Design and Use of Anatomical Atlases for Radiotherapy

Olivier COMMOWICK

February 14, 2007

Jury:

• Patrick Clarysse (reviewer) – CNRS
• Grégoire Malandain (advisor) – INRIA
• Nicholas Ayache – INRIA
• Pierre-Yves Bondiau – Centre Antoine Lacassagne
• Guido Gerig – University of North Carolina
• Vincent Grégoire – Université Catholique de Louvain
• Hanna Kafrouni (invited) – DOSIsoft S.A
Road Map

• Introduction
• Incorporating Priors in Non Linear Registration
• Atlas-Based Brain Segmentation
• Head and Neck Atlas-Based Segmentation
• Conclusion and Perspectives
Medical Context

• Different cancer treatments
 • Chemotherapy
 – Drugs killing cells in division
 • Surgery
 – Remove physically the tumor
 • Radiotherapy
 – High irradiation killing cells in division

• Treatment of tumors on two regions
 • Brain
 • Head and Neck
Radiotherapy

- Radiotherapy principle:
 - Use of high energy irradiation beams
 - Optimize dose on the tumor
 - Control irradiation of critical structures (OAR)

→ Need for high precision planning
 - Irradiation doses computed on each organ
 - Compare doses with expected levels
 - Requires delineation of structures
Brain Anatomy

• Many organs at risk
 • Eyes, optic nerves, chiasma
 • Brainstem, cerebellum
 • Grey nuclei

• Different categories [Pontvert, 2004]
 • Very high risk (eyes)
 • High risk (optic nerves, brainstem)
 • Medium risk (grey nuclei)

Head and Neck Anatomy

• Structures of interest
 • Lymph nodes areas
 – Separated using visible landmarks
 – Tumor dissemination regions
 • Parotids
 • Spinal cord
 • Sub-mandibular glands

Radiotherapy planning

• Requires an accurate delineation
 • Head and Neck radiotherapy
 – Only CT image acquired, necessary for dosimetry
 • Brain radiotherapy
 – MRI exam often added
 – Better differentiation of soft tissues

• Segmentation done manually
 • Time consuming (2 to 4 hours)
 • Not reproducible

• Objective: provide fast and automatic segmentation tools
Automatic Segmentation for Radiotherapy

• Goal: automatic segmentation of organs at risk

• Available segmentation methods
 • Intensity based (adaptive thresholding, EM)
 ‒ No prior on shape or position
 • Deformable models, level-sets, active contours
 ‒ Possible priors on structures
 • Atlas based segmentation
 ‒ Atlas: image and its segmentation
 ‒ A priori on respective positions and shapes

Increasing prior knowledge
Atlas Construction

• First approach:
 • One image delineated by an expert
 – Brain atlas (from Dr. Pierre-Yves Bondiau [Bondiau, PhD, 2004])
 – must be representative (possible bias)

Atlas Construction

• Second approach:
 • Average image from a dataset of images
 • Head and neck atlas
 – Images from Pr. Vincent Grégoire (UCL)
Atlas-based Segmentation Principle

First alignment (affine)
Atlas-based Segmentation Principle

Second alignment (non linear)
Non linear transformations

- Tradeoff in non linear registration
 - Able to handle atlas/subject variability
 - Robust and smooth

- Transformations:
 - Parametric
 - Interpolated between control points
 - Arbitrary number of degrees of freedom
 - RBF [Rohde et al., 2003], FFD [Rueckert et al., 1999]
 - Dense
 - One displacement vector per voxel
 - Maximal number of degrees of freedom
 - Pasha [Cachier et al, 2003], …

Challenges in Atlas-Based Segmentation

• Goal: Automatic segmentation of critical structures for radiotherapy

• Requirements:
 • Minimal interaction from user
 • Robust to different acquisition protocols
 • Realistic contours in a minimal time

• Key point of the approach: non linear registration
 • Smooth transformation
 • Able to handle atlas/subject variability
 • Robust registration method
 • Method as fast as possible
Road Map

• Introduction
• Incorporating Priors in Non Linear Registration
• Atlas-Based Brain Segmentation
• Head and Neck Atlas-Based Segmentation
• Conclusion and Perspectives
Road Map

• Introduction

• **Incorporating Priors in Non Linear Registration**
 • Existing Registration Method
 • Incorporating Deformability Statistics in Registration
 • Non Linear Registration with Outlier Rejection
 • Locally affine Registration Framework

• Atlas-Based Brain Segmentation

• Head and Neck Atlas-Based Segmentation

• Conclusion and Perspectives
Existing Dense Non Linear Registration

• Method of [Stefanescu et al., 2004]: Runa
 • Spatially inhomogeneous regularization
 • Fluid regularization on highly variable regions
 • More elastic regularization elsewhere

• Iterative process

Runa: Correction Field Computation

- Computation of correction δT
 - Gradient descent on a similarity measure:

$$\delta T = \nabla SSD(R, F \circ T^{l-1}) = (R - F \circ T^{l-1}) \cdot (F \circ T^{l-1})$$

- SSD: Sum of Squared Differences
- R: reference image
- F: floating image
- T^{l-1}: transformation obtained at iteration $l - 1$
Runa: Fluid Regularization

- Regularization of correction field

\[\frac{\partial \delta T}{\partial t}(x) = (1 - k(x)) \Delta \delta T(x) \]

- Weighted by a factor \(k(x) = f_i(\|\nabla R\|) \)
 - Spatially dependent
 - Less confidence (more regularization) in homogeneous regions
Runa: Composition of Correction

- Regularized correction field: $\delta\widetilde{T}$

- Composition with transformation at iteration $l-1$

\[T^l \leftarrow T^{l-1} \circ \delta\widetilde{T} \]
Runa: Elastic Regularization

- Regularization of the transformation

\[\frac{\partial T^l}{\partial t} = \nabla (D(x) \nabla T^l) \]

- Weighted by \(D(x) = f_2(i(x)) \)
 - Scalar, tissue dependent \(i(x) \), heuristic model
 - White and grey matter: high regularization
 - CSF: low regularization
Segmentation Result (Runa)
Summary

• Advantages
 • Precise deformations
 • Inhomogeneous regularization

• Drawbacks
 • Noisy contours (not realistic)
 • Registration parameters
 – Need to be set for each patient
 – Need to be set for each acquisition protocol

• Solution

 Correction field Computation

 Fluid Regularization
 Spatially dependent

 Composition

 Elastic Regularization
 Tissue-dependent
 Spatially dependent
Road Map

• Introduction

• Incorporating Priors in Non Linear Registration
 • Existing Registration Method
 • Incorporating Deformability Statistics in Registration
 • Non Linear Registration with Outlier Rejection
 • Locally affine Registration Framework

• Atlas-Based Brain Segmentation

• Head and Neck Atlas-Based Segmentation

• Conclusion and Perspectives
Statistics Computation Pipeline

Scalar Mean Deformability

- Isotropic measure of deformability

- Determinant of the Jacobian matrix \(|J_i(x)| \)
 - \(|J_i(x)| > 1 \) : local dilation
 - \(|J_i(x)| < 1 \) : local contraction

- Mean deformability:

\[
\overline{\text{Def}}(x) = \frac{1}{N} \sum_i \text{abs}(\log(|J_i(x)|))
\]
Incorporating Statistics in Regularization

Correction field Computation → Fluid Regularization → Composition → Elastic Regularization

\[
\frac{\partial T^i}{\partial t} = \nabla \cdot (D(x)\nabla T^i)
\]

- Inverse mean scalar deformability measure

\[
D(x) = \left(1 + \lambda \overline{Def}(x)\right)^{-1}
\]

- Values of \(D(x)\)
 - Between 0 and 1
 - Close to 1: High regularization
 - Close to 0: Low regularization
Segmentation Result (Runa, Scalar Statistics)
Segmentation Result (Runa)
Tensor-based Mean Deformability

- Based on tensor derived from the Jacobian matrix

\[W_i(x) = J_i^T(x) \cdot J_i(x) \]

- Mean deformability

\[\bar{\Sigma}(x) = \frac{1}{N} \sum_i \text{abs}(\log(W_i(x))) \]

- Quantification of anisotropy in deformability

Incorporating Statistics in Regularization

\[\frac{\partial T^i}{\partial t} = \nabla \cdot (D(x) \nabla T^i) \]

- Inverse mean tensor-based deformability measure
 - Formula analogous to the scalar case

\[D(x) = (Id + \lambda \overline{\sum}(x))^{-1} \]
Segmentation Result (Runa, Tensor Based Statistics)
Segmentation Result (Runa, Scalar Statistics)
Summary

- Introduction of deformability statistics [Commowick et al., 2005]
 - Reduced dependency to registration parameters
 - Smoother and more precise contours

- Problems:
 - Time consuming: around 40 minutes
 - Still regularity problems (eyes)
 - Parameters to set for each acquisition protocol

=> Objective: Introduce more robustness and regularity

Road Map

• Introduction

• Incorporating Priors in Non Linear Registration
 • Existing Registration Method
 • Incorporating Deformability Statistics in Registration
 • Non Linear Registration with Outlier Rejection
 • Locally affine Registration Framework

• Atlas-Based Brain Segmentation

• Head and Neck Atlas-Based Segmentation

• Conclusion and Perspectives
Non Linear Registration with Outlier Rejection

- Block-Matching method [Ourselin et al., 2000]
 - Move blocks in a neighborhood
 - Pairing: chosen according to a similarity value

- Pairings Estimation (Block-Matching [Ourselin et al., 2000])
 - Sparse pairings field C
 - Associated to confidence field k: similarity value of each pairing

“Block Matching” Technique

1. Consider regularly sampled sub-images (or “blocks”)
“Block Matching” Technique

2. Search the “most similar” block: gives point to point correspondence
“Block Matching” Technique

3. Obtain pairings sparse field from \((x_v, y_v), C(x_v) = y_v - x_v\)
Baloo: Updating the Transformation

- Transformation correction δT estimation
- Interpolated from pairings weighted by confidence field

$$\delta T = \frac{G_\sigma \cdot kC}{G_\sigma \cdot k}$$

- G_σ: Gaussian kernel of variance σ
Baloo: Removal of Outliers

- Comparison between pairings and interpolated corrections

- Outlier criterion \(\|C(x_v) - \delta T(x_v)\| > s \)

- \(s \) depends on mean \(e \) and variance of errors \(\sigma_e \)

\[
e = \frac{1}{N} \sum_v \|C(x_v) - \delta T^l(x_v)\| \\
\sigma_e^2 = \frac{1}{N} \sum_v \left(e - \|C(x_v) - \delta T^l(x_v)\|\right)^2
\]
Baloo: Composition of Corrections

- δI: correction interpolated from pairings minus outliers

- Composition of current transformation T^{l-1}

\[T^{l-1} : T^l \leftarrow T^{l-1} \circ \delta I \]
Segmentation Result (Baloo)
Segmentation Result (Runa)
Summary

• Dense Registration with Outlier Rejection (Baloo)
 • Faster than classical dense registration (20 minutes)
 • Smooth transformation
 • Precise contours

• Problems left:
 • Still depends on images quality (eyes)
 • Larger slice thickness

• Objectives
 • More robustness by constraining the transformation
 • Registration only on regions of interest
Road Map

• Introduction

• Incorporating Priors in Non Linear Registration
 • Existing Registration Method
 • Incorporating Deformability Statistics in Registration
 • Non Linear Registration with Outlier Rejection
 • Locally Affine Registration Framework

• Atlas-Based Brain Segmentation

• Head and Neck Atlas-Based Segmentation

• Conclusion and Perspectives
Locally Affine Framework

- Principle:
 - Register only anatomic areas of interest
 - Interpolate a global transformation from all local transformations
Locally Affine Transformation

• Local transformation
 • Affine transformation A_i associated to each region R_i
 • Weight function $w_i(x)$
 – Relative influence of each region at point x
 \[
 w_i(x) = \frac{1}{1 + \lambda d(x, R_i)}
 \]

• Global transformation:
 • Solution 1: Weighted interpolation of affine components
 \[
 T(x) = \sum_{i=1}^{N} w_i(x) A_i(x)
 \]
 • Solution 2: Using an ordinary differential equation [Arsigny, PhD, 2006]

LAF: Updating the Transformation

- Local affine correction δA_i estimation
- Block-Matching algorithm
- Outlier rejection in the estimation process
- Least Trimmed Squares Weighted Estimation
 - Weighted by similarity measure values
 - Weighted by $w_i(x_v)$
LAF: Fluid-like Regularization

• Fluid-like regularization of local transformation corrections

• Gradient descent on \[\text{Reg}(\delta A_i, w_i) = \sum_{i=1}^{N} \sum_{j \neq i} p_{i,j} \| \log(\delta A_i) - \log(\delta A_j) \|^2 \]

• Log-Euclidean polyaffine framework
 • \(\log(A_i) \) belongs to a vector space
 • Generalization of usual regularization energies
LAF: Composition of Corrections

- Regularized corrections: δA_i

- Composition of corrections with the current transformation

$$A_i^l = A_i^{l-1} \circ \delta \tilde{A}_i$$
LAF: Elastic-like Regularization

- Gradient descent on

\[\text{Reg}(A_i^l, w_i) = \sum_{i=1}^{N} \sum_{j \neq i} p_{i,j} \| \log(A_i^l) - \log(A_j^l) \|^2 \]

- Similar to fluid-like regularization
 - Regularization on transformations \(A_i^l \)
Locally Affine Registration

• Final global transformation computation
 • Solution 1 (weighted interpolation): Fast but not always invertible
 • Solution 2 (polyaffine): Slower but always invertible
Segmentation Result (Locally Affine)
Segmentation Result (Baloo)
Conclusion

• Locally Affine Registration [Commowick et al., 2006a], [Commowick et al., 2006b]
 • Smooth transformation
 • Robust registration
 – One parameter set for all tested acquisition protocols
 • Fast computation time (10 minutes)

• Registration method able to recover large displacements
 • Ideal for articulated structures (head and neck)

Road Map

• Introduction
• Incorporating Priors in Non Linear Registration
• Atlas-Based Brain Segmentation
• Head and Neck Atlas-Based Segmentation
• Conclusion and Perspectives
Evaluation Methodology

- Three evaluation methods
 - Visual inspection
 - Semi-quantitative validation
 - Visual inspection by a clinician
 - Graduation between 0 and 5
 - Quantitative validation
 - Experts manual segmentations
 - Two steps:
 - Ground truth computation using STAPLE [Warfield et al., 2004]
 - A posteriori computation of sensitivity/specificity

Brain Evaluation

- Database of MRI from CAL Nice (Dr. P.-Y. Bondiau)
 - 2mm slice thickness

- Use of manual expert segmentations
 - Brainstem: 7 experts, 6 patients
Quantitative Evaluation (II): Runa, Baloo, LAF

![Graph showing sensitivity and specificity for different methods.]

- Experts
- Runa
- Baloo
- Multi-Affine
Evaluation in Clinical Conditions (Runa)
Evaluation in Clinical Conditions (Baloo)
Evaluation in Clinical Conditions (LAF)
Semi-Quantitative Evaluation in Clinical Conditions

• Evaluation in clinical conditions [Isambert et al., 2005]
 • Done at Institut Gustave Roussy
 • In the frame of MAESTRO European project

[Isambert et al., 2005]: Requirements for the use of an atlas-based automatic segmentation for delineation of Organs at Risk (OAR) in conformal radiotherapy (CRT): quality assurance (QA) and preliminary results for 22 adult patients with primary brain tumors. ESTRO, 2005.
Road Map

• Introduction
• Incorporating Priors in Non Linear Registration
• Atlas-Based Brain Segmentation
 • Head and Neck Atlas-Based Segmentation
 • Atlas Construction Method
 • Atlas Evaluation
 • Results
• Conclusion and Perspectives
Head and Neck Atlas Construction

• Atlas construction
 • From a dataset of delineated images
 • Needs to be representative of all patients
 – Symmetric atlas construction method
 • Other possible method: [Grabner et al., 2006]

• Three steps construction method
 • Mean image construction
 • Mean segmentations
 • Atlas symmetrization

[Grabner et al., 2006]: Symmetric Atlassing and Model Based Segmentation: an Application to the Hippocampus in Older Adults. MICCAI, 2006.
Atlas Construction Method

Images and manual delineations database → Mean Image Construction (not symmetric) → Mean Image Symmetrization → Symmetric Atlas

Images → Transformations → Mean Segmentations Construction (not symmetric) → Transformation
Mean Image Construction

• Unbiased atlas construction [Guimond et al., 2000]:
 • Iterate the following process

 - Take the average model as new reference image

Mean Segmentations

• One transformation for each patient
 • All segmentations in the mean image referential

• Mean segmentation using STAPLE [Warfield et al., 2004]:
 • Estimation of mean segmentations
 • Computation of performance parameters

• Probability maps for each class (including background)
 • A posteriori classification into structures

[Warfield et al., 2004]: Simultaneous Truth and Performance Level Estimation (STAPLE): an Algorithm for the Validation of Image Segmentation, IEEE TMI, 2004
Atlas Symmetrization

• Method of [Prima et al., 2002]
 • Obtain transformation R bringing I on its mid-sagittal plane
 • Principle: registration between I and the mirrored image $I \circ S$
 • R satisfies the relation $I \circ R = I \circ R \circ S$

• Mean symmetric image obtained from \tilde{M}

$$\tilde{M}_S = \frac{\tilde{M} \circ R + \tilde{M} \circ R \circ S}{2}$$

• Mean symmetric segmentations obtained in two steps
 • Symmetrization of the probability maps from STAPLE
 • A posteriori classification into structures

Road Map

- Introduction
- Incorporating Priors in Non Linear Registration
- Atlas-Based Brain Segmentation
- Head and Neck Atlas-Based Segmentation
 - Atlas Construction Method
 - Atlas Evaluation Strategy
 - Results
- Conclusion and Perspectives
Atlas Evaluation Strategy

• Leave-One-Out method
Evaluation protocol

• Image database:
 - 45 patient CT-scan images (Pr. V. Grégoire, MAESTRO)
 - Different tumors shapes at different localizations
 - Small tumors not deforming the surrounding anatomy (N0 grade)
 - Various patient position and anatomy

• Three registration methods compared:
 - M_1: Block-Matching based dense registration method
 - M_2: Locally-affine registration method
 - M_3: M_2 followed by M_1
Image Database Examples
Road Map

• Introduction
• Towards a Better Control of Registration Transformations
• Atlas-Based Brain Segmentation
 • Head and Neck Atlas-Based Segmentation
 • Atlas Construction Method
 • Atlas Evaluation Strategy
 • Results
• Conclusion and Perspectives
Obtained Atlases

$M_3 \cap M_2 \cap (M_1 \cup M_0)$
Qualitative Results

Manual Segmentation

M2 Atlas Segmentation
Quantitative Atlas Evaluation

• Use of Leave-One-Out method:
 • Mean over 12 patients completely delineated (13 structures)

• M_3 Atlas performs better for atlas construction
Conclusion

• Symmetric atlas construction method
 • From existing techniques

• Atlas Evaluation method [Commowick et al., 2006c]
 • Registration method to build the atlas
 • Registration method to register the atlas

• Application to Head and Neck
 • Hierarchical registration (M₃): well adapted in this context
 • Promising results
 • Many perspectives on atlas construction

[Commowick et al., 2006c]: Evaluation of Atlas Construction Strategies in the Context of Radiotherapy Planning. SA2PM Workshop, held in conjunction with MICCAI. 2006.
Road Map

• Introduction
• Incorporating Priors in Non Linear Registration
• Atlas-Based Brain Segmentation
• Head and Neck Atlas-Based Segmentation
• Conclusion and Perspectives
Contributions

• Registration
 • Introduction of deformability statistics in registration
 • Dense registration with outlier rejection
 • Locally affine framework
 – Good results without changing parameters

• Head and neck atlas
 • Atlas construction method from a dataset of CT images
 • Evaluation via leave one out method

• Other contributions (not presented here)
 • Taking pathology into account in registration process
 • Ad-Hoc method for optic nerves segmentation
Software Integration

- Integration in DOSIsoft radiotherapy planning system
 - Atlas-based segmentation module
 - Both brain and head and neck atlases

- Validation in clinical conditions at IGR
 - MAESTRO European project
Discussion on Head and Neck Atlas

• Problem: Over-segmentation of the lymph nodes areas

• First reason: inside the atlas
 • Contours dispersion
 – Large inter-patient variation
 • STAPLE for generating mean segmentations
 – Influence of the background class

• Possible solutions
 • Cluster dataset in several groups
 • Use of new methods [Warfield et al., 2006]
 – No background class

Discussion on Head and Neck Atlas

• Second reason: when registering the atlas
 • Large atlas/patient differences
 – Corpulence
 – Neck flexion

⇒ Results in local discrepancies

• Possible solutions
 • Build several atlases from one database
 • Clustering of the dataset
 • Choose the closest image among the dataset images
 • Definition of distance
Perspectives

• Registration methods
 • Computation of statistics of deformability
 – Several registration methods to build unbiased statistics
 • Locally affine framework
 – Refining local affine regions

• Study of robustness of registration methods
 • With respect to registration parameters
 • Other type of validation

• Measure of quality of registration
 • Based only on images
 • Is a region well registered or not?
Perspectives

• Further validation
 • on more structures and more patients
 • Other quantitative measures
 • Fully quantitative validation in clinical conditions

• Taking into account pathology
 • Model the deformation caused by the tumor
Questions