J. R. Arthur, Molecular Beams with GaAs Surfaces, Journal of Applied Physics, vol.39, issue.8
DOI : 10.1063/1.1656901

R. J. Bennett and C. Parish, Interpretation of the temperature dependence of partition and sticking coefficients for antimony, phosphorus and boron in silicon, Journal of Physics D: Applied Physics, vol.9, issue.18, p.2555, 1976.
DOI : 10.1088/0022-3727/9/18/005

G. Binnig, H. Rohrer, C. H. Gerber, and E. Weibel, × 7) reconstruction on Si(111) resolved in real space, Phys. Rev. Lett, issue.7, pp.50-120, 1983.

G. Brocks, P. J. Kelly, and R. Car, Binding and diffusion of a Si adatom on the Si(100) surface, Physical Review Letters, vol.66, issue.13, pp.66-1729, 1991.
DOI : 10.1103/PhysRevLett.66.1729

W. K. Burton, N. Cabrera, and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.866, pp.243-299, 1951.
DOI : 10.1098/rsta.1951.0006

G. Capellini, N. Motta, A. Sgarlata, and R. Calarco, Evolution of strained Ge islands grown on Si(111) : a scanning probe microscopy study, Solid State Comm, pp.112-145, 1999.

G. Capellini, M. D. Seta, L. D. Gaspare, and F. , Evangelisti et F. d'Acapito, Evolution of Ge/Si(001) islands during Si capping at high temperature, J. Appl. Phys, pp.98-124901, 2005.

A. Y. Cho, GaAs Epitaxy by a Molecular Beam Method: Observations of Surface Structure on the (001) Face, Journal of Applied Physics, vol.42, issue.5, p.2074, 1971.
DOI : 10.1063/1.1660490

J. E. Davey and T. Pankey, Epitaxial GaAs Films Deposited by Vacuum Evaporation, Journal of Applied Physics, vol.39, issue.4, 1941.
DOI : 10.1063/1.1656467

D. J. Eaglesham and M. Cerullo, Dislocation-free Stranski-Krastanow growth of Ge on Si(100), Physical Review Letters, vol.64, issue.16, p.64, 1943.
DOI : 10.1103/PhysRevLett.64.1943

P. Finnie and Y. Homma, Nucleation and step flow on ultraflat silicon, Physical Review B, vol.62, issue.12, p.8313, 2000.
DOI : 10.1103/PhysRevB.62.8313

C. T. Foxon and B. A. Joyce, Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique, Surface Science, vol.50, issue.2, p.434, 1975.
DOI : 10.1016/0039-6028(75)90035-7

M. A. Herman and H. Sitter, Molecular Beam Epitaxy, Series in Materials Science, pp.1-454, 1996.

T. Hoshino, K. Kumamoto, T. Ishimaru, and I. Ohdomari, Evidence for the leading role of the stacking-fault triangle in the Si(111) 1??1???7??7 phase transition, Physical Review B, vol.51, issue.20, pp.51-14594, 1995.
DOI : 10.1103/PhysRevB.51.14594

J. V. Hove, C. S. Lent, R. P. Pukite, and P. I. Cohen, Damped oscillations in reflection high energy electron diffraction during GaAs M BE, J. Vac. Sci. Technol. B, pp.1-741, 1983.

X. Z. Liao, J. Zou, D. J. Cockayne, J. Qin, Z. M. Jiang et al., Strain relaxation by alloying effects in Ge islands grown on Si(001), Physical Review B, vol.60, issue.23, pp.60-15605, 1999.
DOI : 10.1103/PhysRevB.60.15605

F. Liu, F. Wu, and M. G. Lagally, Effect of Strain on Structure and Morphology of Ultrathin Ge Films on Si(001), Chemical Reviews, vol.97, issue.4, pp.97-1045, 1997.
DOI : 10.1021/cr9600722

P. Müller and R. Kern, The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski-Krastanov transition, Applied Surface Science, vol.102, p.6, 1996.
DOI : 10.1016/0169-4332(96)00009-8

N. Motta, Self-assembling and ordering of Ge/Si(111) quantum dots: scanning microscopy probe studies, Journal of Physics: Condensed Matter, vol.14, issue.35, pp.14-8353, 2002.
DOI : 10.1088/0953-8984/14/35/308

N. Motta, F. Rosei, A. Sgarlata, G. Capellini, S. Mobilio et al., Evolution of the intermixing process in Ge/Si(111) self-assembled islands, Materials Science and Engineering: B, vol.88, issue.2-3, pp.88-264, 2002.
DOI : 10.1016/S0921-5107(01)00883-2

J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Dynamic RHEED observations of the M BE growth of GaAs. Substrate temperature and beam azimuth effects, Appl. Phys. A, pp.34-179, 1983.

A. Pascale, I. Berbezier, A. Ronda, A. Videcoq, and A. Pimpinelli, Self-organization of step bunching instability on vicinal substrate, Applied Physics Letters, vol.89, issue.10, p.104108, 2006.
DOI : 10.1063/1.2345223

K. Ploog, Molecular beam epitaxy of III ? V compounds, Crystals-Growth Properties and Application, p.73, 1980.

A. Rastelli, M. Kummer, and H. , Reversible Shape Evolution of Ge Islands on Si(001), Physical Review Letters, vol.87, issue.25, p.256101, 2001.
DOI : 10.1103/PhysRevLett.87.256101

A. Rastelli, E. Müller, and H. , Shape preservation of Ge/Si(001) islands during Si capping, Applied Physics Letters, vol.80, issue.8, p.1438, 2002.
DOI : 10.1063/1.1453476

R. L. Schwöbel and E. D. Shipsey, Step Motion on Crystal Surfaces, Journal of Applied Physics, vol.37, issue.10, p.3682, 1966.
DOI : 10.1063/1.1707904

A. P. Smith, H. Jonsson, K. Takayanagi, Y. Tanishiro, S. Takahashi et al., Dimer and string formation during low temperature silicon deposition on Si(100) × 7) reconstructed surface by transmission electron diffraction, Phys. Rev. Lett. Structure analysis of Si Surf. Sci, vol.77, issue.164, pp.1326-1358, 1985.

J. Tersoff and F. Legoues, Competing relaxation mechanisms in strained layers, Physical Review Letters, vol.72, issue.22, p.3570, 1994.
DOI : 10.1103/PhysRevLett.72.3570

B. Voigtlander, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning electron microscopy during growth, Surf. Sci. Rep, pp.43-127, 2001.

F. Wu and M. G. Lagally, Ge-Induced Reversal of Surface Stress Anisotropy on Si(001), Physical Review Letters, vol.75, issue.13, p.2534, 1995.
DOI : 10.1103/PhysRevLett.75.2534

Z. Zhang, Y. Lu, and H. Metiu, Pathways for dimer string growth during Si deposition on Si(100)???2 ?? 1, Surface Science Letters, vol.255, issue.3, pp.255-543, 1991.
DOI : 10.1016/0167-2584(91)90180-Y

A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Physical Review B, vol.58, issue.12, pp.58-7565, 1998.
DOI : 10.1103/PhysRevB.58.7565

F. Atamny and A. Baiker, Direct imaging of the tip shape by AFM, Surface Science, vol.323, issue.3, p.314, 1995.
DOI : 10.1016/0039-6028(94)00752-7

W. Braun, L. Däweritz, and K. H. Ploog, Origin of Electron Diffraction Oscillations during Crystal Growth, Physical Review Letters, vol.80, issue.22, p.4935, 1998.
DOI : 10.1103/PhysRevLett.80.4935

R. De and L. Kronig, Zur theorie der feinstruktur in den röntgenabsorptionsspektren, Zeit. Phys, vol.70, p.317, 1931.

H. Dosch, Critical phenomena at surfaces and interfaces : evanescente X ray and neutron scattering, 1992.
DOI : 10.1007/BFb0045209

R. Fourme, W. Shepard, and R. Kahn, Application of the anomalous dispersion of X-rays to macromolecular crystallography, Progress in Biophysics and Molecular Biology, 1996.
DOI : 10.1016/S0079-6107(96)00002-8

H. Fricke, The K-Characteristic Absorption Frequencies for the Chemical Elements Magnesium to Chromium, Physical Review, vol.16, issue.3, p.202, 1920.
DOI : 10.1103/PhysRev.16.202

J. J. Harris, B. A. Joyce, and P. J. Dobson, Oscillations in the surface structure of Sn-doped GaAs during growth by mbe, Phys. Rev. Lett, vol.103, p.90, 1991.

W. A. Hendrickson, Determination of macromolecular structures from anomalous diffraction of synchrotron radiation, Science, vol.254, issue.5028, p.51, 1991.
DOI : 10.1126/science.1925561

G. Hertz, ???ber die Absorptionsgrenzen in derL-Serie, Zeitschrift f???r Physik, vol.3, issue.1, p.19, 1920.
DOI : 10.1007/BF01356225

J. Karle, Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology, International Journal of Quantum Chemistry Symposium, vol.7, p.357, 1980.

J. Levine, J. Cohen, Y. Chung, and P. Georgopoulos, Grazing-incidence smallangle x-ray scattering : new tool for studying thin film growth, J. Appl. Cryst, pp.22-528, 1989.

V. F. Nicolin, Développement de la diffraction anomale dispersive, applicationàapplicationà l'´ etude de structures modulées inorganiques et de macromolécules biologiques, Thèse doctorat, 1999.

S. Sasaki, Numerical tables of anomalous scattering factors calculated by the cromer and liberman method, 1989.

D. E. Sayers, E. A. Stern, and W. F. Lytle, New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray???Absorption Fine Structure, Physical Review Letters, vol.27, issue.18, pp.27-1024, 1971.
DOI : 10.1103/PhysRevLett.27.1204

A. Barski, M. Derivaz, J. L. Rouvì-ere, and D. Buttard, Epitaxial growth of germanium dots on Si(001) surface covered by a very thin silicon oxide layer, Applied Physics Letters, vol.77, issue.22, pp.77-3541, 2000.
DOI : 10.1063/1.1328771

T. C. Chou and K. N. Tu, Interaction of a polycrystalline silicon/SiO 2 /silicon substrate under thermal, Appl. Phys. Lett, pp.52-1317, 1988.

M. W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano et al., Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures, Applied Physics Letters, vol.80, issue.7, pp.80-1279, 2002.
DOI : 10.1063/1.1430508

I. N. Demchenko, K. Lawniczak-jablonska, E. Piskorska, K. S. Zhuravlev, A. I. Nikiforov et al., Local microstructure of Ge layers buried in a silicon crystal studied by extended X-ray absorption fine structure, Journal of Alloys and Compounds, vol.362, issue.1-2, pp.362-156, 2004.
DOI : 10.1016/S0925-8388(03)00577-2

M. Derivaz, Epitaxie par jets moléculaires de nanostructures de GermaniumàGermanium`Germaniumà travers une fine couche de diélectrique sur Si, Thèse doctorat, 2003.

M. Derivaz, P. Noé, R. Dianoux, C. Alandi, A. Coati et al., Grazing incidence x-ray diffraction and atomic force microscopy investigations of germanium dots grown on silicon (001) by successive depositions of germanium through a thin silicon oxide layer, Applied Physics Letters, vol.84, issue.17, p.3295, 2004.
DOI : 10.1063/1.1715150

C. Drowley, G. Reid, and R. Hull, Model for facet and sidewall defect formation during selectivé epitaxiale growth of (001) silicon, Appl. Phys. Lett, pp.52-546, 1988.

A. Elfving, A. Karim, G. Hanson, and W. X. Ni, Three terminal Ge/SGe quantum well photodetectors for the near infrared light detection, Appl. Phys. Lett, pp.89-083510, 2006.

K. Fujita, H. Watanabe, and M. Ichikawa, Nanometer-scale Si selective epitaxial growth on Si(001) surfaces using the thermal decomposition of ultrathin oxide films, Applied Physics Letters, vol.70, issue.21, pp.70-2807, 1997.
DOI : 10.1063/1.119065

N. Gonon, A. Gagnaire, D. Barbier, and A. Glachant, Growth and structure of rapid thermal silicon oxides and nitroxides studied by spectroellipsometry and Auger electron spectroscopy, Journal of Applied Physics, vol.76, issue.9, pp.76-5242, 1994.
DOI : 10.1063/1.357174

M. Herbst, C. Schramm, K. Brunner, T. Asperger, H. Riedl et al., Structural and optical properties of vertically correlated Ge island layers grown at low temperatures, Materials Science and Engineering: B, vol.89, issue.1-3, pp.89-54, 2002.
DOI : 10.1016/S0921-5107(01)00756-5

Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng et al., Lattice strains and composition of self-organized Ge dots grown on Si(001), Applied Physics Letters, vol.76, issue.23, pp.76-3397, 2000.
DOI : 10.1063/1.126658

A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha et al., Ge dot organization on Si substrates patterned by focused ion beam, Applied Physics Letters, vol.85, issue.26, pp.85-6401, 2005.
DOI : 10.1063/1.1828597

Q. Li, B. Pattada, S. R. Brueck, S. Hersee, and S. M. Han, Morphological evolution and strain relaxation of Ge islands grown on chemically oxidized Si(100) by molecular-beam epitaxy, Journal of Applied Physics, vol.98, issue.7, pp.98-073504, 2005.
DOI : 10.1063/1.2067708

D. Luebbert, J. Arthur, M. Sztucki, T. H. Metzger, P. B. Griffin et al., X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon, Applied Physics Letters, vol.81, issue.17, pp.81-3167, 2002.
DOI : 10.1063/1.1516239

T. Matsudo, T. Ohta, T. Yasuda, M. Nishizawa, N. Miyata et al., Observation of oscillating behavior in the reflectance difference spectra of oxidized Si(001) surfaces, Journal of Applied Physics, vol.91, issue.6, pp.91-3637, 2002.
DOI : 10.1063/1.1452764

K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma et al., The role of quantum confined excitons vs defects in the visible luminescence of SiO 2 films containing Ge nanocrystals, Appl. Phys. Lett, pp.68-2511, 1996.

L. H. Nguyen, V. L. Thanh, M. Halbwax, D. Débarre, V. Yam et al., Formation and properties of selectively grown Ge/Si quantum dots, Superlattices and Microstructures, vol.36, issue.1-3, pp.36-193, 2004.
DOI : 10.1016/j.spmi.2004.08.010

. Gutakovskii, Growth and structure of ge nanoislands on an atomically clean silicon oxide surface, Phys. Sol. State, pp.46-77, 2003.

V. Poydenot, . Bo??tebo??te, S. V. De-ge-sur, R. Poydenot, J. L. Dujardin et al., 001) ordonnésordonnésà longue distance par des réseaux de dislocations de flexionMezì ere et F. Fournel, Ordered growth of germanium dots induced by the strain field of tilt dislocations in molecular bonded silicon (001) thin films, Thèse doctorat, pp.600-135, 2005.

A. Rastelli, M. Kummer, and H. , Reversible Shape Evolution of Ge Islands on Si(001), Physical Review Letters, vol.87, issue.25, p.256101, 2001.
DOI : 10.1103/PhysRevLett.87.256101

M. Shibata, Y. Nitta, K. Fujita, and M. Ichikawa, Pyramidal Si nanocrystal with a quasi equilibrium shape selectively grown on Si(001) windows in ultrathin SiO 2 films, Phys. Rev. B, pp.61-7499, 2001.

A. A. Shklyaev and M. Ichikawa, Visible photoluminescence of Ge dots embedded in Si/SiO2 matrices, Si/SiO 2 matrices, p.1432, 2002.
DOI : 10.1063/1.1451986

A. A. Shklyaev, M. Shibata, and M. Ichikawa, High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO 2 coverage, Phys. Rev. B, pp.62-1540, 2000.

Y. Takakuwa, F. Ishida, and T. Kawawa, Time evolution of interface roughness during thermal oxidation on Si(0 0 1), Applied Surface Science, vol.190, issue.1-4, p.20, 2002.
DOI : 10.1016/S0169-4332(01)00836-4

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Size-dependent nearinfrared photoluminescence from Ge nanocrystals embedded in SiO 2 matrices, Phys. Rev. B, pp.58-7921, 1998.

S. Tong, J. L. Liu, J. Wang, and K. L. Wang, Normal-incidence Ge quantum-dot photodetectors at 1.5 µm based on Si substrate, Appl. Phys. Lett, pp.80-1189, 2002.

B. Voigtlander and M. Kastner, Evolution of the strain relaxation in a Ge layer on Si(001) by reconstruction and intermixing, Physical Review B, vol.60, issue.8, pp.60-5121, 1999.
DOI : 10.1103/PhysRevB.60.R5121

Y. Wakayama and S. Tanaka, Kinetics of surface droplet epitaxy and its application to fabrication of mushroom-shaped metal/Si heterostructure on nanometer scale, Surface Science, vol.420, issue.2-3, pp.420-190, 1999.
DOI : 10.1016/S0039-6028(98)00824-3

G. Wilk, Y. Wei, H. Edwards, and R. Wallace, Si flux cleaning technique for producing atomically flat Si(100) surfaces at low temperature, Applied Physics Letters, vol.70, issue.17, pp.70-2288, 1997.
DOI : 10.1063/1.119083

A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, S. V. Chaikovskii, and S. A. , Tiis, Ge/Si photodiodes with embedded arrays of Ge quantum dots for the near infrared (1,3-1,5 µm) region, Semicond, pp.37-1345, 2003.

A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Y. Y. Proskuryakov, Interlevel Ge/Si quantum dot infrared photodetector, Journal of Applied Physics, vol.89, issue.10, pp.89-5676, 2001.
DOI : 10.1063/1.1346651

T. W. Ev, Ces deux raies sont caractéristiques de l'´ emission de PL d'une couche de mouillage. La différence d'´ energie entre les deux raies est de l'ordre de 58 meV, ce qui correspond au phonon optique Si-Si [19]. La photoluminescence des bo??tesbo??tes quantiques de Ge, dans lesquelles les porteurs (trous) sont confinés, apparaitàapparaità 0,86 eV. La largeur du pic attribué aux bo??tesbo??tes, de l'ordre de 100 meV, est principalement liéè a l'inhomogéneité en taille des bo??tesbo??tes de Ge. La photoluminescence d'unéchantillonunéchantillon contenant une bo??tebo??te de Ge par??lotpar?par??lot après une croissance du Gè a 600?C et une encapsulation dans le Sì a 650?C a ´ eté mesuréè a basse température (11 K) et le spectre de PL est représentée en figure 4.16. La photoluminescence des bo??tesbo??tes quantiques de Ge, située vers 800 meV (1,55 microns), est attribuéè a une recombinaison non phonon, 988 eV, montre une contribution de la transition non phonon (NP) et sa réplique La position du pic de PL de nos bo??tesbo??tes est similairè a celle observée par Boucaud et al. pour une assemblée de dômes de Ge encapsuléè a 700?C dans le Si. La largeuràlargeurà mi hauteur du pic de luminescence de nos bo??tesbo??tes est de 42 meV. [1] R. J. Asaro et W. A. Tiller, Interface morphology development during stress corrosion cracking. 1. via surface diffusion, p.1789, 1972.

I. Berbezier, B. Gallas, A. Ronda, and J. Derrien, Dependance of Sige growth instability on Si substrate orientation, Surf. Sci, vol.412, p.415, 1998.

H. Gao, Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure, Journal of the Mechanics and Physics of Solids, vol.42, issue.5, pp.42-741, 1994.
DOI : 10.1016/0022-5096(94)90041-8

M. A. Grinfeld, The Stress Driven "Rearrangement" Instability in Crystalline Films, Journal of Intelligent Material Systems and Structures, vol.66, issue.23, p.76, 1993.
DOI : 10.1177/1045389X9300400110

G. Jin, J. L. Liu, and K. L. Wang, Regimented placement of self-assembled Ge dots on selectively grown Si mesas, Applied Physics Letters, vol.76, issue.24, pp.76-3591, 2000.
DOI : 10.1063/1.126716

T. I. Kamins and R. S. Williams, Lithographic positioning of self-assembled Ge islands on Si(001), Applied Physics Letters, vol.71, issue.9, pp.71-1201, 1997.
DOI : 10.1063/1.119625

A. Karmous, A. Cuenat, A. Ronda, I. Berbezier, S. Atha et al., Ge dot organization on Si substrates patterned by focused ion beam, Applied Physics Letters, vol.85, issue.26, pp.85-6401, 2005.
DOI : 10.1063/1.1828597

E. S. Kim, N. Usami, and Y. Shiraki, Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties, Applied Physics Letters, vol.72, issue.13, pp.72-1617, 1998.
DOI : 10.1063/1.121131

J. H. Kim, K. A. Jeon, and S. Y. Lee, Formation mechanism and optical properties of nanocrystalline silicon in silicon oxide, Journal of Applied Physics, vol.98, issue.1, pp.98-014303, 2005.
DOI : 10.1063/1.1935136

T. Kitajima, B. Liu, and S. R. Leone, Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Applied Physics Letters, vol.80, issue.3, pp.80-497, 2002.
DOI : 10.1063/1.1434307

E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, Observation of quantum effects and Coulomb blockade in silicon quantum???dot transistors at temperatures over 100 K, Applied Physics Letters, vol.67, issue.7, pp.67-938, 1995.
DOI : 10.1063/1.114701

K. Nakajima, A. Konishi, and K. Kimura, Si(001) Interfaces by High-Resolution Rutherford Backscattering Spectroscopy, Physical Review Letters, vol.83, issue.9, p.1802, 1999.
DOI : 10.1103/PhysRevLett.83.1802

L. H. Nguyen, V. L. Thanh, M. Halbwax, D. Débarre, V. Yam et al., Formation and properties of selectively grown Ge/Si quantum dots, Superlattices and Microstructures, vol.36, issue.1-3, pp.36-193, 2004.
DOI : 10.1016/j.spmi.2004.08.010

O. G. Schmidt, U. Denkera, M. Dashiella, N. Y. Jin-phillippa, K. Eberla et al., Laterally aligned Ge/Si islands: a new concept for faster field-effect transistors, Materials Science and Engineering: B, vol.89, issue.1-3, pp.89-101, 2002.
DOI : 10.1016/S0921-5107(01)00810-8

M. Shibata, Y. Nitta, K. Fujita, and M. Ichikawa, Pyramidal Si nanocrystal with a quasi equilibrium shape selectively grown on Si(001) windows in ultrathin SiO 2 films, Phys. Rev. B, pp.61-7499, 2001.

S. Song and S. G. Mochrie, Tricriticality in the orientational phase diagram of stepped Si(113) surfaces, Physical Review Letters, vol.73, issue.7, p.995, 1994.
DOI : 10.1103/PhysRevLett.73.995

K. Sudoh and H. Iwasaki, Step dynamics in faceting on vicinal Si(113) surfaces, Journal of Physics: Condensed Matter, vol.15, issue.47, pp.15-3241, 2003.
DOI : 10.1088/0953-8984/15/47/004

T. Takagahara and K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Physical Review B, vol.46, issue.23, p.15578, 1992.
DOI : 10.1103/PhysRevB.46.15578

V. L. Thanh and V. Yam, Superlatices of self assembled Ge/Si(001) quantum dots, Appl. Surf. Sci, vol.212, p.296, 2003.

L. Vescan, T. Stoica, B. Holländer, A. Nassiopoulou, A. Olzierski et al., Self-assembling of Ge on finite Si(001) areas comparable with the island size, Applied Physics Letters, vol.82, issue.20, pp.82-3517, 2003.
DOI : 10.1063/1.1576498

R. J. Wagner and E. Gulari, Simulation of Ge/Si intermixing during heteroepitaxy, Physical Review B, vol.69, issue.19, p.69, 2004.
DOI : 10.1103/PhysRevB.69.195312

N. D. Zakharov, V. G. Talalaev, P. Werner, A. A. Tonkikh, and G. E. Cirlin, Room-temperature light emission from a highly strained Si/Ge superlattice, Applied Physics Letters, vol.83, issue.15, pp.83-3084, 2003.
DOI : 10.1063/1.1618377

M. V. Zamoryarskaya, V. I. Sokolov, and V. Plotnikov, Cathodoluminescence study of Si/SiO2 interface structure, Applied Surface Science, vol.234, issue.1-4, pp.214-219, 2004.
DOI : 10.1016/j.apsusc.2004.05.031

. Fig, Evolution du cliché RHEED dans la direction [11-2] après le dépôt d'un film d'or d'´ epaisseur 2 nm : (a) après dépôtdépôtà température ambiante et (b) après recuitàrecuità 360?C

V. De-sí-epitaxiées-suivant-le-méchanisme-de-croissance, Nos observations par MEB (voir figure 5.19(b) montrent clairement l'existence d'un facettage périodique, La période de ces facettes est plus importante sur les petites faces du nanofil que sur les grandes

. Dans-la-figure-5, 20, nous montrons une image GISAXS lorsque le faisceau X est dirigé selon l'azimut <-1-12>. Cette image met enévidenceenévidence deux tiges de diffusion formant un angle de 10

. Le-paramètre-de-maille-moyen-de-l, alliage SiGè a cette concentration en Ge est donné par la loi de Vegard : Le paramètre de maille d'un alliage Ge x Si 1?x peutêtrepeutêtre approché par la loi de Vegard et donné expérimentalement par [6] : a(Ge x Si 1?x ) = x.a Ge + (1 ? x)

. Avec-x, . La-concentration-en-ge, . Si-le-paramètre-de-maille, and . Si, 6575 ? A) Pour une concentration de 2 %, la loi de Vegard donne un paramètre de maille de 5.4360 ? A Cette valeur est très proche du paramètre de maille moyen que nous venons d'attribuer au Si dans les fils (5.4352 ? A) On peut donc conclure que la faible relaxation observée du Si dans les fils est induite par la présence du Ge. Discutons maintenant du pic labellé 2 sur la figure 5.28. Uné etude par diffraction anomale au seuil du Ge nous a permis de déterminer l'origine de ce pic keV (le seuil d'absorption K du Gé etant situésituéà 11.103 keV) Le traitement de ces différents scans, en utilisant le code dévellopé par Vincent Favre Nicolin, extraire les facteurs de structures des atomes anomaux (atomes de Ge) et non anomaux Les contributions des atomes anomaux (courbe rouge) et non anomaux (courbe verte) sont représentées figure 5.30. Ces scans indiquent une forte contribution du Ge dans le pic

L. Couches-contenant-du-ge-sont-présentesprésentesà-la-fois-dans-le-si-massif-entre-les-fils-et-dans-les-fils, En tenant compte du fait que l'´ epaisseur des couches dans le substrat entre les fils est de 3M C environ, on peut considérer qu'elles sontcompì etement contraintes dans le plan

]. F. Bibliographie, W. Baumann, and . Schröter, Precipitation of gold into metastable gold silicide in silicon, Phys. Rev. B, issue.1, pp.43-6510, 1991.

Y. Cui and C. M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, vol.291, issue.5505, pp.291-851, 2001.
DOI : 10.1126/science.291.5505.851

J. W. Dailey, J. Taraci, T. Clement, D. J. Smith, J. Drucker et al., Vapor-liquid-solid growth of germanium nanostructures on silicon, Journal of Applied Physics, vol.96, issue.12, pp.96-7556, 2004.
DOI : 10.1063/1.1815051

L. Dhalluin, Etude de la croissance de nanofils de silicium et leur caractérisation, 2004.

J. P. Dismukes, L. Ekstrom, and R. J. Paff, Lattice parameter and density in germanium-silicon alloys, J. Phys. Chem, vol.68, pp.68-3021, 1964.

X. Duan, J. Wang, and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Applied Physics Letters, vol.76, issue.9, p.1116, 2000.
DOI : 10.1063/1.125956

V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev et al., Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment, Physical Review B, vol.71, issue.20, pp.71-205325, 2005.
DOI : 10.1103/PhysRevB.71.205325

F. Family and P. Meakin, Scaling of the Droplet-Size Distribution in Vapor-Deposited Thin Films, Physical Review Letters, vol.61, issue.4, pp.61-428, 1988.
DOI : 10.1103/PhysRevLett.61.428

E. I. Givargizov, Fundamental aspects of V LS growth, Appl. Phys. Lett, vol.20, p.217, 1973.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature, vol.415, issue.6872, pp.415-617, 2002.
DOI : 10.1038/415617a

L. Haderbachea, R. Garrigosa, R. Kofman, E. Sondergard, and P. Cheyssac, Numerical and experimental investigations of the size ordering of nanocrystals, Surface Science, vol.410, issue.2-3, pp.410-748, 1998.
DOI : 10.1016/S0039-6028(98)00345-8

H. Hibino, T. Kawamura, and T. Ogino, Rheed analysis of twinned homoepitaxial layers grown on Si(111)-B, Thin Solid Films, pp.369-374, 2000.

S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Diameterindependent kinetics in the V apor-Liquid-Solid growth of Si nanowires, Phys. Rev. Lett, pp.96-096105, 2006.

T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang, Experimental proof-of-principle investigation of enhanced Z3 DT

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, pp.420-57, 2002.
DOI : 10.1063/1.102280

Q. Li, X. G. Gong, C. R. Wang, J. Wang, K. Ip et al., Size-Dependent Periodically Twinned ZnSe Nanowires, Advanced Materials, vol.16, issue.16, pp.16-1436, 2004.
DOI : 10.1002/adma.200306648

W. Lu, J. Xiang, B. P. Timko, Y. Wu, and C. M. Lieber, One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Natl. Acad. Sci. USA, pp.102-10046, 2005.
DOI : 10.1103/PhysRevLett.77.3181

F. Meng, H. Liu, L. Liu, and Z. Jin, Thermodynamics description of the au-si-sn system, J. Alloys Comp, p.p xxx, 2006.

F. Mireles and G. Kirczenow, Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires, Physical Review B, vol.64, issue.2, p.24426, 2001.
DOI : 10.1103/PhysRevB.64.024426

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen et al., Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor, Nano Letters, vol.4, issue.7, p.1247, 2004.
DOI : 10.1021/nl049461z

V. F. Nicolin, Développement de la diffraction anomale dispersive, applicationàapplicationà l'´ etude de structures modulées inorganiques et de macromolécules biologiques, Thèse doctorat, 1999.

B. Ressel, K. Prince, S. Heun, and Y. Homma, Wetting of Si surfaces by Au???Si liquid alloys, Journal of Applied Physics, vol.93, issue.7, p.3886, 2003.
DOI : 10.1063/1.1558996

F. M. Ross, J. Tersoff, and M. C. Reuter, Sawtooth Faceting in Silicon Nanowires, Physical Review Letters, vol.95, issue.14, pp.95-146104, 2005.
DOI : 10.1103/PhysRevLett.95.146104

A. Rota, A. Martinez-gil, G. Agnus, E. Moyen, T. Maroutian et al., Au island growth on a Si(111) vicinal surface, Senz et U. Gosele, Diameter-dependent growth direction of epitaxial silicon nanowires, pp.1207-931, 2005.
DOI : 10.1016/j.susc.2006.01.036

URL : https://hal.archives-ouvertes.fr/hal-00070975

L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb et al., Silicon nanowhiskers grown on ???111???Si substrates by molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.24, p.4968, 2004.
DOI : 10.1063/1.1762701

N. Stolwijk, B. Schuster, J. Hoelzl, H. Mehrer, and W. Frank, Diffusion and solubility of gold in silicon, Physica B+C, vol.116, issue.1-3, p.335, 1983.
DOI : 10.1016/0378-4363(83)90271-1

K. Suna, S. Suea, and C. Liub, Visible photoluminescence from Ge quantum dots, Physica E: Low-dimensional Systems and Nanostructures, vol.28, issue.4, p.525, 2005.
DOI : 10.1016/j.physe.2005.05.063

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

A. Wakahara, K. Kuramoto, Y. Nomura, and A. Sasaki, Ge composition dependance of photoluminescence properties of Si 1?x Ge x disordered superlattices

J. Wang, M. Tian, T. E. Mallouk, and M. H. Chan, Microtwinning in Template-Synthesized Single-Crystal Metal Nanowires, The Journal of Physical Chemistry B, vol.108, issue.3, p.841, 2004.
DOI : 10.1021/jp035068q

Y. Wu, R. Fan, and P. Yang, Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires, Nano Letters, vol.2, issue.2, p.83, 2002.
DOI : 10.1021/nl0156888

. Citonsàcitonsà-titre-d, exemples le dopage des fils, pour aller vers la réalisation de nano-diodes, l'´ epitaxie de nanofils de Ge sur Ge(111) ou l'