I. A. Ahmad and P. Lin, Nonparametric sequential estimation of a multiple regression function, Bull. Math. Statist, vol.17, pp.63-75, 1976.

M. A. Arcones, The Law of the Iterated Logarithm for a Triangular Array of Empirical Processes, Electronic Journal of Probability, vol.2, issue.0, pp.1-39, 1997.
DOI : 10.1214/EJP.v2-19

D. Bosq, Nonparametric statistics for stochastic processes, Lectures notes in Control and Inform. Sc, 1985.

G. Collomb, Propri???t???s de convergence presque compl???te du pr???dicteur ??? noyau, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.26, issue.3, pp.441-460, 1984.
DOI : 10.1007/BF00533708

G. Collomb and W. Härdle, Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations, Proc. and their Appl, pp.77-89, 1986.
DOI : 10.1016/0304-4149(86)90017-7

L. Devroye, On the pointwise and integral convergence of recursive kernel estimates of probability densities, pp.113-128, 1979.

L. Devroye, The uniform convergence of the Nadaraya-Watson regression function estimate, Can, J. Stat, vol.6, pp.179-191, 1979.

L. Devroye and T. J. Wagner, On the L 1 convergence of kernel estimators of regression functions with applications in discrimination, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.15, issue.1, pp.51-66, 1980.
DOI : 10.1007/BF00533813

W. F. Eddy, Optimum Kernel Estimators of the Mode, The Annals of Statistics, vol.8, issue.4, pp.870-882, 1980.
DOI : 10.1214/aos/1176345080

W. F. Eddy, The asymptotic distributions of kernel estimators of the mode, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.42, issue.3, pp.279-290, 1982.
DOI : 10.1007/BF00532221

W. Feller, An introduction to probability theory and its applications, 1970.

F. Gao, Moderate deviations and large deviations for kernel density estimators, Journal of Theoretical Probability, vol.16, issue.2, pp.401-418, 2003.
DOI : 10.1023/A:1023574711733

E. Giné and A. Guillou, Rates of strong uniform consistency for multivariate kernel density estimators, Annales de l?Institut Henri Poincare (B) Probability and Statistics, vol.38, issue.6, pp.907-921, 2002.
DOI : 10.1016/S0246-0203(02)01128-7

P. Hall, Laws of the iterated logarithm for nonparametric density estimators, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.1, pp.47-61, 1981.
DOI : 10.1007/BF00531973

C. Joutard, Sharp large deviations in nonparametric estimation, Journal of Nonparametric Statistics, vol.337, issue.3, pp.293-306, 2003.
DOI : 10.1023/A:1023574711733

V. D. Konakov, On asymptotic normality of the sample mode of multivariate distributions , Theory Probab, pp.836-842, 1973.

L. Lei and L. Wu, The exponential convergence of kernel density estimator in L 1 for phi-mixing processes, Ann. I.S.U.P, vol.48, pp.59-68, 2004.

L. Lei and L. Wu, Large deviations of kernel density estimator in <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> for uniformly ergodic Markov processes, Stochastic Processes and their Applications, vol.115, issue.2, pp.275-298, 2005.
DOI : 10.1016/j.spa.2004.09.004

L. Lei, L. Wu, and B. Xie, )-DISTANCE, Ser. Biostat, vol.1, pp.89-97, 2003.
DOI : 10.1142/9789812796707_0007

L. Lei, Large deviations of the kernel density estimator in L 1 (R d ) for reversible Markov processes, pp.65-83, 2006.

D. Louani, Large deviations limit theorems for the kernel density estimator, Scand, J. Statist, vol.25, pp.243-253, 1998.
DOI : 10.1111/1467-9469.00101

D. Louani, Some Large Deviations Limit Theorems in Conditional Nonparametric Statistics, Statistics, vol.26, issue.2, pp.171-196, 1999.
DOI : 10.1214/aos/1176349943

D. Louani, Large deviations for the L1-distance in kernel density estimation, Journal of Statistical Planning and Inference, vol.90, issue.2, pp.177-182, 2000.
DOI : 10.1016/S0378-3758(00)00124-5

Y. P. Mack and B. W. Silverman, Weak and strong uniform consistency of kernel regression estimates, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.26, issue.No. 2, pp.61-405, 1982.
DOI : 10.1007/BF00539840

V. V. Menon, B. Prasad, and R. S. Singh, Non-parametric recursive estimates of a probability density function and its derivatives, Journal of Statistical Planning and Inference, vol.9, issue.1, pp.73-82, 1984.
DOI : 10.1016/0378-3758(84)90046-6

A. Mokkadem and M. Pelletier, The law of the iterated logarithm for the multivariate kernel mode estimator, ESAIM : Probab, pp.1-21, 2003.

A. Mokkadem, M. Pelletier, and J. Worms, LARGE AND MODERATE DEVIATIONS PRINCIPLES FOR KERNEL ESTIMATION OF A MULTIVARIATE DENSITY AND ITS PARTIAL DERIVATIVES, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.47, issue.4, pp.489-502, 2005.
DOI : 10.1111/j.1467-842X.2005.00411.x

E. A. Nadaraya, On Estimating Regression, Theory of Probability & Its Applications, vol.9, issue.1, pp.186-190, 1964.
DOI : 10.1137/1109020

E. A. Nadaraya, On non-parametric estimates of density functions and regression curves, Theory Probab, pp.186-190, 1965.

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

J. Romano, On Weak Convergence and Optimality of Kernel Density Estimates of the Mode, The Annals of Statistics, vol.16, issue.2, pp.629-647, 1988.
DOI : 10.1214/aos/1176350824

M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, vol.27, issue.3, pp.832-837, 1956.
DOI : 10.1214/aoms/1177728190

G. Roussas, Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function : Application to regression and hazard rate estimate, J. of Nonparam. Statist, vol.3, pp.171-195, 1992.

L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode, Sankhya Ser. A, vol.39, pp.243-250, 1977.

M. Samanta, Nonparametric estimation of the mode of a multivariate density, South African Statist, J, vol.7, pp.109-117, 1973.

B. W. Silverman, Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives, The Annals of Statistics, vol.6, issue.1, pp.177-184, 1978.
DOI : 10.1214/aos/1176344076

R. S. Singh, Nonparametric estimation of mixed partial derivatives of a multivariate density, Journal of Multivariate Analysis, vol.6, issue.1, pp.111-122, 1976.
DOI : 10.1016/0047-259X(76)90023-3

R. S. Singh, Speed of convergence in nonparametric estimation of a multivariate ??-density and its mixed partial derivatives, Journal of Statistical Planning and Inference, vol.5, issue.3, pp.287-298, 1981.
DOI : 10.1016/0378-3758(81)90009-4

W. Stute, A law of the iterated logarithm for kernel density estimators, pp.414-422, 1982.

J. Van-ryzin, On Strong Consistency of Density Estimates, The Annals of Mathematical Statistics, vol.40, issue.5, pp.1765-1772, 1969.
DOI : 10.1214/aoms/1177697388

P. Vieu, A note on density mode estimation, Statistics & Probability Letters, vol.26, issue.4, pp.297-307, 1996.
DOI : 10.1016/0167-7152(95)00024-0

G. S. Watson, Smooth regression analysis, Sankhya Ser. A, vol.26, pp.359-372, 1964.

E. J. Wegman and H. I. Davies, Remarks on Some Recursive Estimators of a Probability Density, The Annals of Statistics, vol.7, issue.2, pp.316-327, 1979.
DOI : 10.1214/aos/1176344616

W. Wertz, Sequential and recursive estimators of the probability density, Statistics, vol.14, issue.2, pp.277-295, 1985.
DOI : 10.1080/02331888508801856

C. T. Wolverton and T. J. Wagner, Asymptotically optimal discriminant functions for pattern classification, IEEE Transactions on Information Theory, vol.15, issue.2, pp.258-265, 1969.
DOI : 10.1109/TIT.1969.1054295

J. Worms, Moderate and large deviations of some dependent variables, Part II : some kernel estimators, Math. Methods Statist, vol.10, pp.161-193, 2001.

I. A. Ahmad and P. Lin, Nonparametric sequential estimation of a multiple regression function, Bull. Math. Statist, vol.17, pp.63-75, 1976.

R. J. Carroll, On sequential density estimation, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.14, issue.2, pp.137-151, 1976.
DOI : 10.1007/BF00533997

H. I. Davies, Strong consistency of a sequential estimator of a probability density function, Bull. Math. Statist, vol.15, pp.49-54, 1973.

L. Devroye, On the pointwise and integral convergence of recursive kernel estimates of probability densities, pp.113-128, 1979.

W. Feller, An introduction to probability theory and its applications, 1970.

F. Gao, Moderate deviations and large deviations for kernel density estimators, Journal of Theoretical Probability, vol.16, issue.2, pp.401-418, 2003.
DOI : 10.1023/A:1023574711733

L. Lei and L. Wu, The exponential convergence of kernel density estimator in L 1 for phi-mixing processes, Ann. I.S.U.P, vol.48, pp.59-68, 2004.

L. Lei and L. Wu, Large deviations of kernel density estimator in <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> for uniformly ergodic Markov processes, Stochastic Processes and their Applications, vol.115, issue.2, pp.275-298, 2005.
DOI : 10.1016/j.spa.2004.09.004

L. Lei, L. Wu, and B. Xie, )-DISTANCE, Ser. Biostat, vol.1, pp.89-97, 2003.
DOI : 10.1142/9789812796707_0007

L. Lei, Large deviations of the kernel density estimator in L 1 (R d ) for reversible Markov processes, pp.12-65, 2006.

D. Louani, Large deviations limit theorems for the kernel density estimator, Scand, J. Statist, vol.25, pp.243-253, 1998.

D. Louani, Large deviations for the L1-distance in kernel density estimation, Journal of Statistical Planning and Inference, vol.90, issue.2, pp.177-182, 2000.
DOI : 10.1016/S0378-3758(00)00124-5

V. V. Menon, B. Prasad, and R. S. Singh, Non-parametric recursive estimates of a probability density function and its derivatives, Journal of Statistical Planning and Inference, vol.9, issue.1, pp.73-82, 1984.
DOI : 10.1016/0378-3758(84)90046-6

A. Mokkadem, M. Pelletier, and J. Worms, LARGE AND MODERATE DEVIATIONS PRINCIPLES FOR KERNEL ESTIMATION OF A MULTIVARIATE DENSITY AND ITS PARTIAL DERIVATIVES, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.47, issue.4, pp.489-502, 2005.
DOI : 10.1111/j.1467-842X.2005.00411.x

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

A. A. Puhalskii, The method of stochastic exponentials for large deviations, Stoch, Proc. and their Appl. 54, pp.45-70, 1994.

M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, vol.27, issue.3, pp.832-837, 1956.
DOI : 10.1214/aoms/1177728190

G. G. Roussas, Exact rates of almost sure convergence of a recursive kernel estimate of a probability densiy function: Application to regression and hazard rate estimation, Journal of Nonparametric Statistics, vol.34, issue.3, pp.171-195, 1992.
DOI : 10.1214/aos/1176344616

E. J. Wegman, Nonparametric probability density estimation, Journal of Statistical Computation and Simulation, vol.1, issue.3, pp.225-245, 1972.
DOI : 10.1214/aoms/1177696810

E. J. Wegman and H. I. Davies, Remarks on Some Recursive Estimators of a Probability Density, The Annals of Statistics, vol.7, issue.2, pp.316-327, 1979.
DOI : 10.1214/aos/1176344616

W. Wertz, Sequential and recursive estimators of the probability density, Statistics, vol.14, issue.2, pp.277-295, 1985.
DOI : 10.1080/02331888508801856

C. T. Wolverton and T. J. Wagner, Asymptotically optimal discriminant functions for pattern classification, IEEE Transactions on Information Theory, vol.15, issue.2, pp.258-265, 1969.
DOI : 10.1109/TIT.1969.1054295

J. Worms, Moderate and large deviations of some dependent variables, Part II : some kernel estimators, Math. Methods Statist, vol.10, pp.161-193, 2001.

H. Yamato, Sequential estimation of a continuous probability density function and mode, Bull. Math. Statist, vol.14, pp.1-12, 1971.

I. A. Ahmad and P. Lin, Nonparametric sequential estimation of a multiple regression function, Bull. Math. Statist, vol.17, pp.63-75, 1976.

N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, 1987.
DOI : 10.1017/CBO9780511721434

D. Bosq, Nonparametric statistics for stochastic processes. Lectures notes in Control and Inform. Sc, 1985.

G. Collomb, Propri???t???s de convergence presque compl???te du pr???dicteur ??? noyau, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.26, issue.3, pp.441-460, 1984.
DOI : 10.1007/BF00533708

G. Collomb and W. Härdle, Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations, Stoch. Proc. and their Appl, pp.77-89, 1986.
DOI : 10.1016/0304-4149(86)90017-7

L. Devroye, The uniform convergence of the nadaraya-watson regression function estimate, Canadian Journal of Statistics, vol.26, issue.2, pp.179-191, 1979.
DOI : 10.2307/3315046

L. Devroye and T. J. Wagner, On the L 1 convergence of kernel estimators of regression functions with applications in discrimination, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.15, issue.1, pp.51-66, 1980.
DOI : 10.1007/BF00533813

W. Feller, An introduction to probability theory and its applications, 1970.

C. Joutard, Sharp large deviations in nonparametric estimation, Journal of Nonparametric Statistics, vol.337, issue.3, pp.293-306, 2006.
DOI : 10.1023/A:1023574711733

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.529.5097

D. Louani, Some Large Deviations Limit Theorems in Conditional Nonparametric Statistics, Statistics, vol.26, issue.2, pp.171-196, 1999.
DOI : 10.1214/aos/1176349943

Y. P. Mack and B. W. Silverman, Weak and strong uniform consistency of kernel regression estimates, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.26, issue.No. 2, pp.61-405, 1982.
DOI : 10.1007/BF00539840

A. Mokkadem, M. Pelletier, and B. Thiam, Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017207

A. Mokkadem, M. Pelletier, and J. Worms, LARGE AND MODERATE DEVIATIONS PRINCIPLES FOR KERNEL ESTIMATION OF A MULTIVARIATE DENSITY AND ITS PARTIAL DERIVATIVES, Australian <html_ent glyph="@amp;" ascii="&"/> New Zealand Journal of Statistics, vol.47, issue.4, pp.489-502, 2005.
DOI : 10.1111/j.1467-842X.2005.00411.x

E. A. Nadaraya, On Estimating Regression, Theory of Probability & Its Applications, vol.9, issue.1, pp.186-190, 1964.
DOI : 10.1137/1109020

R. T. Rockafellar, Convex analysis, 1970.
DOI : 10.1515/9781400873173

G. Roussas, Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function : Application to regression and hazard rate estimate, J. of Nonparam. Statist, vol.3, pp.171-195, 1992.

R. Senoussi, Loi du log itéré et identification, Thèse, 1991.

G. S. Watson, Smooth regression analysis, Sankhya Ser. A, vol.26, pp.359-372, 1964.

C. Abraham, G. Biau, and B. Cadre, Simple estimation of the mode of a multivariate density, Canadian Journal of Statistics, vol.26, issue.1, pp.23-34, 2003.
DOI : 10.2307/3315901

C. Abraham, G. Biau, and B. Cadre, On the asymptotic properties of a simple estimate of the Mode, ESAIM: Probability and Statistics, vol.8, pp.1-11, 2004.
DOI : 10.1051/ps:2003015

H. L. Davies, Strong consistency of a sequential estimator of a probability density function, Bull. Math. Statist, vol.15, pp.49-54, 1973.

L. Devroye, On the pointwise and integral convergence of recursive kernel estimates of probability densities, Utilitas Math, vol.15, pp.113-128, 1979.

W. F. Eddy, Optimum Kernel Estimators of the Mode, The Annals of Statistics, vol.8, issue.4, pp.870-882, 1980.
DOI : 10.1214/aos/1176345080

W. F. Eddy, The asymptotic distributions of kernel estimators of the mode, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.42, issue.3, pp.279-290, 1982.
DOI : 10.1007/BF00532221

U. Einmahl, A useful estimate in the multidimensional invariance principle. Probability theory and related fields, pp.81-101, 1987.

. Feller, An introduction to probability theory and its applications, 1970.

P. Hall, Effect of Bias Estimation on Coverage Accuracy of Bootstrap Confidence Intervals for a Probability Density, The Annals of Statistics, vol.20, issue.2, pp.675-694, 1992.
DOI : 10.1214/aos/1176348651

V. D. Konakov, On asymptotic normality of the sample mode of multivariate distributions , Theory Probab, pp.836-842, 1973.

V. Koval, A new law of the iterated logarithm in R d with application to matrixnormalized sums of randoms vectors, Journal of Theoretical Probability, vol.15, issue.1, pp.249-257, 2002.
DOI : 10.1023/A:1013851720494

V. V. Menon, B. Prasad, and R. S. Singh, Non-parametric recursive estimates of a probability density function and its derivatives, Journal of Statistical Planning and Inference, vol.9, issue.1, pp.73-82, 1984.
DOI : 10.1016/0378-3758(84)90046-6

A. Mokkadem, M. Pelletier, and B. Thiam, Large and moderate deviations principles for recursive kernel estimators of a multivariate density and its partial derivatives, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017207

A. Mokkadem and M. Pelletier, The law of the iterated logarithm for the multivariate kernel mode estimator, ESAIM: Probability and Statistics, vol.7, pp.1-21, 2003.
DOI : 10.1051/ps:2003004

E. A. Nadaraya, On non-parametric estimates of density functions and regression curves. Theory Probab, pp.186-190, 1965.

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

V. V. Petrov, Limit theorems in probability theory, 1995.

J. Romano, On Weak Convergence and Optimality of Kernel Density Estimates of the Mode, The Annals of Statistics, vol.16, issue.2, pp.629-647, 1988.
DOI : 10.1214/aos/1176350824

M. Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, vol.27, issue.3, pp.832-837, 1956.
DOI : 10.1214/aoms/1177728190

G. Roussas, Exact rates of almost sure convergence of a recursive kernel estimate of a probability density function : Application to regression and hazard rate estimate, J. of Nonparam. Statist, vol.3, pp.171-195, 1992.

L. Rüschendorf, Consistency of estimators for multivariate density functions and for the mode, Sankhya Ser. A, vol.39, pp.243-250, 1977.

M. Samanta, Nonparametric estimation of the mode of a multivariate density, South African Statist, J, vol.7, pp.109-117, 1973.

J. Van-ryzin, On Strong Consistency of Density Estimates, The Annals of Mathematical Statistics, vol.40, issue.5, pp.1765-1772, 1969.
DOI : 10.1214/aoms/1177697388

P. Vieu, A note on density mode estimation, Statistics & Probability Letters, vol.26, issue.4, pp.297-307, 1996.
DOI : 10.1016/0167-7152(95)00024-0

E. J. Wegman and H. I. Davies, Remarks on Some Recursive Estimators of a Probability Density, The Annals of Statistics, vol.7, issue.2, pp.316-327, 1979.
DOI : 10.1214/aos/1176344616

W. Wertz, Sequential and recursive estimators of the probability density, Statistics, vol.14, issue.2, pp.277-295, 1985.
DOI : 10.1080/02331888508801856

C. T. Wolverton and T. J. Wagner, Asymptotically optimal discriminant functions for pattern classification, IEEE Transactions on Information Theory, vol.15, issue.2, pp.258-265, 1969.
DOI : 10.1109/TIT.1969.1054295

H. Yamato, Sequential estimation of a continuous probability density function and mode, Bull. Math. Satist, vol.14, pp.1-12, 1971.