A. L. Bretenaker and J. B. Floch, Laser eigenstates in the framework of a spatially generalized Jones matrix formalism, pp.230-238, 1991.

A. Brunel, M. Amon, and . Vallet, Dual-polarization microchip laser at 153??m, Optics Letters, vol.30, issue.18, pp.2418-2420, 2005.
DOI : 10.1364/OL.30.002418

S. Donati, Laser interferometry by induced modulation of cavity field, Journal of Applied Physics, vol.49, issue.2, pp.495-497, 1978.
DOI : 10.1063/1.324672

A. E. Evtuhov and . Siegman, A ???Twisted-Mode??? Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity, Applied Optics, vol.4, issue.1, pp.142-143, 1965.
DOI : 10.1364/AO.4.000142

S. Fei and . Zhang, Self-mixing interference effects of orthogonally polarized dual frequency laser, Optics Express, vol.12, issue.25, pp.6100-6105, 2004.
DOI : 10.1364/OPEX.12.006100

H. Kervevan, S. Gilles, M. Girard, P. Laroche, and . Leprince, Self-mixing laser Doppler velocimetry with a dual-polarization Yb:Er glass laser, Applied Physics B, vol.44, issue.1, pp.169-176, 2007.
DOI : 10.1007/s00340-006-2461-1

E. Lamb and J. , Theory of an Optical Maser, Physical Review, vol.134, issue.6A, pp.1429-1450, 1964.
DOI : 10.1103/PhysRev.134.A1429

. Svelto, Amplitude and frequency stabilized solid-state lasers in the near infrared, Journal of Physics D: Applied Physics, vol.34, pp.2396-2407, 2001.

D. Lai, M. Brunel, and F. Bretenaker, Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber, Optics Letters, vol.28, issue.5, pp.199-201, 2003.
DOI : 10.1364/OL.28.000328

L. Floch, A. L. Floch, and R. L. Naour, -Type Loss Anisotropies, Physical Review A, vol.4, issue.1, pp.290-295, 1971.
DOI : 10.1103/PhysRevA.4.290

URL : https://hal.archives-ouvertes.fr/hal-00506747

[. Floch, La condition de résonance dans les lasers anisotropes contenant des lames biréfringentes, C. R. Acad. Sc. Paris, vol.277, pp.265-268, 1973.

[. Floch, G. Ropars, J. M. Lenormand, and R. L. Naour, Dynamics of Laser Eigenstates, Physical Review Letters, vol.52, issue.11, pp.918-921, 1984.
DOI : 10.1103/PhysRevLett.52.918

S. Liu, T. Zhang, J. Xu, Y. Zhu, and . Li, Self-mixing interference in Zeeman-birefringent dual frequency laser, Optics Communications, vol.241, issue.1-3, pp.159-166, 2004.
DOI : 10.1016/j.optcom.2004.06.062

S. Liu, L. Zhang, Y. Li, J. Li, and . Zhu, A 450 MHz frequency difference dual-frequency laser with optical feedback, Optics Communications, vol.231, issue.1-6, pp.349-356, 2004.
DOI : 10.1016/j.optcom.2003.12.001

A. D. May, P. Paddon, E. Sjerve, and G. Stephan, An alternative interpretation of the Zeeman and Faraday laser, Physical Review A, vol.53, issue.4, pp.2829-2841, 1996.
DOI : 10.1103/PhysRevA.53.2829

P. Nérin, P. Puget, G. Besesty, and . Chartier, Self-mixing using a dual-polarisation Nd:YAG microchip laser, Electronics Letters, vol.33, issue.6, pp.491-492, 1997.
DOI : 10.1049/el:19970353

P. A. Porta, D. Curtin, and J. G. Mc-inerney, Laser Doppler velocimetry by optical self-mixing in vertical-cavity surface-emitting lasers, IEEE Photonics Technology Letters, vol.14, issue.12, pp.1719-1721, 2002.
DOI : 10.1109/LPT.2002.804666