C. Table, 2: Values of Q k (in %) for ? = 1

C. Table, 3: Values of Q k (in %) for ? =

J. Abate and W. Whitt, Transient Behavior of the M/M/1 Queue via Laplace Transforms, Advances in Applied Probability, vol.20, p.145178, 1988.

J. Abate and W. Whitt, Calculating time-dependent performance measures for the M/M/1 queue, IEEE Transactions on Communications, vol.37, issue.10, p.11021104, 1989.
DOI : 10.1109/26.41165

M. S. Aguir, Modèles Stochastiques pour l'Aide à la Décision dans les Centres d'Appels, 2004.

M. S. Aguir, F. Karaesmen, O. Z. Ak³in, and F. Chauvet, The impact of retrials on call center performance, OR Spectrum, vol.26, issue.3, p.353376, 2004.
DOI : 10.1007/s00291-004-0165-7

M. S. Aguir, F. Karaesmen, and Y. Dallery, Head-Of-The-Line Priority with Random Assignment Working paper, 2006.

O. Z. Ak³in and F. Karaesmen, Designing Flexibility: Characterizing the value of Cross- Training Practices, Working paper, INSEAD, 2002.

O. Z. Ak³in, F. Karaesmen, and E. L. Örmeci, A Review of Workforce Cross-Training in Call Centers from an Operations Management Perspective, 2005.

C. J. Ancker and A. Gafarian, Queueing with Impatient Customers Who Leave at Random, Journal of Industrial Engineering, vol.13, p.8490, 1962.

M. Armony, Dynamic Routing in Large-Scale Service Systems with Heterogeneous Servers, Queueing Systems: Theory and Applications (QUESTA), p.287329, 2005.
DOI : 10.1007/s11134-005-3760-7

M. Armony and C. Maglaras, Contact Centers with a Call-Back Option and Real-Time Delay Information, Operations Research, vol.52, issue.4, p.527545, 2004.
DOI : 10.1287/opre.1040.0123

M. Armony and C. Maglaras, On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design, Operations Research, vol.52, issue.2, p.271292, 2004.
DOI : 10.1287/opre.1030.0088

M. Armony, E. Plambeck, and S. Seshadri, Convexity Properties and Comparative Statics for an M/M/S Queue with Impatient Customers: Why You Shouldn't Shout at the DMV, 2005.

M. Armony, N. Shimkin, and W. Whitt, The Impact of Delay Announcements in Many- Server Queues with Abandonment Working paper, 2005.

R. Atar, A. Mandelbaum, and I. M. Reiman, Scheduling a Multi Class Queue with Many Exponential Servers: Asymptotic Optimality in Heavy Trac, The Annals of Applied Probability, vol.14, p.10841134, 2004.

H. Avi-itzhak and . Levy, On Measuring Fairness in Queues, Advances In Applied Probability, vol.36, p.919936, 2004.

A. N. Avramidis, A. Deslauriers, and P. , Modeling Daily Arrivals to a Telephone Call Center, Management Science, vol.50, issue.7, p.896908, 2004.
DOI : 10.1287/mnsc.1040.0236

F. Baccelli and G. Hebuterne, On Queues With Impatient Customers, p.81
URL : https://hal.archives-ouvertes.fr/inria-00076467

N. T. Bailey, A Continuous Time Treatment of a Single Queue Using Generating Functions, J. Roy. Statist. Soc. Ser, vol.16, p.288291, 1954.

F. Ball and V. T. Stefanov, Further Approaches to Computing Fondamental Characteristics of Birth-Death Processes, Journal of Applied Probability, vol.38, p.9951005, 2001.

F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios-gomez, Open, Closed, and Mixed Networks of Queues with Dierent Classes of Customers, Journal of the ACM, vol.22, p.248260, 1975.

A. Bassamboo, J. M. Harrison, and A. Zeevi, Dynamic Routing and Admission Control in High-Volume Service Systems: Asymptotic via Multi-Scale Fluid Models, 2004.

S. Benjaafar, Performance Bounds for the Eectiveness of Pooling in Multi-Processing Systems, European Journal of Operational Research, vol.87, p.375388, 1995.

A. W. Berger and W. Whitt, Comparisons of multi-server queues with finite waiting rooms, Communications in Statistics. Stochastic Models, vol.8, issue.4, p.719732, 1992.
DOI : 10.1007/BF01159210

P. P. Bhattacharya and A. Ephremides, Stochastic Monotonicity Properties of Multiserver Queues with Impatient Customers, Journal of Applied Probability, vol.28, issue.3, p.673682, 1991.
DOI : 10.2307/3214501

S. Bhulai and G. Koole, Queueing model for call blending in call centers, IEEE Transactions on Automatic Control, vol.48, issue.8, p.14341438, 2003.
DOI : 10.1109/TAC.2003.815038

S. Borst, A. Mandelbaum, and M. I. Reiman, Dimensioning Large Call Centers, Operations Research, vol.52, issue.1, p.1734, 2004.
DOI : 10.1287/opre.1030.0081

J. Boudreau, Organizational Behavior, Strategy, Performance, and Design in Management Science, Management Science, vol.50, p.14631476, 2004.

A. Brandt and M. Brandt, Assymptotic Results and a Markovian Approximation for the M, C + GI System. Queueing Systems: Theory and Applications (QUESTA), p.7394, 2002.

Z. Carmon and D. Kahenman, The Experienced Utility of Queueing: Experience Proles and Retrospective Evaluatoins of Simulated Queues. pre-print

D. G. Champernowne, An Elementary Method of Solution of the Queueing Problem with a Single Server and a Constant Parameter, J. Roy. Statist. Soc. Ser, vol.18, p.125128, 1956.

P. Chevalier, R. A. Shumsky, and N. Tabordon, Routing and Stang in Large Call Centers with Specialized and Fully Flexible Servers, 2004.

P. Coolen-schrijner and E. A. Van-doorn, THE DEVIATION MATRIX OF A CONTINUOUS-TIME MARKOV CHAIN, Probability in the Engineering and Informational Sciences, p.351366, 2002.
DOI : 10.1017/S0269964802163066

F. De-véricourt and Y. Zhou, Managing Response Time in a Call-Routing Problem with Service Failure, Operations Research, vol.53, issue.6, p.968981, 2005.
DOI : 10.1287/opre.1050.0230

P. Feigin, Analysis of Customer Patience in a Bank Call Center Working Paper, The Technion, 2005.

M. Fischer, D. Garbin, A. Gharakhanian, and D. Masi, Trac Engineering of Distributed Call Centers: Not as Straight Forward as it May Seem, 1999.

P. Flajolet and F. Guillemin, The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions, Advances in Applied Probability, vol.41, issue.03, pp.750-778, 2000.
DOI : 10.1016/0012-365X(80)90248-4

URL : https://hal.archives-ouvertes.fr/inria-00073005

N. Gans, G. Koole, and A. Mandelbaum, Telephone Call Centers: Tutorial, Review, and Research Prospects, Manufacturing & Service Operations Management, vol.5, issue.2, p.73141, 2003.
DOI : 10.1287/msom.5.2.79.16071

N. Gans and G. Van-ryzin, Optimal Dynamic Scheduling of a General Class of Parallel- Processing Queueing Systems, Advances in Applied Probability, vol.30, p.11301156, 1998.

N. Gans and Y. P. Zhou, A Call-Routing Problem with Service-Level Constraints, Operations Research, vol.51, issue.2, p.255271, 2003.
DOI : 10.1287/opre.51.2.255.12787

O. Garnett and A. Mandelbaum, An Introduction to Skills-Based Routing and its Operational Complexities, 2001.

O. Garnett, A. Mandelbaum, and M. Reiman, Designing a Call Center with Impatient Customers. Manufacturing & Service Operations Management, p.208227, 2002.

W. Grassmann, The Convexity of the Mean Queue Size of the M/M/C Queue with Respect to the Trac Intensity, Journal of Applied Probability, vol.20, p.916919, 1987.

D. Gross and C. M. Harris, Fundamentals of Queueing Theory Wiley series in probability and mathematical statistics, 1985.

D. Gross and C. M. Harris, Fundamentals of Queueing Theory Wiley series in probability and mathematical statistics, 1998.

R. Guérin, Queueing-blocking system with two arrival streams and guard channels, IEEE Transactions on Communications, vol.36, issue.2, p.153163, 1998.
DOI : 10.1109/26.2745

F. Guillemin, Spectral Analysis of Birth and Death Processes Working paper, 2005.

F. Guillemin and D. Pinchon, Excursions of Birth and Death Processes, Orthogonal Polynomials , and Continued Fractions, Journal of Applied Probability, vol.36, p.752770, 1999.

P. Guo and P. Zipkin, Analysis and Comparaison of Queues with Dierent Levels of Delay Information, 2004.

S. Haln and W. Whitt, Heavy-Trac Limits for Queues with Many Exponential Servers, Operations Research, vol.29, p.567588, 1981.

A. Harel and P. Zipkin, The Convexity of a General Performance Measure for Multiserver Queues, Journal of Applied Probability, vol.24, p.725736, 1987.

A. Harel and P. H. Zipkin, Strong Convexity Results for Queueing Systems, Operations Research, vol.35, issue.3, p.405418, 1987.
DOI : 10.1287/opre.35.3.405

W. J. Hopp and M. P. Van-oyen, Agile workforce evaluation: a framework for cross-training and coordination, IIE Transactions, vol.33, issue.10, p.919940, 2004.
DOI : 10.1287/mnsc.42.8.1151

T. Y. Huang, Analysis and modeling of a threshold based priority queueing system, Computer Communications, vol.24, issue.3-4, p.284291, 2001.
DOI : 10.1016/S0140-3664(00)00221-8

M. Hui and D. Tse, What to Tell Customer in Waits of Dierent Lengths: an Integrative Model of Service Evaluation, Journal of Marketing, vol.60, p.8190, 1996.

M. Hui and L. Zhou, How Does Waiting Duration Information Inuence Customers' Reactions to Waiting for Services, Journal of Applied Social Psychology, vol.26, p.17021717, 1996.

D. L. Jagerman, Some Properties of the Erlang Loss Function. The Bell System Technical Journal, p.525551, 1974.

A. A. Jagers and E. A. Van-doorn, Convexity of Functions Which Are Generalizations of the Erlang Loss Function and the Erlang Delay Function, SIAM Review, vol.33, p.281282, 1991.

G. Jongbloed and G. M. Koole, Managing Uncertainty in Call Centers using Poisson Mixtures, Applied Stochastic Models in Business and Industry, vol.17, p.307318, 2001.

O. Jouini and Y. Dallery, ESTIMATING AND ANNOUNCING WAITING TIMES IN MULTIPLE CUSTOMER CLASS CALL CENTERS, Proceedings of INCOM 2006, p.371376, 2006.
DOI : 10.3182/20060517-3-FR-2903.00199

URL : https://hal.archives-ouvertes.fr/hal-00113303

O. Jouini and Y. Dallery, Moments of first passage times in general birth???death processes, Mathematical Methods of Operations Research, vol.45, issue.J Appl Probab 1, 2006.
DOI : 10.1007/s00186-007-0174-9

URL : https://hal.archives-ouvertes.fr/hal-00113229

O. Jouini and Y. Dallery, MONOTONICITY PROPERTIES FOR MULTISERVER QUEUES WITH RENEGING AND FINITE WAITING LINES, Probability in the Engineering and Informational Sciences, vol.21, issue.03, 2006.
DOI : 10.1017/S0269964807000010

URL : https://hal.archives-ouvertes.fr/hal-00113301

O. Jouini and Y. Dallery, Predicting queueing delays for multiclass call centers, Proceedings of the 1st international conference on Performance evaluation methodolgies and tools , valuetools '06, 2006.
DOI : 10.1145/1190095.1190180

URL : https://hal.archives-ouvertes.fr/hal-00113306

O. Jouini, Y. Dallery, and O. Z. Ak³in, Modeling Call Centers with Delays Information, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113300

O. Jouini, Y. Dallery, and R. Nait-abdallah, Analysis of the Impact of Team-Based Organizations in Call Center Management, Management Science, vol.54, issue.2, 2006.
DOI : 10.1287/mnsc.1070.0822

URL : https://hal.archives-ouvertes.fr/hal-01264962

O. Jouini, A. Pot, Y. Dallery, and G. Koole, Real-time Dynamic Scheduling Policies for Multiclass Call Centers with Impatient Customers, 2006.

S. Karlin and J. Mcgregor, The Classication of Birth and Death Processes, Trans. Amer. Math. Soc, vol.86, p.366401, 1957.

S. Karlin and J. Mcgregor, The Dierential Equation of Birth and Death Processes, and the Setieltjes Moment Problem, Trans. Amer. Math. Soc, vol.85, p.489546, 1957.

K. Katz, B. Larson, and R. Larson, Prescription for the Waiting-in-Line Blues: Entertain, Enlighten, and Engage, Sloan Management Review, p.4453, 1991.

J. Keilson, A Review of Transient Behavior in Regular Diusion and Birth-Death Processes. Part i, Journal of Applied Probability, vol.1, p.247266, 1964.

J. Keilson, A Review of Transient Behavior in Regular Diusion and Birth-Death Processes. Part ii, Journal of Applied Probability, vol.1, p.247266, 1964.

J. Keilson, Markov Chain Models -Rarity and Exponentiality, 1979.
DOI : 10.1007/978-1-4612-6200-8

J. Keilson, On the unimodality of passage time densities in birth-death processes, Statistica Neerlandica, vol.35, issue.1, p.4955, 1981.
DOI : 10.2307/3213246

O. Kella and U. Yechiali, Waiting Times in the Non-Preemptive Priority, Queue. Stochastic Models, vol.1, p.257262, 1985.

F. P. Kelly, Loss Networks, Annals of Applied Probability, vol.1, p.319378, 1991.

M. Kijima, Markov Processes for Stochastic Modeling, 1997.
DOI : 10.1007/978-1-4899-3132-0

L. Kleinrock, Queueing Systems, Theory, volume I, 1975.

L. Kleinrock, Queueing Systems, Computer Applications, volume II, 1976.

G. Koole, CONVEXITY IN TANDEM QUEUES, Probability in the Engineering and Informational Sciences, p.1331, 2004.
DOI : 10.1017/S0269964804181023

G. Koole, A Formula for Tail Probabilities of Cox Distributions, Journal of Applied Probability, vol.41, p.935938, 2004.

G. Koole and A. Mandelbaum, Queueing Models of Call Centers An Introduction, Annals of Operations Research, vol.113, p.4159, 2002.

G. Koole, M. Nuyens, and R. Righter, The Eect of Service Time Variability on Maximum Queue Lengths in MX/G/1 Queues, Journal of Applied Probability, vol.42, 2005.

G. Koole and A. Pot, A Note on Prot Maximization and Monotonicity for Inbound Call Centers, 2005.

G. Koole and A. Pot, An Overview of Routing and Stang Algorithms in Multi-Skill Customer Contact Center, 2006.

A. Krinik and Y. Sourouri, Taylor Series Solutions of Classical Queueing Systems, p.11, 1990.

C. R. Larson, OR Forum???Perspectives on Queues: Social Justice and the Psychology of Queueing, Operations Research, vol.35, issue.6, p.895905, 1987.
DOI : 10.1287/opre.35.6.895

H. L. Lee and M. A. Cohen, A Note on the Convexity of Performance Measures of, C Queueing Systems. Journal of Applied Probability, vol.20, p.920923, 1983.

Y. Lu and M. S. Squillante, Scheduling to Minimize General Functions of the Mean and Variance of Sojourn Times in Queueing Systems, Working Paper, IBM Research Division, 2004.

D. Maister, Psychology of Waiting Lines, Harvard Business School Cases, p.7178, 1984.

A. Mandelbaum, Call Centers (Centres): Research Bibliography with Abstracts, 2002.

A. Mandelbaum, A. Sakov, and S. Zeltyn, Empirical Analysis of a Call Center, 2000.

A. Mandelbaum and M. I. Reiman, On Pooling in Queueing Networks, Management Science, vol.44, issue.7, p.971981, 1998.
DOI : 10.1287/mnsc.44.7.971

A. Mandelbaum and S. Zeltyn, Stang Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call Centers, Working paper, 2006.

Y. H. Mao, Ergodic degrees for continuous-time Markov chains, Science in China Series A, vol.41, issue.2, p.161174, 2004.
DOI : 10.1360/02ys0306

L. Meister and J. G. Shanthikumar, Concavity of the Throughput of Tandem Queueing System with Finite Buer Storage Space, Advances In Applied Probability, vol.22, p.764767, 1990.

E. J. Messerli, Proof of a Convexity Property of the Erlang B Formula. The Bell System Technical Journal, p.951553, 1972.

R. Nagarajan and D. Towsley, A Note on the Convexity of the Probability of a Full Buer in the, 1992.

E. Nakibly, Predicting Waiting Times in Telephone Service Systems The Senate of the Technion, 2002.

P. Naor, The Regulation of Queue Size by Levying Tolls, Econometrica, vol.37, issue.1, p.1524, 1969.
DOI : 10.2307/1909200

E. L. Örmeci, Dynamic Admission Control in a Call Center With One Shared and Two Dedicated Service Facilities, IEEE Transactions on Automatic Control, vol.49, issue.7, p.11571161, 2004.
DOI : 10.1109/TAC.2004.831133

A. Pacheco, Second-order properties of the loss probability inM/M/s/s +c systems, Queueing Systems: Theory and Applications (QUESTA), p.309324, 1994.
DOI : 10.1007/BF01189242

P. R. Parthasarathy, A Transient Solution Queue: A New Simple Approach, Advances in Applied Probability, vol.19, issue.1, p.997998, 1987.

E. Pekoz, Optimal Policies for Multi-Server Non-Preemptive Priority queues, Queueing Systems: Theory and Applications (QUESTA), p.91101, 2002.

M. P. Pierson and W. Whitt, A Statistically-Fit Markovian Approximation of a Basic Call-Center Model, 2006.

M. Pinedo, S. Seshadri, and S. J. , Call Centers in Financial Services: Strategies, Technologies, and Operations
DOI : 10.1007/978-1-4615-4605-4_18

V. Pla, V. Casares-giner, and M. , On a Multiserver Finite Buer Queue with Impatient Customers, Proceedings of the ITC Specialist Seminar on Performance Evaluation of Wireless and Mobile Systems, 2004.

A. Pot, Routing and Planning Algorithms for Multi-Skill Contact Centers, 2006.

W. H. Randolph, Queueing Methods for Services and Manufacturing, 1991.

S. I. Rosenlund, Upwards Passage Times in the Non-Negative Birth-Death Process

M. H. Rothkopf and P. Rech, Perspectives on Queues: Combining Queues is Not Always Beneficial, Operations Research, vol.35, issue.6, p.906909, 1987.
DOI : 10.1287/opre.35.6.906

R. Schonberger, World Class Manufacturing: The Lessons of Simplicity Applied, pp.10-11, 1986.

L. E. Schrage and L. W. Miller, The Queue M/G/1 with the Shortest Remaining Processing Time Discipline, Operations Research, vol.14, p.670684, 1966.

M. Shaked and J. G. Shanthikumar, Stochastic Convexity and Its Applications, Advances in Applied Probability, vol.20, p.427446, 1988.

J. G. Shanthikumar, Stochastic Majorization of Random Variables with Proportional Equilibrium Rate, Advances in Applied Probability, vol.19, p.854872, 1987.

D. R. Smith and W. Whitt, Resource Sharing for Eciency in Trac Systems, The Bell System Technical Journal, p.3955, 1981.

U. Sumita, On Conditional Passage Time Structure of Birth-Death Processes, Journal of Applied Probability, vol.21, p.1021, 1984.

L. Takâcs, Introduction to the Theory of Queues, 1960.

A. M. Tarabia, Transient Analysis of M/M/1/N Queue -An Alternative Approach, Tamkang Journal of Science and Engineering, vol.3, p.263266, 2000.

S. Taylor, Waiting for Service: The Relationship between Delays and Evaluations of Service, Journal of Marketing, vol.58, issue.2, p.5669, 1994.
DOI : 10.2307/1252269

E. Tekin, W. J. Hopp, and M. P. Varoyen, Pooling strategies for call center agent cross-training, IIE Transactions, vol.7, issue.6, 2004.
DOI : 10.1111/j.1937-5956.1993.tb00094.x

H. Y. Tu and H. Kumin, A Convexity Result for a Class of GI/G/1 Queueing Systems, Operations Research, vol.31, p.948950, 1983.

N. M. Van-dijk and E. Van-der-sluis, Check-in computation and optimization by simulation and IP in combination, European Journal of Operational Research, vol.171, issue.3, p.11521168, 2006.
DOI : 10.1016/j.ejor.2005.01.023

R. B. Wallace and W. Whitt, A Stang Algorithm for Call Centers with Skill-Based Routing. Manufacturing & Service Operations Management, 2005.

A. R. Ward and W. Whitt, Predicting response times in processor-sharing queues, Proceedings of the Fields Institute Conference on Communication Networks, 2000.
DOI : 10.1090/fic/028/01

A. R. Ward and P. W. Glynn, A Diusion Approximation for a Markovian Queue with Reneging, Queueing Systems: Theory and Applications (QUESTA), p.103128, 2003.

R. R. Weber, On the Marginal Benet of Adding Servers to G/GI/m Queues, Management Science, vol.26, p.946951, 1980.

R. R. Weber, A Note on Waiting Times in Single Server Queues, Operations Research, vol.31, p.950951, 1983.

W. Whitt, Blocking When Service Is Required From Several Facilities Simultaneously, AT&T Technical Journal, vol.64, issue.8, p.18071856, 1985.
DOI : 10.1002/j.1538-7305.1985.tb00038.x

W. Whitt, Counterexamples for comparisons of queues with finite waiting rooms, Queueing Systems: Theory and Applications (QUESTA), p.271278, 1992.
DOI : 10.1007/BF01159210

W. Whitt, Improving Service by Informing Customers About Anticipated Delays, Management Science, vol.45, issue.2, 1999.
DOI : 10.1287/mnsc.45.2.192

W. Whitt, Partitioning Customers into Service Groups, Management Science, vol.45, issue.11, pp.1579-1592, 1999.
DOI : 10.1287/mnsc.45.11.1579

W. Whitt, Predicting Queueing Delays, Management Science, vol.45, issue.6, p.870888, 1999.
DOI : 10.1287/mnsc.45.6.870

W. Whitt, Stochastic Models for the Design and Management of Customer Contact Centers: Some Research Directions, 2002.

W. Whitt, Engineering Solution of a Basic Call-Center Model, Management Science, vol.51, issue.2, p.221235, 2005.
DOI : 10.1287/mnsc.1040.0302

W. Whitt, Sensitivity of Performance in the Erlang-A Queueing Model to Changes in the Model Parameters, Operations Research, vol.54, issue.2, p.247260, 2006.
DOI : 10.1287/opre.1050.0257

S. H. Xu, R. Righter, and S. J. , Optimal Dynamic Assignment of Customers to Heterogeneous Servers in Parallel, Operations Research, vol.40, issue.6, p.11261138, 1992.
DOI : 10.1287/opre.40.6.1126

D. D. Yao and J. G. Shanthikumar, The Optimal Input Rates To A System Of Manufacturing Cells, INFOR: Information Systems and Operational Research, vol.25, issue.1, p.5765, 1987.
DOI : 10.1080/03155986.1987.11732028

D. Zakay, An Integrated Model of Time Estimation. Times and Human Cognition: A Life Span Perspective, 1989.

S. Zeltyn and A. Mandelbaum, Call Centers with Impatient Customers: Many-Servers Asymptotics of the, Queueing Systems: Theory and Applications (QUESTA), p.361402, 2005.