E. Friedberg, DNA repair and mutagenesis second edition, 2006.

M. Ichihashi, UV-induced skin damage, Toxicology, vol.189, issue.1-2, pp.21-39, 2003.
DOI : 10.1016/S0300-483X(03)00150-1

W. M. Baird, L. A. Hooven, and B. Mahadevan, Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action, Environmental and Molecular Mutagenesis, vol.543, issue.2-3, pp.106-114, 2005.
DOI : 10.1002/em.20095

P. G. Foiles, Mass spectrometric analysis of tobacco-specific nitrosamine-DNA adducts in smokers and nonsmokers, Chemical Research in Toxicology, vol.4, issue.3, pp.364-368, 1991.
DOI : 10.1021/tx00021a017

E. R. Stadtman, Importance of individuality in oxidative stress and aging 1,2 1Guest Editor: Rajindar S. Sohal 2This article is part of a series of reviews on ???Oxidative Stress and Aging.??? The full list of papers may be found on the homepage of the journal., Free Radical Biology and Medicine, vol.33, issue.5, pp.597-604, 2002.
DOI : 10.1016/S0891-5849(02)00904-8

P. Moller and H. Wallin, Adduct formation, mutagenesis and nucleotide excision repair of DNA damage produced by reactive oxygen species and lipid peroxidation product, Mutation Research/Reviews in Mutation Research, vol.410, issue.3
DOI : 10.1016/S1383-5742(97)00041-0

R. E. Rasmussen and R. B. Painter, Evidence for Repair of Ultra-Violet Damaged Deoxyribonucleic Acid in Cultured Mammalian Cells, Nature, vol.203, issue.4952, pp.1360-1362, 1964.
DOI : 10.1038/2031360a0

R. P. Boyce and P. Howard-flanders, RELEASE OF ULTRAVIOLET LIGHT-INDUCED THYMINE DIMERS FROM DNA IN E. COLI K-12, Proceedings of the National Academy of Sciences, vol.51, issue.2, pp.293-300, 1964.
DOI : 10.1073/pnas.51.2.293

R. B. Setlow and W. L. Carrier, THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM, Proceedings of the National Academy of Sciences, vol.51, issue.2, pp.226-231, 1964.
DOI : 10.1073/pnas.51.2.226

J. Cleaver, Defective Repair Replication of DNA in Xeroderma Pigmentosum, Nature, vol.218, issue.5142, pp.652-656, 1968.
DOI : 10.1038/218652a0

I. Mellon, V. A. Bohr, C. A. Smith, and P. C. Hanawalt, Preferential DNA repair of an active gene in human cells., Proceedings of the National Academy of Sciences, vol.83, issue.23, pp.8878-8882, 1986.
DOI : 10.1073/pnas.83.23.8878

R. D. Wood, P. Robins, and T. Lindahl, Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts, Cell, vol.53, issue.1, pp.97-106, 1988.
DOI : 10.1016/0092-8674(88)90491-6

A. Aboussekhra, Mammalian DNA nucleotide excision repair reconstituted with purified protein components, Cell, vol.80, issue.6, pp.859-868, 1995.
DOI : 10.1016/0092-8674(95)90289-9

URL : http://doi.org/10.1016/0092-8674(95)90289-9

R. Dip, U. Camenisch, and H. Naegeli, Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair, DNA Repair, vol.3, issue.11, pp.1409-1423, 2004.
DOI : 10.1016/j.dnarep.2004.05.005

Y. Nakatsu, XAB2, a Novel Tetratricopeptide Repeat Protein Involved in Transcription-coupled DNA Repair and Transcription, Journal of Biological Chemistry, vol.275, issue.45, pp.34931-34937, 2000.
DOI : 10.1074/jbc.M004936200

I. Mellon, Transcription-coupled repair: A complex affair, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.577, issue.1-2, pp.155-161, 2005.
DOI : 10.1016/j.mrfmmm.2005.03.016

M. E. Fitch, S. Nakajima, A. Yasui, and J. M. Ford, In Vivo Recruitment of XPC to UV-induced Cyclobutane Pyrimidine Dimers by the DDB2 Gene Product, Journal of Biological Chemistry, vol.278, issue.47, pp.46906-46910, 2003.
DOI : 10.1074/jbc.M307254200

A. Datta, The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase, Mutation Research/DNA Repair, vol.486, issue.2, pp.89-97, 2001.
DOI : 10.1016/S0921-8777(01)00082-9

D. P. Batty and R. D. Wood, Damage recognition in nucleotide excision repair of DNA, Gene, vol.241, issue.2
DOI : 10.1016/S0378-1119(99)00489-8

T. Riedl, F. Hanaoka, and J. M. Egly, The comings and goings of nucleotide excision repair factors on damaged DNA, The EMBO Journal, vol.22, issue.19, pp.5293-5303, 2003.
DOI : 10.1093/emboj/cdg489

R. T. Abraham, Cell cycle checkpoint signaling through the ATM and ATR kinases, Genes & Development, vol.15, issue.17
DOI : 10.1101/gad.914401

K. H. Vousden and X. Lu, Live or let die: the cell's response to p53, Nature Reviews Cancer, vol.2, issue.8, pp.594-604, 2002.
DOI : 10.1038/nrc864

S. Adimoolam and J. M. Ford, p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene, Proceedings of the National Academy of Sciences, vol.273, issue.28, pp.12985-12990, 2002.
DOI : 10.1074/jbc.273.28.17517

B. J. Hwang, J. M. Ford, P. C. Hanawalt, and G. Chu, Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair, Proceedings of the National Academy of Sciences, vol.385, issue.2, pp.424-428, 1999.
DOI : 10.1016/S0921-8777(97)00029-3

X. W. Wang, The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway., Genes & Development, vol.10, issue.10, pp.1219-1232, 1996.
DOI : 10.1101/gad.10.10.1219

M. E. Fitch, The DDB2 nucleotide excision repair gene product p48 enhances global genomic repair in p53 deficient human fibroblasts, DNA Repair, vol.2, issue.7, pp.819-826, 2003.
DOI : 10.1016/S1568-7864(03)00066-1

A. Mikecz, The nuclear ubiquitin-proteasome system, Journal of Cell Science, vol.119, issue.10, pp.1977-1984, 2006.
DOI : 10.1242/jcs.03008

J. M. Ng, A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein, Genes & Development, vol.17, issue.13, pp.1630-1645, 2003.
DOI : 10.1101/gad.260003

W. G. Verly and Y. Paquette, B, Canadian Journal of Biochemistry, vol.50, issue.2, pp.217-224, 1972.
DOI : 10.1139/o72-029

T. Lindahl, An N-Glycosidase from Escherichia coli That Releases Free Uracil from DNA Containing Deaminated Cytosine Residues, Proceedings of the National Academy of Sciences, vol.71, issue.9, pp.3649-3653, 1974.
DOI : 10.1073/pnas.71.9.3649

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC433833/pdf

T. Lindahl, DNA Glycosylases, Endonucleases for Apurinic/Apyrimidinic Sites, and Base Excision-Repair, Prog Nucleic Acid Res Mol Biol, vol.22, pp.135-192, 1979.
DOI : 10.1016/S0079-6603(08)60800-4

Y. Matsumoto, K. Kim, and D. F. Bogenhagen, Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair., Molecular and Cellular Biology, vol.14, issue.9, pp.6187-6197, 1994.
DOI : 10.1128/MCB.14.9.6187

G. Frosina, Two pathways for base excision repair in mammalian cells, J Biol Chem, vol.271, pp.9573-9578, 1996.

Y. Masuda, R. A. Bennett, and B. Demple, Rapid Dissociation of Human Apurinic Endonuclease (Ape1) from Incised DNA Induced by Magnesium, Journal of Biological Chemistry, vol.273, issue.46, pp.30360-30365, 1998.
DOI : 10.1074/jbc.273.46.30360

S. Xanthoudakis, G. G. Miao, and T. Curran, The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains., Proceedings of the National Academy of Sciences, vol.91, issue.1, pp.23-27, 1994.
DOI : 10.1073/pnas.91.1.23

P. Fortini, E. Parlanti, O. M. Sidorkina, J. Laval, and E. Dogliotti, The Type of DNA Glycosylase Determines the Base Excision Repair Pathway in Mammalian Cells, Journal of Biological Chemistry, vol.274, issue.21, pp.15230-15236, 1999.
DOI : 10.1074/jbc.274.21.15230

A. Klungland and T. Lindahl, Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1), The EMBO Journal, vol.16, issue.11, pp.3341-3348, 1997.
DOI : 10.1093/emboj/16.11.3341

A. Viswanathan and P. W. Doetsch, Effects of Nonbulky DNA Base Damages on Escherichia coli RNA Polymerase-mediated Elongation and Promoter Clearance, Journal of Biological Chemistry, vol.273, issue.33, pp.21276-21281, 1998.
DOI : 10.1074/jbc.273.33.21276

S. Tornaletti, L. S. Maeda, D. R. Lloyd, D. Reines, and P. C. Hanawalt, Effect of Thymine Glycol on Transcription Elongation by T7 RNA Polymerase and Mammalian RNA Polymerase II, Journal of Biological Chemistry, vol.276, issue.48, pp.45367-45371, 2001.
DOI : 10.1074/jbc.M105282200

Y. R. Seo, M. L. Fishel, S. Amundson, M. R. Kelley, and M. L. Smith, Implication of p53 in base excision DNA repair: in vivo evidence, Oncogene, vol.21, issue.5, pp.731-737, 2002.
DOI : 10.1038/sj.onc.1205129

H. Offer, p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress, Cancer Res, vol.61, pp.88-96, 2001.

Z. Herceg and Z. Wang, Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.477, issue.1-2, pp.97-110, 2001.
DOI : 10.1016/S0027-5107(01)00111-7

A. Huber, P. Bai, J. M. De-murcia, and G. De-murcia, PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development, DNA Repair, vol.3, issue.8-9, pp.1103-1108, 2004.
DOI : 10.1016/j.dnarep.2004.06.002

J. B. Leppard, Z. Dong, Z. B. Mackey, and A. Tomkinson, Physical and Functional Interaction between DNA Ligase III?? and Poly(ADP-Ribose) Polymerase 1 in DNA Single-Strand Break Repair, Molecular and Cellular Biology, vol.23, issue.16, pp.5919-5927, 2003.
DOI : 10.1128/MCB.23.16.5919-5927.2003

V. Schreiber, Poly(ADP-ribose) Polymerase-2 (PARP-2) Is Required for Efficient Base Excision DNA Repair in Association with PARP-1 and XRCC1, Journal of Biological Chemistry, vol.277, issue.25, pp.23028-23036, 2002.
DOI : 10.1074/jbc.M202390200

S. L. Allinson, . Dianova, G. L. Dianov, and . Poly, ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing, Acta Biochim Pol, vol.50, pp.169-179, 2003.

T. A. Nagelhus, G. Slupphaug, T. Lindmo, and H. Krokan, Cell Cycle Regulation and Subcellular Localization of the Major Human Uracil-DNA Glycosylase, Experimental Cell Research, vol.220, issue.2, pp.292-297, 1995.
DOI : 10.1006/excr.1995.1318

R. Kanaar, J. H. Hoeijmakers, and D. C. Van-gent, Molecular mechanisms of DNA double-strand break repair, Trends in Cell Biology, vol.8, issue.12, pp.483-489, 1998.
DOI : 10.1016/S0962-8924(98)01383-X

P. A. Jeggo, Identification of Genes Involved in Repair of DNA Double-Strand Breaks in Mammalian Cells, Radiation Research, vol.150, issue.5, pp.80-91, 1998.
DOI : 10.2307/3579810

F. Liang, P. J. Romanienko, D. T. Weaver, P. A. Jeggo, and M. Jasin, Chromosomal double-strand break repair in Ku80-deficient cells., Proceedings of the National Academy of Sciences, vol.93, issue.17, pp.8929-8933, 1996.
DOI : 10.1073/pnas.93.17.8929

T. M. Bliss and D. P. Lane, Ku Selectively Transfers between DNA Molecules with Homologous Ends, Journal of Biological Chemistry, vol.272, issue.9, pp.5765-5773, 1997.
DOI : 10.1074/jbc.272.9.5765

M. Yaneva, T. Kowalewski, and M. R. Lieber, Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies, The EMBO Journal, vol.16, issue.16
DOI : 10.1093/emboj/16.16.5098

O. Hammarsten and G. Chu, DNA-dependent protein kinase: DNA binding and activation in the absence of Ku, Proceedings of the National Academy of Sciences, vol.272, issue.9, pp.525-530, 1998.
DOI : 10.1074/jbc.272.9.5765

E. A. Hendrickson, Cell-Cycle Regulation of Mammalian DNA Double-Strand-Break Repair, The American Journal of Human Genetics, vol.61, issue.4, pp.795-800, 1997.
DOI : 10.1086/514895

S. L. Yu, R. E. Johnson, S. Prakash, and L. Prakash, Requirement of DNA Polymerase ?? for Error-Free Bypass of UV-Induced CC and TC Photoproducts, Molecular and Cellular Biology, vol.21, issue.1, pp.185-188, 2001.
DOI : 10.1128/MCB.21.1.185-188.2001

P. L. Fischhaber, Human DNA Polymerase kappa Bypasses and Extends beyond Thymine Glycols during Translesion Synthesis in Vitro, Preferentially Incorporating Correct Nucleotides, Journal of Biological Chemistry, vol.277, issue.40, pp.37604-37611, 2002.
DOI : 10.1074/jbc.M206027200

P. Hsieh, Molecular mechanisms of DNA mismatch repair, Mutation Research/DNA Repair, vol.486, issue.2, pp.71-87, 2001.
DOI : 10.1016/S0921-8777(01)00088-X

Z. Ozer, J. T. Reardon, D. S. Hsu, K. Malhotra, and A. Sancar, The other function of DNA photolyase: stimulation of excision repair of chemical damage to DNA, Biochemistry, vol.34, issue.49, pp.15886-15889, 1995.
DOI : 10.1021/bi00049a002

Y. F. Wei, K. C. Carter, R. P. Wang, and B. K. Shell, Molecular Cloning and Functional Analysis of a Human cDNA Encoding an Escherichia Coli AlkB Homolog, a Protein Involved in DNA Alkylation Damage Repair, Nucleic Acids Research, vol.24, issue.5, pp.931-937, 1996.
DOI : 10.1093/nar/24.5.931

T. Duncan, Reversal of DNA alkylation damage by two human dioxygenases, Proceedings of the National Academy of Sciences, vol.3, issue.16
DOI : 10.1073/pnas.161278998

P. A. Aas, Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA, Nature, vol.14, issue.6925, pp.859-863, 2003.
DOI : 10.1016/S0891-5849(01)00681-5

E. M. Duguid, Y. Mishina, and C. He, How Do DNA Repair Proteins Locate Potential Base Lesions? A Chemical Crosslinking Method to Investigate O6-Alkylguanine-DNA Alkyltransferases, Chemistry & Biology, vol.10, issue.9, pp.827-835, 2003.
DOI : 10.1016/j.chembiol.2003.08.007

S. Yoshizawa, D. Fourmy, and J. Puglisi, Recognition of the Codon-Anticodon Helix by Ribosomal RNA, Science, vol.285, issue.5434, pp.1722-1725, 1999.
DOI : 10.1126/science.285.5434.1722

J. T. Reardon, T. Bessho, H. C. Kung, P. H. Bolton, and A. Sancar, In vitro repair of oxidative DNA damage by human nucleotide excision repair system: Possible explanation for neurodegeneration in Xeroderma pigmentosum patients, Proceedings of the National Academy of Sciences, vol.44, issue.6, pp.9463-9468, 1997.
DOI : 10.1001/archneur.1987.00520180005004

J. C. Huang, D. S. Hsu, A. Kazantsev, and A. Sancar, Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts., Proceedings of the National Academy of Sciences, vol.91, issue.25
DOI : 10.1073/pnas.91.25.12213

T. Bessho, Nucleotide excision repair 3' endonuclease XPG stimulates the activity of base excision repairenzyme thymine glycol DNA glycosylase, Nucleic Acids Research, vol.27, issue.4, pp.979-983, 1999.
DOI : 10.1093/nar/27.4.979

A. Klungland, Base Excision Repair of Oxidative DNA Damage Activated by XPG Protein, Molecular Cell, vol.3, issue.1, pp.33-42, 1999.
DOI : 10.1016/S1097-2765(00)80172-0

M. Dusinska, Z. Dzupinkova, L. Wsolova, V. Harrington, and A. Collins, Possible involvement of XPA in repair of oxidative DNA damage deduced from analysis of damage, repair and genotype in a human population study, Mutagenesis, vol.21, issue.3, pp.205-211, 2006.
DOI : 10.1093/mutage/gel016

T. Izumi, Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage, Toxicology, vol.193, issue.1-2, pp.43-65, 2003.
DOI : 10.1016/S0300-483X(03)00289-0

D. F. Lee, R. Drouin, P. Pitsikas, and A. J. Rainbow, Detection of an Involvement of the Human Mismatch Repair Genes hMLH1 and hMSH2 in Nucleotide Excision Repair Is Dependent on UVC Fluence to Cells, Cancer Research, vol.64, issue.11, pp.3865-3870, 2004.
DOI : 10.1158/0008-5472.CAN-03-3193

A. Mazurek, M. Berardini, and R. Fishel, Activation of Human MutS Homologs by 8-Oxo-guanine DNA Damage, Journal of Biological Chemistry, vol.277, issue.10, pp.8260-8266, 2002.
DOI : 10.1074/jbc.M111269200

W. Liu, Nuclear Transport of Human DDB Protein Induced by Ultraviolet Light, Journal of Biological Chemistry, vol.275, issue.28, pp.21429-21434, 2000.
DOI : 10.1074/jbc.M000961200

S. Kamiuchi, Translocation of Cockayne syndrome group A protein to the nuclear matrix: Possible relevance to transcription-coupled DNA repair, Proceedings of the National Academy of Sciences, vol.16, issue.22, pp.201-206, 2002.
DOI : 10.1093/nar/16.22.10607

M. Christmann and B. Kaina, Nuclear Translocation of Mismatch Repair Proteins MSH2 and MSH6 as a Response of Cells to Alkylating Agents, Journal of Biological Chemistry, vol.275, issue.46, pp.36256-36262, 2000.
DOI : 10.1074/jbc.M005377200

X. Wu, S. M. Shell, Y. Liu, and Y. Zou, ATR-dependent checkpoint modulates XPA nuclear import in response to UV irradiation, Oncogene, vol.16, issue.5, 2006.
DOI : 10.1038/sj.onc.1209828

E. B. Jackson, C. A. Theriot, R. Chattopadhyay, S. Mitra, and T. Izumi, Analysis of nuclear transport signals in the human apurinic/apyrimidinic endonuclease (APE1/Ref1), Nucleic Acids Research, vol.33, issue.10, pp.3303-3312, 2005.
DOI : 10.1093/nar/gki641

J. Yang, ATM and ATR: sensing DNA damage, World J Gastroenterol, vol.10, pp.155-160, 2004.

J. Yang, Y. Yu, H. E. Hamrick, P. J. Duerksen-hughes, . Atm et al., ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses, initiators of the cellular genotoxic stress responses, pp.1571-1580, 2003.
DOI : 10.1093/carcin/bgg137

M. F. Lavin, ATM signaling and genomic stability in response to DNA damage, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.569, issue.1-2
DOI : 10.1016/j.mrfmmm.2004.04.020

A. L. Gartel and A. L. Tyner, The role of the cyclin-dependent kinase inhibitor p21 in apoptosis, Mol Cancer Ther, vol.1, pp.639-649, 2002.

F. Bunz, Requirement for p53 and p21 to Sustain G2 Arrest After DNA Damage, Science, vol.282, issue.5393, pp.1497-1501, 1998.
DOI : 10.1126/science.282.5393.1497

D. Cortez, Y. Wang, J. Qin, and S. J. Elledge, Requirement of ATM-Dependent Phosphorylation of Brca1 in the DNA Damage Response to Double-Strand Breaks, Science, vol.286, issue.5442, pp.1162-1166, 1999.
DOI : 10.1126/science.286.5442.1162

M. Meyers, Cell cycle regulation of the human DNA mismatch repair genes hMSH2, hMLH1, and hPMS2, Cancer Res, vol.57, pp.206-208, 1997.

F. Chen, Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52, Mutation Research/DNA Repair, vol.384, issue.3, pp.205-211, 1997.
DOI : 10.1016/S0921-8777(97)00020-7

J. Flygare, F. Benson, and D. Hellgren, Expression of the human RAD51 gene during the cell cycle in primary human peripheral blood lymphocytes, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1312, issue.3, pp.231-236, 1996.
DOI : 10.1016/0167-4889(96)00040-7

L. L. Li and N. H. Yeh, Cell cycle-dependent migration of the DNA-binding protein Ku80 into nucleoli, Experimental Cell Research, vol.199, issue.2, pp.262-268, 1992.
DOI : 10.1016/0014-4827(92)90433-9

S. L. Scott and . Zipursky, James Darnell Biologie moléculaire de la cellule, 1997.

J. W. Harbour, Overview of rb gene mutations in patients with retinoblastoma, Ophthalmology, vol.105, issue.8, pp.1442-1447, 1998.
DOI : 10.1016/S0161-6420(98)98025-3

P. Amstad, S. P. Hussain, and P. Cerutti, Ultraviolet b light-induced mutagenesis ofp53 hotspot codons 248 and 249 in human skin fibroblasts, Molecular Carcinogenesis, vol.341, issue.4, pp.181-188, 1994.
DOI : 10.1002/mc.2940100402

K. Scheffzek, The Ras-RasGAP Complex: Structural Basis for GTPase Activation and Its Loss in Oncogenic Ras Mutants, Science, vol.277, issue.5324, pp.333-338, 1997.
DOI : 10.1126/science.277.5324.333

L. M. Boxer and C. Dang, Translocations involving c-myc and c-myc function, Oncogene, vol.20, issue.40
DOI : 10.1038/sj.onc.1204595

L. A. Loeb, Microsatellite instability: marker of a mutator phenotype in cancer, Cancer Res, vol.54, pp.5059-5063, 1994.

E. R. Fearon and B. Vogelstein, A genetic model for colorectal tumorigenesis, Cell, vol.61, issue.5, pp.759-767, 1990.
DOI : 10.1016/0092-8674(90)90186-I

N. M. Martin, DNA repair inhibition and cancer therapy, Journal of Photochemistry and Photobiology B: Biology, vol.63, issue.1-3, pp.162-170, 2001.
DOI : 10.1016/S1011-1344(01)00213-5

S. Modok, H. R. Mellor, and R. Callaghan, Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer, Current Opinion in Pharmacology, vol.6, issue.4, 2006.
DOI : 10.1016/j.coph.2006.01.009

A. S. Morgan, P. J. Ciaccio, K. D. Tew, and L. M. Kauvar, Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines, Cancer Chemotherapy and Pharmacology, vol.37, issue.4, pp.363-370, 1996.
DOI : 10.1007/s002800050398

R. A. Kramer, K. Greene, S. Ahmad, and D. T. Vistica, Chemosensitization of Lphenylalanine mustard by the thiol-modulating agent buthionine sulfoximine, Cancer Res, vol.47, pp.1593-1597, 1987.

J. A. Green, Potentiation of melphalan cytotoxicity in human ovarian cancer cell lines by glutathione depletion, Cancer Res, vol.44, pp.5427-5431, 1984.

S. L. Kelley, Overexpression of metallothionein confers resistance to anticancer drugs, Science, vol.241, issue.4874, pp.1813-1815, 1988.
DOI : 10.1126/science.3175622

M. S. Greenblatt, W. P. Bennett, M. Hollstein, and C. C. Harris, Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis, Cancer Res, vol.54, pp.4855-4878, 1994.

J. Ding, Z. H. Miao, L. H. Meng, and M. Y. Geng, Emerging cancer therapeutic opportunities target DNA-repair systems, Trends in Pharmacological Sciences, vol.27, issue.6, pp.338-344, 2006.
DOI : 10.1016/j.tips.2006.04.007

A. Sabharwal and M. R. Middleton, Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy, Current Opinion in Pharmacology, vol.6, issue.4, 2006.
DOI : 10.1016/j.coph.2006.03.011

A. Pegg, Repair of O6-alkylguanine by alkyltransferases, Mutation Research/Reviews in Mutation Research, vol.462, issue.2-3, pp.83-100, 2000.
DOI : 10.1016/S1383-5742(00)00017-X

T. Grombacher, S. Mitra, and B. Kaina, Induction of the alkyltransferase (MGMT) gene by DNA damaging agents and the glucocorticoid dexamethasone and comparison with the response of base excision repair genes, Carcinogenesis, vol.17, issue.11, pp.2329-2336, 1996.
DOI : 10.1093/carcin/17.11.2329

T. Biswas, Activation of human O6-methylguanine-DNA methyltransferase gene by glucocorticoid hormone, Oncogene, vol.18, issue.2, pp.525-532, 1999.
DOI : 10.1038/sj.onc.1202320

Y. Koga, Tumor Progression Through Epigenetic Gene Silencing of O6???Methylguanine-DNA Methyltransferase in Human Biliary Tract Cancers, Annals of Surgical Oncology, vol.61, issue.5, pp.354-363, 2005.
DOI : 10.1245/ASO.2005.07.020

P. Wolf, Y. C. Hu, K. Doffek, D. Sidransky, and S. A. Ahrendt, O(6)-Methylguanine- DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer, Cancer Res, vol.61, pp.8113-8117, 2001.

M. Nakamura, T. Watanabe, Y. Yonekawa, P. Kleihues, and H. Ohgaki, Promoter methylation of the DNA repair gene MGMT in astrocytomas is frequently associated with G:C -> A:T mutations of the TP53 tumor suppressor gene, Carcinogenesis, vol.22, issue.10, pp.1715-1719, 2001.
DOI : 10.1093/carcin/22.10.1715

S. Boiteux and M. Guillet, Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae, DNA Repair, vol.3, issue.1, pp.1-12, 2004.
DOI : 10.1016/j.dnarep.2003.10.002

L. Liu and S. L. Gerson, Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway, Curr Opin Investig Drugs, vol.5, pp.623-627, 2004.

S. Madhusudan and I. Hickson, DNA repair inhibition: a selective tumour targeting strategy, Trends in Molecular Medicine, vol.11, issue.11, pp.503-511, 2005.
DOI : 10.1016/j.molmed.2005.09.004

M. Kartalou and J. M. Essigmann, Recognition of cisplatin adducts by cellular proteins, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.478, issue.1-2
DOI : 10.1016/S0027-5107(01)00142-7

D. B. Zamble and S. J. Lippard, Cisplatin and DNA repair in cancer chemotherapy, Trends in Biochemical Sciences, vol.20, issue.10, pp.435-439, 1995.
DOI : 10.1016/S0968-0004(00)89095-7

R. Rosell, R. V. Lord, M. Taron, and N. Reguart, DNA repair and cisplatin resistance in non-small-cell lung cancer, Lung Cancer, vol.38, issue.3, pp.217-227, 2002.
DOI : 10.1016/S0169-5002(02)00224-6

R. Rosell, Nucleotide excision repair pathways involved in Cisplatin resistance in non-small-cell lung cancer, Cancer Control, vol.10, pp.297-305, 2003.

B. Salles, P. Calsou, P. Frit, and C. Muller, The DNA repair complex DNA-PK, a??pharmacological target in??cancer chemotherapy and??radiotherapy, Pathologie Biologie, vol.54, issue.4, pp.185-193, 2006.
DOI : 10.1016/j.patbio.2006.01.012

P. Frit, R. Y. Li, D. Arzel, B. Salles, and P. Calsou, Ku Entry into DNA Inhibits Inward DNA Transactions in Vitro, Journal of Biological Chemistry, vol.275, issue.46, pp.35684-35691, 2000.
DOI : 10.1074/jbc.M004315200

P. Calsou, C. Delteil, P. Frit, J. Drouet, and B. Salles, Coordinated Assembly of Ku and p460 Subunits of the DNA-dependent Protein Kinase on DNA Ends is Necessary for XRCC4???ligase IV Recruitment, Journal of Molecular Biology, vol.326, issue.1, pp.93-103, 2003.
DOI : 10.1016/S0022-2836(02)01328-1

K. K. Khanna and S. P. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection, Nature Genetics, vol.27, issue.3, pp.247-254, 2001.
DOI : 10.1038/85798

J. S. You, M. Wang, and S. H. Lee, Biochemical Analysis of the Damage Recognition Process in Nucleotide Excision Repair, Journal of Biological Chemistry, vol.278, issue.9, pp.7476-7485, 2003.
DOI : 10.1074/jbc.M210603200

J. Essers, Disruption of Mouse RAD54 Reduces Ionizing Radiation Resistance and Homologous Recombination, Cell, vol.89, issue.2, pp.195-204, 1997.
DOI : 10.1016/S0092-8674(00)80199-3

S. Vispe, C. Cazaux, C. Lesca, and M. Defais, Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation, Nucleic Acids Research, vol.26, issue.12, pp.2859-2864, 1998.
DOI : 10.1093/nar/26.12.2859

D. R. Duckett, Human MutSalpha recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct., Proceedings of the National Academy of Sciences, vol.93, issue.13
DOI : 10.1073/pnas.93.13.6443

M. Yamada, E. O-'regan, R. Brown, and P. Karran, Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins, Nucleic Acids Research, vol.25, issue.3, pp.491-496, 1997.
DOI : 10.1093/nar/25.3.491

X. Lin and S. B. Howell, Effect of loss of DNA mismatch repair on development of topotecan-, gemcitabine-, and paclitaxel-resistant variants after exposure to cisplatin

H. Shimodaira, A. Yoshioka-yamashita, R. D. Kolodner, and J. Wang, Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin, Proceedings of the National Academy of Sciences, vol.21, issue.4, pp.2420-2425, 2003.
DOI : 10.1093/carcin/21.4.833

D. Fink, S. Nebel, S. Aebi, A. Nehme, and S. B. Howell, Loss of DNA mismatch repair due to knockout of MSH2 or PMS2 results in resistance to cisplatin and carboplatin, International Journal of Oncology, pp.539-542, 1997.
DOI : 10.3892/ijo.11.3.539

A. Kat, An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair., Proceedings of the National Academy of Sciences, vol.90, issue.14, pp.6424-6428, 1993.
DOI : 10.1073/pnas.90.14.6424

S. Griffin, P. Branch, Y. Z. Xu, and P. Karran, DNA Mismatch Binding and Incision at Modified Guanine Bases by Extracts of Mammalian Cells: Implications for Tolerance to DNA Methylation Damage, Biochemistry, vol.33, issue.16, pp.4787-4793, 1994.
DOI : 10.1021/bi00182a006

C. F. Waller, S. Fetscher, and W. Lange, Secondary chronic myelogenous leukemia after chemotherapy followed by adjuvant radiotherapy for small cell lung cancer, Leukemia Research, vol.23, issue.10, pp.961-964, 1999.
DOI : 10.1016/S0145-2126(99)00114-9

P. Boffetta and J. M. Kaldor, Secondary Malignancies Following Cancer Chemotherapy, Acta Oncologica, vol.89, issue.6
DOI : 10.1056/NEJM197712082972303

J. Whang-peng, Cytogenetic studies in patients with secondary leukemia/dysmyelopoietic syndrome after different treatment modalities, Blood, vol.71, pp.403-414, 1988.

J. D. Boice and . Jr, Radiation dose and leukemia risk in patients treated for cancer of the cervix, J Natl Cancer Inst, vol.79, pp.1295-1311, 1987.

W. Moloney, Radiogenic leukemia revisited, Blood, vol.70, pp.905-908, 1987.

J. M. Kaldor, Leukemia Following Hodgkin's Disease, New England Journal of Medicine, vol.322, issue.1, pp.7-13, 1990.
DOI : 10.1056/NEJM199001043220102

E. G. Levine and C. D. Bloomfield, Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure, Semin Oncol, vol.19, pp.47-84, 1992.

C. W. Lee, U. A. Matulonis, and M. C. Castells, Rapid inpatient/outpatient desensitization for chemotherapy hypersensitivity: Standard protocol effective in 57 patients for 255 courses, Gynecologic Oncology, vol.99, issue.2, pp.393-399, 2005.
DOI : 10.1016/j.ygyno.2005.06.028

K. M. Zanotti, Carboplatin Skin Testing: A Skin-Testing Protocol for Predicting Hypersensitivity to Carboplatin Chemotherapy, Journal of Clinical Oncology, vol.19, issue.12, pp.3126-3129, 2001.
DOI : 10.1200/JCO.2001.19.12.3126

C. Djuzenova, B. Muhl, R. Schakowski, U. Oppitz, and M. Flentje, Normal expression of DNA repair proteins, hMre11, Rad50 and Rad51 but protracted formation of Rad50 containing foci in X-irradiated skin fibroblasts from radiosensitive cancer patients, British Journal of Cancer, vol.11, pp.2356-2363, 2004.
DOI : 10.1016/S0027-5107(03)00009-5

M. Fernet and J. Hall, Genetic biomarkers of therapeutic radiation sensitivity, DNA Repair, vol.3, issue.8-9, pp.1237-1243, 2004.
DOI : 10.1016/j.dnarep.2004.03.019

M. Navo, Evaluation of the incidence of carboplatin hypersensitivity reactions in cancer patients, Gynecologic Oncology, vol.103, issue.2, 2006.
DOI : 10.1016/j.ygyno.2006.04.002

A. C. Halpern and J. Altman, Genetic predisposition to skin cancer, Current Opinion in Oncology, vol.11, issue.2, pp.132-138, 1999.
DOI : 10.1097/00001622-199903000-00010

A. Stary and A. Sarasin, The genetics of the hereditary xeroderma pigmentosum syndrome, Biochimie, vol.84, issue.1, pp.49-60, 2002.
DOI : 10.1016/S0300-9084(01)01358-X

A. Lehmann, DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, Biochimie, vol.85, issue.11, pp.0-0, 2003.
DOI : 10.1016/j.biochi.2003.09.010

R. L. Rolig and P. J. Mckinnon, Linking DNA damage and neurodegeneration, Trends in Neurosciences, vol.23, issue.9, pp.417-424, 2000.
DOI : 10.1016/S0166-2236(00)01625-8

M. Itoh, Neurodegeneration in hereditary nucleotide repair disorders, Brain and Development, vol.21, issue.5, pp.326-333, 1999.
DOI : 10.1016/S0387-7604(99)00033-9

C. L. Licht, T. Stevnsner, and V. A. Bohr, Cockayne Syndrome Group B Cellular and Biochemical Functions, The American Journal of Human Genetics, vol.73, issue.6, pp.1217-1239, 2003.
DOI : 10.1086/380399

URL : http://doi.org/10.1086/380399

M. A. Nance and S. A. Berry, Cockayne syndrome: Review of 140 cases, American Journal of Medical Genetics, vol.350, issue.50, pp.68-84, 1992.
DOI : 10.1002/ajmg.1320420115

M. Sunesen, T. Stevnsner, R. M. Brosh-jr, G. L. Dianov, and V. A. Bohr, Global genome repair of 8-oxoG in hamster cells requires a functional CSB gene product, Oncogene, vol.21, issue.22, pp.3571-3578, 2002.
DOI : 10.1038/sj.onc.1205443

A. A. Mahmoud, G. M. Yousef, I. Al-hifzi, and E. P. Diamandis, Cockayne syndrome in three sisters with varying clinical presentation, American Journal of Medical Genetics, vol.62, issue.1, pp.81-85, 2002.
DOI : 10.1002/ajmg.10492

S. Colella, Alterations in the CSB Gene in Three Italian Patients with the Severe Form of Cockayne Syndrome (CS) But Without Clinical Photosensitivity, Human Molecular Genetics, vol.8, issue.5, pp.935-941, 1999.
DOI : 10.1093/hmg/8.5.935

S. Emmert, Relationship of Neurologic Degeneration to Genotype in Three Xeroderma Pigmentosum Group G Patients11An abstract of this study was presented at the annual meeting of the Society for Investigative Dermatology, May 2000, Chicago, IL, and published in J Invest Dermatol 114:825, 2000., Journal of Investigative Dermatology, vol.118, issue.6, pp.972-982, 2002.
DOI : 10.1046/j.1523-1747.2002.01782.x

Y. Lindenbaum, Xeroderma pigmentosum/Cockayne syndrome complex: first neuropathological study and review of eight other cases, European Journal of Paediatric Neurology, vol.5, issue.6, pp.225-242, 2001.
DOI : 10.1053/ejpn.2001.0523

I. Rapin, Y. Lindenbaum, D. W. Dickson, K. H. Kraemer, and J. Robbins, Cockayne syndrome and xeroderma pigmentosum: DNA repair disorders with overlaps and paradoxes, Cockayne syndrome and xeroderma pigmentosum, pp.1442-1449, 2000.
DOI : 10.1212/WNL.55.10.1442

J. H. Robbins, K. H. Kraemer, M. A. Lutzner, B. W. Festoff, and H. G. Coon, Xeroderma Pigmentosum, Annals of Internal Medicine, vol.80, issue.2, pp.221-248, 1974.
DOI : 10.7326/0003-4819-80-2-221

R. J. Pollitt, F. A. Jenner, and M. Davies, Sibs with mental and physical retardation and trichorrhexis nodosa with abnormal amino acid composition of the hair., Archives of Disease in Childhood, vol.43, issue.228, pp.211-216, 1968.
DOI : 10.1136/adc.43.228.211

V. H. Price, R. B. Odom, W. H. Ward, and F. Jones, Trichothiodystrophy, Archives of Dermatology, vol.116, issue.12, pp.1375-1384, 1980.
DOI : 10.1001/archderm.1980.01640360049017

E. Botta, Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy, Human Molecular Genetics, vol.11, issue.23, pp.2919-2928, 2002.
DOI : 10.1093/hmg/11.23.2919

W. Vermeulen, Sublimiting concentration of TFIIH transcription/DNA repair factor causes TTD-A trichothiodystrophy disorder, Nat Genet, vol.26, pp.307-313, 2000.

E. Bergmann and J. M. Egly, Trichothiodystrophy, a transcription syndrome, Trends in Genetics, vol.17, issue.5, pp.279-286, 2001.
DOI : 10.1016/S0168-9525(01)02280-6

P. H. Itin, A. Sarasin, and M. R. Pittelkow, Trichothiodystrophy: Update on the sulfur-deficient brittle hair syndromes, Journal of the American Academy of Dermatology, vol.44, issue.6, pp.891-920, 2001.
DOI : 10.1067/mjd.2001.114294

W. S. Samowitz, The colon cancer burden of genetically defined hereditary nonpolyposis colon cancer, Gastroenterology, vol.121, issue.4, pp.830-838, 2001.
DOI : 10.1053/gast.2001.27996

L. A. Aaltonen, Incidence of Hereditary Nonpolyposis Colorectal Cancer and the Feasibility of Molecular Screening for the Disease, New England Journal of Medicine, vol.338, issue.21, pp.1481-1487, 1998.
DOI : 10.1056/NEJM199805213382101

H. F. Vasen, Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis, Gastroenterology, vol.110, issue.4, pp.1020-1027, 1996.
DOI : 10.1053/gast.1996.v110.pm8612988

H. F. Vasen, F. M. Nagengast, and P. M. Khan, Interval cancers in hereditary non-polyposis colorectal cancer (Lynch syndrome), The Lancet, vol.345, issue.8958, pp.1183-1184, 1995.
DOI : 10.1016/S0140-6736(95)91016-6

D. C. Chung and A. K. Rustgi, The Hereditary Nonpolyposis Colorectal Cancer Syndrome: Genetics and Clinical Implications[dhelix], Annals of Internal Medicine, vol.138, issue.7, pp.560-570, 2003.
DOI : 10.7326/0003-4819-138-7-200304010-00012

H. T. Lynch and A. De-la-chapelle, Genetic susceptibility to non-polyposis colorectal cancer, J Med Genet, vol.36, pp.801-818, 1999.

H. W. Mohrenweiser, D. M. Wilson, and I. M. Jones, Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.526, issue.1-2, pp.93-125, 2003.
DOI : 10.1016/S0027-5107(03)00049-6

M. R. Shen, I. M. Jones, and H. Mohrenweiser, Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans

E. J. Duell, Polymorphisms in the DNA repair gene XRCC1 and breast cancer, Cancer Epidemiol Biomarkers Prev, vol.10, pp.217-222, 2001.

M. C. Stern, D. M. Umbach, C. H. Van-gils, R. M. Lunn, and J. A. Taylor, DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk, Cancer Epidemiol Biomarkers Prev, vol.10, pp.125-131, 2001.

D. Ratnasinghe, Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk, Cancer Epidemiol Biomarkers Prev, vol.10, pp.119-123, 2001.

G. L. David-beabes and S. J. London, Genetic polymorphism of XRCC1 and lung cancer risk among African???Americans and Caucasians, Lung Cancer, vol.34, issue.3, pp.333-339, 2001.
DOI : 10.1016/S0169-5002(01)00256-2

H. H. Nelson, K. T. Kelsey, L. A. Mott, and M. R. Karagas, The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer: evidence of geneenvironment interaction, Cancer Res, vol.62, pp.152-155, 2002.

J. M. Lee, Genetic polymorphisms of XRCC1 and risk of the esophageal cancer

G. Matullo, DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study, International Journal of Cancer, vol.9, issue.4, pp.562-567, 2001.
DOI : 10.1002/ijc.1228

H. Shen, Polymorphisms of the DNA repair geneXRCC1 and risk of gastric cancer in a Chinese population, International Journal of Cancer, vol.5, issue.4, pp.601-606, 2000.
DOI : 10.1002/1097-0215(20001115)88:4<601::AID-IJC13>3.0.CO;2-C

E. M. Sturgis, Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck, Carcinogenesis, vol.20, issue.11, pp.2125-2129, 1999.
DOI : 10.1093/carcin/20.11.2125

A. F. Olshan, M. A. Watson, M. C. Weissler, and D. Bell, XRCC1 polymorphisms and head and neck cancer, Cancer Letters, vol.178, issue.2, pp.181-186, 2002.
DOI : 10.1016/S0304-3835(01)00822-9

J. J. Hu, Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity, Carcinogenesis, vol.22, issue.6, pp.917-922, 2001.
DOI : 10.1093/carcin/22.6.917

R. J. Hung, J. Hall, P. Brennan, and P. Boffetta, Genetic Polymorphisms in the Base Excision Repair Pathway and Cancer Risk: A HuGE Review, American Journal of Epidemiology, vol.162, issue.10, pp.925-942, 2005.
DOI : 10.1093/aje/kwi318

L. Marchand, L. Donlon, T. Lum-jones, A. Seifried, A. Wilkens et al., Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk, Cancer Epidemiol Biomarkers Prev, vol.11, pp.409-412, 2002.

W. Zhou, Gene-environment interaction for the ERCC2 polymorphisms and cumulative cigarette smoking exposure in lung cancer, Cancer Res, vol.62, pp.1377-1381, 2002.

G. L. David-beabes, R. M. Lunn, and S. J. London, No association between the XPD (Lys751G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk, Cancer Epidemiol Biomarkers Prev, vol.10, pp.911-912, 2001.

M. C. Stern, L. R. Johnson, D. A. Bell, and J. A. Taylor, XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk, Cancer Epidemiol Biomarkers Prev, vol.11, pp.1004-1011, 2002.

S. M. Hou, The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk, Carcinogenesis, vol.23, issue.4, pp.599-603, 2002.
DOI : 10.1093/carcin/23.4.599

G. Liang, Sequence variations in the DNA repair geneXPD and risk of lung cancer in a Chinese population, International Journal of Cancer, vol.13, issue.5, pp.669-673, 2003.
DOI : 10.1002/ijc.11136

D. Butkiewicz, Genetic polymorphisms in DNA repair genes and risk of lung cancer, Carcinogenesis, vol.22, issue.4, pp.593-597, 2001.
DOI : 10.1093/carcin/22.4.593

S. L. Winsey, A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer, Cancer Res, vol.60, pp.5612-5616, 2000.

S. G. Khan, A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism, Carcinogenesis, vol.21, issue.10, pp.1821-1825, 2000.
DOI : 10.1093/carcin/21.10.1821

H. Shen, An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study, Cancer Res, vol.61, pp.3321-3325, 2001.

P. Chen, Association of an ERCC1 polymorphism with adult-onset glioma, Cancer Epidemiol Biomarkers Prev, vol.9, pp.843-847, 2000.

C. S. Healey, A common variant in BRCA2 is associated with both breast cancer risk and prenatal viability, Nature Genetics, vol.26, issue.3, pp.362-364, 2000.
DOI : 10.1038/81691

P. L. Olive, The Comet Assay: An Overview of Techniques, Methods Mol Biol, vol.203, pp.179-194, 2002.
DOI : 10.1385/1-59259-179-5:179

S. A. Langie, Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair, Mutagenesis, vol.21, issue.2, pp.153-158, 2006.
DOI : 10.1093/mutage/gel013

K. W. Kohn, Mechanistic Approaches to New Nitrosourea Development, Recent Results Cancer Res, vol.76, pp.141-152, 1981.
DOI : 10.1007/978-3-642-81565-2_13

M. O. Bradley and K. W. Kohn, X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution, Nucleic Acids Research, vol.7, issue.3, pp.793-804, 1979.
DOI : 10.1093/nar/7.3.793

K. W. Kohn and R. A. Grimek-ewig, Alkaline elution analysis, a new approach to the study of DNA single-strand interruptions in cells, Cancer Res, vol.33, pp.1849-1853, 1973.

J. S. Munzer, S. K. Jones, J. P. O-'neill, J. N. Hartshorn, and S. H. Robison, Detection of DNA damage and repair by alkaline elution using human lymphocytes, Mutation Research/DNA Repair Reports, vol.194, issue.2, pp.101-108, 1988.
DOI : 10.1016/0167-8817(88)90012-0

K. T. Wheeler and G. B. Nelson, Saturation of DNA Repair Measured by Alkaline Elution, Radiation Research, vol.125, issue.2, pp.227-229, 1991.
DOI : 10.2307/3577892

J. J. Roberts and F. Friedlos, Quantitative aspects of the formation and loss of DNA interstrand crosslinks in Chinese hamster cells following treatment with cis-diamminedichloroplatinum(II) (cisplatin) I. Proportion of DNA-platinum reactions involved in DNA crosslinking, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, vol.655, issue.2, pp.146-151, 1981.
DOI : 10.1016/0005-2787(81)90004-6

N. Phoa and B. Epe, Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells, Carcinogenesis, vol.23, issue.3, pp.469-475, 2002.
DOI : 10.1093/carcin/23.3.469

H. H. Evans, M. Ricanati, and M. F. Horng, Deficiency in DNA repair in mouse lymphoma strain L5178Y-S., Proceedings of the National Academy of Sciences, vol.84, issue.21, pp.7562-7566, 1987.
DOI : 10.1073/pnas.84.21.7562

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC299339

S. Courdavault, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair, vol.4, issue.7, pp.836-844, 2005.
DOI : 10.1016/j.dnarep.2005.05.001

S. Courdavault, Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UV-B-irradiated cultured human fibroblasts, Photochem Photobiol, vol.79, pp.145-151, 2004.

G. P. Pfeifer, R. Drouin, A. D. Riggs, and G. P. Holmquist, Binding of transcription factors creates hot spots for UV photoproducts in vivo., Molecular and Cellular Biology, vol.12, issue.4, pp.1798-1804, 1992.
DOI : 10.1128/MCB.12.4.1798

G. P. Pfeifer, R. Drouin, A. D. Riggs, and G. P. Holmquist, In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction., Proceedings of the National Academy of Sciences, vol.88, issue.4, pp.1374-1378, 1991.
DOI : 10.1073/pnas.88.4.1374

H. Rodriguez, Mapping Oxidative DNA Damage Using Ligation-Mediated Polymerase Chain Reaction Technology, Methods, vol.22, issue.2, pp.148-156, 2000.
DOI : 10.1006/meth.2000.1055

S. Tornaletti, D. Rozek, and G. P. Pfeifer, The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer, Oncogene, vol.8, pp.2051-2057, 1993.

Y. Qiao, Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.509, issue.1-2, pp.165-174, 2002.
DOI : 10.1016/S0027-5107(02)00219-1

G. Spivak and P. C. Hanawalt, Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts, DNA Repair, vol.5, issue.1, pp.13-22, 2006.
DOI : 10.1016/j.dnarep.2005.06.017

R. J. Slebos and J. A. Taylor, A Novel Host Cell Reactivation Assay to Assess Homologous Recombination Capacity in Human Cancer Cell Lines, Biochemical and Biophysical Research Communications, vol.281, issue.1, pp.212-219, 2001.
DOI : 10.1006/bbrc.2001.4335

A. R. Lehmann and S. Stevens, A rapid procedure for measurement of DNA repair in human fibroblasts and for complementation analysis of xeroderma pigmentosum cells, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.69, issue.1
DOI : 10.1016/0027-5107(80)90187-6

B. Salles, P. Frit, C. Provot, J. P. Jaeg, and P. Calsou, In vitro eukaryotic DNA excision repair assays: An overview, Biochimie, vol.77, issue.10, pp.796-802, 1995.
DOI : 10.1016/0300-9084(96)88198-3

G. L. Dianov, Monitoring base excision repair by in vitro assays, Toxicology, vol.193, issue.1-2, pp.35-41, 2003.
DOI : 10.1016/S0300-483X(03)00288-9

V. Guerniou, Repair of oxidative damage of thymine by HeLa whole-cell extracts: simultaneous analysis using a microsupport and comparison with traditional PAGE analysis, Biochimie, vol.87, issue.2, pp.151-159, 2005.
DOI : 10.1016/j.biochi.2004.12.001

A. Natsume, IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide, Cancer Res, vol.65, pp.7573-7579, 2005.

M. Di-pietro, Defective DNA Mismatch Repair Determines a Characteristic Transcriptional Profile in Proximal Colon Cancers, Gastroenterology, vol.129, issue.3, pp.1047-1059, 2005.
DOI : 10.1053/j.gastro.2005.06.028

R. M. Da-costa, L. Riou, A. Paquola, C. F. Menck, and A. Sarasin, Transcriptional profiles of unirradiated or UV-irradiated human cells expressing either the cancer-prone XPB/CS allele or the noncancer-prone XPB/TTD allele, Oncogene, vol.24, issue.8, pp.1359-1374, 2005.
DOI : 10.1038/sj.onc.1208288

G. Wang, The initiative role of XPC protein in cisplatin DNA damaging treatment-mediated cell cycle regulation, Nucleic Acids Research, vol.32, issue.7, pp.2231-2240, 2004.
DOI : 10.1093/nar/gkh541

M. Korabiowska, Loss of Ku70/Ku80 expression occurs more frequently in hereditary than in sporadic colorectal tumors. Tissue microarray study, Human Pathology, vol.37, issue.4, pp.448-452, 2006.
DOI : 10.1016/j.humpath.2005.11.016

M. Schena, D. Shalon, R. W. Davis, and P. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995.
DOI : 10.1126/science.270.5235.467

P. Mathur, S. Kaga, L. Zhan, D. K. Das, and N. Maulik, Antibody-array technique reveals overexpression of important DNA-repair proteins during cardiac ischemic preconditioning, Journal of Molecular and Cellular Cardiology, vol.38, issue.1, pp.99-102, 2005.
DOI : 10.1016/j.yjmcc.2004.11.032

Q. Wei, L. E. Wang, E. M. Sturgis, and L. Mao, Expression of Nucleotide Excision Repair Proteins in Lymphocytes as a Marker of Susceptibility to Squamous Cell Carcinomas of the Head and Neck, Cancer Epidemiology Biomarkers & Prevention, vol.14, issue.8, pp.1961-1966, 2005.
DOI : 10.1158/1055-9965.EPI-05-0101

P. Bertone and M. Snyder, Advances in functional protein microarray technology, FEBS Journal, vol.301, issue.21, pp.5400-5411, 2005.
DOI : 10.1038/35001009

J. Glokler and P. Angenendt, Protein and antibody microarray technology, Journal of Chromatography B, vol.797, issue.1-2, pp.229-240, 2003.
DOI : 10.1016/j.jchromb.2003.08.034

G. R. Martinez, M. H. Medeiros, J. Ravanat, J. Cadet, and P. Di-mascio, Naphthalene endoperoxide as a source of [ 18 O]-labeled singlet oxygen for oxidative DNA damage studies, Trends in Photochemistry & Photobiology 9, pp.25-39, 2002.

C. T. Bui and R. G. Cotton, Comparative Study of Permanganate Oxidation Reactions of Nucleotide Bases by Spectroscopy, Bioorganic Chemistry, vol.30, issue.2, pp.133-137, 2002.
DOI : 10.1006/bioo.2002.1238

T. Lozinski and K. L. Wierzchowski, Effect of Mg2+ on kinetics of oxidation of pyrimidines in duplex DNA by potassium permanganate, Acta Biochim Pol, vol.48, pp.511-523, 2001.

L. Gros, A. A. Ishchenko, and M. Saparbaev, Enzymology of repair of etheno-adducts, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.531, issue.1-2
DOI : 10.1016/j.mrfmmm.2003.07.008

A. P. Loureiro, D. Mascio, P. Gomes, O. F. Medeiros, and M. H. Trans, )-etheno-2'-deoxyguanosine adduct formation, Chem Res Toxicol, vol.1, issue.13, pp.601-609, 2000.

V. M. Carvalho, -2,4-Decadienal, Chemical Research in Toxicology, vol.11, issue.9, pp.1042-1047, 1998.
DOI : 10.1021/tx9800710

URL : https://hal.archives-ouvertes.fr/jpa-00209601

R. Edelson, Treatment of Cutaneous T-Cell Lymphoma by Extracorporeal Photochemotherapy, New England Journal of Medicine, vol.316, issue.6, pp.297-303, 1987.
DOI : 10.1056/NEJM198702053160603

J. Llano, J. Raber, and L. Erikson, Theoretical study of phototoxic reactions of psoralens, Journal of Photochemistry and Photobiology A: Chemistry, vol.154, issue.2-3, pp.235-243, 2003.
DOI : 10.1016/S1010-6030(02)00351-9

B. Salles and C. Provot, In vitro chemiluminescence assay to measure excision repair in cell extracts, Methods Mol Biol, vol.113, pp.393-401, 1999.

S. L. Oei and M. Ziegler, ATP for the DNA ligation step in base excision repair is generated from poly(ADP-ribose), Journal of Biological Chemistry, vol.275, pp.23234-23239, 2000.
DOI : 10.1074/jbc.M002429200

J. L. Manley, A. Fire, M. Samuels, and P. A. Sharp, In Vitro Transcription: Whole-Cell Extract, Methods Enzymol, vol.101, pp.568-582, 1983.
DOI : 10.1016/B978-0-12-765560-4.50042-3

A. R. Collins, Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay, Mutagenesis, vol.16, issue.4, pp.297-301, 2001.
DOI : 10.1093/mutage/16.4.297

S. Nagata, Apoptotic DNA Fragmentation, Experimental Cell Research, vol.256, issue.1, pp.12-18, 2000.
DOI : 10.1006/excr.2000.4834

K. Sugasawa, Xeroderma Pigmentosum Group C Protein Complex Is the Initiator of Global Genome Nucleotide Excision Repair, Molecular Cell, vol.2, issue.2, pp.223-232, 1998.
DOI : 10.1016/S1097-2765(00)80132-X

A. R. Muotri, Group A and C Cells by Recombinant Adenovirus-Mediated Gene Transfer, Human Gene Therapy, vol.13, issue.15, pp.1833-1844, 2002.
DOI : 10.1089/104303402760372936

J. E. Cleaver, Rapid complementation method for classifying excision repair-defective xeroderma pigmentosum cell strains, Somatic Cell Genetics, vol.77, issue.6, pp.801-810, 1982.
DOI : 10.1007/BF01543020

G. P. Kaur and R. S. Athwal, Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5, Somatic Cell and Molecular Genetics, vol.145, issue.4, Suppl, pp.83-93, 1993.
DOI : 10.1007/BF01233957

J. Cadet, E. Sage, and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.571, issue.1-2, pp.3-17, 2005.
DOI : 10.1016/j.mrfmmm.2004.09.012

F. Hazane, S. Sauvaigo, T. Douki, A. Favier, and J. Beani, Age-dependent DNA repair and cell cycle distribution of human skin fibroblasts in response to UVA irradiation, Journal of Photochemistry and Photobiology B: Biology, vol.82, issue.3, pp.214-223, 2006.
DOI : 10.1016/j.jphotobiol.2005.10.004

J. Cadet, M. Berger, T. Douki, and J. L. Ravanat, Oxidative damage to DNA: Formation, measurement, and biological significance, Rev Physiol Biochem Pharmacol, vol.131, pp.1-87, 1997.
DOI : 10.1007/3-540-61992-5_5

J. A. Dolling, D. R. Boreham, M. E. Bahen, and R. E. Mitchel, Role of RAD9-dependent cell-cycle checkpoints in the adaptive response to ionizing radiation in yeast, Saccharomyces cerevisiae, International Journal of Radiation Biology, vol.76, issue.9, pp.1273-1279, 2000.
DOI : 10.1080/09553000050134500

S. G. Chankova and P. Bryant, Acceleration of DNA-double strand rejoining during the adaptive response of Chlamydomonas reinhardtii, Radiats Biol Radioecol, vol.42, pp.600-603, 2002.

L. Samson and J. Cairns, A new pathway for DNA repair in Escherichia coli, Nature, vol.71, issue.5608, pp.281-283, 1977.
DOI : 10.1038/267281a0

G. Olivieri, J. Bodycote, and S. Wolff, Adaptive response of human lymphocytes to low concentrations of radioactive thymidine, Science, vol.223, issue.4636, pp.594-597, 1984.
DOI : 10.1126/science.6695170

Y. Miura, Oxidative Stress, Radiation-Adaptive Responses, and Aging, Journal of Radiation Research, vol.45, issue.3, pp.357-372, 2004.
DOI : 10.1269/jrr.45.357

J. Seong, C. O. Suh, and G. E. Kim, Adaptive response to ionizing radiation induced by low doses of gamma rays in human cell lines, International Journal of Radiation Oncology*Biology*Physics, vol.33, issue.4, pp.869-874, 1995.
DOI : 10.1016/0360-3016(95)00085-X

G. Guo, Manganese Superoxide Dismutase-Mediated Gene Expression in Radiation-Induced Adaptive Responses, Molecular and Cellular Biology, vol.23, issue.7, pp.2362-2378, 2003.
DOI : 10.1128/MCB.23.7.2362-2378.2003

A. Haimovitz-friedman, Radiation-Induced Signal Transduction and Stress Response, Radiation Research, vol.150, issue.5, pp.102-108, 1998.
DOI : 10.2307/3579812

R. Gopalakrishna and S. Jaken, Protein kinase C signaling and oxidative stress, Free Radical Biology and Medicine, vol.28, issue.9, pp.1349-1361, 2000.
DOI : 10.1016/S0891-5849(00)00221-5

T. Ikushima, H. Aritomi, and J. Morisita, Radioadaptive response: Efficient repair of radiation-induced DNA damage in adapted cells, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.358, issue.2, pp.193-198, 1996.
DOI : 10.1016/S0027-5107(96)00120-0

S. Venkat, S. K. Apte, R. C. Chaubey, and P. S. Chauhan, Radioadaptive Response in Human Lymphocytes in Vitro, Journal of Environmental Pathology, Toxicology and Oncology, vol.20, issue.3, pp.165-175, 2001.
DOI : 10.1615/JEnvironPatholToxicolOncol.v20.i3.10

J. D. Shadley, V. Afzal, and S. Wolff, Characterization of the Adaptive Response to Ionizing Radiation Induced by Low Doses of X Rays to Human Lymphocytes, Radiation Research, vol.111, issue.3, pp.511-517, 1987.
DOI : 10.2307/3576936

T. Buterin, Trapping of DNA nucleotide excision repair factors by nonrepairable carcinogen adducts, Cancer Res, vol.62, pp.4229-4235, 2002.

Z. Zhang and M. C. Poirier, Cisplatin???DNA Adduct Determination in the Hepatic Albumin Gene as Compared to Whole Genomic DNA, Chemical Research in Toxicology, vol.10, issue.9, pp.971-977, 1997.
DOI : 10.1021/tx970051i

D. Gunz, M. T. Hess, and H. Naegeli, Recognition of DNA Adducts by Human Nucleotide Excision Repair: EVIDENCE FOR A THERMODYNAMIC PROBING MECHANISM, Journal of Biological Chemistry, vol.271, issue.41, pp.25089-25098, 1996.
DOI : 10.1074/jbc.271.41.25089

K. L. Baxter-gabbard, A simple method for the large-scale preparation of sucrose gradients, FEBS Letters, vol.20, issue.1, pp.117-119, 1972.
DOI : 10.1016/0014-5793(72)80031-0