, we do not deal with real valued images defined in a closed rectangle of R2, but with

digital images. A digital image ud is a function defined in a rectangular grid, that takes values in

a finite set, typically integer values between 0 and 255. One can think of ud as a regular sampling

of an image u defined in a closed rectangle of R2, whose grey levels were quantized, followed by a

zero-order interpolation with a rectangular element. Each element of the grid is called a pixel. Digital

images are piecewise constant functions, and as a consequence, level lines from digital images show

pixelization effects, as shown in Figure ..

Some consequences of this pixelization are:

• Useful invariant features such as inflexion points or curvature extrema, that are extensively

used in shape recognition, cannot be computed on pixelized level lines,

• The accuracy of any measure based on the location of the level lines is limited by the pixel size,

• Level lines corresponding to different gray levels may have pieces in common (creating T-

junctions). This never happens when dealing with level lines of a continuous image.

Pixelization effect can be avoided by considering higher order (than zero-order) interpolations of

digital images. Then, the level lines of the interpolated images can be computed. These level lines

have some interesting properties:

• Level lines will be smoother than in the previous case,

• Subpixel accuracy can be achieved when measuring level lines, since they are not restricted to

the grid of the digital image,
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• Level lines from different gray levels never touch each other, since the considered images are

now continuous functions.

Among the possible interpolations, the bilinearly interpolation presents two advantages: it is the

most local of continuous interpolations, and it preserves the order between the gray levels of the

image. The idea to consider the level lines of the bilinear interpolated image is also present in Digital

Morse Theory [CK98].

.. Level lines and bilinear interpolation

The bilinear interpolate of a digital image ud, denoted by ũ, can be obtained as the convolution of

ud (considered as a network of Dirac masses concentrated at the centers of pixels) with the function

Φ(x, y) = ϕ(x)ϕ(y), where

ϕ(x) = max(1− |x|, 0).

As ϕ > 0, bilinear interpolation is a convolution with a nonnegative kernel and hence an increasing

operator. Since ϕ(x) < ϕ(0) = 1, the extrema of ũ are all located at points on the discrete grid.

More precisely, all regional extrema of ũ contain at least a local extremum in the original grid.

The general form of a bilinear function is f(x, y) = axy+ bx+ cy+ d. For each set of four adjacent

pixels (which will be called a Qpixel from now on, see Figure .), a bilinear function can be deter-

mined; parameters a, b, c and d are fixed by the gray levels of the four pixels (i, j), (i + 1, j), (i, j +

1), (i + 1, j + 1). The bilinear interpolate of a Qpixel is defined only inside the rectangle delimited

by the Qedgels, which are the segments between adjacent pixels centers in the Qpixel (Figure .).

The bilinear interpolation of a digital image is the concatenation of bilinear interpolates of its Qpix-

els. Continuity of the gray levels between contiguous Qpixels is guaranteed by the properties of the

bilinear interpolation, but higher continuities (e.g., of the gradient) are not preserved at Qedgels.

Figure .: Definition of Qpixels and Qedgels.

Except for the degenerate case when a = 0, the equation for the level line at level λ of the bilinear

interpolate of a Qpixel can be written as follows:

a(x− xs)(y − ys) + (λs − λ) = 0,
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where xs = − c
a

, ys = − b
a

and λs = d − bc
a

. Level lines are then pieces of hyperbolae, of common

axes x = xs and y = ys. When λ = λs the level line is composed of two perpendicular straight lines

that cross at point (xs, ys). This singular point where the level line crosses itself is a saddle point, and

the corresponding gray level λs is referred to as saddle level. Every bilinear interpolation of a Qpixel

in the non degenerate case (a 6= 0) has an associated saddle point (the center of symmetry of the

hyperbola), but it is not always inside the Qpixel. Figure . shows two examples of such bilinear

interpolations. The saddle point falls inside the rectangle given by Qedgels only when the maximum

of values at diagonally opposed pixels is strictly less than the minimum of the other two values.

(a) Left: Qpixel. Middle: bilinear interpolate of the Qpixel. Right: some level lines of the bilinear interpolate. The

saddle point (level 50) falls outside the rectangle defined by the centers of pixels (which is the domain of definition of the

bilinear interpolate).

(b) Left: Qpixel for which the maximum of values at diagonally opposed pixels is strictly less than the minimum of the

other two values. Middle: bilinear interpolate of the Qpixel on the left. Right: the saddle point of the bilinear interpolate

(level 190/3) falls inside the domain of definition.

Figure .: Bilinear interpolates of two different Qpixels, for the non degenerate case (a 6= 0). The domain of defi-

nition of the interpolates is the interior of the rectangle defined by the Qedgels. Level lines are pieces of hyperbolae;

its saddle point does not fall inside the domain of definition, unless the maximum of values at diagonally opposed

pixels is strictly less than the minimum of the other two values (like in (b)), in which case the existence of a saddle

point is not an artifact of the interpolation but an intrinsic property of the image.



 Chapter 3. The bilinear tree

In the degenerate case, the equation for the level line at level λ of the bilinear interpolate of a Qpixel

is given by:

bx+ cy + (d− λ) = 0.

Its level lines are then straight lines. Such a case may lead to a pixelization effect in the Qpixel. For

instance, if b = 0, the level lines are vertical straight lines, and if λ is equal to one of the gray values

at pixel centers, a level line may follow one of the vertical Qedgels. This idea is illustrated with the

test image in Figure .. The level lines at gray level 70 follow several Qedgels leading to a strong

pixelization effect.

Figure .: (From [LMR01]) Left: test image. Middle: bilinear interpolate of the test image. Right: level lines for

gray levels from 10 to 100, with step 10. Observe how some of the level lines (the ones at gray level 70) follow the

Qedgels, producing some pixelization effect.

This pixelization effect in bilinear interpolates can be avoided if none of the gray levels of the original

digital images is considered. In other words, if none of the gray levels of the level lines is equal to the

original levels of the image, the level lines will never cross the centers of the pixels, nor will they follow

the Qedgels, but always cross them. Choosing the gray levels this way guarantees that no pixelization

effect is present in the level lines (moreover, a level line will cross a Qedgel only once, at most). This

is illustrated in Figure ., for the test image in Figure ..

If the level values of the digital image are in {0, . . . , 255}, a simple way to avoid them is to consider

non integer values. An example is shown in Figure ., which also summarizes some of the ideas

presented up to here.

. Tree of bilinear level lines

In [MG00] a tree of level sets was defined and computed (the FLST). The extraction of this tree

was carried out by considering the level sets of the digital image. The information on the inclusion

relations between the connected components of level sets of the image (that here will be called solid

shapes) was coded in this tree, in such a way that a solid shape is child of another solid shape if it is
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Figure .: (From [LMR01]) Gray levels for the piecewise bilinearly interpolated image in Figure .. Three

different sets of level lines were computed. Left: gray levels from 10 to 100 with step 10. Observe how some of

the level lines (the ones at gray level 70) follow the Qedgels, producing an effect similar to pixelization. Middle:

gray level 11 to gray level 91 with quantization step 10. Pixelization effect no longer arises since level lines are

computed at gray levels different to those of the original image. Right: level lines were computed at gray levels

different from those of the original image but we get 90o crossings between level lines due to the presence of a saddle

point. Nevertheless, these saddle points will always appear inside the Qpixels and the curves never go along the grid

of the digital image.

Figure .: Left: level lines from a digital image (zero-order interpolation). The quantization step for the gray levels

is 10, starting from 10. The pixelization effect creates artificial T-junctions, and do not allow to compute useful

features such as inflexion points or curvature extrema. Middle: level lines from the piecewise bilinear interpolated

image. The quantization step for the gray levels is 10, starting from 10. Pixelization effect has been reduced, but

some pixelized regions can still be seen. Right: level lines from the piecewise bilinear interpolated image, with a

gray level quantization step of 10, starting at gray level 0.5. These level lines do not suffer from pixelization effects.
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included in its interior. The notion of interior depends on the type of level set (upper and lower)

and a different connectivity ( or ) needs to be used in order to extract the interior of an upper or a

lower level set.

The framework in [MG00] is semi-continuous images (see [BCM03]). When dealing with contin-

uous images, the property that level lines are disjoint provides a much simpler argument for the

existence of the tree structure, similar to that provided in the pioneering work of Kronrod [Kro50].

The tree structure is however different from that of [CK98] where the order in the tree is driven by

the gray level and not by a geometric consideration.

This unpleasant unpairment between upper and lower level sets can be avoided by computing the

tree of inclusions between the level lines. In particular, when bilinear level lines are used, since they

never touch each other (as pointed out in the previous section) a fast and quite simple algorithm can

be devised, based on the crossings of the level lines with the Qedgels of the image. This algorithm is

not presented here, and can be found in [LMR01].

.. Properties

In this subsection, some basic results concerning level lines of a bilinear interpolated image are pre-

sented. These results will be used for the extraction algorithm.

Definition 3.1 The interior of a closed level line is the portion of R2 which is enclosed by the level line.

If the curve is open, one needs to “close” it in order to decide which part of the plane is inside or outside.

An open curve can be closed along the border of the image but there are two possible paths to follow. Here

it is (arbitrarily) decided to choose the shortest path (see Figure .).

Figure .: Interior (in gray) of a closed and an open level line. Open level lines are closed following the shortest

path along the border of the image.

Proposition 3.1 At any level λ, the number of level lines at level λ is finite.

Indeed, inside each Qpixel, there are at most two components of the isolevel set ũ = λ. As there is

a finite number of Qpixels, there is a finite number of level lines at level λ. The consequence is that

when considering a finite number of levels, there is a finite number of corresponding level lines.
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Proposition 3.2 If L is a level line at level λ, the image ũ, in the exterior vicinity of L, is either uni-

formly < λ or > λ.

Consider a neighborhood U of L, U = {x : d(x, L) < ε}, not meeting any other level line at level λ

(which is possible due to Proposition .). Then, all points ofU \L are at a level different from λ. The

union ofU and the interior ofL is open and connected, so as the exterior ofL, hence the intersection

of U and the exterior of L is connected (unicoherency of the definition set of ũ, see [Kur92, §41,X]).

Since ũ is continuous, it cannot take values < λ and > λ on this connected set.

In particular, this implies that the interior of a level line contains a local extremum, a fact that will be

exploited in the extraction algorithm.

.. An algorithm for the extraction of the tree of bilinear level lines (TBLL)

The algorithm that is presented here is a variant of the FLST in [MG00], computing the so called

fundamental TBLL of the image, describing the topography of the image, which in turn can be used

to compute the TBLL corresponding to any quantization. This algorithm is proposed in [LMR01]

with the name of Morse Algorithm, as it extracts level lines at critical points, that is, extrema and

saddle points. As for a Morse function [Mil69], these levels correspond to a change in the topology

of level lines [CK98].

Definition 3.2 The fundamental TBLL of an image is the tree of level lines passing through a center of

pixel or a saddle point.

Therefore, all level lines containing critical points are in the fundamental TBLL. The interest is that

the other level lines can be deduced from these.

Definition 3.3 A solid shape associated to a level line L is the union of L and its interior.

Therefore, a solid shape is connected, so as its complement. A Qpixel or Qedgel P is said to be

adjacent to the solid shape S if

P \ S 6= ∅ 6= P ∩ S;

in particular, P meets the boundary of S. Since S and its complement are connected, the Qpixels

adjacent to S can be ordered in a chain, whose each node is -adjacent to the following one (two

Qpixels are -adjacent if they share a common Qedgel). As two successive Qpixels in this chain share

a Qedgel adjacent to S, one can store either the chain of adjacent Qpixels or of Qedgels.

Proposition 3.3 A Qedgel E is adjacent to a solid shape S if and only if exactly one of both extremal

points of E is in S. E ⊆ S if and only if both extremal points of E are in S. E ∩ S = ∅ if and only if

both extremal points of E are not in S.

These properties can be easily proved using Proposition . and the fact that the restriction of the

image to E is affine.
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A consequence is that the datum of the chain of adjacent Qpixels to a solid shape S is equivalent to

the knowledge of the centers of pixels in S (see Figure .).

Figure .: Chains of Qpixels adjacent to solid shapes. Centers of pixels in solid shape are represented as gray

dots. a: only one center of pixel in the solid shape. b: a standard configuration. c: -connection is made by the

intermediary of a saddle point, the Qpixel containing it is present twice in the chain, at positions  and .

Definition 3.4 The reduced level line L[, associated to a level line L, is the boundary of the solid shape

associated to L.

L[ is therefore a connected subset of L. The advantage of using L[ instead of L is:

• L[ and L encode the same information from the point of view of the tree structure: the solid

shapes associated to them are the same.

• L[ and L are identical for all the level lines not passing through a center of pixel or containing

a saddle point.

• L[ can be naturally described as a curve, keeping the interior at left hand side and the exterior

at right hand side.

The term level line is thus more appropriate for L[ than for L, the latter being even susceptible to

contain Qpixels. Moreover, L[ can be computed (i.e., sampled as a curve) from the knowledge of

the chain of the Qpixels adjacent to its associated solid shape, see Figure .. A reduced level line is

almost a Jordan curve: it can have (a finite number of) double points, occurring at saddle points.

Figure .: Left: a level line L, containing a Qpixel and passing trough a saddle point. Middle: the solid shape S

associated to L. Right: the reduced level line L[, which is the boundary of S.

Computing the fundamental TBLL is interesting because of the following properties:
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. For each level line L′′ in the TBLL, there are some solid shapes L and L′ in the fundamental

TBLL such that L is the parent of L′ and L′′ is comprised between L and L′.

. If L is in the fundamental TBLL so as L′, a child of L, and if L′′ is any level line comprised

between L and L′ in the TBLL, the chains of Qpixels adjacent to the solid shapes associated to

L′ and L′′ are the same.

The second property comes from Proposition .: indeed, the solid shapes associated to L′ and L′′

contain the same centers of pixels, implying that their adjacent Qedgels, and thus Qpixels, are the

same. This property shows that the knowledge of the chains of -adjacent Qpixels of elements of the

fundamental TBLL permits to deduce the ones in any TBLL.

.. Extraction of the fundamental TBLL

Proposition . is used here: extracting interiors of level lines rather than directly the (reduced) level

lines themselves.

The first step consists in finding the Qpixels containing a saddle point, and the corresponding saddle

value. It is the case when the maximum of values at diagonally opposed pixels is strictly less than the

minimum of the other two values. In the algorithm described below, a point is either a center of pixel

or a saddle point. Each has an associated value, thus two images are stored in memory: the values at

centers of pixels and the values at saddle points.

To each center of pixel P , a solid shape SP is associated: the smallest solid shape containing P .

Initially, SP is set to NULL.

All centers of pixels are scanned, and each time a local extremum P (comparison with -neighbors)

at level λ is met, the following steps are performed:

. Initialize a list P of points to ∅ and of neighbor pointsN to {P}.

. While Nλ 6= ∅, Nλ being the set of points of N at level λ, remove Nλ from N and append it

to P , and add toN the neighbors ofNλ not already in P .

. If the set of points in P has no hole and the points inN are all at level < λ or all at level > λ,

create a new solid shape with associated points P ; otherwise, put all points of image stored in

P to level λ and exit.

. Store the new solid shape, follow its boundary to determine the chain of adjacent Qpixels.

. For each point Q ∈ P , if SQ is NULL, put it to the new solid shape. Otherwise, follow up the

tree starting from SQ, and put the resulting solid shape as child of the new solid shape.

. Set λ to the closest level of points inN and go back to step ().
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The meaning of “neighbor” has not been precised yet. The neighbors of a center of pixel P are its

-neighbors and the saddle points in the Qpixels whose one corner is P ; the neighbors of a saddle

point Q are the centers of pixels being corners of its containing Qpixel.

The number of holes is computed locally, with the following rule: two centers of pixels are connected

if they are  - neighbors, or if they are diagonally opposed in the Qpixel and at least one of the other

two corners or the saddle point inside the Qpixel (provided there is one) is in the set. Then the

number of holes is computed by counting patterns of connected neighbors, in a manner similar to

that exposed in [KR89, KR90b].

Notice that it is important to order the points inN by their level. This can be done with a balanced

binary tree, similar to the one used in heap sort [Sed99].

After the image is scanned, its gray levels have been changed and it becomes uniform. The resulting

constant level is the one of the root of the tree.

.. Computation of a TBLL from the fundamental TBLL

From the knowledge of the fundamental TBLL and a given quantization, it is direct to compute the

resulting TBLL. For each solid shape S in the fundamental TBLL, find the levels of the quantization

comprised between the level of S (strictly) and the level of its parent S ′ in the fundamental TBLL.

Create a solid shape for each one; the level line passes through the same chain of adjacent Qpixels as

S ′.

For each solid shape created in this manner, their order in the TBLL is the same as the one of their

least greater solid shapes in the fundamental TBLL. In that sense, the TBLL is a sampling of the

fundamental TBLL, see Figure ..

Figure .: Computing the TBLL of quantization levels {1, 11, 21, ...} from the fundamental TBLL. Left: fun-

damental TBLL, showing associated levels. Right: the resulting TBLL is obtained by sampling of the fundamental

TBLL.



Chapter 

EXTRACTING MEANINGFUL CURVES FROM

IMAGES

Abstract: Since the beginning, Mathematical Morphology has proposed to extract shapes from images as

connected components of level sets. These methods have proved very efficient in shape recognition and shape

analysis. In this chapter, we present an improved method to select the most meaningful level lines (boundaries

of level sets) from an image. This extraction can be based on statistical arguments, leading to a parameter

free algorithm. It permits to roughly extract all pieces of level lines of an image that coincide with pieces of

edges. By this method, the number of encoded level lines is reduced by a factor , with almost no loss of

shape contents. In contrast to edge detection algorithms or snakes methods, such a level lines selection method

delivers accurate shape elements, without user parameter since the parameter selection can be derived from

the Helmholtz Principle. This chapter aims at improving the original method proposed in [DMM01]. We

give a mathematical interpretation of the model, which explains why some pieces of curve are overdetected.

We introduce a multiscale approach that makes the method more robust to noise. A more local algorithm is

introduced, taking local contrast variations into account. Finally, we empirically prove that regularity makes

detection more robust but does not qualitatively change the results.

Résumé : Depuis sa fondation, la morphologie mathématique a proposé d’extraire les formes des images

comme des composantes connexes d’ensembles de niveau. Il a été prouvé que ces méthodes sont très efficaces

pour la reconnaissance des formes comme pour leur analyse. Dans ce chapitre, nous présentons une méthode

pour sélectionner les lignes de niveau (frontières des ensembles de niveau) les plus significatives. Cette ex-

traction peut être basée sur des arguments statistiques conduisant à un algorithme sans paramètre. Celui-ci

permet d’extraire à peu près tous les morceaux de lignes de niveau qui correspondent à un morceau de bord.

Par cette méthode, le nombre de lignes de niveau codées est réduit d’un facteur , sans presque aucune perte

sur le contenu des formes. Au contraire des méthodes de détection de bords ou de contours actifs, une telle

sélection des lignes de niveau donne des éléments de forme précis, sans paramètre utilisateur car les para-

mètres peuvent être calculés par le principe de Helmholtz. L’objectif de ce chapitre est d’améliorer la méthode

originale proposée dans [DMM01]. Nous donnons une interprétation mathématique du modèle, qui explique

pourquoi certains morceaux de courbes sont surdétectés. Nous introduisons une approche multiéchelle qui
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rend la méthode robuste vis-à-vis du bruit. Un algorithme plus local est introduit, prenant en compte les va-

riations locales du contraste. Enfin, nous prouvons de manière empirique que la régularité rend les détections

plus robustes mais ne change pas qualitativement les résultats.

This chapter corresponds to the article “Extracting meaningful curves from images” (F. Cao, P. Musé

and F. Sur) [CMS04].

. Introduction

Natural images are very complex, and despite the progress of modern computers, we cannot han-

dle the huge amount of information they contain. Thus, the idea of Marr and Hildreth [MH80]

that edges provide a good summary of images is still vivid. Since their seminal work, efforts have

been carried on local methods. Marr defined edges as zero-crossings of the Laplacian [Mar82], and

Haralick [Har84] proposed a more correct definition which is equivalent to the zero-crossings of

D2u(Du,Du) where Du and D2u are respectively the gradient and the second derivative of the im-

age. In his famous paper [Can86], Canny gives a filter that tries to optimize the edge localization (as

a trade-off with signal to noise ratio), but which is equivalent to Haralick’s. Although they are tech-

nically sound, local methods have an immediate drawback: while edges are usually thought about

as curves, these methods detect sets of points with an orientation (edgels) that have to be connected

afterward. Moreover, they require different thresholds since contrast has no absolute meaning. In

addition, they are very sensitive to noise, since they use derivatives of the image. The choice of these

thresholds depends on the observed image, and is not that easy. It is also known that edge is not

a completely local concept and that it does not rely entirely on contrast. Indeed, following Gestalt

Theory [Kan96, Wer23], shapes (and thus edges) result from the collaboration of a small set of per-

ceptual laws (called “partial gestalts” by Desolneux, Moisan and Morel [DMM03a]), and contrast is

only one of them. Among others, we can cite alignments, symmetry, convexity, closedness and good

continuation.

Other theories, related to edge detection, explicitly use good continuation, which means in this case

regularity of curves. The most famous one is certainly the theory of active contours (or snakes) [KWT87],

where optimal boundaries result from a compromise between their intrinsic regularity and the ex-

trinsic value of the image contrast along the active contours. The main weaknesses of this theory

are the number of parameters and the sensitivity to an initial guess. More recent methods propose

to initiate the detection with many contours, most of which will hopefully disappear [CV01]. But

again, there is no measure on the certainty of the remaining detected contours.

The Mathematical Morphology school proposed an alternative to the local approaches above. Fol-

lowing morphologists, the image information is completely contained in a family of binary images

that are obtained by thresholding the images at given values [Mat75, Ser82]. This is equivalent to

considering level sets; the level set of u at the value λ is

χλ(u) = {x ∈ R2, u(x) > λ}. (.)
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Obviously, if we only consider a coarsely quantized set of different grey levels, information is lost,

especially in textures. Nevertheless, it is worth noting how large shapes are already present with as

few as  or  levels. As soon remarked by Serra [Ser82], no information is lost at all, since we can

reconstruct an image from the whole family of its level sets, by

u(x) = sup{λ ∈ R, x ∈ χλ(u)}.

Thus, the level sets do not only give a convenient way to extract information, they provide a com-

plete representation of images. Alternative complete representations are, for instance, Fourier or

wavelets decomposition [Mal99]. But while these last ones are very adequate for image compression

(they are used in the JPEG  standard), they are not very well adapted in shape analysis, since

their basic elements have no immediate perceptual interpretation. (More recent decompositions as

bandlets [PM04] or curvelets [SCD02] try to take image geometry more into account, but they are

either still too local, or need a preliminary detection step.) On the contrary, morphologists soon

remarked that boundaries of level sets fit parts of objects boundaries very well. They call level lines

the topological boundaries of connected components of level sets, and topographic map of an image,

the collection of all its level lines. The topographic map gives a complete representation of an image

and enjoys several important advantages [CCM99]:

• It is invariant with respect to contrast changes. It is not invariant to illumination change, since

in this case, the image is really different, although it represents the same scene. However, many

level lines still are locally the same.

• It is not as local as sets of edges, since level lines are Jordan curves that are either closed or meet

the image borders. (This property requires that the image has bounded variations [ER92]).

• It is a hierarchical representation: since level sets are ordered by the inclusion relation (and so

are there connected components), the topographic map may be embedded in a tree structure.

• But most important regarding the main subject of this paper, object contours locally coincide

with level lines very well. Basically, level lines are everywhere normal to the gradient as edges.

On the other hand, level lines are accurate at occlusions. Whereas, edges detectors usually

fail near T-junctions (and additional treatments are necessary), there are several level lines at a

junction. The order of the multiple junction coincides with the number of level lines [CCM96].

We shall go back to this in Section...

The level sets representation has recently been used, with success, for image simplification and seg-

mentation. In particular, it was shown that it allowed to define multiscale representation of im-

ages [MM00, SG00, SS95], while avoiding the main drawbacks of linear scale space theory [Koe84,

Wit83], namely an oversmoothing of contours.

We are convinced that level lines may directly give usable curves for any shape recognition algorithm.

The main drawback of the topographic map representation is its lack of compactness. First, since it is
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Figure .: Level lines and T-junction. Depending on the grey level configuration between shapes and background,

level lines may follow or not (as on the figure) the objects boundary. In any case, junctions appear where two level

lines separate. Here, there are two kinds of level lines: the occluded circle and the shape composed of the union of

the circle and the square. The square itself may be retrieved by difference.

complete, it contains all the texture information. The level lines in textures are usually very compli-

cated, and are not always useful for blind shape recognition. (The opposite may be true, for instance

for very accurate image registration). Moreover, because of noise and interpolation, many level lines

may follow roughly one and the same contour. Thus, it is useful, for practical computational reasons,

to select only the most meaningful level lines.

Recently, Desolneux et al. proposed a parameterless algorithm to detect contrasted level lines (called

meaningful boundaries) in grey level images [DMM01]. Their method, which needs no parame-

ter tuning, relies on a perceptual principle called Helmholtz Principle. Experimentally, meaningful

boundaries are often very close to minimizers of any reasonable snake energy [DMM03b]. This

adequation of meaningful boundaries and snakes is a bit paradoxical since, unlike snakes, no local

regularity is imposed on meaningful boundaries.

However, the algorithm of Desolneux et al. raises several questions and objections. The definition of

meaningful boundaries has first to be precisely interpreted in mathematical terms. Second, because

of noise (and certainly partly because of quantization noise), some edges are missing (lots of them

in some low contrasted images). Third, it uses a global information on contrast (the histogram).

This yields an overdetection in regions with important contrast and a subdetection in low contrasted

regions (it is the so-called blue sky effect). Finally, regularity of edges is not used for the detection.

In this paper, we discuss these objections and propose some answers, with a significant improvement.

Our conclusions are the following: the definition of meaningful boundaries themselves does not

ensure that they do not contain any undesirable parts. We propose a method to remove those parts.

Second, the method can be extended to several scales, and this makes the method more robust to

noise. We also propose a method considering contrast in a more local way. If we use more local

contrast information, we can remove edges in texture. Whether this is useful or not depends on the

application: for very accurate registration, texture-edges can be useful, while they must be useless for

shape recognition. (For texture recognition, harmonic analysis methods are certainly more efficient.)

Last, we introduce a local and stable measure of regularity of a curve and use it for smooth edges
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detection. As already noticed in [Cao03], regularity is often sufficient to detect some very meaningful

edges. Nevertheless, general belief is that both regularity and contrast are useful for edge detection.

We experimentally check that contrast and regularity are often very redundant. This redundancy

is used to make the detection even more robust, but does not change the results of contrast based

detection alone. We are also able to tune automatically the relative weight of regularity and contrast,

which is a recurrent question in active contours theory.

The plan of this chapter is as follows. In section ., we recall the bases of Helmholtz Principle, the

definition of meaningful boundaries of Desolneux, Moisan and Morel. We will justify and discuss

this definition, which was not explicitly made in [DMM01]. A multiscale extension is presented in

section .. In section ., we describe a procedure that automatically handles local contrast varia-

tions. In section ., we explain how both contrast and regularity criteria can naturally be mixed in a

probabilistic setting by introducing a measure of regularity on random level lines in section ... We

conclude in section ..

. Meaningful boundaries

.. Helmholtz Principle

Helmholtz Principle is a perceptual principle asserting that conspicuous structures may be viewed

as exceptions to randomness. The unexpected configurations we must be interested in, are given by

the perceptual laws of Gestalt Theory [Kan96, Wer23], as alignments, closedness of sets, parallelism,

etc. Since this principle is quite general, its formulation may slightly vary from one application to

another but, we propose the following formulation. Assume that O1, ..., ON are local objects in an

image (for instance, O1, ..., ON may be edgels, that is points assigned with a direction). We want

to find out whether some of these objects must be grouped in a more global structure, with respect

to some shared quality. Let us assume that we have K group candidates G1, ... GK . Each of the Gi

gathers several of the local objectsOn, given in advance. We now consider a qualityQmeasured from

the On. Each measure defines a random variable Xn. We wish to determine if the Gi are meaningful

groups for the quality Q. We then carry out the following mental experiment: assume that, anything

else held equal, the quality Q is independently and identically distributed over the On, that is to say

the Xn are i.i.d. variables. If no a priori information is available on Xn, we call this hypothesis the a

contrario model. If we have no a priori information on the Xn, their distribution in the a contrario

model can be, for instance, their distribution in a white noise image. Assume that for some group

Gi, the Xn are equal up to some precision. By definition, we will say that Gi is ε-meaningful, if in

the a contrario model, the probability that all Xn in Gi are equal up to the observed precision is less

than ε
K

. As will be seen on a more precise example in the following sections, this definition implies

that, in the a contrario model, the expected number of ε-meaningful groups is less than ε. In other

words, the number of groups appearing by chance is controlled, on the average, by ε.

We refer the reader to [DMM03a] and references therein, for precise applications of this principle.
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The following sections are devoted to the application of this principle to the extraction of shape

information.

Before going further, let us give a few comments on the above principle. A very important point is

that it is discrete by nature. Indeed we consider a finite number of local objects, and we also consider

a finite a priori number of group candidates. Moreover, the quality Q is measured with a finite accu-

racy. Put together, this implies that, under the a contrario model, any group has a positive probability

of occurence. This probability is decreasing with the size of the group (the number of local events it

contains). Moreover, for all ε > 0 the number of ε-meaningful groups is obviously bounded by K

(the total number of group candidates). Assume now that, to the previous K group candidates, we

add K ′ new candidates. Then, for a group Gi to be meaningful, its probability of occurence in the

random model has now to be smaller. If K ′ tends to +∞, this probability of occurence must go to

zero. This means that the meaningfulness depends on the size of the data. This size also has to be

finite, otherwise no group can be ε-meaningful for ε > 0. This is completely compatible with digital

image processing where image sampling implies a finite amount of information. Moreover, a digital

white noise image should yield no detection. It is thus sound to construct the a contrario model such

that it is true at least in the case of white noise. In order to be coherent with Shannon’s sampling the-

ory, we have to assume that the distance between the objects Oi is larger than the Nyquist distance,

namely  pixels, for they have to be independent in noise. In the following, we shall say that two

points are independent if their distance is larger than  pixels.

Even though digital images are discrete by nature, it is often convenient to consider grey level images

as functions fromR
2 toR, as we will do in the following. In practice, we use a bilinear interpolation,

which allows us to define level lines at any level. We also use finite differences scheme to define a

contrast value which is consistent with the gradient.

A last important comment is the choice of ε, which is the only decision parameter. Of course the

principle can be efficient only if it is robust with respect to ε. In fact, it is often possible to prove

(see [DMM03a] and the following of this chapter) that the minimal length of an ε-meaningful

boundary depends on the logarithm of ε. In practice, setting ε = 1 means that we have less than

one detection in the a contrario model. Thus we choose ε = 1, and check a posteriori that changing

this value does not change the results, as predicted by the theory. One main reason why this is em-

pirically very stable is that detected structures are (very) large deviations from the a contrario model

and can be detected with some values of ε even less than 10−10.

.. Contrasted boundaries

In order to illustrate Helmholtz principle, we recall here the definition of meaningful boundaries

given in [DMM01]. It will be also useful since we will discuss this definition in the next sections. Let

u : R2 → R be a differentiable grey level image. Assume that we have a measure of contrast. To

simplify we take it here equal to the norm of the gradient. Assume that we know the distribution of
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the gradient of u given by

Hc(µ) = P (|Du| > µ).

In fact, we do not really care that this contrast is the gradient norm of a differentiable function, and

in practice, we shall take a finite differences approximation of the gradient. In [DMM01], Desolneux,

Moisan and Morel proposed the following definition.

Definition 4.1 ([DMM01]) LetE be a finite set ofNll level lines of u. A level lineC is an ε-meaningful

boundary if

NFA(C) ≡ NllHc(min
x∈C
|Du(x)|)l/2 < ε, (.)

where l is the length of C. This number is called number of false alarms (NFA) of C.

We first remark that ε,Nll and minx∈C |Du(x)| being fixed, the minimal l such thatC is ε-meaningful

depends on the logarithm of the other parameters. This was already discussed in [DMM03a], and in

practice we can take ε = 1 in all experiments. This definition will be further commented in ..,

and we just shortly describe its implementation. We first need an a priori on the gradient law. The

approximation by the empirical histogram is used. That is, we assume that the gradient norm is

distributed following the law of the positive random variable X defined by

∀µ > 0, P (X > µ) =
#{x ∈ Γ, |Du(x)| > µ}
#{x ∈ Γ, |Du(x)| > 0}

, (.)

where the symbol # designs the cardinality of a set, Γ the finite sampling grid, |Du| is computed by

finite difference approximation, and we assume that it is constant in each pixel. Moreover, we need

a finite and reasonable set of level lines. Since images are assumed continuous, they have an infinite

number of level lines. These lines are very redundant since interpolated images are very smooth.

Thus, it is soundly assumed that quantized level lines contains all the information of the image.

It is perceptually known that beyond a few hundreds of grey levels, we are not able to distinguish

intensity differences. So we naturally quantize -bits encoded images every integer levels. Dividing

the quantization step by  will approximately multiply the number of level lines by . Thus the

number of false alarms of a given line will also be increased by a factor , which has nearly no

incidence on the detection. For interpolated images, quantization yields a finite number of level

lines. This number Nll is dependent on the image; textured images have more level lines than more

simple images. To give an order of magnitude, a natural 256× 256 image contains between 104 and

105 level lines.

.. Maximal boundaries

Since level lines are nested, meaningful boundaries can also be embedded in a tree structure. To

make things simple, a level line L2 is a descendent of another line L1 in the tree if and only if L2

is included in the interior of L1. This is not obvious for continuous images, but was proved by

Monasse [Mon00]. Since only quantized grey levels are considered, the tree of level lines is also
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quantized and contains only a finite number of nodes. As remarked by Desolneux, Moisan and

Morel [DMM00], meaningful boundaries usually appear in parallel groups, because of interpola-

tion. Moreover, since images are made band-limited before sampling, they are blurry and there is a

transition layer around objects boundaries of width at least two or three pixels. These boundaries are

redundant, and in applications, it may be useful to eliminate some of them. The previous authors

first remarked that the meaningful level lines inherit the tree structure of the original tree. The idea

is to use this structure to efficiently remove redundant boundaries.

Definition 4.2 ([Mon00]) A monotone section of a level lines tree is a part of a branch such that each

node has a unique son and where grey level is monotone (no contrast reversal). A maximal monotone

section is a monotone section which is not strictly included in another one.

Definition 4.3 ([DMM01]) We say that a meaningful boundary is maximal meaningful if it has a

minimal NFA in a maximal monotone section.

Figure . illustrates the fact that the loss of information of maximal meaningful boundaries is neg-

ligible, compared to the gain of information compactness.

Figure .: Maximal meaningful boundaries. . Original image, , level lines . All meaningful boundaries:

, detections. . Maximal meaningful boundaries. Only  boundaries remain, while the visual loss is very

weak.

Since meaningful boundaries inherit the tree structure of the topographic map, they can be used to

reconstruct an image, thus defining an image operator, see Figure .. It is a connected operator

as defined by Salembier and Serra [SS95] (but it is not a filter by reconstruction). It is neither a

contrast invariant operator, since it explicitly uses the gradient value (it only commutes with affine

global contrast change), nor an idempotent operator (since meaningfulness depends on the number

of level lines in the original tree).

As remarked by Salembier et al. [SG00], an operator pruning the topographic maps preserves edges

very well. Contrarily to local operators as, for instance, the grain filter [Vin93], the meaningful

boundary reconstruction does not simply remove leaves of the tree (small level lines) but also inner

nodes corresponding to possibly large (but low contrasted) level lines.
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Figure .: Original image on the left (, level lines). Right: reconstruction from the  maximal meaningful

boundaries. The grey level may not be really significant since, on edges, the maximal meaningful level line has an

intermediate level between both sides of the edge. It would be more perceptually adequate to set the grey level to the

brighter or darker meaningful level line. Nevertheless, for contrast independent shape recognition purposes, we do

not use the grey level value, but only the geometry of level lines. The most important is that we preserved the main

geometric structure, while removing the textures.

.. Discussion on the definition of meaningful contrasted boundaries

Interpretation of the number of false alarms

In this section, we give a precise interpretation of Definition ., which was not explicit in [DMM01].

Let us first recall the following classical lemma.

Lemma 4.1 Let X be a real random variable and H(x) = P (X > x). Then for all t ∈ [0, 1],

P (H(X) < t) 6 t.

Assume that X is a real random variable described by the inverse repartition function H(µ) =

P (X > µ). Assume that u is a random image such that the values |Du| are independent with

the same law as X . Let now E be a set of random curves (Ci) in u such that #E (the cardinality of

E) is independent from each Ci. For each i, we note µi = minx∈Ci |Du(x)|. We also assume that we

can choose Li independent points on Ci (points that are afar at least by Nyquist’s distance). We can

think of the Ci as random walks with independent increments but since we choose a finite number

of samples on each curve, the law of the Ci does not really matter. We assume that Li is independent

from the pixels crossed by Ci.

We say that Ci is ε-meaningful if

NFA(Ci) = #E ·H(µi)
Li < ε.
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Proposition 4.1 The expected number of ε-meaningful curves in a random set E of random curves is

smaller than ε.

Proof: Let us denote by Xi the binary random variable equal to  if Ci is meaningful and to  else.

Let also N = #E. Let us denote by E(X) the expectation of a random variable X in the a contrario

model. We then have

E

(
N∑
i=1

Xi

)
= E

(
E

(
N∑
i=1

Xi|N

))
.

We have assumed that N is independent from the curves. Thus, conditionally to N = n, the law of∑N
i=1 Xi is the law of

∑n
i=1 Yi, where Yi is a binary variable equal to 1 if nH(µi)

Li < ε and 0 else. By

linearity of expectation,

E

(
N∑
i=1

Xi|N = n

)
= E

(
n∑
i=1

Yi

)
=

n∑
i=1

E(Yi).

Since Yi is a Bernoulli variable,

E(Yi) = P (Yi = 1) = P (nH(µi)
Li < ε) =

∞∑
l=0

P (nH(µi)
Li < ε|Li = l)P (Li = l).

Again, we have assumed that Li is independent of the gradient distribution in the image. Thus con-

ditionally to Li = l, the law of nH(µi)
Li is the law of nH(µi)

l. Let us finally denote by (α1, · · · , αl)
the l (independent) values of |Du| along Ci. We have

P
(
nH(µi)

l < ε
)

= P

(
H( min

16k6l
αk) <

( ε
n

)1/l
)

= P

(
max
16k6l

H(αk) <
( ε
n

)1/l
)

since H is nonincreasing

=
l∏

k=1

P

(
H(αk) <

( ε
n

)1/l
)

by independence

6
ε

n
from Lemma ..

This term does not depend upon l, thus
∞∑
l=0

P (nH(µi)
Li < ε|Li = l)P (Li = l) 6

ε

n

∞∑
l=0

P (Li = l) =
ε

n
.

Hence,

E

(
N∑
i=1

Xi|N = n

)
6 ε.

This finally impliesE
(∑N

i=1 Xi

)
6 ε, which exactly means that the expected number of meaningful

curves is less than ε.

In this proposition, we have not assumed a priori that the Ci are level lines of u. Indeed, in this case,

we cannot certainly assert that the length (number of independent points) of the curve is indepen-

dent from the values of the gradient along the curve.
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Cleaning-up meaningful boundaries

Proposition . asserts that if a curve is a meaningful boundary, then it cannot be entirely generated

in white noise (up to ε false detections on the average). On the other hand, can we guarantee that no

part of a meaningful boundary is contained in noise ? Or, for a given meaningful boundary, can we

give an upper bound of the size of the part of the boundary that is likely to be contained in noise (i.e.

a non-edge region) ? To answer this question, we use the a posteriori length distribution

P (L > l|min
x∈C
|Du(x)| > µ). (.)

Contrarily to the probability appearing in Definition ., this one penalizes long curves not only

through the gradient value. To compute it, we need the a priori distribution P (L > l) that a level

line in noise has a length larger than l. As we do not know this distribution explicitly, we choose to

estimate this law empirically. For l 6 1000 (to give an order of magnitude), the number of lines

whose length is larger than l is still quite large (for images of size about 500 × 500), and we assume

that the distribution is quite correctly estimated for such length. (See Figure ..) For higher values,

there are too few level lines. By using Bayes’ rule, we derive

P (L > l|min
x∈C
|Du(x)| > µ) =

∑∞
k=l P (minx∈C |Du(x)| > µ|L = k)P (L = k)∑∞
k=1 P (minx∈C |Du(x)| > µ|L = k)P (L = k)

.

(The denominator is nothing but P (|Du| > µ)). By the a contrario assumption (independence of

Figure .: log10 of the inverse repartition function of length of level lines in a white noise image. The average

length is about ., meaning that most level sets enclose a single pixel.

the gradient along curves), we can still write

pµ(l) ≡ P (L > l|min
x∈C
|Du(x)| > µ) =

∑∞
k=lHc(µ)kP (L = k)∑∞
k=1 Hc(µ)kP (L = k)

. (.)

Let us now consider an image u with Nll (quantized) level lines. We also denote by Nl the number

of all possible sampled subcurves of these level lines. (Nl is the sum of the squared number of

independent points of the lines if they are closed).
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Assume that C is a piece of level line with L independent points, contained in a non-edge part,

described by the noise model. We want to estimate the probability that L is larger than l > 0,

knowing that |Du| > µ. This is exactly pµ(l), the probability defined in (.). As in Proposition .,

we can prove that Nl · pµ(l) is an upper bound of the expected number of pieces of lines of length

larger than l with gradient larger than µ. For a fixed µ, let be l such that Nl · pµ(l) 6 ε. Then, we

know that, on the average, we cannot observe more than ε pieces of level line with a length larger

than l and a gradient everywhere larger than µ. We make the assumption that a point with a gradient

less than µ is located in noise. Let us remove any piece of length l containing such a point. Then all

remaining points belongs to a piece of curve with length larger than l with gradient larger than µ,

which cannot be due to chance. This yields a clean-up algorithm for boundary detection.

. Detect meaningful boundaries.

. For a fixed µ > 0, let L(µ) = inf{l, Nl · pµ(l) < ε}.

. For any meaningful boundary, remove every subcurve of lengthL(µ) containing a point where

|Du| 6 µ.

This introduces a parameter, µ. When µ gets larger, L(µ) decreases, so that the clean-up removes

more numerous but smaller pieces of curves. The choice of µ can be determined by applicative

considerations. Detected edges may be used for different purposes, for instance shape recognition

or image matching. Letting |Du| less than 1, means that we may detect edges with an accuracy less

than one pixel. Thus choosing to eliminate pieces of curves with a gradient larger than µ = 1 for all

images is not restrictive. In practice, the remaining pieces of level lines have a gradient much larger

than 1 and can be well enough located. We also check that for µ about 1, we obtain values of L(µ)

less than a few hundreds, which is compatible with the empirical estimation of the a priori length

distribution.

Figure . illustrates the result of a meaningful boundary clean-up.

. Multiscale meaningful boundaries

.. Meaningful boundaries by downsampling

As previously noted, the contrast measure is an approximation of the gradient by finite differences.

More precisely, Desolneux et al. [DMM01] use the following scheme:

∂u

∂x
' ux(i, j) =

1

2
(u(i+ 1, j) + u(i+ 1, j + 1)− u(i, j)− u(i, j + 1)), (.)

∂u

∂y
' uy(i, j) =

1

2
(u(i, j + 1) + u(i+ 1, j + 1)− u(i, j)− u(i+ 1, j)). (.)

Using a 2 × 2 scheme is coherent with the application of Helmholtz principle: points afar from the

Nyquist distance have independent values of contrast in white noise. On the other hand, this measure
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Figure .: Meaningful boundary clean-up. On the left the original image. In the middle, the meaningful bound-

aries with local histograms, see section .. Boundaries are found in the sky. They are detected since the gradient

in the sky is regular because of the smoothly changing illumination. The gradient value is about 0.2. Even though

they are not smooth at small scale (they cannot be well located, due to the too small gradient), they are nearly

parallel at large scales, which can be explained, a posteriori. Now, these boundaries may not be very useful for

shape recognition purposes, because of their bad localization. On the right, the result after the clean-up procedure

with a gradient threshold equal to 1.

is sensitive to noise. This problem was known from Marr and Hildreth [MH80] who considered that

edge detection should be multiscale. They compute the zero-crossing of the Laplacian of the image

convoluted with Gaussians with different standard deviations. Since edges at larger scale are badly

located, they propose to track back the strongest edges to smaller scales, which is not obvious in

practice. Smoothing introduces local dependencies between pixels, making the a contrario model

false in smoothed white noise. Nevertheless, the a contrario model still applies if we downsample

the image at a lower frequency, given by the amount of smoothing. More precisely, we apply the

following algorithm. Consider a set {1, 2, ..., 2Ns−1} of Ns dyadic scales. For any level line C, we

denote byCs the curve C
2s

, obtained by scalingC by a factor 2−s. We also denote byHs the empirical

contrast distribution of us, where us is obtained by downsampling u with a factor 2s, conformly

to Shannon’s theory. (That is to say, downsampling follows an adequate smoothing, for instance

convolution with a prolate function.)

. Compute the quantized level lines of the image u.

. For each level line C with l independent points in u, compute µs, the minimal value of |Dus|
over all pixels crossed by Cs. Let

NFA(C) = Ns ·Nll min
s∈{0,··· ,Ns−1}

(Hs(µs))l/2
s

. (.)

We say that C is meaningful if NFA(C) < ε.

Thus, a curve is meaningful if and only if there exists a scale such that it is ε
Ns

meaningful in the

sense of the previous section. A direct corollary of the linearity of expectation and of Proposition .

is that the expected number of ε-meaningful multiscale boundaries is less than ε in the a contrario

model. Note that Cs is not a level line of us, but this is not required in Proposition .. Moreover, if

C was already ε
Ns

-meaningful, then we are sure that C is still detected by the multiscale method. It is
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clear that we only consider a small number of dyadic scales (say  or ), else images will only contain

a few pixels. Since the detection depends on log ε, we do not eliminate many lines by considering
ε
Ns

-meaningful boundaries at each scale. On the other hand, the method should be numerically

less sensitive to white noise, since filtering followed by downsampling reduces noise. On Figure .

and ., we show the result of this multiscale method on images with quantization noise and additive

Gaussian noise.

Figure .: Influence of quantization noise on meaningful boundaries. On the left, the original image is coarsely

quantized since it has a very low contrast. This leads to bad gradient estimation and a lot of missing detections

(middle). Multiscale detection is less sensitive to quantization noise and leads to more correct detections (right).

.. Meaningful boundaries vs. Haralick’s detector

In this section, we comment the main differences between the meaningful boundary model and the

classical edge detector introduced by Haralick. The meaningful boundaries are based on the topo-

graphic map of grey level images, which gives a complete topological representation of grey level

images. Caselles, Coll and Morel [CCM96, CCM99] detail all the properties of this representation. A

first advantage of this representation is its stability: even with an important amount of noise, many

level lines do not change much. Our multiscale approach also makes the detection quite robust. (See

Figure ..) A second advantage is its invariance with respect to global contrast change. Meaning-

ful boundaries are not contrast invariant since they use the distribution of contrast, but they are

still invariant with respect to affine contrast change. But the main property is the structure of this

representation: it is a set of nested curves that are either closed or meet the image boundary. As a

consequence, level lines have two of the main properties usually expected in edge detection or image

segmentation: they are curves (and not sets of points), and are embedded in a hierarchical struc-

ture [FH98, MS89, SM00]. Moreover, away from critical points, level lines coincide with isophotes.

As a consequence, for almost any level, the gradient is almost everywhere normal to level lines, which
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Figure .: Multiscale meaningful boundaries and noise. Left: image of Figure . with an additive white Gaus-

sian noise of standard deviation . Middle: meaningful boundaries. Since noise dominates the gradient distri-

bution, only  small level lines are detected. Right: multi-scale detection using  dyadic scales. Textures are not

detected, meaning that noisy textures are in this case not different enough from noise to be detected. On the other

hand, main structures remain. This allow to empirically check the stability of the topographic map in spite of the

important amount of noise.

makes level lines good candidates for edges.

Following Haralick [Har84], edges are the maxima of the gradient norm in the direction of the gradi-

ent, such that the gradient is larger than a given threshold. Thus, for a grey-level image u, they are the

zero-crossings of D2u(Du,Du). Since, this quantity is numerically sensitive to noise, a multiscale

strategy à la Marr is applied. Thus in practice, u is first convolved with a Gaussian with standard

deviation σ (we denote by gσ this Gaussian and uσ = gσ ∗u) and the points whereD2uσ(Duσ, Duσ)

changes sign and |Duσ| > µ are edges points. Although there have been some attempts to automati-

cally determine the scale parameter σ [Lin98], edge detection widely remains multiscale as predicted

by Marr [Mar82], and it is quite difficult to track edges back to small scales. The multiscale mean-

ingful boundaries detection of the previous section allows to consider different scales, while keeping

detection thresholds completely automatic. Moreover, the number of scales has a log influence. Har-

alick’s detector provides with a set of points or a few pixels long curves. The way they should be

connected is far from obvious and may lead to a very high computational complexity; this problem

is structurally handled by level lines. Last but not least, Haralick’s operator is inefficient for corners

and junctions. Indeed, at those points, the gradient direction is very badly estimated and edges may

be severely cut. Additional algorithms are necessary to reconnect pieces of edges. On the opposite,

level lines bifurcate at junctions, thus handling the different boundaries. Figure . illustrates this, by

showing the meaningful boundaries and Canny’s filter output near two junctions.
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Figure .: Junction and level lines. On the left, the original image. Middle, Haralick’s detector implemented with

Canny’s filter on the area designated on the left image. Note how the contour is broken at the junction, due to the

bad estimate of the gradient direction, and the high number of edge pieces. Right: detailed view of meaningful

boundaries on the region. There are two level lines, each corresponding to an edge part.

. Local boundary detection

In the model presented in the previous sections, the values of the gradient are random variables

whose distribution is empirically estimated. It is simply the histogram of the gradient in the image.

One can argue that this distribution is too global. This also yields what we call the “blue sky effect”.

Consider an image containing two parts: a contrasted or textured one (e.g. ground) and a smooth

one (e.g. sky). Then, we can observe an overdetection in the ground, and an underdetection in the

sky. Indeed, the sky only contributes with small values in the histogram. Thus we tend to detect

anything which is more contrasted than the sky, and nearly anything is detected in the ground. On

the contrary, the contrasted ground makes the detection more difficult for regions with a small con-

trast. This is not in agreement with human vision, since we locally adapt our perception of contrast.

Objects are masked in contrasted regions, while our accuracy is improved in low contrasted regions

(up to some physiological thresholds).

In this section, we address this local adaptivity to contrast. The model, which does not make use of

new concepts, is an adaptation of the meaningful boundary model. We first describe the algorithm,

then show some experimental results.

.. Algorithm

Assume that we have detected a closed boundary. Then it divides the image into two connected

components: the interior and the exterior of the curve. We can then compute the empirical contrast

distribution in the interior on the one hand and in the exterior on the other hand. We then inde-

pendently detect new meaningful boundaries in each connected component. Then, this procedure is

recursively applied. Since the size of the level line tree is finite, it is clear that we end the detection in

a finite number of steps.

The situation is actually a bit more complicated. First, this method depends on the order we use
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to describe the image boundaries. We simply choose to start with the most meaningful boundaries.

Second, boundaries are not always closed. In this case, their endpoints belong to the image border.

They still cut the image into two connected components. Unfortunately, there is no clear notion of

interior and exterior. A choice is made, but it is purely algorithmic and arbitrary from a perceptual

point of view [Mon00]. Thus, we cannot rely on this choice of interior, which conflicts with closed

boundaries. However, we can first apply the detection to open boundaries, then to the closed ones.

(Open boundaries contain all the closed ones, since level lines are nested.) More precisely, we proceed

as follows.

Let us call R0 the root boundary, that is the (non-meaningful) boundary containing all the image. If

C is a boundary, we denote by IntC its interior.

. Set R← R0. (Local root.)

. SetM, the set of already stored in R meaningful boundaries. Initially,M is empty.

. Let R′ ← R\ ∪C∈M IntC.

. Compute the histogram of |Du| in R′.

. Use this histogram and detect the maximal meaningful boundaries included in R′. Let N be

the maximal meaningful boundaries defined by C ∈ N if and only ifInt (C ′) ( Int (C)⇒ NFA(C) < NFA(C ′)

Int (C) ⊂ Int (C ′)⇒ NFA(C) 6 NFA(C ′).
(.)

Otherwise said, the boundaries in N have an optimal NFA. Note that this is stronger than

the maximality defined in section .. since we go across monotone sections. We call the

boundaries inN the total maximal boundaries. The subtree with root equal toR that remains

by keeping only the boundaries in N has only two levels: the local root R, and N . Since

the interior of open boundaries is arbitrary, we do not mix the detection of open and closed

boundaries. In practice, this means that if we detect an open meaningful boundary C, we

apply the definition of total maximal boundary (.) only to open boundaries containing C or

contained in C.

. IfN 6= ∅, then we have detected new boundaries in the complementary of the already detected

ones. Then,

(a) SetM =M∪N . By construction, all the closed boundaries inM have disjoint interior.

(b) return to step .

. If N = ∅, there are no new boundaries in the local root and in the complementary of the

currently detected boundaries. We then continue the search at lower levels of the tree. For any

boundary C ∈M,
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(a) Store C.

(b) Set R← C, andM← ∅.

(c) Return to step .

(a)

R
�

(b)

R3
R2

R1

(c)

R4

(d)

R4

(e)

Figure .: Example of local search of meaningful boundary. (a) the initial boundaries. They are oriented such

that the tangent and the interior normal form a direct frame. We compute the NFA of each boundary. In solid

line, we draw the total meaningful ones. Two are open, one is closed. Remark that the interior are disjoint,

because of total maximality. While we detect some open curves, we ignore the closed ones. (b) While we detect

new meaningful boundaries, we compute the contrast histogram in the complementary of the interior of the open

detected boundaries and resume search in this part of the image. InR′, the exterior of the detected open boundaries,

we detect a total maximal boundary. Remark that this boundary may have been already detected but rejected

because of open boundaries. We assume here that no new open boundaries are meaningful. Thus, we keep this

closed boundary. (c) We resume the search (with recomputed histogram) in the exterior (white part) of the detected

boundaries, until we cannot find new ones. When this is over, we then compute the local contrast histogram in each

regionR1,R2,R3 and look for boundaries inside them. (d) A boundaryR4 has been detected inR1. Compute the

local histogram inR1\R4 and detect boundaries. (e) Finally, we scan for boundaries inR4 with new local contrast

histogram.

Remark: Each boundary may be tested more than once. Thus, the number of false alarms has to

be multiplied by the maximal number of visits of a boundary, which is upper bounded by the level

lines tree depth. In fact, each detected boundary often lies in the middle of the local root, and this

divides the tree depth by . Thus in practice, the maximal number of visits of a boundary is like the

logarithm of the initial tree depth. In practice, it is always much smaller than .

.. Experiments on locally contrasted boundaries

In Figure ., we show the difference between the detection with a global contrast histogram and

the updated local histogram. To give an idea of the magnitude of the number of false alarms, the

boundary delimiting sky and foreground has a NFA equal to 10−357. This means, that, in order to

observe such a contrasted line in noise, we need to oberve on the average 10357 images. The smaller

boundaries around the opening on the top of the tower have NFAs about 10−10.
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Figure .: Influence of local contrast. From left to right: original image, maximal meaningful boundaries,

local maximal meaningful boundaries. There are , boundaries in the initial image,  in the second one

and  in the last one. Texture is removed since local contrast (for instance) on the church tower is much more

demanding than the global histogram. As the texture is uniform, no level line is a large deviation to the empirical

local contrast, yielding no detection. This is very good for shape analysis where we often want to distinguish texture

from real shapes.

Very interestingly, using local contrast removes boundaries in texture. This is logical since the local

contrast in textured regions (as on the tower in Figure .) assumes larger values than in the rest

of the image. Thus, this decreases the NFA of boundaries and most of them simply disappear in

textured regions. This is a masking phenomenon.

Let us explain why this is useful for shape recognition. In general, as we saw in Chapter , a shape

recognition algorithm can be divided in four steps:

. extraction of shapes

. (invariant) encoding

. comparison: compute some distance between encoded shapes

. decision: accept or reject pairs of matching shapes

Present and future applications need to compare images in huge databases, where we have no a priori

that two images, or two shapes should match. Since every procedure in the above methodology

is very costly, it is interesting to limit the number of encoded shapes and to try to keep the “most

meaningful”.

For the time being, there is no general model of shapes [Zhu99]. Nevertheless, we can give empiri-

cal observations of what a “good shape” is from a perceptual viewpoint, as we did in Chapter . For

encoding, a good shape should not be too simple, especially if we are interested in an invariant recog-

nition. For instance, most convex shapes are very alike in affine invariant shape recognition. Assume
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that we have chosen an affine invariant distance between shapes. If we want to be sure that two con-

vex shapes match, the distance between them has to be very small. Indeed, two convex shapes can

casually be close to each other, while the probability that it occurs for more complex shapes is very

small. On the other hand, a shape should not be too complex, since complexity usually makes the

encoding longer and more difficult. Because of occlusions, we usually try to match pieces of shapes.

Very complex shapes will be divided in numerous pieces, making computations longer.

Now, it is well known that texture is strongly damaged by compression. Thus level lines in texture

may not be reliable when two images come from different sources (with different quality, compres-

sion rate, etc). Moreover, they are very complex, and yield many encoded pieces of curves. If these

curves match for two different images, then those images are certainly the same. Now, the compu-

tational cost may be too high for some applications, where we may want to detect a particular shape

(a logo for instance) in a database. Thus it may be useful to automatically remove contrasted regions

corresponding to texture. This is what the local contrast detection makes in practice.

The argument above is reversed for stereo images registration. In this case, we have the strong a priori

that the images are close views of the same scene, and the goal is to register them as best as possible.

In this application, textures can also give some useful information. (See Figure .).

The effect of local contrast in boundaries detection is twofold: first, textures are eliminated. On the

contrary, local contrast should make curves in low contrasted areas more detectable. This is also

what we empirically observe: we detect illumination gradient (See Figure . and .). This can be

due to the vicinity of the light source, or to the variation of the orientation of the surface of a three

dimensional object with respect to the light source. Such lines do not correspond to the usual notion

of shapes (objects). Nevertheless, it is logical to detect them as remarkable structures.

. Meaningful boundaries or snakes?

In [DMM03b], Desolneux, Moisan and Morel compared the MB model with variational snake the-

ory. This may seem a bit weird since the MB model only uses contrast observations along a curve,

while snakes are also required to be smooth. In fact, the explanation for natural images is that

contrasted boundaries often locally coincide with objects. Thus, they are also incidentally smooth.

Whereas smoothness seems to be optional for the detection, it may give a better localization of the

contour. In this section, we study the possible influence of smoothness in the detection to see whether

or not smoothness is fundamental in the detection. We conclude that, when using smoothness, there

are only few additional detections, while the position of the maximal meaningful boundaries may

change a little bit. The NFA also significantly decreases. The small number of new detections and

the fact that each partial detector can detect most image edges prove a contrario that contrast and

regularity are not independent in natural images.

An a contrario model of regularity has been proposed in [Cao03]. It assumes that the variation of the

orientation of the tangent between two samples is a random value uniformly distributed in (−π, π).
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(a) (b)

(c) (d)

(e) (f)

Figure .: Image registration. (a) and (b) are two images from a movie during a rightward traveling. (c) and

(d) are the meaningful boundaries in the previous images. (e) and (f) are the shape elements of (c) and (d) that

match with a number of false alarms less than 10−7 (this result was obtained with the algorithm we propose in

Chapter , which is based on an a contrario definition of shape matching).
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Figure .: Illumination, local contrast and regularity. Left: original image. Middle: meaningful contrasted

boundary. Right: meaningful contrasted and smooth boundary with local contrast. With contrast only, a single

boundary appears on the right with the contrast due to illumination. If contrast is localized, then more boundaries

are detected. If we also add a regularity constraint (see section .. below), there are still more detections. These

boundaries are very different from texture since they are nearly convex and parallel. They are eliminated by the

cleaning procedure described in section ...

Thus, the implicit a contrario model is random walks with isotropic and independent increments.

This model is not really adapted for the following reason. All the curves we detect are level lines, thus

boundaries of compact sets. As a consequence, they do not self-intersect. While the local influence

is not clearly visible, this implies that long level lines are much more regular than random walks.

This logically leads to an overdetection of long level lines because the independence assumption is

strongly violated at very long range. The solution we propose is to stick to Helmholtz principle: “no

detection in white noise”. Thus we have to learn the regularity of level lines in white noise, and use

this as the a priori distribution.

.. Definition of local regularity

Let l0 > 0 be a fixed positive value. Let C be a rectifiable planar curve, parameterized by its length.

Let x = C(s0) ∈ C. With no loss of generality, we assume that s0 = 0.

Definition 4.4 We call regularity of C at x (at scale l0) the quantity

Rl0(x) =
max(|x− C(−l0)|, |x− C(l0)|)

l0
. (.)

Of course, this definition really makes sense if the length of C is larger than 2l0. This definition of

regularity (see Figure .) is related to the Hausdorff dimension of C around x. First, Rl0(x) 6 1,

with equality if and only if either C((−l0, 0)) or C((0, l0)) is a line segment. On the contrary, if

Rl0(x) is small, then the curve is highly curved around x.

We can also interpret Rl0(x) as a function of the local curvature. Indeed, if C is a circle with large

enough radius ρ, then

Rl0(x) = sinc

(
l0
2ρ

)
, where sinc x =

sin x

x
. (.)
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Figure .: Regularity definition. The regularity at x is obtained by comparing the radius of the circle with l0.

The radius is equal to l0 if and only if the curve is a straight line. If the curve has a large curvature, the radius will

be small compared to l0.

This approximation is valid when l0 is small compared to ρ. In this case, the regularity is a nonin-

creasing function of the curvature.

This definition is not purely local, but it is also less sensitive to noise compared to differential mea-

sures as the curvature. Let

Hl0(r) = P (x ∈ C, C is a white noise level line and Rl0(x) > r). (.)

This distribution only depends on l0 and can be empirically estimated. Of course, we learn it on level

lines whose length is much larger than l0 in order to avoid quantization effects.

Remark: As expected, the distribution Hl0 is very different in white noise and natural images. In

natural images, the histogram ofRl0 has a peak at 1, corresponding to real objects boundaries (which

often contain alignments). In some textured images, such as paintings, most edges are not real but

subjective and this is clearly visible on the histogram of Rl0 . See Figure .. The distribution also

clearly depends on l0. When l0 grows, the histogram mode moves to lower values. However, we

obtain the same qualitative behavior as above. In Appendix ., we use these distributions to compute

the Hausdorff dimension of white noise level lines. We then quantitatively check that they are much

more smooth than (self-intersecting) isotropic random walks.

Again, the choice of l0 is a natural question. Of course l0 should be larger than Nyquist distance. It

should not be too large either. In experiments we have chosen l0 = 10. But, since NFAs are additive,

we may also choose several reasonables values of l0 (say l0 = 5, 10, 20) and multiply the NFAs by the

number of l0. In practice, changing l0 influences the number of samples and best NFAs are attained

for small l0.

.. Meaningful contrasted and smooth boundaries

Now that we have a background model of regularity, we use it to detect regular curves a contrario. It

is natural to assume, in the background model, that contrast and regularity are independent. Thus

P (C is contrasted and smooth) = P (C is smooth)× P (C is contrasted).
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Figure .: Regularity histograms. Upper row: a white noise image, a scanned photograph and a scanned photo-

graph of a painting. Bottom row: the three regularity histograms for l0 = 10. Since its histogram vanishes near 1,

white noise does not contain any alignments or smooth curves, as foreseen. Nearly all natural images (containing

true edges) have a regularity histogram like the second one. The third image contains mostly subjective edges, as it

is composed of painted strokes. As a consequence, the regularity histogram is much less concentrated around  as for

“natural” images. If we now unzoom the three images (with an adequate smoothing before downsampling), then

the first histogram remains unchanged (scale invariance), while the other two have regularity histograms like the

second one. Indeed, after unzooming, most textures and small scale features disappear, and small gaps get filled.
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Definition 4.5 Let C be a level line. Let

ν = min{|Du(x)|, x ∈ C}, (.)

ρ = min{|Rl(x)|, x ∈ C}, (.)

be respectively the minimal quantized contrast and regularity along C. Let

NFAcs(C) = NllHc(ν)l/2 (Hl0(ρ))l/2l0 . (.)

We say that C is a ε-meaningful smooth boundary if NFAcs(C) < ε.

The number of false alarms is the product of the number of level lines and the probability that the

contrast and the regularity are simultaneously larger than the observed values along a curve with

prescribed length taken in the background model. The probability is computed in the a contrario

model where contrast and regularity are independent and local observations are mutually indepen-

dent. As in section ., this search can be recursively performed by computing local histograms of

the gradient.

In experiments, detection results are qualitatively equivalent with or without regularity. On the other

hand, NFA may decrease a lot for smooth boundaries. Even though the detection is not changed in

one single image, it is still interesting to decrease the NFA as much as possible. Indeed, we may

want to detect boundaries not in a single image but in a database (for instance in shape recognition

applications). We can consider that any database has a size much less than 1015. Thus, curves with a

NFA lower than 10−15 in a single image can also be considered as universally meaningful, since they

will be detected in any database.

.. Comparison with active contours

Active contours is one of the most popular techniques of boundary detection. The first works of Kass,

Witkin and Terzopoulos [KWT87] have been improved and generalized by many authors. Recent

models are more intrinsic, can be expressed implicitly (which ease the possible topological changes of

the active contours) and can use image statistics [CKS97, PD02]. In this section, we do not focus on

any particular active contour model, but try to compare a generic model with meaningful contrasted

and smooth boundaries. Such a comparison has already been made by Desolneux, Moisan and

Morel [DMM03b] for meaningful boundaries. Even though these boundaries are only contrast-

based, they showed that they are very close to active contours in general and particularly to the

model of Kimmel and Bruckstein [KB03]. Since in this chapter we have also introduced a regularity

criterion, comparison is even more adequate.

Let us briefly give a generic active contour model: it is a curve that fits shape contours (hence contrast

should be large along the contour) and which is also as smooth as possible. The problem usually
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assumes a variational formulation. An optimal curve minimizes an energy of the type

E(C) =

∫
C

g(|Du(C(s))|+ λh(curv(C(s))) ds, (.)

where Du is the gradient of a given grey-level image, g is a nonincreasing function, curv(C(s)) is

the curvature of C at point C(s), h is a nondecreasing function and s is the arc-length. The optimal

curve is a trade-off between the external energy depending on the image gradient, and the internal

energy depending only on the curve itself. Such a model can accurately give the position of the

contour. However, it has several drawbacks:

• The model assumes that there is a contour: It cannot be used as a detection algorithm. This also

explains why active contours are also introduced in Bayesian models, where the real question

is: knowing that one object is present, what is the best candidate?

• The initialization is crucial.

• The optimal balance parameter λ (which, for homogeneity reasons, can also be viewed as a

scale parameter) is unknown and depends on the image. It has a strong influence on the result.

If we only consider the homogeneity of the different energy terms, we have to minimize a potential

of the form Lg(|Du|) + λLh(curvC), L being the length of the curve.

Let us now consider the meaningful smooth boundary model. A meaningful curve has a small prob-

ability to occur in the a contrario model. Our regularity measure is a non increasing function of the

curvature (see (.)). Thus, for a meaningful curve, the quantity

(Hc(|Du|)L/2Hl0(Rl0(C)))L/2l0

is small. Let us now take the logarithm of this expression. We obtain an expression of the type

L (Eext(|Du|) + Eint(curvC)) ,

where Eext is a non increasing function of |Du|, and Eint is a non decreasing function of the curva-

ture. The model is qualitatively alike a snake model. Nevertheless, there are three major differences:

. There is a quantitative criterion to decide if the curve has to be detected. Contrary to snakes

algorithm, meaningful boundaries detection is not a minimization algorithm. It is well known

in active contours model that the value of the energy of the minimizer has no interpretation.

All we can say is that a candidate is better than another one. Our model gives a meaning to the

energy-like term. Thus, there is no need for a minimization since we can give thresholds under

which a candidate has to be detected.

. Meaningful boundaries are level lines. Thus, no initialization by hand is needed.

. We do not have to fix the weight functions g and h as well as the scale parameter λ.
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.. Experiments on smooth meaningful boundaries

In general, adding a regularity criterion does not qualitatively change the result. This is in conformity

with the observation of Desolneux et al. in [DMM03b]. Remark also that adding the regularity

criterion does not eliminate irregular level lines that were already detected thanks to contrast. Indeed,

NFAcs(C) 6 NllHc(ν)l/2,

(with the same notations as in Definition .) since Hr(ρ) 6 1. We can only detect more lines,

which is what we want: check whether or not we had misdetections because regularity was not taken

into account. Of course, the NFA of smooth boundaries decreases a lot (about 10−15), and this

can modify maximal meaningful boundaries. As it was already observed in [Cao03], contrast and

regularity are often very redundant, and this explains why the same curves are detected.

Figure ., (INRIA desk) is very geometrical and shows the redundancy between contrast and reg-

ularity. Since adding a regularity criterion does not change the results, we could believe that our

regularity definition is just wrong and does not bring anything. This is not so. Indeed, we can also

define NFA for smooth boundaries, with no care of contrast, as

NFAreg(C) = Nll (Hl0(ρ))l/2l0 . (.)

We retrieve most edges in the desk image with this definition. The conclusions of these experiments

are the following: for natural images, there is a strong redundancy between regularity and contrast.

Pieces of objects boundaries coincide with pieces of level lines, and they can be detected either by

regularity or contrast, or using both criteria.

In Figure ., locally straight structures are also contrasted but the gradient distribution exhibits

large values (since the texture variations are important). This explains why contrasted meaningful

boundaries lose many lines. In this case, our local regularity criterion allows to characterize this

elongated structures.

. Conclusion

In this chapter, we brought a contribution to Desolneux, Moisan and Morel’s theory of meaningful

boundaries. First, we gave a mathematical interpretation of the model. Basically, it means that a

meaningful boundary cannot be generated only by noise. This implies that a meaningful boundary

may contain some spurious parts. We proposed an algorithm to remove them. We also proposed a

multiscale setting to the theory. As a result, detection is less sensitive to noise, in particular quan-

tization noise. We also presented a method that automatically handle local contrast variations, and

do not only use a global measure of contrast. This is very useful for our purpose (shape matching)

since it removes texture that usually does not yield stable shape elements. Finally, we discussed the

importance of regularity in detection. Our conclusion is that it makes detection more robust, but in

natural images, curves that are smooth but not contrasted are empirically quite seldom.
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Figure .: Regularity detectability. Left: original image. In middle, we display the 204 detected contrasted smooth

boundaries as defined in Definition .. On the right, the 96 smooth boundaries, with no contrast information,

defined in (.). All the main boundaries are already present. Of course, contrast may be the main cause of small

NFA, since regularity acts at larger scales. For instance, the window panes have NFA about 10−150 with contrast

and 10−15 with regularity only (which still make them detectable in any image database). The desk on the bottom

right has a NFA equal to 10−60 with contrast and 10−20 with regularity, which is already very small.

Figure .: Influence of regularity. On the left, the original texture contains a lot of elongated structure. Because

the texture shows large contrast variations, meaningfulness is a very strict criterion and contrasted meaningful

boundaries miss many details (middle). In this case, local regularity is important and smooth and contrasted

boundaries allow to retrieve missing lines.
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Experiments show that this model allows to extract a large number of shape elements from natural

images. We cannot pretend to directly extract shapes of images since we believe that many con-

tours are subjective and configurations of the type of Kanizsa’s triangle often appear at lower degree.

For such contours, all local methods are doomed to fail. However, for practical shape matching

by shape elements comparison [LMMM03, MSC+04, MSM03], the MB model with local contrast

and cleaning-up automatically eliminates most edges due to texture or small illumination gradient.

For our purpose, it is the best compromise between the compactness and the completeness of shape

elements dictionaries in natural images.

. Appendix: Numerical estimation of the Hausdorff dimension

of a curve

In order to compute the Hausdorff dimension of identically distributed random curves from the

histogram of regularity, we proceed as follows. Let C be a curve.

Definition 4.6 The Hausdorff measure of dimension α is defined by

lim
δ→0

inf
(Bi)δ−covering

∑
i

|Bi|α,

where the Bi form a covering of C and |Bi| is the diameter ofBi. The family (Bi) is a δ-covering of C if

C ⊂ ∪iBi and for all i, |Bi| < δ.

The problem to estimate this quantity is that it makes no sense to let δ → 0 for digital curves. Indeed,

even for white noise, the precision is bounded from below by Nyquist distance. We assume that the

curve is self-similar. This allows to examine it at larger and larger scales, instead of letting δ go to 0.

Let us cut a curve with length L = 2Nl in N chunks of length 2l. We measure the regularity Rl(i) at

the middle point xi of each piece. The balls with radius Rll nearly form a covering of C. It is not a

covering because the endpoint of the curve chunk may not be the most remote point from the center

(see (.)). Nevertheless, we approximate the measure of C by

Hα(C) '
N∑
i=1

(2lRl)
α ' 2α−1Llα−1Rl

α
,

where Rl is the mean regularity along C. Let us now consider the curve λC with λ > 1. We can

make the same procedure as above with chunks whose length is equal to 2λl. Thus we evaluate the

measure of λC by

Hα(λC) ' 2α−1λL(λl)α−1Rλl
α
.

But, if we now use pieces of curves of length 2l, we also obtain

Hα(λC) ' 2α−1λLlα−1Rl
α
.
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Thus

λαRλl
α

= λRl
α
,

yielding

log(Rλl) =

(
1

α
− 1

)
log λ+ logRl. (.)

We can evaluate α by examining the histograms of Rl as a function of l.

For random walks with independent increments, we find α = 2.02, whereas the true dimension is .

For level lines in white noise, we find α = 1.78. As expected, the level lines of a white noise image

are more regular than random walks.



Chapter 

CURVE SMOOTHING

Abstract: In Chapters  and , the computation of the tree of bilinear level lines, and the selection of a set

of meaningful level lines were addressed. The set of meaningful level lines is a good compromise between

the compactness and the completeness of shape information in an image. Moreover, when meaningful level

lines are computed from bilinearly interpolated images, they do not suffer from pixelization effect. However,

meaningful level lines may be subject to noise, which introduces details that are too much fine in relation to

the essential shape information. Hence, a good shape representation asks for a previous smoothing. Since we

are interested in affine invariant encoding of pieces of shapes, the smoothing procedure should be invariant to

affine transformations. The affine scale space, which is described in this chapter, fits well this requirement. A

fast implementation of the affine shortening due to L. Moisan is also presented here.

Résumé : Dans les chapitres  et  nous nous sommes intéressés au calcul de l’arbre bilinéaire et à l’extraction

d’un ensemble de lignes de niveau significatives. Cet ensemble de lignes significatives est un bon compromis

entre la concision et la complétude de l’information de forme dans une image. De plus, ces lignes étant extraites

des interpolées bilinéaires des images, elles ne présentent presque pas d’effet de pixélisation. Cependant, les

lignes de niveau significatives peuvent être affectées par le bruit, qui introduit des détails trop fins par rapport

à l’information de forme essentielle. Ainsi, une bonne représentation des formes doit être précédée d’une

étape de lissage. Puisque nous sommes intéressés par des codages de formes invariants affine, la procédure

de lissage doit être invariante par transformations affines. Le scale-space affine remplit cette condition. Une

implémentation rapide due à L. Moisan est également présentée ici.

This chapter does not contain original contributions, but we include it here for the sake of com-

pleteness of this dissertation. Sections . and . closely follow the article “On the theory of planar

shape” by Lisani, Moisan, Monasse and Morel [LMMM03], and the book in preparation by Guichard,

Morel and Ryan [GMR04].
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. Affine invariant mathematical morphology and affine scale space

Shape recognition demands a shape representation that is robust to noise. It is then natural to smooth

the shapes before computing the set of features that will be used to represent them. This is particu-

larly true if we want a shape representation that can cope with occlusions, since in that case features

have to be local, what makes them all the more sensitive to noise. Consider now the problem of

smoothing an unknown shape in order to remove noise (and pixelization effects in digital images),

that is, useless information. We immediately realize that we cannot solve this problem by removing all

details whose size is below some pre-defined threshold, since we do not know what is noise and what

is shape information; the notion of noise, or spurious detail, is relative to the scale at which shapes

are observed. Since scale is arbitrary and depends on the observer distance and not on the shapes

themselves, shapes (or images, if features are directly extracted from them) should be smoothed at

several scales, allowing to remove noise at each scale and hence to extract their main features. This

multiscale representation is called scale space.

In [AGLM93], Alvarez, Guichard, Lions and Morel proposed an axiomatic development of image

smoothing. They first introduce several properties that smoothing operators should exhibit, in or-

der to be consistent with some invariance principles which are inherent to visual recognition. These

requirements impose a set of constraints that permits to characterize a class of smoothing operators.

Causality (no information is created in the smoothing process), local monotonicity (local inclusion

of shapes is preserved, at least for small scales) and the regularity condition that images’ second

order characteristics locally determine the smoothing process (locality allows to deal with occlu-

sions), characterize scale spaces as well posed, parabolic PDEs. Further requirements of invariance

to contrast changes and, and translation-rotation invariance, yield curvature evolution equations.

Then they consider three additional constraints: the smoothing operator must be affine invariant

(smoothing should not depend on the position of the camera), contrast invariant (shape information

in images is invariant to contrast changes) and also reverse contrast invariant (a self-dual operator in

the mathematical morphology terminology [Ser82]). This leads to a single PDE, the so-called affine

morphological scale space (AMSS):

∂u

∂t
= |Du|curv(u)

1
3 , (.)

where Du denotes the gradient of the image, curv(u) the curvature of the level lines, t denotes the

scale parameter and the power 1
3

is signed, i.e. s
1
3 = sign(s)|s| 13 . This equation is equivalent to the

affine curve shortening ([ST93]) of all of the level lines of the image, given by the equation

∂x

∂t
= |Curv(x)|

1
3 n, (.)

where x denotes a point of a level line, Curv(x) its curvature and n the signed normal to the curve,

always pointing towards the concavity.

The affine invariance property plays a fundamental role in vision, since affine transforms provide

fine local approximations to projective transforms, specially for small deformations [Fau93]. How-

ever, in order to ensure independence from the observer’s viewpoint, smoothing should ideally be
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projective invariant, but this is not possible. Indeed, no local and causal scale space can be projective

invariant, since asking for affine invariance lets no degree of freedom in the PDE’s characterization

(see [AGLM93]). Hence, projective invariant local smoothing cannot be achieved unless one of

the requirements above is not considered. For instance, the projective evolution of 2D curves pro-

posed by Faugeras and Keriven [FK95] does not verifies the maximum principle, that is, the local

monotonicity property does not hold; the resulting higher order PDE is unstable and its numerical

implementation is still an open problem.

.. Affine erosions and dilations

Schemes for the affine curve shortening based on affine erosions were introduced by Moisan [Moi98],

where it was also shown how to compute exact affine erosion of polygons (the natural digital repre-

sentation of curves) by concatenating pieces of hyperbolae. A fast algorithm based on affine ero-

sions was first reported in [KM99]. This subsection presents a different exposition which fol-

lows [LMMM03] and the book in preparation by Guichard, Morel and Ryan [GMR04], after origi-

nal ideas by Moisan [Moi97, Moi98], by briefly recalling some definitions and results. We refer the

reader to [GMR04, LMMM03] for all proofs and for a more detailed exposition. This series of results

describe a practical derivation of the affine invariant smoothing, which directly leads to the design

of a fast algorithm. Basically, the approach is based on the mathematical morphology formalism and

consists in defining an affine distance of a point to a set, which then permits to define affine invariant

set erosions and dilations. A result by Guichard and Morel proves that these filters are consistent with

Equation (.), and yield a natural formal derivation for Moisan’s scheme [Moi98].

In what follows, SL(R2) denotes the special linear group, defined as the set of 2 × 2 nonsingular

matrices of determinant 1. A set operator T is said to be special affine invariant if AT = TA for

every A in SL(R2).

“Solid shapes” X are defined, in whole generality, as closed nonempty subsets of R2. Let x ∈ R2

and ∆ an arbitrary straight line passing by x. If x /∈ X , two and only two connected components of

R
2 \ (X ∪∆) contain x in their boundary. These two sets, denoted by CA1(x,∆, X), CA2(x,∆, X)

(see Figure .), are called the chord-arc sets defined by x, ∆ and X , and can be ordered so that

area(CA1(x,∆, X)) 6 area(CA2(x,∆, X)).

Definition 5.1 Let X be a "solid shape" and x ∈ R2, x /∈ X . The affine distance of x toX is the real

number δ(x,X) = inf∆ area(CA1(x,∆, X))1/2, δ(x,X) = 0 if x ∈ X .

Definition 5.2 The affine σ-dilation D̃σ and the affine σ-erosion Ẽσ are set operators defined on

X ⊂ R2 by D̃σX = {x, δ(x,X) 6 σ1/2} and ẼσX = {x, δ(x,Xc) > σ1/2} = (D̃σX
c)c.

Proposition 5.1 The affine invariant erosions and dilations Ẽσ and D̃σ are special affine invariant

monotone operators.
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Figure .: (From [GMR04]) Affine distance.

It is also clear than the affine invariant erosions and dilations are translation invariant operators.

Thus, Matheron theorem (Theorem . in [GMR04]), which holds for translation invariant mono-

tone operators, can be applied in order to give them a standard form. This leads to the following

definition and proposition:

Definition 5.3 B is an affine structuring element if its interior contains 0, and if there is some b > 1

such that for every line ∆ containing 0, both connected components of B \ ∆ containing 0 in their

boundary have an area larger or equal to b (see Figure .). The set of affine structuring elements is

denoted by Baff .

Proposition 5.2 For every set X ,

ẼσX =
⋃

B∈Baff

⋂
y∈σ1/2B

X − y = {x, ∃B ∈ Baff , x+ σ1/2B ⊂ X}.

Figure .: (From [GMR04]) An affine structuring element: all lines passing by 0 divide B into several connected

components. All of them which contain 0 in their boundary have area larger or equal to b.
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By Proposition ., x belongs to ẼσX if and only if for every straight line ∆, chord-arc sets containing

x have an area strictly larger than σ. Conversely, it is also stated that:

Corollary 5.1 ẼσX can be obtained from X by removing, for every straight line ∆, all chord-arc sets

contained in X which have an area smaller or equal than σ.

Definitions . and . are equivalent to definition  in [Moi98]. In the next subsection we give a

result by Guichard and Morel which states the consistency of alternated affine erosions and dilations

with the AMSS. Hence, alternating affine erosions and dilations on the setX surrounded by a Jordan

curve yields a numerical scheme that computes the affine shortening (.) of the curve.

.. Consistency of the affine erosion/dilation scheme with the affine invariant

PDE

The main difficulty for showing the consistency of a fully affine invariant scheme with a PDE lies

in its non-locality. Indeed, the set of affine structuring elements contains stretched sets of any size.

Guichard and Morel introduce the notion of localizability of structuring elements that follows. This

localization is the key point to prove the announced consistency.

Definition and Proposition 5.1 ([GMR04]) A set of structuring element B is localizable if it is made

of compact connected sets containing 0 and if there exists a constant c > 0 such that for every ρ > c we

can assert that ∀B ∈ B,∃B′ ∈ B, B′ ⊂ D(0, ρ) and B′ ⊂ D c
ρ
(B) = {x, infy∈B d(x, y) 6 c

ρ
}, where

d denotes the Euclidean distance.

As a consequence, defining Bσ = {σ1/2B,B ∈ B}, one also has :

∃ c > 0,∀ σ 6 c−1r2,∀ B ∈ Bs,∃ B′ ∈ Bσ, B′ ⊂ D(0, r) and B′ ⊂ D cσ
r

(B).

Proposition 5.3 ([Moi98]) Baff is localizable.

The localizability of Baff proves to be crucial for the following result:

Theorem 5.1 ([GMR04]) Let B = Baff , and set Bσ = σ
1
2B its scaled version. Consider the alternate

operator ISσSIσ, where for any real valued image u(x) on the plane,

SIσu(x) = sup
B∈Bσ

inf
y∈B

u(x+ y), ISσu(x) = inf
B∈Bσ

sup
y∈B

u(x+ y).

Then, there exists a constant cB > 0 such that for every C3 function u(x), one has

lim
σ→0

ISσSIσu(x)− u(x)

σ
2
3

= cB|Du|(curv(u)(x))
1
3 .

This uniform consistency of the alternate operator ISσSIσ with the affine morphological scale space

is a sufficient condition for the convergence of the scheme to the AMSS, thanks to a result by Barles

and Souganidis [BS91].
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Theorem 5.2 ([GMR04]) Let u0 be a bounded and uniformly continuous function in R2. Let uσ be

defined by uσ(x, t) = (ISσSIσ)nu0(x) if nωσ2/3 6 t < (n + 1)ωσ2/3, where ω = 1
2

(
3
2

)2/3
. Then,

when σ → 0, uσ tends locally uniformly to the unique viscosity solution of

∂u

∂t
= |Du|(curvu)1/3.

Operators SIσ and ISσ correspond respectively to the inf-sup form of affine invariant erosions and

dilations (recall that a well known result by Matheron states that every monotone, translation and

contrast invariant operator admits an inf-sup form). Thus, applying the alternate scheme ISσSIσ
to u is equivalent to apply alternate affine set erosions and dilations to each level set of u (this holds

because these operators are monotonous and continuous). Level lines move following Sapiro and

Tannenbaum affine curve shortening. Consequently, the infinitesimal iteration of affine set ero-

sions/dilations (defined in subsection ..) on a solid shape X asymptotically yield the affine curve

shortening of its boundary.

The leading ideas behind Moisan’s scheme for the affine curve shortening [Moi98] are given by

Corollary . and Theorem .. The next section summarizes the main steps of this algorithm,

following the description presented in [LMMM03], where a detailed exposition of these steps can

be found.

. A fast invariant curve affine erosion-dilation scheme

Let c0 be a Jordan curve, which is the boundary of a simply connected set X . As we saw in the

previous section, iterating affine erosions and dilations onX gives a numerical scheme that computes

the affine shortening cT of c0 at scale T . If ct is the curve represented by the function s 7→ C(s, t),

then
∂C

∂t
(s, t) = |Curv(s, t)|

1
3 n(s, t), (.)

where Curv(s, t) and n(s, t) are the curvature and the normal vector at the point with curvilinear

abscissa s of the curve ct = C(s, t).

A fast algorithm

In general, curves are numerically represented as polygons. Assuming then that c0 is a polygon, it

can be shown that the exact affine erosion of X is made of straight segments and pieces of hyperbo-

lae [Moi98]. However, such a precision is not really needed; numerically, a good approximation by

a new polygon is enough. Now the point is that the combination of an affine erosion plus an affine

dilation of X can be approximated by computing the affine erosion of each convex component of c0,

provided that the erosion/dilation area is small enough. This leads to a fast algorithm proposed by

Koepfler and Moisan [KM99], since if X is convex, then it has been shown in [Moi98] that its affine

erosion can be exactly computed in linear time.
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The algorithm consists in the iteration of a four-steps process:

. Break the curve into convex components. This operation permits to reduce the problem to the

computation of affine erosion of convex pieces of curves. This is much faster (the complexity

is linear) and can be done simply in a discrete way. Inflexion points are computed as the points

in the discrete curve where the sign of the determinant [Pi−1Pi, PiPi+1] given by consecutive

pointsPi−1,Pi andPi+1 changes. In order to avoid spurious (small and almost straight) convex

components due to numerical artifacts, the computer’s finite precision is taken into account in

this computation.

. Sample each component. At this stage, in order to ensure the stability of the scheme, points

are removed or added in the curve, so that a certain regularity of the curves’ discretization step

is maintained. The criteria is to have the Euclidean distance between two consecutive points

between ε and 2ε (ε being the absolute space precision parameter of the algorithm).

. Apply discrete affine erosion to each component. This step, which is the central core of the

algorithm, is detailed below.

. Concatenate the pieces of curves obtained at step . The result is then a new closed curve on

which the whole process can be applied again.

.. Discrete affine erosion of convex components

The affine erosion computation based on the breaking of the initial curve into convex components,

may give bad estimates of the continuous affine erosion+dilation when the area of one component

is less than the erosion parameter. That is why the approximation of the affine erosion of scale σ of

the whole curve is not performed in a single step, but as a series of affine erosions of effective area

σe < σ. This area is computed as follows:

• Compute the area Aj of each convex component Cj = P j
0P

j
1 ...P

j
n−1, given by

Aj =
1

2

n−2∑
i=1

[
P j

0P
j
i , P

j
0P

j
i+1

]
.

• Define the effective area σe = max
{
σ
8
,minj Aj

}
. The choice of σ/8 is rather arbitrary and

guarantees an upper bound to the number of iterations required to achieve the final scale.

The discrete erosion at scale σe of each component is defined as the succession of each middle point

of each segment [AB] such that

. A and B lie on the polygonal curve,

. A or B is a vertex of the polygonal curve,

. the area enclosed by [AB] and the polygonal curve is equal to σe.
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The validity of this strategy is a consequence of the middle point property stated in [Moi98]. This

property basically asserts that the boundary of a σ-eroded convex set is included in the envelope of

σ-chords, which is given by the middle points of these chords.

.. Iteration of the process

The numerical iteration scheme follows directly from Theorem .. The affine curve shortening of

a Jordan curve c0 at scale T can be computed as

(
D̃

( T
nω )

3/2 ◦ Ẽ
( T
nω )

3/2

)n
(c0), with n large enough.

In the fast algorithm described here, curves are broken into their convex components. Hence, in one

iteration step only an affine erosion of area
(
T
nω

)3/2
has to be applied to each of these convex sets,

since for any convex set X , D̃σX ≡ X (indeed, the affine distance δ(x,X) is equal to 0 if x ∈ X

by definition, and its value is +∞ if x /∈ X for convex sets); each iteration is then followed by a

concatenation of the affine eroded convex components.

.. Comments

The algorithm involves the following parameters:

- T , the scale to which the input curve must be smoothed;

- εr, the relative spatial precision at which the curve must be numerically represented;

- n, the minimum number of iterations required to compute the affine shortening (it seems that

n ' 5 is a good choice). From n, the erosion area σ used in step  is computed with the formula

σ2/3 = T
nω
.

Notice that thanks to the σ/8 lower bound for σe, the effective number of iterations cannot

exceed 4n.

The algorithm complexity is linear in time and in memory. No derivation or curvature computation

is necessary, since each new curve is obtained as the set of the middle points of some particular chords

of the initial curve, defined themselves by an integration process (an area computation). This ensures

the stability of the algorithm.

. Illustration

Figure . shows that a slight smoothing eliminates the quantization effects. These effects are only

due to image representation, and provide therefore no useful information for shape recognition. In

a certain manner, discarding it permits to focus on the discriminatory information. Numerically, we

set T = 0.5 in order to eliminate details of size 1 pixel.

Let us now illustrate the (special) affine invariance property of the affine curve shortening. Figure .

shows two curves c0 and c′0; c′0 is the image of c0 by an affine transform A (detA = 1). Both curves

are smoothed using Moisan’s geometrical implementation of the affine curve shortening, at scales T



5.3. Illustration 

Figure .: A close-up on meaningful level lines (on the left). Quantization effects can be seen. After a slight

smoothing, these effects disappear (on the right).
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equal to 1.0, 2.0, 3.0 and 4.0. Figure . shows, for each of the scales T , the superimposition of c′T and

the image of cT byA. Visually, the superimposition appears to be very accurate. The results illustrate

then the consistency of the fast affine erosion-dilation scheme with the affine invariant PDE.

Figure .: Left: curve c0. Right: curve c′0, which is the image of c0 by an affine transform A.

In Figure . we present the same experiment, but using an implementation of the mean curvature

motion
∂C

∂t
(s, t) = |Curv(s, t)|n(s, t), (.)

instead of the affine curve shortening. Like the affine erosion, the implementation used here is based

on area computation. Smoothing is also performed at scales T equal to 1.0, 2.0, 3.0 and 4.0, Differ-

ences start to be noticeable at T = 1.0, in the curvature extrema, but they only become significant at

larger scales. Hence, when performing slight smoothing, as we do in our shape recognition frame-

work, using the mean curvature motion would led to similar results. However, in general, if we want

to be consistent with the affine invariance requirement for shape recognition (stated in Chapter ),

the geometric affine scale space described in this chapter is called for. This is all the more true when

two shapes which are observed at very different scales are to be compared (notice that in that case,

a multiscale approach has to be considered: the two shapes would have to be smoothed at different

scales, given by the zoom factor between them; since this zoom factor is unknown, this means that

we should smooth both shapes at several scales and encode all of them).
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T = 1.0 T = 2.0

T = 3.0 T = 4.0

Figure .: Curves c0 and c′0 in Figure . are smoothed with the affine curve shortening PDE, at scales T =
1.0, 2.0, 3.0 and 4.0. Then, for each T in {1.0, 2.0, 3.0, 4.0}, cT is transformed by A and superimposed to c′T .

The curves superimposed are very close, and differences cannot be perceived.
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T = 1.0 T = 2.0

T = 3.0 T = 4.0

Figure .: Curves c0 and c′0 in Figure . are smoothed with the mean curvature motion, at scales T =
1.0, 2.0, 3.0 and 4.0. Then, for each T in {1.0, 2.0, 3.0, 4.0}, cT is transformed by A and superimposed to

c′T . Differences start to be noticeable at T = 1.0, in the curvature extrema, but they only become significant at

larger scales.



Chapter 

FLAT PIECES ON CURVES

Abstract: Since the seminal work of Lamdan et al. [LSW88], bitangent lines are well-known to be of high

interest to build up semi-local invariant curve descriptions. Nevertheless, these bitangent lines do not en-

able to encode convex curves (which show none). Moreover, some non-convex curves may show some small

oscillations over a straight portion on which numerous bitangent lines are detected, leading to unstable and

unreliable invariant descriptors. Another robust direction is given by flat pieces on curves (i.e. a piece of curve

on which the direction of the tangent lines does not vary too much). For instance, some convex curves such

as polygons show many of them. In this chapter, we propose a definition of flat pieces based on an a contrario

model, that, coupled with bitangent lines, enable to encode nearly all kinds of curves.

Résumé : Les bitangentes sont connues depuis les travaux de Lamdan et al. [LSW88] pour leur intérêt dans

la définition de descripteurs invariants semi-locaux. Néanmoins, ces bitangentes ne permettent pas de coder

les courbes convexes (qui n’en présentent aucune). De plus, des courbes non-convexes peuvent présenter une

partie correspondant à des petites oscillations autour d’une droite sur lesquelles de nombreuses bitangentes

sont détectées ; les descripteurs invariants qui correspondent sont alors instables et non fiables. Dans ce cha-

pitre, nous proposons une définition des morceaux plats basées sur un modèle a contrario qui, couplés aux

bitangentes, permettent de coder quasiment tout type de courbe.

. Segment detection in images

Segment or straight line detection is one of the cornerstones of computer vision. Indeed, it is often a

preprocessing step of shape recognition, shape tracking [DF90], vanishing point detection [ADV03],

convex shape detection [Jac96], etc. Most of the time, straight lines in images are conceived as con-

tiguous edges. Many line detection algorithms therefore require a previous local edge extraction

step, such as a Canny’s filtering [Can86]. Hough Transform [Hou62] and algorithms derived from

it [IK88] have been widely studied for that purpose. The goal of these methods is to identify clusters

in a particular space (the parameter space of a line, either (ρ, θ) with ρ the distance of the line to the

origin, and θ the angle between a vector normal to the line and a fixed direction, or (a, b) where a
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is the slope and b the ordinate of the intersection between the straight line and the ordinate axis).

Hough Transform method consists in a voting procedure: every pixel votes for the parameters of

the line going through it. Another method consists in chaining first the local edges by taking into

account connectivity (see for an example [Gir87]), and then in identifying segments among the dis-

crete curves [LB93]. The main drawbacks of these methods are their number of thresholds (edge

detection needs at least a gradient threshold, Hough Transform needs a quantization step for the pa-

rameter space discretization and a threshold for the voting procedure) and their computational heav-

iness and instability (due to local edges chaining). They are moreover very sensitive to noise and to

the lack of accuracy of edge detectors: they indeed aim at detecting exact discrete straight line, in the

sense that no outlier edgel is allowed. A concept of fuzzy segments has been proposed [DRRRD03],

but the primary detection is still based on a set of points derived from a local edge detector.

On the other hand, Desolneux et al. [DMM00] proposed a parameterless method that detects mean-

ingful alignments in images. A meaningful alignment is conceived as a segment where a certain

proportion of points have their gradient orthogonal to the same line, up to a given precision. Let us

recall the exact definition of a meaningful alignment. A length l segment is ε-meaningful in aN ×N
image if it contains at least k(l) points having their direction aligned with the one of the segment,

where:

• k(l) is given by: k(l) = min{k ∈ N, P (Sl > k) 6 ε/N4}, and

• P (S(l) > k) is the probability that, in at least k points in a straight segment of length l, the

gradient of the image is orthogonal to the segment, up to a given precision.

The main drawback of this method for segment detection is that it highlights directions and not seg-

ments: while the detected straight lines may correspond to the direction of several disjoint segments,

gradient direction is allowed to differ between them from the line direction.

In his PhD thesis [Lis01], Lisani defines “flat points” on curves by using two arbitrary parameters. A

“flat point” is the center of a curve segment for which the sum of the angle variations of tangents is

small enough (less than . radian) over a large enough piece of curve (greater than  pixels). This

algorithm misses many flat points, and does not really detect segments, as we show in Section ...

None of the methods we have described is fully satisfying for shape recognition purposes. This chap-

ter presents a new flat pieces detector based on bilinear level lines, since they allow accurate (local)

segment detection while avoiding chaining problems intrinsic to edge detection. As we will see, the

proposed algorithm extracts accurate straight pieces of level lines. It involves a single parameter,

which can be set once for all as discussed in the following section.

Figure . shows the results for some of the algorithms which we just discussed. As far as flat pieces

detection is concerned, Desolneux’s alignments are suitable neither for detecting accurate segment

directions nor for detecting segment lengths. The naive segment detector based on Hough transform

which illustrates the discussion is certainly not the best that can be done using Hough techniques.

Nevertheless, even a more clever algorithm would face the same problem as this one: it involves nu-

merous critical parameters (different parameters would drastically change the results). Some isolated
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points are detected as segments because they fall “by chance” on the same straight line as another

more distant segment and therefore collect its votes. Both algorithms (alignments and the Hough

transform-based algorithm) are not local enough: that is why segments over the characters in the

test image are not detected. Canny’s edge detector is well known to suffer from lack of accuracy at

edge junctions (where the gradient is badly estimated). Here it is not a real issue since segment lines

are searched between junctions, where edges are more accurately detected. Nevertheless, those edge

detectors need several critical thresholds.

. Flat pieces detection

In their founding paper [FB86], M.A. Fischler and R.C. Bowles argue that any curve partitioning

technique must satisfy two general principles: stability of the description, and a complete, concise

and complexity limited explanation. Smooth sections of curves appear thus to play a major role,

because they fit both principles. In other words, Guy and Medioni [GM96] consider segment lines

as salient features in images.

The concept of “flatness” of a piece of curve is measured in what follows by how much the curve

turns on this piece with regard to the direction given by the underlying chord (see figure .). Since

we would like to detect flat pieces of arbitrary length, we test chords of various lengths: the proposed

algorithm can thus be seen as a multi-scale process. This point of view is not new and has been

used for the more general problem of polygonal approximation of digitized curves (see for exam-

ple [SG80]).

In our opinion, flat pieces detection on a curve should meet the following requirements:

• It should detect not only points around which the curve is flat, but precise pieces on which the

curve is pretty straight.

• Long flat pieces should be allowed to move more far away from their underlying chord than

short ones.

• The detection should be intrinsic to the curve, and not depend on other curves in the image.

• Detected flat pieces should not overlap.

• Since flat pieces detection is generally the first step of a more general algorithm, it deals with a

huge amount of information. Therefore, computational complexity is crucial.

Several methods based on these requirements have been tested. For example, we have tested the

method described in Chapter , by computing the number of false alarms of a match between a piece

of curve and the underlying chord. Results do not appear to be convenient: the NFA of small pieces

is too low with regard to overlapping longer pieces, leading to an oversegmentation of straight lines.

Moreover, the NFA computation for any “candidate” involves the entire image (through the number

of tests and the estimated probabilities), making the detection not intrinsic to the curve but to the
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(a) (b)

(c) (d)

(e) (f)

Figure .: Segment detection. (a) original image; (b) maximal meaningful alignments; (c) Canny’s edge detector;

(d) Points that correspond to an edge and that lie at the same time on a direction detected by voting in the Hough

space; (e) local maximal meaningful level lines; (f) result of the proposed algorithm. See text for discussion.
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C

Ci+1

Ci

−→u

Figure .: A piece of discrete curve with the underlying chord C (thick segment line).

image. Algorithms derived from Desolneux et al.’s meaningful alignments were also investigated, and

results were unsuccessful. Indeed, estimating the probability that k points among l have a tangent

with the same direction as the chord is not relevant to detect flat pieces. In such a model, consec-

utive alignments are indeed not favored, but here we are particularly interested in them. All these

considerations led us to the algorithm proposed in the following section.

.. Flat pieces detection algorithm

Let us consider a chord from a given curve: its endpoints delimitate a piece of curve of length l

(measured in pixels). Since we would like to measure how much the piece turns with respect to the

direction−→u given by the chord, we define:

α = max
i∈{1...n−1}

{∣∣∣angle(
−−−−→
CiCi+1,

−→u )
∣∣∣} ,

where the discrete piece of curve is made of the n points Ci (there is no direct link between l and n

since the discretization step of the curve is unspecified).

Let us suppose that α is below some fixed threshold α∗. Following Desolneux et al. [DMM01], we

consider that points at a geodesic distance (along the curve) larger than 2 are statistically indepen-

dent. Thus, we consider l/2 statistically independent points along the curve. The probability of the

event “l/2 statistically independent points on a piece of curve show a tangent line which makes an

angle lower than α among all the pieces of curve for which α < α∗” is:

p(α, l) =
( α
α∗

)l/2
.

Of course, the lower is p(α, l), the more the piece of code is straight.

This straightforward computation is valid under the assumption that among all the pieces of curves

such that α < α∗, α is uniformly distributed over [0, α∗]. This assumption is true under the more

general hypothesis that all angles α are uniformly distributed over [0, π]. Such a model is not com-

pletely accurate, since we do not consider random walks but level lines which are constrained not to
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self-intersect. However, it is accurate enough to be an a contrario model against which an hypothesis

is tested (“is this piece of curve likely to be a flat piece?”). This last sentence may sound a bit weird

since up to now “flat pieces” have not been precisely defined. In fact, flat pieces are defined as rare

events with regard to this model for the distribution of α, with the independence assumption.

For each piece of the curve, the corresponding α is estimated. If it satisfies α < α∗, the probability

p(α, l) is computed. Only pieces for which p(α, l) is under a predetermined threshold p∗ are kept

(these pieces are called “candidates”). Since there is no reason that such pieces do not overlap, a

selection has to be made among them in order to define the flat pieces of the curves. A greedy

algorithm is used: the piece of curve with the lowest p is marked as a “flat piece” , then all candidates

that share a common part with this “best” flat piece are eliminated, and the process is iterated with

the remaining candidates.

The whole algorithm involves two thresholds. The first one, α∗, is not critical. Indeed, since we are

interested in detecting flat pieces, it is natural to a priori reject all pieces of curve for which α is upon

a large threshold. We choose α∗ = 1 radian once for all. The second threshold, p∗ is not critical

either; it is just introduced in order to make the greedy algorithm faster, since it enables to drastically

reduce the number of candidates. The choice of p∗ is discussed in Section ... Increasing α∗ and p∗

makes the number of candidates greater by accepting less straight pieces of curve. Nevertheless, most

of the time the greedy algorithm will eliminate these candidates for the benefit of lower probability

candidates which are included in them.

The computation of α clearly depends on the discretization. The curves which the proposed algo-

rithm deals with are level lines of images. Their “natural” discretization is one pixel, that appears to

be accurate enough in order to compute α.

Thus, the proposed method involves several parameters (the thresholds α∗ and p∗, the discretization

step of the curves), but they are set once for all, and do not need to be tuned by the user for each

experiment.

The flat pieces detection algorithm is summarized in what follows.

Let us consider a Jordan curve on which flat pieces are searched.

Part I: candidate identification.

For each chord of the curve:

. Compute the maximum angle α between the chord and the piece of curve delimited by both

ends of the chord. If n denotes the number of points Ci on this piece of discrete curve:

α = max
i∈{1...n−1}

{∣∣∣angle(
−−−−→
CiCi+1,

−→u )
∣∣∣} .

. If α > 1 rad, a priori reject the piece; otherwise compute p(α, l) =
(
α
α∗

)l/2
= αl/2, where l is

the length of the considered piece of curve.

. If p(α, l) > p∗, reject the piece.
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Part II: greedy algorithm

. Keep the candidate for which αn is minimal, mark it as flat piece, and discard it from the list of

candidates.

. Reject all candidates that meet this “best” candidate.

. Iterate until no candidate is available anymore.

More precisely speaking, “all” chords are not tested, but a subsample of them, made of chords of

length 10, 20, 30, . . . , 180, 200, and then an exponential progression of the tested lengths, so that the

algorithm does not waste too much time for long curves. The only consequence of this discretization

procedure is that long straight lines (in practice, lines whose length is larger than  pixels) could be

split into two pieces (see Figure . for an example).

.. Probability threshold

As we said earlier, because of the greedy algorithm, there is no need for a very accurate choice of p∗.

In most experiments, we set p∗ = 10−3, or less if we are interested in very accurate flat pieces.

Experimental evidence shows that p∗ = 10−3 is the maximum value for which no detection can be

seen in level lines extracted from a white noise image, containing the same amount of level lines than

a standard natural image. In this sense, the proposed algorithm satisfies the Helmholtz principle: no

detection is found in noise images. Again, what is important here is that the probability threshold is

set once for all experiments, and has little influence on the final result.

.. Some properties of the detected flat pieces

It is true that the condition defining the candidates (αl/2 < p∗) is not a real constraint for long curves.

For example, if p∗ = 10−3 and l = 200, all curve pieces such thatα < 0.97 are accepted as candidates.

Nevertheless, long pieces of curves often show “flatter” subpieces with a lower probability. A case

in which this is certainly not true is the case of circles. Let us examine this further, and compute

the longer piece of circle which will be marked as a flat piece. Figure . illustrates the following

computations.

Proposition 6.1 A circle of radius R has flat pieces if and only if R > −e log(p∗).

In such a case, the length of the detected flat pieces is L = 2R sin(1/e).

Proof: A circle of radius R being given, let us consider a chord of length L defining a maximum

angle α with the corresponding piece of curve (0 6 α 6 π/2). The values of α and L are re-

lated by L = 2R sin(α). The probability defined earlier is αRα (or expressed as a function of L:

arcsin(L/2R)R arcsin(L/2R)). The function α 7→ αRα shows a minimum for α = 1/e. Consequently,

∀α, αRα > e−R/e.
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Lα

2R

Figure .: Illustration of the flat pieces computation on a circle.

Thus, if the probability threshold is set to p∗, and if R < −e log(p∗), then the circles of length R

will show no flat piece. On the contrary, if R > −e log(p∗), the detected flat pieces (after the greedy

step) in circles of radius R will always show a maximum angle α = 1/e (that is to say 21 degrees,

corresponding to an arc of 1/9 of the total circle), and their length will be L = 2R sin(1/e)

Let us remark that p∗ only controls the minimum radius under which no flat piece will be detected:

−e log(p∗). It appears only through its logarithm and small variations of it will not influence the final

result. Now, although for symmetry reasons no piece of circle should be favored by the algorithm, the

position of the detected flat pieces over a circle strongly depends on the starting point of the discrete

curve describing this circle. This makes flat pieces of circular curves not reliable.

. Experiments

.. Experimental validation of the flat piece algorithm

Experimental results are shown in figures . to . (original images can be seen on figure .). For

each image, the computation time is less than  seconds. When images do not show long level lines,

the computation time is less than one second. Such a computation time is clearly too long for real-

time processing, but is still lower than the computation time of the other steps of the whole shape

recognition method that is described along this thesis.

.. Flat pieces correspond to salient features

Figure . shows the result of the proposed flat pieces detector over all level lines in an image (“all”

level lines in the sense that the gray level quantization is 1, and therefore permits to exactly recon-

struct the original image from the level lines and the corresponding gray level). Some segments are
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Figure .: Images (left) and meaningful level lines (right). Top: bretagne, 413 level lines. Middle: evian, 481
level lines. Bottom: Vasarely, 172 level lines.
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Figure .: Flat pieces detection: Bretagne. 1004 detections. Flat pieces as small as the ones in the letters of the

name of the street are detected. Flat pieces in the boundaries of the shadows can be eliminated by dropping down

the probability threshold, as can be seen on figure .. Nevertheless, these detections actually correspond to small

flat pieces.
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Figure .: Flat pieces detection: Bretagne, with p∗ = 10−10, 417 detections. Letters are too small to be detected,

but detected flat pieces are very accurate.
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Figure .: Flat pieces detection: Evian. 448 detections.

Figure .: Flat pieces detection: Evian, with p∗ = 10−10, 64 detections.
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Figure .: Flat pieces detection: Vasarely, 774 detections. Each triangle edge is correctly detected as a single flat

piece.

Figure .: Flat pieces detection: Serena Williams & Puma. Left: Original level lines (425 lines). Middle:

p∗ = 10−3 (675 detections). Right: p∗ = 10−10 (156 detections). Flat pieces on letters are correctly extracted.
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detected over level lines corresponding to quantization noise (i.e. not contrasted level lines over per-

ceptually uniform areas), but these segments actually corresponds to small pieces of straight lines.

They are not detected any longer when probability threshold p∗ is set to 10−10 instead of the standard

value (10−3). Flat pieces are concentrated along edges. This experiment can be seen as a confirmation

that segment lines are actually salient features of images.

When comparing to figures . to ., we notice that practically, flat pieces detection can be restricted

to maximal meaningful boundaries. Indeed, the other level lines do not provide valuable informa-

tion.

.. A comparison between the proposed algorithm and J.L. Lisani’s rule

Our aim was to detect flat pieces on curves in various situations. In his PhD thesis, J.L. Lisani uses

flat points in order to build robust semi-local normalisations. Figures . to . show a comparison

between the proposed flat pieces and flat points. See captions for details.

. Conclusion

In this chapter, we presented a method to detect flat pieces in curves. The presented algorithm

provides:

• segments and not only points. (the segments showed on the illustrations for flat points are

only for visual purpose, flat points do not give any localisation information.)

• a direction given by the endpoints of the detected flat pieces, which is more robust than the

tangent to the flat point.

This latter point is all the more important as the proposed encoding procedure is based on these

directions. Moreover, many more flat pieces are detected than flat points, increasing the number of

codes, and consequently making the representation more complete. As pointed out in Chapter ,

robust inflexion points are most of the time surrounded by a flat piece. Thus, we do not need to

estimate and make use of the inflexion points any more.

As far as smoothing is concerned, let us notice that, generally speaking, the assumption “two points

at a distance greater than  pixels are independent” is no more valid if the curves are smoothed.

Nevertheless, since the smoothing which is performed in our shape recognition framework is very

slight (its scale corresponds to one pixel), we do not take this bias into account.
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(a) (b)

(c) (d)

(e) (f)

Figure .: Flat pieces detection. (a) original image (size: 512×384); (b) 25, 755 level lines (quantization step: 1
gray level) (c) 20, 065 flat pieces detected over these level lines (probability threshold p∗ has here its standard value:

10−3); (d) flat pieces of length greater than 100 pixels among the previous ones; (e) 6, 233 flat pieces detected

over these level lines, when probability threshold p∗ is set to 10−10; (f) flat pieces of length greater than 100 pixels

among the previous ones. Flat pieces appear to be concentrated along edges. These edges appear as thick because a

strong gradation of grey can be seen at their location, and thus many parallel pieces of level lines.
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(a) (b)

(c) (d)

Figure .: Flat pieces detection. (a) 90078 level lines from evian image (quantization step: 1 gray level); (b)

flat pieces detections over these level lines (16533 detections); (c) flat pieces detection with p∗ = 10−6 (4659
detections); and (d) flat pieces detection with p∗ = 10−10 (2041 detections). Flat pieces are concentrated along

edges.



6.4. Conclusion 

Figure .: J.L. Lisani’s flat points: Serena Williams & Puma. 15 flat points are detected. To be compared to the

results on figure ..
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Figure .: Flat points vs flat pieces: Serena Williams & Puma. From left to right and from top to bottom:

considered shape, flat point (7 detections), flat pieces with p∗ = 10−3 (9 detections), flat pieces with p∗ = 10−10

(7 detections). One of the flat pieces in the “legs” of the character M is not detected since these curve pieces are too

small and pose a sampling problem. Since not all chords are tested but a subset of them, endpoints may sometimes

be not conveniently distributed.
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Figure .: Flat points vs flat pieces: character V in Evian. Top: no smoothing. From left to right: original shape,

flat pieces with p∗ = 10−3 (4 detections) and with p∗ = 10−10 (3 detections). Flat points algorithm does not

provide any detection. Bottom: after smoothing (see Chapter ). From left to right: original shape, flat pieces with

p∗ = 10−3 (5 detections) and flat pieces with p∗ = 10−10 (4 detections). With p∗ = 10−3, one of the segments

is split because of the discretization procedure in the multi-scale test of chords. Flat points algorithm does still not

provide any detection.

Figure .: Flat points vs flat pieces: a triangle in Vasarely. Top: no smoothing. From left to right: original

shape, flat pieces with p∗ = 10−3 (3 detections) and flat pieces with p∗ = 10−10 (3 detections), and flat points (4
detections). Bottom: after smoothing (see Chapter ). From left to right: original shape, flat pieces with p∗ = 10−3

(5 detections) and flat pieces with p∗ = 10−10 (2 detections), and flat points (1 detection).
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Chapter 

LOCAL AND GLOBAL INVARIANT ENCODING

OF SHAPES

Abstract: In Chapters  and  we described the shape extraction and smoothing procedures. Here we present

two methods to encode shapes. Both methods build representations invariant up to either similarity or affine

transforms. The first one is semi-local, and can deal with occlusions. However, as we will see, it does not allow

to encode all of the extracted boundaries. Hence, we introduce a second algorithm to globally encode those

boundaries that have not been encoded by the semi-local method.

Both algorithms are based on bitangent lines and flat pieces. This makes encoding very stable, since it relies on

robust directions instead of on some points on the considered curve whose localization may not be numerically

stable.

Résumé : Dans les chapitres  et  nous avons décrit les procédures d’extraction et de lissage des formes.

Nous présentons ici deux méthodes pour les coder. La première est semi-locale, et est robuste vis-à-vis des

occlusions. Néanmoins, comme nous le verrons, elle ne permet pas de coder toutes les frontières extraites.

Nous introduisons donc un second algorithme pour coder de manière globale les frontières qui n’ont pas été

codées par la méthode précédente.

Les deux algorithmes sont basés sur les bitangentes et les portions plates. Ceci rend le codage très stable, car

il repose alors uniquement sur des directions robustes et pas sur des points des courbes dont la localisation

pourrait ne pas être très stable numériquement.

. Previous stages: shape extraction and smoothing

In this chapter we describe a method to build invariant representations of Jordan curves, applied

to the sets of maximal meaningful boundaries extracted from images (see Chapter ). Following

invariance requirements presented in Chapter , shape representation should be invariant to con-

trast changes, robust to noise and invariant to a group of geometric transforms (similarity or affine

groups). It should also be local, in order to deal with occlusions. An algorithm encoding shapes from

an image that almost completely satisfies these requirements can proceed with the following steps:
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. Extraction of maximal meaningful level lines.

. Affine invariant smoothing of the extracted level lines.

. Local encoding of pieces of level lines after affine normalization.

Consider the level lines in an image (i.e. the boundaries of the connected components of its level

sets). This representation has several advantages. Although it is not invariant under scene illumina-

tion changes (in this case the image in itself is changed and no descriptor remains invariant), it is

invariant under contrast changes. The mathematical morphology school has claimed that all shape

information is contained in level lines, and this is certainly correct, in the sense that we can recon-

struct the whole image from its level lines. Moreover, the boundaries of the objects lying in the

image are well represented by the union of some pieces of level lines. Thus, level lines can be viewed

as concatenations of pieces of boundaries of objects and therefore encode all shape information.

Nevertheless, the representation provided by level lines is highly redundant, and may also contain

useless information. That is why, in chapter , we described a method to extract meaningful level

lines [DMM01, CMS04] from images. The algorithm needs no parameter tuning, since parameters

are automatically set based on statistical arguments derived from perceptual principles. Meaningful

boundaries are not contrast invariant, since their detection depends on the contrast distribution in

the image. However, they are still invariant with respect to affine contrast change.

Figure . illustrates that the loss of information of maximal meaningful boundaries is negligible

compared to the gain of information compactness. This reduction is crucial in order to speed up

the shape matching stage following encoding. Otherwise, the presented methodology could not be

realistic for applications such as image retrieval from databases.

(a) (b) (c) (d)

Figure .: Extraction of meaningful level lines. (a) original “La Cornouaille” image, (b) all level lines with grey-

level step equal to 10 ( level lines), (c) all meaningful boundaries ( detections), (d) maximal meaningful

boundaries ( detections).

Once maximal meaningful boundaries are extracted, we need to smooth them in order to eliminate

noise and aliasing effects (we fix the smoothing scale in order to remove details of size one pixel). The

Geometric Affine Scale Space [ST93, AGLM93], described in Chapter , is fully convenient (since
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smoothing commutes with affine transforms):

∂x

∂t
= |Curv(x)|

1
3 n(x),

where x is a point on a level line, Curv(x) the curvature and n(x) the normal to the curve, oriented

towards concavity. We use a Moisan’s fast implementation [Moi98], also described in Chapter . This

step does not involve any user parameter, since the scale at which the smoothing is applied is fixed

and given by the pixel size. Once again, the aim is to reduce the amount of level lines in order to

simplify the most pertinent ones, the final goal remaining the same: to make the shape matching

stage faster. Indeed, as we will see, smoothing reduces the number of encoded shape elements.

The last stage of the invariant shape encoding algorithm is local normalization and encoding. Roughly

speaking, in order to build invariant representations (up to either similarity or affine transforms), we

define local frames for each level line, based on robust directions (tangent lines at flat pieces, or

bitangent lines). Such a representation is obtained by uniformly sampling a piece of curve in this

normalized frame.

The conjunction of these three stages was first introduced by Lisani et al. [Lis01, LMMM03]; the

third stage is also based on Rothwell’s work on invariant indexing [Rot95].

Let us remark that this semi-local normalization/encoding stage only allows to encode non-convex

enough curves. We thus need a second algorithm to globally encode those boundaries that have not

been encoded by the semi-local method. In the following sections we give a more precise description

of both semi-local and global normalization/encoding methods.

. Semi-local normalization and encoding

The semi-local normalization of Jordan curves that we present in this section is based on robust

directions, given by tangent lines at flat pieces, or by bitangent lines. While bitangency is an affine in-

variant property, it is not the case for flat pieces. However, two arguments stand for its consideration.

The first one is that, under reasonable zoom factors, flat pieces are preserved. The second argument

is that inflexion points, which are conserved by affine transforms, are most of the time surrounded

by a flat piece, which is by consequent also conserved by affine transforms. If it is not the case, the

tangent at the inflexion point will not be a robust direction. In that sense, tangent at flat pieces can

also be considered as robust versions of tangents at inflexion points.

We now give the procedures for semi-local normalization/encoding of level lines, for similarity and

affine invariance. In what follows we consider direct Euclidean parameterization for level lines, as

usual.

Similarity invariant normalization and encoding

In order to represent a level line L, for each flat piece, and for each couple of points on which the

same straight line is tangent to the curve, do the following (this procedure is illustrated in Figure .):



 Chapter 7. Local and global invariant encoding of shapes

a) Call P1 the first tangency point and P2 the other one (for flat pieces P1 and P2 are the endpoints

of the detected flat segment). Consider the tangent lineD to these points;

b) Call P1 the previous tangent to L, orthogonal toD, starting from P1. Call P2 the next tangent to

L, orthogonal toD, starting from P2;

c) Find the intersection points between P1 and D, and between P2 and D. Call them R1 and R2,

respectively;

d) Store the normalized coordinates ofN equi-distributed points over an arc onL of lengthF ·‖R1R2‖,
centered at C, the intersection point of L with the perpendicular bisector of [R1R2]. By “normal-

ized coordinates” we mean coordinates in the similarity invariant frame defined by points R1, R2

mapped to (−1
2
, 0), (1

2
, 0), respectively.

DR1 R2P1 P2

P2

P1

C

L

Figure .: Similarity invariant semi-local encoding based on the bitangent lineD.

Two implementation parameters, F and N , are involved in this normalization procedure. The value

of F determines the normalized length of the shape elements, and is to be chosen having in mind the

following trade-off: if F is too large, shape elements will not be well adapted to deal with occlusions,

while if it is too small, shape elements will not be discriminatory enough. The choice of F faces

then a classical dilemma in shape analysis, addressed in Chapter : locality versus globality of shape

representations. The choice of N is less critical from the shape representation viewpoint, since it is

just a precision parameter. Its value is to be chosen as a compromise between accuracy of the shape

element representation, and computational load.

In Figure . we show all codes extracted from a single boundary, taking F = 5 andN = 45. Except

for the last five codes, which are based on bitangent lines, all codes correspond to flat pieces. Notice

that the representation is quite redundant, and yields shape elements describing the boundary over

a wide range of scales. While the representation is certainly not optimal because of redundancy, it
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increases the possibility of finding common shape elements when corresponding shapes are present

in images, even if they are degraded or subject to partial occlusions.

All the experiments in Chapter  concerning matching based on this semi-local encoding (section .)

were carried out using F = 5 and N = 45, since it seems to be a good compromise solution. Hence,

in general, these parameters can be fixed once for all, and they are not to be tuned by the user.

Figure .: Example of semi-local similarity invariant encoding. The boundary on top left generates  codes

(F = 5, N = 45). The five last codes were based on bitangent lines, the other ones were based on flat pieces. The

representation is quite redundant, and shape elements describe the boundary over a wide range of scales.

Affine invariant normalization/encoding

In order to derive an affine invariant representation of a level line L, for each flat piece, and for

each couple of points on which the same straight line is tangent to the curve, do the following (this

procedure is illustrated in Figure .):

a) Call P1 the first tangency point and P2 the other one (for flat pieces P1 and P2 are the endpoints

of the detected flat segment). Consider the tangent lineD to these point;
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b) Starting from P2, find the next tangent to L which is parallel toD. Call itD′;

c) Consider the straight lines which are parallel to D and lay at 1/3 and 2/3 of distance from D to

D′. Call themD1 andD2, respectively;

d) Starting from P2, find the next intersection points between L and D1, and L and D2. Consider

the straight line T1 defined by these two points.

e) Starting from P1, find the previous tangent to L parallel to T1, and call it T2;

f) Define points R1, R2, and R3 as the intersections between D and T2, D and T1, and D′ and T2,

respectively;

g) PointsR1, R2, R3 define an affine basis. The affine normalization is fixed by mapping {R1, R2, R3}
into {(0, 0), (1, 0), (0, 1)} if {R1, R2, R3} is a direct frame, and into {(0, 0), (1, 0), (0,−1)} if not.

h) Encoding: consider the intersection point between L and the straight line equidistant from D
and D′ (the first one starting from P2). Call it C. Normalize the portion of L having normalized

length F / at both sides ofC. StoreN equi-distributed points over the normalized piece of curve.

As we did for the similarity invariant normalization, implementation parameters were fixed once for

all to F = 5 and N = 45. Figure . shows all codes extracted from a single boundary for this choice

of parameters. Notice the encoding is less redundant than for the similarity encoding procedure.

This is due to the fact that the construction of affine invariant local frames imposes more constraints

on the curve than the one for similarity invariant frames.

. Global normalization and encoding

The semi-local normalization/encoding procedures we have just described do not allow to encode

all kind of Jordan curve, even when they show bitangents or flat pieces. The reason is that these

methods impose minimum normalized lengths to shape elements (remember the parameter F was

chosen in order to provide discriminatory enough shape elements). For encoding, a good shape

element should not be too simple, especially if we are interested in an invariant recognition. For

instance, many convex curves can be so alike in affine invariant shape recognition, that decomposing

them into smaller parts (shape elements) does not make any sense. That is why such simple curves

are not encoded by the semi-local normalization/encoding procedure, and a second procedure to

globally encode those boundaries that have not been encoded is needed.

Concerning global shape representations, there are basically two possible approaches: represent

shapes by a set of global invariant features (e.g. invariant moments), or consider global geomet-

ric normalizations. For the first possibility, as we saw in Chapter , a critical issue is the definition

of a distance for shape comparison. Defining distances between shapes seems to be less difficult for

normalization methods, which also have the advantage (contrarily to the representation with a set
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D
D′

R2

R1

P2

P1

D2D1

T2

T1

R3

C

Figure .: Affine invariant semi-local encoding. The encoded shape element is based on the tangent to the flat

piece between marks (top). Bottom: the whole curve normalized in the affine local basis defined on top.
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Figure .: Example of semi-local affine invariant encoding. The boundary on top left generates  codes (F = 5,

N = 45). All codes are based on flat pieces.

of global invariants) to be complete, in the sense the original shape can be reconstructed from its

representation.

Classical normalization methods use Hu’s invariant moments [Hu62]. In this section we will describe

one of these type of methods, proposed by Thierry Cohignac in his PhD thesis [Coh94]. As we will

see, this method has some drawbacks common to all moment based normalization methods: they

rely in the computation of high order moments, what makes them unstable and very sensitive to

noise. This leads us to propose a global normalization technique based on robust directions (shape’s

bitangent lines and flat pieces).

.. A global affine invariant normalization method based on moments

In what follows we call “affine invariant normalization” a method to build shape representations that

are invariant to any planar affine transform T (x) = Ax + b, such that det(A) > 0. In other words,

an affine invariant normalization transforms a planar “solid shape” F (a compact connected subset

of R2) into a normalized shape such that any image of F by a planar affine transformation will lead

to the same normalized shape. Two shapes related by an axial symmetry are not considered to be

equivalent in this framework, and will not yield the same normalized shape.

Let us denote by 1lF the indicator of solid shape F . In order to achieve translation invariance of the

normalized representation, we may assumeF has been previously translated such that its barycenter

is in the origin of the image plane. Hence, the moment of order (p, q) (p and q natural integers) ofF
is defined by

µp,q(F) =

∫
R2

xpyq1lF(x, y)dxdy.

Let SF be the following 2× 2 positive-definite, symmetric matrix

1

µ0,0

(
µ2,0 µ1,1

µ1,1 µ0,2

)
,

where µi,j = µi,j(F). By the uniqueness of Cholesky factorization [GL89], SF may be uniquely

decomposed as SF = BFB
T
F where BF is a lower-triangular real matrix with positive diagonal

entries.
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Definition 7.1 We call pre-normalized shape associated to F the shape : F ′ = B−1
F (F).

Let us prove that the pre-normalized shape is invariant to affine transforms, up to a rotation. We first

state two lemmas.

Lemma 7.1 Let A be a non-singular 2× 2 matrix. Then SAF = ASFA
T.

Proof: Let a, b, c and d be real numbers such that:

A =

(
a b

c d

)
.

The moment of order (2, 0) associated to the shape AF is given by:

µ2,0(AF) = det(A)

∫
R2

(ax+ by)21lF(x, y)dxdy = det(A)(a2µ2,0 + 2abµ1,1 + b2µ0,2).

The same computation for moments of order (0, 2) and (1, 1) yields

µ0,2(AF) = det(A)(c2µ2,0 + 2cdµ1,1 + d2µ0,2),

µ1,1(AF) = det(A)(acµ2,0 + bdµ0,2 + (ad+ bc)µ1,1).

Since µ0,0(AF) = det(A)µ0,0, one can easily check that SAF = ASFA
T.

Lemma 7.2 Let X0 be a 2× 2 invertible matrix. Then, for any 2× 2 matrix X : XXT = X0X0
T if and

only if there exists an orthogonal matrix Q such that X = X0Q.

Proof: Since X0 is invertible, XXT = X0X0
T iff X−1

0 X(X−1
0 X)

T
= Id2. Letting Q = X−1

0 X yields

the result.

Proposition 7.1 The pre-normalized shape is invariant to any invertible, planar, linear transform

(x, y)T 7→ A(x, y)T, up to an orthogonal transform. Moreover, if det(A) > 0, the invariance is up to

a rotation.

Proof: Since A is a 2 × 2 non singular matrix, following Lemma . we have SAF = ASFA
T. By

letting BF be the lower-triangular matrix of Cholesky’s decomposition of F , it follows that SAF =

ABF(ABF)T. Now, since SAF is a 2× 2 positive-definite, symmetric matrix, Cholesky factorization

yields SAF = BAFBAF
T, where BAF is a 2 × 2 non-singular, lower-triangular real matrix. Then,

by Lemma ., we have BAF = ABFQ, where Q is a 2 × 2 orthogonal matrix. Hence, B−1
AFAF =

(ABFQ)−1AF = Q−1B−1
F A−1AF = Q−1B−1

F F , what proves the invariance of F ′ = B−1
F F to

planar isomorphisms, up to an orthogonal transform. Finally, notice that if det(A) > 0 we have

det(Q) > 0.
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A closed form for B−1
F in terms of the moments of F can be computed, by taking the inverse of BF ,

the lower-triangular matrix given by the Cholesky decomposition of SF :

B−1
F =

√
µ0,0


1√
µ2,0

0

− µ1,1

µ2,0

√
µ0,2−

µ2
1,1
µ2,0

1√
µ0,2−

µ2
1,1
µ2,0

 .

The pre-normalized shape F ′ = B−1
F F is then an affine invariant representation of F modulo a

rotation. In order to obtain a full affine invariant representation, we just need to fix a reference angle.

This can be achieved, for instance, by computing

ϕ = Arg

(∫ 2π

0

∫ +∞

0

1lF ′(r, θ)e
iθrdrdθ

)
,

then rotating F ′ by −ϕ. Notice this rotation normalization method fails when F ′ exhibits central

symmetry. However, unlike a classical rotation normalization computing the direction of the prin-

cipal axis, it has the advantage to assign the same weight to all points in F ′, and hence to be more

robust to noise affecting its boundary.

Finally, putting all the steps together, the affine invariant normalization of a shape F is the set of

points (xN , yN) given by(
xN

yN

)
=

(
cosϕ sinϕ

− sinϕ cosϕ

)
B−1
F

(
x− µ1,0

y − µ0,1

)
,

for all (x, y) ∈ F .

As we can see in Figure ., a classical problem of this kind of normalization is its lack of robustness.

Too strong deformations lead to a bad estimation of the moments. The normalization that we pro-

pose is based on robust direction, and is redundant, in the sense that a single shape produces several

invariant representations.

.. Global normalization methods based on robust directions

In this section we propose a global normalization framework for shapes. As usual, a “solid shape” F
is a compact connected component of R2. As we did for the local methods, these global normaliza-

tions are based on robust directions given by bitangent lines and flat pieces of shape’s boundary L.

We describe a variant of this method for translation, translation and rotation, similarity and affine

invariant normalizations.

Translation invariant normalization

Robust directions are not used in this particular case.

. Translate F so that its barycenter is in the origin of the plane.

. Define the starting point ofL’s parametrization as the intersection of positive ordinate between

the vertical axis and the curve. In case of ambiguity, choose the closest one to the origin.
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Figure .: T. Cohignac’s normalization. Original images (on the left) and affine normalization using the moments

(on the right). The middle and bottom original image were mapped from the top original image up to an affine

transform. We can see that, even in this ideal framework, the obtained normalized shapes are not superimposable

at all: the moment normalization is not robust. To be compared to the normalization we propose (the middle

original image was mapped up to the same transform as on Figure .).
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Translation-rotation invariant normalization

For each robust straight lineD of L:

. Translate F so that its barycenter is in the origin of the plane.

. Rotate F with respect to the origin so thatD becomes horizontal.

. Define the starting point ofL’s parametrization as the intersection of positive ordinate between

the vertical axis and L. In case of ambiguity, choose the closest one to the origin.

Similarity invariant normalization

For each robust straight lineD of the curve:

. Translate F so that its barycenter is in the origin of the plane.

. Scale F so that its boundary has unit length.

. Rotate F with respect to the origin so that the robust direction is horizontal.

. Define the starting point ofL’s parametrization as the intersection of positive ordinate between

the vertical axis and the boundary of the shape. In case of ambiguity, choose the closest one to

the origin.

Affine invariant normalization (positive determinant)

The procedure is illustrated in Figure .. For each robust straight lineD of L:

. Consider the straight line passing through the barycenter ofF , which is parallel toD. Consider

the intersection between F and the half-plane defined by this straight line which does not

containD; call G1 its barycenter, and G3 the barycenter of the complementary part of F .

. Now consider the straight line passing through G1 and G3. It splits the shape into two parts,

let G2 and G4 be their barycenter, such that (
−−−→
G3G1,

−−−→
G2G4) is directly oriented.

. Points {G1, G2, G3} define an affine basis. Normalize F by applying to it the affine transform

mapping {G1, G2, G3} into {(0, 1/2), (1/2, 0), (0,−1/2)}.

. Define the starting point of the parametrization as the intersection of positive ordinate between

the vertical axis and the boundary of the normalized shape. In case of ambiguity, choose the

closest one to the origin.

In Figure . we show an example of global affine invariant normalization. Notice that shapes repre-

sented in the normalized frame are very close.
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G1

G2

G3
G4

D

Figure .: Global affine invariant normalization based on the bitangent lineD. Top: definition of points G1, G2,

G3 and G4. Bottom: the normalized shape.
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Figure .: Global affine invariant normalisation based on robust directions. The images on the top are related

by an affine transform (the same one as on Figure .. Bottom images: corresponding global affine invariant

normalizations of the “puma” shape (both representations were based on flat pieces). The normalized shapes are

very close; this is not the case with the invariant moment method.
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. Conclusion

In this chapter we presented and discussed semi-local and global shape normalization methods. The

presented semi-local methods, for similarity and affine normalization, are based on bitangent lines

and flat pieces, since both provide robust directions to build invariant codes. Each boundary may

be represented by several codes, each code representing different parts of the boundary, and often at

different scales. Two implementation parameters, F (the normalized length of the shape elements)

and N (the number of equi-distributed points over the normalized shape element), are involved in

this normalization procedures, but, since they are fixed once for all, they do not need to be tuned by

the user. In that sense, these methods can be considered to be parameter free.

The presented semi-local normalization/encoding procedures do not allow to encode all kinds of

Jordan curve, even when they show bitangents or flat pieces. Indeed, convex or almost convex curves

cannot be encoded by these methods, but this makes sense because the pieces of these curves are too

simple, and thus not discriminatory enough to be encoded. In order to encode those curves that

have not been represented by local codes, it is sound to consider global normalization/encoding pro-

cedures. Classical global normalization methods are based on invariant moments, and are unstable

since they use high order moments. We thus propose global normalization methods that, as for the

semi-local case, are based on bitangent lines and flat pieces. Normalization is performed by a geo-

metric construction that is very stable, because only area computations are involved. Since one code

is built for each bitangent line or flat point, the representation is redundant and permits to avoid

ambiguities that may be introduced when curves exhibit some kind of symmetries.
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Chapter 

A CONTRARIO DECISION

Abstract: While shape comparison, shape matching and shape extraction have been the subject of many

researches, the decision step has been rarely studied. This chapter presents a framework to answer by yes

or no the question “does that shape look like this one?”, and to measure the confidence level in this answer.

Since we tackle the general recognition problem, and we do not make use of any a priori information, the

only possible model is an a contrario one. In order to reach high levels of confidence, mutually statistically

independent features are extracted from shapes. We check out that our model satisfies the Helmholtz principle:

any detection in noise should be considered as not relevant.

Résumé : Alors que la comparaison de formes, leur appariement, et leur extraction, ont été l’objet de nom-

breuses recherches, l’étape de décision a rarement été étudiée. Le but de ce chapitre est de proposer un cadre

pour répondre par oui ou par non à la question « Cette forme ressemble-t-elle à cette autre forme ? », et de

donner un degré de confiance en cette réponse. Comme nous abordons le problème générique de la recon-

naissance, le seul modèle possible est un modèle a contrario. Afin d’obtenir une confiance élevée dans la recon-

naissance, des caractéristiques mutuellement statistiquement indépendantes sont extraites des formes. Nous

vérifions que ce modèle satisfait le principe de Helmholtz : toute détection dans le bruit doit être considérée

comme non pertinente.

. A contrario models

The aim of what follows is to present a method to fix an acceptance/rejection threshold for the recog-

nition of shape elements. The recognition problem is hard since sorting the shapes along a similarity

measure to a target shape is not sufficient; we must answer by yes or no the question “does that shape

element look like the target shape element?”. Moreover, we would like to estimate the confidence in

this answer. We shall first dress up an empirical statistical model of the shape elements database. The

relevant matches will be detected a contrario as rare events for this background model. This detection

framework has been recently applied by Desolneux et al. to the detection of alignments [DMM00]

or contrasted edges [DMM01], by Almansa et al. to the detection of vanishing points [ADV03], by
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Stival and Moisan to stereo images [MS04] , by Y. Gousseau to the comparison of image “composi-

tion” [Gou03] and by F. Cao to the detection of good continuations [Cao04]. The main advantage of

this technique is that the only parameter that controls the detection is the Number of False Alarms,

a quantity that has a handy meaning.

.. Shape model versus background model

Our aim is to compare a given target shape element S with the N shape elements of a database B.

Since we tackle the general shape matching problem, we suppose that we have no information but

the observation of the target shape elements and the database of shape elements, and the value of

a distance function between these shape elements. Of course, classifying the matches along this

distance is always possible. Nevertheless, we are interested in deciding if either a shape element S ′,
belonging to the database, looks like the shape element S or it does not. A straightforward decision

is to fix a threshold upon the distances under which the answer is yes, S ′ looks like S , and no, S ′ does

not look like S otherwise. In that case, the problem consists in automatically setting the threshold δ,

and this is precisely the aim of the proposed methodology. To be more precise, let us assume that

each shape element is represented by a set of K features x1, x2, . . . , xK , each of them belonging to a

metric space (Ei, di) (i ∈ {1, . . . , K}). What we mean by “distance between shape elements” is the

product distance over E1 × E2 × · · · × EK :

d(S,S ′) = max
i∈{1,...,K}

di(xi(S), xi(S ′)).

The real observation is in fact made of the K distances between features di(xi(S), xi(S ′)).

We assume no other information but the observed set of features. This means in particular that we

have no model for the features, since having such a model would imply an extra knowledge (for

instance some “expert” should have first built up the models). We are therefore unable to compute

the probability that “a shape element is near S because it has been generated by the shape model of S”.

We are interested in shape elements which are close to the target shape element S because their

generation shares some common cause with the generation ofS . But what is the underlying common

cause? We probably do not know, and this is the point. Indeed, directly addressing this problem is

not possible, unless we have the exact model of S . We are therefore led to wonder whether a database

shape element is near S just “by chance”, and to detect correspondences as unexpected coincidences.

In order to address this latest point, we have to build up a background model: a model to compute

the probability that a shape element is near S by chance.

Here are the assumptions for this model.

(A) the functions Ei → R, y 7→ di(xi(S), y) (i ∈ {1, . . . , K}), considered as random variables,

are mutually statistically independent;

(A) for each i ∈ {1, . . . , K}, the probability Pi(S, δ) := Pr(y ∈ Ei, s.t. di(y, xi(S)) 6 δ) is

empirically estimated over the database (for each i, one computes the distribution function of
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di(z, xi) when z spans the ith feature of the shape elements in the database), that is to say:

Pi(S, δ) =
1

N
·#{S ′ ∈ B, di(xi(S ′), xi(S)) 6 δ},

where #· denotes the cardinality of any finite set (and N is the cardinality of the database B).

If we make the (informal) additional assumption that the target shape element S has no “determin-

istic” reason to look like the shape elements in the database, then Pi(S, δ) can actually be seen as the

probability that a shape feature xi(S ′) is at a distance lower than δ to xi(S) “just by chance”. The

independence assumption consequently ensures that the probability that a shape element lies “just

by chance” at a distance lower than δ to S is
∏K

i=1 Pi(S, δ). The following sections make all this

rigorous and hopefully very clear.

.. Decision as hypothesis testing

A distance between shape elements being defined, deciding whether a shape element matches another

shape element or not consists in setting a threshold δ over the distances. Ideally, δ should be set

automatically, without any user tuning. We propose to use the hypothesis testing framework [DK82,

Sil75] in order to replace the distance bound by a probability of false alarms bound, which is much

more intuitive and handy.

The hypothesis we would like to test is H0: “A shape element is close to S because its generation

shares some common cause with the generation of S”. However, handling this hypothesis with our

assumption (no available model for the target shape element S) is simply impossible. We are there-

fore led to concentrate on the alternative hypothesisH1: “A shape element is near S just by chance”

(“just by chance” means that observing a shape at a distance d to S is predicted by the background

model).

Since the only information we have is the distance d between an observed shape element and S , the

decision rule will consist in accepting the null hypothesisH0 if the distance is lower than a predeter-

mined value δ, and rejecting it otherwise. The set of the shape elements that are compared to S (the

whole database) is split into two subsets: Ω0(δ) and Ω1(δ), respectively made of the shape elements

whose distance to S is lower than δ (and for which hypothesisH0 is accepted), and of those for which

the distance to S is greater than δ (for which hypothesisH0 is rejected).

The quality of a statistical test is measured by the probability of taking wrong decisions. Two kinds

of errors are possible: reject H0 for an observation S for which it is actually true (type I error,

mis-detection), and accept H0 for S although it is false (type II error, false positive). A probability

measure can be associated to each type of error. In our framework, each of these probabilities is

related to the distance threshold δ.

Let us denote by L0(S) and L1(S) the likelihoods of an observation S under hypothesesH0 andH1,

respectively. Then, we define the values

α =

∫
Ω0

L1(S)dS ,
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α2 =

∫
Ω1

L0(S)dS ,

and:

β = 1− α2 =

∫
Ω0

L0(S)dS ;

α (associated with type I error) is the probability of false alarm, and β is the power function of the test

(α2 is the probability of non-detection or probability of a miss, associated with type II error).

It is clear that the lower is α and the larger is β, the better is the test, but it is also clear that α

and β cannot be optimized independently. Classically, ROC curves (Receiver Operating Charac-

teristic curves) representing β = f(α) are associated with a statistical test T . Robust tests show

characteristic ROC curves looking like a Heaviside step: if α is close to 0, β should be close to 1.

The problem is to fit a trade-off between α and β (or equivalently α2). Let us analyze two widely

used techniques for doing that.

. Likelihood ratio test. If we look for powerful tests (i.e. tests with the lowest rate of non-

detection) among the tests whose probability of false alarm α is bounded (by a user defined

threshold α∗), Neyman-Pearson lemma ensures that the most powerful test is the following

likelihood ratio test:

Classify the observation S in Ω0 if
L1(S)

L0(S)
< h and in Ω1 otherwise, where the positive real

number h is solution of : ∫
{
S∈Ω,

L1(S)
L0(S)

>h
} L0(S)dS = α∗.

In order to achieve this test, the two likelihood functions are needed. Moreover, the value of α∗

has to be fixed by the user, and its value has a strong influence on the results.

. Bayesian test. A test T being given, it is also possible to model the trade-off between α and

α2 by a weighted sum (Bayes cost): J(T ) = p0α + p1α2, where p0 (resp. p1) is the prior

probability of hypothesisH0 (resp. of counter-hypothesisH1) (p0 and p1 verify p0 + p1 = 1).

It can be shown that the classification test that minimizes J is:

Classify the observation S in Ω0 if L0(S) · p0 > L1(S) · p1 and in Ω1 otherwise.

Hence, the Bayesian test requires not only knowing the likelihoods but also the prior probabili-

ties of the hypotheses. Compared to the likelihood ratio test, there is no need for an “arbitrary”

threshold over the false alarm rate.

In fact, if we write the Bayesian inequality as:

L1(S)

L0(S)
<
p0

p1

,

then it is clear that the ratio p0

p1
essentially plays the same role as the parameter h(α∗) in the Neyman-

Pearson theory. “Bayesians” such as Jaynes [Jay03] argue that each test can be explained as a Bayesian



8.1. A contrario models 

test somehow or other. Let us quote Grenander [Gre93]: “Suffice is to say that when the notion of a

prior makes sense and when there is sufficient knowledge about this prior we cannot afford to throw away

this subject matter information: a Bayesian treatment is called for.”

However, the practical limits of this theoretical framework are obvious. Assuming the knowledge

of the likelihood of both the hypothesis (L0(S)) and the counter-hypothesis (L1(S)) is in general

unrealistic in detection problems. Indeed, in order to compute the likelihood of hypothesis H0, a

generative model is needed. Moreover, the Bayesian approach needs for prior information. Nev-

ertheless, while choosing the ratio p0

p1
seems more satisfying than fixing α∗, priors remain spoilt by

arbitrariness, or are strongly related to a specific problem for which supplementary information is

provided.

Let us summarize the situation. Since we are not in position to compute the probability of non-

detection Pr(S ′ ∈ Ω1(δ)|H0) (recall that this is one of the two classification errors: reject H0 al-

though this hypothesis is true), neither the likelihood ratio test nor the Bayesian test can be per-

formed. On the other hand, a straightforward computation provides the value of the probability of

false alarms denoted by

PFA(S, δ) := Pr(S ′ ∈ Ω0(δ)|H1)

(this is the second kind of error of the test: accept H0 although it is false). Since S ′ ∈ Ω0(δ) if and

only if d(S,S ′) 6 δ, it follows that

PFA(S, δ) = Pr (d(S,S ′) 6 δ|H1)

= Pr

(
max

i∈{1,...,K}
di(xi(S), xi(S ′)) 6 δ|H1

)
.

Then, since hypothesisH1 is governed by the background model, assumptions (A) and (A) yield:

PFA(S, δ) =
∏

i∈{1,...,K}

Pr (y ∈ Ei, s.t. di(xi(S), y) 6 δ)

=
∏

i∈{1,...,K}

Pi(S, δ).
(.)

Let us write the likelihood ofH1 in the classical hypothesis testing framework. Under the background

model hypothesis, the likelihood ofH1 over the set of observed distances is:

L1(d1, d2, . . . , dK) =
K∏
i=1

fi(S, di),

where the density laws di 7→ fi(S, di) are indirectly estimated over the database (assumption (A)).

Indeed, with the preceding notations we have: Pi(S, δ) =
∫ δ

0
fi(S, x)dx for each δ > 0, and these

probabilities are estimated over the database. The probability of false alarms of the statistical test can

be written as:
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PFA(S, δ) = P (S ′ s.t. d(S,S ′) 6 δ|H1)

=

∫
Ω0(δ)

L1(d1, d2, . . . , dK)dd1dd2 . . . ddK

=
K∏
i=1

∫ δ

0

fi(S, di)ddi

=
K∏
i=1

Pi(S, δ).

The second to last equation stands because of the expression of the likelihood L1, and because of the

fact that Ω0(δ) is the hypercube [0, δ]K .

Classical hypothesis testing theory consists in minimizing both probability of false alarms and prob-

ability of non detection. Since we have no model forH0, we cannot evaluate here the probability of

non detection. Nevertheless, evaluating the probability of false alarms is enough to make decisions.

Indeed, the probability of false alarms P (d < δ|H1) being non-decreasing with δ, an upper bound p

on this quantity provides immediately an upper bound on the distances:

δ∗(p) = max{δ > 0, P (d 6 δ|H1) < p}.

Consequently, if the test is to accept H0 if the observed distance is below δ∗(p), and to reject this

hypothesis otherwise, then the associated probability of false alarms is bounded by p. This rule is said

to be an a contrario decision since we accept the null hypothesis as soon as the alternative hypothesis

is not likely to be valid (i.e. the probability of false alarms of the statistical test is low). Applied here to

the shape recognition problem, we accept the hypothesis “a database shape element S ′ matches the

target shape element S” as soon as it is not likely that S ′ is near S “by chance”. Notice that, according

to this decision, all we are saying is that, under the background model, such a coincidence is so

astonishing that there must be a better explanation than randomness. We are by no means asserting

that this better explanation is “matched shape elements correspond to instances of the same object”,

though this might be the cause, among other possibilities. Experiments (see Chapter ) indeed show

matched shape elements that are actually alike, but do not correspond to the same object.

.. Number of false alarms and meaningful matches

The a contrario decision consists in fixing a threshold over the probability of false alarms rather than

over the distance between shape elements. Since a probability has little meaning per se, we now

introduce the number of false alarms. Let us recall that the database is made of N shape elements to

which the target shape element S is compared.

Definition 8.1 The Number of False Alarms of the shape element S at a distance d is:

NFA(S, d) := N ·
∏

i∈{1,...,K}

Pi(S, d).
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Since the latest product of probabilities is the probability of false alarms when testing if the database

shape elements are at a distance lower than d to S , the number of false alarms can be seen as the

average number of false alarms that are expected when we test if the distance from each shape element

in the database to S is below d. Instead of bounding the probability of false alarms in order to deduce

a distance threshold, we bound the number of false alarms.

Definition 8.2 The number of false alarms of the target shape element S and a database shape element

S ′ is the number of false alarms of S at a distance d(S,S ′):

NFA(S,S ′) := NFA(S, d(S,S ′)).

For the sake of simplicity, the same notation is used for both preceding definitions of the number of

false alarms. Let us remark that the arguments of the NFA seen as a two variables function do not

play a symmetric role.

Definition 8.3 A shape element S ′ is an ε-meaningful match of the target shape element S if their

number of false alarm is bounded by ε:

NFA(S,S ′) 6 ε.

Notice that since the functions Pi(S, d) : d 7→ Pr(y ∈ Ei s.t. di(xi(S), y) 6 d) are non-decreasing,

the function NFA(S, d) := N ·
∏

i∈{1,...,K} Pi(S, d) is pseudo-invertible with respect to d. That is,

there exist a unique positive real number d∗(ε/N) (depending also on S) such that

d∗(ε/N) := max{d > 0,PFA(S, d) 6 ε/N}.

The proposition that follows is then straightforward.

Proposition 8.1 A shape element S ′ is an ε-meaningful match of a shape element S if and only if

d(S,S ′) 6 d∗(ε/N).

The ε-meaningful matches of S are then those shape elements for which the distance to S is below

d∗(ε/N) (consequently, the probability of false alarms of the associated test is less than ε/N). We

therefore expect on the average less than ε false alarms among all ε-meaningful matches over all the

tested shape elements. In other words, if all shape elements in the database were generated by the

background model, then the hypothesis H0 should never be accepted; all ε-meaningful detections

should thus be considered as false alarms. The following proposition makes this claim more formal.

Proposition 8.2 Under the assumption that the shape elements are generated by the background model,

the expectation of the number of ε-meaningful matches over the set of all shape elements in the database

is less than ε.
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Proof: Let S ′j (1 6 j 6 N) denote the shape elements in the database, assumed to be generated

according to the background model, and let χj be the indicator function of the event ej : “S ′j is an

ε-meaningful match of S .” Let R =
∑N

j=1 χj be the random variable representing the number of

shape elements matching ε-meaningfully S . The expectation of R is E(R) =
∑N

j=1 E(χj). Using

Proposition ., it follows that E(R) =
∑N

j=1 PFA(S, d∗(ε/N)), so E(R) 6
∑N

j=1 ε ·N−1, yielding

E(R) 6 ε.

The key point is that we control the expectation of R. Since dependencies between events ej are

unknown, we are not able to estimate the probability law of R. Nevertheless, the linearity still allows

to compute the expectation.

Notice that the empirical probabilities take into account the ‘rareness’ or ‘commonness’ of a possible

match; indeed the threshold d∗ is less restrictive in the first case and stricter in the other one. This

point is discussed and illustrated in Chapter , section ..

The advantages of the a contrario decision based on theNFA compared to directly setting a distance

threshold between shape elements are obvious. On one hand, thresholding the NFA is much more

handy than thresholding the distance. We indeed simply put ε = 1 (we simply refer to 1-meaningful

matches as “meaningful matches”), or ε = 10−1 if we want to impose a higher confidence in the

obtained matches. The detection threshold ε is set uniformly whatever may be the target shape

element and the database: the resulting distance threshold adapts according to them. On the other

hand, the lower ε, the “surer” the ε-meaningful detections are. Of course, the same claim is true

when considering distances: the lower the distance threshold δ, the surer are the matches distance

lower than δ to S , but considering the NFA quantifies this confidence. In practice, the number of

false alarms between two similar shape elements can be as low as 10−10. This means that we need

to observe a database 1010 times larger in order that a meaningful match at the same distance ought

to be a false alarm. In other words, the corresponding match would still be a meaningful match in

a database 1010 times larger. What we have proposed is an automatic decision rule that ensures the

number of false alarms to be very low.

Let us end up with the definition of the number of false alarms when comparing all shape elements

in a database to all shape elements in another database, and not only a single shape element to a

database. When searching the shape elements belonging to a database B1, made of N1 shape ele-

ments, among the N2 shape elements belonging to a database B2, we define:

Definition 8.4 The Number of False Alarms of a shape S (belonging to B1) at a distance d is:

NFA(S, d) = N1 ·N2 · Pr(S ′, max
i∈{1...K}

di(xi(S), xi(S ′)) 6 d).

The probabilities (depending on the searched shape element S) are estimated as before, as a product

of K empirical estimates. For each shape element in B1 we also define ε-meaningful matches. The

claim up to which we shall expect on the average ε false alarms among the ε-meaningful matches

over all N1 ·N2 tested pairs of shape elements still holds.
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.. Building statistically independent features

Now, why considering independent features is so important? The reason is the following one: us-

ing independent features is a way to beat the curse of dimensionality [HTF01]. By combining a few

independent features, we can easily reach very low numbers of false alarms without needing huge

databases to estimate the probability of false alarms. In his pioneer work, D. Lowe [Low85] presents

this same viewpoint for visual recognition: “Due to limits in the accuracy of image measurements (and

possibly also the lack of precise relations in the natural world) the simple relations that have been de-

scribed often fail to generate the very low probabilities of accidental occurrence that would make them

strong sources of evidence for recognition. However, these useful unambiguous results can often arise as a

result of combining tentatively-formed relations to create new compound relations that have much lower

probabilities of accidental occurrence”.

Let us give a numerical example. If the considered database is made of N shape elements, the lowest

value reachable by each empirical probability

Pi(S, d) =
1

N
·#{S ′ ∈ B, di(xi(S ′), xi(S)) 6 d}

is 1/N . Consequently, if the background model is built on K = 1 feature, and the database is

made of N = 1000 shape elements, then the lowest reachable number of false alarms would be

1000 · 1/1000 = 1. This means that even if two shape elements S and S ′ are almost identical,

based on theNFAwe cannot ensure that this match is not casual. Indeed, anNFA equal to 1 means

that, on the average, one of the shape elements in the database can match S by chance. Assume now

that the background model is built onK = 6 features (and stillN = 1000), then the lowest reachable

number of false alarms would be 1000 · 1/10006 = 10−15. This means that we are able to observe

ε-meaningful matches with ε as low as 10−15.

To sum up, shape features have to meet the three following requirements:

) Features provide a complete description: two shape elements with the same features are alike.

) Features are mutually statistically independent (more precisely speaking, distances between fea-

tures are independent).

) Their number is as large as possible.

The first requirement means that the features describe shape elements well, the second one is imposed

in order to design the background model, and the third requirement is needed in order to be able to

reach low number of false alarms. Finding features that meet these three requirements together is a

hard problem. Indeed, there must be enough features in order that the first requirement is valid, but

not too many otherwise the second requirement falls.

The decision framework we have been describing up to here is actually completely general, in the

sense it can be applied to find correspondences between any kind of structures for which K inde-

pendent features can be extracted. In what follows, we will concentrate on the problem of extracting
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independent features from shape elements. Shape elements are normalized before comparison in or-

der to meet the geometric invariance requirement of recognition (see Chapters  and ); therefore,

we will more specifically deal with normalized shape elements.

Since in order to meet the geometric invariance requirement of recognition, shape elements are nor-

malized before comparison, we will deal more specifically with normalized shape elements.

Semi-local encoding

We consider here the semi-local encoding algorithm described in Chapter . Recall that a normalized

shape element is in fact a piece of Jordan curve, normalized in a local frame built on a bitangent or on

a flat piece. We empirically found that the best trade-off achieving simultaneously the three feature

requirements is the following (see figure . for an illustration). Each normalized representation

C is split into five pieces of equal length. Each one of these pieces is normalized by mapping the

chord between its first and last points on the horizontal axis, the first point being at the origin: the

resulting ‘normalized small pieces of curve’ are five featuresC1,C2, . . . ,C5. These features ought to be

independent; nevertheless, C1, . . . ,C5 being given, it is impossible to reconstruct the shape element

they come from. For the sake of completeness a sixth, global, feature C6 is therefore made of the

endpoints of the five previous pieces, in the normalized frame. For each piece of level line, the shape

features introduced in section .. are made of these six ‘generic’ shape codes C1, . . . ,C6. Using the

notations introduced in the previous sections, we have xi(S) = Ci, i ∈ {1, . . . , 6}; the distances di
between them are L∞-distances.

Another possibility that we have investigated is to use the principal component analysis (PCA) [MSM03].

Although PCA does not provide independent features but uncorrelated ones, the approximation does

not seem to be critical. We show experiments in Chapter .

Global encoding

We have also proposed in Chapter  a global curve normalization. The a contrario decision is still

valid, considering these normalized curves as shape elements, and building the features in a similar

way as for the semi-local encoding. Precisely speaking, each normalized piece of curve is split into six

pieces. The starting point was defined in Chapter  as the nearest point to the barycenter intersecting

the vertical line to the bottom, with a positive ordinate. In the same way as for semi-local encoding,

each of these pieces is normalized by mapping the chord between its first and last points on the

horizontal axis, the first point being at the origin: these resulting ‘normalized pieces of curve’ are

six features C1, C2, . . . ,C6. For the sake of completeness, a seventh global feature C7 is made of

the endpoints of the six previous pieces. The features are made of the C1, . . . ,C7. The distances di
between them are still L∞-distances.
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Figure .: Semi-local encoding procedure. Example of a similarity-invariant encoding. Sketch (a): original shape

element in a normalized frame based on a bitangent line. Both ends of the piece of the shape element, of length

F · ‖R1R2‖, are marked with bold lines: this representation is split into  pieces C1, C2, C3, C4, and C5. Sketch

(b): each of them is normalized, and a sixth feature C6 made of the endpoints of these pieces is also built.

. Testing the background model

The computation of the probability PFA(S, δ) that a shape element could be just by chance at a

distance lower than δ to S is correct under the independence assumption on the pieces of codes (for-

mula .). Of course, the degree of trust that we are able to give to the associated Number of False

Alarms NFA(S, δ) (Definitions . and .) strongly depends on the validity of this independence

assumption. Before applying this methodology to realistic applications, we have to test the indepen-

dence of the pieces of codes, in order to ensure the correctness of the methodology. This is the aim

of what follows. Although a decision rule is proposed for both global and semi-local shape elements

matching, we only give the results of the tests for semi-local encoding. We show here that the pieces

of codes obtained by the proposed normalization (section ..) are not independent (section ..),

and that some dependence is introduced by the non-self intersection constraint of level lines and

(mainly) by the normalization procedure (section ..). Nevertheless, experiments point out that

detection under Helmholtz principle (i.e. a meaningful match is a match that is not likely to occur in

a noise image) is fully satisfying (section ..).

.. Independence testing

In order to compute the probability PFA(S, δ), the mutual independence of the ‘pieces of codes’ is

needed. More precisely speaking, a code made of pieces xi being given, the binary random variables

y 7→ di(xi, y) 6 δ are supposed mutually independent.
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We cannot estimate the joint probability

Pr ((y1, . . . , yn) ∈ E1 × · · · × En s.t. d1(x1, y1) 6 δ, . . . , dn(xn, yn) 6 δ)

(estimating the law of this random vector would indeed require too many samples) and compare it to

the product of the probabilities
∏n

i=1 Pr(yi ∈ Ei s.t. di(xi, y) 6 δ). On the other hand, it turns out

that the joint probability associated to two pieces of codes can be accurately enough estimated. Thus,

instead of testing the mutual independence of the pieces of codes, we merely test the independence

pairwise.

Let us explain the Chi-square test framework, applied to independence testing [RH79]. Two binary

random variables X and Y being given, let us denote pij = P ((X,Y ) = (i, j)) for i and j in {0, 1}:
these probabilities are empirically estimated over samples following the laws of X and Y . Thus,

P (X = i) = pi0 + pi1 and P (Y = j) = p0j + p1j . If independence assumption holds, we have:

pij = P (X = i) · P (Y = j). The Chi-square statistical test consists in evaluating the difference

between the expected number of samples such that (X,Y ) = (i, j) if this assumption were true, and

the observed number of samples. If N is the number of samples following the law of (X, Y ), and if

Oij is the observed number of samples (i, j), we compute:

χ2 =
(N(p00 + p01)(p00 + p10)−O00)2

N(p00 + p01)(p00 + p10)
+

(N(p10 + p11)(p10 + p00)−O10)2

N(p10 + p11)(p10 + p00)

+
(N(p01 + p00)(p01 + p11)−O01)2

N(p01 + p00)(p01 + p11)
+

(N(p11 + p10)(p11 + p01)−O11)2

N(p11 + p10)(p11 + p01)
.

This quantity can be assumed to follow a Chi-square distribution with one degree of freedom, if

enough samples are provided in order to estimate accurately the probabilities pij , and the Oij .

Of course, the lower is χ2, the likelier we are to accept the hypothesis, and vice-versa. By compar-

ing the obtained value with the quantiles of the Chi-square law, we are able to accept or reject the

hypothesis (independence between the random variables), with a certain significance level.

We have led this experiment with the binary random variables associated to the codes that we intro-

duced in what precedes, with different target codes and database codes. The results are clear: in all

cases, we are able to reject the independence assumption with a high significance level. Nevertheless,

the rejection is strong because the tested databases are very large: Chi-square test is all the more accu-

rate (and so is the rejection confidence) as the number of samples is large. In other terms, a “slight"

dependence with a large number of samples leads to a very significant rejection; this means that

the Chi-square test does not yield an absolute measurement of how dependent or how independent

variables are.

The next section shows that the independence assumption is true enough to keep the Helmholtz

detection principle true, in a sense that will be made clear.
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.. Checking the Helmholtz principle

We test here the main property of the proposed method, namely the control of the expected number

of ‘random’ detections (the Number of False Alarms, Proposition .). Number of False Alarms com-

putation holds under the independence assumption. If this assumption is true, and if the database

contains no copy of a sought code (i.e. the target shape element is not “generic” among the shape

elements in the database), the expected number of false alarms among all ε-meaningful matches with

the target shape element should be lower than ε. Nevertheless, we are not able to separate false alarms

and real matches: we only observe detections. The Chi-square test proved that, strictly speaking, the

independence assumption is not valid. Now, Helmholtz principle states that no detection in “noise”

(which has to be precised) should be considered as relevant. All ε-meaningful matches in the noise

should thus be considered as false alarms: in such a noise situation there should be on the average

about ε many of them. The following experiments test this claim. We show that the NFA is a pretty

good prediction of the number of detections. The independence assumption is enough valid, so that

the claim according to which there is on average at most ε false alarms among ε-meaningful matches

still holds.

As a first experiment we check the detection thresholds on a very simple model: we consider as

code database and code query some random walks with independent increments. In this case the

background model is ensured to be true, in the sense that the considered codes fit perfectly the

independence assumption.

Table . shows that the Number of False Alarms is very accurately predicted for various database

sizes: the number of detections with a NFA lower than ε is about ε indeed.

100, 000 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0 0 2.3 15.2 122.2 1, 075.5 9, 872.2

50, 000 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0.2 0.3 1.5 11.9 106.1 1, 001.1 9, 789.5

10, 000 codes, value of ε: 0.01 0.1 1 10 100 1, 000

Numb. of det. with NFA < ε: 0 0 1.2 12.5 108.4 985.0

Table .: Random walks. Average (over 10 samples) number of detections vs ε. Tabular : database of 100, 000
codes. Tabular : database of 50, 000 codes. Tabular : database of 10, 000 codes.

Of course, modeling codes with random walks is not realistic. As proved in what precedes, distances

between codes are actually not independent. In our opinion, the lack of independence comes from

two points. On one hand, codes correspond to pieces of level lines, and consequently they are con-

strained not to self-intersect. On the other hand, codes are normalized, and show therefore structural

similarities (for example, codes coming from bitangent points show mostly common structures). In

order to quantify the ‘amount of dependence’ due to these two aspects, we have led the two following

experiments.
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Table . shows the number of detections versus the number of false alarms for databases made of

pieces of level lines (not normalized, the codes are just made out of  consecutive points on pieces

of level lines). Consequently, the obtained codes are constrained not to self-intersect. In this exper-

iment, the independence can only spoiled by this property, not by the normalization. Although the

Chi-square test shows that the codes are not independent, once again the number of detections is

accurately predicted: the number of matches with a NFA less than ε is indeed about ε.

101, 438 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0.1 0.1 1.7 13.8 95.3 942.5 9, 789.4

50, 681 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0 0 1.2 10.3 90.5 955.1 9, 859.3

9, 853 codes, value of ε: 0.01 0.1 1 10 100 1, 000

Numb. of det. with NFA < ε 0 0.1 0.9 9.5 94.3 973.1

Table .: Pieces of white noise level lines. Average (over 10 samples) number of detections vs ε. Tabular : database

of 101, 438 codes. Tabular : database of 50, 681 codes. Tabular : database of 9, 853 codes.

Let us consider databases made of normalized codes extracted from pieces of level lines in white noise

images. Table . shows that the number of detections is still of the same magnitude as the number

of false alarms ε, but is not as precisely predicted as in the latest experiments. Roughly speaking,

it means that ‘most of the dependence’ comes from the normalization procedure, and not from the

non-self-intersection constraint. Nevertheless, the order of magnitude is still correct, and does not

depend on the size of the database. These properties are sufficient for setting the Number of False

Alarms threshold under the Helmholtz principle. Following this method, a match is supposed to

be highly relevant if it cannot happen in white noise images. According to table ., matches with

a NFA lower than 0.1 are ensured to be impossible in white noise images. If we want to ensure a

strong confidence in the detected matches, we are thus led to consider 0.1-meaningful matches in

realistic experiments (see Chapter , section .).

104, 722 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000 100, 000

Numb. of det. with NFA < ε: 0.3 1.5 6.5 31.5 173.9 1, 264.4 9, 803.1 99, 899.5

47, 033 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0.1 0.3 3.7 20.2 125.4 976.3 9, 854.2

10, 784 codes, value of ε: 0.01 0.1 1 10 100 1, 000

Numb. of det. with NFA < ε: 0 0.2 2.6 14.8 107.6 973.3

Table .: Normalized pieces of white noise level lines. Average (over 10 samples) number of detections vs ε.

Tabular : database of 104, 722 codes. Tabular : database of 47, 033 codes. Tabular : database of 10, 784 codes.

As a last experiment, table . shows the number of detections versus number of false alarms for a

database made of normalized long (length greater than  pixels) pieces of level lines from white
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noise images. The results are not better than in the preceding experiment, we cannot assert that the

independence violation is due to short pieces of level lines.

101, 743 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000 100, 000

Numb. of det. with NFA < ε: 0 0.4 2.8 18.5 124.3 1, 123.2 9, 693.8 99, 921.0

51, 785 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0 0.3 2.9 16.0 118.6 983.4 9, 800.4

11, 837 codes, value of ε: 0.01 0.1 1 10 100 1, 000 10, 000

Numb. of det. with NFA < ε: 0 0.2 1.4 12.3 105.9 975.2 9, 974.7

Table .: Normalized long pieces of white noise level lines. Average (over 10 samples) number of detections vs ε.

Tabular : database of 101, 743 codes. Tabular : database of 51, 785 codes. Tabular : database of 11, 387 codes.



 Chapter 8. A contrario decision



Chapter 

EXPERIMENTS ON MEANINGFUL MATCHES

DETECTION

Abstract: In this chapter, we present several experiments that illustrate and validate all the stages of the

recognition methods that were presented in the previous chapters. Section . deals with the semi-local invari-

ant recognition method. Both similarity and affine methods are considered, and a comparative study based

on some examples is presented. Section . presents some examples of the recognition method based on the

global comparison of meaningful boundaries. The similarity and the affine versions are also compared. Finally,

section . illustrates a general property of the a contrario detection framework we propose: the recognition of

shape elements is relative to the context.

Résumé : Dans ce chapitre, nous présentons plusieurs expériences qui illustrent et valident toutes les étapes

des méthodes de reconnaissance, exposées dans les chapitres précédents. La section . traite de la méthode de

reconnaissance semi-locale. Les méthodes invariantes par similitudes et par transformations affines sont consi-

dérées dans cette section, et comparées en se basant sur quelques exemples. La section . présente quelques

exemples concernant la méthode de reconnaissance globale basée sur les frontières maximales significatives.

Les versions similitude et affine sont également comparées. Finalement, la section . illustre une propriété

générale du cadre de détection a contrario que nous proposons : la reconnaissance d’éléments de forme est

relative au contexte.

. Local meaningful matches

In this section we present several experiments that illustrate all the stages of the semi-local invari-

ant recognition method, in particular the semi-local normalization procedures (Chapter ) and the

decision method (Chapter ). Both similarity and affine versions are considered, and compared.
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.. Toy example

This first experiment compares the performance of the affine invariant and the similarity invari-

ant recognition methods, on simple, synthetic images. A toy example was chosen here in order to

illustrate all the stages in the considered recognition methods. Figure . shows the two synthetic

images involved in the experiment. Shape elements from the image on the left (the “target” image)

are searched in the right image (the “scene” image).

In the scene image we included an affine distorted version of the sketch in the target image. Shape

elements were extracted by computing the maximal meaningful boundaries in the images (Fig-

ure .(b)) using the algorithm described in Chapter , and smoothed using the affine curve short-

ening described in Chapter . Then the affine and the similarity semi-local invariant encoding algo-

rithms, described in Chapter , were applied to the smoothed extracted boundaries. Finally, mean-

ingful matches were detected in both cases, based on the a contrario method presented in Chapter .

Let us start by giving some precisions on the semi-local affine invariant recognition method, and

by describing its results. In the target image, 44 shape elements were extracted from its meaning-

ful boundaries. These shape elements were represented as affine normalized codes of 45 points,

as explained in Chapter . The same encoding procedure, applied to the scene image, led to 105

normalized codes. Meaningful matches between these two sets of normalized codes were detected.

Following the rationale for the meaningfulness computation presented in Chapter , a perfect match

between codes would have reached a NFA of 44 × 105/1056 = 3.45 10−9 (when the empirical

distributions of distances to target codes are learned using only the considered scene image, as we

do here). But perfect matching is impossible even in this condition, where we deal with synthetic

images. This is due to the fact that the interpolation involved in the affine transformation of the

image leads to boundaries that are not exactly the transformed boundaries of the original image.

Another reason for that is that, as pointed out in Chapter , flat pieces are not affine invariant (they

are not even similarity invariant), and their position may vary, particularly when dealing with curves

showing relatively high curvature. This is exactly what we observe in this experiment. All 42 de-

tected meaningful matches between shape elements for the affine invariant framework (NFA < 1)

are shown (superimposed) in Figure .(a). No false match was detected. The best match attains

NFA = 5.4 10−7, and the worst one has an NFA of 9.6 10−1. These two matches are displayed

in Figure .(a); the left most and middle images correspond respectively to the target and the scene

shape elements, and the right most image shows their normalized codes in the normalized frame,

superimposed. The shapes elements matching at NFA = 9.6 10−1 do not correspond exactly to the

same piece of curve, but they are still detected since they are relatively close. This kind of instability

is not really a problem, since in general the encoding is redundant enough to capture better matches

involving the same portions of the curve. This is illustrated in Figure .(b), where almost all the

same pieces of boundary showed in Figure .(a) are still present for meaningfulness ε < 10−2.

Finally, notice that one of the nested boundaries of the sketch does not present any matched shape
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(a)

(b)

Figure .: Toy example. (a) Original images; the image on the right contains an affine distorted version of the

sketch in the left image. (b) Corresponding maximal meaningful boundaries.
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(a) NFA < 1

(b) NFA < 10−2

Figure .: Affine invariant semi-local recognition: meaningful matches (NFA < 1) between shape elements.

No false match was detected.
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element, while the other one (which is almost symmetric to it) does. This is due to the fact that, in the

scene image, one of this nested boundaries presents a single flat piece leading to an “encodable” shape

element (all the others bitangent lines or flat pieces do not because the curve is not long enough),

while in the other one this flat piece is not detected. Once again, this is not really a problem, since

these quasi-convex curves are encoded by the global method presented in Chapter , section ..

(a) Best match, NFA = 5.4 10−7

(b) Worst match, NFA = 9.6 10−1

Figure .: Affine invariant semi-local recognition: the matches showing the lowest and the largest NFA.

Let us now describe the second part of this experiment, which consists in applying the semi-local

similarity invariant recognition method to the same target and scene images that were used in the

fist part. We do not expect this method to do better than the previous one, since the common

shape elements in the target and the scene images are related by an affine transform. However, we

are interested in finding out if the semi-local similarity invariant method is able to retrieve some

matches. In this second part of the experiment we follow the same stages than in the previous one,

except for the normalization/encoding procedure, where the semi-local similarity invariant encoding

method described in Chapter  was used. In the target image, 80 shape elements were extracted from

its meaningful boundaries, and 127 for the scene image. Notice that the similarity invariant encoding

is more redundant than the affine invariant encoding, since more shape elements are extracted in the

latter case. The reason for that is simple: as we pointed out in Chapter  (section .), the construction

of our affine invariant semi-local frames imposes more constraints on the curve than the one for
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similarity invariant frames. (These affine semi-local frames are also more global than similarity

semi-local frames, what makes them less robust to occlusion). Perfect matches in this second part of

the experiment should reach numbers of false alarms as low as 88 × 127/1276 = 2.66 10−9. Here

perfect matches cannot happen, mainly because boundaries are not related by similarity transforms.

All 44 detected meaningful matches between shape elements (NFA < 1) for the similarity semi-

local invariant recognition method are shown, superimposed, in Figure .. In Figure . we display

the shape elements and the normalized codes for the largest and the lowest NFA (2.5 10−5 and

7.1 10−1), as well as another example of matched shape elements.

Figure .: Similarity invariant semi-local recognition: meaningful matches (NFA < 1) between shape ele-

ments. No false match was detected.

As we can see from the superimposed normalized codes, these codes are not as close as for the affine

encoding. However, just looking at shape elements in Figures .(a) and .(c) is enough to see that,

even if the target and the scene images are related by an affine transform presenting non isotropic

zooms and a considerable shear, almost the entire shape (except for the nested boundaries, which

are “too convex” to be encoded by the semi-local method) can be recognized with a relatively high

degree of confidence.

Part of the discussion presented in this section can be summarized in Figure .. The list of mean-

ingful matches is ordered from best (lowest NFA) to worst (largest NFA), and the index i of this

sorted list is plotted versus − log10(NFAi), where NFAi is the NFA of the i-th best match. Such

a function is plotted for the similarity and for the affine matches. The affine semi-local invariant

matches reach lower NFA. Notice that in both affine and similarity invariant recognition methods,

there are several matches that show small NFA, leading to sure detections of common shapes.
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(a) Best match, NFA = 2.5 10−5

(b) Worst match, NFA = 7.1 10−1

(c) Another example, NFA = 2.5 10−4

Figure .: Similarity invariant semi-local recognition: the matches showing the lowest and the largest NFA.
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Figure .: NFA of affine and similarity semi-local invariant matches for the toy example. Both lists of mean-

ingful matches are ordered from best (lowest NFA) to worst (largest NFA), and for each list, the index i of the

sorted list is plotted versus− log10(NFAi), where NFAi is the NFA of the i-th best match.
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.. Perspective distortion

It is not surprising that the affine method performs better than the similarity method, when dealing

with images related through an affine transform, which do not suffer from occlusion. In this second

experiment, we show that, as expected, the affine method also performs better than the similarity

method, when applied to real images related through moderately weak perspective transformations.

The two images considered in this experiment (which we call “Hitchcock experiment”) are shown in

Figure ., with their corresponding level lines. The resolution of these images is 640× 480, which is

enough to ensure good accuracy in the extracted level lines.

Figure .: Hitchcock experiment: original images and their corresponding level lines. The image on top is consid-

ered as “target” image. In the target image, 307 maximal boundaries were detected, and 266 maximal boundaries

were detected in the scene image.

For the affine semi-local invariant method, 1150 and 853 shape elements were extracted from the

target image and from the scene image, respectively. The number of 1-meaningful matches detected

was 517. In order to reduce the redundancy of the output, we use a greedy algorithm that eliminates

matched shape elements which share a large piece of curve with other shape elements presenting

lowerNFA. More precisely speaking, if a pair of shape elements (S1,S ′1) is an ε1-meaningful match,

and there exists another pair (S2,S ′2) matching ε2-meaningfully, with ε2 < ε1, such that S1 shares at

least half of its length with S2, and the same for S ′1 and S ′2, the pair (S1,S ′1) is eliminated from the

output list of matches. Hence, the list of meaningful matches is drastically reduced from 517 to 16



 Chapter 9. Experiments on meaningful matches detection

elements (this shows how redundant is the encoding). These 16 matched shape elements are shown,

superimposed, in Figure .. No false matches were detected, and all matches have theirNFA below

0.1. The best match, shown in Figure ., reaches NFA = 6.5 10−11. This value is remarkably

low, considering that ideal perfect matches in this experiment would have a number of false alarms

of 1150 × 853/8536 = 2.5 10−12 (when the empirical distributions of distances to target codes are

learned using only the considered scene image, as we do here).

Figure .: Affine invariant semi-local recognition method: meaningful matches between shape elements. No false

matches were detected, and all detections show an NFA below 0.1. The lowest NFA is 6.5 10−11.

Figure .: Affine invariant semi-local recognition method: the match showing the lowest NFA (6.5 10−11).

In Figure . we display the meaningful matches detected using the similarity semi-local invari-

ant recognition method. In this case, 2033 and 1463 shape elements were extracted from the target

image and from the scene image, respectively. As we noticed for the toy example, the similarity

method allows to extract more shape elements than the affine method. A total number of 244 mean-

ingful matches (NFA < 1) were detected, and 26 matches were left after applying the greedy al-

gorithm. The meaningful matches for the similarity method are shown in Figure .. The lowest

NFA reached with the similarity method is 3.8 10−8, and corresponds to the shape elements and the

normalized codes presented in Figure .. In Figures .(b) and .(c), we present, respectively,

the shape elements matching at ε < 0.1, and those for which the NFA is between 0.1 and 1. Notice
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that none of the 10−1-meaningful matches are false matches, and that the corresponding shape ele-

ments are in general much more local than the shape elements matching in Figure .(c). Indeed,

the more global are the shape elements, the less accurate is the similarity approximation of the un-

derlying transformation, which is in fact a projective transform. Two false matches, for which the

NFA is larger than 0.1, can be seen in Figure .(c). In Figure . we show the shape elements

of these false matches, as well as the superimposed normalized codes represented in the normalized

frame.

We end up the discussion on the “Hitchcock experiment” with a comparison between the NFA of

the meaningful matches for the affine and the similarity semi-local invariant methods. Such a com-

parison is illustrated in Figure .. The principle is the same as for the toy example from section ...

The list of meaningful matches is ordered from best (lowest NFA) to worst (largest NFA), and the

index i of this sorted list is plotted versus − log10(NFAi), where NFAi is the NFA if the i-th best

match. Such a function is plotted for the similarity and for the affine matches. The affine semi-local

invariant matches reach lower NFA. Notice that in both affine and similarity invariant recognition

methods, there are several matches that show small NFA, leading to sure detections of common

shapes.



 Chapter 9. Experiments on meaningful matches detection

(a) All 26 matches having an NFA below 1.

(b) 12 matches show an NFA below 0.1.

(c) 14 matches show an NFA between 0.1 and 1.

Figure .: Similarity invariant semi-local recognition method: meaningful matches between shape elements.

Among the 26 matches having an NFA below 1, 12 are 10−1-meaningful. False matches (two) can only be seen

in (c), and their NFA is above 0.1.
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Figure .: Similarity invariant semi-local recognition method: the match showing the lowest NFA (3.8 10−8).

(a) False match, NFA = 0.64

(b) False match, NFA = 0.68

Figure .: Similarity semi-local invariant method: the two false matches. Their NFA are larger than 0.1.
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Figure .: Hitchcock experiment: NFA of affine and similarity semi-local invariant matches. Both lists of

meaningful matches are ordered from best (lowest NFA) to worst (largest NFA), and for each list, the index i of

the sorted list is plotted versus− log10(NFAi), where NFAi is the NFA of the i-th best match.
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.. A more difficult problem

Both in the toy example and the in “Hitchcock experiment”, target and scene images represented

different views of the same planar “objects” or elements. Corresponding shapes were accurately de-

scribed by the meaningful boundaries, leading to the detection of several matching shape elements,

with high detection confidence. In this subsection we consider a more difficult example, which con-

sists in finding common shape elements between the pair of images in Figure .. Although at first

sight these two different posters of the movie Casablanca are very similar, they present many slight

differences that considerably affect the topographic map, and consequently the set of maximal mean-

ingful boundaries. For instance, the actors’ faces in the target image (the one on top in Figure .)

come from a snapshot, while in the scene image they are a drawing.

Figure .: Casablanca experiment: original images (on the left) and level lines (on the right). The image on top

was considered as target image.

In this example, we only consider the similarity semi-local invariant method. The number of shape
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elements that were extracted from the target and the scene images were 3540 and 8554, respectively.

Figure . shows the 1-meaningful matches (i.e. matches for which NFA < 1) in the top row, and

the 10−1-meaningful matches in the bottom row. The number of 1-meaningful matches detected was

211, which was reduced to 17 after applying the greedy algorithm. It seems that the majority of the

relevant shape information that the two images have in common has been detected. No meaningful

match was found for characters ‘Casab’, which are indeed quite different (up to similarity invariance)

from one image to the other one.

(a) NFA < 1

(b) NFA < 0.1

Figure .: Casablanca experiment: meaningful matches between shape elements. Top: NFA < 1. Bottom:

NFA < 10−1, no false match can be seen.

Figure . shows the shape elements corresponding to the most meaningful match, for whichNFA =

5.0 10−13. Such a low NFA is a consequence of the fact that the target shape elements is so rare
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among all the extracted shape elements, that it is almost impossible that just by chance another shape

element lies so close to it. At this point, we should stress the following remark, which is obvious from

the definition of the NFA given in Chapter . Suppose we are given two target shape elements S1

and S2, and two scene shape elements S ′1 and S ′2, such that d(S1,S ′1) = d(S2,S ′2) = δ. If

#{S ′ ∈ B s.t. d(S1,S ′) 6 δ} < #{S ′ ∈ B s.t. d(S2,S ′) 6 δ},

it follows that NFA(S1,S ′1) < NFA(S2,S ′2). Hence, for a given distance d, the “rarer” is a target

shape element S (with respect to B), the lower is NFA(S, d). This makes sense, since a rare shape

element is more discriminatory than a banal one.

NFA = 5 · 10−13

Figure .: The match with the lowest NFA. The query shape element (left image) matches the database shape

(right image).

Figure . shows all the false matches detected at NFA < 1. They all have an NFA between 0.1

and 1. The matches at NFA = 0.34 and NFA = 0.84, for example, illustrate the previous remark;

the distance between the normalized codes for which NFA = 0.34 is 0.26, while the one for that

whose NFA = 0.84 is 0.14. The former corresponds to a target shape element which seems to

be rare, while target shape elements like the one matching at NFA = 0.84 are more “banal” (less

discriminatory) among extracted shape elements.

Finally, notice that all matches which semantically correspond to the same shape elements (the “cor-

rect” matches) show NFAs below 0.1, except for the one presented in Figure . (parts of two

characters ‘c’ with different font type). However, shape elements like the target shape element in

Figure . are not so rare, and even if the distance between codes is not that large (d = 0.15), the

match is almost not meaningful.
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NFA = 0.20

NFA = 0.34

NFA = 0.62

NFA = 0.72

NFA = 0.73

NFA = 0.84

Figure .: The six false matches for NFA < 1, with their normalized codes. The left most and middle images

correspond to the target and the scene shape elements, respectively. The right most image shows their normalized

codes, superimposed. All false matches show NFAs between 0.1 and 1.
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Figure .: Casablanca experiment: match between shape elements which semantically correspond, but shows an

NFA close to 1 (NFA = 0.13). Notice however that the fonts of the characters are not the same, and that the

shape element is not very discriminatory. This explains why the NFA is high.
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.. Meaningful matches between unrelated images

The experiment we present in this subsection consists in finding common shape elements between

two unrelated images. We consider two examples. “Target” and “scene” images for the first exper-

iment are shown in Figure .. We also display all the matches for which NFA is below 1, super-

imposed to the original images. 4731 and 4946 shape elements were extracted from target and scene

images, respectively. Among all 4731 × 4946 ≈ 23 106 pairs of target-scene shape elements, only 6

matches having NFA < 1 were detected. Their NFAs range from 0.21 to 0.97. The matched shape

elements, as well as their corresponding normalized codes, are shown in Figure .. Numbers 1), 4)

and 5), are “simple” (they are relatively short and do not present much oscillations), and match at

pretty small distances. However, because of their “banality”, they do not show lowerNFAs. Matches

number 2) and 6), while locally different, are quite similar at coarse scale, as it can be seen from

their superimposed normalized codes. For such long codes, a representation in 45 points may not be

accurate enough; a finer sampling would have probably led to largerNFAs for that kind of matches.

Figure .: Left: target image; 4731 shape elements were extracted from this image. Right: scene image; the

number of shape elements extracted from it was 4946. Among the 23 106 pairs of target-scene shape elements, only

six match at NFA < 1. The NFA of these matches range from 0.21 to 0.97.

The second example of common shape elements between two unrelated images involves the images

in Figure .. The 22 shape elements extracted from the target image are searched in the 546 shape

elements from the scene image on the left. Superimposed to the original images, we show the two

shape elements that match at NFA < 1. Unlike the previous example, here these matches show

NFAs lower than 0.1. The matched shape elements and their normalized codes are shown in Fig-

ure .. Notice that, according to what was presented in Chapter , matches showing NFAs lower

than 0.1 are not supposed to happen “by chance” (as matches between shape elements extracted

from random level lines), and some common cause should be behind such an unexpected coinci-

dence. This is what happens here. Indeed, many shapes in images derive from natural or man-made

objects having a common structure. For instance, many objects are built of parallel or equal-length

parts.



9.1. Local meaningful matches 

1)NFA = 0.21

2)NFA = 0.62

3)NFA = 0.78

4)NFA = 0.80

5)NFA = 0.82

6)NFA = 0.97

Figure .: The six false matches detected for NFA < 1, with their normalized codes. The left most and middle

images correspond to the target and the scene shape elements, respectively. The right most image shows their

normalized codes, superimposed.All false matches show NFAs between 0.1 and 1.
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Figure .: Puma experiment. Left: target image, from which 22 shape elements were extracted. Right: scene

image; 546 shape elements were extracted from it. The two matches detected at NFA < 1 are superimposed to

the original images.

1)NFA = 3.0 10−4

2)NFA = 1.3 10−2

Figure .: Puma experiment: the two matches detected for NFA < 1, with their normalized codes. The left

most and middle images correspond to the target and the scene shape elements, respectively. The right most image

shows their normalized codes, superimposed. Such a conspicuous coincidence admits a better explanation than

randomness: many shapes in images derive from natural or man-made objects having a common structure. For

instance, many objects are built of parallel or equal-length parts.
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.. Blur introduced by long distances to the camera

In this subsection we present the last experiment dealing with the semi-local invariant method for

shape recognition. This experiment just aims at illustrating how small objects’ meaningful bound-

aries are affected by the blur introduced when objects are far from the camera, and how this problem

can be solved by representing the target image at multiple scales.

The target and scene images for this example are shown in Figure .. On the left column of this

image, we display the extracted maximal meaningful boundaries. Images are presented at the same

scale. Figure . illustrates a detail of the maximal meaningful boundaries of the scene image, cor-

responding to the region of interest for this experiment. Compare now these boundaries with those

ones extracted from the target image, in Figure . (on top right). The characters in the scene image

have been almost completely destroyed, and not many similar shape elements can be observed.

Figure .: Top row: target image and its maximal meaningful boundaries; 312 shape elements were extracted

from this image. Bottom row: scene image and corresponding maximal meaningful boundaries. 1859 shape

elements were extracted from it.

Figure .: detail of the maximal meaningful boundaries of the scene image, corresponding to the region of

interest for this experiment. The boundaries of characters have been very degraded by the blur and the smoothing.

In Figure . we display, on the top row, the original image and two image reductions, by factors 4
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and 8. On the bottom row we illustrate their corresponding maximal meaningful boundaries (fol-

lowed by an affine shortening at scale T = 0.5, see Chapter ). Image reductions were performed

using a prolate kernel.

Figure .: Original target image and two image reductions. Left column: original image and corresponding

maximal meaningful boundaries. Middle: image reduction by a factor  (324 shape elements were extracted from

this image). Right: image reduction by a factor  (73 shape elements were extracted from this image). Reductions

were performed using a prolate kernel.

Figure . shows the detected matches at NFA < 1, for each target image (the original image and

the two reductions) with the scene image. When the shape elements of the original target image are

searched, only two matches having NFA < 1 are found (Figure .(a)). Both matches are correct,

and their NFAs are 8.8 10−6 and 1.9 10−4. Using as target image the image reduced by a factor 4,

more meaningful matches are found, and the best one reaches an NFA of 2.3 10−10. In this case all

matches are correct also (Figure .(b)). Finally, using the target image reduced by a factor 8, even

more meaningful matches are detected, reaching still lower NFAs. In this case, the NFA of correct

matches ranges from 2.1 10−3 to 3.6 10−12. A false match of NFA = 7.6 10−1 was detected, but it

corresponds to an artifact (a border effect) of the image reduction, as can be seen in Figure .(c).
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(a) Using the original target image. 2 matches have their NFA below 1
(8.8 10−6 and 1.9 10−4).

(b) Using an image reduction by 4 of the target image: 4 meaningful matches,

at NFAs 2.3 10−10, 1.3 10−6, 1.5 10−5 and 5.7 10−1.

(c) Using an image reduction by 8 of the target image: 5 meaningful matches, atNFAs 3.6 10−12 7.4 10−5, 4.6 10−4,

2.1 10−3 and 7.6 10−1. The last one corresponds to a false match, but was introduced by an artifact in the image

reduction procedure.

Figure .: Shape elements matched with the scene images, using three different scales of a target image. The

number of meaningful matches, as we their meaningfulness, increases when we consider image reductions. These

image reductions try to simulate the effect of distance to the camera.
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. Global meaningful matches

In chapter  normalizations invariant up to translation, rotation, similarity, or affine transforms were

presented. In this section, we show several experiments on global matching of shapes that validate the

normalization and the distance threshold derived from the number of false alarms (see chapter ).

Before going to the experiments, let us recall that a curve leads to as many descriptions (or “codes”)

as bitangent or flat pieces are present in the curve.

.. Global affine invariant recognition: toy example

We start this section on the global recognition method with a simple example. This toy example

involves the two images presented in Figure .. The image on the left, which was considered as

target image, represents the “Puma” logo, and the image on the right is an affine distorted version

of the left image. The extracted meaningful boundaries, followed by an affine curve shortening, are

shown superimposed to the images. Global shape elements are extracted from both images, using

the global affine invariant normalization method described in Chapter , section ...

The detection of meaningful matches between all global shape elements extracted from both images

was performed using the detection method presented in Chapter . No false match was detected.

Figure .(a) shows the matches with all global shape elements extracted from the puma boundary

in the target image, superimposed. Figures .(b) and .(c) illustrate the normalized curves of the

“target” and “scene” global shape element for which the match presents the lowest NFA (2.0 10−8).

Figure .: Puma. Global shape elements extracted from the superimposed level lines on the left image are sought

among global shape elements from the level lines on the right image.
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Figure .: Puma, global affine invariant encoding. Left: 1-meaningful matches with the puma boundary (su-

perimposed). No false detection can be seen. Middle and right images: normalized global shape elements from the

target and the scene images, that match at the lowest NFA (2 10−8).
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.. Comparing similarity and affine invariant global recognition methods

In this experiment we compare the performance of the affine and the similarity global recognition

methods, on two images whose maximal meaningful boundaries are shown in Figure .. The

boundaries on the left were considered as target. The shapes in the scene images are distorted not

only by projective transforms but also from projection on a cylinder (the bottle).

The example we consider here consists in finding the character ‘n’ from the target image in the scene

image.

Figure .: Evian: maximal meaningful boundaries. Left: target. Right: scene.

Figure . shows the detected 1-meaningful matches with global shape elements extracted from the

‘n’ in the target image. The target ‘n’ was represented with 10 global shape elements. 36 matches were

found in the scene image. The lowest NFA was 10−11. Some false matches can be seen, but they all

show NFAs between 0.7 and 1.

Figure . shows the matched global shape elements when considering the global affine method. The

target ‘n’ is still represented with 10 codes, since it is the same ‘n’ that was considered for the global

similarity matching (and there is always one global shape element extracted for each bitangent line or

flat piece on the curve). 35 matches showed anNFA below 1. The matches that actually correspond

to the ‘n’ on the bottle, show NFAs that range from 10−15 to 10−8. The NFA of matches which do

not correspond to global shape elements in the ‘n’ on the bottle, are between 10−3 and 1. However,

some “false matches” are not really “false” but “casual” matches, since they correspond to other

characters ‘n’ or ‘u’ that appear on the bottle (“Minérale” and “Naturelle”).

In Figure . we display, for both methods, the matches showing the lowest NFA. The top row

shows the normalized global shape element for the global similarity invariant method, and the bot-

tom row shows the normalized global shape element for the affine method. Notice that the pair of
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Figure .: Evian: global similarity invariant matching. All 1-meaningful matches with character ‘n’ from the

target image. The target ‘n’ is represented with 10 global shape elements, that match with 36 global shape elements

from the scene image. The lowest NFA is 10−11. False detections show NFAs between 0.7 and 1.

Figure .: Evian: affine invariant global matching. Meaningful matches with character ‘n’ from the target image,

represented with 10 global shape elements. Left: 1-meaningful matches, 35 matches. False matches show anNFA

between 10−3 and 1, but some of them are not really “false” but “casual” matches, since they correspond to other

characters ‘n’ and ‘u’ which are present in the scene. Good matches showNFA ranging from 10−15 to 10−8. Right

image: the 23 meaningful matches showing NFAs below 10−2.
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affine normalized shape elements are much more close to one another than the pair of similarity

normalized shape elements. It seems then reasonable that the NFA reached with the global affine

invariant method (10−15) is lower than the one reached with the similarity method (10−8).

Figure .: Evian experiment: matches for the ‘n’ showing the lowest NFA for the global similarity (top row)

and affine (bottom row) invariant recognition methods. In each of the rows, the curve on the left is the normalized

global shape element extracted from the target ‘n’, and the one on the right is the corresponding normalized global

shape element extracted from the scene image. The NFA for the similarity method was 10−11, and for the affine

method was 10−15. In spite of the projection on the bottle, the normalized shapes elements are very alike.

In Figure . we display, for both methods, the false matches that show the lowest NFA for both

methods. The top row shows the normalized global shape element for the global similarity invariant

method, and the bottom row shows the normalized global shape element for the affine method. The

NFA for the similarity invariant match was 0.7, and for the affine method was 4.0 10−3.
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Figure .: Evian experiment: the false matches for the ‘n’ that show the lowest NFA, for the global similarity

(top row) and affine (bottom row) invariant recognition methods. In each of the rows, the curve on the left is

the normalized global shape element extracted from the target ‘n’, and the one on the right is the corresponding

normalized global shape element extracted from the scene image. The NFA for the similarity invariant match

was 0.7, and for the affine method was 4.0 10−3 (it can be seen in the handwritings on the top of the right image

from Figure .).
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.. Global matches of non-locally encoded shapes elements

The main drawback of global shape matching is its sensitivity to occlusions, whereas local match-

ing is especially designed to deal with them. Nevertheless, the semi-local encoding we presented in

Chapter  is unable to encode curves which are convex or “quasi-convex”. While in general (as we will

show with some experiments) these “quasi-convex” boundaries are not very discriminatory, some of

them may provide useful information we would not like to miss. We therefore make the global and

semi-local methods work together: the non-locally encoded boundaries are globally encoded, and

then globally compared.

First example: a book cover

Figure . shows two different views of a book cover, and its corresponding maximal meaningful

boundaries. The “target” image (on top) consists of a partial view.

Figure .: Book cover. Top row: “target” image, and its corresponding 208 maximal meaningful boundaries.

Bottom row: “scene” image, and its 1185 maximal meaningful boundaries.

The two images are related by a strong perspective transformation. Perspective transforms can be

locally approximated by affine transforms; since many boundaries in images are quite local, it is
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sound to try to find correspondences between the considered pair of images using our semi-local

and global affine invariant recognition methods.

Figure . shows the 1-meaningful matches between shape elements detected by the semi-local affine

recognition method. Among the 16 matches that were found, a single false match having an NFA

equal to 0.6 was detected (it can be seen on the right part of the scene image), and the lowest NFA

was 10−10.

Figure .: Book cover: the 16 semi-local affine invariant matches. The best match has an NFA of 10−10. The

scene shape element of the only false match (NFA = 0.6) that was detected can be seen in the right part of the

scene image.

The next stage of our matching procedure consists in finding matches between global shape ele-

ments, extracted from those maximal meaningful boundaries that were not described by any semi-

local shape element. All not semi-locally encoded maximal meaningful boundaries are shown in

Figure .(a). These two sets of curves are used as the input of the global affine invariant recog-

nition method. Figure .(b) shows the detected 1-meaningful matches between global shape ele-

ments. Good matches reach NFAs as low as 10−10. Some false matches were detected, but we can

only say they are false because, semantically, they do not correspond to the same shapes. However,

these “false matches” correspond to global shapes elements that look actually alike. Such “false” cor-

respondences can often occur: convex or “quasi-convex” shapes are indeed not very discriminatory,

and higher level information (such as spatial coherence between matches) is needed in order to assess

their semantic validity.

Notice that if we combine the matches that were obtained from both the semi-local and affine invari-

ant methods, almost all shapes in common have been detected. Compare now the combination of

these matches with the matches detected when using the global method over all the maximal mean-

ingful boundaries (Figure .). We can observe that using first the semi-local method, and then the
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(a)

(b)

Figure .: Book cover. (a) all not locally encoded maximal meaningful boundaries. Too small or too convex

level lines are not encoded. (b) the 160 matches between global shape elements, using the global affine invariant

recognition method. The search is only performed upon the maximal meaningful boundaries which were not locally

encoded. The NFA of some matches reach values as low as 10−10. Since spatial coherence between matches is not

taken into account, “false” matches (false from a semantic viewpoint) are unavoidable (these matches correspond

to global shapes elements that look actually alike).
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global method over the non semi-locally encoded boundaries, produces less false matches than using

the global method over the original sets of maximal meaningful boundaries. Indeed, even when we

do not deal with occlusions, considering semi-local descriptions for “complex” boundaries is more

sound than describing them globally, since it allows to increase the discriminatory power.

Figure .: Book cover: the 857 global shape elements detected as 1-meaningful matches, among all maximal

meaningful boundaries. The lowest NFA reaches 10−14. The majority of the “false” matches are unavoidable,

since globally, the matched shape elements are very alike.

Two frames of a sequence

Figure . shows the semi-locally matched shape elements between two frames of a sequence, us-

ing the semi-local similarity invariant method. The non semi-locally encoded maximal meaningful

boundaries are displayed in Figure .. The majority of the non semi-locally encoded boundaries

are oval shaped, and not discriminatory enough to decide if a match is “semantically correct”. Never-

theless, while pairing two of them may not provide much information, looking for spatial coherence

between all pairs of matches can lead to high confidence detections.

Figure . shows some global matches (those for which the NFA is below 10−2). Among the

represented shape elements, almost all of them seem to be discriminatory enough, and no “oval”

shaped (not discriminatory) boundary is present. This fact is consistent with one of the features of

our detection methodology: good matches between discriminatory shape elements show the lowest

NFAs.
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Figure .: Movie frames. The 75 semi-local similarity invariant 1-meaningful matches. The lowest NFA is

about 2.0, 10−16.

Figure .: Movie frames. Non semi-locally encoded maximal meaningful boundaries. There are 356 lines in the

target image (left) and 373 in the scene image (right).



9.2. Global meaningful matches 

Figure .: Movie frame. The 120 global 10−2-meaningful matches among the non semi-locally encoded level

lines. The lowest NFA is about 5.0 10−13.
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. Recognition is relative to the database

In this section, we illustrate a property of the distance threshold derived from the number of false

alarms: the distance threshold for recognition depends on the “rareness” or on the “banality” of the

target shape element relative to a database of shape elements, and therefore on the context.

.. The recognition threshold depends on the database

Recall that the Number of False Alarms of a shape element S at a distance d is given by:

NFA(S, d) = N ·
K∏
i=1

Pr(S ′ s.t. di(xi(S), xi(S ′)) 6 d),

where each shape element is described by K features x1, . . . , xK .

Let us consider the 1-meaningful matches with S . We can then derive the distance threshold for

recognition:

δ∗(S) = max{d > 0,NFA(S, d) < 1}.

If a shape element S ′ satisfies

max
i∈{1,...,K}

di(xi(S ′), xi(S)) 6 δ∗(S),

then it matches S 1-meaningfully.

Notice that this recognition threshold depends on the “rareness” or on the “banality” of the target

shape element with respect to the considered database of shape elements. If a target shape element

S1 is “rarer” than another one S2, then the database contains more shapes element close to S2 than

shapes elements close to S1, below a given distance. Now, since the probabilities are in fact empirical

frequencies estimated over the database of shape elements, it follows that if a target shape element S1

is rarer than another one S2, then we should have, for i ∈ {1, . . . , K}:

Pr (S ′ s.t. di(xi(S1), xi(S ′)) 6 d) 6 Pr (S ′ s.t. di(xi(S2), xi(S ′)) 6 d) ,

at least for d small enough. This yields: δ∗(S2) 6 δ∗(S1), i.e. the rarer the sought shape element is,

the largest is the distance threshold for recognition.

We can give another formulation of the same property. Consider two databases of shape elements,

B1 and B2. If a given target shape element S is rarer among the shapes elements in B1 than among

those in B2, then we should have for all i ∈ {1, . . . , K}:

Pr (S ′ ∈ B1 s.t. di(xi(S), xi(S ′)) 6 d) 6 Pr (S ′ ∈ B2 s.t. di(xi(S), xi(S ′)) 6 d) .

This still yields: δ∗2(S) 6 δ∗1(S).

The conclusion is that the distance threshold proposed by our algorithm auto-adapts to the relative

“rareness” of the target shape element with respect to the database shape elements. The “rarer” the

target shape element is, the more permissive the corresponding distance threshold, and conversely.
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.. An experimental verification

The aim of this experiment is to validate the previous claim. We search for the four shape elements

extracted from the character ‘m’ (Figure .) into 14 scanned pages, by using the semi-local similar-

ity invariant recognition method.

We led two experiments: in the first one the database that was used to learn probabilities consisted of

these 14 scanned pages (79, 376 shape elements), whereas in the second one the database was made

of shape elements extracted from 21 ‘natural’ images (98, 857 codes).

Figure . shows the shape elements from one of the 14 scanned pages that matched with the target

shape elements, when probabilities are estimated over the scanned text database (notice that all ‘m’

are recognized).

Figure . shows the recognition result when the scanned text database is replaced by the natural

image database. We can see that the recognition thresholds are more permissive in the second case

(Figure .). This result is fully coherent with the theory: in the first case, the focus is put on

recognition of shapes elements that share some common structure with ‘m’ among other characters,

that is to say other ‘m’, whereas in the second case, we are interested in recognizing shapes elements

that share a common structure with ‘m’ relative to a large universe of shape elements extracted from

natural images, that is to say other ‘similar’ characters (that is why we get italic ‘m’ and other “bad”

matches).

Figure .: Characters - the query curve.
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Figure .: Characters - Recognition when probabilities are estimated over the database of scanned text pages.

111 matches were detected.



9.3. Recognition is relative to the database 

Figure .: Characters - Recognition when probabilities are estimated over the database of natural images

database. 154 matches were detected.

Figure .: Characters - Superimposition of the matched normalized codes. Left: the four target codes. Middle:

all codes from the scanned text that match the corresponding target code, superimposed; probabilities were esti-

mated using the 14 scanned pages. Right: superimposed matched codes when probabilities were estimated over the

database of natural images. Notice that the matching threshold is larger in the latter case.
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Intermezzo

MEANINGFUL MATCHES BASED ON

ALTERNATIVE DESCRIPTIONS





Chapter 

SHAPE ELEMENTS COMPARISON BASED ON

PRINCIPAL COMPONENTS ANALYSIS

Abstract: The method presented in Chapter  can be adapted to shapes described by other features, when-

ever these features are (almost) statistically independent. When such a set of features is available, low numbers

of false alarms can be reached. In this chapter we address the shape matching problem in this framework, by

representing shape elements with sets of features provided by principal components analysis (PCA). Although

these features are not necessarily independent, they are at least uncorrelated. We perform some experiments

under the assumption that principal components analysis features are independent, making the usual a con-

trario decision still valid. These experiments show that a PCA method based on shape elements is not as well

adapted as the strategy proposed in Chapter . The significance of these results is discussed.

Résumé : La méthode présentée dans le chapitre  peut être adaptée pour des formes décrites par d’autres

types de caractéristiques, dès que celles-ci sont (suffisamment) indépendantes. De telles caractéristiques per-

mettent d’atteindre des nombres de fausses alarmes bas. Dans ce chapitre nous abordons le problème de

l’appariement de formes dans ce cadre, en représentant les éléments de forme par des caractéristiques issues

d’une analyse en composantes principales (ACP). Bien que ces caractéristiques ne soient pas nécessairement

indépendantes, elles sont au moins décorrélées. Nous menons quelques expériences sous l’hypothèse que les

caractéristiques fournies par l’ACP sont indépendantes, ce qui rend valide la théorie usuelle de la décision

a contrario. Ces expériences montrent qu’une méthode basée sur l’ACP n’est pas aussi bien adaptée que la

stratégie proposée dans le chapitre . La signification des résultats obtenus est dicutée.

. Facing the independence problem

As explained in Chapter , if the shapes are described through independent features, then we are able

to compute a Number of False Alarms for shape matching that reaches very small values, and hence

to derive an acceptation / rejection threshold for this problem. In order to correctly estimate this

threshold, the statistical model that describes the shape database has to be as accurate as possible.
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Although principal components analysis (PCA) provides uncorrelated variables, and not indepen-

dent ones, a naïve first experiment could be to test if the PCA would not be suitable for computing

a Number of False Alarms. In what follows we describe this setting, and related issues. The contents

of this chapter is extracted from the article [MSM03].

.. Definition of a Number of False Alarms

The definition proposed here is slightly different from the one in Chapter .

Suppose that the problem is to decide whether a query shape element matches some shape elements

in a database of cardinality NB . We suppose that each normalized shape element is well described

by n features x1, x2, . . . , xn, each of them belonging to a metric space (Ei, di), 1 6 i 6 n. Instead

of referring to a shape element S , we will refer to the correponding code (x1(S), . . . , xn(S)) as well,

which is an equivalent formulation.

Let X = (x1(S), . . . , xn(S)) be a query code, and Y = (y1, . . . , yn) an element of the cartesian

product E1 × · · · × En. Let δ1, . . . , δn be n positive real numbers. We say that X and Y are

(δ1, . . . , δn)-close if:

∀i ∈ {1, . . . , n}, di(xi, yi) 6 δi.

Two codes match if they are (δ1, . . . , δn)-close, with δ1, . . . , δn small enough. As we can see, we must

fix a threshold upon the δi.

Suppose moreover that, crucial hypothesis, the shape features are statistically independent. Then the

probability that a code Y is (δ1, . . . , δn)-close to the query shapeX can be expressed in the following

way:

Pr(Y s.t. Y is (δ1, . . . , δn)-close toX) =
n∏
i=1

Pr(y ∈ Ei s.t. di(y, xi) 6 δi). (.)

We will denote this probability by P(X, δ1, . . . , δn).

Each term of the product is estimated over the database: for each i, one computes the distribution

function of di(z, xi) when z spans the ith feature of the shapes in the database, that is to say:

Pr(y ∈ Ei s.t. di(y, xi) 6 δi) =
1

NB

·#{S ′ ∈ B, di(xi(S ′), xi(S)) 6 δi},

where #· denotes the cardinal of a finite set.

We then define an ε-meaningful match of a query code.

Definition 10.1 We say that a code Y = (y1, . . . , yn) is an ε-meaningful match of a query code

X = (x1, . . . , xn) if one has:

NB ·
(

max
16i6n

Pr(y ∈ Ei s.t. di(y, xi) 6 δi)

)n
6 ε,

where ∀i ∈ {1 . . . n}, δi = di(yi, xi).
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Let us remark that this condition is equivalent to:

∀i ∈ {1 . . . n},Pr(y ∈ Ei s.t. di(y, xi) 6 δi) 6

(
ε

NB

) 1
n

. (.)

We impose a uniform bound on the probabilities corresponding to each feature since there is no

reason to differentiate between them.

As the functions d 7→ Pr(y ∈ Ei s.t. di(y, xi) 6 d) are non-decreasing, they are pseudo-invertible.

Thus there exist some maximum real numbers δ∗i (depending on X and ε) such that

δ∗i = max{d > 0,Pr(y ∈ Ei s.t. di(y, xi) 6 d) 6 (ε/NB)1/n.

As a consequence, if δi < δ∗i , then inequality . holds. The proposition that follows is then straight-

forward.

Proposition 10.1 A code Y = (y1, . . . , yn) is a ε-meaningful match with X = (x1, . . . , xn) if : Y is

(δ1, . . . , δn)-close to X , with the real number δi satisfying:

∀i ∈ {1 . . . n}, δi < δ∗i ,

where ∀i ∈ {1 . . . n}, δ∗i = max

{
d > 0,Pr (y ∈ Ei s.t. di(y, xi) 6 d) 6

(
ε

NB

) 1
n

}
.

The following proposition makes all these definition consistent, and shows that, if the NFA com-

putation holds (namely the features are statistically independent), the number of detections should

be bounded by ε. This is a much more handy way to control detections than tuning the distance

thresholds δ∗i by hand for each target code.

Proposition 10.2 If the NFA computation is valid, then the expectation of the number of ε-meaningful

matches over the set of all shapes in the database is less than ε.

Proof: Let us recall the proof given in Chapter .

Let X be the target shape, Yj = (yj1, . . . , y
j
n) (1 6 j 6 NB) denote the codes from the database, and

χj be the indicator function of the event ej : “Yj is an ε-meaningful match of X”.

Let R =
∑NB

j=1 χj the random variable which represents the number of ε-meaningful matches with

X . The expectation ofR is given byE(R) =
∑NB

j=1 E(χj). Then, it follows from Proposition . that

E(R) =
∑NB

j=1P(X, δ∗1, . . . , δ
∗
n). As a consequence: E(R) 6

∑NB
j=1 ε ·N

−1
B , leading to: E(R) 6 ε.

We can also give a quality measure for a match between two codes.

Definition 10.2 A code X and distances δ1, . . . , δn > 0 being given, we call Number of False Alarms

of X at a distance δ1, . . . , δn :

NFA(X, δ1, . . . , δn) = NB · P(X, δ1, . . . , δn).
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The number of false alarms ofX at distances δ1, . . . , δn should be an estimate of the number of codes

that are (δ1, . . . , δn)-close to X among the database, if the background model is true.

In the framework we have just presented, we control the number of casual matches. If we want that

these casual matches appear on the average at most once, we simply fix ε = 1. If the query is made

of NQ shape codes of equal importance, and if we want to detect on the average at most one casual

match over all possible matches, we still set ε = 1 after replacing NB with NB ·NQ in Definition .

(in this case, Proposition . still holds).

.. Modeling

We now describe how we extract the independent features out of shapes, in order to correctly estimate

formula (.).

Normalized codes are extracted with the algorithm described in Chapter . They are made of 

equally sampled points. These points are of course not independent (if the  first points match the

corresponding points in another shape piece, then the following points also ought to match). Here

is the process to build what we consider as independent features. Considering the whole database as

a finite subset of R90, we compute its barycenter, and we center the database at this point. Then, the

principal components analysis of this cloud of normalized shape elements is computed, leading to

an orthonormal basis {e1, . . . , e90}, where the ei are sorted according to the decreasing variances (cf

Figure .). Precisely speaking, the basis {e1, . . . , e90} is made of the unitary eigenvectors (sorted

up to the corresponding eigenvalues) of the positive symmetric matrix equal to
∑NB

i=1(Yi − Y ) ·
(Yi − Y )

T
, where Yi corresponds to the component row of a code from the database, and Y to the

average of the Yi over the database. Each normalized shape element in the database is projected on the

subspace of dimension M spanned by {e1, . . . , eM}: the list of coordinates in this frame constitutes

the list of features (x1, . . . , xM). In the same way, features are computed out of the target code. With

the notation of section ., here we have: (Ei, di) = (R, | · |).

Now, how to choose M ? The number of components that are taken into account should be as large

as possible, in order that the description is as complete as possible. Nevertheless, many components

show a very small variance, so the corresponding coordinates does not provide much information,

and may spoil the recognition task since they appear as a “noise” upon the real shape. Figure .

shows that, while choosing M = 10 seems a bit arbitrary, it is quite reasonable.

. Experiments

In all of the presented experiments, the semi-local similarity invariant encoding is used. Shape codes

have a normalized length equal to , and are made of  points, issued from a regular sampling

(geodesic distance) of the normalized shape element. We should mention that the shape encoding

used in these experiments corresponds to an early version of the method, where flat points were

not used. Consequently, some shapes were not retrieved simply because they were not encoded.
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Figure .: The 90 eigenvalues from the principal components analysis (corresponding to the experiment of sec-

tion ..), sorted in decreasing order.

Nevertheless, this fact is not relevant here, since what we aim at showing with these experiments is

that the PCA model is not well adapted for an accurate detection of meaningful matches between

shape elements.

.. Checking the model

In order to check the estimate of the number of false detections, we have led the following experiment

(see Chapter  for a description of explanation about the methodology). The shape database is made

of 100, 000 random walks with independent increments (constant distance between two consecutive

points, uniform assumption over the angle distribution). These codes are ensured to satisfy the

independence assumption, what is not the case for codes extracted from level lines. Such codes are

indeed constrained not to self-intersect, and can share common causality (such as parallelism): these

properties introduce a bias in the estimates of the number of false alarms. The following table shows

the estimated number of false alarms versus several values of the meaningfulness ε and of the number

of components kept in the PCA. The number of detections and ε have the same order of magnitude,

as predicted by the theory.

ε 1 10 100 1000

20 components 0.7 9.7 85 847

10 components 0.3 8.7 90 933

5 components 1 10 105 975

Principal components analysis therefore provides features that are independent enough to make the

number of false alarms computation valid.
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.. Shape matching

As an experiment, two (different) images of the same painting are compared (see Figure .). Level

lines are extracted, corresponding local codes are computed, and the PCA-based decision rule of this

chapter is then applied. Results can be seen on Figure .. Among the 975 codes of the query image,

26 are matched with at least one code of the database image (made of 38, 700 codes), leading to a

total number of 53 matches. This means that some query codes match several database codes, which

are in fact slight variations of the same code. We can see five “false alarms”, showed on Figure ..

Figure .: Top: query image and extracted level lines. Bottom: database image, and extracted level lines. These

images are two different views of the same painting (Saint-Georges and the dragon by Paolo Uccello). In particu-

lar, contrasts of both images are not alike.



10.2. Experiments 

Figure .: The 53 1-meaningful matches in target image. Some false alarm can be seen on the left.
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Figure .: The five 1-meaningful false alarms in the target image (on the left) and in the database image (on

the right). As far as only geometry and not semantic is concerned, only the second and perhaps the fifth can be

considered as true false alarms.
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.. Toy example: application to logo recognition

We show here the results of a logo recognition experiment. The target image is made of a logo

(cf Figure .). It is searched among the  images of a database, represented by 90, 000 codes.

Figures . to . show the images of the database for which at least one 1-meaningful detection

was found (left: target logo codes; right: corresponding codes in the database images). Some false

alarms can still be seen. Nevertheless, none of these detections is 10−1-meaningful, as proved by

Figure .. On the other hand, the number of false alarms of the “good” detections reaches values

as low as ε = 10−8.

Figure .: Target: “puma” logo. On the right: extracted level lines.

. Conclusion for the PCA-based model

The principal components analysis provides independent enough features to make the number of

false alarms computation valid. However, results are not as good as they should be. The description

is indeed not complete, as we cannot take into account all of the PCA components. We could perhaps

have improved the algorithm by investigating Independent Components Analysis (ICA, see [HO00,

Hyv99]), in order to make features more local. Nevertheless, PCA as ICA suffer from the same

inherent drawback: they are correct under the strong assumption that the feature space is linear.

This is clearly not true for the space of shapes. All these considerations illustrate how difficult it can

be to find a set of features meeting the three requirements presented in Chapter :

) Complete description: two shapes with the same features are alike.

) Mutual statistical independence (more precisely speaking, independence for the distances be-

tween features).

) Enough features in order to be able to reach low numbers of false alarms.

Looking for such a set of features led us to consider the strategy presented in Chapter , section ..,

which gave, among several explored methods based on shape elements, the best trade-off in achieving

these three requirements.
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Figure .: The database. 90, 000 codes are extracted from these images.
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1 detection

3 detections

20 detections

Figure .: Logo experiment: 1-meaningful matches.
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7 detection

3 detections

14 detections

Figure .: Logo experiment: 1-meaningful matches.
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18 detection

6 detections

1 detection

7 detections

Figure .: Logo experiment: 10−1-meaningful matches. Relevant detections reach NFA values as low as (from

top to bottom): ε = 10−8, ε = 10−4, ε = 10−2 and ε = 10−2. The two latest images show a strong difference

on the scale with the target image. The corresponding level lines are in fact quite different, that is why so few local

codes are matched.
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Chapter 

NUMBER OF FALSE ALARMS FOR SIZE

FUNCTIONS

Abstract: The proposed a contrario decision rule for shape matching is valid as soon as statistically indepen-

dent features are provided. The theory is general enough in order that the decision rule does not depend on

the kind of shape features that are matched. The shape features consist here in size function, and the model

proposed in Chapter  is adapted in order to use uncorrelated random variables. The results seem to be still

valid in spite of this adaptation and of the uncompleteness of the shape description. This chapter presents

some preliminary results of a work in progress (Galileo project with P. Frosini’s group in the University of

Bologna).

Résumé : La règle de décision a contrario pour la reconnaissance de formes que nous avons proposée est valide

dès qu’on dispose de caractéristiques statistiquement indépendantes. La théorie est suffisamment générale

pour que la règle de décision ne dépende pas des caractéristiques en elles-mêmes. Les caractéristiques de forme

sont ici des fonctions de taille, et le modèle proposé au Chapitre  est adapté pour l’utilisation de variables

aléatoires décorrélées. Les résultats semble bien encore valables, malgré cette adaptation et l’incomplétude de

la description des formes. Dans ce chapitre, nous présentons les résultats préliminaires d’un travail en cours

(projet Galileo avec le groupe de P. Frosini à l’Université de Bologne).

Figures . to . are reproduced here by courtesy of Patrizio Frosini.

. Size function theory in short

.. Size functions and their representation

P. Frosini’s group proposes an original approach for describing and comparing shapes of topological

spaces using size functions. A simplified description of the size function theory is given here, directed

towards shape recognition. Articles [FL99], [FL01], and references therein present an overview of the

general theory. Size functions can be seen (in particular) as tools providing information about the

topology of any graph. Let G be a planar graph (given by the coordinates of its vertices in the plane,
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and edges between them), and F be a measuring function on G (a function which associates to each

vertex of G a non-negative real number). A size function is a mapping L from R
+ × R+ into N that

associates to each couple (x, y) the number of connected components C of the graph G satisfying

both following conditions:

• for each vertex v of G, one has F (v) 6 y;

• at least one vertex v0 of G satisfies F (v0) 6 x.

Of course, the size function L provides information only if x 6 y.

Let us illustrate this definition with a running example. Figure . presents an example of size func-

tion computation, and Figure . shows a handy way to represent size function. From Figure .

one can argue that this representation is convenient for shape comparison. In that sense, a distance

between size functions corresponds to some similarity or dissimilarity for the quality captured by the

corresponding measuring function between two shapes.

Figure .: An example of size function computation. From left to right: ) a discretization of the character “m”,

seen as a graph; ) Values of a measuring function over the graph vertices (it consists here in a kind of normalized

ordinate); ) There are 3 connected components in this graph containing at least one vertex whose measuring

function value is not larger than 0.5 and upon which the measuring function values are under 0.8. Therefore we

have: L(0.5, 0.8) = 3.

To make the representation of size functions handier and more compact, cornerpoints are defined as

any point p = (x, y) such that:

µ(p) := min{(L(x+ α, y − β)− L(x+ α, y + β))−
(L(x− α, y − β)− L(x− α, y + β)) s.t. α > 0, β > 0, x+ α < y + β}

is positive.

The integer number µ(p) is called multiplicity of the corner point p. A size function representation

is proved to be equivalent to giving the set of the corresponding cornerpoints with their respective

multiplicity. Figure . illustrates this property.

.. Size functions and shape recognition

In the framework developed all along this thesis, shapes are represented by the boundaries of the

connected components of level sets in an image (level lines, which are Jordan curves). To each level
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Figure .: Size function representation. The size function values are represented on the subset x < y. Left:

measuring function values for the graph of figure . and for the graph corresponding to the discretization of a

character “n”. Right: associated size function representation.

Figure .: Size function is robust with respect to variations of the measuring function. Here is shown the size

function representation of another instance of the character “m”. To be compared with figure . upper sketch.
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Figure .: Definition of corner points for size function, with their multiplicity.
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line is associated a “circular” graph whose vertices correspond to discretization points of the level

line, and whose edges connect adjacent discretization points. It is thus possible to represent shapes

(in the sense of this thesis) in the size function theory framework.

When applied to shape recognition, size function theory leads to (quasi) invariant descriptions,

which are well adapted for perceptual matching (and not exact matching). Measuring functions

are indeed devoted to measure topological properties of shapes, rather than purely geometric ones.

See for example [HZW99] where sign language recognition using size function is addressed.

Size functions appear to be robust to occlusions, provided the occlusion prunes the considered graph

without changing its connectivity. Let us notice that the underlying invariance is determined by

the measuring function. For instance, the “normalized ordinate” used in Figure . leads to an

invariance with respect to a change of position and scale along the y-axis. The provided description

is not complete, in the sense that, a measuring fonction being given, two different graphs can be

represented by the same size function (think of the measuring function of Figure .: any horizontal

translation of the vertices would lead to the same size function). Thus, representations based on

several size functions (depending on different measuring functions) are needed, in order to increase

the discriminatory power.

. Proposing a number of false alarms for size functions

.. Three families of size functions for shape comparison

As said before, shapes are conceived as Jordan curves, and therefore represented by cyclic graphs.

Three groups of measuring functions are designed:

. The first group G1 is made up of eight measuring functions dk, k = 1, . . . , 8, each of them

representing the distance of the considered point on the curve from a fixed point Pk which lies

on a spiral in the plane of the shape:

Pk = (λk cos θk, λk sin θk)

where: θk =
k · 2π
n

and λk =
4 · k · d

3 · n
where n = 8, and d is the mean distance to the barycen-

ter, divided by the number of points of the curve.

. The second groupG2 consists of eight measuring functions rk, k = 1, . . . , 8, corresponding to

distances to eight lines passing through the barycenter of the curve, defined by eight increasing

angles formed with the canonical reference frame of the plane.

. The measuring functions belonging to the third group G3 are the derivatives of the eight

distances from points defined in the first group (that is to say derivatives of the function

t 7→ d(C(t), P ), where C(t) is an Euclidean curve parameterization, computed using a two

steps formula).
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These 3 · 8 = 24 measuring functions are expected to provide a complete enough description of

shapes. Since shapes are related to their barycenter, the description is translation invariant.

.. Deriving a number of false alarms

Two shapes S and S ′ being given, the three distances between groups of size functions are computed:

d1 = d(G1(S), G1(S ′)), d2 = d(G2(S), G2(S ′)), and d3 = d(G3(S), G3(S ′)). Each di is the average

matching distance between size functions belonging to the group i (i ∈ {1, 2, 3}). The problem we

are coming up against is to mix the information provided by d1, d2, and d3. Since these distances do

not share the same distribution at all, we cannot simply define the distance between two shapes as

the average, or as the maximum of the three distances d1, d2, and d3. A statistical model is called for.

Let us make the proposed approach more precise. Suppose that the problem is to search a query shape

S among shapes in a database B (cardinalN). The three distances di(S,S ′) between the query shape

and a shape S ′ from the database have no reason to be mutually independent. In a similar manner as

in chapter , the principal components of the set {(d1(S,S ′), d2(S,S ′), d3(S,S ′)),S ′ ∈ B} (which

is a subset of R3) are computed. To each triplet (d1(S,S ′), d2(S,S ′), d3(S,S ′)) we thus associate

the triplet (D1(S,S ′), D2(S,S ′), D3(S,S ′)) made of its coordinates in the principal components

analysis basis. Although these components are not stricly speaking statistically independent, there

are at least mutually uncorrelated.

Let us note, for each i ∈ {1, 2, 3} and d > 0:

Hi(d) = 1/N ·# {S ′ s.t. Di(S,S ′) 6 d} ,

where #· denotes the cardinality of a finite set.

Each Hi is an empirical estimate of the probability that a shape lies at a distance Di less than d from

the query shape S . Assuming D1, D2, and D3 are mutually statistically independent, the probability

that there exists a shape at a distance D1 less than d1 according to the first group of size function, at

a distance D2 less than d2 according to the second one, and at a distance D3 less that d3 according to

the third one is simply given by the product:

H1(d1) ·H2(d1) ·H3(d3).

Thus, the number of false alarms associated to two shapes S and S ′ is derived as:

NFA(S,S ′) = N ·H1(D1(S,S ′) ·H2(D2(S,S ′)) ·H3(D3(S,S ′)). (.)

We also define ε-meaningful matches of a query S as shapes S ′ belonging to the database such that

NFA(S,S ′) < ε. As usual this yields that the expectation of the number of false ε-meaningful

matches of a query shape S is less than ε.
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.. Preliminary experimental results

The following experiment aims at testing the proposed methodology. It consists in searching char-

acters in a scanned text. Level lines (a total number of 8907) are extracted from a scanned text.

Although size functions are designed to deal with perceptual matching, we choose to lead this exper-

iment in an exact matching framework so that the provided results can be more easily interpreted.

In this case, the list of the characters that are expected to match with a query character is indeed not

ambiguous. This is not so easy in a perceptual matching framework.

Figures ., ., and .: searching character t .

Figures . and .: searching an opening bracket ( .

Figure .: searching character E.

Figure .: searching character m.

Figure .: searching character s .

See captions for details.

Figure .: Searching a character t . On the left: query shape, and on the right the misdetected t (see caption of

figure .). Not detecting the right curve when searching the left curve is not surprising.

. Tentative conclusion

The a contrario decision rule based on a background model estimated over the database seems to

give qualitatively interesting results. The experiments we have just led show that, whatever the shape

features are, provided they are independent enough, the Number of False Alarms computation still

holds. These preliminary results are encouraging, since most of corresponding characters are cor-

rectly retrieved. The false matches show a higher Number of False Alarm than the correct ones. Now,

the characters generally show a strong inter-cluster variability and a weak intra-cluster one. The lack

of independence between PCA components and the lack of accuracy of size function description of

shapes is possibly offset by the robustness of the clusters of characters.

Concerning size functions themselves, we have to work further in order to define several measuring

functions capturing more shape information. It would improve the discriminatory power of the
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method, by making the estimated NFA reach lower values. On the other hand, since increasing

the number of size functions means possibly increasing the information redundancy, we should also

quantify the independence between the provided features. Efforts will also be made in order to define

classes of size functions which are invariant up to similarities.
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Figure .: Searching a character t . Top: the 129 1-meaningful matches. Bottom: the 97 10−1-meaningful

matches. Four false matches can be seen in the upper image: « caractère » (line , NFA: 7 10−1), « objectif » (line

, NFA: 3 10−1), « successifs » (line , NFA: 4 10−1), « comparer » (line , NFA: 8 10−1). Only one t is missed,

in the word: « téléchargeables » (row nb. 24). This character t is missed since the corresponding level line was

actually wrongly extracted (see figure .). In the lower image, no false match can be seen, but some true matches

disappear. “Best” matches show a NFA as low as 2 10−4.
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Figure .: Searching a character t without Principal Component Analysis (that is to say theDi of section ..

are replaced by the di in the formula .). Top: the 162 1-meaningful matches. Bottom: the 127 10−1-meaningful

matches. Many false matches can be seen among the 1-meaningful matches, and one false match can be still be

seen among the 10−1-meaningful matches: « donné » (row nb. 8, NFA: 6 10−2). Best matches show a NFA equal

to 4 10−4. Principal Components Analysis actually improves the Number of False Alarms estimate.
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Figure .: Searching an opening bracket ( . There are 97 1-meaningful matches (not shown). Top: the 13 10−1

meaningful matches. Bottom: the 6 detections which NFA is less than 10−2 (their NFA is in fact between 5 10−5

and 2 10−4). It seems that the level line corresponding to the contour of character ( is not precisely described

by size functions. Many 10−1-meaningful matches are false. Nevertheless, there is a “gap” between true matches

(NFA about 10−4) and false matches (NFA greater than 10−2).
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Figure .: Searching an opening bracket ( without the principal components analysis step. Top: the 10−2

meaningful matches. Bottom: the detections which NFA is less than 10−5. The NFA estimate is bad, since there are

many false matches with a very low NFA (let us remark that these false matches surprisingly correspond to closing

brackets). Nevertheless, the NFA is still a pertinent ranking criterion: the matches that show the lowest NFA are

indeed opening brackets. Once again, we can notice a gap between false matches NFA (10−2) and true matches

NFA (10−5).
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Figure .: Searching character E. Top: the 11 1-meaningful matches. Bottom: the single 10−1-meaningful

match.
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Figure .: Searching character m. Top: the 74 1-meaningful matches. Some false matches can be seen among

them. Bottom: the 59 10−1-meaningful matches. All false matches disappear, except for « transformations » (NFA:

3 10−2). The explanation of such a false match with a not so low NFA is that the corresponding level lines are

actually similar. Moreover, all of the mcorrespond to 10−1-meaningful matches. Best matches NFA is about 10−5.
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Figure .: Searching character s . Top: the 232 1-meaningful matches. All s are detected, but some false matches

can be seen among them. Bottom: the 88 10−1-meaningful matches. No more false matches can be seen, but some

true matches are missed. Best matches NFA is equal to 4 10−4.
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Chapter 

HIERARCHICAL CLUSTERING AND VALIDITY

ASSESSMENT

Abstract: The unsupervised classification of patterns into groups is commonly referred as clustering or group-

ing. Clustering aims at discovering structure in a data set, by dividing it into its “natural” groups. Most of the

clustering methods are either partitional, either hierarchical methods. While partitional methods produce a

single partition of the data, hierarchical methods produce a nested series of partitions. Agglomerative hierar-

chical methods build these nested partitions by recursively merging two groups. Thus, “stopping rules” have to

be defined in order to extract, among the nested structure, the partition providing the best data representation.

Since in general, clustering algorithms always produce clusters, whether they do exist or not, an assessment of

the detected groups is needed. This is the aim of cluster validity analysis.

In this chapter we present a method to detect natural groups in a data set, based on hierarchical clustering.

A measure of the meaningfulness of clusters, derived from a background model assuming no structure in the

data, provides a way to compare clusters, and leads to a cluster validity criterion. This criterion is applied to

every cluster in the nested structure. While all clusters passing the validity test are meaningful in themselves,

the set of all of them does not necessarily reveals the structure of the data set. However, by selecting a subset

of the meaningful clusters, a good data representation can be achieved. We propose a method combining

a new merging criterion (also derived from the background model) with a selection of local maxima of the

meaningfulness with respect to inclusion in the nested hierarchical structure.

Résumé : La classification non supervisée de motifs est communément appelée clustering, ou grouping. Le

but du clustering est la découverte de structures dans des ensembles de données, en la divisant en groupes

« naturels ». La plupart des méthodes de clustering construisent soit une partition, soit une structure hiérar-

chique. Alors que les premières produisent une unique partition des données, les secondes construisent une

suite de partitions emboîtées par des fusions successives de deux groupes. Ainsi, des « rêgles d’arrêt » doivent

être définies afin d’extraire, dans cette structure emboîtée, la partition donnant la meilleure représentation des

données.

Comme, en général, les algorithmes de clustering produisent toujours des groupes, qu’ils existent effectivement

ou pas, il est nécessaire d’évaluer la validité des groupes détectés.

Dans ce chapitre, nous présentons une méthode pour détecter les groupes naturels dans un ensemble de don-
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nées, qui est basée sur un clustering hiérarchique. Une mesure de la significativité des groupes est déduite d’un

modèle de fond construit en supposant que les données ne présentent aucune structure. Elle permet de les

comparer entre eux, et conduit à un critère de validité. Tous les groupes satisfaisant le critère sont significatifs,

néanmoins leur réunion ne révèle pas nécessairement la structure de l’ensemble de données. Cependant, en

sélectionnant un sous-ensemble des groupes significatifs, une bonne représentation des données peut être ob-

tenue. Nous proposons une méthode combinant un nouveau critère de fusion (également déduit du modèle

de fond) et une sélection des maxima locaux de la significativité par rapport à l’inclusion.

. Clustering analysis

Most detection or recognition problems can be posed as classification or categorization tasks. A data

set being given, two different situations may occur: ) classes have already been defined, and one has

to identify each data item (“patterns”) as a member of one of these classes; ) each pattern is assigned

to a hitherto unknown class. The first classification task, known as supervised classification, assumes

a certain knowledge of the data leading to the definition of classes (see [DHS00, HTF01, JDJ00] for

an overview and a state of the art in supervised classification). In this chapter we will concentrate on

the second situation, since it is the one that corresponds to the detection problems we are concerned

with. In such situations, there is little if any prior information available about the data, and one is

led to classify patterns (the data items) making as few assumptions as possible. This task is known as

unsupervised classification or data clustering. The goal is to find “natural” groupings in a set of data,

so that patterns within each cluster are more closely related to one another than to patterns assigned

to different clusters.

Typical clustering methods consist of the following steps [JMF99]:

. pattern representation (preceded by feature extraction and selection, if needed),

. definition of a similarity measure between patterns,

. clustering or grouping,

. data abstraction (if needed),

. assessment of output (if needed).

The first step deals with pre-processing the rough data in order to extract an appropriate set of fea-

tures, and to build the patterns (usually feature vectors) that will be used in clustering. Feature

extraction techniques compute features from the original data, and feature selection consists in iden-

tifying a subset of these features for subsequent use. A good feature selection method should select

the subset of features leading to the smallest classification error. Feature selection has been widely

studied in the statistical pattern recognition field [JZ97].
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The second and the third steps are the central core of all clustering methods. As we just said, the

goal is to find natural groupings in data; therefore, we need to specify in what sense patterns in one

cluster are more similar to one another, than to patterns in other clusters. The first issue in this

specification is the definition of a notion of similarity or dissimilarity between patterns. In order to

find natural groupings, this definition should be specially adapted to the particular problem. The

most common approach to measure pattern dissimilarity is to consider a distance function defined

on the feature space, but in its general form, a dissimilarity measure does not need to be a met-

ric [DHS00, JMF99, KR90a]. Defining a metric between patterns is not trivial. Minkowski metrics

(the `p-norms) are among the most popular dissimilarity measures. Theoretically, these metrics do

not perform well unless the feature space is close to isotropic and features are spread roughly evenly

along all directions. Linear correlation between features can also distort distance measures. A com-

monly used approach to solve these problems is to normalize the data and to decorrelate it prior to

clustering (a whitening transformation), or, equivalently, to directly compute the Mahalanobis dis-

tance on the original data [Sma96, DHS00]. However, this procedure is just appropriate for normally

distributed data, and can lead to particularly bad results when applied to multimodal distributions

(see Figure .). Often practitioners use this metrics in an abusive manner. A frequent mistake

relative to dissimilarity measures consists in defining metrics as norms on feature spaces that do

not exhibit a vector space structure (e.g., the -D parameter space of similarity transforms we will

consider in Chapter ).

We will not discuss dissimilarity measures further in this chapter, since this aspect strongly depends

on domain knowledge specifics. Concerning the grouping step, hundreds of algorithms have been

reported in the literature, but most of these algorithms can be classified as one of these two clustering

techniques [KR90a, JMF99, DHS00]:

• Partitional algorithms identify the partition that optimizes a clustering criterion (e.g. minimum

variance partition),

• Hierarchical algorithms produce a hierarchical representation, in which each level of the hier-

archy is itself a partition on the data, whose clusters were obtained by merging clusters at the

next lower level.

We will describe both techniques more precisely in the following subsection. Let us close this sub-

section with a few words on the last two steps of a general clustering method.

In the cluster analysis context, data abstraction consists in extracting a compact description of each

cluster, usually a representative pattern, like its barycenter or centroid (when the notion of barycen-

ter makes sense), or its medoid (the pattern of the cluster for which the average dissimilarity to all

the patterns of the cluster is minimal). A set of representative patterns not only provides a charac-

terization of the data, but it can often be used for further work (e.g. in Chapter , we will be led

to characterize groups of spatially coherent meaningful matches, by representative transformations

aligning these groups).
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Finally, the last step of a generic clustering method is cluster validity assessment. All clustering algo-

rithms produce clusters, whether they do exist or not. Another critical issue is the selection of the

number of clusters in the final solution. In some applications, assuming a known number of clusters

makes sense, but in general this is not the case, specially if we are exploring data whose properties

are unknown. Cluster validity assessment deals with this kind of problems. In section . we will

discuss some cluster validity techniques. As we will see, the majority of them are ad hoc procedures,

and the statistical problem of testing cluster validity is still essentially unsolved [DHS00, JMF99].

Figure .: (From [DHS00]) In the original data (left), points fall into two well separated clusters. Data normal-

ization to zero mean and unit variance (right) reduces the separation, and clustering methods may no longer be

able to give the appropriate data representation.

. Clustering techniques

As we just said, most of the clustering algorithms are either partitional, either hierarchical methods.

While partitional methods produce a single partition, hierarchical methods produce a nested series

of partitions. In this sense, they provide a totally different data description and should not be con-

sidered as two competiting techniques. However, as we will see, because of their different nature, the

corresponding strategies for cluster validity assessment may be quite different.

Cluster methods have been and are still the object of applied and theoretical research in many differ-

ent fields, such as statistical pattern recognition, data mining, image processing, biomedical sciences,

etc. It is not the aim of this section to present a complete overview of clustering techniques, but just

to provide enough information to justify why we are led to choose a particular technique (we should

keep in mind that there is no universal “best” clustering algorithm, and choices and compromises

have to be made). A good review of clustering techniques by Jain et al., from a statistical pattern

recognition viewpoint, can be found in [JMF99]. The main concepts can also be found in Duda and

Hart [DHS00], Hastie et al. [HTF01] and Kaufman and Rousseeuw [KR90a] textbooks.
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.. Partitional clustering methods

Let us denote by Tk a pattern (a D-dimensional feature vector), by T = {Tk, k ∈ {1, . . . ,M}}
the data set, and by dT : T × T → R

+ the dissimilarity measure. Assuming for the moment that

the partition size c is given, the goal of a partitional clustering algorithm is to identify the partition

P(T ) = {T1, . . . , Tc} on T that optimizes a criterion function. We will not address here the family

of methods based on mixture decomposition, since we assume we do not have any knowledge on

the underlying probability distribution. (In these methods, the data set is assumed to be drawn

from a mixture of c underlying parametric distributions, and the goal is to determine the involved

parameters; the standard algorithm is the Expectation-Maximization algorithm [DLR77].) Hence,

since there are approximately cM/c! ways of partitioning a set ofM elements into c subsets (a Stirling

number of the second kind), optimizing the criterion function by exhaustive search is intractable and

iterative optimization procedures are needed.

The simplest and most widely used family of criteria function is the one of related minimum variance

criteria [DHS00, KR90a]. The energy to be minimized here is

E =
1

2

c∑
m=1

nm〈dm〉,

where nm is the number of points in the m-th cluster, and

〈dm〉 =
1

n2
m

∑
Ti∈Tm

∑
Tj∈Tm

dT (Ti, Tj)

is the average dissimilarity measure between points in the m-th cluster. If T was a subset of a vector

space, and dT was the squared Euclidean distance, the resulting criteria would be the sum of variances

of each clusters,
c∑

m=1

∑
T∈Tm

‖T − 〈Tm〉‖2
2 , where 〈Tm〉 =

1

nm

∑
T∈Tm

T.

Strictly speaking, this criterion only makes sense when clusters are isotropic, multivariate normally

distributed. Moreover, the solution is not invariant to linear transformations of the data. Many

variations on this method exists, taking any Minkowski metric or the squared Mahalanobis distance

instead of the squared Euclidean distance [JMF99]. Notice however that all these methods are based

on the notions of medoid or centroid (barycenter) of a set of points and, as we said earlier, this does

not make sense unless patterns live in a vector space.

Related minimum variance criteria suffer from the problem that partitions that split large clusters

may be favored over ones that maintain the integrity of natural clusters [DHS00]. When natural

clusters have very different number of points, the partition minimizing this criteria may not reveal

the intrinsic structure of the data (see Figure .). Another weakness of these methods is the lack of

ability to extract a very dense cluster embedded in the center of a diffuse cluster. Besides, the partition

solution has to be found by iterative optimization procedures. These iterative procedures, which are

nothing but c-means or c-medoids like procedures [DHS00, HTF01] (also referred in the literature
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as k-means or k-medoids), are to be initialized by a reasonable initial partition and solution can be

trapped in local minima [JMF99].

Figure .: (From [TSK03]) On the left, the original data : patterns are D feature vectors. On the right: the

partition determined by a “minimum-variance” partitional algorithm (c-means). The dashed lines indicate the

groups. Even if the user specifies to the algorithm the correct number of clusters, the algorithm is not able to detect

the natural clusters. Related minimum-variance partitional methods perform particularly bad, when the natural

clusters present very different numbers of points, or very diffent densities.

Other popular criterion functions, also defined only when patterns live in euclidean (or hermitian)

spaces, and closely related to the ones we have just described, can be derived based on the “within

cluster” scatter matrix W (P(T )), and the “between cluster” scatter matrix B (P(T )) [DHS00],

W (P(T )) =
c∑

m=1

∑
T∈Tm

(T − 〈Tm〉) · (T − 〈Tm〉)T,

B (P(T )) =
c∑

m=1

nm (〈Tm〉 − 〈T 〉) · (〈Tm〉 − 〈T 〉)T,

S =
c∑

m=1

(T − 〈T 〉) · (T − 〈T 〉)T = W (P(T )) +B (P(T )) ,

where 〈T 〉 is the barycenter of all patterns in the data set, and S is the “total” scatter matrix, which

is a constant given the data, independent on the partition. One can define optimal partitions as

minimizers of tr [W (P(T ))] (or equivalently maximizers of tr [B (P(T ))]); this turns out to be a

minimum variance criterion. Another possiblity is to minimize det [W (P(T ))], whose solution is

invariant to linear transformations of the data. In any case, combinatorial optimization is intractable

and one has to consider iterative procedures, with the subsequent limitations.

.. Hierarchical clustering methods

While partitional clustering algorithms construct a single partition with c clusters (a “flat” descrip-

tion), hierarchical methods obtain a clustering structure. Since they represent data in different ways,

they do not really compete one with the other. Indeed, when data is to be described in terms of classes,
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subclasses, subsubclasses (e.g. a biological taxonomy), flat representations do not make sense, and

hierarchical methods are needed. There are, of course, many applications in which data is not inher-

ently hierarchical, and one has to make a choice among clustering methods from both types. As we

will see in what follows, hierachical methods are more versatile than partitional methods, and can

deal with many differently shaped clusters, but they are more time consuming (their complexity is

typically O(M2 logM), while c-means complexity is O(M) [BB95]).

Depending on the direction they build the hierarchy, these clustering methods can be agglomerative

(bottom-up) or divisive (top-down). The former, which are usually computationally simpler, start

with each single point as a cluster, and iteratively merge the closest pair of clusters in the sense of a

chosen dissimilarity measure. The generic algorithm is as follows [JMF99]:

. Initialization: compute the proximity matrix (the matrix containing the dissimilarity between

each pair of patterns).

. Find the most similar pair of clusters using the proximity matrix. Merge these two clusters.

. Update the proximity matrix according to this merging.

. Repeat steps  and  until all patterns are in one cluster.

At each iteration step, two clusters are merged. The procedure builds up a tree or dendrogram, where

leaves are theM elements of T (step ). At level l, there areM−l nodes, each node being a cluster. At

level l+ 1, the closest clusters from level l are merged (step ). By “closest” we intend the pair Ti and

Tj minimizing a given distance or proximity measure δ(Ti, Tj) between clusters. Different strategies

for updating the proximity matrix lead to different hierarchical clustering methods. (Moreover, since

all these algorithms are merging methods, they admit a variational formulation and can be solved as

an energy minimization problem; see [MS95], chapter .) Lance and Williams [LW67] define a class

of methods by specifying a generalized recurrence formula for updating the proximity matrix:

δ(Ti ∪ Tj, Tk) = αi δ(Ti, Tk) + αj δ(Tj, Tk) + β δ(Ti, Tj) + γ |δ(Ti, Tk)− δ(Tj, Tk)|,

where parameter values αi, αj , β and γ characterize the particular clustering method. Let us describe

the most popular ones:

• Choosing αi = αj = 1/2, β = 0 and γ = −1/2, leads to the following distance between

clusters:

δmin(Tp, Tq) = min
Ti∈Tp,Tj∈Tq

dT (Ti, Tj).

The corresponding algorithm is known as single-linkage algorithm [JMF99, DHS00]. Here the

nearest-neighbor points determine the nearest subsets. If we think of elements in T as nodes

of a graph, merging Tp and Tq corresponds to adding an edge between the nearest points in Tp
and Tq. This procedure generates a tree, and if one lets the procedure evolve up to having a

single cluster containing all points, we get a minimal spanning tree.
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• Taking αi = αj = γ = 1/2, β = 0, yields

δmax(Tp, Tq) = max
Ti∈Tp,Tj∈Tq

dT (Ti, Tj).

The resulting algorithm is called complete-linkage algorithm [JMF99, DHS00]. Here distance

between two clusters is given by the farthest pair of points in the two clusters. This procedure

produces a graph in which edges connect all of the nodes in a cluster. When the nearest clusters

are merged, edges between every pair of nodes in the two clusters are added. If we define the

diameter of a partition as the largest diameter for clusters in the partition, then each iteration

of the complete-linkage algorithm increases the diameter of the partition as little as possible.

• Taking αi = ni/(ni + nj), αj = nj/(ni + nj), and β = γ = 0, leads to a group average

method, where

δavg(Tp, Tq) =
1

npnq

∑
Ti∈Tp

∑
Tj∈Tq

dT (Ti, Tj).

• Some clustering methods based on barycenters, like Ward’s minimum variance method [War63],

can also be represented in terms of Lance and Williams formula. For Ward’s method, αi =

(ni + nk)/(ni + nj + nk), αj = (nj + nk)/(ni + nj + nk), β = −nk/(ni + nj + nk), γ = 0,

and the corresponding cluster proximity measure is

δward(Tp, Tq) =
npnq
np + nq

‖〈Tp〉 − 〈Tq〉‖2
2,

where 〈Tp〉 and 〈Tq〉 denote the barycenters of Tp and Tq, respectively.

Figure . illustrates the results of applying the single-linkage, the complete linkage and the group

average methods, to a small data set.

Time and space complexity of algorithms given by Lance and Williams formula are studied in [DE84].

Overall, the time required for hierarchical clustering is O(M2 logM), and the space complexity is

O(M2).

In practice, if clusters are compact and well separated, all methods yield the same results. How-

ever, when this is not the case, the resulting partitions may be quite different. Depending on the

cluster proximity measure, different methods of clustering can be more or less successful with dif-

ferent types of clusters. The single-linkage algorithm suffers from the “chaining effect”: a single

corrupted point somewhere in between two compact clusters may lead to an unwanted merging be-

tween them [JMF99, DHS00]. However, this property is very useful if one wants to detect elongated

clusters (see Figure . (a)).

The complete-linkage algorithm tends to produce compact clusters with small diameters. However,

patterns assigned to a cluster can be much closer to patterns in other clusters [HTF01, DHS00]. This

method is not adapted to extract concentric clusters, like the ones in figure . (b).

The single-linkage and the complete-linkage algorithms are both sensitive to outliers, since they rely

on extremal measures. One way to reduce the influence of outliers is using δavg as cluster proximity
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(a) Single-linkage algorithm.

(b) Complete-linkage algorithm.

(c) Group average algorithm.

Figure .: Three agglomerative hierarchical clustering methods.



 Chapter 12. Hierarchical clustering and validity assessment

measure, though the improvement is often not good enough. Besides, average methods have another

drawback compared to single or complete linkage methods: they are not invariant under monotone

transformations on the dissimilarity measure dT (invariance of the former ones is a consequence of

being based on extremal values) [HTF01].

To end with this section, let us make a few general remarks. In section .. we assumed, for par-

(a) (b)

Figure .: Examples of (a) elongated clusters, (b) concentric clusters.

titional clustering algorithms, that the number of clusters c was given. Then, the goal was to find

the c-partition on the data optimizing a global criterion (in practice iterative methods are used, and

the convergence to a global minimum is not ensured). Agglomerative hierachical clustering methods

perform good in making local decisions about cluster merging, since they make use of the proximity

matrix. As hierarchy is built by means of local optimization, the level corresponding to a c-partition

will not correspond in general to a global optimum (unless clusters are compact and well separated).

For instance, Ward’s method will not lead to the same c-partition than a c-means method, despite

the fact that both attempt to minimize variance. In this sense, one would rather say that partitional

methods are better than hierarchical methods. But how can we be sure that there are exactly c groups

of patterns in the data? Is the criterion function well adapted to the shape of clusters that are present

in the data? From this viewpoint, hierarchical clustering may be more appealing than partitional

ones. Another argument in favor for hierarchical clustering methods is their versatility and their

ability to cope with differently shaped clusters. For instance, the single linkage algorithm can deal

with non-isotropic, elongated or concentric clusters, while partitional methods like c-means can

only deal with isotropic clusters (see Figure .). Since their outputs are nested series of partitions,

ranging from M clusters to one single cluster, one can imagine methods to determine the number

of clusters, as stopping rules of the merging process. If stopping rules are correctly designed, hierar-

chical methods would also be able to detect clusters having different densities or different number of

points (this was another important drawback of c-means methods, see Figure .). We will discuss

related issues in the following section.
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Figure .: (From [TSK03]) On the left, the original data : patterns are D feature vectors. On the right: the

partition determined by a “minimum-variance” partitional algorithm (c-means). The dashed lines indicate the

groups. These methods cannot deal with non-isotropic clusters, even if the user specifies to the algorithm the correct

number of clusters.

. Cluster validity analysis and stopping rules

The great variety of clustering methods that have been proposed in the recent past has been followed

by an increasing interest in clustering validation methods. In [Gor99], a comprehensive study of

these techniques is presented.

Cluster validity analysis deals with assessing the validity of classifications obtained from the applica-

tion of clustering procedures. There are different validation approaches [Dub87, Gor99], depending

on the amount of prior information on the data. In this section we will deal with internal valida-

tion tests, which consist in determining if the structure is intrinsically adapted to the data. In other

words, internal tests are derived from some internal criteria measuring the suitability of the clustering

structure for the original data set, with no other information than the data themselves.

Classical issues in cluster validity analysis are the assessment of individual cluster validity, and the

assessment of a whole partition. (In some applications it can also be required to assess the validity of

a dendrogram; we will not address this problem here.) In what follows we briefly summarize these

two issues.

Partition validity assessment

A relevant question to address in order to assess the validity of a partition, is deriving the number

of clusters [Dub87], that we denoted by c. Notice that by solving this problem, it cannot be ensured

that the c clusters are valid clusters. Figures . and . clearly illustrate this situation: even when

the correct numbers of clusters is specified, the c-means method does not extract the natural clusters.

The most common approach to decide how many clusters are best consists in finding partitions for

c = 1, . . . , cmax and optimizing a measure G(c) of partition adequacy, which is usually based on

the within-cluster and between-cluster variability. When applied to hierarchical clustering methods,
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these cluster validity assessment techniques are known as global stopping rules, because the choice of

c can be seen as stopping the merging process (in the agglomerative case) at a certain level of the

dendrogram.

When dealing with hierarchical classifications, another approach to determine the most appropriate

number of clusters are local stopping rules. In the agglomerative case, these rules are merging criteria

for deciding whether two clusters should be merged. Usually, the merging process is continued until

it is decided, for the first time, that two clusters should not be aggregated.

Milligan and Cooper [MC85], and Dubes [Dub87], present comparative studies of some stopping

rules. Milligan and Cooper’s paper provides a particularly comprehensive Monte-Carlo evaluation

of these rules, by comparing  local and global stopping rules. In their simulation experiment,

only strongly clustered data sets (internally cohesive and well separated clusters) were considered.

Hence, since clustering this kind of data should not be a challenging problem, techniques that do

not perform well on it are also expected to be ineficient when dealing with any data set. The main

conclusion of this experiment is that only five or maybe six of the compared rules perform quite well

on strongly clustered data. One can also observe that the majority of the stopping rules described

in the study are based on heuristics and lack of theoretical foundation. Those derived from rigorous

statistical techniques, assume in general hypotheses on the data which are unrealistic in most real

applications (e.g. multivariate normal distribution for the patterns). In order to briefly illustrate the

considered stopping rules, it is worth to describe Calinski and Harabasz’s index [CH74] and Duda

and Hart’s rule [DHS00], since these methods provided the best results.

• Calinski and Harabasz propose a global stopping rule for assessing partitions, by choosing the

partition size c that minimizes the index

G(c) =
1
c−1

tr [B (P(T ))]
1

M−ctr [W (P(T ))]
,

where B (P(T )) and W (P(T )) are, respectively, the between-cluster and within-cluster scat-

ter matrices of a c-partition P , defined in section ... The index G(c) is the ratio between

the total within-cluster sum of squared distances about the centroids, and the total between-

cluster sum of squared distances. This index is only defined for sets of patterns living in an

Euclidean space. Moreover, since the index is based on the sum of squares criterion, it has a

tendency to partition the data into hyperspherical shaped clusters, having roughly equal num-

bers of patterns [Gor99] (this is probably the main reason for its first position in Milligan and

Cooper’s ranking, since their data was strongly clustered, and clusters contained almost the

same numbers of points and were pretty isotropic).

• Duda and Hart proposed the “Je(2)/Je(1)” local stopping rule for deciding whether or not a

cluster should be splitted into two subclusters. The rule consists in computing the ratio be-

tween the total within sum of squared distances about the centroids of the two clusters for

the two-cluster solution (Je(2)), and the within sum of squared distances about the centroid
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when only one cluster is present (Je(1)). The method is based in considering a null hypoth-

esis, that assumes all patterns come from a normal distribution, whose mean and variances

are empirically estimated over all the data set. The null hypothesis of one single cluster is re-

jected if Je(2)/Je(1) is smaller than a specified critical value, fixed by a significance level for

the hypothesis testing. While considering a normal distribution as a null hypothesis and using

the sum of squared distances may not be well adapted to real clustering problems (particu-

larly when the number of patterns in the data set is not as large to be well represented by an

asymptotic distribution), the proposed a contrario formulation is appealing from our point of

view.

Let us finish the discussion on partition validity assessment by quoting one of Bock’s conclusions

from its work on significance tests in cluster analysis [Boc85], where a comparison between global

and local methods is made: “Some care is needed when applying any test for clustering, bearing in mind

that different types of clusters may be present simultaneously in the data, and that the number of clusters

is, in some sense, dependent on the intended level of information compression. Thus, a global application

of a cluster test to a large or high-dimensional data set will not be advisable in most cases. However, a

“local” application (...) to a specific part of the data will often be useful for providing evidence for or

against a prospective clustering tendency”.

Validity assessment of individual clusters

Now we are concerned with the problem of deciding, among the candidate clusters furnished by

the clustering procedure, which are the ones that correspond to “natural” clusters. But what does

a “natural” cluster look like? As pointed out by Gordon [Gor99], it may be difficult to specify a

relevant definition of ideal cluster for a particular data set. However, we can think of clusters as some

structure in the data. Clustered data then reveals structure, that is perceived as opposite to a complete

absence of structure. Thus, in order to decide whether the clusters we have found are significant, we

can proceed by comparing our actual data with some appropriate random distribution. This leads

to a general methodology for cluster validity analysis, based on the statistical approach of hypothesis

testing [Boc85, Gor96, Gor99]. Following Bock [Boc85], this framework consists in:

. Design a null hypothesisH for the absence of class structure in the data (a background model,

or null model), meaning that patterns are sampled from a “homogeneous” population. Then,

“heterogeneity” or “clustering structure” are involved in the alternative hypothesisA.

. Define a test statistic, which will be used as validity index to discriminate betweenH andA.

. If, for a given significance level (error probability) α, the test statistic of the observed data

exceeds the corresponding critical value cα, the null hypothesisH is rejected, in favor ofA.

This general framework can be adapted for assessing the validity of individual clusters. A general

approach within this framework is Monte-Carlo validation, which is described in [Gor99]. Assume



 Chapter 12. Hierarchical clustering and validity assessment

one wants to assess the validity of an observed cluster Ti having n patterns, in a data set having M

patterns. In the Monte-Carlo validation method, data sets of M patterns are simulated under the

background model, and classified using the same clustering procedure that was used to classify the

original data. The test statistic is computed for those clusters having n patterns, and the distribution

of the test statistic is estimated. Then, using the value of the test statistic of Ti, one can compute

the significance level of rejecting H. Two popular test statistics are the maximum F test and the U

statistic (see Bock [Boc85] and Gordon [Gor99]).

We have not addressed the choice of the null model yet. The specification of appropriate null models

for data is the subject of the study presented in [Gor96]. These models, which specify the distribution

of patterns in the absence of structure in the data, can be of two types:

– Standard (data-independent) null models. Two well known standard null models are the Poisson

model and the Unimodal model [Boc85]. The main problem with the Poisson model is the

choice of the region R within which patterns are uniformly distributed (standard choices for

normalized data are the unit hypercube and the unit hypersphere). The Unimodal model

assumes that the joint distribution of the variables describing the patterns is unimodal, but the

choice of the distribution may not be easy.

– Data-influenced null models. Here the data is used to influence the specification of the null

model. Examples of these null models are the Poisson model where R is chosen to be the

convex hull of the data set, or the Ellipsoidal model, which is a multivariate normal distribution,

whose mean and covariance matrix are given by the data set.

In [Gor96], Gordon concludes that the results of the tests considerably depend on the choice of the

null model, and that, in general, the results based on data-influenced null models are more relevant

than those obtained using a standard null model.

In the following section we propose a method to detect valid clusters from an agglomerative hierar-

chical classification, that combines an individual cluster validity method and a local merging crite-

rion. The first step consists in deciding, a contrario to a data-influenced background model, whether

a cluster is valid or not. All clusters in the hierarchical structure are examined. While all clusters pass-

ing the validity test are meaningful in themselves, the set of all of them does not necessarily reveals

the structure of the data set. However, by selecting a subset of the meaningful clusters, a good data

representation can be achieved. Hence, in the second step such a selection is performed, by means

of a new merging criterion, also derived from the background model. Unlike the classical hypothesis

testing methods presented in this section, the proposed method does not require to fix a significance

level for deciding the validity of clusters.
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. Meaningful clusters

.. A contrario definition of meaningful groups

The background model

Helmholtz principle states that if an observed arrangement of objects in an image is highly un-

likely, the occurrence of such arrangement is significant and the objects should be grouped together

into a single structure. This perceptual organization principle, also known as the principle of com-

mon cause or of the coincidental explanation, was first stated in computer vision by Lowe [Low85].

Helmholtz principle applies, for instance, to clusters of points under uniform distribution assump-

tion. If the density of points in a given space location exceeds a certain threshold, then the “prox-

imity” gestalt leads to the perceptual grouping of individual dots, and a better interpretation of this

set of points is the cluster as a whole [Wer23]. This cluster is significant if its density is so high that

such an arrangement is unlikely to be due to randomness. In other words, there must be a bet-

ter explanation for the observed cluster than randomness: the formation of causal relations. This

gives us a qualitative definition of meaningful clusters, but in order to detect them, we need a more

precise definition. This can be done based on the hypothesis testing ideas presented in the former

section. Randomness can be modeled by means of a background process, governed by the following

assumptions:

(A) Patterns Tj , j ∈ {1, . . . ,M}, are mutually independent random variables, identically dis-

tributed on the feature space according to an a contrario law p defined on it. We will denote by

p(R) the a contrario “region” probability of a region R in the feature space.

The definition of the a contrario law is problem specific. In Chapter  we will derive it for the

detection of spatially coherent groups of meaningful matches. In general, the a contrario law is not

known a priori but it can be empirically estimated over the data.

Meaningful groups

Having a background model, we are in position to evaluate the probability of a given cluster of

patterns as a realization of the background process. Hence, we are able to detect relevant clusters

by Helmholtz principle: those clusters being unlikely to be observed by chance will be considered as

meaningful groups. Let us give an example to illustrate this idea. In Figure ., we display the six

-D projections of -dimensional patterns Tk (these patterns correspond to the kind of problem we

will study in Chapter ). The “high density” cluster we observe reveals a conspicuous coincidence.

Indeed, the probability of its being a realization of the background process should be very low, and

one would expect it to be an exception to randomness.

Let us make things more precise. For any regionR in the feature space, we know how to compute the

“region probability” p(R), the probability that a pattern generated by the background process falls in
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Figure .: All six projections of -dimensional patterns corresponding to a problem studied in Chapter .
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R. Then, since patterns are mutually independent, the probability that R contains at least k patterns

out of M under the a contrario model is given by the tail of the binomial probability distribution

B(M,k, p(R)) =
M∑
i=k

b(M, i, p(R)),

where

∀ i ∈ {0, . . . ,M}, b(M, i, p(R)) =

(
M

i

)
p(R)i(1− p(R))M−i.

The next step prior to detection of relevant clusters, is to define a set of reasonable clusters candidates.

One possibility could be the set of all hyper-rectangles of different sizes within a given quantization

grid of the feature space. Let us denote by #R the cardinality ofR. If each dimension is divided into

L bins, then #R = (L(L+ 1)/2)D. It can be argued that this set of regions is not well adapted to

the case of sparse data, since the majority of them will not contain any pattern. A more adapted R
set for the sparse data case may be defined as the set of feature space hyper-rectangles made up with

all possible hyper-rectangles of edge sizes

a, a
√

2, a(
√

2)2, . . . , a(
√

2)n,

centered in each point Ti (1 6 i 6 M) corresponding to a pattern. The cardinality of this set is

#R = M(n + 1)D. Notice that such a choice implies that every region R in R contains at least

one pattern (the central point). Consequently, in that case we are no longer concerned with finding

at least k patterns out of M , but at least k − 1 patterns out of M − 1. The choice of the minimal

size a is not relevant for what immediately follows (it is based on precision arguments and will be

addressed later). Concerning the number of considered nested hyper-rectangles (n + 1), once a is

fixed n is chosen such that a(
√

2)n does not exceed the feature space dimensions. Now, why is R a

reasonable set of candidates? On the one hand, since we center hyper-rectangles of different scales

at each point Ti, we are sure we will not miss any cluster. On the other hand, R does not contain

(irrelevant) empty hyper-rectangles.

Definition 12.1 (ε-meaningful group) We say that a group of patterns is ε-meaningful if

#R · B(M,k, p(R)) 6 ε.

Proposition 12.1 The expected number of ε-meaningful groups inR is less than ε.

Proof: Let us denote by χR the binary random variable equal to 1 if the hyper-rectangle R in R is

ε-meaningful and 0 else. Let S =
∑

R∈R χR be the random variable representing the number of

ε-meaningful hyper-rectangles inR.

By linearity, the expectation of S is E[S] =
∑

R∈R E[χR]. Hence, since χR is a Bernoulli variable,

E[S] =
∑
R∈R

Pr(χR = 1).
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Let us denote by k∗(ε) the minimum number of points in R such that R is ε-meaningful:

k∗(ε) = min

{
k ∈ N, B(M,k, p(R)) 6

ε

#R

}
.

(This number is well defined because B(M,k, p(R)) is a decreasing function of k.) It follows that

Pr(χR = 1) = Pr (k > k∗(ε)) = B(M,k∗(ε), p(R)) 6
ε

#R
.

Thus,

E[S] 6
∑
R∈R

ε

#R
,

yielding E[S] 6 ε.

Remark: The key point is that we control the expectation of S. Since dependencies between random

variables χR are unknown, we are not able to compute the probability law of S. Nevertheless, linear-

ity still allows to compute the expectation.

The following definition provides a quality measure for a cluster or group of patterns.

Definition 12.2 (Number of False Alarms) Given a group G of k meaningful patterns among M ,

we call number of false alarms of G the number

NFAg(G) = #R · B(M,k, p(R)),

where p(R) is the probability that a pattern falls in R, the smallest hyper-rectangle in R containing all

k patterns.

The number of false alarms of G is a measure of how likely it is that a group having at least k mean-

ingful patterns and a region probability p(R), was generated “by chance”, as a realization of the back-

ground process. The lower is NFAg(G), the more unlikely G is generated by the background, and

hence, the more meaningful is G. Indeed, if NFAg(G) is very small, elements in G certainly violate

assumptions in (A), leading to an a contrario detection. Notice also, from Proposition ., that the

only parameter that controls detections is ε. This provides a handy way to control false detections: if

we want to detect on the average at most one “non relevant cluster” we just set ε = 1. From now on

we refer to 1-meaningful groups as “meaningful groups”.

Testing strategy and numerical issues

Testing all (L(L+ 1)/2)D orM(n+ 1)D (depending on the choice) hyper-rectangles inR can result

in a heavy computational burden. Since we know that relevant clusters are nodes of the hierarchical

clustering dendrogram, we can restrict the search to the smallest hyper-rectangles in R containing

the clusters given by the nodes of the complete hierarchical structure. This greatly reduces the actual
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number of tests from M(n+ 1)D to 2M − 1.

We have not addressed yet the problem of fixing a, the minimal edge size of a cell. We can proceed as

follows:

. Normalize the transformation space into [0, 1]D.

. Discretize each direction into l = 1000 bins, for instance. Thus, a is equal to a bin size, namely

a = 1/l = 0.001. Then we have n = b−2 log2(a)c = 19 (here bxc denotes the integer part of

x).

Although this discretization choice may seem arbitrary, it is not crucial since it has almost no in-

fluence on the general setting. First of all, the clusters that are effectively tested are issued from the

hierarchical clustering procedure. Thus, as long as the discretization is fine enough to ensure an ac-

curate localization of clusters (so that the bounding hyper-rectangles fit well the clusters), it plays a

secondary role in this decision framework (unlike for voting schemes over cells issued from space

discretization, were the size of cells plays a major role). Secondly, let us see how parameters a and

n affect the detection of clusters. Since parameter n is fixed by parameter a, the point is the depen-

dence of the method on a. A straightforward adaptation of results reported in [DMM00] (in the

framework of alignment detection in digital images) yields

k∗(ε) ≈Mp(R) +
√
CM (D ln(1− 2 log2 a)− ln(ε)), C ∈ [2p(R)(1− p(R)), 1/2] ,

where k∗(ε) is the minimum number of points inR such thatR is ε-meaningful. This approximation

shows that the dependence on a is very weak. Also the dependence on ε is weak. This is a nice

property, since it means that detection is not very sensitive to the only user defined parameter.

.. Cluster validity and maximality criterion

In section .. we have defined meaningful groups of patterns, and proposed to restrict the space of

tests to the smallest hyper-rectangles containing clusters from the dendrogram. While each mean-

ingful group we detect will be relevant by itself, the whole set of meaningful groups will probably

exhibit high redundancy in the sense that we will get many nested meaningful groups. In this section

we describe a strategy to reduce this redundancy by combining the inclusion tree given by the hier-

archical clustering procedure, and the measure of meaningfulness given by NFAg.

Let us start this discussion by the following issue. At each step of the hierarchical clustering proce-

dure, two clusters are merged. This merging is not necessarily a better data representation than the

two separate clusters. By using the complete dendrogram (that we denote by D) of 2M − 1 clusters,

we can decide a posteriori whether pairs of clusters should be merged or not. Let us denote by G, G1

and G2 the groups of patterns corresponding respectively to a node and its two children nodes inD.

Roughly speaking, we will accept merging if, under the a contrario model, the expected number of

groups like G we would observe is smaller than the one of observing groups like G1, G2, or the pair
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G1 and G2. Hence, we will say that G is valid if it verifies this criterion. Before giving the definition

of a valid group, let us define NFAgg(G1, G2), the number of false alarms of the pair (G1, G2):

NFAgg(G1, G2) =
#R (#R− 1)

2

M∑
i=k1

M−i∑
j=k2

(
M

i, j

)
p1
ip2

j(1− p1 − p2)M−i−j, (.)

where k1 and k2 are the number of elements inG1 andG2, and p1 and p2 their associated region prob-

abilities.

(
M

i, j

)
denotes the trinomial coefficient. NFAgg(G1, G2) is an estimate of the number of

occurrences, under the a contrario model, of the event E : “there are two non overlapping groups

A and B, with region probabilities p1 and p2 (resp.), containing at least k1 and k2 patterns (resp.)

among M”. Indeed, #R (#R− 1) /2 is the number of pairs of clusters ofR, and the probability of

event E is given by the joint tail of the trinomial probability distribution.

Definition 12.3 (Valid group) LetG,G1 andG2 be the groups of patterns corresponding respectively

to a node and its two children nodes in D. We say that G is a valid group if both following inequalities

hold:

NFAg(G) < min {NFAg(G1), NFAg(G2)} , (.)

NFAg(G) 6 NFAgg(G1, G2). (.)

Eq. (.) corresponds to the condition that merging cannot be suitable if one of the child nodes

is more meaningful than the father. Eq. (.) means that for G to be valid, it is necessary that its

number of false alarms is lower than the number of false alarms of the pair (G1, G2). The following

lemma leads to a necessary condition of cluster validity.

Lemma 12.1

M∑
i=k1

M−i∑
j=k2

(
M

i, j

)
p1
ip2

j(1− p1 − p2)M−i−j 6 B(M,k1, p1) · B(M,k2, p2). (.)

Proving lemma . directly by calculation is not trivial. Inequality (.) is a consequence of the

negative dependence amongst random variables #A and #B, the number of patterns in two random

clusters A and B. Intuitively, this dependence (which is obvious because of the condition #A +

#B 6 M) is negative in the sense that, if #A is “large”, #B is less likely to be “large”. In Appendix

., we introduce the notion of negative association (a strong notion of negative dependence) and

some relevant consequences, first reported by Joag-Dev and Proschan in [JDP83]. These results lead

to a simple proof of lemma ., also presented in in appendix ..

Proposition 12.2 If G is a valid group, then NFAg(G) < 1
2
·NFAg(G1) ·NFAg(G2).

Proof: The result follows immediately from (.), definition . and lemma ..
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Notice that the necessary condition for merging given by Proposition ., is equivalent to

log(B(M,k1 + k2, p)) < log(B(M,k1, p1)) + log(B(M,k2, p2)) + log

(
#R

2

)
,

where p (p > p1 + p2) is the region probability of G. This shows that merging depends on a natural

trade-off between goodness of fit and model complexity.

Remark: Proposition . can be useful from the computational viewpoint, since in many cases one

can avoid computing the tail of the trinomial distribution, by “filtering” those clusters that do not

pass the necessary condition.

Definition 12.4 (Maximal ε-meaningful group) We say that a group of patterns G is a maximal

ε-meaningful group if and only if:

. NFAg(G) 6 ε,

. G is valid,

. for all valid descendant F , NFAg(F ) > NFAg(G),

. for all valid ancestor F , NFAg(F ) > NFAg(G).

Remark: Imposing items  and  ensures that two different maximal meaningful groups are disjoint.

Hence, maximal meaningful groups define a set of groups on the data, which is optimal in the sense

that these groups are maxima of meaningfulness with respect to inclusion, and where outliers have

been automatically rejected.

. An alternative definition of meaningful groups

Up to now we have considered that every pattern Tk was equally relevant, as the family of random

variables {Tk, 1 6 k 6M} was assumed to be mutually independent, identically distributed. In this

section we propose a more general definition of group meaningfulness, which associates a measure

of confidence to each pattern. Assume, for instance, that patterns correspond to observations having

different relevance. What we want to evaluate here is the probability that, just “by chance”, several

relevant patterns fall into a feature space region R. It is sound to expect that, for a cluster to be

meaningful, the more relevant are its patterns, the lesser the minimum number of required patterns

should be. Let us make things more concrete by defining the corresponding background model.

.. The background model

We define the background process by means of the following assumptions:
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(A) Patterns Ti, i ∈ {1, . . . ,M}, are mutually independent random variables, and for any hyper-

rectangle R in the feature space,

Pr (Ti ∈ R) = p(R),

p is an a contrario probability defined on the feature space.

(A) Independent saliency measure. Patterns Ti are observations detected with a measurement sys-

tem, which assigns to each observation T a confidence index cT . The confidence index de-

creases with the relevance of the observation; an infinitely relevant pattern T will have a confi-

dence index cT = 0. All patterns Ti in the data set, come from observations whose confidence

index (denoted by cTi) is lower than γ, a predetermined threshold. Let us define, for all non-

negative real number x,

pc(x) := Pr(T s.t. cT 6 x),

a probability measure on the confidence index, which is given by the measurement system. We

call saliency measure of a pattern Ti, i ∈ {1, . . . ,M}, the number

ηi := Pr(T s.t. cT 6 cTi | cT 6 γ) =
pc(cTi)

pc(γ)

(the last equality follows from cTi 6 γ, ∀ i ∈ {1, . . . ,M}). Finally, we assume that, under

the a contrario model, the saliency measure of a pattern is independent from its location in the

feature space.

Now we can summarize assumptions (A) and (A) as follows:

(A) Patterns Ti, i ∈ {1, . . . ,M}, are mutually independent random variables, and for any hyper-

rectangle R in the feature space, the probability that a pattern has at the same time a saliency

measure below cTi and falls in R is:

Pr (T s.t. cT 6 cTi , T ∈ R) = ηi × p(R),

where:

– p is an a contrario probability defined on the feature space.

– ηi =
pc(cTi )

pc(γ)
is the saliency measure of pattern Ti (cTi 6 γ), which is assumed to be

independent of pattern location in the feature space.

The definition of the saliency measure is maybe too general, making its sense a bit confuse. In Chap-

ter  we will apply the theory presented in this chapter to the detection of spatially coherent mean-

ingful matches. There, the saliency measure will have a concrete meaning, and its definition should

become clearer.
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.. Meaningful groups taking into account the relevance of patterns

Let us denote by χi, 1 6 i 6 M , the indicator function of event Ei: “Ti has saliency measure ηi, and

falls in R”. By using assumption (A), we can compute the expectation of such an event under the

background model:

E [χi] = Pr(χi = 1) = p(R)ηi.

Hence, given the transformation region R and M real numbers η1, . . . , ηM in (0, 1], the expected

number of events Ei we can observe simultaneously in a trial is

E

[
M∑
i=1

χi

]
=

M∑
i=1

Pr(χi = 1) = p(R)
M∑
i=1

ηi. (.)

According to the former definition of meaningful group, we will consider we have a meaningful

group in R if its number of patterns is unexpectedly high under the background process.

Definition 12.5 (ε-meaningful group) Let R be a feature space hyper-rectangle inR, containing a

group of k among M patterns. We say the group is ε-meaningful if

k > k∗(R, η1, . . . , ηM) := min

{
n ∈ N : Pr

(
M∑
i=1

χi > n

)
6

ε

#R

}
.

The following proposition follows immediately from definition ..

Proposition 12.3 The expected number of ε-meaningful groups inR is less than ε.

Computing the meaningfulness of a group using definition . is not practical, and too much ex-

pensive in terms of computation. Indeed, computing

Pr

(
M∑
i=1

χi > n

)
=

M∑
l=n

Pr

(
M∑
i=1

χi = l

)

requires to evaluate, for each l, all

(
M

l

)
probabilities

Pr (χi = 1 ∀ i ∈ I, χj = 0 ∀ j ∈ {1, . . . ,M}\I s.t. I ⊂ {1, . . . ,M},#I = l) .

Nevertheless, one can make the meaningfulness computation possible by using the first Hoeffding

inequality, which gives a good upper bound for Pr
(∑M

i=1 χi > n
)

.

Lemma 12.2 (Hoeffding inequalities [Hoe63]) Let Z1, . . . , ZM be independent random variables

with 0 6 Zi 6 1 for i = 1, . . . ,M . Let S =
∑M

i=1 Zi. Then,

Pr (S > k) 6

(
E[S]/M

k/M

)k (
1− E[S]/M

1− k/M

)M−k
6 exp

(
−h
(
E[S]

M

)
(k − E[S])2

M

)
, (.)

where

h(µ) =

{
1

1−2µ
ln
(

1−µ
µ

)
if 0 < µ < 1

2

1
2µ(1−µ)

if 1
2
6 µ < 1.
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The second inequality in (.) leads to the following condition.

Proposition 12.4 (Sufficient condition of ε-meaningfulness) Let R be a feature space hyper-

rectangle fromR, containing a group of k among M patterns. Then, if

k > p(R)
M∑
i=1

ηi +

√√√√ M (ln(#R)− ln ε)

h
(
p(R)

∑M
i=1 ηi/M

) , (.)

the group is ε-meaningful.

Notice the right hand side of (.) is an increasing function of
∑M

i=1 ηi. Applying Hoeffding in-

equality to the former case (where the relevance of patterns was not taken into account, section .),

comes to take ηi = 1 for all 1 6 i 6M , that is
∑M

i=1 ηi = M . Hence, when we take into account the

relevance of patterns, meaningful group need containing less points than previously.

Proof: From (.) we have

exp

−h(p(R)
∑M

i=1 ηi
M

) (
k − p(R)

∑M
i=1 ηi

)2

M

 6 ε

#R
.

Then, sinceE
[∑M

i=1 χi

]
= p(R)

∑M
i=1 ηi, applying the second inequality in lemma . withZi = χi

for i = 1, . . . ,M yields Pr
(∑M

i=1 χi > k
)
6 ε/#R. The result follows from definition ..

The more accurate first inequality in (.) motivates the following definition.

Definition 12.6 (Number of False Alarms) Given a groupG of k patterns amongM , we call num-

ber of false alarms of G the number

NFAg(G) = #R×

(
p(R)

∑M
i=1 ηi

k

)k(
M − p(R)

∑M
i=1 ηi

M − k

)M−k

,

where p(R) is the probability that a pattern falls in R, the smallest hyper-rectangle in R containing all

k patterns, and η1, . . . , ηM are the saliency measures of the M patterns.

Remark: If NFAg(G) 6 ε, then G is ε-meaningful (this is straightforward from the first inequality

in (.)).

Remark: Introducing the saliency measure of patterns makes good detections even surer, since many

patterns in the corresponding group may have low saliency measures, diminishing its number of

false alarms. But, concerning this approach, maximality issues are not completely solved. Indeed,

the NFAgg of a pair of groups used for the validity criterion, defined in (.), only holds when

patterns Ti are independent, identically distributed, so new definitions have to be explored. We have
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not addressed this problem yet. A first attempt could consist in replacing the validity criterion by the

necessary condition of cluster validity, given by Proposition . (section ..), but this will certainly

fail in giving the “good” maximal groups. Indeed, this necessary condition may be too strong because

estimate (.) is not sharp enough, specially when the clusters to be merged concentrate the majority

of the patterns.

. Conclusion

Finding groups in data sets is a major problem in many fields of knowledge such as statistical pat-

tern recognition, image processing, or data mining. Grouping phenomena are essential in human

perception, since they are responsible for the organization of information. In vision, grouping has

been especially studied by Gestalt psychologists like Wertheimer [Wer23]. In computer vision, the

first attempts in perceptual organization understanding certainly date back to Marr [Mar82]. In his

pioneer work on perceptual organization and visual recognition [Low85], D. Lowe proposes a de-

tection framework based on the computation of accidental occurrence. He writes: “In other words,

we can shift our attention from finding properties with high prior expectations to those that are suffi-

ciently constrained to be detectable among a realistic distribution of accidentals.[...] Even when we do

not know the ultimate interpretation for some grouping and therefore its particular a priori expectation,

we can judge it to be significant based on the non-accidentalness criteria.” In this chapter we proposed

a method to find “natural” clusters in a data set, based on this principle of non-accidentalness. This

method is inspired by Desolneux et al.’s method for detecting dots in an image [DMM03a]. In this

method, a hierarchical classification of the set of dots is considered, and meaningful clusters are de-

tected a contrario to a standard Poisson null model. Then, maximal meaningful clusters are selected

as local maxima of the meaningfulness with respect to inclusion, in the nested hierarchical struc-

ture. We considered an extension of this method to multidimensional data, introducing two main

improvements:

– Data-dependent null models for “a realistic distribution of accidentals” are considered, instead

of standard null models, since in general they lead to better results [Gor96].

– The merging criterion described in section.. is added. This merging criterion solves an

important drawback of Desolneux et al.’s method related to the selection of maximal clusters,

as we illustrate with some examples in Figure . (see caption for details).

In the next chapter we will apply this general cluster detection framework to the shape matching

problem.
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(a) Left: original configuration. Middle: the node selected by Desolneux et al.’s method; this max-

imality criterion yields some relevant misses, such as the node having NFAg = 10−7. Right: by

combining merging and maximality criteria, both clusters are selected.

(b) Left: original configuration. Middle: the node selected by Desolneux et al.’s method. Right:

selected nodes obtained by combining merging and maximality criteria. The merging criterion

decides that the selected pair of nodes is more significant than its ancestor.

Figure .: Two local configurations of a dendrogram, and the selection of maximal meaningful groups. The

numbers in each node correspond to the NFAg of its associated clusters. The selected nodes, depicted in gray, are

candidates to maximal meaningful clusters (in order to be maximal, their NFAg must be lower than the ones of

all their descendants and ancestors).
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. Appendix: On the negative association of multinomial distri-

butions

In this section we present the notion of negative association (a strong notion of negative dependence)

and summarize some relevant consequences, first reported by Joag-Dev and Proschan in [JDP83].

We also complete some proofs, that were just oulined in the original paper, and we apply these general

results to multinomial distributions.

Definition 12.7 (Negative association) A set X = {X1, . . . , Xn} of real random variables is said

to be negatively associated (NA) if for every two disjoint index sets I, J ⊂ {1, . . . , n},

E [f(Xi, i ∈ I)g(Xj, j ∈ J)] 6 E [f(Xi, i ∈ I)] · E [g(Xj, j ∈ J)] ,

for all non-decreasing functions f : R#I → R, g : R#J → R (a function h : Rk → R is said to be

non-decreasing if h(x1, . . . , xk) > h(y1, . . . , yk) whenever x1 6 y1, . . . , xk 6 yk).

Remark: Negative association is a natural generalization of negative correlation.

The negatively associated set X = {X1, . . . , Xn} verifies the following properties:

Property 12.1 For any non-decreasing functions fi, i ∈ {1, . . . , n},

E

[
n∏
i=1

fi(Xi)

]
6

n∏
i=1

E [fi(Xi)] .

Proof: Define f(x1, . . . , xn−1) =
∏n−1

i=1 fi(xi) and g(xn) = fn(xn) for all (x1, . . . , xn) ∈ Rn. Since

f and g are both non-decreasing, it follows from definition . that

E

[
n∏
i=1

fi(Xi)

]
6 E

[
n−1∏
i=1

fi(Xi)

]
E [fn(Xn)] .

Using induction yields the desired result.

Property 12.2 For all (x1, . . . , xn) ∈ Rn,

Pr (Xi > xi ∀ i ∈ {1, . . . , n}) 6
n∏
i=1

Pr (Xi > xi) .

This follows immediately from property . for fi(x) = χ[x>xi], the indicator function of event

[x > xi]. The following property is obvious from definition .:

Property 12.3 Non-decreasing functions defined on disjoint subsets of a set of NA random variables are

NA.
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Property 12.4 The union of independent sets of NA random variables is NA.

Proof: Let X and Y be independent vectors such that for each one, its components are sets of NA

random variables. Let (X1,X2) and (Y1,Y2) denote arbitrary partitions of X and Y respectively.

Hence, the vector (X,Y) is NA if and only ifE [f(X1,Y1)g(X2,Y2)] 6 E [f(X1,Y1)]E [g(X2,Y2)].

Now,

E [f(X1,Y1)g(X2,Y2)] = E {E [f(X1,Y1)g(X2,Y2)|Y1,Y2]}
=

∑
(y1,y2)

E [f(X1,Y1)g(X2,Y2)|Y1 = y1,Y2 = y2] Pr(Y1 = y1,Y2 = y2).

Since (X1,X2) and (Y1,Y2) are independent, we have that {f(X1,Y1)|Y1 = y1,Y2 = y2} and

{g(X2,Y2)|Y1 = y1,Y2 = y2} are parametric functions of random vectors X1 and X2 respectively.

Thus, because of the negative association of X,

E [f(X1,Y1)g(X2,Y2)|Y1 = y1,Y2 = y2] 6

E [f(X1,Y1)|Y1 = y1,Y2 = y2]E [g(X2,Y2)|Y1 = y1,Y2 = y2] .

Hence,

E [f(X1,Y1)g(X2,Y2)] 6 E {E [f(X1,Y1)|Y1,Y2]E [g(X2,Y2)|Y1,Y2]}

Now, since conditional expectations E [f(X1,Y1)|Y1,Y2] and E [g(X2,Y2)|Y1,Y2] are respec-

tively Y1 and Y2 measurable functions, it follows that

h1(Y1) := E [f(X1,Y1)|Y1,Y2] = E [f(X1,Y1)|Y1] ,

h2(Y2) := E [g(X2,Y2)|Y1,Y2] = E [g(X2,Y2)|Y2] .

Finally, using that Y is NA, we have

E [f(X1,Y1)g(X2,Y2)] 6 E [h1(Y1)h2(Y2)]

6 E [h1(Y1)]E [h2(Y1)]

= E [f(X1,Y1)]E [g(X2,Y2)] .

By combining these we get the following proposition.

Proposition 12.5 A random vector X = (X1, . . . , Xn) having a multinomial distribution of index M

and parameter p = (p1, . . . , pn) (what we denote by X ∼Mult(M,p)), is NA.

Proof: We can write X as

X =
M∑
k=1

Yk,
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where each Yk ∼Mult(1,p), and the Yk’s are mutually independent. Since, for all k ∈ {1, . . . ,M},
all elements in Yk are zero except for one whose value is , vector Yk is NA. Indeed, for all I , J

disjoint subsets of {1, . . . , n}, for all non-decreasing functions f : R#I → R, g : R#J → R, we have

E [f(Yk,i, i ∈ I)g(Yk,j, j ∈ J)] 6 E [f(Yk,i, i ∈ I)] · E [g(Yk,j, j ∈ J)]

⇔ E [(f(Yk,i, i ∈ I)− f(0, . . . , 0)) (g(Yk,j, j ∈ J)− g(0, . . . , 0))]

6 E [f(Yk,i, i ∈ I)− f(0, . . . , 0)] · E [g(Yk,j, j ∈ J)− g(0, . . . , 0)] ,

and this last inequality is true: the right member is non-negative because f(Yk,i, i ∈ I)−f(0, . . . , 0)

and g(Yk,j, j ∈ J) − f(0, . . . , 0) are non-negative, and the left member is zero since (f(Yk,i, i ∈
I)− f(0, . . . , 0) and g(Yk,j, j ∈ J)− f(0, . . . , 0) can not be non-zero at the same time.

Then, using property ., it follows that {Y1, . . . ,YM} is NA. Finally, since for all l ∈ {1, . . . , n},
Xl =

∑M
k=1 Yk,l are non-decreasing functions defined on disjoint subsets of {Y1, . . . ,YM}, we

have that X is NA (property .).

Remark: Applying property . to the random vector X proves lemma ., stated in section ...
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Chapter 

GROUPING SPATIALLY COHERENT

MEANINGFUL MATCHES

Abstract: Up to here we have dealt with local representations of shape contents in images. Consequently,

common parts between images were described in terms of matched shape elements. The recognition of “global

shapes” needs for an integration of the recognized partial shapes. This integration of local information is cer-

tainly not performed as a simple conjunction of the recognized partial shapes. Indeed, the way these common

shape elements are organized in the image plane can trigger another complementary recognition process, al-

lowing to recognize “global shapes”.

In this chapter we reinforce the recognition confidence of our method, by combining the spatial information

furnished by matched shape elements. Each pair of matching shape element leads to a unique transformation

between images, which can be represented as a pattern in a transformation space. Hence, spatially coherent

meaningful matches correspond to clusters in the transformation space, and their detection can then be for-

mulated as a clustering problem, which can be solved as a particular case of the theory developed in Chapter .

Résumé : Jusqu’ici nous ne nous sommes intéressés qu’aux représentations locales des formes contenues dans

les images. Par conséquent, les parties communes entre les images ont été décrites en termes d’éléments de

formes mis en correspondance. La reconnaissance de « formes globales » nécessite de tenir en compte les

positions relatives des formes partielles reconnues, ce qui ne peut pas être réduit à une simple conjonction

des informations locales. En effet, la manière dont ces éléments de formes communs sont organisés dans le

plan image peut déclencher un processus de reconnaissance complémentaire, permettant de reconnaître des

« formes globales ».

Dans ce chapitre nous renforçons la mesure de confiance en la reconnaissance, en combinant l’information

spatiale fournie par les éléments de forme appariés. Chaque paire d’éléments de formes correspond à une

unique transformation entre les images, pouvant être représentée comme un élément de l’espace des transfor-

mations. Ainsi, les appariements significatifs spatialement cohérents correspondent à des groupes dans l’espace

des transformations. Leur détection se ramène donc à un problème d’identification de groupes, qui peut être

résolu comme un cas particulier de la théorie développée au chapitre .
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“Structure means recognition that unity is at the foundation of every-

thing. To say structure is also to say Abstraction: geometry, rhythm,

proportion, lines, planes, idea of object. These are elements of work –

they act, they form, they construct and gain significance through the

law of unity.”

Joaquín Torres-García, Estructura.

. Why spatial coherence detection?

Looking at Figure ., one can recognize on the top left image a detail of Uccello’s painting shown

on the bottom left image. These two images correspond to different snapshots, and present different

colors and different compression rates. However, geometrical shape information in their common

part appears to be preserved, and if we ask someone if these pictures share some part, the person

would answer “yes” without any doubt, and would also be able to localize the detail on the top, in

the painting on the bottom.

If we now look for common shape elements between these two images by means of our meaningful

matching method (Figure .), we will find the results quite surprising: there are only sixteen mean-

ingful matches, and among them there are seven false matches (Figure .). Indeed, since images

have been damaged by the jpeg compression and since they are at very different scales, there are not

as many similar level lines in the common part as we could have imagined. Besides, looking closely

at the false matches in Figure ., despite not being very meaningful (their NFA are all larger than

0.45), we see that many of them are very similar shape elements (up to similarity transformations).

These remarks lead us to an obvious conclusion: spatial coherence of matched shape elements plays

a major role in recognition. (Early studies in motion perception explain this phenomenon by the fact

that most of the structures in the visual world are rigid or at least nearly so, see Marr [Mar82].) The

meaningful matching method does not use this information at all, since its goal is to compare shape

elements, no matter where they come from. Nevertheless, as a secondary effect, it gives also sure

detections of common objects (see for instance, the result we obtain when thresholding the NFA

at 0.1, Figure .). The goal now is to incorporate spatial coherence information to our detection

framework, in order to attain much more confidence on the detected structures. Indeed, if we stick

to the detection of meaningful events a contrario to some null hypothesis, we expect that, observing

“by chance” several meaningful matches at the time, presenting moreover a spatial coherence, will be

still more unprobable.

In order to detect spatially coherent matches, we have to define a measure of resemblance between

groups of shape elements. It is sound to do it, indirectly, by considering the similarity (resp. the affine)

transformations between pairs of pieces of level lines defining shape elements. Hence, instead of

defining a measure of resemblance between groups of shape elements, we will define a spatial coher-

ence measure on groups of similarity (resp. affine) transformations. To each meaningful match be-
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tween shape elementsS and S ′, we can associate a similarity (or affine) transformation T . The spatial

coherence measure of a group of transformations G included in T , where T is the set of all similar-

ity (resp. affine) transformations associated to meaningful matches, will be denoted by NFAg(G).

Hence, we have turned the detection of spatial coherence into a clustering problem, which can be

solved based on the a contrario detection methodology presented in Chapter .

Recall that in Chapter  we have defined a shape as any common part between any two images I
and I ′, modulo a class of invariance (Definition .). According to this definition, groups of shape

elements which are present in two images define new shapes.

As we will see and illustrate with several experiments, the strategy we propose in this chapter will

enable us to:

• Eliminate matches between similar but spatially uncoherent shape elements,

• Detect groups of spatially coherent shape elements that are common to a pair of images (a

target image I and a scene image I ′),

• Increase the confidence on the detected shapes,

• Perform subsequent applications such as registration or motion estimation.

The plan of this chapter is as follows. In Section . we present the parameter space of similarity

and affine transformations, mainly to introduce some notations. Then, in Section . we describe

two classical methods for object detection based on spatial coherence. As we will see, these methods

suffer from two common flaws: high sensitivity to discretization of the parameter space, and arbitrary

choice of decision thresholds. In Section . we propose a transformation clustering method based

on the general clustering ideas presented in Chapter , and we describe some issues that are specific

to clustering of transformations. Several experiments are also shown. Then we discuss some related

work in Section ., before concluding in Section ..

. The transformation space

In Chapter  we presented local normalization methods for planar curves, invariant to similarity

or to affine transformations. Then, in Chapter  we proposed a decision framework for matching

encoded normalized pieces of level lines (defining so the meaningful matches). Let us denote by I
the target image and I ′ the scene image, by Ω and Ω′ their supports, which are bounded subsets of

R
2. Underlying any meaninful match between a shape element S in I and a shape element S ′ in I ′,

there is a geometric transformation (a similarity or an affine transform, depending on the choice of

the normalization), that can be derived from the normalization procedure of these shape elements.

In what follows we describe the parameters involved in these transformations, and the way they can

be estimated, for the similarity and the affine transformation cases.
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Figure .: “Uccello” experiment. Original images and maximal meaningful level lines. Top: target image,

bottom: scene image.
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Figure .: “Uccello” experiment: meaningful matches. The number of tests was 39 106 (1022 codes in the

target image and 38149 in the scene image). On top: all 16 meaningful matches. Bottom: matches of which

NFA < 0.1.

.. The similarity transformation space

Let us denote by BS and B′S the set of local similarity frames extracted from I and I ′, as described in

Chapter :

BS = {{R1, R2} local similarity frame of S s.t. S is an encoded shape element in I} ,
B′S = {{R′1, R′2} local similarity frame of S ′ s.t. S ′ is an encoded shape element in I ′} .

We denote by (xR1 , yR1) and by (x′R1
, y′R1

) the pair of coordinates of R1 and R′1, respectively, and

by
{(
{Rk

1 , R
k
2}, {Rk

1
′
, Rk

2
′}
)
, 1 6 k 6M

}
the set of all pairs of frames associated to a meaningful

match: (
{Rk

1 , R
k
2}, {Rk

1

′
, Rk

2

′}
)

s.t. NFA(Sk, d(Sk,S ′k)) 6 1.

The 2-D similarity transformation T : Ω → Ω′ which maps R1 into R′1 and R2 into R′2 (see Fig-

ure .) can be written as:

∀ (x, y) ∈ Ω, T(x, y) = s

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
+

(
tx

ty

)
, (.)

where

s =
‖R′2 −R′1‖
‖R2 −R1‖

, θ = arctan

(
(R2 −R1)× (R′2 −R′1)

(R2 −R1) · (R′2 −R′1)

)
and(

tx

ty

)
=

(
x′R1
− s cos(θ)xR1 + s sin(θ)yR1

y′R1
− s sin(θ)xR1 − s cos(θ)yR1

)
.
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Figure .: All  false matches with their corresponding normalized codes. Their NFA (from top to bottom)

are: 0.45, 0.49, 0.50, 0.67, 0.77, 0.90, 0.96. While matched shape elements do not correspond semantically to the

same objects, they are roughly similar.
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(here “×” and “·” denote cross and dot product, respectively).

Plane similarity transformations define a 4-D parameter space; we refer to it as the similarity trans-

formation space. Each pair of frames ({R1, R2}, {R′1, R′2}) defines a point T = (tx, ty, θ, s) in the

similarity transformation space, corresponding to the transformation T. Let us denote by T ={
Tk = (txk, tyk, θk, sk), 1 6 k 6M

}
the set of points in the similarity transformation space asso-

ciated to the meaningful matches of all corresponding frames
(
{Rk

1 , R
k
2}, {Rk

1
′
, Rk

2
′}
)

.

Figure .: Two pieces of level lines and their corresponding local similarity frames. The similarity T maps R1

into R′1 and R2 into R′2.

.. The affine transformation space

We now consider the local affine invariant normalization described in Chapter . Affine normal-

ization of a piece of curve was performed by mapping its local frame {R1, R2, R3} into the triplet

{(0, 0), (1, 0), (0, 1)} (we use the same name for these points and from those involved in the similar-

ity normalization in order to be consistent with the notation in Chapter , but there is of course no

relation between them). Let us denote by BA and B′A the set of local affine frames extracted from I
and I ′:

BA = {{R1, R2, R3} local affine frame of S s.t. S is an encoded shape element in I} ,
B′A = {{R′1, R′2, R′3} local affine frame of S ′ s.t. S ′ is an encoded shape element in I ′} .

We denote by (xR1 , yR1) and by (x′R1
, y′R1

) the pair of coordinates of R1 and R′1, respectively, and by{(
{Rk

1 , R
k
2 , R

k
3}, {Rk

1
′
, Rk

2
′
, Rk

3
′}
)
, 1 6 k 6M

}
the set of all pairs of frames associated to a mean-

ingful match: (
{Rk

1 , R
k
2 , R

k
3}, {Rk

1

′
, Rk

2

′
, Rk

3

′}
)

s.t. NFA(Sk, d(Sk,S ′k)) 6 1.
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The planar affine transformation T : Ω → Ω′ which maps R1 into R′1, R2 into R′2 and R3 into R′3
can be uniquely expressed as follows (uniqueness comes from the Cholesky decompositon):

∀ (x, y) ∈ Ω, T(x, y) =

(
cos θ − sin θ

sin θ cos θ

)(
1 ϕ

0 1

)(
sx 0

0 sy

)
︸ ︷︷ ︸

M

(
x

y

)
+

(
tx

ty

)
. (.)

Given {R1, R2, R3} and {R′1, R′2, R′3}, solving for M = ((mij)) is straightforward. Then, one can

compute the transformation parameters in (.) by means of the following formulas:

θ = arctan(m21/m22),

ϕ = (m11m12 +m21m22) / (m11m22 −m12m21) ,

sx =
√
m2

11 +m2
21,

sy = (m11m22 −m12m21) /
√
m2

11 +m2
21,(

tx

ty

)
=

(
x′R1

y′R1

)
−M

(
xR1

yR1

)
.

We call affine transformation space the 6-D parameter space defined by these six variables. Each pair

of frames ({R1, R2, R3}, {R′1, R′2, R′3}) defines a point T = (tx, ty, θ, ϕ, sx, sy) in the transforma-

tion space. We will denote by T =
{
Tk = (txk, tyk, θk, ϕk, sxk, syk), 1 6 k 6M

}
the set of points

in the affine transformation space associated to the meaningful matches corresponding to frames(
{Rk

1 , R
k
2 , R

k
3}, {Rk

1
′
, Rk

2
′
, Rk

3
′}
)

.

Note that, for sake of commodity, we use the same notation for points in the similarity and in the

affine transformation spaces. Since most part of what we present in the following sections holds for

both groups of transformations, unless precised, we will use this notation to refer to them indis-

tinctly.

. Two classical methods for object detection based on spatial

coherence

In this section we discuss some issues of the generalized Hough transform [Bal81], of which varia-

tions are probably the most widely used techniques in object detection. Then we will describe another

frequently used technique for robust transformation estimation: the RANSAC algorithm [FB81].

.. The generalized Hough transform

In [Bal81], Ballard proposed a generalization to the Hough transform [Hou62] allowing to detect

arbitrary planar shapes undergoing similarity transformations. Most of object detection and recog-

nition systems using transformations clustering are based on the generalized Hough transform. The
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basic idea is to quantize the transformation space into D-dimensional cells. Each transformation

point Ti is quantized, and then votes for one of these cells. In practice, noise and image quantization

induce localization errors in the extracted features, and one has to take into account uncertainty in

computing Ti. Thus, each pairing of model and image features defines a volume of possible trans-

formations, so it should cast a vote into each cell intersecting this volume (see [GH90] for an error

analysis when using line segments as features).

As like as all techniques based on histograms in multidimensional spaces, the generalized Hough

method is very sensitive to the choice of quantization precision (this remark also holds for Lamdan

and Wolfson’s Geometric Hashing [WR97, LW88], described in Chapter ). Most of the time, the

cell size is chosen by problem specific ad hoc arguments (see [Low99] for an example). However, in

the general case, quantization effects may lead to several problems:

• Similar transformation points may vote for different cells. In order to reduce this problem,

either votes are counted by adding the votes of neighboring cells (using a sliding window) in

the case of no uncertainty in Ti, or, when uncertainty is considered, a vote is casted into each

cell intersecting the uncertainty volume.

• In the plane similarity case, for instance, if one wants to do a fine discretization of the 4-D

transformation space in order to perform accurate detection, the search space is too large for

exhaustive search. Coarse to fine techniques applied to transformation clustering, first intro-

duced by Stockman [SKB82], can deal with this complexity problem, but there is no reason

why the most voted cells at the finer scale correspond to the most voted ones at coarser scales.

• From the detection viewpoint, the cells size is also crucial. Indeed, if quantization is too fine,

cells will not have enough votes and correct instances will be missed (false negatives). On

the other side, choosing a very coarse quantization increases the likelihood of large clusters

occurring at random (false positives). Moreover, as pointed out by Grimson and Huttenlocher

in [GH90], using a local neighborhood or casting multiple votes, and reducing the number

of cells to reduce the search space, both methods greatly increase the chance of large random

clusters.

These remarks partially motivate our decision of using the clustering techniques described in Chap-

ter , along with the validity assessment method proposed in the same chapter. Indeed, the proposed

methodology does not suffer from quantization problems.

.. A RANSAC based approach

The “RANdom SAmple Consensus” algorithm by Fischler and Bolles [FB81] (RANSAC), is certainly

one of the most popular robust estimators in computer vision. It has proved very successful in stereo

vision tasks, such as the estimation of homographies and fundamental matrices [HZ00]. The main

reasons of its success are its quite general nature, and its ability to deal with large proportions of



 Chapter 13. Grouping spatially coherent meaningful matches

outliers. Roughly speaking, in its general form, the RANSAC procedure to fit a model consists in

randomly selecting a minimal subset of the data (i.e. a subset allowing to instantiate the model),

then computing the number of inliers consistent with the instantiated model. These two steps are

repeated forN minimal subsets of the data. The model having the largest number of inliers is chosen,

and it is refined by re-estimating it from the corresponding set of inliers.

In our framework, we deal with M meaningful matches, and usually M is small enough to test for

all corresponding similarity or affine transformations. Hence, using the same ideas, an elementary

algorithm would be as follows:

• For each element in the set of M pairs of local frames corresponding to meaningful matches:

. Compute the associated transformation T .

. Apply T to all target local frames, and compute their distances to their corresponding

scene local frames.

. Compute the number of inliers consistent with T , i.e. the pairs for which the distance is

less than d pixels.

• Choose the transformation T having the largest number of inliers.

• Re-estimate T for all pairs of local frames determined as inliers (with a least squares method,

for instance).

One can iterate this procedure on the set of outliers, in order to find other (less dominant) transfor-

mations.

Even for this simple version of the algorithm, two problems arise: the choice of the distance thresh-

old d, and the minimum number of inliers a model should have in order to be valid. The distance

threshold d is usually chosen empirically; otherwise, it can be chosen by considering a significance

level α, corresponding to the probability that a point is an inlier [HZ00], what requires hypothetiz-

ing a model for the distribution of distances. Concerning the minimum number of inliers to assess

model validity, generally it is also fixed by means of arbitrary rules. It seems reasonable to us that this

minimum number of inliers depends on the distance threshold, but up to our knowledge, no effort

has been done to establish this relation.

In the next section we propose a transformation clustering method based on the general clustering

concepts presented in Chapter . This method is able to detect multiple transformations, and does

not suffer from arbitrary or ad hoc choices like the ones we have just described.
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. Meaningful clusters of transformations and shape detection

Since corresponding pairs of frames that are part of the same match of a model to an image will result

in approximately the same transformations, we can formulate the problem of shape detection as a

transformation clustering problem. According to Chapter , in order to do it we have to define:

. A dissimilarity measure between points in the transformation space,

. A grouping strategy.

Defining a metric between transformations is not trivial, mainly because of two reasons. The first

one is that the transformation space consists in directions of which magnitudes are not directly com-

parable. This problem is not specific to transformation clustering but general to clustering of any

kind of data, and was discussed in Chapter . The second reason is that the (similarity or affine)

transformation space does not have a vector space structure, which means we cannot even derive

metrics from norms.

We can easily get rid of these two drawbacks by defining dissimilarity between transformations based

on distances in the image plane. A possible distance function between similarity transformations is

dT (Ti, Tj) = max
{
‖Ti(R

k
1)−Tj(R

k
1)‖, ‖Ti(R

k
2)−Tj(R

k
2)‖, 1 6 k 6M

}
, 1 6 i, j 6M,

where ‖ · ‖ denotes the `2-norm,
{
{Rk

1 , R
k
2}, 1 6 k 6M

}
is the set of all local similarity frames

of shape elements Sk such that (Sk,S ′k) is a meaningful match, and Tk its corresponding transfor-

mation defined by (.). Note that this distance is actually a true metric adapted to the consid-

ered transformations; symmetry, non negativity and triangle inequality properties clearly hold, and

dT (Ti, Tj) = 0 if and only if Ti = Tj because, since Ti and Tj are similarity transformations,[
Ti(R

i
1) = Tj(R

i
1) and Ti(R

i
2) = Tj(R

i
2)
]
⇔ Ti = Tj.

In practice, we will consider the following dissimilarity function, since its computation is less time

consuming than for the distance we have just described :

dT (Ti, Tj) = max
{
‖Ti(R

k
1)−Tj(R

k
1)‖, ‖Ti(R

k
2)−Tj(R

k
2)‖ : k ∈ {i, j}

}
, 1 6 i, j 6M.

(.)

Notice that here the maximum is taken only over the pairs of local frames {Ri
1, R

i
2} and {Rj

1, R
j
2}

that were used to define Ti and Tj . Although this dissimilarity measure does not satisfy the triangle

inequality and is therefore neither a norm nor a true metric, it is always non negative, symmetric,

and equals zero only if Ti = Tj .

A dissimilarity function between affine transformations can be defined in the same way, by consid-

ering the affine local frames.

Once a dissimilarity measure between transformation points has been defined, a grouping strategy

has to be chosen. In Chapter  we discussed partitional and hierarchical clustering methods, and we
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presented several reasons for prefering hierarchical methods. Basically, this decision was based on

the ability to deal with differently shaped clusters, the possibility to detect all natural clusters even

when their number of points or their variances were different, as well as to extract dense clusters

embedded in less dense ones. All these requirements were accomplished by hierarchical clustering

methods, in particular by the single-linkage method, but not by partitional methods. Last but not

least, we also saw that the problem of cluster validity assessment was better posed for hierarchical

methods. Local stopping rules, as the validity criteria for meaningful groups that we proposed in

Chapter , should be able to avoid, in many cases, undesirable chaining effects inherent to the single-

linkage method. Thus, in a general setting, the single-linkage method combined with the detection

of maximal meaningful groups, would be a reasonable choice.

Let us now summarize some features that are particular to clusters of transformations, to show that

the proposed set up is certainly suitable for transformation clustering. Figure . shows two 2-D

projections of the transformation points Tk corresponding to the meaningful matches between a

pair of images. These are the typical clusters we may observe in our framework. Notice that here

natural clusters are not isotropic at all, and surrounding points are more sparsely distributed than

in its core. This kind of noisy points are a consequence of some slight instability in the extraction-

normalization-encoding of pieces of level lines.

Figure .: Two 2-D projections of a typical cloud of transformations associated to meaningful matches.

.. A contrario definition of meaningful groups

The background model

The aim of this section is to define an accurate background model, allowing to detect spatial coher-

ence a contrario, that is, by rejecting the hypothesis that clusters have been generated by the back-

ground process. That is why the background model must take into account all artifacts inherent

to the data generation process (these models are the so called “data-influenced” null models, which

perform better than the “standard” null models; see Chapter , Section .). Thus, in our transfor-

mation clustering framework, the background model should describe the following situation (which
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we describe here for the similarity case, and can be easily derived for the affine case):

• images shape contents are represented by encoded pieces of level lines (shape elements), along

with sets of local similarity frames, localized nearby meaningful level lines;

• no shape coincidence between the target image I and the scene image I ′ is observed.

In other words, our background process is responsible for the generation of all local similarity trans-

formations defined by sets of local frames BS and B′S , in the absence of global shape coincidence

between images I and I ′. Hence, we may assume that:

(A) Parameters tx, ty, θ and s are random variables, θ and s are statistically independent, and the

“region” probability of any hyper-rectangle R = Rx × Ry × Rθ × Rs in the transformation

space,

p(R) := Pr ((tx, ty, θ, s) ∈ R) (.)

=

∫
Rθ×Rs

Pr(tx ∈ Rx, ty ∈ Ry|θ, s)dP (θ)dP (s) (.)

can be estimated from the pair of images I and I ′ (in a way we immediately precise).

(A) Points Tj = (txj, tyj, θj, sj), j ∈ {1, . . . ,M}, are mutually independent, identically dis-

tributed random variables, following the joint law of (tx, ty, θ, s).

In assumption (A) we are also implicitly assuming that, under the a contrario model, the distribution

of transformation points does not depend on the meaningfulness of the match that generates it.

Concerning assumption (A), in order to estimate the a contrario region probability p(R) from the

pair of images, no instance of the target shapes should be present in the scene. Actually we do not

know in advance if it is the case or not: this is one of the questions we want to answer. However this

is not really a problem since in detection problems, the background strongly dominates the image

statistics. Hence, one can estimate the region probabilities as follows:

Assume domains Rθ and Rs are “small” (otherwise, partition these domains and write (.) as a

sum of integrals over small domains). Under reasonable regularity conditions on (θ, s) 7→ Pr(tx ∈
Rx, ty ∈ Ry|θ, s), if Rθ and Rs are small, for all (θ, s) ∈ Rθ × Rs one can consider the following

approximation:

Pr(tx ∈ Rx, ty ∈ Ry|θ ∈ Rθ, s ∈ Rs) ' Pr(tx ∈ Rx, ty ∈ Ry|θ̄, s̄),

where θ̄ and s̄ denote respectively the centers of intervals Rθ and Rs. Replacing this approximation

in (.) yields

p(R) ' Pr(tx ∈ Rx, ty ∈ Ry|θ̄, s̄) Pr(θ ∈ Rθ) Pr(s ∈ Rs).

Hence, we are led to compute:
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. Pr(θ ∈ Rθ) and Pr(s ∈ Rs): Given the sets BS and B′S of all local frames from images I
and I ′, compute the #BS ×#B′S similarity transformations mapping a frame {R1, R2} into

a frame {R′1, R′2}. Then estimate Pr(θ ∈ Rθ) and Pr(s ∈ Rs) as empirical frequencies over all

#BS ×#B′S possible similarities.

. Pr(tx ∈ Rx, ty ∈ Ry|θ̄, s̄): The idea is to infer what (tx, ty) should be if θ̄ and s̄ are given,

and local frames are distributed in images I and I ′ according to points Ri
1 (1 6 i 6 N)

and R′1
j (1 6 j 6 N ′), respectively. Hence, one can estimate the a contrario probability

Pr(tx ∈ Rx, ty ∈ Ry|θ̄, s̄) as an empirical frequency over all possible translations:{
R′1

jT
− s̄

(
cos θ̄ − sin θ̄

sin θ̄ cos θ̄

)
Ri

1

T
s.t. l 6 s̄‖Ri

2 −Ri
1‖ 6 L : 1 6 i 6 N, 1 6 j 6 N ′

}
(.)

(l andL are thresholds related to the minimal and maximal sizes of considered shape elements.

Indeed, since too short shape elements are not informative and the too long ones are too global,

they were not encoded and consequently, they cannot be considered in this estimation).

Let us say a few words about the estimation of these three probabilities for the background model.

For Pr(θ ∈ Rθ), one would expect θ to be uniformly distributed in [−π, π), and this belief was

experimentally confirmed (see Figure .(a) for an example of empirical θ distribution from the

“Uccello” experiment of Figures . and .). Concerning Pr(s ∈ Rs), the distribution of the zoom

factor s is far from being uniform. Figure .b shows an example of ln(s) empirical distribution

from the same “Uccello” experiment. This distribution also confirms that the size distribution of

shapes in images is far from being uniform (see [AGM99] for a study on the distribution of scales in

natural images). Indeed, one can show that if size distribution was uniform, the histogram hs(x) of

ln(s) should be proportional to e−|x|. Finally, for the estimation of Pr(tx ∈ Rx, ty ∈ Ry|θ ∈ Rθ, s ∈
Rs) we can also say that, just as for the distribution of s, if we do not have any a priori information

on the scene image, we can by no means assume a realistic a priori distribution for (tx, ty) given

(θ, s). Since this distribution depends on the location of local frames, it can not be pre-computed

for a representative set of (θ̄, s̄) unless the distribution of local frames in the images is well known.

Figure . shows the distribution of points {R′1, R′2} of local frames in image I ′ for the “Uccello”

experiment (Figure .). Assuming an a priori distribution for these points makes no sense if one

wants to detect shapes a contrario from these particular target and scene images.

On the other hand, in specific settings such as object detection in fixed kind of scenes, one can

manage to learn all necessary distributions once for all. For instance, one can learn the distribution

of s by direct computation, and compute that of (tx, ty) conditionnally to (θ̄, s̄) for any value of (θ̄, s̄)

by estimating the distribution of frames in target and scene images and using formula (.).

Remark: The ideas we have presented here also hold for the affine transformation clustering. For this

case, θ, ϕ, sx and sy are considered to be mutually independent. Then, as much as we did here, the

joint probability of (tx, ty) given (θ, ϕ, sx, sy) is computed.
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Figure .: histograms for θ (left) and ln s (right) from the “Uccello” experiment. Notice θ is (almost) uniformly

distributed. The histogram of ln s is very image dependent, so it is impossible to assume an a priori distribution

unless dealing with specific applications where image statistics are well known.

Figure .: Distribution of frames points R′1 (left) and R′2 (right) on the “Uccello” I ′ image of Figure .. Points

are distributed nearby meaningful level lines.
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Meaningful groups

Now that we have an accurate background model, we are in position to evaluate the probability of

a given cluster of transformation points as a realization of the background process. Hence, we are

able to detect relevant clusters by Helmholtz principle: those clusters being unlikely to be observed

by chance will be considered as meaningful groups. Let us give an example to illustrate this idea.

In Figure ., we display the six 2-D projections of the transformation points Tk corresponding

to the “Uccello” meaningful matches (Figure .). The “high density” cluster we observe reveals a

conspicuous coincidence. Indeed, the probability of its being a realization of the background process

should be very low, and one would expect it to be an exception to randomness. Then, a better

explanation for this group of matches will be shape coincidence, which is actually the case here.

Let us make things more precise. For any hyper-rectangle R in the transformation space, we know

how to compute the “region probability” p(R), the probability that a transformation point generated

by the background process falls inR. The next step prior to detection of relevant clusters, is to define

a set of reasonable cluster candidates. This choice was discussed in Chapter . For the sake of clarity,

let us summarize for the particular case of transformation clustering, some definitions and results

that were presented for the general case in Chapter .

Definition 13.1 (ε-meaningful group) We say that a group of matches is ε-meaningful if

#R · B(M,k, p(R)) 6 ε.

Remark: Clusters of transformations correspond to groups of meaningful matches. Therefore, from

now on, we refer indistinctly to meaningful groups of matches or meaningful clusters of transforma-

tions.

Proposition 13.1 The expected number of ε-meaningful groups inR is less than ε.

Definition 13.2 (Number of False Alarms) Given a group G of k meaningful matches among M

with transformations located in cell R, we call number of false alarms of G the number

NFAg(G) = #R · B(M,k, p(R)),

where p(R) is the probability that a transformation point falls in R, the smallest hyper-rectangle in R
containing all k transformation points.

The number of false alarms ofG is a measure of how likely it is that a group having at least kmeaning-

ful matches and a region probability p, was generated “by chance”, as a realization of the background

process. The lower is NFAg(G), the more unlikely G is generated by the background, and hence,

the more meaningful is G.

While each meaningful group we detect will be relevant by itself, the whole set of meaningful groups

will probably exhibit high redundancy in the sense that we will get many nested meaningful groups.



13.4. Meaningful clusters of transformations and shape detection 

Figure .: “Uccello” experiment: transformation points of meaningful matches. While good matches define a

cluster, the six false detections lead to non coherent transformations. Surrounding points of the cluster are more

sparsely distributed, due to some instability in the extraction-normalization-encoding of pieces of level lines.
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Our strategy to reduce this redundancy combines the inclusion tree given by the hierarchical cluster-

ing procedure, and the measure of meaningfulness given by NFAg. At each step of the hierarchical

clustering procedure, two clusters are merged. Nevertheless, this merging is not necessarily a better

data representation than the two separate clusters. By using the complete dendrogram D of 2M − 1

clusters, we decide a posteriori whether pairs of clusters should be merged or not. Let us denote byG,

G1 and G2 the groups of matches corresponding respectively to a node and its two children nodes in

D. Roughly speaking, we will accept merging if, under the a contrario model, the expected number of

groups like G we would observe is smaller than the one of observing groups like G1, G2, or the pair

G1 and G2. Hence, we will say that G is valid if it verifies this criterion. Before giving the definition

of a valid group, let us define NFAgg(G1, G2), the number of false alarms of the pair (G1, G2) as:

NFAgg(G1, G2) =
#R (#R− 1)

2

M∑
i=k1

M−i∑
j=k2

(
M

i, j

)
p1
ip2

j(1− p1 − p2)M−i−j, (.)

where k1 and k2 are the number of elements in G1 and G2 (resp.), and p1 and p2 their associated

region probabilities. NFAgg(G1, G2) is an estimate of the number of occurrences, under the a

contrario model, of the event E : “there are two non overlapping groups A and B, with region

probabilities p1 and p2 (resp.), containing at least k1 and k2 matches (resp.) among M”. Indeed,

#R (#R− 1) /2 is the number of pairs of clusters of R, and the probability of event E is given by

the joint tail of the trinomial probability distribution.

Let us continue recalling some elements of Chapter .

Definition 13.3 (Valid group) LetG,G1 andG2 be the groups of matches corresponding respectively

to a node and its two children nodes in D. We say that G is a valid group if both following inequalities

hold:

NFAg(G) < min {NFAg(G1), NFAg(G2)} , (.)

NFAg(G) 6 NFAgg(G1, G2). (.)

Proposition 13.2 If G is a valid group, then NFAg(G) < 1
2
·NFAg(G1) ·NFAg(G2).

Definition 13.4 (Maximal ε-meaningful group) We say that a group of matches G is a maximal

ε-meaningful group if and only if:

. NFAg(G) 6 ε,

. G is valid,

. for all valid descendant F , NFAg(F ) > NFAg(G),

. for all valid ancestor F , NFAg(F ) > NFAg(G).

The maximal meaningful groups of matches correspond to our notion of shape: groups of shape

elements we can recognize in a pair of images.



13.4. Meaningful clusters of transformations and shape detection 

In Figures . and . we display the maximal meaningful groups for the “Uccello” and “Casablanca”

experiments. In the “Uccello” experiment, the algorithm detects one maximal meaningful group,

with NFAg = 2.7 10−41. Comparing this number of false alarm with the NFA associated to the

best match, which was 1.2 10−8, we confirm that grouping can greatly increase confidence in detec-

tions. For the “Casablanca” experiment, two maximal meaningful groups are detected. The merging

criterion (eq. (.)) decides that two separate groups (the actors’ faces on one hand and the word

“Casablanca” on the other hand) are a better representation than a single big group containing both

groups. Indeed, while the big group in Figure . has the lowest NFAg (7.8 10−17), it is not a valid

cluster since its NFAg is not as small as half the product of its two children’s NFAg (3.6 10−14 and

9.8 10−11).

Figure .: “Uccello” experiment: a single maximal meaningful group was detected. Zoom on the matches of the

group for the target image (left) and the scene image (right). The group is composed by all nine good matches, and

its NFAg is 2.7 10−41.
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 meaningful matches, NFAg = 3.6 10−14

 meaningful matches, NFAg = 9.8 10−11

Figure .: “Casablanca” experiment: maximal meaningful groups. Zoom on the matches of the group for the

target image (left) and the scene image (right). The merging condition leads to the detection of the two maximal

meaningful groups, instead of the group defined by the merging of these groups.

Figure .: “Casablanca” experiment. Meaningful group corresponding to the merging of groups in Figure ..

This group contains 7 meaningful matches, and its NFAg is 7.8 10−17. According to Definition ., it is not a

valid cluster in terms of maximality.
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.. Experiments

The detection framework we presented in former sections is completely general and can be applied

to any kind of images, provided objects are well described by planar shapes and transformations

are close to similarities (or affinities). Besides the “Uccello” and “Casablanca” experiments, in this

section we show some examples of different kind and nature. All experiments were done using the

single-linkage algorithm (see Chapter , Section ..). Using other hierarchical clustering proce-

dures yields essentially the same results. The detection threshold ε was fixed to 1 in all experiments,

meaning we allow, at most, one false group detection on the average. Hence, the detection method

does not need any parameter tuning, what makes it a parameter free method.

Object in clutter

Figure . shows the target and scene images. There are five instances of the target object in the

scene, at different scales and locations. Two of them are strongly occluded. In Figure . we dis-

play the meaningful matches. We do not observe any false alarm and all objects are represented by

matched shape elements. For one of the occluded objects we get a single meaningful match. Conse-

quently, this object is not detected as a meaningful group (Figure .).

Figure .: “Object in clutter” experiment: Original images (from Columbia Object Image Library) and maxi-

mal meaningful level lines. Top: target image, bottom: scene image. Five instances of the target object are present

in the scene, at different scales. Two of them are strongly occluded.
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Figure .: “Object in clutter” experiment: meaningful matches. Number of tests: 4.3 106 (510 codes in the

target image, 8, 565 in the scene image). There are 19 meaningful matches, no false detection. The best match has

NFA = 1.1 10−9, and 15 matches have their NFA below 0.1.
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 meaningful matches, NFAg = 7.7 10−13

 meaningful matches, NFAg = 7.8 10−23

 meaningful matches, NFAg = 2.3 10−9

 meaningful matches, NFAg = 1.6 10−6

Figure .: “Object in clutter” experiment: the four maximal meaningful groups. One occluded object is missed.

This object was represented by a unique meaningful match, and that was not enough to be detected as a meaningful

group. The other four instances were detected with low NFAg.



 Chapter 13. Grouping spatially coherent meaningful matches

Coca-Cola 

In this example we look for the “Coca-Cola” logo in an advertisement (Figure .). The word

“Coca-Cola” is twice present in the advertisement. Notice there are also some strobe effects, since

there are common parts between the level lines surrounding characters “oca” and “ola”. The group of

characters on the bottom part of the advertisement is very close to a similarity transformed version of

the characters in the target logo. This remark does not hold for the characters written on the bottle.

In Figure . we show the meaningful matches and in Figure . we display the detected maximal

meaningful groups (see images legends for details). Notice how the NFAg of groups drops down

with respect to the NFA of matches, in particular for the dominant group. Notice also that the false

matches on the top of the bottle have been rejected.

Figure .: “Coca-Cola ” experiment: original images and maximal meaningful level lines. Top: target image,

bottom: scene image. The word “Coca-Cola” is written twice in the scene image. The one on the bottle is not a

similarity transformed version of the target image.
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Figure .: Meaningful matches. Number of tests: 3.6 106 (558 codes in the target image, 6, 409 in the scene

image). There are 22 meaningful matches, two false detections with NFA = 0.21 and NFA = 0.67. The best

match has NFA = 3.5 10−13, and 19 matches have their NFA below 0.1.
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(a)  meaningful matches, NFAg = 5.4 10−35

(b)  meaningful matches, NFAg = 3.4 10−16

(c)  meaningful matches, NFAg = 8.5 10−5

Figure .: Maximal meaningful groups. Three groups were found. (a) The most meaningful groups; matches

are very coherent, since the transformation between the two images parts is almost a perfect symilarity. (b) This

coherent group is not as meaningful as the group in (a), since it contains less matches, and matches are less coherent

because the deformation is not really given by a similarity transformation. (c) A strobe effect: characters “oca” and

“ola” have some common parts.
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Coca-Cola 

This example illustrates the performance of the proposed methodology in detecting multiple groups

in an image. Here we look for the Coca-Cola logo in a scene with some Coca-Cola cans (Figure .).

The detection of meaningful matches leads to the matches we display in Figure .. In Figure .

we display the location of the corresponding transformation points in the transformation space.

Figure . shows the maximal meaningful groups. The black rectangles correspond to hits and the

white ones are misses. One can quickly see that these misses are not related to the cluster detection by

looking at Figure .. Two additional groups were detected as maximal meaningful. One of them is

a consequence of the strobe effect in the word “Coca-Cola” (Figure .); the other one (Figure .)

corresponds to a casual detection revealing a conspicuous coincidence (NFAg = 1.3 10−2). Indeed,

the two matched characters “a” are coherent in scale and rotation, and there is also enough coinci-

dence in translation. In table . we show the NFAg of the detected groups. We can see that all

groups are highly detectable, except for group 1 where the deformation can not really be modeled as

a similarity transformation of the original logo.

Group nb. 1 2 3 4 5 6

nb. of matches 2 7 3 3 7 6

NFAg 3.9 10−2 1.6 10−22 3.7 10−11 6.6 10−8 2.2 10−24 5.0 10−21

Group nb. 7 8 9 10 11 12

nb. of matches 7 6 7 8 6 9

NFAg 7.6 10−17 3.6 10−19 8.5 10−24 3.8 10−20 3.7 10−20 5.6 10−32

Group nb. 13 14 15 16 17 17bis

nb. of matches 9 10 6 8 6 2

NFAg 2.4 10−29 1.4 10−28 4.0 10−30 2.5 10−32 1.0 10−18 1.7 10−5

Table .: “Coca-Cola ” experiment: NFAg for the maximal meaningful groups in Figure ..
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Figure .: “Coca-Cola ” experiment: original images and maximal meaningful level lines. Top: target image,

middle: scene image. Bottom: detail of the maximal meaningful level lines corresponding to the box drawn on the

original image.
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Figure .: “Coca-Cola ” experiment: meaningful matches. Number of tests: 3.3 106 (359 codes in the target

image, 9, 274 in the scene image). There are 151 meaningful matches, six of them are false detections with NFA

of 0.84, 0.78, 0.45, 0.60, 0.30 and 0.21. The best match has NFA = 4.6 10−7.
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Figure .: “Coca-Cola ” experiment: transformation points of meaningful matches. The image on the top left

corresponds to the projection on the (tx, ty) plane, and one can see clusters of points on the cans where the logo is

visible. On the right top we show projection on the (tx, θ) plane; one can recognize the 90◦ orientation of the cans,

and some outliers (false matches). In the image corresponding to the projection on the (ty, θ) plane (middle, right)

we can see three big clusters, one per row, and the 90◦ orientation of the cans. We can also recognize the three rows

in the bottom left plot (projection on the (ty, ln(s)) plane, as well as the zoom factor (ln(s) ' −0.8).
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Figure .: “Coca-Cola ” experiment: maximal meaningful groups. 19 groups were detected as maximal mean-

ingful groups. Among them, 17 correspond to groups in the black rectangles (see table . for their NFAg). In

rectangle nb.  there is also a group due to strobe effect (Figure .). The other maximal group is a casual

detection (Figure .). The misses shown in white rectangles are explained in Figure ..

(a)

(b)

Figure .: “Coca-Cola ” experiment: misses explanation. (a) The word “Coca-Cola” on the right is small

and thus it was highly distorted by smoothing. No meaningful matches between shape elements in both images

were found. One possible way to overcome this problem could consist in considering target representation at a few

different scales. (b) The word “Coca-Cola” is distorted by projection on the can and perspective effect. Despite of

that three meaningful matches were found, but they were not spatially coherent. Hence, no meaningful group was

detected.
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Figure .: “Coca-Cola ” experiment: strobe effect (NFAg = 1.7 10−5). Characters “oca” and “ola” share

some common parts.

Figure .: “Coca-Cola ” experiment: casual detection (NFAg = 1.3 10−2). The image on the right has been

rotated 90 degrees for a better understanding.
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Église de Valbonne

Figure . shows two different views of the Église de Valbonne, with their corresponding maximal

meaningful level lines. The meaningful matches between these two views, up to similarity invariance,

are shown in Figure .. Some of them are false matches, but all of them showed a NFA greater

than 0.1, as predicted by the experimental results in Chapter . There are also many casual matches

that correspond to the same structures in the images (e.g. the pieces of rectangle in the fence in the

left image in Figure . match with rightmost piece of curve in the right image). In Figure .

we display the two maximal meaningful groups that are detected (see caption for details). Within

each of these two groups, a global affine transformation was estimated by means of a least squares

procedure, over the corresponding matched shape elements. These transformations were used to

map the target image into the scene image. The superimpositon of the transformed target image and

the scene image shows, in both cases, that the estimated transformation is a good approximation, in

the neighborhood of the matched shape elements.

In Figure . we display the six 2-D projection of the transformation points associated to the mean-

ingful matches. The red points correspond to the group in Figure .(a), and the blue points to the

one in Figure .(b). The rest of the points, depicted in green, were not assigned to any maximal

meaningful group. As we can see from these projections, finding “natural” clusters in this cloud of

points is not a trivial problem. The method we propose in this work detects two (and only two) rea-

sonable clusters. Detecting these two clusters as different entities by means of partitional methods,

or without considering local merging criterion, does not seem to be possible. Indeed, the clusters are

too much close, and their number of points are significantly different.

Figure .: Two frames of the Église de Valbonne sequence, with its corresponding meaningful level lines. The

image on the left was considered as target.
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Figure .: Église de Valbonne: 63 meaningful matches were found, for 15, 151 codes in the target image and

19, 083 in the scene image. All false detection have NFA larger than 0.1, as expected. The best match has

NFA = 2.8 10−12.
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(a) 32 meaningful matches, NFAg = 1.8 10−111

(b) 2 meaningful matches, NFAg = 0.4

Figure .: Église de Valbonne: two maximal meaningful groups were detected. All false matches and spatially

uncoherent matches were rejected. The group in (a) corresponds to the principal group. The rightmost image

shows the result of superimposing the two original images, according to a mean affine transformation. This trans-

formation was estimated by a least-squares procedure over the matching shape elements within the group. This

image shows that the global transformation between the common shapes is relatively well approximated by an

affine transformation. The group in (b), which is barely detectable, corresponds to a match between far away trees.

The rightmost image show that the estimated affine transform is a good approximation in the neighborhood of the

matched shape elements.
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Figure .: Église de Valbonne: transformation points of meaningful matches (the six 2-D projections). The red

points correspond to the group in Figure .(a), and the blue points to the one in Figure .(b). The rest of the

points, depicted in green, were not assigned to any maximal meaningful group. Notice that the actual distance

between transformations is not computed as the Euclidean distance between points in the transformation space,

but using the dissimilarity measure in (.).
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. Discussion on the definition of meaningful groups

Up to now we have considered that every transformation point Tk was equally relevant, as the family

of random variables {Tk, 1 6 k 6 M} was assumed to be mutually independent, identically dis-

tributed. In this section we propose another definition of group meaningfulness, which associates a

measure of confidence to each point, as much as we did by considering a saliency measure in Chap-

ter  (section .). Naturally, this measure of confidence will be related to the meaningfulness of

the match that corresponds to the transformation point. Indeed, what we want to evaluate here

is the probability that, just “by chance”, several pairs of normalized shape elements are meaningful

matches, and their respective transformation points fall into a transformation space regionR. Let us

make things more precise by defining the corresponding background model.

.. The background model

As we pointed out in Section .., in our transformation clustering framework, the background

model should describe the following situation:

• images contents are represented by encoded pieces of level lines (shape elements), along with

sets of local similarity (or affine) frames, localized nearby meaningful level lines;

• no shape coincidence between the target image I and the scene image I ′ is observed.

Now we will define the background process by means of the following assumptions:

(A) Parameters tx, ty, θ and s are random variables, θ and s are statistically independent, and the

probability of the “region” R = Rx ×Ry ×Rθ ×Rs

p(R) := Pr ((tx, ty, θ, s) ∈ R)

= Pr(tx ∈ Rx, ty ∈ Ry|θ ∈ Rθ, s ∈ Rs) Pr(θ ∈ Rθ) Pr(s ∈ Rs)

can be estimated from the pair of images I and I ′ (as was described in Section ..).

(A) Points Tj = (txj, tyj, θj, sj), j ∈ {1, . . . ,M}, are mutually independent random variables,

and for any hyper-rectangle R in the transformation space,

Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k), Tk ∈ R | NFA(Sk, d(Sk,S ′)) 6 1)

= NFA(Sk, d(Sk,S ′k))× p(R).
(.)

(here Sk and S ′k stand for shape elements of which pairing generates Tk).

Assumption (A) is the same assumption (A) we made for the background model in Section ...

The situation is a bit different for assumption (A). The first difference is that here we introduce

conditioning to take into account the fact that points Tk correspond to meaningful matches. We are

also implicitly assuming, as we did for the former background model, that the meaningfulness of
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a match and the location of its transformation point are independent under the a contrario model.

Hence, because of this independence assumption, we have:

Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k), Tk ∈ R | NFA(Sk, d(Sk,S ′)) 6 1)

= Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k) | NFA(Sk, d(Sk,S ′)) 6 1)

× Pr (Tk ∈ R | NFA(Sk, d(Sk,S ′)) 6 1)

= Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k) | NFA(Sk, d(Sk,S ′)) 6 1) p(R)

Now, recall from Chapter  that:

NFA(Sk, d(Sk,S ′)) 6 1 ⇔ d(Sk,S ′) 6 δ∗, where δ∗ := sup {δ > 0 : PFA(Sk, δ) 6 1/(N ·N ′)} .

Then, since we already know d(Sk,S ′) 6 δ∗ because (Sk,S ′) is a meaningful match, conditioning

by NFA(Sk, d(Sk,S ′)) 6 1 just means:

Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k) | NFA(Sk, d(Sk,S ′)) 6 1)

=
PFA(Sk, d(Sk,S ′k))

PFA(Sk, δ∗)
=
NFA(Sk, d(Sk,S ′k))/(N ·N ′)

1/(N ·N ′)
= NFA(Sk, d(Sk,S ′k)),

what finally yields (.). (For the second to last equality we consider PFA(Sk, δ∗) = 1/(N ·N ′), by

assuming N ×N ′ is large enough to have an almost continuum evaluation of δ 7→ PFA(Sk, δ).)

Notice that if instead of considering 1-meaningful matches, we had considered η-meaningful matches,

conditioning would have been done with respect to NFA(Sk, d(Sk,S ′)) 6 η, leading to

Pr (S ′ s.t. d(Sk,S ′) 6 d(Sk,S ′k) | NFA(Sk, d(Sk,S ′)) 6 η) =
NFA(Sk, d(Sk,S ′k))

η
.

.. Meaningful groups taking into account the meaningfulness of matches

For the sake of clarity, let us summarize, for the particular case of transformation clustering based on

meaningful matches, some definitions and results that were presented in Chapter , for clustering of

any kind of data and for any saliency measure (Section .).

Let us denote by χi, 1 6 i 6 M , the indicator function of event Ei: “(Si,S ′i) is an ηi-meaningful

match, and Ti falls in R” (we already know (Si,S ′i), 1 6 i 6M , are all meaningful matches).

Definition 13.5 (ε-meaningful group) Let R be a transformation space hyper-rectangle inR, con-

taining a group of k among M transformation points associated to meaningful matches. We say the

group is ε-meaningful if

k > k∗(R, η1, . . . , ηM) := min

{
n ∈ N : Pr

(
M∑
i=1

χi > n

)
6

ε

#R

}
.

Proposition 13.3 The expected number of ε-meaningful groups inR is less than ε.
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Proposition 13.4 (Sufficient condition of ε-meaningfulness) Let R be a transformation space

hyper-rectangle from R, containing a group of k among M transformation points associated to mean-

ingful matches. We say the group is ε-meaningful if

k > p(R)
M∑
i=1

ηi +

√√√√ M (ln(#R)− ln ε)

h
(
p(R)

∑M
i=1 ηi/M

) , (.)

where

h(µ) =

{
1

1−2µ
ln
(

1−µ
µ

)
if 0 < µ < 1

2

1
2µ(1−µ)

if 1
2
6 µ < 1.

It can be shown that the right hand side of (.) is an increasing function of
∑M

i=1 ηi. Applying

Hoeffding inequality to the former case (where the meaningfulness of matches was not taken into

account), comes to take ηi = 1 for all 1 6 i 6 M , that is
∑M

i=1 ηi = M . Hence, when we take into

account the meaningfulness of matches, the minimal number of points a group must have in order

to be meaningful decreases.

Definition 13.6 (Number of False Alarms) Given a group G of k meaningful matches among M ,

we call number of false alarms of G the number

NFAg(G) = #R×

(
p(R)

∑M
i=1 ηi

k

)k(
M − p(R)

∑M
i=1 ηi

M − k

)M−k

,

where p(R) is the probability that a transformation point falls in R, the smallest hyper-rectangle in R
containing all k transformation points, and η1, . . . , ηM are the meaningfulness of the M meaningful

matches.

Proposition 13.5 If NFAg(G) 6 ε, then G is an ε-meaningful group.

The proof is straightforward from Hoeffding inequalities (see Chapter , Section .., Lemma .).

This sufficient condition is finer than ( .), and will be used, in practice, to detect the meaningful

groups when the meaningfulness of matches is taken into account.

.. Experiments

In this section we present some tables comparing theNFAg of maximal meaningful groups obtained

using the two proposed definitions, for the experiments we have shown up to here. Model A corre-

sponds to the case were the meaningfulness of matches is not taken into account (Section ..).

Model B uses the information given by the meaningfulness of matches and corresponds to the model

we have just presented in Section ...

The same maximal meaningful groups were found for both methods (in general, this is not necessary

the case). Some relevant NFAg:
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• In “Casablanca”, 5.9 10−20 instead of 7.8 10−17 for the big group in Figure ..

• In “Coca-Cola ”, the casual match in Figure . has aNFAg of 1.5 10−3 instead of 1.3 10−2.

nb. of matches 9

NFAg Model A 2.7 10−41

NFAg Model B 2.8 10−46

Table .: “Uccello” experiment: NFAg for the maximal meaningful groups resulting from the two proposed

definitions.

nb. of matches 4 3

NFAg Model A 3.6 10−14 9.8 10−11

NFAg Model B 3.0 10−15 1.1 10−11

Table .: “Casablanca” experiment: NFAg for the maximal meaningful groups resulting from the two proposed

definitions.

nb. of matches 3 5 3 2

NFAg Model A 7.7 10−13 7.8 10−23 2.3 10−9 1.6 10−6

NFAg Model B 2.8 10−15 1.7 10−26 2.4 10−11 7.7 10−8

Table .: “Object in clutter” experiment: NFAg for the maximal meaningful groups resulting from the two

proposed definitions.

These experiments confirm that introducing the meaningfulness of matches makes good group de-

tections more sure, by diminishing its number of false alarms. But, concerning this approach, maxi-

mality issues are not completely solved. Indeed, the NFAgg of a pair of groups used for the validity

criterion, defined in (.), only holds when patterns Ti are independent, identically distributed,

so new definitions have to be explored. We have not addressed this problem yet. A first attempt,

consisting in replacing the validity criterion by the necessary condition of cluster validity, given by

Proposition . (Section ..), was unsuccessful in giving the “good” maximal groups. Indeed,

this necessary condition may be too strong, specially when the clusters to be merged concentrate the

majority of the points.

. Related work

The use of spatial coherence for shape or object detection has been the subject of intensive research,

in particular since Ballard’s work on the generalized Hough transform [Bal81]. In his paper, Ballard

proposed a method extending the Hough transform to any kind of planar shape, not necessarily de-

scribed by an analytic formula. Stockman [SKB82] presented another early work based on the same
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nb. of matches 2 7 9

NFAg Model A 8.5 10−5 3.4 10−16 5.7 10−35

NFAg Model B 6.5 10−6 3.1 10−21 3.6 10−41

Table .: “Coca-Cola ” experiment: NFAg for the maximal meaningful groups resulting from the two proposed

definitions.

Group nb. 1 2 3 4 5 6

nb. of matches 2 7 3 3 7 6

NFAg model A 3.9 10−2 1.6 10−22 3.7 10−11 6.6 10−8 2.2 10−24 5.0 10−21

NFAg model B 4.6 10−3 6.4 10−27 9.4 10−13 1.7 10−9 8.7 10−29 1.0 10−24

Group nb. 7 8 9 10 11 12

nb. of matches 7 6(7B) 7 8 6(7B) 9

NFAg model A 7.6 10−17 3.6 10−19 8.5 10−24 3.8 10−20 3.7 10−20 5.6 10−32

NFAg model B 3.0 10−21 7.1 10−23 3.4 10−28 2.9 10−25 1.8 10−24 8.0 10−38

Group nb. 13 14 15 16 17 17bis

nb. of matches 9 10 6 8 6 2

NFAg model A 2.4 10−29 1.4 10−28 4.0 10−30 2.5 10−32 1.0 10−18 1.7 10−5

NFAg model B 3.4 10−35 6.1 10−34 8.2 10−34 1.9 10−37 2.0 10−22 2.0 10−6

Table .: “Coca-Cola ” experiment: NFAg for the maximal meaningful groups resulting from the two proposed

definitions.
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principle (recognize a target shape by finding clusters in the transformation space), where he intro-

duced a coarse to fine technique allowing to reduce the search complexity. Other voting schemes,

like Geometric Hashing [WR97, LW88] or the Alignment method [HU87], are frequently used in

detection or recognition problems.

In [GH90, GH91] Grimson and Huttenlocher present a study on the likelihood of false peaks in

the Hough parameter space. Their work is particularly interesting from the detection viewpoint we

adopt in this chapter, since they also propose a detection framework where recognition thresholds are

derived from a null model. Using occupancy models (Maxwell-Boltzmann or Bose-Einstein mod-

els), they characterize the probability that several transformation points will fall in a transformation

space region at random (actually, they do not consider transformation points but transformation

volumes, that take into account the uncertainty involved in the feature extraction procedure; here

we omit these details for the sake of clarity). Then, they use this probability to fix a threshold on

the minimum fraction of target features that must be matched in order to consider that this match

was not generated by “the conspiracy of random”. Previous recognition methods generally associated

a single threshold with each target image, independent of the scene complexity, leading to worse

performance when scenes were more complex. Contrarily to this methods, the derived threshold

satisfies an important property: it is a function of the scene complexity and of the uncertainty in

feature extraction.

The method we propose in this chapter shares these fundamental ideas with Grimson and Hutten-

locher’s work, but the approach is quite different since it is based on a hierarchical representation

of the transformation points, and uses a data-dependent null model (Grimson and Huttenlocher’s

method assumes features are uniformly distributed in the image, what can be a non relevant assump-

tion in many situations; see [Pen98]).

. Conclusion

In the first part of this thesis we have addressed the correspondence problem between shape elements

and we defined the notion of meaningful matches. Then, in this chapter, we proposed a method

to define shapes as groups of spatially coherent meaningful matches. Hence, our computational

approach to recognition is based on a recursive grouping strategy: similar shape elements are defined

as those shape elements having similar subparts (the 5 + 1 pieces considered in Chapter ), and

corresponding shapes are defined as shapes sharing spatially coherent shape elements. This strategy

is sound from the perceptual organization point of view, since it is based on two gestaltist principles

of grouping [Wer23]: similarity (the meaningful matches) and familiar configuration (the meaningful

groups).

The spatial coherence of meaningful matches was detected, indirectly, by applying the clustering

method proposed in Chapter , to the transformation points associated to meaningful matches. This

method is parameterless, and is also in keeping with the general a contrario detection methodology

adopted in this thesis. Clusters of transformation points, corresponding to groups of matches, were
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detected a contrario to a data-influenced null model, as large deviations from this model.

By using the spatial coherence of meaningful matches, the proposed method enhances the confidence

on the detected structures, as shown by the low values of NFAg reached in the experiments in Sec-

tion ... These experiments show also that the method performs well in very different situations,

and can deal with several groups of matches at the same time. In all cases, the rejection of false or

spatially uncoherent matches was successful. In the next chapter we will present several experiments,

that confirm the usefulness of our shape detection / recognition method.
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Chapter 

EXPERIMENTAL RESULTS

Abstract: The grouping of spatially coherent meaningful matches has been extensively studied in the pre-

vious chapter, and several experiments were presented and discussed. In this chapter we illustrate the whole

recognition process by presenting some more experiments over different kinds of images.

Résumé : Dans le chapitre précédent, nous avons étudié largement le groupement d’appariements significatifs,

basé sur la cohérence spatiale, et nous avons présenté et discuté plusieurs expériences. Dans ce chapitre nous

illustrons tout le processus de reconnaissance, en présentant d’autres expériences sur des images de differente

nature.

. The visualization of the results

Almost all the experiments we present in this chapter are illustrated with the following images:

. The two original images.

. The smoothed maximal meaningful boundaries of the original images, extracted using the al-

gorithm described in Chapter , then smoothed with Moisan’s implementation of the affine

curve shortening equation (Chapter ).

. Detection of meaningful matches between shape elements. We consider here the 1-meaningful

matches, despite the fact that a few of them may correspond to false detections; indeed, as

we saw in Chapter , the constraints imposed by the encoding methods and by the non-

intersection of level lines introduce a certain amount of dependence between the distances

used as features in the background model (which were assumed to be independent). Thresh-

olding the NFA at 0.1 ensures that no detection can occur in white noise images. However,

since the detection of meaningful matches is followed by a grouping process based on spatial

coherence, in the experiments we prefer to keep these few false matches in order to test the

robustness of the grouping algorithm.
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A fundamental hypothesis for the a contrario detection of groups is that, under the background

model, transformation points are mutually independent. In order to comply with this hypoth-

esis, a greedy algorithm that eliminates matched shape elements which share a large piece of

curve with other shape elements presenting lower NFA. More precisely speaking, if a pair

of shape elements (S1,S ′1) is an ε1-meaningful match, and there exists another pair (S2,S ′2)

matching ε2-meaningfully, with ε2 < ε1, such that S1 shares at least half of its length with S2,

and the same for S ′1 and S ′2, the pair (S1,S ′1) is eliminated from the output list of matches.

The detection of 1-meaningful matches is illustrated by superimposing the matched shape elements

to the original images.

. Grouping of spatially coherent meaningful matches. For each meaningful group of matches that

is detected (the maximal 1-meaningful groups defined in Chapter ), four images are shown:

• The shape elements that match within a group are shown, superimposed to the original

images.

• Given the set of transformations corresponding to the matches within a group, the best

affine transformation (in the least squares sense) that maps the shape elements in the tar-

get image to the ones in the scene image is computed. Then, the target image is mapped

using this transformation. The superimposition of the transformed target image and the

scene image is presented.

• Gradient orientation comparison. The orientation of the gradient of both the scene im-

age and the transformed target image are computed and compared, in order to show

the quality of the registration of the target image into the scene image. Let us denote

by D1(i, j) the gradient of the transformed target image at pixel (i, j), and by D2(i, j)

the gradient of the scene image at (i, j). The comparison of the gradient orientation of

both images is illustrated by an image for which the pixel values may be 0 (black), 128

(grey) or 255 (white). If ‖D1(i, j)‖ < 2 or ‖D2(i, j)‖ < 2, the orientation of the

gradient is not considered to provide reliable information, and pixel (i, j) is painted in

grey. If the gradient norms are greater than 2, then pixel (i, j) is painted in white if

|angle(D1(i, j), D2(i, j))| < 15 degrees, and in black else. (We thank José Luis Lisani for

communicating this algorithm).

In what follows, we only show experiments based on the semi-local encoding procedures.

. Checking the consistency of grouping: two unrelated images

We have checked the consistency of the grouping algorithm by comparing some pairs of different,

completely unrelated images. In section  we presented an experiment of this kind, to detect matches

between the shape elements of two unrelated images (see Figure . in section ..). On these two
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images, the grouping method did not led to the detection of any meaningful group. An interesting

experiment would consist in considering large databases of images and finding meaningful groups of

matches between pairs of images from these databases. Defining a systematic approach of this kind

will maybe lead to detect “typical shapes” in images.

. Subjective contours and contrast changes

Figure . shows two different versions of Saint Jerôme by Georges De la Tour. The two paintings

represent Saint Jerôme in the same pose. There are many elements in common in these two painting,

but many differences can be seen. The maximal meaningful boundaries extracted from the original

images are also shown in Figure .. Looking at these lines, we have a feeling that many shape infor-

mation is left. However, most of the missing lines do not really exists: they are subjective contours

introduced by the pictural technique (the use of Caravaggesque chiaroscuro lighting).

Figure .: Two versions of Saint Jerôme by Georges de la Tour. The image on the left was considered as target.

The majority of the contours that are missed are actually subjective contours and do not exist.

Our perception is able to assert that this two images represent almost the same scene, but this is

certainly a consequence of perceptual grouping of different cues and not of the closeness of the level

lines in both images, which are not that similar. This last issue is shown in Figure ., where the

1-meaningful matches between shape elements detected with the similarity invariant version are

displayed. The NFA of the best match is 6.0 10−7, which is not as low as the ones obtained when

comparing snapshots in Chapter . Moreover, some false matches can be seen (they all show NFAs

larger than 0.1).

The detection of spatial coherent groups of meaningful matches led to a single maximal meaningful

group, for which NFAg = 1.1 10−15. The six matched shape elements within this group are dis-

played in Figure .(a). Notice that all false matches have been rejected. In Figure .(b) we show

the superimposition of the “scene image” and the transformed “target image”, as well as the gradient
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Figure .: Saint Jerôme: 1-meaningful matches. The NFA of the best match is 6.0 10−7. Some false detections

can be observed; their NFA is above 0.1.

orientation comparison image. Looking at the superimposed images, we can notice that many parts

are accurately registrated, but many differences between the two paintings can be seen. This explains

why theNFAg of the group does not reach lower values. The gradient orientation comparison image

illustrates the difficulty of the registration problem. The majority of the points show small contrast.

Gradient orientation coincidence can be observed along some of the contours.
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(a) The six matched shape elements within the spatially coherent group.

False matches have been rejected by the grouping procedure.

(b) Left: superimposition of the “scene image” and the transformed “target

image”. Right: image of gradient orientation comparison.

Figure .: Saint Jerôme: the only detected maximal meaningful group. The group is composed by six matches,

and itsNFAg is 1.1 10−15. The superimposition of the “scene image” and the transformed “target image” reveals

many slight differences between the two paintings. This explains why the NFAg of the group does not reach lower

values. Gradient orientation coincidence can be observed along some of the contours.
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. Dealing with strong zooms

We call “Hitchcock ” the experiment we present in this section. The original images and their cor-

responding maximal meaningful boundaries are show in Figure .. We present two different ex-

amples. The first one, which we call “Hitchcock A”, consists in considering as target image the top

image in Figure ., and as scene image the one on the bottom. In the second example (“Hitchcock

B”), the role of the images is inverted: the bottom image is considered as target, and the top image

as scene image.

Figure .: Hitchcock  experiment: original images, and corresponding maximal meaningful boundaries.

Hitchcock A

Figure . displays the 1-meaningful matches between shape elements. The lowestNFA is 7.0 10−9,

and two false matches are be observed (NFAs 0.25 and 0.36). The grouping algorithm (similarity

invariance version) yields one maximal meaningful group containing 15 shape elements, for which

NFAg = 3.2 10−63. Figure .(a) shows the matched shape elements that are within the group;

false matches have been rejected by the grouping algorithm.

In Figure .(b) we present the superimposition of the scene image and the transformed target

image. The highlighted part corresponds to the region where the target image has been mapped.

The estimated zoom factor was 0.56. The accuracy of the registration is illustrated by the gradient

orientation comparison image.
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Figure .: Hitchcock A experiment: 1-meaningful matches. Left: target image with matched shape elements.

Right: scene image.

(a) The 15 matched shape elements within the spatially coherent group. False matches have been

rejected by the grouping procedure.

(b) Left: superimposition of the “scene image” and the transformed “target image”. Right: image of

gradient orientation comparison.

Figure .: Hitchcock A experiment: the only detected maximal meaningful group. The group contains 15
matches and its NFAg is 3.2 10−63.
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Hitchcock B

Figure . displays the 1-meaningful matches between shape elements, when we invert the “target”

and the “scene” roles. The results are equivalent (three false detections showing NFAs larger than

0.1, the same order of magnitude for the good matches). The grouping algorithm (similarity invari-

ance version) yields also one maximal meaningful group, containing 16 shape elements, and showing

an NFAg = 1.1 10−56. Figure .(a) shows the matched shape elements that are within the group;

false matches have been rejected by the grouping algorithm.

Figure .: Hitchcock B experiment: 1-meaningful matches. Left: target image with matched shape elements.

Right: scene image.

The superimposition of the transformed target image and the scene image, displayed in Figure .(b)

is very accurate: we cannot perceive any difference between this image and the original scene image.

The estimated zoom factor was 1.78 (what is almost equal to 1/0.56). The high accuracy of the

registration is illustrated by the gradient orientation comparison image.
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(a) The 16 matched shape elements within the spatially coherent group. All false matches have been

rejected.

(b) Left: superimposition of the “scene image” and the transformed “target image”. Right: image of

gradient orientation comparison.

Figure .: Hitchcock B experiment: the only detected maximal meaningful group. The group contains 16
matches and its NFAg is 1.1 10−56.
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. Dealing with occlusions

In this section we present two examples where the region of interest in the scene is occluded by the

foreground.

Las Meninas by Velazquez

The pair of images considered for this experiment are shown in Figure ., with their corresponding

maximal meaningful boundaries. The image on the top is considered as target image, and its shape

contents is sought in the bottom image. In the target image, we can see a portion of Velazquez

masterpiece “Las Meninas”, which is occluded by some people contemplating the painting at “El

Prado” museum. The scene image is a reproduction of the original painting, taken from the World

Wide Web. In this experiment, the similarity version of the recognition method was used.

Figure .: Las Meninas experiment. Top row: target image and its maximal meaningful boundaries. Bottom:

scene image and maximal meaningful boundaries.
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Figure . shows the detected 1-meaningful matches between shape elements. The best match

shows an NFA of 4.1 10−14. Here again, the few false matches that were found have their NFA

above 0.1.

Figure .: Las Meninas experiment: 1-meaningful matches. The NFA of the best match is 4.1 10−14. Some

false detections can be observed; their NFA is above 0.1.

A single maximal meaningful group was detected. This group contains 47 spatially coherent mean-

ingful matches, and itsNFAg is 7.1 10−155. In Figure . we shows the matched shape elements that

are within the group; all false matches have been rejected by the grouping algorithm, except for the

one displayed in Figure .. While these matched shape elements are significantly different over a

piece of curve (what is expressed by a largeNFA: 0.96), if we look at the normalized shape element,

we see that the pairs of points defining their local frames do certainly correspond by a transform that

is close to the correct one. This explains why this pair of matched shape elements is not discarded in

the grouping algorithm.

We end up with “Las Meninas” experiment by showing, as usual, the superimposition of the regis-

trated target image and the scene image (Figure .). The registration is very accurate.
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Figure .: The 47 matched shape elements within the spatially coherent group. All False matches have been

rejected, except for the one in Figure .. The NFAg of the group is remarkably low: 7.1 10−155.

Figure .: The false match that was not rejected by the grouping algorithm. These matched shape elements are

significantly different over a piece of curve (what is expressed by a large NFA: 0.96). However, the pairs of points

defining their local frames do certainly correspond by a transform that is close to the correct one. This explains why

this pair of matched shape elements is not discarded in the grouping algorithm.
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Figure .: “Las Meninas” experiment. Left: superimposition of the “scene image” and the transformed “target

image”. Right: image of gradient orientation comparison.
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Guernica by Picasso

We only present the final result for this experiment. The similarity invariant method was used. A

single maximal meaningful group was detected, containing 36 matches between shape elements. The

NFAg of this group was also extremely low (1.8 10−154).

Figure .: Guernica experiment. Top: the 36 spatially coherent meaningful matches (the image on the left was

considered as target image). Middle: the registration of the target image superimposed to the scene image. Bottom:

image of gradient orientation comparison.



14.6. Dealing with perspective distortions 

. Dealing with perspective distortions

Hitchcock 

The experiment we present here has already been addressed in Chapter , section .., but only

the extraction, encoding and shape elements matching stages were discussed. It was shown that,

as expected, the semi-local affine invariant matching method led to better results than the semi-

local similarity invariant method (the meaningful matches reached lower NFAs). No false match

between shape element was detected for NFA < 1; 16 meaningful matches were found, the lowest

NFA being 6.5 10−11. Figure . shows the original image and the meaningful matches between

shape elements.

Figure .: Hitchcock  experiment. Top row: original images (the left image was considered as the target image).

Middle: the 16 detected 1-meaningful matches. No false matches were detected, and all detections show an NFA

below 0.1. The lowest NFA is 6.5 10−11.

The grouping procedure led to a unique maximal meaningful group, containing all 16 meaningful

matches. The NFAg of this group was 1.4 10−75 (this result is remarkably better than the one ob-

tanied using the similarity version: a single maximal group of 11 matches, withNFAg = 3.8 10−24).

The registration of the target image, superimposed to the scene image, is shown in Figure ., as

well as the image of gradient orientation comparison. Notice that the underlying perspective trans-

form starts to be too strong to be approximated by a unique affine transform, over all the region

where meaningful matches are found.
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Figure .: Hitchcock  experiment: all 16 meaningful matches were spatially coherent; the group made by all of

them was detected as the only maximal meaningful group (NFAg = 1.4 10−75). Left: registration of the target

image and superimposition on the scene image. Right: gradient orientation comparison.

. Detecting multiple groups

Several examples for this application were presented in previous chapters. We refer the reader to the

corresponding sections:

• “Casablanca experiment”: this example was presented in Chapter  in order to illustrate the

recognition method developed in this thesis. It was also addressed in order to illustrate the va-

lidity and maximality rules in the detection of meaningful clusters of transformations (Chap-

ter , section ..),

• “Object in clutter” experiment (Chapter , section ..),

• “Coca-Cola ” experiment ((Chapter , section ..),

• “Coca-Cola ” experiment ((Chapter , section ..).

. Strobe effect

This last example consist in finding groups of spatially coherent meaningful matches between the

two images shown on top in Figure .. Notice that, in addition to the group of matches given by

the dominant motion, other groups induced by the periodicity of the buildings should be detected.

This periodicity is not only present in the vertical direction but also in the horizontal direction,

particularly for the right most building. The middle and bottom images in Figure . show the

registration (with superimposition) images for the two maximal meaningful groups showing the

lowestNFAgs (1.8 10−144 and 6.4 10−15, respectively). In Figure . we present two other maximal

meaningful groups, corresponding to others (much less significant) strobe effects. Some more groups

like that were detected.
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Figure .: Strobe effect experiment. Top row: original images. Middle: registration and superimposition for the

dominant motion; the group contains 42 matched shape elements, andNFAg = 1.8 10−144. Bottom: registration

and superimpositon for the most significant strobe effect; NFAg = 6.4 10−15, 7 matched shape elements.
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(a) NFAg = 1.7 10−6, 3 meaningful matches

(b) NFAg = 2.1 10−3, 2 meaningful matches

Figure .: Two maximal meaningful groups revealing less significant strobe effects.
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. Time complexity

stage St. Jerôme Hitchcock A Las Meninas Hitchcock  Strobe effect

image size target 376× 597 640× 480 500× 333 640× 480 800× 600

image size scene 395× 570 640× 480 500× 569 640× 480 800× 600

boundaries target 7.96 7.62 9.23 7.63 20.93

boundaries scene 8.51 7.89 14.99 6.79 23.02

smoothing target 0.79 1.31 1.80 1.32 2.76

smoothing scene 1.40 1.04 1.83 0.93 2.94

encoding target 9.26 18.27 20.11 17.97 41.90

encoding scene 22.13 9.11 19.60 11.94 38.94

matching 14.07 14.93 118.25 6.66 118.06

Nb. tests 1.5 106 1.6 106 11.7 106 0.76 106 11.9 106

grouping 2.49 2.86 20.76 3.25 21.39

Table .: Times (measured in seconds) for the computation of all the stages of the recognition algorithm, for some

of the experiments presented in this chapter. The programs were run in a Pentium 4, 1.7 GHz. The row “Nb. tests”

corresponds to the number of pairs of shape elements, tested in the matching stage.
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Chapter 

CONCLUSION AND PERSPECTIVES

. Main contributions of this thesis

Recognition is the ability to identify things based on prior knowledge. Visual recognition, in partic-

ular, is the process of finding correspondences between new elements and elements which had been

previously seen, at least once, and live in our “world of images”. In this thesis, we have focused on

the problem of visual recognition based upon shape information. Two main issues are implicit in

this problem: the representation of the shape contents which is present in images on the one hand,

and the determination of correspondences between these representations on the other hand. Both

problems have been addressed throughout this thesis.

The problem of shape representation was studied in the first part of this dissertation. Follow-

ing [LMMM03], the shape elements defined in Chapter  were derived as the atoms of a shape repre-

sentation which is consistent with the main classes of perturbations which do not affect recognition:

contrast changes, occlusions, noise and geometrical distortions.

The problem of finding correspondences between shape elements was also addressed in the first part.

We called this part “The recognition of partial shapes”. Determining correspondences between shape

elements not only means defining a notion of similarity between them, but also being able to decide

if the two shape elements are to be paired or not. Proposing a framework that enables to come up to

that kind of decisions was the main challenge of this first part.

Matching shape elements is nice, but shape elements are not what we think of when we look at im-

ages, and we do not recognize shape elements but shapes. The recognition of shapes based on shape

elements thus needs for an integration of the recognized “partial shapes” given by shape elements.

This integration of local information is certainly not performed as a simple conjunction of the recog-

nized partial shapes. Indeed, the way these matched shape elements are organized in the image plane

triggers another complementary recognition process, allowing to recognize “global shapes”. This was

the main subject of study in the second part of this thesis, which we called “Shape recognition as

a grouping process”. By taking into account the spatial coherence between the matched shape ele-

ments, we reinforced the confidence level on the recognition of “global shapes”. As much as we did
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in the first part of this thesis, a special attention was paid to decision models, allowing to assess the

validity of a group of matched shape elements, and consequently to decide whether or not a target

shape was present in an image scene.

Let us now summarize the main contributions of this thesis:

– We have presented a complete shape recognition method, for which all stages have been ana-

lyzed in depth. Among these stages, some of them deal with decision thresholds, and we have

done significant effort in order to establish detection methods leading to sure, unsupervised

decision thresholds.

– A general decision method for shape matching was proposed, and applied successfully to the

correspondence problem between shape elements. The proposed method relies on the com-

putation of the number of false alarms of a match (NFA), derived from a background model

which assumes that matches occur “by chance”, in a random situation. Meaningful matches

are detected a contrario from this model, that is, as events whose probability of occurrence

under the background model are extremely low. The NFA provides a measure of confidence

on the detected matches. The detection of ε-meaningful matches can be performed by fixing

an upper bound of value ε on the NFA. Taking ε = 1 or ε = 0.1 makes sense. Indeed, A

database of shape elements being given, with each target shape element S and each distance δ

we associate its number of false alarms NFA(S, δ), namely the expectation of the number of

shape elements at distance δ from S in the database. Assume that theNFA(S, δ) is very small

with respect to 1, and that a shape element S ′ from the database is found at distance δ from S .

This match could not occur just by chance and is therefore a meaningful detection.

– We proposed a method to find “natural” clusters in multi-dimensional data sets, based also

on the a contrario decision framework. In this method, meaningful clusters are detected a

contrario to a data-dependent null model. Here again, a number of false alarms for the groups

of shape elements is defined (the NFAg), and its value measures the confidence on the group

detection. The main general contribution of the proposed method is the definition of a new

local stopping rule or merging criterion (see Chapter ), derived using statistical arguments,

that proved to be very useful when applied to the transformation clustering problem.

Some other contributions have also been done, concerning the more popular problems of shape

extraction and normalization procedures, namely:

– A parameterless method to detect the maximal meaningful boundaries in images. The pro-

posed method improves the original method proposed by Desolneux et al. [DMM01], by in-

troducing a multiscale approach that makes the method more robust to noise, and by propos-

ing a more local algorithm allowing to take local contrast variations into account.

– An algorithm to detect flat pieces in curves, which coupled with bitangent lines, enables to

encode nearly all meaningful level lines curves.
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– Semi-local and global normalization methods, up to similarity and to affine invariance. These

methods are based on bitangent lines and flat pieces (which provide robust directions on which

normalization frames can be built), making the encoding very stable.

. Future work

Many problems remain unsolved, or their solution has to be improved. We can classify them into

two main categories: improvement of the results, and acceleration techniques.

Improving the results

The experimental results presented in this thesis are satisfactory and promising. The following points

are to be explored, since they may lead to further improvements:

– The semi-local encoding methods we propose may often be not local enough, particularly the

semi-local affine invariant encoding. The normalized codes shown in Figure . (Chapter )

illustrate this problem. In fact, the main cause of non locality of the proposed semi-local

normalization procedures is not the length of the encoded piece of curve (which could actually

be controlled by parameterF ), but the construction of the invariant frames (the lack of locality

of this construction can be seen in Figure .). Normalization based on more local information

are thus needed, in order to perform better in the presence of occlusions. Semi-local versions

of the area-based normalizations proposed for global encoding should be explored.

– Another problem of the proposed encodings follows from sampling all shape elements with a

fixed number of points, independently of their lengths in the image. While this solution makes

the computation of distances between normalized shape elements faster, precision problems

may arise when considering long shape elements presenting strong oscillations. We can argue

that these long shape elements should not have been considered in the comparison, since the

fact they are long means they are not local representations. However, discarding them implies

introducing a threshold on the length of shape elements, and we would not like to do that.

Notice that this problem does not seem to be critical, since false matches involving such long

shape elements always show NFAs close to 1 (see Figure . in Chapter  for an example).

Anyway, solutions such as sampling shape elements at the same rate (with respect to their ac-

tual length in the image) and considering Hausdorff of Frêchet distances are to be explored.

The problem of these kind of solutions is that they will certainly strongly increase the compu-

tation times. If we ever get to solve this problem, false matches involving long shape elements

will no longer be meaningful matches.

– As the reader should have noticed, global meaningful matches were not considered in the

grouping stage. The only reason for that are schedule constraints... There is not much to ex-
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plore here; the integration of global matches to the complete recognition method just has to be

implemented. We are very optimistic about that: grouping results should be greatly improved.

– Last but not least: how can we integrate the NFA associated to the meaningful matches to

the NFAg of spatially coherent groups? For instance, an isolated 10−20-meaningful match

will not be detected as a “shape”, since a single match may not lead to a meaningful group.

However, such a low NFA reveals an extremely significant match. A first proposal combining

the two measures (NFA and NFAg) has been presented in Chapter , section .., but

this combination was not suitable since it cannot deal with the maximality notion, which is

essential here.

Reducing the time of computation

Some times for the computation of experiments presented in Chapter  were presented in Table ..

All the stages of the proposed recognition method take too much time, and important accelerations

are needed if we want to consider real applications other than detection of targets in an image scene

or off-line detection in general. Notice however that one of the main causes of the slowness of the

method is its complete genericity and generality. Indeed, the presented method performs well on a

large variety of images and problems. Thus, accelerations should be introduced for specific applica-

tions. (For instance, shape elements may be discarded a priori, based on prior knowledge.)

Another point we should keep in mind here is that all the detection methods we propose in this thesis

are actually not only detection methods but also learning methods. Indeed, all decision thresholds

involved in our method were derived (“learned”) before comparison. In specific application, thresh-

olds can be learnt once for all, and decision can be made using these fixed thresholds.

Regarding the aspects that can bring some acceleration while keeping the method as general as it is

now, we should manage to:

– Reduce the redundancy of the encoding procedure. But is it possible to do it before the match-

ing stage? Up to now we have been using a greedy algorithm to reduce redundancy in order to

fit the independence requirement for the grouping background model. This can be done with-

out any problem, since to each meaningful match an NFA is associated, providing then an

ordering upon which we can base the elimination of “repeated” matches. We do not clearly see

how redundancy reduction can be performed before matching, but being able to do it seems

to be critical in order to accelerate the method.

– Explore new kind of independent features allowing for indexing the database of shape ele-

ments. We are not very optimistic about that. While such a kind of features can accelerate the

method, we think they may lead to worst detection results. Indeed, the features we consider

(the 5 pieces of normalized shape elements and the coarse description, proposed in Chapter )

seem to give a (quite) complete representation of the shape elements, and the considered L∞

distance is in accordance with our perceptual notion of proximity.
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Résumé

Cette thèse traite de la reconnaissance des formes dans les images numériques. Une représentation

appropriée des formes est déduite de l’analyse des perturbations qui n’affectent pas la reconnais-

sance : changement de contraste, occlusion partielle, bruit, perspective. Les atomes de cette représen-

tation, appelés éléments de forme, fournissent des descriptions semi-locales des formes. L’appariement

de ces éléments permet de reconnaître des « formes partielles ». Les « formes globales » sont alors

définies comme des groupes de formes partielles présentant une cohérence dans leur disposition

spatiale.

L’aspect fondamental de ce travail est la mise en place de seuils non-supervisés, à tous les niveaux

de décision du processus de reconnaissance. Nous proposons des règles de décision pour la mise en

correspondance de formes partielles ainsi que pour la détection de formes globales. Le cadre proposé

est basé sur une méthodologie générale de la détection dans laquelle un événement est significatif s’il

n’est pas susceptible d’arriver par hasard.

Mots-Clés : reconnaissance de formes, lignes de niveau, élément de forme, normalisation, modèle de

fond, nombre de fausses alarmes, détection a contrario, classification non-supervisée, groupement

de formes.

Abstract

This thesis deals with the recognition of shapes in digital images. A suitable shape representation is

derived by analyzing invariance to perturbations that do not significantly affect visual recognition:

contrast changes, partial occlusion, noise, perspective distortion. The atoms of such a representation,

called shape elements, provide semi-local descriptions of shapes. Matching shape elements enables

the recognition of “partial shapes”. Then, “global shapes” are defined as groups of partial shapes

showing some spatial coherence.

Deriving unsupervised thresholds involved in all decision levels of the shape recognition process, is

the central points of this work. We propose decision rules for both the correspondence problem of

partial shapes, and for the detection of global shapes. The proposed framework is based on a general

detection methodology asserting that meaningful events may be viewed as exceptions to randomness.

Keywords: shape recognition, topographic map, level lines, shape element, normalisation, back-

ground model, number of false alarms, a contrario detection, unsupervised classification, clustering,

shape grouping.
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