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Introduction francaise

Ce travail se compose de deux parties.

a premiere partie consiste en I’étude de ’équation quasi-linéaire d’acoustique non-
L linéaire appelée KZK (Khokhlov-Zabolotskaya-Kuznetsov). Dans le premier chapitre,
I’accent est mis sur la dérivation de I’équation pour ’acoustique non-linéaire en raison de
son application aux problemes de retournement temporel en collaboration avec le LOA
(Laboratoire Ondes et Acoustique) de 'ESPCI dirigé par M. Fink.

L’équation de KZK dans son interprétation initiale comme dans [11] est tres étudiée par
les physiciens mais jusqu’ici il n’y a aucune analyse mathématique de ce probleme. Elle
est utilisée dans des problemes d’acoustique comme modele mathématique décrivant la
propagation non-linéaire d’une impulsion sonore d’amplitude finie dans un milieu thermo-
visqueux (voir par exemple [1, 26, 9, 10, 33]). Plus tard elle a été employée dans plusieurs
autres domaines et en particulier pour la description des grandes ondes dans les milieux
ferromagnétiques [44].

L’équation KZK n’est pas intégrable contrairement a I’équation Kadomtsev-Petviashvili
(KP) connue pour étre intégrable. Les existences d'une onde de choc dans le cas de la
propagation d'un faisceau dans un milieu non dispersif et d’une onde de quasi choc dans
un milieu dispersif ont été obtenues numériquement dans [11]. Ce dernier phénomene
correspond au fait que le front du faisceau de 'onde est proche de I'onde de choc mais la
solution a tendance a étre globale.

Nous avons obtenu la preuve de l'existence de 'onde de choc pour le probleme sans
viscosité. Nous avons établi I'existence globale en temps pour la propagation dans des
milieux visqueux seulement pour des données initiales suffisamment petites.

Tout d’abord la dérivation de lI’équation est empruntée a la littérature physique. On
introduit un correcteur dans l'ansatz pour obtenir 'approximation de KZK ce qui per-
met de reconstruire la solution du systeme exact initial utilisé pour la dérivation de
I’équation. Ensuite l'existence, 'unicité et la stabilité de 1’équation sont analysées. De
plus, un résultat sur le blow-up qui donne une limitation sur 1’étendue des applications
est donné comme adaptation d'un résultat de [3], [4] et [5]. En utilisant les résultats ob-
tenus, on prouve une validité aux longs temps de I'approximation pour deux cas : pour
des milieux thermoélastiques non visqueux et visqueux. Pour les besoins du résultat d’ap-
proximation, I’existence d’une solution réguliere du systeme de Navier-Stokes isentropique
dans le demi espace avec conditions aux limites périodiques et de valeur moyenne nulle
en temps a été obtenue.
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Plus précisément, nous étudions I'équation suivante :
(w — uty — Pugy)e —yAyu =0 dans R, x Q, (1)

appelée équation KZK, dans la classe des fonctions périodiques de variable x et de valeur
moyenne nulle :

L
u(z + Ly, t) = u(x,y,t), / u(z,y,t)dr =0, (2)
0

ol 3, v sont des constantes positives. Ici les variables (x,y) € R} x (2 C R"!). Quand
Q # R™ L, on suppose que la solution satisfait sur sa frontiere la condition de Neumann.

L’equation (1) sous la forme

(v+1)
4po

v

3 c?
03T — AT =0, (3)

0> 1 —
CTZ 2

O*I* —
! 2¢%po
avec I(1,2,y) = I(t — %, exy,\/ex'), v = (x1,2'), peut étre obtenue a partir du systeme
de Navier-Stokes isentropique pour les milieux visqueux

Oppe + div(peue) =0, peldue + (ue - Viu] = =Vp(pe) + evAu, (4)
avec I’équation d’état approchée

(7_ 1)C 2 ~2 (5)

92 ~
p:p e :C€6+ € €
(pe) p e P

et de ’équation d’Euler isentropique pour le cas non visqueux quand v = = 0.

Pour les deux cas (qui sont différents parce que les domaines d’existence de la solution de
KZK sont différents, dans le cas visqueux v > 0, le domaine est le demi espace {z; > 0,¢ >
0,2 € R™'}, et pour v = 0 ¢’est un cone), nous avons obtenu le résultat approximé pour
la différence entre la solution exacte U et la fonction U, = (p,, u.) définie par la solution de
I'équation KZK (en utilisant I’ansatz approximé pour les e suffisamment petits) périodique
sur 7 et de valeur moyenne nulle.

Précisément, il existe des constantes C' > 0 et Ty = O(1) telles que pour tout temps fini
0<t<TprIniete>0,il existe une solution réguliere U, = (R, Ue)(,t) du systéme de
Navier-Stokes/Euler isentropique telle qu’on ait pour s > 0 :

U, — U= < €2,

Nous avons prouvé 'existence de la solution réguliere du systeme de Navier-Stokes dans
le demi espace avec conditions aux limites périodiques et de valeur moyenne nulle. Dans
le cas visqueux, cette estimation perdure pour s = 0. Le temps t < TO% ln% est le temps
durant lequel U, — U, = O(e).

Pour prouver I'existence, 1'unicité et la stabilité du résutat pour le probleme de Cauchy
pour I'équation KZK nous définissons U'inverse de la dérivée ;' comme un opérateur
agissant dans 'espace des fonctions périodiques de valeur moyenne nulle. Ceci donne la
formule :

o7 f = / " ls)ds + / "2 s (6)
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Cette formulation de l'opérateur 9;' conserve les deux propriétés de périodicité et de
valeur moyenne nulle.

Dans cette situation, I’équation (1) est équivalente a
Uy — Ully — Plpy — ’yé?;lAyu =0 inR, x . (7)

Finalement, quand v = 0, I’équation (1) se réduit a I’équation de Burgers-Hopf pour
laquelle I'existence et 'unicité de la solution réguliere est bien connue. Pour v = g = 0,
cela se réduit a I’équation de Burgers

U2

3tu — 815 = 0,

qui laisse apparaitre des singularités apres un temps fini. Apres le temps de choc, la
solution peut étre prolongée en une solution faible unique satisfaisant une condition
élémentaire d’entropie (dans le cas actuel avec v # 0, il semble que cette méthode ne
puisse pas étre adaptée a ’équation (1) avec 3 = 0 et v # 0).

Notons également que la méthode de type J. Bourgain et I'introduction des espaces de
Bourgain comme dans [46, 35, 36] et d’autres ne sont pas utiles pour le probleme de KZK
en raison de 'absence des termes avec derivée impaire comme par exemple u,,, dans (7).
La présence seulement de la seconde derivée rend impossible les principales estimations
et égalités de cette méthode.

Iy a les travaux mathématiques [28], [29] pour I"équation de type KZK
QUzr = (f(uT))T + ﬁuTTT + YUr + Axu7

olt u; = u,(z,z,7) est la pression acoustique, (z,2) € R? x R, d = 1,2 sont des variables
d’espace et 7 est le temps retardé. L’équation est étudiée en supposant que la non-linéarité
f ait des dérivées bornées ce qui permet de prouver l'existence globale pour le cas ou les
coefficients sont des fonctions fortement oscillantes de z. Ainsi ce probleme n’est pas relié a
notre probleme « acoustique » pour ’équation KZK ot il y a un choc illustrant ’existence
d’une onde de choc comme nous le verrons plus tard.

Pour prouver l'existence du résultat pour 1’'équation KZK intégrée (7), nous déduisons en
premier lieu une estimation a priori :

Ld

n 2 2 3
Pour s> [Z] +1 5 Zlull2 + Blosull2 < O(s) Jull ®
1d
et §5Hu|li + BC(D)|lull? < C(s)fully. (9)

L’estimation (8) est également vraie dans le cas non périodique et donne l'existence locale
en temps. Mais la relation (9) perdure seulement dans le cas périodique et pas sur la droite
des réels en entier (dans ce dernier cas, la norme H® de 0,u ne controle pas la norme H®
de u). Grace a (9), nous prouvons l'existence globale en temps de la solution du probleme
de Cauchy v € C([0,T[, H*) N C*([0,T[, H*"?) (s > [2] + 1) pour des données initiales
suffisamment petites ug € H”.

La preuve est donnée par deux méthodes : par la méthode des pas fractionnaires dans le
cas partiel R? et s = 3 pour justifier les résultats numériques de Thierry Le Polles (sous
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contrat ACI « Retournement Temporel », convention A020 du Ministere de la Recherche
Frangais) et par la théorie des semigroupes et la meéthode de Kato dans le cas général.

Nous avons également établi en utilisant la méthode d’Alinhac le résultat du choc géomét-
rique pour la premiere dérivée de la solution de 'équation KZK (1) avec 5 = 0.

D’une part nous notons que pour v = 0 (ou 5 = 0) et pour la fonction u indépendante de
y, I'équation KZK

(w — wty — Pgy)y — 7Ayu =0 dans Ry, x R, x Q (10)

devient I’équation de Burgers qui est connue pour exhiber des singularités. D’autre part,
la dérivation et les résultats d’approximation prouvent que n’importe quelle solution de
I’équation KZK a dans son voisinage une solution de 1’équation d’Euler isentropique. De
nouveau on sait qu'une telle solution, méme avec des données initiales régulieres, peut
laisser apparaitre des singularités (cf. [15] ou [47]). Ces observations sont renforcées par
le fait que pour § =0 et v > 0 I’équation (10) peut produire des singularités.

Nous prouvons le résultat du choc géométrique en utilisant la méthode d’Alinhac, qui
est basée sur le fait que I’équation étudiée dégénere en I'équation de Burgers. En fait
la méthode d’Alinhac est la méthode des caractéristiques généralisée pour I’équation de
Burgers adaptée au cas multidimensionnel. Comme nous pouvons le voir, I’équation (10)
possede toutes ces propriétés principales, et justifie son application.

Par conséquent, une équation du type (10) est introduite par Alinhac pour analyser le
choc (dans R?**') de l’équation d’ondes non-linéaire multidimensionnelle en suivant le
cone d’onde
0P — Ngu + Z gfj@kuafju =0,
0<1,j,k<2
ol
Ty = ta €r = (1'1,1'2), gf:j - gfz?

avec des données initiales régulieres et petites (voir [6]). En fait ceci correspond a la

méme échelle que 'équation KZK parce qu’a partir de cette équation d’ondes avec des
changements de variables et en utilisant des approximations, Alinhac obtient (voir [4, 6, 7])

2yu~+ (0,u)(D2u) + edou = 0.

C’est la raison de ’analogie.
En particulier, nous avons le théoreme suivant :

Theorem 1 L ’équation
(w —uuy)y —yAyu =0 dans Ry, X Ry x (11)

avec la condition aux limites de Neumann sur OS2 n’a pas de solution réguliere globale en
temps si

sup d,u(z, y, 0)

z7y

est suffisamment grand par rapport a 7.
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Comme nous pouvons le voir d’apres [11], le résultat du théoréme confirme parfaitement
les résultats numériques. En pratique, a partir des figures 1.7 et 1.8, on observe que plus 3
devient petit (pour 5 — 0), plus I’équation KZK a un quasi choc s’approchant de I'onde
de choc, en lequel il dégénere pour 3 = 0.

La description des résultats obtenus sur 1'équation KZK a été publiée dans [12, 13, 14].

a seconde partie se compose des résultats sur la théorie de la controlabilité « des
L moments » pour 1’équation non-linéaire abstraite d’évolution, pour 1’équation quasi-
linéaire de la chaleur et pour ’équation linéarisée KZK.

Le résultat pour ’équation non-linéaire abstraite (sans regarder la généralité) explique
clairement la méthode de résolution de classe de problemes de controlabilité pour des
équations quasi-linéaires avec surdétermination intégrale. L’idée premiere pour obtenir ce
résultat général consiste a éliminer les détails de la démonstration des cas particuliers et
a essayer d’écrire un schéma de la méthode.

Cette méthode nous permet de prouver 'existence locale du probleme inverse non-linéaire
et de préciser la dimension du voisinage dans lequel il est possible de prendre une fonction
a partir de la condition de surdétermination telle que le probleme non-linéaire inverse
initial ait une solution unique.

La méthode est basée sur les propriétés connues des solutions des problémes linéaires (di-
rects et inverses) et utilise deux fois le théoreme des fonctions inverses dans 1'espace fonc-
tionnel correspondant. Dans un des deux cas, ’espace des antécédents est défini comme
I’ensemble des solutions du probleme correspondant. Apres nous utilisons deux fois le
raffinement du théoréme des fonctions inverses (présenté sous sa forme la plus générale
dans [48]) pour obtenir des conditions suffisantes pour que le probleme inverse initial
soit uniquement résolvable en terme de taille du voisinage dans lequel on peut choisir la
fonction a partir de la condition de surdétermination.

Le résultat pour I’équation de la chaleur semilinéaire donne ’exemple de I'application de
cette méthode, mais il ne peut pas étre inclus sous la forme d’un théoreme abstrait, en
raison de la différence de la condition de surdétermination qui consiste dans ce cas-ci en
I'intégrale spatiale connue a chaque instant et en raison de la dépendance uniquement en
temps de la fonction de controle. Mais la théorie abstraite a été construite pour I'intégrale
en temps comme condition de surdétermination et pour la fonction de controle dépendant
de la variable d’espace.

Dans le dernier chapitre nous envisageons le probleme de la controlabilité pour I’équation
KZK linéarisée commencant par le probleme linéaire et nous expliquons les difficultés
pour obtenir le controle de 1’équation KZK complete.

Plus précisément, notre but est de controler « un moment » sur la solution d’une équation
d’évolution dans l'espace de Hilbert (ou 'espace de Banach réflectif) avec un opérateur
A générateur infinitésimal du semigroupe Cj de contractions.

Nous commencons a partir des problemes de controle linéaires pour des équations de la
forme :

ui(m,t) - (Au)(x,t) = fv
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f est un controle et une fonction d’un seul argument x ou t,

ce qui est bien posé, c.-a-d. qu’il existe une unique fonction de controle telle que le probleme
direct soit uniquement résolvable et nous avons besoin également d’une estimation a priori
pour la solution du probléeme direct linéaire (le probleme de Cauchy ou le probleme aux
limites).

Les résultats des problemes linéaires directs et inverses pour les cas des chapitres IV et V
ont déja été obtenus. Les résultats des problemes inverses linéaires des chapitres IV et V
ont été obtenus respectivement par Prilepko A.I., Tikhonov 1.V. [40] et Kostin, A.B. [27].

Nous considérons deux problemes modeles linéaires :
Probleme 1.
u'(z,t) — [Au](z,t) = f(2) 0<t<T), (12)
U|t:0 = Oa (13)
Nous nous proposons de trouver le controle f pour que

T

/u x, t)du(t) = ¢¥(x) (1(x) et p(t) sont donnés), (14)

0
et
Probleme 2.

— Au=Nh(z)f(t), h(x)est donné, (x,t)e€ Qx]0,T], (15)
U’tzo = 0, (16>
ulg, =0, Sp=0Qx][0,T], (17)

nous nous proposons de trouver le controle f pour que

/u(x,t)w(x)dx = x(?), (18)

Q

ol w et y sont donnés.

Ici, pour la clarté, il y a des modeles simplifiés des problemes que nous avons envisagés
pour les membres de droite des équations dépendant du temps et de la variable d’espace
de la forme :

h(z,t)f(x), or h(x,t)f(t).

Pour le probleme 2, nous prenons le produit scalaire sur w(x) dans Ly (€2) et nous obtenons
I’équation
X () + (u(t), A'w) = f(t)(h,w),
d’ou nous tirons /
X'(t)
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avec

K10 = 5 /0 (=94 ) f(s)ds.

C’est pourquoi nous supposons que (h,w)r,(q) est strictement positif.

Pour le probleme 1, nous appliquons I'opérateur de surdétermination [ : u(¢ fo udpu(t)
al’équation (15) et nous obtenons pour un opérateur A clos linéaire 1ndependant du temps

[ taun + 4 (/ ' uuls)) = o) | " o)

avec ’hypothése fOT du(t) > 0.

Nous avons encore

A(x)
z)— Kf(z) = ——-—
f(z) — Kf(z) T antt)
o ) e A f(x)dp(t)
Kf(x) = .
f(z) T dut)

Dans le second cas, le probleme 2 peut étre résolu (pour établir I'existence et 1'unicité)
en montrant qu’avec la norme suivante dans Lo

T
lal?, 0.z / exp(—B8) [u(t) ] dt,
0

ou le nombre 3 > 0 est a définir, 'opérateur K est une contraction stricte. Ce type de
démonstration est décrit en détail dans la preuve du théoreme 27 du chapitre VI pour la
partie linéaire de I’équation KZK. Pour le probleme 1, cela découle du fait qu’on démontre
que le probleme est bien posé (en utilisant I'alternative de Fredholm).

Nous utilisons le fait que les problemes linéaires directs et inverses sont bien posés pour
établir le résultat du controle de leur petite perturbation non-linéaire

u'(t) = (Au)(t) = G(u)(t) = f.

La non-linéarité GG doit étre strictement différentiable au sens de Fréchet et doit satisfaire
les hypotheses principales G(0) = 0 et G'(0) = 0, qui sont suffisantes pour 'existence de
la solution locale.

Nous prouvons le résultat de l'existence de la solution locale a I’aide de la double applica-
tion du theoreme des fonction inverses 16. La premiere fois nous 'appliquons pour prouver
I’existence locale et 1'unicité de la solution du probleme direct non-linéaire et nous avons
besoin d’introduire ’espace des solutions du probleme linéaire initial ou aux limites H

H={veX|3F € LH :v est une solution du probleme linéaire initial ou aux limites} .
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L’espace H est toujours relié a 'opérateur linéaire
L=d/dt—A, Lu=F, (19)

qui, grace au fait connu que pour tout F' € LH, il existe une unique solution u € X et
grace a 'estimation a priori pour le probleme direct linéaire initial ou aux limites

lullx < ClIF|L,

induit un isomorphisme isométrique de H sur LH avec la norme ||u||g = ||Lu||pgy. Par
conséquent, l'espace (H, || - ||z) est un espace de Banach; de plus, grace a l'estimation a
priori, H est continument inclus dans un espace initial X des fonctions u.

Cela nous permet d’appliquer le théoreme des fonctions inverses 16 a ’application ¢ :
u(t) — Lu(t) — Gu(t) qui est un difféomorphisme local de classe C' dans un voisinage de
zéro de U’ dans H sur un voisinage de zéro de V' dans LH.

En utilisant maintenant 'application inverse n = ¢! : V' — U’ a ce difféomorphisme lo-
cal, c.-a~-d. n : F' —— w ol u est une solution de I’équation non-linéaire et n est strictement
différentiable sur V', et en appliquant 'opérateur de surdétermination a I’équation non-
linéaire, nous démontrons que le probleme inverse non-linéaire est équivalent a 1’équation
opératorielle

M(f) =x"
Nous prouvons que M est strictement différentiable au sens de Fréchet dans un voisinage
de zéro et, grace a G'(0) = 0, M'(0) = [ — K, ou I — K est l'opérateur du probleme
linéaire (I — K)f = x’. Comme le probléme linéaire est bien posé, il existe (M'(0))~!
et [[(M'(0)7H < 1/(1— HAH) Donc, en appliquant une nouvelle fois le théoreme des
fonctions inverses, nous concluons qu’il existe un voisinage ouvert de zéro U et V tels

que M induise un difféomorphisme de classe C*'. Cela termine la démonstration de la
controlabilité locale.

La deuxieme question a considérer sur la controlabilité consiste a trouver les condi-
tions suffisantes sur la taille du voisinage dans lequel la fonction de la condition de
surdétermination peut étre choisie de sorte que le probleme inverse initial soit unique-
ment résolvable. Nous faisons ceci en trois étapes en utilisant le raffinement du theoreme
des fonctions inverses 18 de [49].

Nous établissons qu’avec une hypothese additionnelle sur G
IG"(W)|| ey < 9(r)  pour ||ullg <,

ou ¥ : [0, 00[— [0, 00[ est une fonction monotone non-décroissante,

1. pour le probleme direct non-linéaire :

Vre|0,r.] VFewr) LUy FluerUy:Lu—Gu=F < {u)=F, our,

est la racine de I'équation 1 — Cpd)(r) = 0 et Cy est une constante d’une inclusion.
La fonction w(r) est calculée en terme de 9(r).
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2. pour le probleme en langage des opérateurs inverses :
vr' e [0,7 [V e W(r') Uy 3'F €Uy : LT'F—Q(F)=v < n(F)=wv, ol
] est la racine de 1 — 2C(r) = 0 et alors 7, < r,.

3. pour le probleme inverse non-linéaire :
Vi e [0,7] VY € W(F(I — K)Ug 3l € #Ug : M(f) = X' ol 7 est calculé en
fonction de r’.

Les chapitres IV et V incluent ces deux types de résultats. Le but du résultat abstrait du
chapitre IV est d’éliminer les détails techniques multiples des cas concrets pour expliquer
le plus simplement possible cette méthode pour le probleme modele 1. Les résultats du
chapitre IV peuvent étre lus dans [42, 43]. Dans le chapitre V, il y a le résultat (publié
dans [41]) pour cette technique dans le cas de I’équation de la chaleur correspondant au
probleme modele 2.

Le chapitre VI présente I'application des idées du controle du moment a I’équation KZK
étudiée dans la partie I. Nous avons obtenu le résultat sur la controlabilité pour I’'équation
KZK linéarisée. Ensuite, nous expliquons les difficultés et pourquoi la méthode n’est pas
applicable a I’équation KZK non-lineaire. Cela se produit en raison de I'impossibilité de
montrer que 'opérateur non-linéaire

O(u) = uu,, ®: H((0,7); H2(Q)) — Ly((0,T); H¥(2))

est strictement différentiable.
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This work consists of two parts.

he first part consists in studying the quasilinear equation of nonlinear acoustic named
KZK (the Khokhlov-Zabolotskaya-Kuznetsov equation). In the first chapter the em-
phasis is put on the derivation of the equation for nonlinear acoustic in view of application
to time reversal problems in collaboration with the LOA laboratory in ESPCI directed
by M. Fink.

The KZK equation in its initial interpretation as in [11] is mostly studied by physicists
but until now there is no mathematical analysis of this problem. It is using in acoustical
problems as a mathematical model that describes the pulse finite amplitude sound beam
nonlinear propagation in the thermo-viscous medium (see for example [1, 26, 9, 10, 33]).
Later it has been used in several other fields and in particular in the description of long
waves in ferromagnetic media [44].

The KZK equation is not an integrable one at variance Kadomtsev-Petviashvili (KP)
equation known to be integrable. The existence of a shock wave in the case of propagation
of the beam in nondissipative media and a quasi shock wave for the dissipative media have
been obtained numerically in [11]. This last phenomenon corresponds to the fact that the
beam’s front is approaching the shock wave but the solution has the tentative to be global.

We have obtained the proof of the existence of the shock wave for the problem without
viscosity. We have established the global existence in time of the propagation in viscous
media only for sufficient small initial data.

First the derivation of the equation is borrowed from physical literature. We introduce
a corrector in the ansatz to obtain the approximation of the KZK equation. This allows
to reconstruct the solution of the initial exact system used for derivation. Then the
existence, uniqueness and stability of the equation are analyzed. Moreover a blow-up
result which gives a limitation to the range of application is given as an adaptation of a
result of [3], [4] and [5]. Using obtained results one proves a large time validity of the
approximation for two cases: for non viscous and viscous thermoellastic media. For the
needs of the approximation result the existence of a regular solution of the isentropic
Navier-Stokes system in the half space with periodic and mean zero in time boundary
conditions was obtained.

More precisely, we study the following equation:

(up — utly — Pugy)s —7Ayu =0 in R, xQ, (20)
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named KZK equation, in the class of periodic functions with respect to the variable x and
which are of mean value zero:

L
w(z+ Ly, t) = ulz, y, 1), / a(z, y,t)de = 0, (21)
0

where (3, 7 are some positive constants.

Here the variables (z,y) € R} x (2 € R™!'). When Q # R"! it is assumed that the
solution satisfies on its boundary the Neumann boundary condition.

The equation (20) in the form

1 2
corp— O Vppp -V gap SNy, (22)
TZ 4p0 T T 2 Y

2¢%po

with I(7,z,y) = I(t — %, exy,\/ex'), x = (x1,2'), can be obtained from the isentropic
Navier-Stokes system for the viscous media

Oppe + div(peue) =0, peldiue + (ue - Viu] = =Vp(pe) + evAu, (23)
with the approximate state equation

(y = 1) €22 (24)

9~
P =ppe) = C€Pe + €
(pe) o

and from isentropic Euler equation for non viscous case when v = 3 = 0.

For both cases (which are different because the domains of the existence of the KZK
solution are different, in the viscous case v > 0 the domain is the half space {z; > 0,¢ >
0,2/ € R" '}, and for v = 0 it is a cone) we have obtained the approximation result for
the difference between the exact solution U and the function U, = (p,,U.) defined by the
solution of KZK equation (using the approximation ansatz for rather small €) periodic on
7 and of mean value zero.

Precisely there exist constants C' > 0 and Ty = O(1), such that for any finite time
0 <t < Tollnl and € > 0, there exists a smooth solution U, = (R.,U.)(z,t) of the
isentropic Navier-Stokes/Euler system such that one has for some s > 0:

5
e < €250,

”Ue - U€|

We have proved the existence of the smooth solution of Navier-Stokes system in the half
space with periodic and mean value zero boundary conditions. In the viscous case the
estimation holds with s = 0. The time t < TO% ln% is the time during which U, — U, =
O(e).

To prove the existence, uniqueness and stability result for the Cauchy problem for KZK
equation we define the inverse of the derivative 9! as an operator acting in the space of
periodic functions with mean value zero. This gives the formula:

8;1f:/owf(s)ds+/OL %f(s)ds. (25)
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This form of the operator 9, ' preserves the both qualities: the periodicity and the mean
value zero.

In this situation equation (20) is equivalent to the equation
Uy — Ully — Plgy — vé?x_lAyu =0 inR,x. (26)

Finally when v = 0 equation (20) reduces to the Burgers-Hopf equation for which existence
smoothness and uniqueness of the solution are well known. For v = 3 = 0 it reduces to

the Burgers equation
2

u
8tu — 8353 = 0,

which after a finite time exhibits singularities. After this “blow-up” time the solution can
be uniquely continued into a weak solution satisfying an elementary entropy condition
(in the present case with v # 0, it seems that this construction cannot be adapted to
equation (20) with 5 =0 and v # 0).

We also would like to notice that the J. Bourgain-type method and the introduction of the
Bourgain spaces as in [46, 35, 36] and others are not useful for the KZK problem because
of absence of the terms with an odd derivative as for example u,,, in (26). The presence
only of the second derivative makes impossible the main estimations and equalities of this
method.

There are the mathematical works [28], [29] for KZK type equation
QUyr = (f(uT))T + BU/TTT + Yur + Azua

where u, = wu.(z,2,7) is the acoustic pressure, (2,7) € R? x R, d = 1,2 are space
variables and 7 is the retarded time. The equation is studied with the hypothesis that
the nonlinearity f has bounded derivative which allows to proof the global existence for
the case when the coefficients are rapidly oscillating functions of z. So this problem is not
related with our “acoustical” problem for the KZK equation where as we will see later
there is a blow-up result illustrating the existence of a shock wave.

To prove the existence result for the integrated KZK equation (26) we firstly deduce the
a priori estimates:

n 1d

La 2 2 < 3

For s > [J]+1 S lulls + Blldsully < Cs)lull; (27)
1d

and 5= [[ull + BOL)[[ullg < Cs)]ull;. (28)

The estimate (27) is also true in the nonperiodic case and gives the local existence in
time. But the relation (28) holds only in the periodic case and not on the whole line
(in this later case the H® norm of d,u does not control the H® norm of w). Thanks

to (28) we prove the global existence in time of the solution of the Cauchy problem
ue C([0, T, H*) N C' ([0, T[, H*7?) (s > [4] 4 1) for rather small initial data uy € H°.

The proof is given by two methods: by the fractional step method in the partial case R?
and s = 3 for justifying the numerical results of Thierry Le Pollés (during the grant of
ACIT “Retournement Temporel”, convention A020 du Ministere de la Recherche Frangais)
and by the theory of semigroups and the method of Kato in general case.
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We have also established using the method of Alinhac the geometric blow-up result for
the first derivative of the solution of KZK equation (20) with § = 0.

On the one hand we notice that for v = 0 (or § = 0) and for the function u independent
of y the KZK equation

(ug — Uty — PUgy)s — YAy u =0 in Ry, X Ry X Q (29)

becomes Burgers equation which is known to exhibit singularities. On the other hand the
derivation and the approximation results show that any solution of the KZK equation has
in its neighborhood a solution of the isentropic Euler equation. Once again it is known
that such solution even with smooth initial data may exhibit singularities (cf. [15] or [47]).
These observations are reflected by the fact that for 5 = 0 and v > 0 the equation (29)
may generate singularities.

We prove the geometric blow-up result using the method of Alinhac, which is based on
the fact that the studied equation degenerates to the Burgers equation. In fact Alinhac’s
method is the generalized method of characteristics for the Burgers equation adapted
to the multidimensional case. As we can see the equation (29) possess all this main
properties, and gives us the reason to apply it.

Therefore, an equation of the type (29) is introduced by Alinhac to analyze the blow-up
of multidimensional (in R**!) nonlinear wave equation by following the wave cone

2 k 2
O;u — Dyu + E 9i;0kudiu =0,
0<1,j,k<2

where
=1 _ k _ k
zg=t, == (11,72), 9i5 = Y5i>

with small smooth initial data (see [6]). In fact this corresponds to the same scaling as
the KZK equation because from this wave equation with some changes of variable and
approximate manipulations Alinhac obtains (see [4, 6, 7])

2yu~+ (0,u)(02u) + edou = 0.

This is the reason for the analogy.
For instance one has the theorem:

Theorem 2 The equation
(ug —utg)e — YAy u =0 in Ry X Ry xQ (30)
with Neumann boundary condition on OS2 has no global in time smooth solution if

sup d,u(z,y,0)
€,y

15 large enough with respect to 7.

As we can see from [11] the result of the theorem perfectly confirms the numerical results.
In practically from figures [.7 and 1.8 one observes that the more 5 becomes smaller (for
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B — 0), the more the KZK equation has a quasi shock approaching to the shock wave,
into which it degenerates for 3 = 0.

The description of the results for KZK equation was published in [12, 13, 14].

he second part consists of results on controllability theory “of moments” for abstract
T nonlinear evolution equation, for quasilinear heat equation and for linearized KZK
equation.

The result for the abstract nonlinear equation (without looking at the generality) clearly
shows the method of resolution of a class controllability problems for quasilinear equa-
tions with integral overdetermination. The initial idea to obtain this general result is to
eliminate the details of proof in a particular case and to try to write a schema of the
method.

This method allows to prove the local existence of the inverse nonlinear problem and to
specify the dimension of the neighborhood from which it is possible to take a function in
condition of overdetermination such that the initial inverse nonlinear problem is uniquely
resolvable.

The method is based on known properties of solutions of the linear (direct and inverse)
problems and uses twice the inverse function theorem in the corresponding function spaces.
In one of the two cases, the space of preimages is defined as the solution set of the corre-
sponding problem. After it we use twice the refined inverse function theorem (represented
in the most general form in [48]) to obtain sufficient conditions for the unique solvability
of the original inverse problem in terms of the size of the neighborhood from which the
function from the overdertermination condition can be taken so that the original inverse
problem will be uniquely solvable.

The result for the semilinear heat equation gives the example of application of this method,
but it cannot be included in the form of the abstract theorem, because of the difference
of the condition of overdetermination which consists in this case of the space integral
known in every moment of time and because the control function depends (only) on time.
But the abstract theory has been constructed for the integral in time as a condition of
overdetermination and for the control function depending on the space variable.

In the last chapter we envisage the controllability problem for linearized KZK equation
starting with the linear problem and we explain the difficulties to obtain the control of
full KZK equation.

More precisely, our goal is to control “a moment” on the solution of an evolution equation
in Hilbert space (or reflective Banach space) with an operator A infinitesimal generator
of a Cjy-semigroup of contractions.

We start from the linear control problems for equations of the form:

u(z,t) = (Au)(z,t) = f,

fis a control and is a function of only one argument x or t,



26 English introduction

which are well-posed, i.e. there exists a unique control function such that the direct
problem is uniquely solvable and we also need an a priori estimate for the solution of the
linear direct problem (the Cauchy problem or the boundary initial value problem).

The results of direct and inverse linear problems for the cases of chapter IV and chapter V

have been already obtained. The results of linear inverse problem from chapter IV and
chapter V have been obtained by Prilepko A.IL., Tikhonov I.V. [40] and Kostin, A.B. [27]
respectively.

We consider two model linear problems:
Problem 1.
' (w,8) — [Au](,1) = f(2) (0<t<T), (31)
uli—o =0, (32)

we offer to find the control f to accomplish

/u(m,t)du(t) = () (¢(x) and p(t) are given), (33)
and
Problem 2.
ug — Au = h(x)f(t), h(z)is given, (z,t) € Q x[0,T], (34)
u‘t:() = 0, (35>
ulg, =0, Sp=0Qx][0,T], (36)

we offer to find the control f to accomplish

/u(x, Hw(x)dx = x(t), (37)

Q
with w, y given.

Here for the clarity, there are simplified models of the problems, which we have envisaged
for the right-hand sides of equations depending on the time and the space variables of the
form:

h(z,t)f(z), or h(z,t)f(t).
For the problem 2 we take the inner product on w(z) in Ls(2) and we obtain the equation

X' (t) + (u(t), A'w) = f(t)(h,w),
from where we have
X'(t)
(h,w)

ft) — Kf(t) =
with
1

Kf(t) = (h,w)

/t(e_(t_S)Ah, w) f(s)ds.
0
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So we suppose that (h,w)r,q) is strictly positive.

For the problem 1 we apply the operator of overdetermination [ : w(t fo udp(t) to the
equation (34) and we obtain for a linear closed operator A not dependlng from time

/OT u'(t)dp(t) + A (/OT U(S)du(8)> = f(z) /OT du(t),

with assumption that [\ du(t) > 0.

We have again
fle) = Kf(z) = 77—
with ,
Ji A ()n(t)
foT dﬁb(t)

In the second case the problem 2 can be resolved (to establish the existence and the
uniqueness) showing that with the proper norm in L,

Kf(z) =

T
2 2
el 00y = / exp(—B1) [u(t)|? dt,
0

where the number § > 0 is to define, the operator K is a strict contraction. This kind
of proof is in details in the proof of the theorem 27 of chapter VI for linear part of KZK
equation. For the problem 1 it follows from the proof of its well-posedness (using the
alternative of Fredholm).

We use the properties of well-posedness for the direct and inverse linear problems to make
the control result of their small nonlinear perturbation

u'(t) = (Au)(t) = G(u)(t) = f.

The nonlinearity G must be strictly differentiable in the sense of Fréchet and must satisfy
the main hypotheses that G(0) = 0 and G’'(0) = 0, which are sufficient for local solvability.

We prove the local solvability result with the help of two times application of the inverse
function theorem 16. The first time we apply it to prove the local existence and the
uniqueness of the solution of nonlinear direct problem which needs to introduce the space
of solutions of linear initial/boundary problem H

H={ve X|3F € LH :v is a solution of linear initial/boundary problem} .

The space H is always related with the linear operator

L=dJdt—A, Lu=F, (38)
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which, thanks to the known fact that for all F' € LH there exists a unique solution u € X
and thanks to a priory estimate for the direct linear initial /boundary problem

ullx < C|F| L,

induces an isometric isomorphism of H on LH with norm ||u||g = ||Lu|/rgz. Therefore,
the space (H,| - ||g) is Banach; moreover, by the a priori estimate H is continuously
embedded in some initial space X of functions w.

This allows us to apply the inverse function theorem 16 to the map £ : u(t) — Lu(t)—Gu(t)
which is a local diffeomorphism of class C* in a neighborhood of zero of U’ in H onto a
neighborhood of zero of V' in LH.

Using now the inverse mapping n = ¢! : V/ — U’ to this local diffeomorphism, i.e.,
1 : F'—— u, where u is a solution of the nonlinear equation and 7 is strictly differentiable
on V', and applying the operator of overdetermination to the nonlinear equation we prove
that the nonlinear inverse problem is equivalent to the operator equation

M(f) =X
We prove that M is strictly differentiable in the sense of Fréchet in a neighborhood of
zero and, thanks to G'(0) = 0, M'(0) = I — K, where I — K is the operator of the linear
problem (I — K)f = x'. Since the linear problem is well defined, there exist (M’(0))~!
and [|[(M'(0))7 Y < 1/(1— HAH) So applying now again the inverse function theorem,

we conclude that there exist open neighborhoods of zero U and V' such that M induces a
diffeomorphism of class C'*. This finishes the prove of local controllability.

The second considered question on the controllability is to find the sufficient conditions
on the size of the neighborhood from which the function from the overdertermination
condition can be taken so that the original inverse problem will be uniquely solvable. We
do this in three steps using the refined inverse function theorem 18 from [49].

We establish that with additional hypothesis on G
IG" ()l cpay < O(r) for Jully <,
where ¥ : [0, co[— [0, o[ is a monotone nondecreasing function,

1. for the direct nonlinear problem:

Vrel0,rn] VFew(r)LUy 3luerlUp:Lu—Gu=F <« {(u)=TF, where
7. is the root of the equation 1 — CyptJ(r) = 0 and Cj is a constant of an embedding.
The function w(r) is calculated in terms of J(r).

2. for the problem on inverse operators :

V' e (0,7 [ Yo e W'\ Uy 3'F € ¥'Upy : L7'F —Q(F) =v & n(F) =,
where 77 is the root of 1 — 2Cy¥(r) = 0 and so 7}, < r,.

3. for the inverse nonlinear problem:

Viel0,7[VY € WE(I — K)Ug 3¢ € 7Ug : M(f) = x, where 7 is calculated
depending on 7.
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The chapter IV and chapter V include this two kinds of results. The goal of the abstract
result of chapter IV is eliminating multiple technical details of concrete cases to explain
the most simply this method for the model problem 1. The results of chapter IV can be
found in [42, 43]. In chapter V there is the result (published in [41]) for this technique in
the case of heat equation corresponding to the model problem 2.

The chapter VI consists to apply the ideas of the control of moment to the KZK equation
studied in the part I. We have obtained the controllability result for linearized KZK
equation. After it we explain the difficulties why the method is not applicable to the
nonlinear KZK equation. It happens because of impossibility to prove that the nonlinear
operator

D(u) = uu,, @:HY((0,T); H2(Q)) — La((0,T); H*(Q))
is strictly differentiable.
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34 Chapter 1. Introduction

he KZK equation, named after Khokhlov, Zabolotskaya and Kuznetsov, was originally
T derived as a tool for the description of nonlinear acoustic beams (cf for instance [11,
52]). It is using in acoustical problems as mathematical model that describes the pulse
finite amplitude sound beam nonlinear propagation in the thermo-viscous medium, see for
example [1, 26, 9, 10, 33|. Later it has been used in several other fields and in particular
in the description of long waves in ferromagnetic media [44]. In the present chapter
the emphasis is put on the derivation of the equation for nonlinear acoustic in view of
application to time reversal problems in nonlinear media. The KZK equation in its initial
interpretation as in [11] is mostly studied by physicists but until now there are is no
mathematical analysis of this problem. The KZK equation is not an integrable equation
at variance Kadomtsev-Petviashvili (KP) equation known to be integrable. Numerically
in [11] has been obtained the existence of a shock wave in the case of propagation of the
beam in nondissipative media and a quasi shock wave for the dissipative media. The last
phenomenon corresponds to the approximation of the beam’s front to the shock wave
but the solution has the tentative to be global. We obtained the proof of the existence
of the shock wave for the problem without viscosity. We have established the global
existence in time of the propagation in viscous media only for rather small initial data.
The announcement of the results can be found in [12, 13, 14].

This part is organized in the following way. First the derivation of the equation is borrowed
from physical literature then the existence uniqueness stability of the equation is analyzed.
Eventually a blow-up result which gives a limitation to the range of application is given
as an adaptation of a result of [3], [4] and [5]. Using obtained results one proves a large
time validity of the approximation for two cases: for non viscous thermoellastic media
and viscous thermoellastic media.

Our main purpose is to prove existence and stability of solutions described by the KZK
equation with the following properties

1. they are concentrated near the axis x;
2. they propagate along the x; direction;
3. they are generated either by initial condition or by a forcing on the boundary x; = 0.

This corresponds to the description of the quasi one d propagation of a signal in an
homogenous but nonlinear isentropic media.

Therefore it is assumed that its variation in the direction
¥ = (v9,23,...,1,)

perpendicular to the x; axis is much larger that its variation along the axis x;.
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For instance for the linear wave equation in R" (n > 1):

1
gafu —Au=0, (L.1)
the following ansatz
ue =U(t — ﬂ, exy, Ver') (I.2)
c
involving a “profile”
U(r,z,y)
(with €) small leads to the formula:
1
02U — S0 = O(e), (1.3)

or for functions U(T, z,y) = A(z,y)e™™, to the equation

w0, A — %AyA = O(e). (L.4)

Observe that with € = 0 (1.3) and (I.4) are two variants of the classical paraxial ap-
proximation and that equation (I.3) contains the linear non diffusive terms of the KZK
equation which usually has the following form for some positive constants 3 and ~:
1
922U — §a$U2 — 803U — yA,U = 0.

On the other hand the isentropic evolution of a thermo-elastic non viscous media is given
by the following Euler Equation:

Op+V(pv) =0, p(Ow+v-Vo)=—-Vp(p). (L.5)

Any constant state (pg, vo) is a stationary solution of (I.5). Linearization near this state
introduces the variables
p=po+ep, v=1vy+ €0

and the acoustic system:
atﬁ + poVo =0, poat’[) + p'(po)V[) =0, (16)
which is equivalent to the wave equation:

1 5. N .
gﬁfp—Ap:O, v = —

p/gO)Vﬁ, (L7)

where ¢ = /p/(po) is the sound speed of the unperturbed media.

And observe that the equation (I.3) which is the linearized and non viscous part of the
KZK equation can be obtained in two steps. First consider small perturbations of a
constant state for the isentropic Euler equation which are solution of the acoustic equation
and then consider a paraxial approximation of such solutions.
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The derivation of the full KZK equation follows almost the same line. It takes into account
the viscosity and the size of the nonlinear terms. One starts from a Navier Stokes system:

Op+Vipu) =0, plou+ (u-V)ul =—-Vp(p,S)+ bAu, (L.8)

the pressure is given by the state law p = p(p, S), where S is entropy.

First one assumes that the temperature 7" and the entropy S have the small increments
T and S. With the hypothesis of potential motion one introduces constant states

P = Po, U= Up.

Next one assumes that the fluctuation of density (around the constant state pg), of velocity
(around wg, which can be taken equal to zero with galilean), are of the same order e:

pe=po+€pe, U =cle, b=eb,

here € is a dimensionless parameter which characterizes the smallness of the perturbation.
For instance in water with a initial power of the order of 0.3 Vt/cm? € = 107°. Using the
transport heat equation in the form

a5 -
To— = &AT
Po 0815 K )

the approximate state equation

1 /0% op\ =
_ 2 L (ODPN 55 [Op
r=carg(g4) 9+ (55), 9

(where the notation (-)4 means that the expression in brackets is constant on S), can be
replaced [11], thanks to the relation

by

— 1) 1 1
p = c’ep. + %62,52 — K (— — —) V.. (1.9)

The system (1.8) becomes an isentropic system
Oipe + V(peu) =0,  plouec + (ue - V)u] = —Vp(pe) + evAu,, (I.10)

with the approximate state equation

(y = 1) €22 (1.11)

9~
P =pPe) = CEPe + €
(pe) 2

and a rather small and positive viscosity coefficient:

Y
€V = Rl —=— — —— .
c, G,
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Next one reminds the direction of propagation of the beam say along the axis 1, and
therefore considers the following profiles:

ﬁE:[(t—ﬁ,exl,\/Ex’), (L.12)
C
e = (uer,ul) = (Wt — 2L ewy, Vea'), Vew(t — L exy, ver')).  (113)
C C

In (I.12) and (I.13) the argument of the functions will be denoted by (7,2,y) and ¢ is
taken equal to the sound speed ¢ = \/p/(po) . Inserting the functions p. = pog + €/, u, in
the system (1.10) one obtains:

1 For the conservation of mass:

upe + V(peue) = e(0:1 — p—COaTv) +

1 1
+¢? (po((?zv +V, - W) — Zv(l] - EI&-U) +0(*) =0. (I.14)

2 For the conservation of momentum in the z; direction:
pe€(Oties + uNVue1) + 0p,p(pe) — VAU, = €(poOrv — cO-T) +

+€2 (I@Tv — 2900 + 20,1 — %0&12 — C%@?v) +0(e*) = 0. (I.15)

And finally for the orthogonal (to the axis x1) component of the momentum one has:

pee(Bpul + uVul) 4+ 0 p(pe) — EvAUL = €2 (pedoiD + AV, 1) +
€3 (— 220,05 + 10,5 + DRIV, 12 — LA0) + O(¥) = 0. (1.16)

To eliminate the terms of the first order in € we need to pose:
a.1 - 2o =o0, (1.17)
c
which also implies

P00, v — o1 = 0,
and therefore I and v should be related by the formula:
c
v=—1 [.18
Po (118)
and the second order terms of (1.14) and (I.15) by the formula:

po(0,v + V- W) — %v&[ — %I@Tv =
= — 1100 — 200w + 0.1 — e, IP — 50%), (1.19)

T

which (with (I1.18)) gives:

0+l oy —o. (1.20)

V, - @+ 20,1 — -
Py 2 2p0 po
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Eventually one uses the equation for the orthogonal moment to eliminate the term pyV,-10.
Assume in agreement with (I.16) that

po0y 0 + ¢*V, I =0, (I.21)

take the divergence with respect to y of this equation. Differentiate (1.20) with respect to
7, and combine to obtain:

0821_(7_’—1)82]2_ v

4po

2
3 ¢ _
3oz T = ST =0 (1.22)

The KZK equation (I1.22) is written for the perturbation of density, but the same equation
with only different constants can be also derived for the pressure and the velocity. The
passage between these KZK equations is possible thanks to (I.11), (I.18) and (I.21). For
example the equation for the pressure has the form

B 0 0 .3 ¢

a‘?’zp B
The above derivation is standard in physic articles however it does not imply that the
function

pe = po + el u. = e(v, /ew)

is a solution of the system (I.10) with an error term of the order of €. In fact one can
assume (I.17) and that (1.21) with (1.20) take place, but not the fact that this quantity
which corresponds to the term of the order of €? both in the conservation of mass and
momentum along the axis x; is zero. To remedy to this fact and also to ensure an error
of the order of €2 in the moment orthogonal to the x; direction one introduces an Hilbert
expansion type construction and writes

pe=po+el, u.=elv+ev, ew), (1.23)

assuming that I is solution of the KZK equation (1.22), while v and w are given in term
of I by (1.18) and (I.21), one obtains, modulo terms of order €3, for the right hand side
of the equations (I1.14), (I.15) and (1.16):

1
€ ( - @@Ul + po(0:0 + V- w) — _8712> )
c Po

—1
€ (po(?Tvl + 20,1 — 72 co.I? — L@EI).

Po €Po

Taking into account the KZK equation this implies for the “corrector” v, the relation:
y=1 _ o v 5
871)1 = —2087—[ + —287_1 — —azl (124)
205 CPo Po

At this point one can state a theorem with hypothesis to be specified later in chapter 111
(see theorems 10,11, 12).
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Theorem 3 Let I be a smooth solution of the KZK equation (1.22), define the functions
v, w and vy by the known I. Define the function U, = (p,,uc) by the formula:

(B T) (21, 27, t) = (po + el e(v + evr, Ved))(t — 2, exy, ex!).
C

Then there exist constants C > 0 and Ty = O(1), such that for any finite time 0 < t <
TotInt and € > 0, there exists a smooth solution U, = (R.,U.)(z,t) of the isentropic
Navier-Stokes equation such that one has for some s > 0:

U, — Ud||gs < e3¢,

It is interesting to notice that for the non viscous case, i.e., for the isentropic compressible
Euler system, the KZK like equation with 3 = 0 have been obtained using the scaling of
nonlinear diffractive geometric optic theory in [17, p. 1233] (in 2d) in the framework of
nonlinear diffractive geometric optic with rectification. The initial goal of the article is to
construct the nonlinear symmetric hyperbolic equation

L(u, 0,)u+ F(u) =0,

and the case of the isentropic compressible Euler system is given as an example. The
basic ansatz in [17] has three scales

u(r) = la <6, €T, T, M) ,
€

where
ale, X, 2,0) = ap(X, x,0) + eay (X, 2,0) + as(X, z, 0).

Here z = (t,y) € R', 8 = (7,17) € R and the profiles a;(X, z,0) are periodic in 6.
The KZK like equation of the form

Oora — Ayagla + cadpa = 0,

with 0 € R determined from some identity and with 1" = é, holds for the profile ag
with mean value zero on 6 (for the proof see [17, pp. 1231, 1234]) which corresponds to
vanishing non oscillatory part, if we have in our mind the notation of [17, p.1181]:

1 2

if (see [17, p.1181]) a := 5~ |, adf, the oscillating part is denoted a* := a — a.

The analogue technique is used in [51] to study the short wave approximation for general
symetric hyperbolic systems as

{ L(O)u = F(u)d,u, with (z,y) € R xR, (1.25)

u(0) = eu’(x/e,y) € R™.

with an hyperbolic operator L(0) = 0, + Ad, + BJ, + E. Short waves stands for short-
wavelenght approximate solutions, or equivalently approximate solutions with initial data
whose oscillatory frequencies are large compared to the paremeters of the system. For the

variables ;
T
T=- X=—,y,17=c¢t
€ €
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in [51] one looks for the approximate solutions in the form

u(t,x,y) = e(ug + euy + 62%2)(T7 X,y,7).

For the first profile uy one has the system of the form

{ (Or + cOx)ug =0,

(0.0 — 02 )ug = D (ueDx o). (1.26)

corresponding to the KZK equation for the function uy(X — ¢T', 7, y, X). The estimate of
the approximate result in [51] between the exact solution v¢ of (I.25) and the solution w
of a system of the form (1.26) is following

v = eugllraompaxrz ) = of1).

To analyze common points between this work and KZK-approximation we can pass from
the variables corresponding to our scaling

(t - %761‘17 \/El'/)

—_—

to “variable = /e variable” in following way
1
(-2 ven, )

and supposing now that e = €2, i.e., we obtain

1 -z ..
“(F -2
(€< c)7€x17'r)7

(p,u) = (po + €I, &0 + &0y, &n)).
This variables exactly correspond to Texier’s case [51]

X
7= .
( C,T,y)

and similar

To the first profile euy from [51] there corresponds to (po + éI,év) for which we have
exactly the system (1.26) in the form of (I.17) and the KZK equation without viscous
therm. The profile 2w is associated to €2u; and the profile €9, is associated to e3u,. The
result of [51] is obtained for nonperiodic case and without the vanishing mean condition
important for physical reasons.

This small analysis of the abstract works shows that our approach is similar where the
variables have been switched € to balance the oscillate :

l(t~—ﬂ> — <t—ﬂ).
€ c c
In other words we can say that we have O(1) oscillation.

The scaling of [44] for Landau-Lifshitz-Maxwell equation in R? is very different.
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Remark 1 Several limits of the equation (1.31) leads to classical PDE.

o With poc — oo it becomes the parazial approximation:
c
&J—EAﬁzo, (1.27)

or in term of the pressure the equation

dp ¢ [T ,
5—2/0 AypdT'.

The solutions of these equations have been numerically computed by Thierry Le Pollés
(in Laboratoire Ondes et Acoustique, ESPCI, Paris) using a fractional step method. The
proof of the wvalidity of this method will be given in section I1.1.2. The figures 1.1 and
1.2 have been simulated for the three dimensional problem for pressure p of a sound beam
propagating in the water

dp ¢ [T
% — 5/0 Aypd'r/a Y= (y17y2)7
p(1,0,y) =g(r) yeQ, 7>0,
P _ 0 for 090, 7> 0.
on

Here g(7) is the signal of the source situated in z =0 and

g(7) = Pyexp[—(27/T,;)*"] sin(wot). (1.28)

o And when I does not depend on y it is the Burgers-Hopf equation

(7+1)6T12 v

0.1 — —
‘ 4po 2¢%po

021 =0 (1.29)

and eventually in this case with v = 0 the Burgers equation:

(v+1)
4po

cO, I — 0.1 = 0.

In term of the pressure fluctuation, (1.29) is

dp 86 p B p
0z 2630712 2poc3 012

(1.30)
The numerical simulation of the solution of (1.830) with the same initial and boundary

data as in (1.27) is given in the figures 1.3 and 1.4.

e The analogous 2d version of KZK equation is

1
cO? I — M@fﬂ —

4po

2
v c

—— 01 — —0°1 =0.
2¢%py " 2 Y
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And for a “beam” (rotationally invariant around the x1 axis) in 3 space variables it is:

(v+1)

021% —
4po

T

cO? I — 02 — —(821 + a I)=0. (1.31)

202P0

The figures 1.5 and 1.6 represent the graph of the solution of the full KZK equation,
composed of the both parts of (1.27) and (1.30) with the source (1.28)

5 0% 3 op?
Ny pdt’ ) 1.32
/ tos 2¢3 072 2p003 or? (1.32)

All figures 1.1-1.6 have been obtained by Thierry Le Pollés in Laboratoire Ondes et Acous-
tique, ESPCI, Paris, and are the illustrations of his numerical results calculated in C++.

Remark 2 We would like also illustrate the case of “quasi-shock” using [11, pp.78-81].
This phenomenon appears for the KZK equation with small viscosity coefficient. According
to [11] the wave is named a quasi shock wave if the breadth of the wave front A1 < m/10.
The figures 1.7 and 1.8 have been obtained in [11] for the following problem for the density
function of a beam rotationally invariant around the x, azis (cf. (1.51))

2 9 2 9 3 2
d%p Nap 5(‘3p <8 18)/):0’

(1.33)

ordz ~ Or2  Or3 W—i_r@r

Pli=o = —e " sinT.
Remark 3 There are the mathematical works [28], [29] for KZK type equation
QUyr = (f(uT))T + 5“77’7 + YUr + Amua

where u, = u.(z,z,7) is the acoustic pressure, (z,2) € RYx R, d = 1,2 are space
variables and T is the retarded time. The equation is studied with the hypothesis that the
nonlinearity f has bounded derivative which allows to proof the global existence for the
case when the coefficients are rapidly oscillating functions of z. So this problem is not
related with our “acoustical” problem for the KZK equation where as we will see later
there is a blow-up result illustrating the existence of a shock wave.
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Figure 1.1 — The effects of diffraction (1.27) in 3d for the pressure with a square source
3cmx3cem. The parameters of simulation for propagation in water: Ay, =
Ayy = 3.75 x 107*m, Az = 6 x 107*m, A7 = 6.6667 x 107s, py =
1000 kg/m?, ¢ = 1500 m/s.
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Figure 1.2 — The effects of diffraction (1.27) along the retarded azis T in the two different
places of the propagation axis z with a square source 3cmx3cm. The dotted
line corresponds to the signal source z = 0 and the solid line to the pressure
at the distance z = 30cm. The parameters of simulation are the same as
in figure I.1.
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Figure 1.3 — The effects of absorption and nonlinear effects (1.30) in 3d for the pres-
sure with a square source 3cm x 3cm. The parameters of simulation for
propagation in water: Ay, = Ays = 3.75 x 1074m, Az = 5 x 1073 m,
AT = 6.6667 x 107%s, 3 =5, § = 4.1 x 1075Np/m, py = 1000 kg/m?,
¢ = 1500m/s.
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Figure 1.4 — The effects of absorption and nonlinear effects (1.30) along the retarded axis
T in the two different places of the propagation axis z with a square source
3cm X 3cm. The dotted line corresponds to the signal source z = 0 and
the solid line to the pressure at the distance z = 1m. The parameters of
simulation are the same as in figure 1.5.
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Figure 1.5 — Representation of the solution of KZK equation (I.32) for the pressure in
3d with a square source 3cm X 3cm. The parameters of simulation for
propagation in water: Ay, = Ayp = 3.75 x 107*m, Az = 1 x 1072 m,
AT = 6.6667 x 107%s, 3 =5, § = 4.1 x 1075Np/m, py = 1000 kg/m?,
c = 1500m/s.
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Figure 1.6 — Representation of the solution of KZK equation (1.32) along the retarded
axis T in the two different places of the propagation axis z with a square
source 3cm x 3cm. The dotted line corresponds to the signal source z =0
and the solid line to the pressure at the distance z = 31.2cm. The param-
eters of simulation are the same as in figure 1.5.
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Figure 1.7 — Profiles of the solution of KZK equation (1.33) for the density along the axis
7 with different values of z. The values of z on the curves 1-4 respectively
are 0.15, 0.3, 0.7, 1.2; N = 3.25, 6 = 0.1 (see [11, p.80]).
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Figure 1.8 — Wave profiles of the solution of KZK equation (1.33) corresponding to dif-
ferent §; N =5 (see [11, p.81]).
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Il.L1 Existence uniqueness and stability of solutions of the
KZK equation

Following the mathematical tradition in this section and in the next one the unknown
will be denoted by u, and the variables (z,y) € R, x (@ € R"!). When Q # R"! it
is assumed that the solution satisfies on its boundary the Neumann boundary condition.
Multiplying u by a positive scalar one reduces the problem to an equation involving only
two constants 3 and ~y

(ur — utty — Pgy)e —¥Ayu=0 inR,/(LZ) x Q. (IL.1)

For sake of clarity and because this also corresponds to practical situations [11, 52] we
consider solutions which are periodic with respect to the variable z and which are of mean
value zero:

L
ot Loy t) = ulept), [ ulwyt)de =0 (112)
0

Observe that the conditions (I1.2) are compatible with the flow and that the second one
is “natural” because we consider fluctuations.

For these functions the norm of the space H® (s € R, s > 0) is denoted by

2

“+o00o
lullae = / S (14 K2+ 02 lalk, ) Pdn

n—1 k=—o00

If we introduce the operator A = (1 — A)2 as (/Au\)(o = (14 [¢|?)2a(¢), then

A= (1-2)%, |l

s = ||A°ul|L,. (I1.3)

We define the inverse of the derivative 9, ! as an operator acting in the space of periodic
functions with mean value zero this gives the formula:

8;1f:/0mf(s)ds+/OL %f(s)ds. (11.4)

This form of the operator ;' preserves the both qualities: the periodicity and having
the mean value zero.
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In this situation equation (II.1) is equivalent to the equation
Up — Uty — Bl — 0, ' Ayu =0 in R,/(LZ) x Q. (IL.5)

Finally when v = 0 equation (II.1) reduces to the Burgers-Hopf equation for which exis-
tence smoothness and uniqueness of solution are well known. For v = # = 0 it reduces to

the Burgers equation
2

u
815”—81? =0

which after a finite time exhibits singularities. After this “blow-up” time the solution can
be uniquely continued into a weak solution satisfying an elementary entropy condition
(in the present case with 7 # 0 it seems that this construction cannot be adapted to
equation (II.1) with 5 =0 and ~ # 0).

We would like also to notice that the J. Bourgain-type method and introduction the
Bourgain spaces as in [46, 35, 36] and others are not useful for the KZK problem because
of absence of the terms with an odd derivative as for example u,,, in (IL.5). The presence
only of the second derivative make impossible the main estimations and equalities of this
method.

I1.L1.1 A priori estimates for smooth solutions

According to the standard approach we first establish a priori estimates for smooth solu-
tions which are in particular a consequence of the relation:

/ / 0, (Ayu)udrdy = / / Y(V,u)V,udrdy
Rn 1 Rn 1

:/ [ (900,00, (V) dady = . (11.6)

The Ly norm and the H*® in (R} /(LZ)) x Ry~") are denoted by |u| and by [Ju|.

Proposition 1 The following estimates are wvalid for solutions of the integrated KZK
equation (11.5):

1

2 2 __
n 2 2 3
— < .
Fors > (41 2 ull2 + Bloaull? < O(s) Jul (1L.8)
and ——HuH2 + BC(L)|lul]2 < C(s)]|ull3. (IL.9)

The estimates (11.8), (I1.9) are valid for s > [§] + 1 which is the necessary condition
because of application of the Sobolev theorem.

Proof. To obtain the relation (I1.7) multiply (II.5) by u, and integrate by part. It shows
that for # = 0 we have the conservation low for the norm of u in Ly(R} /(LZ)) x Ry~).
If 5 > 0 we also have according to the physical phenomena [11] the dissipation of energy.
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For the clarity the proof of (II.8) is done firstly in 3 space variables, with Q = R? and s
an integer (i.e. in the present case s = 3) and after it we cite the proof in general case.
In 2d in particular when € = S* the proof is even simpler and in the periodic case. The
proof in the whole is similar except for the relation (I1.9) which holds only in the periodic
case and not on the whole line. (In this later case the H® norm of d,u does not control
the H® norm of u).

For the proof of general case s € R one has used the representation of the norm in H*®
with the help of the operator A by (I1.3) and the technique demonstrated in [25] and [45]
for periodic and nonperiodic cases, which allows to deduce

Sl - B0l < gl el

and this implies the necessity of our restriction for s:
: n s—1
1f$>[§]+1then H*™" C L.

The elementary proof

The introduction of the H? norm for n = 3 comes from the control of the nonlinearity
with the Sobolev theorem and it starts with the following relations and estimates

L L
/ 02 (udpu)PPudrdy = // u0, (92u) P udrdy
0 JR2 R2
L
+ 3/ (02u)*02udxdy
R2
L
+ 3 / pudPudiudzdy
0o JR2

L
+ / (0Pu)*0,udzdy. (I1.10)
R2

The first term of (I1.10) is integrated by part (use the x periodicity):

L 00
/ / u0, (02u)Pu = —l/ Opu(D2u)dady.
o Jr2 2Jo Jrz

The second is a perfect derivative and therefore it disappears and finally one has:

|/ 02 (u0,u)0?
RQ

In the same way with d, denoting the derivative with respect to any orthogonal component

XRZ)*
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L
/ / O (udyu) B udrdy = / / ud, (0pu) 9 udxdy
o Jr2 R2

+ 3/ / (8yu)(0;0,u) D udxdy
o Jr2

L
+ 3/ - O2u(0,0,u) O udxdy

one obtains:

L
+ / (Byu)*Opudrdy (IT.11)
R2

and as above one has

L 1 L
/ / ud, (O3u)Oiu = ——/ (D) dxdy.
o Jr2 2Jo Jrz

Therefore the sum of the first, second and last term of (II.11) are bounded by
Cl0yul oo, cixr3) 1ullFr30,Lx=2)

and for the third term one can write:

L
/ O2u(0y0pu)Ojudrdy = / 0, (02u)?(0,0,u)dxdy
0o JRr2 R2
= —= / 82 (02 Lu)dzdy = 0. (I1.12)
RZ

Finally one has obtained the following estimate:

/ (O3 (u0pu) (D3u) + > 03 (udyu) (05 u))dxdy <
'R,2

1<i<2

< (sup |Opu(, y. t)| + [Vyu(z, y, t)])|ull5. (I1.13)
m7y

The choice of the index of derivation 3 comes from the Sobolev theorem which gives:
|8$'LL| + |6yu| S OHUHH?’(}O,L[X’R@

Eventually to obtain (IL.8) write:
L
/ (02 (uy — uuy — Buge — 0, ' Ayu(s, y)ds).02u
Ry

+ Z 8;’1, (up — utty — By — v, ' Ayu(s, y)ds).@iu]daﬁdy

1<i<2

and use the estimate (I1.13). Finally to prove (I1.9) one uses the fact that u is of  mean
value 0 and therefore it is (cf: (I1.4)) related to d,u by the formula

T L
u=0,'0u= / O.u(s,y)ds + / %&Eu(s, y)ds, (I1.14)
0 0
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which implies the relation

|’uHH3(}07L[><R§) < CHaggUHHi%(]o,L[xR;) .

The general proof

We apply the operator A® to equation (I1.5) and multiply by A®u in Lo

1 d S S S S
§%Hu| %, — B(A Uy, Nu) — (A°(uuy), A°u) =0,
]' d 2 2 s s
S, Hs z||Hs — x)y — U.
e+ Bl e — (A" (), Aw) = 0

Suppose that [A®, uJv = A*(uv) — uA®v. Then
1
(A% (uuy), Nu) = ([A% ulug, Au) + (w0 Nu, AN°u) = ([A% ulug, Au) — 5(%/\%, Au).

As soon as 2(s — 1) > n, the last term is estimated by

(e Au, M%) < g L el < Clugl i < Cllullys.

s—1|ul
For the first term we have:

([A”, ufue, Au) < |[A%, ulug]| L, [|u] ms < Cllullys.

Hs u$| Hs—1 ||u|

We need now the following proposition.

Proposition 2 With the above notations we have the estimate

1A%, ulus|| L, < Clul

Hs Ux| Hs—1.

Proof.

Non periodic case. Using the result from [25]

1A°(fg) = F(A° Iz, < (VAN g, + 1A fllz, llglle.),
where 1 <p <o00,5>0,V =(01,....,0,), 0j = 0/0z;, we find for p=2, f =u, g =u,

1A, ulte ||z, < CUIVayull L 1A uallz, + 1A L, 6o 1)

Since
el Lo < Clluallss-r,
(the embedding theorem for 2(s — 1) > n),
IVullLo < Cllullas,
Al L, = l[ull s,




I1.1. FExistence uniqueness and stability of solutions of the KZK equation 53

we have

1A%, wlug |z, < Cllullms e | s

Periodic case. Using the result of J.C. Saut and R. Temam from [45] which consists in
the following:

if u, v arein H*(R") or in H*(R"/2") and s € R, s > 1, vy € R, v > n/2, then

1D*(uv) = uD*|, < c(v, s){l[ullsl|vlly + [ullysallolls—1},

what is easy to generalize for H*(R,/(LZ)) x Rj~".
The estimate remains true if we change D*® on A®.
In our case v = s — 1, from where the result follows. []

To finish the proof for (I1.9) we notice that

ou
Hs §C||%|

[l Hes

because of (I1.14). O

11.1.2 Existence and uniqueness for smooth solutions

The following theorem is an easy consequence of the a priori estimates.

Theorem 4 For the following Cauchy problem
Uy — Wy — Bllge — YO, (Ayu) = 0, u(z,y,0) = ug (I1.15)

considered in (Ry/(LZ)) X Ry, i.e. in the class of x periodic functions with mean value
0 with the operator ;' defined by the formula (II.4) and finally with 3 > 0 one has the
following results.

1 For s > [3] 41 (s = 3 for instance in dimension 3) there exists a constant C(s, L) such
that for any initial data ug € H® the problem (I1.15) has on an interval [0, T with

1
T > I1.16
= O, Dlluolla- (IL16)

a solution in C([0,T[, H*) N C*([0, T[, H*2).
2 Let T* be the biggest time on which such solution is defined then one has

T*
/ sup(|Q,u(z, y,t)| + |V yu(x,y, t)])dt = oo. (I1.17)
0 @y

3 If B > 0 there exists a constant Cy such that

uolls < C1 = T* = . (IL.18)
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4 For two solutions u and v of KZK equation, assume that u € Ly ([0,T[;H®), v €
L3([0,T[; Ly). Then one has the following stability uniqueness result:

u(,t) — 0., 1)z < o supeslOeul@ualds| oy ) — p(., 0)| 2. (I1.19)

Remark 4 The estimate (I1.19) is of strong-weak form, as in [15] only the Lo, norm of
u, 18 needed.

Remark 5 When there is no viscosity all the corresponding statements of the theorem 4
remain valid for 0 >t > —C" with a convenient C'.

Remark 6 As (I1.1) is envisaged for u(t,x,y) with x € R/(LZ), the KZK equation can
be also written for u(t,z,y) = v(t, —x,y) in the equivalent form

(v + V0 — BUge) s +7Ayv = 0.

So it is important to keep invariant the sign —Bv,.., 0 > 0, but all other signs can be
changed.

Proof. To construct a solution one can proceed by regularization, by a fractional step
method, or by any other type of approximation. In particular it was done for the general
case with the help of Kato theory from [21, 22, 23, 24]. Since we intend to analyze the
numerical methods, the fractional step is favored and once again the only case n = 3 and
s = 3 with periodic solutions is analyzed. The idea of this kind of proof can be found
in ([50]) and firstly have been introduced by Marchuk and Yanenko. Furthermore as for
a priori estimates result we cite two proofs: one with the analysis of the fractional step
method for the case n = 3 and s = 3 and an other proof for general case.

The application of the fractional step method

To control the stability of the fractional step method one uses the following

Lemma 1 Let Xo,C,T be three positive numbers with

2
CV/ Xy
T

Let N be a positive integer, AT = % and for 0 < k < N let Xy be a sequence of positive

numbers which satisfy the estimate:

T <

Xk
0<k<N-1, X < )
for0 <k < kH_(l—%CAT\/X_kP

then for any 0 < k < N one has

X,
X, < .
"= - 1oTVX,)

Proof. The solution of the equation:
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is given by the formula:
Xo

(1 - 30tV X,)

and is therefore positive and bounded on the interval [0,7]. Denote by y, the value of
this solution at the points kAT they satisfy the relation

y(t) =

N Yk
I T U IOAT i )2

and therefore for any k € [0, N — 1] one has

0< X <y

and the conclusion follows.

The operator 9;'A, is the generator of a unitary group in the space of Lz(% x ) with
mean value zero and this unitary group

e—t(‘);lAy

preserves the H® norm. In the mean time the solution of the Burgers equation:

on the time interval kAT, (k + 1)AT[ with u given at the time kAT may increase (as in
the proof of the a priori estimates) the H® according to the formula

lokAT) s
(1 = 2CT (kAT s

According to the tradition one defines on the interval [0, 7] the functions uy and wuy +1
by the following formula:

lu((k +DAT)||s <

for t €]RAT, (k + 1)AT[,  uy 1(0-) = uo,
Oruny — un(un)z — Bun)ze = 0, uy(KAT) = uN+%(l€AT_),
ey g1 — 78;1AyuN+% =0, uN+%(k‘AT) =un((k+1)AT.).

The lemma 1 implies that the functions uy and wuy 41 are uniformly bounded in
L>(]0,T[, H?)
and by a standard argument as it is done for instance in [50] they converge in
C(J0,T[, H?)
to a function u which is solution of the KZK equation:
Ot — Uy, — Py — vaw_lAyu =0.

The fact that the solution w € C([0,T[, H*) N C*([0,T[, H*~2) can be easily shown as
in [21].
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This proof being invariant with respect to time translation shows also that whenever
u(t) € H*® is finite the solution can be extended on a non zero time interval which is
bounded below in term of ||u(t)||s. Now from the estimate (I1.13) one deduces the relation:

|u(ta)]|? < 2‘|u(t1)|’§€fztf sup,y, (|0zu(e,y,5)|+[Vyu(z,y,s)[)ds (11.20)

and this proves point 2.

To prove the next point one observes that periodic solutions with mean value 0 satisfies
for ¢t small enough the estimate:

2l + Nl2(5C(2) — O(s) ) < 0. (21)
Therefore if for t = 0 one has
C(L
BC(L) — C&)u(0, )]s 20 e [Ju(0,)] < 50(2))

the quantity |lu(t,-)||? will decay for ¢ > 0 and therefore satisfies the same estimate on
all the interval [0, 7"[, which and therefore can be extended after any finite value T* and
this proves point 3. Finally let v and v be two solutions. For the difference one has the
relation:

Oi(u —v) — (u—v)0pu + v9, (v — u) — B2 (u — v) — yO; ' Ay (u —v) = 0. (I1.22)

Multiplying this equation by (u — v) integrating in z and y and performing standard
integration by parts gives:

2dt|u—v|2 //R”l u(u — v)2dzdy +
+// v(u — )0 (u — v)dady +
0 JRy~!

+ﬁ/0 /Rg_l(@x(u —))*dxdy = 0, (I1.23)

which, with the relation:

// v(u—v) (u—vd:cdy—// v —u) —|—ua(2 >da:dy_
Rnl

ORnl

::__/1L;1 w (u — v)?ddy (I1.24)

leads to the estimate

1d
W—Mh<$mmuwy,mu

2 1.2
th — v’LQ’ ( 5)

and the Gronwall lemma gives (I1.19).
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11.1.3 General proof of the existence theorem

All functions in this part are supposed to have mean value zero:

L
/ udx = 0.
0

The first we recall the theory of quasilinear evolution equations necessary to our proof
(see [21, 22, 23, 24]).

Abstract frame and definitions

Let us consider the quasi linear evolution equation

du

pn +A(w)u=0,t>0; u(0)=uo, (I1.26)

and suppose that the following conditions are satisfied:

1. X and Y are reflexive Banach spaces such that Y C X which continuous and dense
immersion, and there exists a surjective isometry S : Y — X.

2. If W C Y is an open ball centered at the origin, then there exists € R such that
for all v € W, —A (v) is the infinitesimal generator of a Cy— semigroup in X which
satisfies

IT, ()] < ® for all t > 0.

3. Forallv e Y, SA(v)S™ D A(v) + B (v), where B(v) € L (X, X), the space of
bounded linear operators on X, and || B (v)|| is uniformly bounded for ||v|| bounded.
Moreover, there is a constant pp such that

1B () = B (02)ll oy < #5 I = vally  Vor,vp €Y

4. For allv € Y, A(v) € L(Y,X). More precisely, D (A (v)) D Y and the restriction
to Y of A (v) belongs to £ (Y, X). Besides, there is a constant p4 such that

[A (v1) = A(v)llgyxy S pallvr —velly Vo, €Y

The constants p4 and pp depend only on max {||v1]]y, [|v2|ly }-

Theorem 5 /23, 2/] Under the hypothesis 1, 2, 8 and 4, given ug € Y, there is T > 0,
which depends only on ||uolly, such that (11.26) has a unique solution u € C ([0,T];Y) N
C'([0,T]; X). The mapping ug — u is continuous from'Y to C ([0,T];Y).

Besides, if u € C([0, Trmax); Y) N CH[0, Tinax); X) is the unique noncontinuable solution
of (11.26) and 0 < T' < Trax, then there exists a neighborhood V' of ug in'Y such that the
map Uy +— uis continuous from V to C([0,T];Y).
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An abstract problem associated to the KZK equation

For s > [%] + 1 we study the following problem in the Sobolev space H**((R,/(LZ)) x
RZ”) of zero mean valued functions

du

—+ A = I1.2
o A=, (11.27)

u(0) = uyp,
where A(u)v = —3D?v — yKv — uD,v and K is defined by
SLi(m, ), if m#£0

(I1.28)
The definition (I1.4) of the operator 9, which preserves the periodicity and having the
mean value zero of considered functions will be reformulated now in terms of Fourier
transform:

~

Besides, the function f(x,y) is periodic on z and of mean value zero if and only if f(0,&) =
0 for all £ € R.

The local existence

By using the method of proof from [22] (see also [21]), we obtain the existence of the
KZK solution.

Suppose that S = (1 — A)*/2 = A®.

Proposition 3 Let the open ball By C H*([0, L] x Ry~")) (s > [§]4 1), then there exists
B(R) € R such that for all v € Bg the operator FA is the infinitesimal generator of a
Co-semigroup in Ly T,(t) which satisfies

T, ()] < 2Bt vt > 0.

Proof. Indeed, the linear operator K is the infinitesimal generator of a Cy-group of
isometries in Ls.

1. D(K) = Ly, which is obvious since C* C D(K).

2. K is conservative.

If w e D(K), then
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3. I+ K is surjective. We prove that I + K is surjective, the other proof being similar.

Let f € Lo, then the function u € Ly having Fourier coefficients

5 217
,&(m’n) — f(mﬂ?) |:1_221;rim:| ) 1fm7£0
0, ifm=20
belongs to D(K) and satisfies @(n,n) —i—f(\u(m,n) = f(m,n). Therefore, u+ Ku = f.

From what it follows that the operator K is the infinitesimal generator of a Cy-group of
isometries in Ls.

By using the fact that —(D? + AI) is the infinitesimal generator of a Cp-semigroup of
contractions in Ly for A > 1 [39, p.210] and by using the linearity of the operators, we see
that the operator A = —(K + D2 + ) is the infinitesimal generator of a Cy-semigroup
of contractions in Ly (of functions with mean value zero).

Let s > [5] 4 1 and let v € H*([0, L] x R;~")). We define the operator

A() : D(A(v)) C Ly — Ly

as follows: .
D(A(v)) = H!, and

. 1 [ .
A(v)u = vDyu + Z/ vDyuds, we D(A(v)).
0

Since v € C(]0, L[xRy~!), we have A(v)u € Ly and D(A) € D(A(v)).

Let v € H*([0, L] x R}~") and u € D(A(v)) (z-periodic functions with mean value zero)

then
§ L L L
(A(v)u,u)r, :/ / U(Dxu)udq:dy+/ / (/ vauds) udzdy =
0o JRry! 0o JrRy ' \Jo
L
:// v(Dyu)udzdy + 0.
0o JRrRy!

For ¢ € C([0, L] x R;~!), an integration by parts gives for Q = [0, L] x Rj~"

[v0.ysday = = [(Dav)tdsay
Q Q

The density of C*(Q) in H!(Q) and the fact that v, D,v € Ly () show that the same
equality holds with ¢ replaced by u (in the class of z-periodic functions with mean value
zero). Thus

- 1 1
(AW, u)s, = 5 [ (Deopidady = =5 [Dyollull, = ~Cllo

Q

HS
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If 3> Bo(v) = C|o|

s, then

(A(v) + BDu,w)z, > (=Cllvlla- + B)ul, = 0

and therefore —(A(v) + 1) is dissipative.

Besides, for all u € D(A),

+ Bllull, <
Lo

o - 1 L
|~ (A(w) + B1)ulz, < loDsulz, + 1 H / oDauds
0

< llzw1Dzullzs + Cllollca [ Deullz, + Bllullz, <
< Clloll o lIDavll 2, + Bllullz,-

By using the integration by parts one obtains
IDeullz, < ClIDZullL,,
from which it follows that for all 6 > 0 there exists C'(0) such that
IDsullz, <68l Dullr, + C(6) < 8l D3ullz, + C(0)|ullr, <
< 8| D3ullz, + 8| Kull, + ol Xullz, + C (@) lullz, = 6l Aul|z, + C () ull 1,

so since 6 > 0 we have

1Dsullz, < 6l Aullz, + C@)lullz,,  Vu € D(A).

If we set 6 = (2C||v||r..)~", then we see that
I = (Aw) + BD)ull1, < Cllolle 8]l Aullz, + C@)ullz] + Bllullz, <

1, - "
< SllAullz, + (CCE)[vllza + B)lullz..

Therefore, by a well known perturbation theorem [39, p.82], we have that, for all g >
Go(v), A > 1 the operator —(A+ A(v)+3I) = —(A+ (64 N)I) the infinitesimal generator
of a Cy-semigroup of contractions in Ly((R./(LZ)) x Ry~") (in the class of z-periodic
functions with mean value zero). Thus, if T),(t) is the semigroup generated by —A, then
for B=03+X2 fo(v) +1

IT.(6)] < ™.

Proposition 4 Let S = (1 — A)*?> = A* : H® — Ly be a surjective isometry. Then
for all v € H*((R./(LZ)) x Ry~") (periodic in = with mean value zero) the operator
SA(v)S™! — A(v) has a unique extension B(v) € L(Ly(Q), Lo(Q)):

A(v) + B(v) € SA(v)S™.
Besides ||B(v)|| is uniformed bounded for bounded ||v|

Hs

1Bl £(za@).La() < Cll]
and there exists a constant pg such that for all v, vo € H*((Ry/(LZ)) x Ry™)

Hs,

| B(v1) = B(va)|lz(Ls,10) < piBllvr — v s



I1.1. FExistence uniqueness and stability of solutions of the KZK equation 61

Proof. The proof repeats the proof of Lemma 2.3 in [22, p.389]. Using the estimate (I1.9)
we obtain that

I(SA)S™ = A(v))ullL, = [I[A*, ]S Doullz, < Cllv|lsA™" Doulls—1 <
< CllvllsA™ Doullz, < Cllvllsllullr.,
from where the result follows, if ||v|s < CR, then ||B(v)||£(1,,0.) < CR and
[1B(v1) = B(va) |l £(La,10) < Cllor — v ms.

Proposition 5 Let s > [3]+1 and v € H*((R./(LZ)) x Ry~") (periodic in x with mean
value zero). Then H*((R./(LZ)) x Ry~") C D(A(v)), (the domain of definition of the
operator A) and Algs € L(H®, Ly). Besides, for all v, vy, va € H*((R./(LZ)) x Ry~")
there exist constants \(R), pu(R) such that

A 2ms,L0) < A(R),
[ACv1) = A(v2)ll s, 2y < p(R)[[vr = va[z-
Proof. It is clear that H* C D(A) = D(A). Let u € H*((R,/(LZ)) x Ry™"), then
| A@)uls, = | — BD2u — yKu — vDaulls, <

< B DZull + Al Ku] + [[oDeul] < C(Jlul

#e + |Vl [ Daul]2,),

because
[ 1t Lo
0, u| = ]/udaz‘—i— Z/ suds| < C’\/ u’dr|z < Ollull Ly,
J 0 0
|‘a;1AyuHL2 < HuHsz
— —Ln2 R an R n
K, = 1Kl = | e iom, )| < Cllisfm, )|z, < Ol (s> (2] +1)
Then
[A(W)ullL, < Clullzs+vlL |1 Deull,) < Cllullms+ vl gsllullm) < Cllullgs(T+[v][ms),
thus A(v) € L(H?, Ly).
Now, for v, vy, vo € H®, s > [5] + 1 we see that
| (A(v1)—=A(v2))ullr, < | Doullryl|vi—v2llz, < ClDyul|gs—llvi—vallr, < Cllullws||vi—va| L,

O

If we use the terminology of [22], with the help of the propositions 3, 4 and 5, the system
(Lo, H®,+A, S) is admissible (i.e., it satisfies the hypothesis 1-4) and we can use the quasi
linear theory of Kato from [23], [24] (see the paragraph II.1.3 and the theorem 5) which
implies the following theorem:
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Theorem 6 Let s > [5] + 1 and let ug € H*((R./(LZ)) x Ry~") (periodic in x with
mean value zero). Then there exists T > 0, which depends only on ||ugl||gs, such that the
problem

uy — uDyu — BD*u — fy/ox Ayuds + /OL %Ayuds =0, (I1.29)
uli=o = ug
has a unique non-continuable solution
u€ C([0,7), H*((Ro/(LZ)) x Ry™)) NCH([0,T), Lao((Ro/(LZ)) x Ry™))

(periodic in x with mean value zero). Besides, if 0 < T < T, then the solution u €
C([0,T], H*((Ro/(LZ))xRy~))NC ([0, T, La((Ro/ (LZ)) xRy ~")) depends continuously
on the initial value ug, i.e., the mapping Gy — @ is continuous from H*((R./(LZ)) x

R) to C(0.T) H*(Ru/(LZ)) x RY)).
Corollary 1 Giving ug € H*((R./(LZ)) x Ry™"), s

I3

| +1, there exists T'> 0 and a

>[5
um’;]Luehfunctionu € C([0,T), H*((Ro/(LZ))x Ry~1))NC([0, ) 2((Ra/(LZ2))xRy™))
such that
(uy — uDyu — BDu), — yA,u = 0, (I1.30)
U’t:() = Ug.

The solution depends continuously on the initial value ug.
Proof. It is easy to verify that the solution of (II.29) is a solution of (I1.30).
On the other hand, if u € C([0,T), H*) N C'([0,T), Ly) is a solution of (I1.30), then

(us — uDyu — BDu), = yA,u € C([0,T); H?) — C(]0,T); Ly).
Hence u; — uD,u — 8D?*u € H!, and

z%rm]:(ut BD2u — uDyu)(m, &) = Fl(u, — BD>*u — uDyu)|(m, €) =

= Y F(Dyu)(m, &) = —&%u(m, €).

Thus, for m # 0,

— 2 2 —
(ug)(m, &) + z%m (ﬁ%mQ + fyéfm) u(m, &) — (uDyu)(m, &) = 0,

which means that, as from definition of the operator A for A fo uD,udr = 0,

(@) (m, €) + (A(u))(m, €) + (A(u), u)(m, &) = 0

equality which is also valid, in a trivial way, for m = 0. Therefore u; + A(u)u = 0, and
thus u is the solution of (I1.29), which implies that the solution of (I1.30) is unique.

Remark 7 It may be seen from the equation that the solution u (periodic in x with mean

value zero) belongs to C*([0,T), H*"*((R./(LZ)) x Ry~1)).
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The following theorem which can be proved in exactly the same way as theorem 2.3
from [21, p. 573], shows that 7" does not depend on s.

Theorem 7 (Regularity) If u € C([0,7], H*(2)) N C*([0,T], L2(2)) is a solution of
problem (I11.50) and ug € H* with s' > s > [2] + 1 (for periodic on x mean value
functions), then u € C([0,T], H*) N C([0,T], H*~2) with the same T.

Remark 8 For nonperiodic case the local existence can be easily proved using the esti-
mate (I1.8) in the form
lulls < C(s)llullg

and using the technique of [21] with regularization of system (11.27):
du

T A (uw)u =0,
u(0) = up.
Here A.(u)v = —D?*v — K.v —uD,v and K. is defined by
—2rmé?
F(Ku)(m, &) = > u(m,§).
(Ka)m. ) = 77 =T sim.

By using the method of the proof from [21], we obtain the solution of KZK equation passing
to the limit ¢ — 0.

This regularization have been also done in [51].
Global existence in time of the solution for rather small initial data

Now let us prove that the maximal time of existence T = oo for rather small initial data.

Lemma 2 For allt € [0,T),

3odt + |Juol|%e (I1.31)

t t
lull%. + BCH(L) / lul2dr < Ca(s) / Jul
0 0

where BCy(L) and Cy(s) are positive constants. In particular, for all initial data ug
satisfying

BCi(L)

Ca(s)

the time of existence of the solution is T = 400 and

BCY(L
[ulleo,+00),me) < 021((5)) : (11.32)

[uoll s <

Proof. By using the regularity theorem for ug € H*™2, we have u € C([0,T), H**?), and,
thus, we apply the operator A® to the equation

W) + Alu(t))u(t) =0, tel0,T),
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and take the inner product in L, with A*u to obtain

g ), A0 0, A 52004 A €)= 0.

Taking the real part of the former expression, we have

1d

2dt||“||Hs + a7 — (A (uny), APu) =

Using now the proof of proposition 1 we obtain (II.31).

m=, such that y(0) = ||ugl|| g+, thus we obtain the equation

S = ooy~ BC (D)

We define now y(t) = ||u|

Solving it we find that

0= (e~ (o~ ) <)

from where, imposing [Jug| s+ < & Cl((L)) we obtain that 7" = +o00 and it follows that
@l < vt < 295 v e 0, 400)
Hs =Y = CQ(S) ) .

Lemma 3 Lets > [5]+1 and suppose ug € H*((R/(LZ))xRy~") is such that 0, " Ayug =

¢o € H*? and |Jug|gs < ﬂcl(() Then there exists a constant C' such that

[|u'(t) ||C([0,+oo),HS*2) <C. (I1.33)

Proof. For t € [0,4+00) and h > 0 sufficiently small, let z(t) = ™' [u(t + h) —u(t)]. Then,
having subtracted the KZK equation for u(t) from the KZK equation for u(t 4+ h) and
having divided by h, we obtain

2 (t) — D22(t) — Kz(t) — u(t)Dyz(t) = Dyu(t + h)z(t).

Let [ = s —2 > 0. Applying the operator Al to the above equation, taking the inner
product in Ly with A'z(t), integrating by parts, and considering only real parts we obtain

2dtll 2(Ol7n + 1Do2() |70 — (A (u(t) Daz(t)), A'2(t)) = (A'f (1), A'2 (1)),

where f(t) = D,u(t 4+ h)z(t). Thanks to [21, p.576, 577] one has the estimates

(A (uD,2), N'2)| < Cllul|lgs||z||3 VI >0,

HS

[(A'f,AL2)| < Cllu(t + h)|gs|z]% V>0,

HS
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which with — || Dy 2(8)]| s < —BC(L)||2(1)]| st give
1d

5 7zl < Cllult + 1)

me + [u@l )20l — BOUL)2(0) |7 <

< e ) — B0 = 500 (G~ 1) IO

from where, as the coefficient %((’;) — 1 can be, thanks to the choice of constants, negative,
as well as positive or zero, we obtain that

d
S5 <o,

which implies using the Gronwall lemma that
12(0) [ < [[2(0)[] -
Passing to the limit for A — 0% we find that

[ ()11 < 1[0 (0) [ -

But
e/ (O)llzt < [ D?uo + woDatioll e + 1Kol
and , )
L&
Kol = / S0 T+ € | de =
L
/ZH— vey | L p| e -
227er
/Z 1+ gy ' dol2de <[00l

From where (I1.33) follows. [J

This concludes the proof in general case of theorem 4 and we can reformulate our result
by the following theorem.

Theorem 8 Let uy € H*((R./(LZ)) x Ry~)), s > [§] + 1, periodic in x with mean
value zero, such that D;'Ayug € H**((R./(LZ)) x Rp~')), i.e., there exists ¢o €

H*?((Ro/(LZ)) x Ry~")) with Do = Ayug, and the norm |ul|gs < ﬂg;((f)) is rather
small. Then there exists a unique global solution of the problem

(ug — Ugy — utly)y — Dyu =0,
u(0) = wug

u e C([0,400), H*(Ra/(LZ))xRy™))) withu' "= "L qu/dt € Loo([0, +00), H2((Ry/(LZ)) x
RyH))
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1.2 Blow-up and singularities

The first remark is that for v = 0 (or 5 = 0) and for function independent of y the KZK
equation

(wp — utty — Pugy)e —7Ayu =0 in Ry, X Ry x (I1.34)

becomes Burgers equation which is known to exhibit singularities. On the other hand the
derivation and the approximation results of the following section show that any solution
of the KZK equation has in its neighborhood a solution of the isentropic Euler equation.
Once again it is known that such solution even with smooth initial data may exhibit
singularities (cf. [15] or [47]). These observations are reflected by the fact that for 5 =0
and v > 0 the equation (I1.34) may generate singularities.

We prove the geometric blow-up result using the method of S. Alinhac, which is based on
the fact that the studied equation degenerates to the Burgers equation. In fact Alinhac’s
method is the generalized method of characteristics for the Burgers equation adapted
to the multidimensional case. As we can see the equation (I1.34) possess all this main
properties, and gives us the reason to apply it.

For instance one has the theorem:
Theorem 9 The equation
(ug —utg)y —YAyu =0 Ry X Ry xQ (I1.35)

with Neumann boundary condition on OS2 has no global in time smooth solution if

sup d,u(zx,y,0)

.y
18 large enough with respect to 7.
Remark 9 As we can see from [11] the result of the theorem perfectly confirms the nu-
merical results. In practically from figures 1.7 and 1.8 one observes that the KZK equation

as soon as (3 becomes smaller (for 3 — 0) has a quasi shock more approaching to the shock
wave, into which it degenerates for 3 = 0.

Proof. The proof follows the ideas of S. Alinhac ([3], [4] and [5]). First the blow-up is
observed for v = 0 and related to a singularity in the projection of an unfolded “blow-up
system”. Second the properties of this unfolded blow-up system are shown to be stable
under small perturbations. One uses a Nash- Moser theorem with tamed estimates and
this is the reason why will exists a T such that:

lim (7™ — t) sup O u(x,y,t) > 0.
t—T* T,y

Remark 10 The Nash-Moser theory and the definition of the tamed estimates can be
found in [8].
Remark 11 An equation of the type (I11.35) is introduced by Alinhac to analyze the blow-

up of multidimensional (in R*™) nonlinear wave equation by following the wave cone

Otu — Nyu + Z gf-@kuafju =0,

J
0<i,j,k<2
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where
—t, o= (zm). g
Lo =1, X =I(T1,T2), gij - gjia

with small smooth initial data (see [6]). In fact this corresponds to the same scaling as
the KZK equation because from this wave equation with some changes of variable and
approzimate manipulations Alinhac obtains (see [4, 6, 7])

O2u + (O,u)(0%u) + e@iu =0.
This is the reason for the analogy.

More precisely for a “beam” (rotationally invariant around the x axis) in 3 space variables
the KZK equation has the form
N . 1. -
Uyt — (Uly)y — Y =Ty — Yy, = 0, (I1.36)
)

a|t:0 - UO('I" y)7 ﬂ|a::I( =0.
If we consider the KZK equation in R? with y = (y1,y») for general case, the term iﬂy
must be omitted and d, be replaced by V,,.

Let Ag > 0 be a fixed constant and ug € C* be a function of variables x, y defined in the
domain
{($7y)’$ € [_A[)?K]’ Yy € [TO7T1]7 To > O}

For the reason of technical simplification, we assume

uo(K,y) = puo(K,y) = 0.

Let the function d,up have on [—Ag, K] X [rg, 1] (10 > 0) a unique positive maximum in
the point

mo = (To,%0), —Ao<zo<K, such that Oyug(mg) >0,

11.37
Vo (Bsti0)(mg) = 0, V2 (Do) (1mo) < 0. (IL.37)

The condition (I1.37) is the necessary condition for geometric blow-up.

For a T > 0, which is the blow-up time and is unknown, and a function Ay(y,t) > 0 to
be specified (with Ag(y,0) = Ap), we have in the domain

D= {(‘T?y?t)‘x € [_AO(y7t)a K]7 y e [7“0,7'1], ro > Oa te [Oaf[} (1138)
a free boundary problem.
Let in (I1.36) @ = u,, then
1

Ugat — (u:pumm)m - Vguyaz — YUyyz = 07

and so we have .
L(u) = gt — Upllyy — Y—Uy — YUy, = 0, (I1.39)
Yy
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im0 = 0, g, Ulpmrx =0,  Uy|p—r = 0.

The change of variables ® : (s,Y,T) — (x = ¢(s,Y,T),y = Y,t = T), where ¢(s,y,t) is
some unknown function such that ds¢ > 0, ¢|i=0 = s, ¢|s=x = 0, allows to construct a
blow-up system if we set

w(s,y,t) = u(p(s,y,t),y,t), v(s,y,t) =u(p(s,9,1),9,1). (IL.40)

The method of introducing x = ¢(s,y,t) is based on the method of characteristics which
naturally appears for Burgers’ equation

(O —u0x)u =0, ul—o = up(z). (I1.41)

Indeed, = = ¢(s,t) = s — tug(s), and the Cauchy problem

Ty =0, Tylimo = —uo(s), Tl=o =35
with notation z; = ¢, = —u(p(s,t),t) = —v becomes the blow-up system
v =0, v=—p;, @li=o=35, Vl=0=uo. (11.42)

Since v = u(p(s,t),t) and vy = u, s, in the case where the solutions of (11.42) satisfy the
conditions vs # 0, ps = 0 in some point, u, = vs/@s becomes infinite. According to the
terminology of Alinhac, the solution u displays geometric blow-up, because the blow-up of
u does not come from the blow-up of v, but from the singularity of the change of variables

.
From (I1.40) we have
Ws = ugogpslcp:m = UgPs = VPs,
A=w; —vp, =0. (I1.43)
Lets compute the derivatives in new variables which are present in (I1.39)
Ugy = vs(@s)_la Ugt = Vp — Us(QOS)_lQDtu
Uy = Wy — VPy, Uy = Wyy — 20,0, + Us(cps)_lgoz — VQyy.

So we obtain

Vs Y
vt — (_% —v- 79012;) — Y (Wyy — 2050y — VPy,) — g(wy —vpy) =0,

s

Us

where
E=—pi—v— fygoz, (I1.44)

Y
R = vy — y(wyy — 20,0, — Vpy,) — ;(’wy — Vpy). (I1.45)
In this case the blow-up system is

A=0, £€=0, R=0, (I1.46)



I1.2. Blow-up and singularities 69

Vlmo = U, Wm0 = 07 g, Plico =8, W]semx = V]smi = @ls=r = 0.

From (I1.40) it is easy to see that if we find the smooth solution of the blow-up system
(I1.46) such that in some point ¢g = 0, then the function u,, has blow-up in this point
which corresponds to the blow-up of u, of KZK equation’s solution.

According to the change of variables we obtain that if the function Ay(y, ) in definition
of the domain D (I1.38) is

Ao(g, t) - _(10(_1407 Y, t)v

then
Db:{(87y7t)‘86 [_A07K]7 yE [7’0,7"1], T0>07 le [07T[}

In the domain D, the blow-up system (I1.46) has the form

Ws —VPs = 07

—or — (v4+97) =0,

U = Y(Wyy — 2050y — vpyy) — %( y — vpy) =0, (11.47)
Vlrmg = Up, W]reo = 05 g, @lrmo = s,

w‘s:K - 'U|s:K = (pls:K =0.

Note that for v = 0 the problem (I1.39) becomes the Burgers equation for u; = u, with
the initial condition wu|—g = 0,0, 'ug = ug. This problem has a unique solution of C* in
D with the blow-up time

-1
T="T,= <sup Gxuo) ) (I1.48)

In this point we have
_ 3£Uo($o, yo)
1 — To0uo(wo, yo)

= OQ.

Oy

The blow-up system (I1.46) for v =0
v =0, v=—p;, ws—uvp;=>0

has an explicit solution

2

o =5 —tup(s,y), v=uu(s,y), wzﬁs_luo—%t,

from which it follows that ds¢ has value zero “for the first time” at the time Ty (I1.48) in
the unique point My = (¢, Yo, 7). This means with notation

Zo = x0 — Touo(vo, Y0), Mo = (%o, Y0, To),

that u, has a blow-up in the point M.
We denote the blow-up system (I1.47) by

L(p,v,w) =0,where L = (E, R, A) (I1.49)
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which we have to solve in the domain D,. Set the field Z = —0, — 2v¢,0,, and the
notation
Q=—0;, Z=1—uvp.

The choice of 2 is natural and can be explained by linearization of the relation u(®) = w

which gives u(®) + v/(®)® = w from what
Z=u(P) =w —vp.
Here the “physical” objects are u and @(®) but not w and w which depend on the change

of variables ®. We can say that the introduction of Z cancels the arbitrariness in the
choices of w and ®. Then

A=w, —vp, =0, E=Zp—Qp—v=0,
R——Zv—ngo—i-Qw—%(wy—wpy)—0,

and the linearized blow-up system has the form (we note £/, (¢, 0,w) = L' (¢, 0, w))

©,0,w
5'(%@,11)) :fa 5,(9077)7’“)) - —SDt—’U—Q’Y(PySDy = Z(p—U,
R/(QP, v, w) =9, Rl(@? v, 'LU) = —Z0+ QZ + (QU)SO - (QSO),U - g(zy — Uy + SOUy)a
A, 0,0) = h,  A($,0,0) = 2 +vsp — 30,

or simply '

L'(p,0,w) = 1. (I1.50)
Following the structure of [3, p.23] we find

20,5 = .Q%+ (Q9)0s + - 00,)% + a2+ azp =

= o R +(Z+ Qo)A — (Zg, + gwsvyw’, (IL51)

7% — Q1) Zp + (Qu)p+ Q12 =(Z — Qr1p)E — R, (I1.52)
Here

0 =0~ pw, w=-QA-OR, Q=-Q+_0,

The coefficients oy and ay are small if £, R, A and their derivatives are small. So the
system (IL.51), (I1.52) in ¢, 2 is almost decoupled. In a Nash-Moser scheme aimed at
solving £ = 0, R = 0, A = 0 we could view these terms with the coefficients «; as
“quadratic errors”. But we cannot just neglect them, because this would correspond to
solving the linearized system up to quadratic errors divided by ¢, which is not acceptable
in the framework of smooth functions.

We need to introduce the identities (I1.51), (I1.52) with the help of which we will solve
our linearized blow-up system.

The idea (see for example [3]) is the following. Suppose that we can solve exactly in D
the system (I1.51), (I1.52) in (2, ¢) with £, R’ and A’ replaced by given quantities f, ¢
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and h. Determine now o from & = f using the relation & = Z¢ — . For the functions
(¢, 0,w) thus obtained, we have then

E=f R =g (Z+a3)(A —h)=0.

Taking into account the boundary conditions on (p, v, w) (hence on (¢, 0,w)), suppose we
can ensure that A’ — h vanishes on some part I' of the boundary of Dj; suppose also that
Dy is under the influence of T' for Z; then we obtain A’ = h, and the linearized blow-up
system is exactly solved.

But before to do it, let us to pass from the free boundary domain to a fix one where we
will solve our linearized blow-up system.

Consider the surface ¥ through {t = 0,s = K} which is characteristic for the operator
Z0s — sQ
= _1/}(57 y)7

where 1 is solution of the Cauchy problem

(14 7(20y)1hy)s + ypsts =0, P(K,y) =0. (11.53)

Equation (I1.53) has, for small v, a smooth solution in the appropriate domain. This
solution is O(7) and decreases in s.

We now perform the change of variables
- - - t t
i=s g=y, t= (X(;) — Dt = (t+ wx(;), (I1.54)

where x € C*° is 0 near 1 and 1 near 0, and n > 0 is small enough. The still unknown
domain
Dy={-Ay<s<Kyé€lron],—v<t<i}

is taken by this change into

D={-Ay<i< K€ [rom), ~-T=~t <i<0}

The change of variables (I1.54) gives
O = 0z +t,0;, 0, =05 +1,0;, 0 =10,

where )
ts=0(7), t,=0(), ti=-1+0()

are known functions.

In the domain D the blow-up time 7 is unknown and is the part of the problem, so we
still have a free boundary problem. To handle this problem, we introduce a parameter A
close to zero and perform the change of variables

T=X, g=Y, t=t(T,\)=T+\T(1—x1(T)), (I11.55)

where y; is one near zero and zero near —Tp (defined in (I1.48)).
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This implies that

Dbf = {(X, Y, T>|X S [—Ao, K], Y € {To,Tl], ro >0, T E] — To,O]} (1156)

The two successive changes of variables (I1.54), (I1.55)
(87 y7 t) - (‘%7 g? f) - (X7 Y? T)

imply that our blow-up system (I1.49) are transformed into

LA, p,v,w) = 0. (IL.57)

—~—

The system (I1.51), (I1.52) is also changed to some system (I1.51), (I1.52), the exact view
of which we will find later.

We say that o satisfies condition (H) in Dy if, for some boundary point M = (X, Y, —Tp) €
Dy

> f— p—
{SOX_Oa px(XY.T) =0 (X,Y,T) = M, (IL58)

ox7(M) <0, Vxy(ex)(M)=0,Viy(ox)(M)>>0.
The problem we want to solve in Dy is
1. EN()\, o, v,w) =0,
2. @ satisfies (H) in Dy;.

We are following the plan which is explained in details later:

1. We are assuming that we can solve the linearized system (II.51), (II.52) and so
OpvwlV¥ = f in flat functions with a tame estimate.

2. Resolution of £ = 0 using the above fact by Nash-Moser iteration process repro-
ducing in each step o™ satisfying the condition (H) (¥n) with the help of some
techniques based on the structure of (H) and the implicit function theorem (fun-
damental lemma of Alinhac).

—

3. We prove the point 1 for the system (I1.51), (I1.52).
For the start point of the Nash-Moser iteration process we choose

A0 0 o0 = GO 4O = 50) O — 7O

Let us now determinate the functions denoted by @@, v @,

For v =0 and A\ = 0 the exact solution of blow-up system with initial conditions
e(X,Y,0) =X, Ore(X,Y,0) =ug(X,Y)
is
Go=X +Tug(X,Y), 0o=uo(X,Y), wo=0; ug+ %Tu%,
we can also notice collecting all change of variables that

@O(SayaT) = @O(Say7t~(T7 0)) = ¢O(X7 Y7 T)
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So for A = 0 (T = t) the approximate solution of the first step of Nash-Moser process
existing for the time T' €]—Tp, 0] can be obtained by gluing together the local true solution
(@, v,w) of (I1.57), which exists in a small strip {—n; < T < 0} of Dy, to (Pg, Vo, Wo) in
the following form:

POy = x (TE) e v+ (1-x (T ) aax. v,

T M

We have then [6, 7] that for this approximate solution

£(0,39, 50 ) = O
where /(") is smooth, flat on {X = M}, zero near {T = 0}, and zero for v = 0.

Since the solution we start from has already all the good traces on {X = M} and {T = 0},
we need only to solve the linearized system in flat functions.

The approximate solution ¢(*) satisfies, thanks to (IL.37) and dx¢ > 0 close to {T' = 0},
the condition (H) (I1.58) in point M = (mg, —1j), where T is from (I1.48).

Solving £ = 0 by a Nash-Moser iteration process, which we start from the point (0, 3@, 5©, (),
further modifications of p(*) will yield functions not satisfying (H) anymore. So we have to

make sure that we can reproduce at each step the new function ¢ satisfying the condition

(H). This is realized thanks to the “fundamental lemma” from [7].

For the multidimensional case when n = 3 and y = (y', y*) we use [6, p.16] for determining
the final form of the fixed domain Dj; where we want to solve our blow-up system (I11.57),
and so the domain Dy is the domain bounded by the planes X = —Ay, X = M, T = —Ts,
T = 0, the plan containing (41, [113), and the plane containing (d, Io14). These planes
have normal ny = (—n;, £v,1) and are described by

o ={T=0Y =g —) = =X = M)}, L = (yo =1 — To/v,~To).

g = {T:O,Y— (yo —y1) = %(X_M)}v Iy = (yo +v1 + To/v, —To),
I3Z(Y:y0_y17T:O)7 I4:(?J0+y17T:0)7

where v is from (I1.37), y; and v are fixed such that yo—y1 <y < yo+y1, 0 < T < %l/yl
(for the explication of the details see [6, p.16] ). It is understood that Ay and the small
n, are chosen such that @) satisfies (H) for a point M interior to the lower boundary of
Db f-

The linearized operator of £ at the point (A, p,v,w) is denoted by

~,)\7<P’U7w(>'\7 O, 0, W) = (‘%EN(/\, go,v,w))'\—i—f}’@ﬁ(/\, 0, v, w)gb—i—@vﬁ(/\, go,v,w)@+aw£~()\, ©, v, W)W.
We can see that with ¢ = O\t/Ort
L + 0,L(prq) + 0,L(vrq) + OwLl(wrq) = qLy.

Thus the linearized system



74 Chapter II. Mathematical Studies of the Cauchy Problem for KZK Equation

Lispwany N @, 0,0) =1,
is equivalent to N S ' o
L o0w(®, VW) =1~ g\Lr (11.59)
with . . . . . . . . .
O=0p—Nr, V=0-INvr, W=uw-INwr, Z=W—0vd,

here £/ = (g’ ,@,E) denotes the linear system obtained from the linearized blow-up
system (IL.50) in the original variables s, y, t by the two successive changes of vari-
ables (I1.54), (I1.55).

Assume now that, at some stage of the Nash-Moser iteration process aimed at solving
L = 0, the function ¢ satisfies (H). We solve first (I1.59), neglecting gAL7 in the right-
hand side, since it is a quadratic error. We choose then, once ¢ is known, A such that

e+ o =p+d+ \or

satisfies again condition (H) for some point on the lower boundary of the fixed domain
Dys. It is possible using Alinhac’s Fundamental lemma which can be found with the
iteration scheme of following resolution of the problem in [7, p.110-112].

Hence, to finish our proof it is enough to solve the transformed linear system
E=f R =g A=h
in Dyy,.
For this we use the system (I1.51), (I1.52) transformed by the two changes of variables

e~ —

into (/1.51), (11.52) which we want to write now explicitly.

First let us introduce the following notations

7 =0r+ Y200y, S = O0x + VSo0r.

The composition of the two changes of variables operates the following transformation of
operators (to avoid introducing unnecessary notation, we denote by % known functions):

83:ax+’)/80(X,KT,>\)8TES, 8y:8y+7*(X,Y,T,)\)0T,

~

8?5 = (_1 +x (Xa Y7 T’ A))(aTg)_laTa Z = (1 + o * (Xa va T7 )\7 ¥ Py, QOT))Z
and the transformed linearized system (I1.51), (I1.52) has the form

ZSZ +~(SQ)NZ +~1(2) + a1 Z® + ap® = fi, (11.60)
2P0 + 312D + e +yZHZ + 5 (Z) = fo. (I11.61)

Here
1. N = N122 + 27N228y + Nga%/, with Nl = —O<’)/), N3 = aTt~+ O(V),

2. 1,(2), l’l(Z) are linear combinations of VZ and Z, for example I(Z) = (N)SZ +
%(S@)aYZa
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3. H is a linear combination of Z and dy-.
We can also denote v = ¢ because of its smallness.

Also introducing ~ o .
P=7S7+¢eSp)NZ,

we set Z = Zk in the linearized system (IL.60), (IL61).
So we have now to solve the system
pk + €l1<2k) + Ckle(b + Ckgd) = fl,
P26 4 320+ o 1 Tk + 3R T 4 cll(Z0) = fo.
With the notations
A:SQO, 5:T_T0a g:exp{h(x—t)},p2:5“g, | |0: | |L2(be)7
we have the energy inequality (3.2.2) of [6, p.18] and the rest of the proof is absolutely

identical to [6].

Having obtained the solution A, ¢, v, w of the blow-up system in the domain Dy; we
construct as it is shown in [6, p.22-23] the solution u of (I1.39) from which we go back to
@ the KZK solution of (I1.36) which will be periodic in z (thanks to the theorem 4 of the
existing of the unique solution) if we take the initial data uy periodic in x, and @, has a
blow-up at the point (z.,y,,T).
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he purpose of this chapter is to specify the theorem 3 and to show in which sense the
T KZK equation provides asymptotic solutions of the equation

Op+V.pu) =0, p(Ou+ (u.V)u)=—Vp(p) + evAu.

The viscosity v introduces some difference in the construction. With no viscosity both
the nonlinear system of elasticity and the KZK equation are well posed for positive and
negative but finite time.

With viscosity both problems are well posed only for positive time but under a smallness
hypothesis of initial data up to infinity. This is the reason why both cases are treated
separately.

I11.1 Validity of the KZK approximation for non viscous
thermoellastic media

On the one hand one considers the Euler system for p.(z1, 2, t), @.(xy, 2, t):
Oipe + div(petc) =0, pelOstie + (. V)i = =Vp(pe), (ITL.1)

and on the other hand a non trivial solution I of the problem

1 2
.1 — %aﬁﬂ - %AyI =0, (111.2)
Po

for some initial condition
](T7 07 y) - IO(Ta y)

The solution I as a function of (7, z,y) is periodic in 7 of period L. One constructs in this
case for the KZK approximation a solution for (z1,t) positive and negative using initial
data compact in x for ¢t = 0.

The theorem 4 ensures for initial data I(7,0,y) € H* with s’ > [2] + 1 the existence of

a solution (7, z,y) € C(|z| < R; H¥ (7 x y)) (for zero viscosity v = 0). The existence of
the smooth solution U, = (pe, @) (t, z1,2") (0 <t < T') of Euler equation (IIL.1) is due to
the theorem 5.1.1 from [15, p. 62].

With the notation
Pe = Po + €pe U = €U, (I11.3)

we take .2
=1, 2 (I11.4)
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Then one constructs according to the formulas the functions

o1, 2,y) = —1(1,2,y), (I11.5)
Po
C2 T L S
w(T, 2,y) = —— / V,I(s,z,y)ds +/ —V,I(s,z,y)ds |, (I11.6)
Po 0 o L

2 T L
(T, 2,y) = _c (/ 0.1(s, z,y)ds —|—/ %@I(s,z,y)ds) +
Po \ Jo 0

(v—=1) 0(7—1)/L 2
+ cl“(1,2,y) — I7(7, z,y)dr. IIL.7

In the above formulas the terms containing fOL correspond to the definition of the operator
d-', which implies that all these functions are L-periodic in 7 and of mean value 0.

Next introduce the densities and velocities

p.=po+el(t— ﬂ, ery, Vex'), (IT1.8)
c
Teq = €(v + evy)(t — ﬂ, ery, Ver'), (I11.9)
c
W= eda(t — 2 eay, Ver!) (I11.10)
c

and eventually the expression:

U, = (p., 1) = (po+ €I, e(v + evy, vew)) (t — E, ery,Ver'). (TI1.11)
c

We envisage the problem of approximation between the two systems: the exact sys-
tem (II1.1) and the approximate system obtained from a smooth solution of KZK equation
(I11.2):

atﬁe + vﬂ?(ﬁeﬂﬁ) =

3 (poazvl + 0.(Iv) — 20, (Ivy) + Vy(lw)> 449, (Tvr) (I1.12)
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ﬁe(atae,l + U - v'a6,1> + axlp(ﬁe) =

e\ 1001 — 5;10:0° + 8.0 — 220 (vor) + pow Vv + %62@12) +
et £0.0% — 110, (vv1) 4+ TwV v + po0.(vor) — 820-0% + powam) L (IL13)
e | 10.(vvy) — i[&v% + TwV, v + %Oﬁzvf>
P00, + U - V.0 + Opp(pe) = €2 <7270102vy[2) +
ez | povdw — Lv 0w + LV, w? — gvaTw> + (111.14)
€2 | por10,w + Tvdw — Lv10rw + évyuﬁ) 17 v 0w

\

The system (I11.12)-(I11.14) could be written in the form

atﬁe + V(p_UG) = Rl )
P (0 + T - V.70) + Vp(p,) = R,

with notation R; for the rest of (I11.12), and R, for the rest of (I11.13) and of (I11.14).

To ensure that Ry, Ry € Loo((—R, R); Ly) we need that 021 € Loo((—R,R); L) and
choose in theorem 4 s > max{4, [§] + 1}.

The existence of the smooth “true” solution of Euler equation (II1.1) U. = (p., @) (t, x1, ")
(0 <t <Tp) with V.U, t) € C°([0,Tp); H*7') for s — 1 > 2, with the same initial data
Ucli—o = U|s—o is still due to the theorem 5.1.1 from [15, p. 62].

Remark 12 As soon as the time of the existence of Fuler system solution Ty is finite,
the interval [0,Tp) is mazimal (see [15, p. 62]) in the sense that

limsup [[V.U(, )|z, = oo.

To precise the order of the blow-up time Ty we can observe it in the simplified model of
Euler equation, particulary the Burgers equation with, as in our case, the initial conditions
of order €:

ou
8tu +u— = 0, U’tzo = €Uy.

ox

If we derive it once on x we obtain

a @ + @—_ % ’
"\ ox u@xz_ or )

And if we envisage the solution Y = g—;(m(t), t) of the equation

0Y +ud,Y = —Y? Y| = €dpug



II1.1. Validity of the KZK approzimation for non viscous thermoellastic media 81

along the characteristic curve

& = u(x(t),t),
we obtain the Riccaty equation
d
—Y = -Y?
dt ’
and so v
YV, u = &7
1 — eV, upt
from where
1
t < .
E‘VIUO’

Resulting, we will consider the solution of Euler equation for the time t € [0, %), where T
18 a constant and € s small.

So the solution given by the KZK approximation and a true solution of Euler system with
the same data at time £ = 0 can be compared according to the following theorem

Theorem 10 Suppose that there exists the solution I of the KZK equation (for some
initial data from H®) such that

o I(7,2,y) is L-periodic with respect to T and defined for |2| < R and y € R"!,
e assume that
2 I(1,2,y) € C(|-R,R; HY (R/LZxR}))NC'(|—R, R[; H* *(R/LZxR)))

for s > max{4,[5] + 1}.
(the existence of such solution is proved in theorem /).

Let U, be the approxzimate solution of the isentropic Euler equation deduced from a solution
of the KZK equation with the help of (I11.8)-(1I1.10), (I11.5)-(I11.7). Then the function

Uclzy, o', t) = Ut — =, exy, \/ex") given by the formula (I11.11) is defined in
R n—1
R: X (QE = {|IL‘1| < ? —Ct} X R:p’ )

and is smooth enough according to the above procedure.

Consider now the solution of the Euler system (II1.1) in a cone (see the figure I11.1)
R
Ct)={0<s<t}xQs)={v=(r1,2)): |11|] <= —Ms, M >¢, 2’ € R"'}
€
with the initial data

(ﬁe - pe)|t:0 =0, (ﬂe - u€)|t:0 = 0.

Then (see [15, p. 62]) there exists Ty such that for the time interval 0 < t < % there
exists the classical solution Ue = (pe, u.) of the Euler system (II1.1) in a cone

C(T) = {0 <t <T|T < %} < Qu(1) (1115
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slope M T slope —M

/
/
/

Figure II1.1 — The cone C(T).

with
n
HV.UEHLOO([O’%[;HS,” <eC for s> [5] + 1.

Then there exists a constant C' such that for any € small enough the solutions (76 note

(pe, peue) and U, "2 (P, pic), which have been determinate as above in the cone (I11.15)
with the same initial data (111.34) satisfy the estimate

1T = Uell? 0.0y < 7TV Vellzoetoemnt < et (I11.16)

Remark 13 As soon as the booth solutions U, and U, are in C(|0, L, H*) in the cone
for any s > max{4, [5] + 1}, we can apply the operator A with &' = s — 4 and obtain the
same estimate (111.16) but for the norm || - || g (. (1))-

Proof. We need to use here a technique due to Dafermos [15].

As it is known the isentropic Euler equation admits a convex entropy 7(U,), which is the

function:
-t | Ue | 2

n(Ue) = pch(pe) + pe

with 7/(p.) = L <p;>. (111.17)

€

Having assumed U, = (pe, peue)”, we can rewrite the Euler system

U +V.F(U.) =0, where F(U,) = (pete, pau? + p(pe)”
in terms of entropy (II1.17):

Om(Ue) + V.q(Ue) =0, where q(Uc) = uc(n(Ue) + p(pe))-
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So we have two systems

{8#7( )+VQ( )

8,U. + V.F(U,) o

WIPE) Ry 4 4 Ry,

—»

om(Ue) + V.qUe)
oU. +V.F(U.) = i

where Ry = O(¢®) is the rest of the first equation of Euler system, Ry = (O(¢%), O(e3)) =
O(eg) is the rest of the second equation of Euler system in two directions z; and z’, and

é:g%é@:@()so—;i&3+u32<x%.
Let us compute

9 (0 = () =TT, - T.) = V() - a(T.)) -

R CARTT A,
Hl TIVAF(O) — F(O) - o TR — 0T T)(T - T, (1L1s)

and using the property for convex entropy n”(U)F'(U) = (F'(U)) n"(U) the last term is

(T " (U)U~T) = VU (FT) " UN0~T.) = V.U 4" (U)F'(U)0-T.).

Integrate (II1.18) over the cone C(¢) (cf. (II1.15)). The use of the Green formula gives:

/;K_Ahz;10Kﬁ)—n@l)—n%ﬁaa@—lgxximx
LL“F¢;1 — (U =0 (U (U — Uo)(,0)dx
- AQ)WW@Q_MUJ_#@DdZ—UJM

_Aaﬂm*“ﬁﬂ—wUJ—#@DUWﬁ)—F@DWM

B /C@ VO (UNFT) ~ F(U) — F'(U) (U — U.))dards —

U€ €
_/ (w}muﬁﬁn(
C(t) Pe

QI
=
=
’ﬂ
<l
Qﬁ
Q
=
S
QL
VA
=
ot
P
—
N2

With the help of the facts that the entropy n is convex
n(U) —n(T) =7/ ([T (Ue - Ue) > a|U. = U,
and associated entropy flux ¢ is related with 7 by relation [15, p. 52]

¢ (U) =n'(U)F'(U),
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we obtain that

so, using the Taylor expansion

F(U) = F(U) = F'(U) (U = Uo) + O(|U = U,
F(ﬁE) - F(Ue> - F/(ﬁE)(fje - UE) < C|(76 - U6|27

q(Ue) — Q(Ue) - ﬁ'(Ue)(F(ﬁe) - F(UE)) < C|(76 - UE|2-

At last one can always choose our cone with the help of a constant M > ¢ such that
any + Cn,, > 0 and

_ /80(t) (ant + Cnx)HUe — UEH%Q(QE(S))dO_ < 0.

Taking the same initial data _
Ue|t:0 - Ue|t=07

we obtain
t
1Ue = Ul < CIIV-Tellpaeicay /0 1Ue = UcllZo(.(sds + Kte’.

Here the constants K and C' do not depend on ¢.

Therefore applying the Gronwall lemma one has

t _
1Ue = UdllZ, 0.0y < K€ / eCU=9IVUellioc oy g, (I11.20)
0

As soon as the difference of the solutions has the order U, — U, = O(e), also V.U, = O(e),
and the left side of (II1.20) has the order O(€?), so we have that in the cone C(T) our
estimate always remains as €

t
65/ eCel=9)ds < 2.
0

I11.2 Validity of the KZK approximation for viscous ther-
moellastic media

One has seen in theorem 4 that the solution u(x,y,t) of the KZK equation with the
term of viscosity # > 0 or v > 0 defines globally in time ¢ > 0 for rather small initial
data. Considering the KZK equation as the asymptotic form of Navier-Stokes system
we note that its solution I(7,z,y) = I(t — %, exy,\/ex’) is defined for x; > 0 (as soon
as z becomes the time variable according to the KZK derivation from chapter I). For
this reason the approximate domain of validity of the KZK approximation for viscous
thermoellastic media is the half space z; > 0, ¢t > 0, 2’ € R* L.
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I11.2.1 Linearized KZK equation

From the Navier-Stokes system
op+div(pu) =0, p(dwu+ (u-V)u) = —-Vp(p) + evAu (I11.21)

which is well posed for rather small initial data in half space {z; > 0,2’ € R"" !t > 0},
the isentropic linear Navier-Stokes system can be obtained with the help of the choice

p=po+€ep, u=eu, p=pp) =cp
not taking into account the terms of order O(€?) :

op + poV.u = 0, (I11.22)
pooiu + Vp(p) = evAu, (I1.23)
which have a unique global solution.

Combining 0; and V applied to (II1.22) and (II1.23) we obtain two decoupled linear
equations

820 — EAp = eZ N, (I11.24)
Po
02u — AV divu = epimtu. (I11.25)
0

The existence of the smooth solution u of (II1.25) follows from the lemma.

Lemma 4 The equation (I11.25) has unique regular global on time solution in the half
space {x1 > 0,t > 0}, with reqular initial uli—o = ug, Utli—o = ug and boundary u|,,—o =
up conditions (u, has the same properties as the initial condition for the KZK equation
I(7,0,y), and uy as I(—=*, exy,\/ex')).

Proof. If u, = 0, it follows from the relation

a4 (/ |0u|?dz —1—02/ |V.u|2dx) + ﬂ/ |V.0wu|*ds —
dt x1>0 x1>0 pO x1>0

—02/ V. ududx’ — & V.0ududr’ = 0,
x1=0

PO Jzi1=0
which gives in this case

d

— (|0pul* + A V.ul?) dz < 0.
dt x1>0

If we take u, # 0, then we can write that u = v 4 ¢, such that v|,—g, v¢]i=o are the same
as for v and zero in the boundary, and ¢ is a function of a compact support with zero
initial conditions and the same boundary condition as u. We can construct such ¢ using
the trace theorem, thanks to the regularity of w,.

Let us put u = v+ ¢ in (II1.25)

02 (v + ) — AV div(v + @) = epiA@(v + ).
0
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From where we have

O*v — AV dive — epiAatv = g(p).
0

We multiply now the equation on d;v and integrate on x:

d

— (/ |O|?dx + 02/ |V.v\2d:€) + g/ |V.0w|*ds <
dt x1>0 x1>0 Lo Jz1>0

<

1 1
Iy e
2 x1>0 2 x1>0

applying now the Gronwall lemma for the equality type ¢y < a + y we obtain the global
existence in time of the solution. [J

1

Having the solution u of (III.25) with boundary condition u|,,—¢ = u' we can find p

from (II1.22) according to the formula

p(z,t) = p(x,0) — pO/V.u(x, s)ds. (I11.26)

This p satisfies (I11.24) with boundary condition

Oiplei—0 = —poV .|z —o.

And so we can envisage instead of the system (II1.22), (II1.23) the following system

Op+ poV.u =0, (I11.27)
Otu — AV divu = eiﬂatu. (I11.28)
Po

If we pass to the variables (7, z,y) in (II1.22), we obtain the linear part of KZK for
p(t, w1, x") = I(t — =L, exy,\/ex!)

D2p— PAp — e=-Noyp = e(2002,1 — PN, T — ——0°T)+
Po pPoC

(=P + 2——020.1 — — N, 1) — 2020, 1.
Poc Po Po

Suppose that I is the smooth periodic solution of linear KZK equation

2021 — AN, — —— T =0, (111.29)

then

025 — PG — eNOp = E(—ROPT + 2—-020.1 — —N,d,I) — —820,1.  (II1.30)
PoC Po Po
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And the equation of the same form holds for u = (v, \/ew)
e(—c?02v + 249200 — v\ 0,v) — €v020,v,
X1 — AV diva — eAOyi = (I11.31)
€2 (2102040 — v\, 0,10) — €3v02D,0,
where the functions v and @ are constructed according to the formulas (II1.5), (II1.6). So
for the exact system (II1.27), (II1.28) the approximate system has the form

Op + poV.u = €py(0.v + V), (I11.32)
(—c?02v + 240200 — v, 0,v) — €v020,v,
021 — AV diva — e— Adyi = (111.33)
Po €3 (2£020.48 — v\, 9,4) — 202,10,

In this case we easily obtain what follows

Theorem 11 Let I(7,z,y) be a solution of the linear KZK equation (I11.29) L-periodic
and mean value zero with respect to T and defined in the half space z > 0,7 € R/LZ,y €
R™1, decays for z — oo. Assume that

2 I(1,2,y) € C([0,00[; H'(R/LZ x Ry™)) N C([0, 00 H *(R/LZ x Ry™))
for s > max{6, [§] + 1}.

Let U, = (p, i) be the smooth solution of the approzimate system (II1.32), (I11.33) deduced
from a solution of the KZK equation with the help of (II1.5)-(111.6). Then the function

Udzy,2',t) = Ud(wy — ct,exy, \Jex!) given by the formula
Uz, 2',t) = (I, (v, Vew)) (2, — ct, exy, /ex")
1s defined in the half space
{r; >0, 2 € R" t>0}
and is smooth enough according to the above procedure.

If U = (p,u) is the solution of (II1.27), (II1.28) in {x; > 0, 2’ € R"™', t > 0} with the
same rather small initial data and boundary condition

(@ —u)|=0 = O¢(tt — u)|4=0 = 0,
('EL — u)’xlzo = 07 atp‘ﬁlzo = —poV-U|x1:0, (11134)

then there exists a constant C' > 0 such that the following estimates hold
/ 10 (e — u)|* + |V. (1 — w)Pdzida’ < Ce*t?, (I11.35)
21>0
which remains smaller than the order € for the time 0 < t < 622, and
/ |pe — pPdada’ < 2, (I11.36)
21>0

which remains smaller than the order € for the time 0 <t < T In %

The approximation result is true for the solution U of the linearized system (I11.22), (I11.23)
since U = U (with 0yp|s,—0 = —poV |z =0).
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Proof.

For the difference @ — v we have

—

OF(u —u) — AN (u—u) = ey (u — u) + R,
where
e (—c?02v + 249200 — v\, 0,v) — €v020,v,
R =
€3 (2102040 — v\, 0,10) — €3v02D,0,
the rest of (I11.30) bounded, under the smoothness hypotheses of the KZK solution I, at
least in Lo ([0, 00|, L2).

Multiplying the last equation by 0;(z — u) one obtains

% (\Gt(ﬁ—u)|2+02\V.(ﬂ—u)]2)dx1d:c'—c2/ O(u—u)-V.(u—u)dr' =
x1>0 x1=0

— at(ﬁ—u)v.ﬁt(ﬂ—u)dx’—e/

x1=0 x1>0

|V.8t(ﬂ—u)|2dx1dx'+€2/ RO (1 —w)dxydz’.
x1>0
In the same time

/ Ot — u)V.0(u — u)dr' + ¢ O(a—u)-V.(u—u)dx =0,
x1=0 x1=0

because one can choose 4|, —o = |z, —o(cf. (I11.34)). From where

d

%
— lat(ﬁ—u)|2+02|V.(ﬁ—u)|2dx1d$/) :
dt J.,>o

(10u(T—u) PV (T—u) [P dzyda’ < E2C ( /

1>0

The above estimate has the form

IWip<oevi - Svp<ce

and then

NI

d </ \(’9t(a—u)|2—i—cQ\V.(ﬂ—u)Fdxldx’) < Cé,
dt \ Jz,>0

which gives the estimate (II11.35).

In our construction the expression vE = O(1) because @ = O(1), u = O(1), (@ — u) =
O(1), which ensures that the estimate remains smaller the order €2 for the time 0 < ¢ < 622

Passing now to (p — p) we have the relation
O(p—p)+ poV.(u —u) = epo(0,v + V).
We multiply the equation by (p — p) in Lao({z; > 0})

d
| — pl*de + ,00/

dt x1>0 x1>0

(= p)V.a=widz = [ Filp~ p)da,

x1>0

and using the estimate (II1.35) for the time t < 622, we obtain the estimate

||p - p||L2({x1>0}) < GCGCta

which remains smaller the order €2 for the time ¢t < T In % ]



II1.2. Validity of the KZK approzimation for viscous thermoellastic media 89

111.2.2 The general nonlinear case

On the one hand one considers the system:
Orpe + div(peue) =0, pelOiue + (ue - V)u] = =Vp(pe) + evAu, (IT1.37)
and on the other hand a non trivial solution I of the problem

(v+1) v

cO? I —
4po

A1 —

2
3 ¢ _
5oz, O = G =0, (I11.38)

for some initial data
](T7 07 ?J) - IO(Ta y)

The solution I as a function of (7, z,y) is periodic in 7 of period L. The theorem 4 implies
for any initial data I, R x Q, with small enough H* (s > [§] + 1) norm (with respect
to v) there exists a unique solution which decays for z — co.

We still envisage our problem in the half space x; > 0, ¢ > 0 with the assumption that
u—0,p— po for |z| — 0.

Let us construct the approximate system to the Navier-Stokes system (I11.37).
We take as the state equation

—1)c?
(v )c 62ﬁ2

2 ~
p:ppﬁ :Cepe+ €
(e) 2

Then one constructs according to the formulas the functions: v from (IIL.5), w from (I11.6)
and

2 T L
vi(T, 2,y) = _c (/ 0.1(s, z,y)ds +/ %@I(s,z,y)ds) +
Po \ Jo 0

(=1 » cy—1) /L 2 v
+ cl* — ————= [ I°(1,z,y)dr + —0,1. (I11.39)
203 2Lp5  Jo g

In the above formula the terms containing fOL correspond to the definition of the operator
07!, which implies that v, is L-periodic in 7 and of mean value 0. To exclude the derivative
on z from (I11.39) we find from the KZK equation that

3

2 1 1 L
g 0t v +1) / Pds + —— 8,1 + —072A, 1,
0

Po 4p3 Ap3L 2cp? 2p0 "
and so
c? (v-1)
vi(7,2,y) = = 02N I(T, 2, y) + ~——2cl*(1,2,) —
1(mzy) =5 o (7,2, y) 7 (7,2,9)
c(y—1) /L 2 3v
_ I“(1,z,y)dT + —= 0. 1(T, 2,y). I11.40



90 Chapter III. Validity of the KZK approzimation

Next we introduce the densities and velocities (I11.8)-(I11.10) and construct the function

U (111.11).

In particular for ¢ = 0 one has functions defined for x; > 0 because I was well defined for
any z > 0

ﬁg(Oa Ty, [El) = Po + 61(_ﬂ7 €Xy, \/E.ZU,)7
C

T

— — —/ /

U |1=0= (Ue,l,ue)(—?, €xy, \/Ex)
and for x; = 0 one has L-periodic functions of mean value zero

p.(t,0,2") = pg + €l (t,0,/ex'), (I11.41)
U(t,0,2') = (Ue1,ul)(t,0,v/ex'). (I11.42)

Since for (I11.37) in our case on the boundary u|,,—g = €t|,—o is small and so |u|,,—o| < ¢,
we have only two cases in our boundary: a subsonic inflow boundary when the first
velocity component is positive u;|,,—9 > 0, and a subsonic outflow boundary when the
first component of velocity is negative uy|,,—o < 0.

We also notice that, thanks to (I11.40),

Ut]zy—0 = (ep—cof + eQG(I)) (t,0,ex') = (eif + 62G(1)>

£o 2=0
C
= e—Io(t,y) + EG(I)(t,y),
Po
with
c) = o2, 0=V = 1 /L Par+ o1 (IT1.43)
2p0 7’ 4p3 ALpg o 2e05

so the boundary conditions for @, are defined by the initial conditions for KZK equation
and are L-periodic on t and of mean value zero. Therefore, the sign of w1 |,,—¢ is the same
as the sign of I (because the term G(/y) has higher order of smallness on ¢).

The function U, "2 (p, @), defined in (II1.11) by densities and velocities from (IIL.8)-
(II1.10), is solution of the problem

atﬁe + V(ﬁel_l,e) —

&3 (poazvl + 0.(Iv) — 20, (Ivy) + Vy(lw)> + e, (Tvy), (I11.44)
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( ﬁe(atﬁe,l + (ﬂe . v)ae,l) + a:plp(ﬁe) - GVAae,l ==

c

e (I@Tvl — = 10,0? + 20,07 — 20 (vvy) 4+ powV v+

2po

+0=D 29 72 4 292 v —vAyu — c%@fm) +

et (%821)2 — 110 (vvr) + TwV v + pod.(vvy) — 52007+ (TIL.45)
+powVyv1 — vO2v + 292 vy — VAym) +
€ (I@z(vvl) — 310,07 + TwV vy + 20,07 — 1/83111)
\
( PO, + (e V)E) + Do) — s, =
3| T2V, P+ p—VOAy[> +
e | povdw — Ly 0rw + 2V w? — Lod,w — vAw + 292 w |+
(I1L.46)
ez | pov10,w + Tvdw — Lv10rw + £V w? — V@iﬂ}) +

€2 (Ivlazw>
(

Here to control the terms in right sides we need that 03I € L. ([0, 00[, Lo(T X y)), so in

theorem 4 we take s > max{6, [§] +1}. Then the rest of (III.44)-(II1.46) is bounded in
Lo.

So we have two systems: the system (II11.37) and
Ope +V.(pett) = €2 Ry, pJostic + (e - V)] + Vp(p.) — evAt, = €2 Ry, (I1LAT)

where €2 Ry = O(€?) is the rest of the first equation of Navier-Stokes system (II1.44),
€3 Ry = (O(e),0(e2)) = O(e?) is the rest of the second equation of Navier-Stokes system
(II1.45), (I11.46) in two directions x; and 2.

Remark 14 As we have the term of viscosity ev/A\u, where € is fized rather small param-
eter, v 1s a constant, then in our case ev does not converge to zero and so the phenomenon
of boundary layer is exclude.

Theorem 12 Suppose that a function 1y(t,y) = Io(t,\/ex') is such that
1. 1t 1s periodic on t with the period L and of mean value zero,

2. for fized t it has the same sign for all y € R"™', and for t €]0, L[ change the sign,
i.e., Ip = 0, only finite number times,

3. Io(t,y) € H({t > 0} x R"Y) for s’ > max{6, [2] + 1},
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4. I is sufficiently small in the sense of the theorem 4 and I, = e’Iy, p > 0.
For all function Iy(t,y) satisfying the properties 1-

e there exists the unique solution (T, z,y) of the KZK equation (111.38) with the initial
condition I|,—o = Iy such that

— I(7, z,y) is L-periodic with respect to T and defined in the half space {z > 0,7 €
R/LZ,y € R"'}, decays for z — oo;

— 2z — I(1,2,y) € C([0,00[; H'(R/LZ x RI7)) N CH[0,00[; H*(R/LZ X
Ry~)) for s’ > max{6, [5] + 1}

(the existence of such solution is proved in theorem 4).

e there exists a unique global in time solution U, = (p.,u.) of the approzimate sys-
tem (I11.44)-(111.46) deduced from a solution of the KZK equation with the help of
(IIL.5), (II1.6), (II1.40). The function U (x1,2',t) = U (2, —ct, exy,\/ex'), given by
the formula (I1I11.11), is defined in the half space

{21 >0, 2 e R" ', t>0}.
Moreover, according to its definition,
pe € (10,00 H* (R/LZ x Ry™) N C' ([0, 00[: H* *(R/LZ x Ry ™)),
i € C([0,00[; H* 2(R/LZ x R:) N C1([0,00[; H HR/LZ x R'™1)).
Consider now the Navier-Stokes system (II1.37) in the half space with the initial data

(pe - pe)|t:0 - 07 (ﬂe - ue)|t:0 = O,
and following boundary conditions (111.42)

(ae - u6)|x1=0 =0,

and when the first component of the velocity is positive e |y—o > 0 (i.e. at points where
the fluid enters the domain) the additional boundary condition (I111.41)
(Pe = pe)lar=0 = 0.
When ez, —o < 0 there is not any boundary condition for p..
Suppose also that u. — 0, p. — po as |x| — oc.
Then

e there exists a constant Ty > 0 such that for all t < €2T£p there exists a unique solution

Ue = (pe,uc) of Navier-Stokes system (II1.37) with the same smoothness as U,

o there exists a constant C' such that for all rather small € the solutions (pe,ue)
of (I11.37) and (p,,ue) of (II1.44)-(111.46) satisfy the following stability estimate

5 = 5
1pc = Bulia + lpte = Pz, < 3eCITTeliact < (e (I11.48)



II1.2. Validity of the KZK approzimation for viscous thermoellastic media 93

which remains any finite time

T 1
O<t< —In-
€ €

smaller than the order € (here T is a positive constant and T = O(1)).

Remark 15 Since the boundary conditions for the Navier-Stokes system are periodic and
of mean value zero on t, the first component of the velocity uy|.,—o changes the sign and
the inflow part of the boundary goes after the inflow one and so on. On the variables x’
we have the constant sign of ui|y,—o. This hypothesis follows from the physical reason of
works of Zabolotskaya (see [11]). In [11] one takes as the initial conditions for the KZK
equation (which correspond to the boundary condition for uy) the expression

I(1,0,y) = —F(y)sin .
The amplitude distribution F(y) is taken two types:
e for a Gaussian beam
Fly) =e™,

e for a beam with a polynomial amplitude

1_y227 ?JSL
F(y)—{(() y > 1.

Proof. Using the fact of the convex entropy for the isentropic Euler equation n(U,),
which is the function (see (II1.17)):

~ |uc|? m* p(pe) m
Uezsh e € =H 3 4 th h e) — y Ue = —,
N(Ue) = peh(pe) + pe— (p)+p€2 with h'(pe) 0 =
and their first and second derivatives
T
~ H’ ) — 1m? / oul T
n/(Ue) _ (p )m p2 2 ] _ |: H <p6> 2 :| 7 (11149)
pe Ue
B " . m2  m " ul ue
iy =| T e ] B [ Hipd i ] - (IIL50)
P2 pe T pe Pe

Have assumed ﬁe = (pe, pette)T = (pe,m)T, we can rewrite the Navier-Stokes system

0

A,

3(Nf€+V.F (Nfe —ev
! (U [ peug + p(pe)

} =0, where F(U,) = [ petle }
in terms of entropy (II1.17):

@)+ V@) - e |, 2| =0 where o) = wlol@) +p(0.)
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Entropy estimate for isentropic Navier-Stokes equation
on the half space and existence result

Let us multiply the Navier-Stokes system, from the left, by 2U I'n"(U,)

ﬁgm@@@a+aa%«apwaw@1_wﬁgw@g[g;]:o

Note that
YNNI 0 o
00| 0, | =0
and that B B B B o N o
200" (U)OU, = 0, U " (U)U] — 2UL 0" (U)U..
Moreover, by virtue of n”(U)F'(U) = (F'(U))"n"(U),

20Uy (U)F'(U)V.U. = V.[Uy" (U F(U)U,) — 2055 [0/ (U)F'(U)]U..

Integrating by [0,¢] X {z; > 0} (z' € R""!) we have

t . ~~ t . . .
/ / o,UI " (UHU)dwds + / V.U (U)F'(U)U)dwds—
0 x1>0 0 x1>0

t t
—2 / / Urom" (U )U.dxds — 2 / / UMY [y (U)F'(U)|U.dzds = 0.
0 x1>0 0 x1>0
One integrates now by parts

t
—2 / / Urom"(U)Uddzds = —2 / Uy"(U)U.dx + 2 / Uy (U)U.|i=oda+
0 x1>0 x1>0 x

1>0

t
+4 / oUTn"(U)U.dxds,
0 x1>0
t - - - - t - - o
9 / 01 [ (0.) P (0.)]0.dwds — —2 / / O (0.)F'(U.)0.da ds+
0 x1>0 0 x1=0

t
+4 / V.Ul (U)F'(U)Udzds,
0 x1>0

noticing that

t t
4 / 00T (0.) 0. dds + / V.0 [ (T F (O Dodads — 0,
0 z1>0 0

x1>0

we result in

~ ~ o~ ~ ~ o~ t ~ ~ o~ ~
/ U'y"(U)U.dw— / U (U)U.,|i—odz— / / 1 Uy (U)F'(U)U,| 4, —odx'ds = 0.
x1>0 x1>0 0 R
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Recall that n”(U.) is positive definite, so that
(7?77”([76)[76 > 5“1’2,
for some § > 0.

Therefore, we obtain for the initial data

PO"‘GI 1 \/— /
E(po —l-E[) (p—ct)f—l-ﬁ’l)l,\/glﬁ) <_?761‘17 El’)

Uy =

and for the first component of velocity the relation
t
/ UZdx — / Ujdr — / / Ul /" (Ure) F'(Ur,e)Un el 2y —od’ds < 0.
21>0 21>0 0 JRrr-1

Let us now consider the integral on the boundary. With notation u; = wu; . for the first
component of velocity, we see that

e H'(p) +% —u 0 1 .
Een,/(Ul,e)F/(Ul,e)Ul,e - (,Oeupeul) < (il_l 2 1’06 ) ( o ) ( P > -

u? +p'(pe) 2w Pty

1
— s (H%m ; )—m (=2 +5'(p.)) pe + 20 +pa (—u% (a0 ot m%)) _

€

/ u2 3
= U1pe (p (pe) + pej> — U Pe,

p'(p)
=

as soon as H"(p) =

Let us consider the initial condition Iy(t,y) for the KZK equation of the type of the
remark 15 and we suppose without loss of generality that Iy = 0 for ¢ €]0, L[ only once
in the point é, precisely we suppose that the sign of u; is changing in the following way:

e u <Oforte0+(k—1)L, L+ (k—1)L] (k=1,2,3,..)
e andu; >0fort e (2+(k—1)LkL) (k=1,2,3,..).

If t € [0, %] (for k = 1) the first component of velocity is negative
c
u1|961=0 = Ep_I()(ta y) + GQG(IO)<t7y) < 07
0

where G(Iy) is L-periodic and of mean value zero from (I11.43) (uq|y—0 = 0 for ¢t =0, £),

then
2

uE
U1 pe (p’(pe) + p67> —ufp. <0

since we have the negative term of order ¢ and the positive term —u?p, of order €.

Therefore, for ¢ € [0, %]
/ U2dx S/ Usda.
x1>0 r1>0
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Ift e (%, L) the first component of velocity is positive uq|,,—o > 0, then we also impose
Pelz=0 = po + €ly(t,y) where Iy(t,y) is the initial condition for the KZK equation.Then
we have that u?p, has the good sign, for the term

/ U’2
U1pe <p (pe) + pej> >0

we see that on the boundary it has the form

c —1)c? c ?
€ (p—[() + EUl’z:O) (po + 6[0) <C2€ + u6210 + (,00 + EI()) ((6—[0 + E2U1|z=0> +
0

Po Po
+eu?[.—0)) < €Colo,

for some constant Cy = ¢® + § and so

t u2 ,
/ (ulpe (p/(ps) + pej) - u1p6> ds =
0
L
2 uz t uz
= / <U1pe <p’(pe) + /%7) — wi’/%) ds +/L <U1pe <p’(pe) + /%7) — U?pe) ds <
0 3
/ Uz 3
UiPe \ P (pe) + 055 — Ui Pe ds
0

L ’U,Q L
+/L U1 pe (p’(pe) +pej) ds—/L uipedt <
2 2
L L .
S 6200/ [odt = €2+p00/ [[)dt = €2+pK,
L L

2
2 2

ol

< _

where K = O(1) is a positive constant non depending on time and p > 0 is the order of
“the sufficient small” initial data I;.

Since Uy = O(1) we obtain for all ¢ < L + L (fort € [L,L 4+ £] uifs—0 < 0 and
fLLJr% (mpe (p’(pe) + p€“_23> — u§p6> ds < 0) the estimate

/ Udx < / Uldx + €PK.
x1>0 x1>0
But for ¢t < 2L + é we have, thanks to the periodicity of Iy,
/ ﬁfdw < / ﬁgdx + 2e2P K.
x1>0 x1>0
Then we conclude that for ¢t < 7L + é

/ U2dz < / Uldx + TP K.
x1>0 x1>0

To keep the sense of the bounded a priori estimate we need to impose that

~ 1
TEPK =0(1), or T< o
€«Tp
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Ke2+p

that U, € Loo(]0, T[, Lo({z1 > 0} x R*1)).

So for t < L ( L+ %) =T, or shortly ¢t < % with a constant Ty = O(1), we obtain

If Iy = 0 for t €]0, L[ finite number times, m times, beginning for example by negative

. . . o T
sign, then we have the a priori estimate for t < L7 = T, where 7 < A AETY
m+1].

2

To prove now that U, € La(]0, [, H¥2({z1 > 0} x R"!)) with ' from the condition of
the theorem and where s’ — 1 corresponds to the regularity of the initial condition (70, we
use the result of [20, p. 352] for incompletely parabolic problems. We also obtain that
O,U. € Loo(]0, T[, HY *({z; > 0} x R*™1)).

r=|

Using the standard Faedo-Galerkin method with the theorem about a sequential com-

pactness of the unit ball in the Hilbert space we obtain the existence of the unique

solution of Navier-Stokes system. More precisely p. € C([0,T[, H* ({z; > 0} x R"™1)) N

CY[0,T[, H¥2({z1 > 0} xR 1)) and u, € C([0,T[, H*2({x; > 0} xR )NC ([0, T[, H*~*({z; >
0} x R™1)).

The approximation result

So we have two systems

. . 0
() + V@) -, 1, | =0
_ _ 0
U, +V.F(U.) — ev [ Au. } =0,

7= e 0 _ 5 (n0)+p(5e) B
(T + T e | o o | =t (1R ¢ ).

vl

9

_ _ 0 5
U+ V.F(U,)—ev { AL, ] = €2

where B = (Ry, Ry) is the rest from (II1.47). Since we suppose that U, = (pc, petic)” is
bounded we can denote again

Let us compute 5
g(n(ﬁe) —n(T) = (T (U = To)).

The first we find from initial systems that

%(n(ﬁe) —n(U,)) = —V.((q((z) —q(U)) + ev [ wAu 2 a.AG. } _e&R. (IT1.51)

Then we notice that
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where
- (%;?)T "UNU, -T,) = — (_V.F(Ue) + [ EVZue } + eﬁﬁ)Tn”(Ue) <fj€ _ Ue> 7
and

—1/(Ue) (83% B 8(;?) = —/(U.) (—V F{U)+V F(UG)) _

Using the property for convex entropy 7" (U)F'(U) = (F'(U))"n"(U) we find that

(V'F<U6>)T77”(U€)<[76_Ue> = V-UET(F/(UG))TUH(UG)(ﬁe_UG) =V.U: 1 (UG)F/(UG)([Z—UE).

So we obtain that

00 =00~ OIT. - T) = =@~ a@ + v |, 0 o n

} — R+
T
N R s 3 AN S 3 0 "7 T TT 3BT (77 T TT
VT TIF T -T.) - { e } 7O (U~ T.) - B y'(T) (U~ Te) +

0

A, — A, } +e2n(U)R, (I11.52)

—1'(Ue) (—V.F((Z) + V.F(UJ) — (U, )ev [

where, thanks to (I11.49), (II1.50) (and £ = s+ 1),

0 1 @) (0.0 = —er | 2% [ P ]
| ewAa, ' 6>< © 6>__€V L A, pu — petle |

_ — = S _ _ =N _ Pe — Pe =
= —ev/Au, (=, 1) [ u(s+ 1) — } = —evAu(ue — U.) — ev A\, 5 (ue — ),

—/ (U )ev [ Au EA@ } = —evi (Au. — Au,)

Integrate (II1.18) over the half space. The use of the integration by parts gives with



II1.2. Validity of the KZK approzimation for viscous thermoellastic media 99

notation ¢, F for first components of vectors ¢ and F:

% >O(n(ﬁ€) —n(Ue) - n/(Us)(ﬁe ~U,)dx =

—/ :0(611((76) —a(U) = 7T (F(U.) = Fi(U.)))da’ —

| U WONFO) - FO,) — FUNU. - T.))dx +

x1>0
+€V/ (ue% - ae%) dy 6y/ (Vw2 — Vo) di +
£1=0 axl a371 z1>0
_d / (R T)R) de —c / By (T (0 - T) do +
x1>0 x1>0

_ Pe — ﬁ€ _ _ 8(“6 - ﬂe) 8ae - ) /
+ev AU —— Ue — Ue)dx + EV/ (—uE — Ue — Ue) | dz’ +
/x1>0 Pe ( ) 21=0 0xy dxy ( )

tev / (Ve V(e — 1) + Vo, - V. (u, — @) de. (I11.53)
x1>0

Nt

It is easy to see that

ou, _ 01, , _ a(“e - ’L_LE) Ot _ ;o
€V /271:0 (uﬁa—xl — uea—ml) dx' + ev /Il:o (—u€ o - o, (ue — uE)) dr’ =

= ey/ (ue — ae)wd:ﬂ (IT1.54)
x1=0

8x1

and

—61// (IV.ue = |V.u|*) dz + ey/ (V. - V.(ue — a) + V.t - V.(ue — @) de =
x1>0 x1>0

_ _EV/ V. (4 — @)[?d.
x1>0

Let us envisage now the boundary condition

- / @0 = 0T~ (T (F(0) ~ R’ -

= (qu(U) = (T =/ (U (F1(U) = Fi(T)))|zs=o. (IIL.55)

Explicitly (II1.55) has the form:

((Ue) —q (UG) _UI(UG)T<F1([76> —F (UG)))’m:O = U (77([75) +p(pe)) — (U(UG) +p(pe))—

_ T _
o N P .
peu? + p(pe) — peu? — p(pe)

x1=0
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Choosing always u1|,,—0 = U1]z,=0 we obtain with the help of the facts that the entropy
7) 18 convex

n(U) = n(T) =i/ T)(U - To) > alU. ~TJ,

—u1(pe — pe) (H’(ﬁe) — =) —u [peu? = pei? + p(pe) — p(pe)] =0 =

= uy (n(00) = (@) 0 (TN (O. - T)) (IT1.56)

and so this boundary condition take the same sign as the first component of velocity
U1 |z, =0 since

n(UE) - U(Ue) - n/(Ue)T(Ue - Ué) > (Uﬁ - U6)2 > 0
is always positive.

So for the boundary conditions we take |z =0 = Ue|s,—0 and if u; > 0 we also suppose
Pelz1=0 = Pelz;—0- Then the first boundary condition (IT1.54) is always zero:

_ a(ue - ae) o _ 8(u6 — ﬂg) B
€v /xl:o(uE ) B dx’ = —ev(u. — ) - [}

For the second boundary condition (II1.56), if u,|,,—¢ < 0 then we have in the left-hand
side of the estimate a positive quantity on the boundary and it can be omitted.

If Ue|z,—0 > 0 then we have for p|s,—0 = Pe|z,=0

Uz _ _ ﬂ? _ 1y~ ﬂf 2 - -2
Uy H(pe) + pe? - H(pg) —Pey (PE - pe) H (pe) YA Pelly + Petly

= U (H(pg) - H(ﬁe) - (ps - ﬁE)Hl(ﬁe)) |x1:0 = 0.

We use the Taylor expansion

F(U) - F(U) = F(U) (U - U) +0(U. - UJ"),

and we have

F(U,) - F(U,) — F({U)U.-U,) <C|U.— U
Taking the same initial data B _
U€|t:0 - Ue|t:0a
we obtain

d - _ ~
= U, — U.2dz < C||V.T.| 1 / U, — U.|2dz + K¢

dt x1>0 x1>0
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Here the constants K and C' do not depend on ¢.
Therefore applying the Gronwall lemma since V.U, = O(¢) one has

1Ue = Uclly gm0y < KePe. (I11.57)

As soon as the difference of the solutions has the order U, — U, = O(e) and the left side
of (ITIL.57) has the order O(¢?), so we would like to have the inequality

t
65/ eCelt=5)ds < €2,
0

From e2e““ < 1 we obtain that the estimate (II1.48) is smaller than the order €2 for time
t<Timi O

It is possible to extend the previous results to the case where (76 is only an admissible
solution satisfying the boundary conditions.

Definition 1 The pair of functions (p,u) is called an admissible weak solution of Navier-
Stokes system (II1.37) satisfying the boundary conditions in the half space if it satisfies
the following properties:

1. it is a weak solution of (II1.37),
2. it satisfies in the sense of distributions (see [15, p.52])

0
omn(U. HV‘](U)_G”{uEAuJ <0,

or equivalently for all nonnegative twice differentiable test function 1 with compact
support in the half space

/oT /mo (@W(Ue) + Vapq(Ue) — ev { WZE‘Q 1 U+ ev { VO% } V. z/1) dadt +
+ x1>0¢($’0>”(U0(x))d“/oT /R W (q(U€> — v [ uOVu D

3. it satisfies the equality

_/wo Y +//m1>O<VUF )+eu{|v P Ddxder/xpoUg(x)dx%—
I ACICEE )

Theorem 13 To have the estimate (I11.48) it is sufficient to have an admissible weak
solution of the Navier-Stokes system (II1.37) satisfying the boundary conditions in the
half space

dz'dt > 0.

x1=0

dz'dt = 0.

xr1=0

0
OU. +V.F(U.) — ev { Au, } =0,
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such that [34, 38] pe € Loo((0,T), L) N C([0,T),L,) for 1 <p <2, p. >0 a.e., Vo, €
L((0,T); L2), pelue|? € Loo((0,T), L1), ue € Lo((0,T), Hy), peue € C([0,T], Ls —w), here
by C([0,T], L1 — w) is denoted the space of continuous functions with values in a closed
ball of L% endowed with the weak topology.

111.3 Conclusion

The approximation result for nonlinear KZK equation
7 2 5 Cet
[Ue = Uz, < €%e
is valid in the viscous and non viscous cases. The obtained estimate guarantees that the
difference U, — U, stays of order O(e) during the time of the order £InL.

Let us for the conclusion make a comparative table for the approximation results (see
table II1.1).

One use the notation: A(u —v) = |0;(u — v)|* + |V.(u — v)]?.



Table II1.1 — The approximation’s results

Linearization of
Navier-Stokes system

Navier-Stokes system

Euler system

Domain

the half space
{21 > 0,2 e R" '}

the cone
Q(t) = {|x1| < g —ct} % RZ,_l

Op+Vau=0, Ope + div(peue) = 0, Ope + div(peue) = 0,
Exact system Ou+ Vp(p) = evAu pelOyue + (ue - Vu] = =Vp(pe) + evAu, | ployue + (ue - V)u] + Vp(pe) =0
State equation p(p) = p p=p(pe) = Pepe + %GQPCQ
Exact solution Ue = (p,u) Ue = (pe, petic)
Approximate solution Ue. = (I,v+ /e) Ue= (po + €l e(po + €l)(v + vy, \/e))
—2(fy 0u1ds + [, 50.1ds )+ —i(foajds+fLsast)
v (1, 2,y) = 0 +00er? — P [ Pdr + 20,1 +0er? — ) [ Pdr
2602,1 — CQA I— cO? I — ﬂ@zﬂ—
I is solution of LT =0 BT~ AT =0 21— 02 _EA =0
poc c“po PO

Smoothness of

KZK solution s > max{6, [5] + 1} s > max{4, 5] + 1}

Time of validation Te% for e — ue,

for U, — U, = O(e)

TIn % for p.

— Pe

Estimation

le>0 A(ae

”ﬁe - p€HL2 < €2€Ct

—uo)dr < €'t?

HUe - UGH%Q < Pele

s =5

?{s’ S €5€Cet

uorsnou0) g III
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his chapter consists of three parts. As soon as our goal was to make a schema of the
T using method by the most clear way, we envisage the abstract problem. Therefore,
there is a rather general result of this kind for an linear inverse problem for an abstract
equation by Prilepko A.I. and Tikhonov I.V., which we cite and use here. Since the proof
of the main result for the nonlinear problem under consideration is totally based on the
theory for the linear analog of the problem given in [40], in the first part of this chapter we
introduce the main notations from [40] with some brief explanations and give statements
of the theorems needed in what follows.

In the second part, we prove the local solvability of the inverse problem for a nonlinear
abstract evolution equation with integral overdetermination so as to be able to treat this
problem as one of controllability of moments. A similar result for the linear problem was
obtained earlier in [40]. The proof is based on well-known properties of solutions of linear
(direct and inverse) problems as well as on the two-fold application of the inverse function
theorem in the corresponding function spaces (in one of two cases, the space of preimages
is defined as the solution set of the corresponding problem).

In the third part, twice applying the refined inverse function theorem in its most general
version given in [48], we obtain sufficient conditions on the size of the neighborhood from
which the function from the overdertermination condition can be taken so that the original
inverse problem will be uniquely solvable.

The results of this chapter can be found in [42, 43].

Earlier, this approach to inverse problems was applied, for example, to a quasilinear heat
equation with integral overdetermination condition [2].

IV.1 Preliminaries. Notation

In the present chapter, following [40], we use the following notation:
e [ is a Banach space with norm || - |[;

e L(E) is the Banach algebra of linear bounded operators mapping E into F, endowed
with ordinary operator norm;

e [ is the unit operator in L(E);

A: D(A) — E is a linear closed operator with a dense domain D(A) C F;
||| - ||| is the norm of a graph on D(A), i.e., ||[[¢||| = ||| + ||Av] for ©» € D(A);

D(A) is the Banach space D(A) with the norm of a graph;
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e 0(A) is the spectrum of the operator A;
e X =CY[0,T); E)ynC([0,T); D(A)), where T' > 0.

By a scalar function we mean a function taking real or complex values according as the
space E is real or complex. By a wvector function we mean a function with values in a
Banach space. By an operator function we mean a function with values in a Banach
algebra L(E) . Integrals of operator functions a priori in the strong operator topology

L(E).

IV.2 Linear problem. Fundamentals

IV.2.1 Setting the linear problem

In [40], the problem of determining an element f in Banach space E from the relations

u'(t) = [Aul(t) + (1) f (0<t<T), (IV.1)
u(0) = g (1o € D(A)), (IV.2)
/ w(t)dp(t) = oy (1 € D(A)), (IV.3)

was studied; here 7' > 0 is a number,

A generates a semigroup S(t) of class Cy,

the function ®(¢) € C'([0,T]; L(E)) is an operator function,

p(t) is a scalar function of bounded variation on [0, 77,

and f € F is an unknown control;

the integral in condition (IV.3) is regarded as a vector Riemann-Stieltjes integral.

Definition 2 By a solution of the problem (IV.1)-(IV.3) for fized 1, 11 from D(A) we
mean an element f € E such that the solution of the Cauchy problem (IV.1), (IV.2) with
given f satisfies condition (IV.3).

By a solution of the Cauchy problem we mean a function u(t) € X satisfying equa-
tion (IV.1) for 0 < ¢t < T and taking the value ¢y at ¢ = 0. The requirements imposed
on the operators A and ®(t), guarantee the existence and uniqueness o the solution of
the Cauchy problem (IV.1), (IV.2) for any f from E (see [30, 39]) and the estimate of
well-posedness [39, p.107], [40, p.169]

lulleror.e) < K ([[[Yolll + [|120) flleror,m)
with some constant K.

Remark 16 The above estimate follows from the Cauchy formula

u(t) = Sty + /0 S(t — s)®(s) fds
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and with the help of [40, p.169]

t

A (/Ot S(t— s)CI)(s)fds) = S(t)P0)f — () f + /0 S(t—s)®'(s)fds

from the relation

u'(t) = AS(t)tho + S(t)2(0) f + /0 S(t—s)®'(s)fds.

Indeed, we estimate u(t) and ' (t) in the C([0,T], E) norm using that ®(t) € C*([0,T]; L(E))
and the semigroup S(t) is bounded as it is of class Cy.

Therefore, problem (IV.1)- (IV.3) is to choose, by varying the element f, the function
u(t) = u(t; f) satisfying condition (IV.3), among all the solutions of the Cauchy prob-
lem (IV.1), (IV.2). By the accepted terminology, problem (IV.1)- (IV.3) belongs to the
controllability problems or to the inverse problems, i.e., to those problems in which it is re-
quired to find the control (in other words, to reconstruct the exact form of the differential
equation) by using special overdetermination (in our case, condition (IV.3)).

Remark 17 In [40], it was noted that the overdetermination condition (1V.3) generalizes
the well-known terminal and integral overdetermination conditions, which can be obtained
from (IV.3) as special cases and thus allows one to consider problems with different
overdetermination conditions within the framework of a single theory.

So the terminal overdetermination condition u(7") = 1), can be obtained as a special case
in which the function p(t) in (IV.3) is a function of jumps:

aqu(ty) + aou(ts) + ... = 11,  where t; € [0,T],

and the numbers «; satisfy ¥|a;| < oo.

On the other hand, if the function p(t) is absolutely continuous, then, instead of condition
(IV.3), we obtain the following integral overdetermination condition:

(B) / (B u(t)dt = i,

where w(t) = p/(t) is an integrable function(here the Bochner integral for u € C*[0,T]
can be replaced by a Riemann integral).

IV.2.2 Well-posedness of the linear problem
Definition 3 Problem (1V.1)- (IV.3) is said to be well-posed if for all 1y, 11 from D(A)
it has a unique solution f € E.

Moreover, as was proved in [40], in that case the solution f corresponding to the elements
1o, Y1 satisfies the estimate

LFIF< CCl ol I+ e ll])
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with constant C' > 0 independent of ¢y, 9.

Conditions for well-posedness were obtained in [40] for the following two cases: when the
function ®(¢) in (IV.1) is a scalar function and when it is an operator one. For the clarity
of subsequent arguments, we formulate these cases.

Case of a scalar function ®(t)

Suppose that ®(t) is the multiplication operator by a scalar function ¢(t), i.e., ®(t)f =
o(t)f, where 0 <t < T, f € E. Suppose that ¢ € C'[0,T].

For this case, the following theorem was proved in [40].

Theorem 14 Suppose that u(t) is a nondecreasing function on [0,T] and is continuous
on the right for t = 0. Suppose that ¢ > 0 for 0 <t <T and

/ o()dp(t) 0,

and suppose that the semigroup S(t) generated by the operator A satisfies the estimate
1S(t)|| < Mexp(—pt) (IV.4)

with constant M > 1, 3 > 0. Also, suppose that any of the following conditions is satisfied:

(a) §'(t) >0 for0 <t <T;

(b) the function p(t) is convex up on [0,T].

Then problem (IV.1)- (IV.3) is well posed.

Remark 18 The condition (b) signifies that

th+1 1
:u( 1 ; 2) > E(M(tl) +,U(t2>) fOT' 0< tl: ty < T.

In this case the function p(t) is continuous on the interval (0,T) (see [37, ch.X, §5]),
and since p(t) is continuous for t = 0 and nondecreasing, then p(t) is continuous on
all interval [0, T|. By [37, appendiz III] there exists a such summable, nonnegative and
non-increasing on [0,T] the function w(t), that

(it is not excluded that w(0) = +00). So, if the property (b) holds then the operator

K= /0 ' [S(t)q>(0)+ /0 t S(t—s)@(s)ds} du(t)

can be rewritten in the following way:
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J{_wuvé ﬂQ@UZst—uﬂ[:S@Mg/ Bt — s)duw(t).

The last presentation of the operator K allows to estimate it in E.

Briefly, it is sufficient to suppose that € C*0,T] and then we have

Case of an operator function ®(t)

We assume that the space E is a Banach structure (a lattice) with cone F. The condition
for the positivity of an operator L € L(F), i.e., an operator such that L(F,) C F., is
denoted by the symbol L > 0. A semigroup S(t) is said to be positive if S(t) > 0 for all
t>0.

Theorem 15 Suppose that u(t) is a nondecreasing function on [0,T] and is continuous
on the right for t = 0. Suppose that ® > 0 for 0 <t < T'; moreover, let the operator

J:/@@w@

satisfy the conditions J~* € L(E), J~' > 0. Suppose that the semigroup S(t), generated
by the operator A is positive and compact for t > 0. Further, suppose that the spectrum
of the operator A lies in the half-plane {\ € C' : ReX < 0}. Finally, suppose that any of
the following relations is satisfied:

(a) ®'(t) >0 for0 <t <T;
(b) the function u(t) is convex up on [0,T].
Then problem (IV.1)- (IV.3) is well posed.

Remark 19 [/0]. Since the semigroup S(t) is positive, the requirement, imposed on the
spectrum o(A) in theorem 15, implies s(A) < 0, where s(A) = sup{ReX : X € o(A)} is
the spectral boundary of the operator A.

Remark 20 [40]. The requirements for the semigroup S(t) and s(A) < 0 in theorem 15
are equivalent to the estimate (IV.4) in theorem 1/.

IV.2.3 Inverse function theorem

Let us recall the inverse function theorem.

Theorem 16 Suppose that X and Y are Banach spaces, U is an open set in X, the
mapping [ : U — Y is strictly differentiable on U, and f'(x¢) : X — Y is an isomorphism
from X toY for some point xq € U. Then there exists a neighborhood U’ of the point
xo, such that f induces a homeomorphism of U’ onto the open set f(U’), f'(x) is an
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isomorphism from X onto'Y for x € U', f~1 . f(U") — X s strictly differentiable on
FU) and (f71) (f(2)) = [f'(2)]™" for & € U’ (i.e., [ is a diffeomorphism U’ on f(U’)
of class C*).

IV.3 Nonlinear problem. Local solvability

In what follows, we use the notation introduced above.

In (IV.1), we additionally denote

p=Jf= /<I>(t)d,u(t) fekr, (IV.5)
F(t)=®(t)f € C'([0,T], E), (IV.6)

whence
F(t) =[® o J " (p). (IV.7)

Also, consider the linear operator
T
A BB Ap— / o () dp(t), (IV.8)
0

where u(t) is the solution of the linear problem (IV.1)- (IV.3) for 1)y = 0, which can be
obtained for f = J 'y (see (IV.5)).

Remark 21 It follows from the condition s(A) < 0 of theorem 15 that A = 0 is a regqular
point of the operator A, i.e., A is invertible on D(A), and then the homogeneous equation

A =0 (IV.9)

has only the zero solution or, equivalently, for any x € E there exists a unique solution
W € D(A) of the equation AY = x, which will be denoted by » = A~'x. By Remark 20,

we can assume that equation (IV.9) always h as the zero solution.

Let

H = {ve X|3F € C([0,T],E) : v is the solution of the linear
Cauchy problem (IV.1)-(IV.2) for ¢y = 0},

i.e., H is the solution space of the linear Cauchy problem.

Assuming ¢y = 0 in (IV.2), we note a well-known fact, appearing [39, p.107]: for any
F € CY([0,T], E), there exists a unique solution of the Cauchy problem (IV.1)- (IV.2)
with estimate of well-posedness

e o,m,m) < K| Flleo,m,e)
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where K > 0 is a constant independent of F'.

Therefore, the operator
L=d/dt— A (IV.10)

induces an isometric isomorphism of H on LH = C'([0,T], F) [39, p.107] with norm
|ullg = || Lullcror,p) and, therefore, the space (H,| - ||z) is Banach; moreover, by
the a priori estimate H is continuously embedded in C'([0,T], E), and hence in X =
CH([0,T]; E) N C([0,T]; D(A)).

Theorem 17 Suppose that the linear problem (IV.1)- (1V.3) is well posed(see theorems 14
and 15), G : X — CY[0,T], E) is a nonlinear, strictly Fréchet-differentiable operator
satisfying the conditions G'(0) = 0, G(0) =

Then the nonlinear problem

u'(t) = [Aul(t) + Gu(t) + F(t) 0<t<T), (IV.11)
u(0) =0 (10 = 0),
[ utaut) = v (r € D(4),

0

where F(t) is the same as in (VI.9), has a unique solution f in a neighborhood of zero in
E for sufficiently small (in norm) ¢y from D(A).

Remark 22 In what follows, we assume everywhere that 1o = 0 in (1V.2).

Remark 23 In the theorem the nonlinearity G(u) can be rather general. Precisely, if
(Q,%, 1) is a space with measure with t, s € Q then the following types of operators
satisfies the conditions of theorem on the operator G:

1. Nemytski’s operator: u(t) — g(t,u(t)),
2. Urysohn’s operator: u(t) — [ K(t,s,u(s))du(s),
0

3. Hammerstein’s operator: u(t) — [ K(t,s)g(s,u(s))du(s) .
Q

Proof. Both sides of equations (IV.11) and (IV.1) belong to C([0,T], E); therefore to
these equations we can apply the linear overdetermination operator [ € £(C([0,T], E), E),

T
assigning the integral [ v(¢)du(t) of the function v(t):
0

/u'(t)d,u(t) = /[Au](t)du(t)+/Gu(t +/<I> )fdu(t)  (for (IV.11)),

L(u'(t)) — U([Au|(t)) = ¢  (for (IV.1)). (IV.12)

or

Noting the fact that the operator A is closed, in view of (IV.3), we obtain
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/ [Au)(t)dp(t) = A / u(t)du(t) | = Ay

and
[(Au) = A(lu). (IV.13)

Denote
Ay = —x. (IV.14)

Then, taking into account the notation introduced in (IV.8), (IV.5) and (IV.14), we find
that the linear problem (IV.1) - (IV.3) can be reduced to the operator equation

X=¢—Ap=(I-A). (IV.15)
Let us show that problem (IV.1) - (IV.3) and equation (IV.15) are equivalent.

To do this, it suffices to prove that if ¢ is a solution of equation (IV.15) with some y € F,
then the solution wu(t) of equations (IV.1) - (IV.2) corresponding a given f = J lo,
satisfies equation (IV.3) with ¢; = A7'y, i.e., we must establish the equality lu = A~ y.

Indeed, noting that Ap = I(u/(t)) by definition, we add (IV.12) and (IV.15) and, us-
ing (IV.13), we obtain —A(lu) = x; hence, by Remark 21, we see that problem (IV.1)
- (IV.3) and equation (IV.15) are equivalent.

Let us return to the nonlinear problem (IV.11), (IV.2), (IV.3).

Since H is subset of X, it follows that the mapping G : H — C*([0,T1], E) is also strictly
differentiable in the sense of Fréchet. Taking also into account the equality G’(0) = 0, the
fact that L : H — C'([0,T], E) is an isomorphism (see (IV.10)), and using the inverse
function theorem (see Sec. 1V.2.3), we see that the mapping £ : u(t) — Lu(t) — Gu(t) is a
local diffeomorphism of class C! in a neighborhood of zero of U’ in H onto a neighborhood
of zero of V' in C'([0,T], E).

Suppose that n = €71 : V' — U’ is the mapping inverse to this local diffeomorphism, i.e.,
n : ' —— u, where u is a solution of equation (IV.11) and 7 is strictly differentiable on

V.
We have F(t) = (® o J ')y (see (IV.7)).

Consider
P(p)=n[(®oJ)p], P:E— H. (IV.16)

Since the mapping
ANipr— (PoJ Ny, A:E— CY[0,T],E) (IV.17)

is linear and continuous, it follows that P is strictly differentiable in the sense of Fréchet
in a neighborhood of zero in the space £ as a mapping into H.

Further, we look for a solution of the nonlinear problem (IV.11), (IV.2), (IV.3) as

u = P(p),
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where u is a solution of (IV.11), (IV.2), (IV.3) with F(¢) = (® o J~!)¢ on the right-hand
side of (IV.11).

Let us introduce the mapping
T T
M:E—FE, M:p—<p— /[P(gp)]tdu(t) + /G[P((p)]d,u(t) : (IV.18)
0 0

Then the system (IV.11), (IV.2), (IV.3) can be written as
My = y. (IV.19)

Let us now prove that problem (IV.11), (IV.2), (IV.3) is equivalent to the operator equa-
tion (IV.19), i.e., we must show that if ¢ is a solution of equation (IV.19) with some y, then
u = P(¢) (obtained from ¢), where u is a solution of the Cauchy problem (IV.11), (IV.2)
with given F(t) = (® o J~ 1), satisfies condition (IV.3) with ¢y = —A~'x € D(A).

Assume the converse: suppose that u satisfies (IV.3) with )y # 1.

Deriving the operator equation for these ¢ and 151, we find that ¢ also satisfies the equation
My =y = —A¢;. (IV.20)

Subtracting (IV.20) from (IV.19), we obtain y — ¥ = — Aty + Agyy = 0, ie., Ay — 1) =
0. By Remark 21, this equation has only a zero solution; therefore, ¢y = 1, which
contradicts the original assumption.

Let us show that M is strictly differentiable in the sense of Fréchet in a neighborhood of
zero in E and M'(0) =1 — A (see (IV.8)).

T
Note that the mapping ¢ — [ G[P(yp)]du(t) is strictly differentiable in the sense of
0

Fréchet in a neighborhood of zero by the theorem on the differentiability of a composite

function and its derivative at zero is zero, since G'(0) = 0. Further, the mapping ¢ ——
T

T
J1P(p)]edp(t) strictly differentiable in a neighborhood of zero, since v(-) — [ v'(¢)dpu(t)
0 0
is a linear continuous operator from X to F and, especially, from H to E.

Moreover,

A

[1P O Adute) = e (1v21)

Therefore, M is strictly differentiable in a neighborhood of zero in E and M'(0) = I—A
is the operator of the linear problem (IV.1)- (IV.3) (see (IV.15)). Since the linear problem

is well defined, there exist (M’(0))~' and [[(M'(0))7']] < 1/(1 — HAH) By the inverse

function theorem, there exist open neighborhoods of zero of U and V' in E such that M
induces a diffeomorphism of class C'! of U onto V.
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Let V = {tr € D(A)|x = —AyY, € V}}. Then V is an open neighborhood of zero in
D(A) C E and for all ¢, € V there exists a unique ¢ € U such that My = —Ay;.

Thus, we have proved the local unique solvability of the operator equation equivalent to
problem (IV.11), (IV.2), (IV.3), which concludes the proof of theorem 17. O

IV.4 Nonlinear Problem. Refinement of the Neighbor-
hood of Local Solvability

IV.4.1 Preliminaries. Notation

In what follows, we shall use the following notation:
e Uy is the open unit ball in H;
e H is from Sec. 1V.3 such that the following continuous embedding holds:

H c CY[0,T],E); (IV.22)

LH = CY([0,T], E) (see (IV.10));

Cx_y is the embedding constant X in Y;
A:pr— (®oJ Yy, A: E— LH (see (IV.17));

1A= 1A 2 )

L(X,Y)is the set of linear continuous operators from X to Y;

e [ is an operator of overdetermination

1€ L(CH[0,T),E),E), Ilu= /u(t)du(t); (IV.23)

e [3is an operator such that
T
Be L(H,E), Bu= /u'(t)d,u(t). (IV.24)

0

We consider the inverse problem (IV.11), (IV.2), (IV.3), assuming that all the assump-
tions of theorem 17 (in Sec. IV.3) are valid and, additionally, the following estimate
holds: )

1G (W)l ey < 9(r) for lully <, (Iv.25)

where ¥ : [0, c0[— [0, oo is a monotone nondecreasing function.

Let us recall a result from [49] (see also [48, p.33]):
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Theorem 18 Let X be a Banach space, let Y be a separable topological vector space,
let A: X — Y be a linear continuous operator, let U be the open unit ball in X, let
Pay : AX — [0,00] be the Minkowski functional of the set AU, and let ¥ : X — AX be

a mapping satisfying the condition
Pav(¥(2) = 0(z)) <O() |z =z for |lo—wzll<r, |7 -0l <7

for some xy € X, where © : [0,00[— [0,00] is a monotone nondecreasing function. Set
b(r) = max(1 — O(r),0) forr > 0.

Suppose that

/b )dr €]0,00], 7. =sup{r > 0| b(r) > 0},
0

b(t)dt (r>0) and f(zx)=Ax+VY(z) for zeX.

w(r) =

S,

Then for any r € (0,7 and y € f(xo) +w(r)AU, there exists an x € xo + rU such that
flz)=y.
Remark 24 If either A is injective or KerA has a topological complement E in X such

that A(E NU) = AU, then the assertion of theorem 18 follows from the contraction
mapping principle [49]. In particular, if A is injective, then the solution is unique.

In what follows, we also need Hadamard’s theorem.

Theorem 19 Let X and Y be Banach spaces, let A : X — Y be an isomorphism of X
ontoY (AX =Y, ||A|| < oo, JA™L ||A7Y| < 00), and let f: X — Y satisfy the Lipschitz
condition with constant q/ ||A7"||, where ¢ < 1. Set F(z) = Ax + f(z). Then F(X) =Y,
F' s bigective, and :
- ||

7w - ) <

IV.4.2 Estimates of the nonlinear summands in the differential op-
erators for the direct problem

The central point here is to derive of an estimate of the nonlinear part of the operator
in problem (IV.11), (IV.2), (IV.3) in the class C''([0,T], E'), which allows us to apply
theorem 18 in what follows.

Suppose that u(t) € H, z(t) € H (see ( IV.22)) satisfy

Jully <7 llu+zlly <7 (IV.26)

Then

IN

IG(u+2) = GW)lor o) = / (ut s2)=ds
0 C1([0,T),E)
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1
< / 16 (w + 52) | .o A2l ergor ey <
0

< V() Crcror.m |zl m
(see (1V.22),( IV.25)). Thus,

1G(u+z) — G(“)”cl([o,T],E) <I(r) Izl 5 .
where
19(7“) = CH—>Cl([0,T],E)Q9(T)- (IV27>
Note that LUy = Uc1(o.1),5), since L is an isometric isomorphism of H on C'([0,T], E).
Further,

Pryy (G(u+2) = G(u)) = Gu+z) = G(u) <I(r) [|zll4 -

PUcl([o,T],E)(
Then
Pru, (G(u+2) = G(w) <9(r) 2]y - (IV.28)

In this case, in theorem 18 we can set A = L, X = H, Y = LH with unit ball LUy,
b(r) = b(r) and ¥ = G, where

b(r) = max(1 — 9(r),0).

If r € [0, 7.[, then we take b(r) = 1 — 9(r), where 7, is the root of the equation

1—9(r) =0, (IV.29)

and, by theorem 18, we have

T

w(r):/b(t)dt:/(1—19(t))dt:r—/19(t)dt. (IV.30)

0 0

T

But if r € [r,, o0, then we take b(r) = 0 and w(r) = w(r,).
Using theorem 18, we obtain the following theorem.

Theorem 20 Suppose that G satisfies (IV.25) and the assumptions of theorem 17 hold.
Further, suppose that U(r) is from (IV.27), w is from (IV.30), and r, is a root of equa-
tion (IV.29).

Then

Vre[0,r,] VFew(r)LUy FuerUy: Lu(t) —Glu(t)] = F(t).
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IV.4.3 Estimates of the nonlinear summands in operators inverse to
differential operators for the direct problem

It follows from Sec. 1V.3 that
§(v) = L(v) = Gv) = F = n(F) = L7'F = Q(F);
this yields

F=¢n(F) =&L7'F—Q(F)) =F - LQ(F) — G(LT'F — Q(F)).

Then L(Q(F)) — G(L™'F — Q(F)) = 0, i.e.,
LQ(F) =G(LT'F = Q(F)), Q(F)=L"'G(L™'F - Q(F)) = L™'G(n(F)).

Therefore,
Q(F + AF) = Q(F) = LT G(n(F + AF)) — G(n(F))].

Using theorem 20, we find that
IFl Ly < w(r) = lIn(F)l g <, (IV.31)

I1F+ AF|| g <w(r) = |[n(F+AF)|g <,
where w(r) is from (IV.30). Then, from (IV.28) we obtain

Pryy (GO(E + AF)) = Gn(F))) < 9(r) [|2]l 5, (IV.32)
where
z=n(F+ AF) —n(F).
Then
. i, Th.19 1
zllr = lIn(F + AF) =n(F)llg = [§(F+AF) = ¢ (F)lla - < T=90) IAF L
(in the last inequality, we used Hadamard’s theorem).
Hence it follows that inequality (IV.32) takes the form
1
Pa (GOI(F + AF)) = Gl1()) £ 00) - 1= IAF Ly
Suppose that 7’ = w(r). Then r = w=(r'),
1
P, F+AF)—-Q(F)) < ")) - AF
(@ + AF) = QUP)) < 907 (07) - T 1A F

ie.,

Py, (Q(F + AF) = Q(F)) < (") [|AF |y
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where

9w
T 9w ()

o(r") (IV.33)
Under the assumptions of theorem 18, we can set A = L', X = LH, Y = H with the
unit ball LUy, ¥ = @, O(r) = O(r') and b(r) = B(r’), where O(r’) from (IV.33) and
B(r") = max(1—06(r"),0).

If v € [0, 7], then we take
1 =20(w (1))

B(r') =
) = T 5w m)
where 77, is the root of the equation
1—29(w™'(r")) =0, (IV.34)

and, by theorem 18, we have

7,,/

W) = / Bt)ydt =1 — / o(t)dt,

ie.,

W) =1 — / %dt. (IV.35)

But if v’ € [r, 00}, then we take B(r’) = 0 and W (r") = W(r)).

Using theorem 18, we obtain the following theorem.

Theorem 21 Suppose that G satisfies (IV.25) and the assumptions of theorem 17 hold.
Further, suppose that 9(r) is from (IV.27), w is from (IV.30), W (1) is from (IV.35) and
rl is the root of equation (IV.34).

Then
vr' e (0,7 Ywe W)L N (LUy) =W\ Uy 3F er'Upy: L'F—Q(F)=v.

IV.4.4 Estimates of the nonlinear summands in the operators for the
inverse problem

From (IV.18), we obtain

Mw:x=¢—/wwmmwwg/0wwmmw=
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T T T

=1wiﬂpmwwmw+/wamm@—/ﬁma—ymwmmm

0 0 0

or, if take into account the expression for the operator A (see (IV.21)),

Mo =x = (I - A)p+ (1o G)[P(p)] + Ap — BIP(¢)] = Ap + U(p),
where

A is the linear operator from (IV.8), assigning to ¢ € E the solution u(t) of the linear
problem (IV.1)- (IV.3), P is the operator defined in (IV.16), x was defined in (IV.14),
is the operator defined in (IV.23), B is the operator defined in (IV.24), and

Ap = (I —A)p, (IV.36)

U(p) = Ap + (Lo G)[P(p)] = BIP(p)]. (IV.37)

Note that

lellp <7 = [1Fllog = I8l or < WAz pm ™ =

1Pl = lIn(A)lly < w (IA]]7),
(in the last inequality, we have used (IV.31)), i.e.,

lelly <7 = 1Py < w (JAl7),

lo +s2llp <7 = [P(o+ s2) |y < w ' (JA]| 7). (IV.38)
To find an estimate of || P'(¢ + sz)|| (g g). Which we shall need later, note that

P'(p+sz) =0 (Mg +s2) o A= [{(P(p+s2)] o A

by the inverse function theorem.

Further, we have

§'(P(p+s2)) = (L' = G)[P(p+ s2)] = (L = G)[P(¢ + s2)] = L(I = L G")[P(p + 52)].

Therefore,
[€(P(p+s2)] 7 =[(I = L7'G)[P(p +s2)]] T o L7,
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and hence

Pp+s2)=[(I—LG)P(p+s2)]] toL oA (IV.39)

In this case

1

1P+ 52) L cqany < 127 NIAN|[[( - £726) [P(o + 2]

1
1— HL71|’£(LH,H) |G"(P(p + SZ))“c(H,LH)

(by Hadamard’s theorem), and from the equality ||L™!|| ey = 1 we find that

<

<z NIE

' HL(LH,H

Il |
1= 6P + ) mom

Now, to estimate ||G'(P(¢ + $2))|| (s s> We transform (IV.28) into

1P (0 + 52)l gy < (IV.40)

P <G[P(go +sz) + tet] — G[P(¢+ s2)]

) < 9w (JAIP) lell

where e is an arbitrary vector from H, and t # 0. As t — 0, we have

Pri(G'[P(¢ + s2))(e) < 9w (A7) llell -

whence, since e is arbitrary, we obtain

|G [P (o + SZ)]Hﬁ(H,LH) < D(wH([|AllF)), (IvV.41)
and, substituting (IV.41) into (IV.40), we can write

, Al
P(p+ sz < —
| )HL‘,(E,H) 1— 9w (JJA] 7))

(IV.42)

Let R(¢) = Ap 4+ B[P(¢)]. Then

_ / [P(¢+2) = P'(0)z — P(@)], du(t) =

= —B[P(p+z) = P(0)z — P(p)].
Note that P'(0) =7'(0)o A = L' o A and
P'(0)p — P(p) = (L7 o N)p — P(p) = LT'G(P(p)),
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i.e., P(p) = (Lo A)p — L7'G(P(p)), and, in that case, we have
P(p+2) = P(0)z = P(¢) = P(¢+2) — P(p) — (L7 o A)z =

— L G(P(p + 2)) — G(P( / G/(Pli + 52)) P + 52)=ds [IV.43)

In this case,

I1R(p+2) = R(#)|lp = | = B[P(¢ +2) = P(0)(z) = P(p)] ]|z <

<N Bllze)|[P(e+ 2) — P(p) = L™ o Az|ly <

1
< |B||z(a,p) L' /G’(P(cp+sz))P'(ap+ sz)zds <

0 H

1

< 1Bllecp) |l L ewrm,m /G’(P(so+ 52))P'(p + s2)ds| 2 <
0 C'([0,7],E)

< “BHE(H,E)||L_1||E(LH,H)/||G/(P(S0+SZ)>||E(H,LH)||P,(‘P+ 52)||cce,mds||z||e <

; Al 9 (1A 7)
< IBlleqro L e 50,y 1#12 =

I 9w (IA[I 7)) 12l
1= J(w=([[A]] 7))
(in passing to the next-to-last formula, we used the estimates (IV.41) and (IV.42), while

for the last one we use the equality ||L7'||zLmm) = 1, which is valid, because L is an
isometric isomorphism).

= ||Bllzm.E)

e A9 (1AL )
w” T
(= - . (IV.44)
L= J(w ' ([A] 7))
Thus, we have obtained the estimate
[R(e +2) = R(@)ll g < I Blleeamdllzl e (TV.45)

Further,
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/(G[P(so +2)] = GIP(@)) du(t)|| = I1(GIP(p + 2)] = GIP(P)]) z <

E
< W zerqor,e),m) |GLP (@ + 2)] = GIP(@)]llcr o), 5) <

1

< |z o,1,8),E) /(G/[P(SO+ 2)|P'(p+ 2)ds | 2 <
0 CL([0,T],E)
< Wl zero,m,2),8)¢ |1 2] E,
ie.,
HGIP(e + )] - GIPEDIs < Wleesomyerndliele an

Then it follows from (IV.45) and (IV.46) that

Ulp+2) = ()| < N0 @)Plp+2)] - Lo OPE)Ip+

FHIR(p +2) = (@)l p < (IBlleeae) + e qor.e.m)Cl=]e-

Therefore, P;‘UE(\if(go +2) = U(p)) <O(F) ||zl , where

O(7) = fo—l

(1Bl cee.ey + 1Tl 2ccr 0,11, 2).2))€-

In thiAs case, in the statement of theorem 18, we can set A= 21, X =F,Y = F with unit
ball AUg, b(r) = B(7), ¥ = ¥, O(r) = O(F), where A is from (IV.36), ¥ is from (IV.37),
and B(F) = max [1 — &), 0].

~

If 7 € [0, 7], then we take B(7) = 1 — O(F), where 7, is the root of the equation

A_IH (1Bl e,z + 1l 2t o, B).2)) /C(t)dt‘
0

For the case in which 7 € [F,, 00|, we take B(7) = 0 and W (7) = W (7).
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Theorem 22 Suppose that G satisfies (IV.25), i.e.,
IG' (W)l ey < O(r)  for ullg <

where ¥ : [0,00[— [0,00[ — is a monotone nondecreasing function and the assumptions
of theorem 17 are satisfied.

Further, suppose that (for convenience, we present all the formulas obtained above)
I(r) = OH—>01([O,T},E)Q§(T),
w(r) =1 — / (),
0

¢ = A9 (w= (A 7))
L=9(w (A7)

W (F) = /b(t)dt =7 —

0

A_lu (HBHE(H,E) + ||l||£(01([o,T],E),E)) /C(t)dt
0
and T, is the root of the equation

1— Hffl (1Bl e,y + 1l 2ecro,m,E),2))C = 0.

Then .
Vi€ (0,7 YxeW(RAUgy 3lpeilp: M(p) = x.

Thus, the operator equation (IV.19) is uniquely solvable and, the controllability prob-
lem (IV.11), (IV.2), (IV.3) equivalent to it also has unique solution in the neighborhood
specified above.
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he controllability of moment problem for the linear heat equation with an integral
T redetermination

/u(x, t)w(x)dx = x(t)

Q

was studied in [27]. However, actual heat diffusion processes cannot be described by
a linear equation, and hence we introduce a very simple nonlinear term for which the
problem remains uniquely solvable. Needless to say, actual diffusion processes can be
described by more complicated nonlinearities, and so the present work [41] can be treated
as one of the first steps in this direction.

The chapter consists of two sections:

e In the first section, as in the chapter IV we prove the local solvability of the inverse
problem, which can be treated as a controllability problem of moment, for the
quasilinear heat equation with integral overdetermination. A similar result was
obtained in [27] for the linear problem. The method of the proof follows the ideas
of the chapter IV.

e In the second section, we use twice the refined inverse function theorem (represented
in the most general form in [48]) to obtain sufficient conditions for the unique
solvability of the original inverse problem in terms of the size of the neighborhood
in which the function occurring in the overdetermination condition can be chosen.
This method was earlier applied in [2] to the inverse problem for the quasilinear
heat equation with final overdetermination.

V.1 The local existence of the controllability problem for
the quasilinear heat equation with integral overde-
termination

V.1.1 Preliminaries. Notation

Throughout the following, 2 C R"™ is a bounded connected domain with boundary
NeC? (n>2),Qr = Qx(0,T), where T > 0, and S = 9Q x [0,T]. Let us recall
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the results of [27]. Consider the inverse problem

— Au = F(x,t), (V.1)
U|t:0 = O, (V2)
ulg, =0, (V.3)
/ u(w, w(@)dz = x(b), (V.4)

Q

where F(z,t) = h(z,t)f(t), h, w, and x are given functions, and u and f are the unknown
functions. The problem is to find a control f(¢) such that the integral of the product of
the solution by a given function depending only on the spatial variables is a prescribed
function of time. This may correspond to a continuous measurement of some averaged
characteristic of the solution (say, mean temperature over some part of €2).

Definition 4 A generalized solution of the inverse problem (V.1)-(V.4) is a pair (u, f),
uw e Wi (Qr), f € Ly(0,T), of functions such that equation (V.1) holds almost every-
where in Qr, the traces of u(x,t) satisfy (V.2), (V.3) and relation (V.4) is valid almost
everywhere on [0,T].

Thus the controllability problem (V.1)-(V.4) is essentially the problem of varying the
control f € Ly(0,7T) so as to pick up a solution u(z,t) = u(z,t; f) of the direct prob-
lem (V.1)-(V.3) satisfying condition (V.4), commonly referred to as an integral overde-

termination condition in the theory of inverse problems. It was shown in [27, p.46] that
problem (V.1)-(V.4) is well posed.

In the space L(0,T'), we introduce the equivalent norm

T
112, o = / exp(—Bt) |£ (1) dt. (V.5)
0

where the number § > 0 is defined in [27]. (Formula (V.5) is used only in the proof of
the unique solvability theorem [27, p.46] for problem (V.1)-(V.4) in Subsections V.1.4 and
V.2.4; in all other cases, Lo(0,T) is equipped with the standard norm.)

Remark 25 Throughout the following, we use the notation |lull,q = |ully,q,

Wherever our calculations use the Holder inequality, the Cauchy-Schwarz-Bunyakovskii
inequality, the Minkowski inequality, the Fubini theorem, or the embedding theorem,
related places are marked by the symbols “HI”, “CSBI”, “MI”, “F'T”, and “ET”. We set
©(t) = (h,w)s0f and introduce an operator A : Ly(0,7) — L2(0,7"), by the formula

(Ap)(t) = —/u(x,t)Aw(x)dx, (V.6)

Q

where ¢(t) € Ly(0,7) and u(z,t) is the solution of the linear problem (V.1)-(V.4). The
operator A map ¢ in the following way:

p— f—u— Ap,
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where the solution of inverse problem (V.1)-(V.4) is found by the given f, and f is found
by the formula

It was shown in [27, p.47] that ||A|| < 1, if Ly(0,7T) is equipped with the norm (V.5).

We set W;S(QT) = W2 (Qr)N W2170(QT) with the norm of W5 (Qr), where W2170(QT) is
the subspace of W3 (Q7), in which smooth functions vanishing near Sz form a dense set
[31].

Further, we set

L=0/ot—A,,
H={ve Wi’ol(QT)]EIF € Ly(Qr) : v s a solution of problem (V.1)-(V.3) }

with the norm [jv[|; = [|Lv|| ., (g, - Then
L:H — Ly(Qr) is an isometric isomorphism of H on Ly(Qr) (V.7)

by virtue of the a priori estimate in [31, p.189].

Note that H = {v € Wi’ol(QT)]vh:g = 0,v|g, =0}, and ||-]| ; is equivalent to \|-HW22,01(QT).

(This implies that (H,|-||;;) is complete, the embedding H C W33 (Qr) is continuous,
and hence H C W3 (Qr)).

As in chapter IV we use in what follows the inverse function theorem (IFT) in the form
of theorem 16.

We also use the estimate [18, p.177]
Vu(z) €W} (Q) ) [D%ul| o < Cih® > Dl 0 + Coh g (V.8)
|Bl=r |or|=t

where () is an arbitrary domain in the space R", ), is the intersection of () with an
arbitrary m-dimensional plane E™ C R", h is an arbitrary positive number, 1 < p < ¢,
0<r<l!l,0<na—p(l—r)<m(m,r and - are nonnegative integers) 0 = | —r — n/p+
m/q > 0.

V.1.2 Statement of the Main Result

Let n >2,and let ® : R — R be a continuously differentiable function on R such that
|@(u)| < Oy [ul™ + Ca Ju|™ (V.9)

10" (u)| < ay O Ju)™ ™ 4 apCh ul ™, (V.10)
where 1 < a3 <as < (n+1)/(n—1).

We set W5 (0,T) = {x € W5(0,7)|x(0) = 0} with the norm -z 0.1
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Theorem 23 Letw € WZ(Q)N W3 (Q), x € JW3(0,T). Further, let h(x,t) be a function

such that h € Lo(Qr), [[h(-,t)[|yq is bounded on [0,T], and ‘f h(x,t)w(x)dx’ >0 >0 for
Q

almost all t € [0,T]. Then the problem

ur — Au — ®(u) = F(x,t), (V.11)
uli=o = 0, (V.12)
U|ST = O, (Vl?))

with the overdetermination condition (V.4) and with F(x,t) = h(xz,t)f(t) has a unique
solution in a neighborhood of zero in H x Lo(0,T) for x € W3 (0,T) with sufficiently
small norm.

Remark 26 7o prove the theorem, it suffices to verify the assumptions of the inverse
function theorem. The key points are the verification of the strict differentiability of
the corresponding mappings and the choice of function spaces related to problem (V.11)-
(V.13), (V.4). To this end, the conditions on ® (namely, 1 < ay < as) have been chosen
so as to ensure that ' (0) = 0. We carry out the proof of theorem 23 for the case in
which Cy =0 in (V.9) and (V.10). (Accordingly, we write a instead of oy to simplify the
notation.) If we admit inequalities (V.9) and (V.10) with Cy # 0, then all estimates given
below obviously remain valid; at the same time, the case Cy # 0 covers a wider class of
nonlinearities, since it weakens constraints imposed on the behavior of ® at infinity.

V.1.3 Strict Differentiability of the Operator
G Wy (Qr) = Lo(0,T), [G(w)](t) = [ P(u(z,t))w(w)dz
Q

Proposition 6 The operator G : Wg’l(QT) — Ly(0,7),

[G(u)](t) = /@(u(m,t))w(x)dx (V.14)

Q

is strictly differentiable on W' (Qr).
Proof. First, we show that G maps W3"'(Qr) into L, (0, T).

Let u(z,t) € W} (Qr) and w(z) € WE(Q)N W, (). It follows from the embedding
theorem that W3 (Qr) is continuously embedded in L;(Q7), where ¢ = 2(n+1)/(n—1), for

n > 2, and that WZ(Q)N W (Q) is continuously embedded in L,(Q2), where s = 2n/(n—4)
forn>51<s<ooforn=4and 1 <s<oofor2<n<4.
2

T
Since ||[G(u)](t)||i2(07T) < of dt, by (V.9) and (V.14), we should

T
estimate the integral [
0

f{C’l lu(z, )" |w(z)| da

2

dt.

S{IU(?L’J)I“ jw(z)| dz

First, consider the case n = 4.
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Note that u(z,-) € Lz(£2), where p = 2n/(n—1) = 8/3, for each ¢ fixed by the embedding
theorem. Let av < 8/3; then there exists an € > 0 such that @ < 8/3 — e =g¢.

We set k = g/a and k' = q/(q¢ — a) and note that k > 1, 1 <k <ooand k™' + k1 =1

We use the theorem in [18, p. 177]. In our case,r = 0,1 =1, n =5 m =4, p = 2,
q=8/3—€60=1-0-5/244/(8/3 —¢€) >0 and h = 1. Consequently,

2

/\u x)| dz dt<
Q

T

/ /\ua:t aq/adx O‘/q /\w |q/q a)dm)q ”)/q] dt =

0

T

V.8)

Hw||q/q o) / /]u x, t)|? dr)?/9dt <
0
T

Ot —

2 a o
< 1l o | Ol o)t < .
0

The choice of € is affected by the conditions o < 8/3 —e¢ =g and p=2 < 8/3 — € = g,
i.e., max(a,2) < 8/3 —e=gq.

Now let us consider the case n > 5.

Then k =2n/(n —4) and k" = 2n/(n + 4). We use the estimate (V.8). In our case,
r=0, =1, n=n+1, m=n, p=2 q=2na/(n+4)>2=np,

0=1-0—(n+1)/2n/2na/(n+4))=—-(n—-1)/2+ (n+4)/2a >0 and h=1.
From the last two inequalities, we obtain (n+4)/n < o < (n+4)/(n —1). Then

2

T
//|uxt x)| dz dt<
0

T

< / [( / Ju(a, 1)1/ Y qa) /2 / jw(z) Y d) =22 g =

0 Q Q
T

V.8)
o / O DL

0
T

< ||W||2n/n 4) Q/Cza |u||W21(QT))2adt < 0.
0
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[s it possible to take o < (n +4)/n? It turns out that the answer is “yes”. It suffices to
use the following well-known fact.

Assertion 1 Let u(A) < oo and 1 <3 <y <oco. Then [lulz , < C [ull,, 4-

Suppose that o < (n +4)/n, i.e., 2na/(n +4) < 2. Then there exists an 3& > a such
that

n+4)/n < & < (n+4)/(n—1).
By analogy with the preceding, we have
2

//|umt (x)| dz dt<

T (nid) &
< / / e, ) g | / (@) gy it =
0 Q Q
: zan
2 2na/(n+4 a<a
ey O e T I
0
T 2&2(7}4»4)
. (V.8)
< ||W||2n/(n 4) Q/ /|u ,t)| 2/ ) o C*dt <
0
T
~ ~ 2c
< HWHQn/(n 4) Q/C2a02a <||uHW21(QT)> dt < oo.
0

Therefore, G maps W5 (Qr) into Ly(0,T) for n >4 and 1 < a < (n+4)/(n — 1).
The case n = 3 can be treated in a similar way.

Here
r=0, =1, n=4, m=3, p=2, g=a>p=2,

0=1-0-4/24+3/a=—-1+3/a>0 and h=1.
It follows from the last two inequalities that 2 < a < 3, i.e., 1 < a < 3, and then

2

T
//|uxt (x)|dx dt<
0

T 2 T =

2 « 2 ~2a a (V:8)
<Vl [ | [ lutelde | de< ol [ €2 | [luteoras| a s

0 Q 0 Q
T

2c
2 2

0
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If n = 2, then in a similar way, we obtain 2 < a <4 and 1 < a < 4.

We have thereby shown that G(u) € Ly(0, 7).

Let us proceed to the proof of the strict differentiability of the operator G(u).
Let u, uy, iy € WHQr), 4 # 0, up — v and 4y — 0 in WH(Qr) as k — oo.

We set

[R(ug, U)] (t) = / [@(ug(x,t) + g (x, 1)) — Plug(z,t)) — D' (u(z, t))ug(x, t)] w(x)dz.
Q

Let us show that R(uy,dy)/ ||7:‘k||w21(QT) — 0 in Ly(0,7"), which implies that

— 0
L(0,T)

| R @) Va2 g
since ||ak‘||W21(QT) < ||ﬂk||W§’1(QT)‘

Passing to a subsequence, we can assume that u, — u, up — 0, upz — u; and g, — 0
almost everywhere and there exists a 2 € Lo 41)/(n—1)(@7), such that [48, p. 162

|ug| + x| <z almost everywhere on Qr. (V.15)

Then w € WZ(Q) C L,(Q) for n > 4 and Cy = 0, where ¢ = 2n/(n — 4), and

IR (w, we)] (8)]” dt =

St~

2

/ (@ (up(z,t) + (2, ) — P(ug(x,t) — @' (u(x, b))y (z, t)| w(z)de| dt =

2

/ / (g (1) + Ot (i, £)) — D' (u(z, )] (v, () dOd| dt <

0

St~ O\'ﬂ

)

2(n+4)
2n

2n
1 (n+4)

/ / /|[<I>’(uk(x7t) O (2, 1)) — D' (e, )] iz, 8) dO S de

IN
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2(n—4)
2n

(/ jw(z 2n/(n Y dx = ||w||§n/(n—4),Q.
2n (e
T 1 (n+4)
HI
. O (up(z,t) + 0l (x, 1)) — D (u(z, t))] t(x, t)] - 1dO dx dt <
|[
0 Q
T 1
_2n
< Jlwlzn sy Q/ / (/[@’(uk(x,t) + Oty (z, 1)) — ' (u(x, t))] g (z, )| +0 db-
0 0
(n—1) ()
| =y
/12n/(n4)d9 dx dt = HW“;n/(n—zL),Q‘
0
T 1 e
/ / / [ (g, £) + B (2, 1)) — & (ulz, )] (e, )2/ dgdz & e T
0 0
= Hw||2n/(n—4),ﬂ :
T 1 HTH
HI
/ {/ / 1@ (ur (. £) + Ot (2, 1)) — & (e, )] g (a, 1)/ dasde} dt <
0 0 Q
< Hngn/ (n—4),0
n(n+4)

n(ntd)
9 (g (1) + Oitg (2, ) — @/(U(%t))]ﬁk(x,t)|2n(n+4)/n(”+4)da:d&} .

1 4(n+4)/n(n+4)
1/ / 10/ g At < ll2, iy - (D"
0

///’ (ug(z,t) + Qug(z,t)) — cI)’(u(x,t))”Q (e (2, 1)) 2dzdbdt = Hngn/(n%)’Q.
Q)4/71// [® (ug(x,t) + Oty (z,t)) — q)’(u(x,t))]f (a(z, 1)) dadtdd Ig

0 Qr
1 n~2‘>1
< Nl gy - (VY™ / / @ (up, (2, t) + Ot (2, 1)) — D (u(, £)][" dxdt) :

0
(n—1)/(n+1)

/ iy (2, £) 2D/ Gt o =

T
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4/n

2
= ||W||2n/(n_4),sz () i (, t)“z n+1)/(n—1),Qr

2
1 nt+1

. / / [ (we(, £) + Oiin(x, 1)) — & (u(, ))][" dwdt | db.

0
Note that [ (ug(z,t) + Oty (x, 1)) — D (u(x, t)]|"" — 0 almost everywhere in Q7 and
w1 (V19)
(@ (uk(, 1) + Ot (2, 1)) — ' (u(z, )] <
< (2C1az27)" < (201a)" T (2 + 12D/ 0D € Ly (Qr) (V.16)

(since z € Lo(nt1)/(n—1)(Q7)) uniformly with respect to 6 € [0, 1].

Remark 27 The final estimate in (V.16) is intended for the subsequent application of
the Lebesgue theorem and hence imposes the constraint « < (n+1)/(n—1) on a.

— 0

By applying the Lebesgue theorem twice, we obtain HR(uk, )/ ||ﬁk||W21(QT) o)
La(0,T
as k — oo.

For n = 2 and n = 3, we have

fl uk,uk >|2dt:

2

of hf (ug(z, t) + ug(z,t)) — P(ug(x,t)) — O (u(z, t))dg(x, t)| w(zr)dx| dt EST
< lwliee J g];ofl (un(z, £) + Ol (0, 1)) — O (u(z, £))] i (v, £)dOde| dt "<

T 1 2 CSBI
< |wllq - #() [ [ (f| [ (uk(x, £) + Oitg (w, 1)) — @' (ulx, 1))] iz, 1) de) dedt <
0 Q 0
T 1
< lwlifqy - Q) [ [ [ 19 (ur(ee, £) + Oie (e, 1) — & (ulz, 1)) [ (@, 1)) dOdadt =
0QO0
1
— kugc(ﬁ be | (g (1) + Otig (2, 1)) — @ (u(z, 1)) (g, 1)) 2dadtdp.

Starting from this place, the preceding argument applies.

Finally, consider the case n = 4. We have

fl uk,uk )|2dt2

2

dt =

I
b%

O (ug(z,t) + gz, t)) — Pug(z,t)) — O (u(z, t)ug(x, t))| w(x)de

2

dt

FT

I
D,

j (ug(z,t) + Oug(z,t)) — D' (u(x, t))] ux(z, t)dbw(x)dx
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zof Ofl 19, 0) 0, 1)) = @ (1) i () “a <

S‘f Ofl (g{ [/ (up (e, ) + B, €)) — ' (ul, )] - an(e, £)]]7 dw)%

- (g fw(a) e dx) e lllg/g-ae

| (e 00,00 - 0t 019 a) 1] a2

T 1 2a/q
< 1l gy | 10 0nC0.) 4 Bin,0) = @'l )] a0 dot |

L HI
. (f 1q/(q—a)d9> ‘ dt <
0

) T
< ||W||q/(q_a),9bf

{jg{ (D" (ug (2, t) + Oty (2, 8)) — @' (u(,1))| - |ak(m,t)|]2dmd0} :

20—q 2a
2a q

1
: ( [/ 12a/<2a—q>dxd9> dt =
0 Q

1
gy [ [ 10 1) + g, £)) — W e )] - Vi, )2 vl
0 Qr

The subsequent considerations are similar to those given above. Therefore, G is a strictly
differentiable operator. The proof of the proposition is complete.

Proposition 7 The mapping
©: Wy (Qr) — La(Qr), [P(w))(2,t) = ®(u(w,1)) (V.17)
18 strictly differentiable.
Proof. Recall that we carry out the proof for Cy = 0.
We set [R(ug, Uy)] (x,t) = ®(ug(x,t) + x(z,t)) — P(ug(x,t)) — O (u(z, t))dg(x,t).
Then

ff| (up, )] (z, £)|? dadt =

I

({|CI> wp(z,t) + g (2, 1)) — B(ug(z, 1)) — O (u(z, )iy (x,t)|* dedt =

(f [ (g, £)) + O (2, 1)) — @ (u(w, £))] g, ) - 1de) dedt <

I
Dy
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(gl“ (ug(,t) 4 Otig (2, 1)) — @ (u(z, 1))]? (G (z, 1)) 2d9) <f 12d0) dxdt =

IN
Q‘O\

T

=/ Of1 D (ug (2, ) + Oty (0, 1)) — O (u(x, )] (U (z, 1)) dOdx dt 2

T

O

Qf [ (w0, £) + Bt (0, 1)) — D' (u(ee, 6))]2 (i, £))? daedtdf <

I
o .

o%,i

<f | (ug(z, ) + Otig(, 1)) — ' (u(z, )| dmdt) o

Qr

n—1

n+l
'(f i ()| 2D/ Y d:cdt) 9 =

T
1

n+1
= Nl (2, ) 30041 n-1).01 g“ <Qf | (g, (2, t) 4 Oty (2, 1)) — ' (u(x, )" dxdt) do.

By a similar argument, we arrive at the estimate (V.16). By using the Lebesgue theorem

— 0 as k — 0.

twice, we obtainHR(uk,ﬁk)/ ||’&k||W21(QT)

Remark 28 The exponent 2(n + 1)/(n — 1) determined by the embedding theorem was
artificially introduced in the proof with the use of the Hdlder inequality. Therefore, we
obtain the following constraint for a : a < (n+1)/(n — 1) for n > 2. Note that, for the
same «, the operator G defined in subsection V.1.8 is strictly differentiable.

V.1.4 End of Proof of the Main Result

It follows from equation (V.11) that

(uy — Au — d(u), w)2,Q = (h,w)Q’Q f (V.18)
for almost all ¢ € [0, T7.

We set
o(t) = (h,w)yq f-

By virtue of the assumptions of theorem 23, f can be uniquely determined on the basis of
@. Let us assume that the solution of the problem exists and derive an operator equation.

Since (u,w),, € W5(0,T), we have

(ut,u))lQ =d/dt(u,w)a0 = X'(t).

ol
Since u € Wi’ol(QT) and w € WZ(Q)N W, (), it follows that

(_Auaw)Q,Q - (uv AW)Q,Q )
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for t € [0,77].
Then relation (V.18) implies that

X (t) — /u(x,t)Aw(x)dx — /@(u(m,t))w(x)dx = p(t).

Q Q

We set W(t) = x/(t), ¥ € Ly(0,7"). Then

U(t) = /[@(u)](m,t)w(as)da: + /u(x,t)Aw(x)d:z: + (). (V.19)

Q Q

Since L : H — Lo(Q7) is an isomorphism (see (V.7)), ® : W (Qr) — Lo(Qr) is strictly
Fréechet differentiable, and ®’(0) = 0, it follows from the inverse function theorem that
the mapping

£ ur— uy — Au — P(u)
is a local homeomorphism of a neighborhood U’ of zero in H onto a neighborhood V' of

zero in Ly(Qr).

Let n = ¢! be the inverse of this local homeomorphism, i.e., n : F —— u, where u is
a solution of the equation, and 7 is a strictly differentiable mapping (in H and hence in
W5 (Qr)) in a neighborhood of zero in Ly(Qr). We have

F(ZE, t) = h(xa t)f(t) = h(ZE, t)@(t)/(hﬂ"))?ﬂ‘

Let
P(p) =nl(h(z,t)p(t)/(h,w)20)]. (V.20)

Since the mapping
A p(t) — h(z, t)p(t)/(h,w)aq, A: Ly(0,T) — La(Qr) (V.21)

is linear and continuous, it follows that P (treated as a mapping into W, (Qr)) is strictly
Fréchet differentiable in a neighborhood of zero in Ly(0,7). Further, we seek a solution
of the nonlinear problem (V.11)-(V.13), (V.4) in the form v = P(p), where u is a
solution of the nonlinear problem (V.11)-(V.13), (V.4) with right-hand side F(z,t) =
h(z,t)o(t)/(h,w)2.q. We introduce the mapping

M : Ly(0,T) — Ly(0,T), (V.22)
M:p— < p(t)+ /@([P(gp)](:v,t))w(x)dx+/[P((p)](:p,t)Aw(x)dx ; (V.23)
9) Q

then an argument similar to that in [27] shows that problem (V.11)-(V.13), (V.4) is
equivalent to the operator equation

M(p) = V.
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Let us show that M is strictly Fréchet differentiable in a neighborhood of zero in Ly (0, 7))
and M'(0) =1 — A (see (V.6)).

Note that the mapping

o / B([P(p)](x, 1)) (x)de

Q

is strictly Fréchet differentiable in a neighborhood of zero by the composite function
theorem, and its derivative vanishes at zero, since ®'(0) = 0. Further, the mapping

pr— [ [P(p)](z, 1) Aw(x)dz
/

is strictly differentiable in a neighborhood of zero, since

- Q/U(x,t)Aw(x)dx

is a linear continuous operator from Lo(Qr) to L2(0,7) and so much the more from

W3 (Qr) to Ly(0,T). Moreover (see (V.6) and [27, p.47]),

/P'(O)gpAw(x)dw = —Ap. (V.24)
Q

Consequently, M is strictly differentiable in a neighborhood of zero in Ly(0,7), and
M'(0) = I — A is the operator of the linear problem.

Since || A]| < 1 [27, p.47], it follows that (M’'(0))~! exists and
[ ©O) < 1/ —lAlD)-

By the inverse function theorem, there exist open neighborhoods U and V of zero in
L»(0,T) such that M is a C*-diffeomorphism of U onto V.

We set

V={xe Wy 0,1 eV}.

Then V is an open neighborhood of zero in W3 (0,T), and for each x € V, there exists a

/

unique ¢ € U such that M(p) = x'.

We have thereby proved the local unique solvability of an operator equation equivalent to
problem (V.11)-(V.13), (V.4), which completes the proof of the theorem.
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V.2 The precision of the local solvability of the inverse
problem for the nonlinear heat equation with integral
overdetermination

V.2.1 Preliminaries. Notation

We shall use the following notation:
Uy is the open unit ball in H,

where H is the space defined in subsection V.1.1 such that

H < Wy (Qr); (V.25)
Cx_y is the constant of the embedding of X in Y;
A:Ly(0,T) — LH, A:o(t) — @(t)h(z,t)/(h,w)aqa (see (V.21));
Al = “AHL(LQ(O,T),LH);
L(X,Y) is the Banach algebra of linear continuous operators from X to Y.

We consider the inverse problem (V.11)-(V.13), (V.4) under the assumptions of subsec-
tion V.1.2. As in chapiter IV (section IV.4.1) we use in what follows a result from [49]
(see also [48, p.33]). We use mainly the theorems 18 and 19.

V.2.2 Estimates of Nonlinear Terms in the Differential Operators for
the Direct Problem

Here the key point is the derivation of an estimate for the nonlinear part of the operator
in problem (V.11)-(V.13), (V.4) in the class Ly(Qr), which enables us to use theorem 18.
Let u(z,t) € H and z(x,t) € H (see (V.25)) satisfy the condition

Jully <7 llutzlly <7 (V.26)

To estimate

[0+ 2) — D)2, o, = / B+ 2) — D(u)|? dudt,
Qr

we note that

H C W3(Qr) C Logi1)/(n—1)(Qr)
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by the embedding theorem. Then

[@(u+ 2) — D)2, 0, = / D+ 2) — B(u)|? dedt —

1

CSBI
= /[/ ' (u + s2)zds]*dwdt <

(V.10)
// (u + s2)]22%dsdxdt FT//@’u+sz [22dzdtds <

0 Qr

ar—1 as—192 |12 M1
< [a1CY |u + sz + aCy|u + sz|™ 7] 2| dedtds <
0 Qr

(

1
< 9 //‘alCl ]u+sz\a1_1|z\|2dxdtds +
0 Qr

NI

1y 2
2

1
+ // | Co |u + sz|* 7 |z|‘2 dxdtds
L0 Qr

Let us estimate the first term:

2

/ a1 —1 2 HI
//‘alCl lu+ sz 2] dadtds | <

0 Qr
n—1 L
1 n+1 nt1 2
< /a%Cf /\u—l—szl(all)'z(wlw dxdt /\ |20/ ot =
0 T
1 2(a1—1)/("+1)(al—1)
= a;C} / /|u+sz|(n+l)(a11) dxdt ds-

0

1
n—1 2(n+1)q 2

2(n+1) n+l n-—1

/|Z|2(n+1)/(n—1) dedt _

N[

1 ET
=ab /H“+82” e r 48| 12l mon0r <
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2

1
< o C 05} HVas| © e
= MY H— L ) 0y 1) (@) lu+ szl 5 H Loy nen(@r) 12l <

0
ap—1 ap—1
s -G CHl_)L(n-Q—l)(al—l)(QT) Ol Lagnynen@n) T 2l
The second term can be estimated in a similar way:
1 2
// | o Ch |u+ s2[**7" ]z||2 dedtds| <
0 Qr
as—1 ag—1
S Qe C2 . CH:L(TL-H)(OQ—I)(QT) ' CH_’L2(n+1)/(n71)(QT) T HZHH
Therefore,
[P(u+2) = D)l L, 0, < Inlr) 2],
where
a;—1 a;—1
7.971(70) = g Cl . CHL)L(H+1>(Q171)(QT) . CH*)LQ(TH-U/(TL—I)(QT) .r 1 _I_
ags—1 az—1
taz: Gy CHQ_}L(n-H)(C«Q—l)(QT) “CHo Ly a1y @) T

Here and in what follows, the subscript n indicates the dimension of €.

Note that LUy = Ur,(q,), since L is an isometric isomorphism of H onto Ly(Qr).

Next,

Prug (®(u+ 2) = ®(u)) = Py, g, (Plu+2) = 2(u) < In(r) [[2]l; -
Then
Proy (®(u+z) = (u)) < In(r) |2l (V.27)
where
On(r) = apr® ! + b,r* (V.28)
a1 —1
n =01 O Cplr s ayon(@n) O Lo @) (V.29)
o ag—1
bn =0z Cy- CHiL(Ml)(ag—n(QT) “CHo Ly jn1)(@r)- (V.30)

In this case, in theorem 18, one can set A = L, X = H, Y = LH with the unit ball LUy,
b(r) = b,(r) and ¥ = &, where

bn(r) = max(1 — 9, (r),0) = max(1 — (a,r** ' + b,r*271),0).

If r € [0, 7.], then we set
bo(r) =1 — (a7t 4+ br 1),
where r, is the root of the equation

1 — (apr® ™t +b,r*1) = 0. (V.31)
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Then, by theorem 18, we have

T s

wn(r) = /b(t)dt = /(1 — (a4 b)) dt = 1 —

0 0

anpr®t  b,r*?

(V.32)

(651 (%)

If 7 € [r., 00], then we set b, (r) = 0 and w,(r) = w,(r.).
By using theorem 18, we obtain the following assertion.

Theorem 24 Letn > 2, let
l<ap<as<(n+1)/(n—1),

and let the assumptions of theorem 23 be valid.

Further, let a,, b,, and w, be given by (V.29), (V.30), and (V.32), respectively, and let
T« be the root of equation (V.31).

Then for all v € [0,r.[ and F € w,(r)LUg there exists a unique solution u € rUg of the
equation
Lu — ®(u) = F(x,t),

where F'(x,t) is the right-hand side of equation (V.11).

V.2.3 Estimates of Nonlinear Terms in the Inverses of the Differen-
tial Operators of the Direct Problem

It follows from the results of subsection V.1.4 that

Ew) = L(v) — d(v) = F = y(F) = L'F — Q(F),
which implies that

F=¢mF) =¢L7F=Q(F) =F - LQ(F)) — ®(L™'F = Q(F)).

Then
L(Q(F)) = ®(L™'F = Q(F)) =0,
- LQ(F)) = ®(L™'F - Q(F)),
Q(F) = LT'®(L™'F — Q(F)) = L™ ®(n(F)).
Consequently,

Q(F + AF) = Q(F) = L7 [@(n(F + AF)) — ®(n(F))].

By theorem 24, we obtain

EW g < wa(r) = [In(E)]l g <7, (V.33)
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1E+ AF|| g <wa(r) = [In(F + AF)|[ g <,
where w,(r) is given by (V.32). Then from (V.27), we have

Pryy (@(n(F + AF)) = (n(F))) < Iu(r) [|2]l 4, (V.34)

where z = n(F + AF) — n(F).

Then
1 1 Hadamard'sT 1
2l = [n(F+AF)=n(E)|[a = 1§ (F+AF) = (F)|lu - < T=0.0) IAF L
Therefore, relation (V.34) acquires the form
1
Prug (®((F + AF)) = ®(n(F))) < In(r) - T= 0.0 IAF] Ly

Let v’ = w,(r). Then r = w, (1),

-1/, 1

Py (@UF + AF) = QUF) < 0 (07 1= 1AF L
ie.,
Fyy (Q(F + AF) = Q(F)) < Ou(r) |AF | 1y,
where
O (wy ' (1)) i (wy, ()17 o+ by (wy, ()27

©,(r")

T a0 (7)) 1= ag(w () = by (7))o (V.35)

n n

since it follows from (V.28) that

U (wy, (1)) = @ (wy, (7)™ 71+ ba (1w, (1))

In theorem 18, one can set A = L™, X = LH, Y = H with the unit ball LUy, ¥ = Q,
O(r) = 0,(r") and b(r) = B,(r"),where O,,(r') from (V.35) and B, (r") = max(1 — ©,(r),0).

If v € [0, r]], then we set

1= 2 ) b ()]
) S T )T = b )

where 7/ is the root of the equation

1= 2w () 4 by ()] = 0. (V.30)

Then by theorem 18, we have

W, (r') = / B,(t)dt =1’ — / O,(t)dt,
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ie.,

/

e el ) b )
W (r') /1—an(w L))ot — by (w L (t ))a2_1dt. (V.37)

If v € [r, o0], then we set B, (r") = 0 and W,,(r") = W,,(r}).
By theorem 18, we obtain the following assertion.

Theorem 25 Letn > 2, let
l<a;<a<(n+1)/(n—1),

and let the assumptions of theorem 23 be valid.

Further, let a,, b,, w,, and W,(r") be given by (V.29), (V.80), (V.32), and (V.37),
respectively, and let 1’ be the root of equation (V.36).

Then for any ' € [0,7.] and v € W,(r') L™ (LUy) = W, (r')Uy there erists a unique
F € r'Upy such that L™'F — Q(F) =

V.2.4 Estimates of Nonlinear Terms in the Operators of the Inverse
Problem

It follows from (V.23) that

= 1)) + [ (POl )bu()ds + [ (P e D)l

Q Q

aﬂm@—memwmmwm

or, with regard to (V.24),

M(p) =W =(I—A)p+G[P(p)] + Ap + B[P(p)] = Ap + ¥(yp),
where B : W3 (Qr) — Ly(0,T) and

Bivi /v(a:,t)Aw(x)da:,

Q

here v is the solution of the nonlinear problem (V.11)-(V.13), (V.4), A is the linear
operator occurring in (V.6), which takes each ¢(t) € L9(0,7") to the solution u(x,t) of
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the linear problem (V.1)-(V.4) with a = b = g = 0, G is given by (V.14), P is given
by (V.20), and

Ap = (I — A)p, (V.38)
U(p) = Ap + G[P(p)] + B[P(p)]. (V.39)
Note that
1l oy <7 = [1Fll Ly = 1A L < Al 2o0m).0m) T =
o
= [P0z = In(Ap)lly < w, (A7),
ie.,

el Lyory < 7= 1Pl < wy (A7),

le + s2ll, 00y < 7 = I1P(0 + 52) |y < wy (A7) (V.40)

To derive an estimate for |[P'(¢ + 52)|| z(1,(0.7).m)> Which will be used in what follows, we

note that

P'(p+52) =11 (Alp +52)) o A "= [¢/(P(p +52))] Lo Al

Further, we have
' (P(p+s2)) = (L' = ¥)[P(p +s2)] = (L — ¥)[P(p + 52)] = L(I — L' @)[P(p + 52)].
Consequently,

[€'(P(p+s2)] 7" =[(I = L) [P(p+52)] o L7,

and therefore,

Po+s2)=[I—-L'®)P(p+s2)]] oL oA (V.41)
Here
/ —1 —1/ —1|| 119
1P+ 52) L cqaaomnan < 2 AN [(T = L72@) [P(e +s2)] || <
1
< || L7 1Al - )
1= L= [[L7HN®" (P + 2)) | o,y
and from the inequality ||L7!|| = 1, we obtain

[A]
1P (¢ + Sz)“ﬁ(LQ(O,T),H) < (V.42)

— 1= [19(P(e + 52 ooy
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To estimate ||®'(P(¢ + $2))|| ¢ (s, 1.1y, We now use (V.27) in the form

t

where e is an arbitrary vector in H and ¢ # 0.

We have

. (<I>[P(90 +52) +te] — P[Py + 32”) < D (wi (A7) llell

Pry ('[P (¢ + s2)](e)) < Fn(w, (A7) llell

as t — 0, which implies that

12 TP (e + 52)]l 2gar,Lam) < Py, ([AII 7)), (V.43)
since e is arbitrary. If we substitute (V.43) into (V.42), then we obtain

A

1P (¢ + 52) |l 21, < - (V.44)
EE20.1).H) =1 _ 9, (w=L(]|A]| 7))

We set R(p) = Ap + B[P(p)]. Then

R(p+2) = R(p) = [ (P(p+2) = P(0)(¢+2) = P(p) + P'(0)p)Aw(x)dr =

SE

IRGe+2) = RO yom = [ [ [Plo+2) - Plo) - P'(O)z)Aw<x>d:c] dt =

_ /T [ / ( /1 [P'(so+sz)—P’(O)]zds)Aw(:p)dedt <

Q 0

CSBI
[ [ (P'(¢+s2) — P(0)zds)?dr | |Aw(z)dx| dt <

S/T [/(/1P’(goJrsz)—P’(O)st/lszs)d:p/Aw(x)Fdx] at 2
Q0 0 Q

0

T T 1
:/m”(x)'zdx'/'Z'th'///'P'(%HSZ)—P’(0>|2dsda:dt=
Q 0 0 Q 0
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1
2 2 2
— 18wlallll o [ 1P 0+ 52) = PO gp ds.
0

By using (V.41) and the relation P'(0) = (0) o A = L~' o A, we obtain

P'(¢+s2) — P'(0) = [(I = L7'®")(P(p + s2))] oL loA—L'oA=
_ ([(1 — L) (Pl +s2)] ' - 1) oL oA, (V.45)

Let us now use the Neumann series expansion: if ||.S]| < 1, then
(I-8S) ' '=T4+S+S*+5%+..

It follows from (V.40) and the fact that P(¢) and ®(y), are continuously differentiable
and ®'(0) = 0 that
(L") (P(e +s2))|| < 1

and

(I—L'®) ' =T+ (L") + (L7'®) + (L7'9)° + ..
therefore,

(I — L7 —I|| = ||[L7'® + (L' + (L' + .|| =
Il
= [|L7'® (I + L' + (L7102 + )| < H—.
L7 + L7 (L) )| < g

Consequently,

B L7 1®'(P(p + sz
H [(I B L‘1<I>’) (P(p + sz))} 1 IH < | 1(/ (¢ ))HL(H,H) <
c) — 1= [[L71(P(p + SZ))||£(H7H)
IL7H 12" (P(e + s2)) ooy

< .
— L= [LHIe" (P (e + s2)) | o,y

(V.46)

It follows from (V.45) and (V.46) that

IP'(¢ +52) = P'(0)]l ; = H([(I — L) (P(p+5s2)] = D)oL o AH <
_ ALY 112 (Pl + s2) | gz (v:33), 1L~ =1
T L= [LH R (P(e + 2| g e -

AL P (o, (AL 7))
— L= da(w (A7)

(V.47)
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where we have used the notation

_ A (wy (A7)
1= (w, (A 7))

¢

Then

1
2
[R(e +2) — R(%D)HiQ(O,T) < ||Z||ig(0,T) ”AWHSQ / |1P'(¢+ s2) — PI(O)HLQ(QT) ds <
0

2 2 2 / / / 2 (V.47)
< zllz,0m) A9z Crrmra@ry | 1P'(9 4 52) = PO)[[pds <
0

2 2
< HZHLQ(O,T) HAWHQ,Q C%I—J/Q(QT)CQ'

Then

IGIP(e +2) =GPy = |

:/T/ /1<I)’[P(g0+sz)]Pl(<p—|—Sz)st dxdt«/|w(x)]2dx CSSBI

Q

T 1
< IIwIIE,Q// [/@’[P(go+sz)]2P’(<p+sz)222ds] dxdt =
0 Q 0

T 1

1
— loll3q [ 1efdt [ 10 IPGo+ 52y s [ 1P 0+ 52) 00y s <
0 0 0

< (L2(Qr) = LH (because of (V.7)) and (V.43)) <

1
2 2 2 -1 ~ / 2 ET
< wllzn 127,02y Pn(wy A7) [ 1P (@ + s2)[750p) 45 <
0

(V.48)

HCL2(Qr)

(V.49)
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9 9 0, 4 o ) ) (V.44), (V.48)
< [lwllzo 212,00 Tnlwn (A7) Crry@ry | 1P (0 + 52) [ ds

2 2
< 012{—>L2(QT)C2 lwlls.0 1207, 0.7) - (V.50)

Now relations (V.49) and (V.50) imply that

U(p+2) — U(p)

o <||G[P(p + 2)] = GIP(O)ll ooy HIR(P + 2) = R(@)]l Ly 01y <

< Crera@n)€ - ([@llyo + 1Al 0) 121 2,00

Therefore,
Piv o (B0 +2) = 8(0) < 6,7 12l Ly

where

HAIW (wy (1AI17))
— U (wi (1A 7))

~

6u() = || 47| Crr-tatan (wlag + 18wlly0)7

Further, it follows from (V.28) and (V.48) that

O (wy H([|A 7)) = @ - [ M(IA] 7))+ by - fw M (JA 7)),
and then

AL L an g QAN )™ 4 b [y (JA] F)]* 1
1= (anfwi (A )]~ + bafwy (A 7))

~

6ulr) = | 47| Cimratn (ol 0+l Al )

A

In this case, in theorem 18, one can set A = A, X
ball AUL2(07T); b(’f’) = Bn(f), ¥ =V and @(T) =
U is given by (V.39), and

= Ly(0,T), Y = Ly(0,T) with the unit
©,(7), where A is given by (V.38) and

B (F) = max [1 —0,(7), 0] .

If 7 € [0, 7.], then we take
B,(7) = 1—6,(7),

where 7, is the root of the equation 1 — ©,(7) = 0.

Moreover, we set w(r) = W, (7),where
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il

W7) = [ o)t =7 = [ 47| Cu o (ol + 1wl ) 4]
0

| / aaliog (IAJ 1%~  bufuog (I )]
T aulwr (AT — bafw; (ATO

(V.51)

If 7 € [Fy, 00], then we take B,(7) = 0 and W, (F) = W, (7).
Theorem 26 Letn > 2,

l<ap<as<(n+1)/(n—1)

and let the assumptions of theorem 23 be valid.

Further, let ay, by, wy, and W,(7) be given by (V.29), (V.30), (V.82), and (V.51), and
let T, be the root of the equation

Then for any 7 € [0,7.[ and ¥ € Wn(f)AULQ(O,T) there exists a unique ¢ € TUr, o) such
that
M(p) = .

Consequently, the operator equation M () = W is uniquely solvable, and hence the equiv-
alent controllability problem (V.11)-(V.13), (V.4) also has a unique solution in the same
neighborhood.
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aving a goal to prove a controllability of moments result for the KZK equation first
H of all we need the results of well-posedness of the direct and inverse problems for the
linear equation, which can be obtained from the KZK equation by omitting the nonlinear
term uu,.

VI.1 The direct problem for linearized KZK equation

As it can be easily seen, thanks to proved estimates for full KZK equation and to the
proof of the theorem 4 of existence and uniqueness of the solution, the problem

Uy — ﬁuxz‘ _ ’ya:;lAyu = F(Qf, y7t)7 (VIl)

L
Ulpmo = wo, u(z+ L,y,t) =ulx,y,t), / udr =0 (VL.2)
0

has a unique global solution in H*® for all s > 0. In particular for the homogeneous
equation it follows from the estimate

i1s < BC(L)]ul

2
Hs$»

il

which takes place for all s > 0, and it follows also from the fact that the operator 9, 1A,
is generator of a unitary Co-group in Lo with mean value zero [39, p.41] and this unitary
group et Dy preserves the H® norm. For nonhomogeneous problem we can use the
theorem from [39, p.107], supposing F' € C*([0,T], H*) (T < o). Then for the solution
we C([0,T], H)NCY([0,T], H*~?) (s —2 > 0) of the problem (VI.1) the Cauchy formula

holds .
u=S(t)ug + / S(t — s)Fds,
0

which gives the estimate

||u’||Cl([O,T],H572) S C(||U0| Hs -+ ||F||Cl([0,T],HS)) (VI3)

for some s > 0.

On the other hand it can be easily shown with the estimate

d &
el 7 < |F(-. .t
gl + gy Il < 1FC Dl

(see (VI.17)) and the Galerkin method as in [31] that for all F'(z,y,t) € Lo((0,T), H*(Q2))
and ug € H?(2) there exists a unique solution of (VI.1) u € W207’01(QT) such that (see [31,
pp.167,189])

[l o1 (or) < Cllluollaz@) + 11| Lo (0.0 1200 (VI4)
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To obtain the result of nonlinear controllability for the KZK equation it is natural to use
the fact that for all F'(z,y,t) € Lo((0,7); H*(2)) and ug € H*(§2) there exists unique
solution of (VI.1) u € Wif’l(QT) such that

m@) + 1P| La(0.1): 85 (9)))- (VL5)

[l o2y < Cluo]

V1.2 The inverse problem for linearized KZK equation

We consider the controllability problem for the equation (VI.1) in a domain Qr = [0, 7] X
Q,.,, where Q,, can be bounded domain: Q,, = [0, L] x Q, with some Q, C R""!; or
can be unbounded domain Q = Q, , = R/(LZ) x Q, with Q, € R""*. The boundary of
(2 is denoted 0. If 2 = ), ,, is not bounded, than the constant of Poincaré-Friedrichs in
the proof of the theorem 27 must be replaced by a constant of the periodicity on 2 C(L).
So we envisage the controllability problem (VI.1) in a domain Qr = [0,7] x €2, ,, with an
additional condition, called the condition of overdetermination,

/0 /Qu(x,y,t)w(x,y)dxdy = x(1), (VL6)

with homogeneous boundary conditions and mean value zero on x in the case of bounded
domain

L
Ul—0 =0, ulan =0, / udx =0, (VL.7)
0

and with ;
U= =0, wu(z+ L,y,t) =u(z,y,t), / udzr =0, (VIL.8)
0

for unbounded domain (if it is bounded on y we always suppose that u|gq, = 0).

We suppose in what follows
F(z,y,t) = h(z,y,t) f(t). (VL9)

Here the functions h, w, x are imposed, and f - is an unknown function, which we call
the control.

Remark 29 The problem (VI.1), (VI.7), (VL.6) can be easily, thanks to its linearity,
generalized on nonhomogeneous case of following form

U — gy — 70, Ayu = h(z,y,t) f(t) + g(z,y,t)

L
Ulimo = uo(z,y),  ulon = ui(x,y,1), / udz = 0,
0

/ ) | )t hdedy = (e

if the known functions g, ug, uy are sufficiently smooth and the matching condition

/0 ’ /Q uo (7, y)w(z, y)drdy = x(0)

18 satisfied.
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Definition 5 The function f € Ly(0,T) is called by the solution of the inverse prob-
lem (VI.1), (VL7) (or (VI.8)), (VI.6) if the solution u of the problem (VI.1), (VL.7)
(or (VI.8)) with this f satisfies the condition of overdetermination (VI1.6) almost every-
where on [0,T].

We define in Ly(0,7") an equivalent norm by the expression

T
e R TIOT2 (VL10)

where o > 0 is some number the choice of which will be done later.

Theorem 27 Suppose that w € H?*(Qy, )N H' (Quy), x € HY(0,T), x(0) = 0. Further,
let h(z,t) be a function such that h € La(Qr), ||h(-,+1)||},q,,) i bounded on [0,T] and

[ h(z,y,t)w(z,y)dedy| > & > 0 for almost all t € [0,T]. Then there exists a unique
Qay

solution of the problem (VI.1), (VL.7) (or (VI.8)), (VI.6) and the stability estimate holds:

0 ||f||L2(o,T) < ||X/||L2(O,T) /(1 —m), (VL11)

where
T

€2

(a+2/C2(Q))2

m = Cl (ﬁ”wvaH[Q(Qxy) + 7|‘a;1Ayw|‘L2(wa))

Y

Ch > 0 such that
”h(.7 .7t)HL2(Qxy)
(h7 w)LQ(sz)

< Cla

C(2) is a constant of Poincaré-Friedrichs (in the case of unbounded domain C(2) is
replaced by C(L)) , o > 0 is chosen from the condition m < 1.

Proof. It follows from equation (VI.1) that

(ut — Buge — 0, Ayu, W)L2(sz) = (h, w)Lz(sz) f (VI.12)

for almost all ¢ € [0, T].

We set
e(t) = (hw)p, 0., f-

By virtue of the assumptions of theorem 27, f can be uniquely determined on the basis of
@. Let us assume that the solution of the problem exists and derive an operator equation.
As (u,w) 1, q,,) € H'(0,T), then

(ue, W)L2(sz) = d/dt(u, W)L2(me) = X'(1).

Since u € W;S(QT), we H*(Q)N H' (Q), it follows that

(=70, Ayu, w) (u, 70, Ayw)

Lo(Qay) - La(Qay)’

(_ﬁuxza w)LQ(sz) - - (U’7 wax)LQ(me)
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for t € [0,77].
Then relation (VI.12) implies that

V(o) + / / wl(z, . ) (—Bua + 107 Ayw) (@, y)dady = (t).
0 Yy

We denote V(t) = x'(t), ¥ € Ly(0,T).
We introduce a linear operator

A LQ(O,T) — LQ(O,T),

(Ap)(t) = / / w(tr, g )~ Buwas + 05 Agw)(z,y)dady, (VL3

which map ¢ according to the following way : ¢ — f — u — Ay, where the solution
of inverse problem (VI.1), (VL.7), (VL.6) is found by the given f, and f is found by the
formula

p(t)

f(t) - <h7 w)LZ(sz) '

Consequently, we obtain the operator equation

o —Ap=VU. (VI.14)

Let us prove that A € L(L2(0,7)) and ||Al| < 1.
We estimate ||Al| for all ¢ € Ly(0,T)

2
T L
|]A¢\|%2(07T):/0 et (/0 /Q u(m,y,t)(—ﬁwm—i—’y@xlAyw)(az,y)dxdy) dt. (VI.15)
Y

By Cauchy-Schwarz-Bunyakovkii inequality we have for ¢ € [0, 7]

I 2
( / / u(x,y,w(—ﬁwm+va;1Ayw><x,y>dasdy> <
o Ja,

- 2
< (Bllwrellza@e) + 10 Ayl o) Tu, Dl 0,
We substitute it into (VI.15), and obtain:

T
_ 2 o
1A¢l1Z,00) < (Bllwsellra@.,) + 7107 Aywlls0.,)) / e Nul, - I, ., dt (VI.16)
0

We find the estimate for [[u(-,-,t)||r,(q.,) (see [31, p.167], [27, p.47]). Taking the inner
product in Ly(€2,,) with u the equation (VI.1), we have, noting in what follows Q = Q,,,

1d

5 77z + Bllealiyg < Nl f DR, Do)
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Since the domain € is bounded in R™"*!, we can apply the equality of Poincaré-Friedrichs,
from which it is obviously following that

1

0 >|| 17, < luall7, o
and
d B 9
||U||L2(Q)£||U||L2(n) + mHUHLQ(Q) < lull ol fF @A ) o
And then

d

The last inequality can be rewritten with the help of integrable factor in the way

d 5
i (T Wl < T SO, Dl

Since the initial data has been chosen equivalent to zero, in the end we obtain

__B bt s
Jullaoy < €T [T OIAC 7 s (VL1
0

Let us transform the right-hand part of inequality in such way that it depends on the
function ¢(t). For it we multiply and divide on [, |h(z,y, t)w(z,y)|dzdy, using the as-
sumption of the theorem about separability from zero of this integral, and using the fact
of the existence of a positive constant Cy such that ||A(-, -, ?)[|1,q,,) /(" W)La@.,) < Cu:

s
/602<ﬂ> LSRG T a@ydT =

/ Tfﬂ‘hll;h(y-: ,> )im s;)mdy (|f I/ \h(z,y, T)w(z, y)|dxdy)
< [ e lotriar

Le. (VI.18) takes the form

__B bt s
]| 2oy < Che 02(”>t/ eC?@ " |p(7)|dT. (VI.19)
0

Let us envisage the integral in the right-hand side of the inequality (VI.19)

t B . t (=28 4a)r %
| e lemiar < ( | e dr> el (VL.20)
0 0

Returning now to (VI.16), with the help of (VI.19), (VI.20), we obtain that

2 ,  CF 2 g St o
||A90||L2(0,T) <N 3, ||90||L2(0,T) (6 @ —e ) dt <
2y T 0
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< N2C C’12 eT” 2
> 5 SOHLQ(O,T)a
C2(Q)

_ 2
where N = (8llwe | Lo, + 71105 Ayl za0.,))
From where we conclude that A € £(L2(0,7)) and there exists v > 0 such that || A|| < 1.

The condition ||A|| < 1 guarantees the one-valued solvability in Ls(0,7") of the operator
equation (VI.14).

Let us prove that (VI.14) is equivalent to the inverse problem (VI.1), (VL.7), (VI.6).
Indeed, let ¢ is a solution of the equation (VI.14) with given in condition of the theorem
function y. We unequivocally define f = ¢/(h,w)r,). By virtue of the assumptions of
theorem 27 f € L,(0,7"). Let us show that the solution u € W227’01(QT) founded by f of
the direct problem (VI.1), (VL.7) satisfies the condition of overdetermination (VI.6).

Assume the converse:

/0 /Q“@% Y w(@,y)dedy = x.(t) € H'(0,T).

Since ui—g = 0, then x1(0) = 0. Deriving the operator equation for these ¢ and x;, we
find that ¢ also satisfies the equation

o — Ap = X} (VI.21)

We subtract (VI.14) from (VI.21), and we obtain

X'(t) =x1(t), x1(0) =x(0) =0.
Then x(t) = x1(t), t € [0,T], which contradicts the original assumption.

Let us prove that the solution of the problem (VI.1), (VL7), (VI.6) is unique. Assume
the converse. Then repeating the derivation of the operator equation (VI.14) for the
difference u — uy, we obtain that ¢ satisfies the homogeneous equation.

By virtue of the uniqueness of solution of the operator equation (VI.14) we obtain f = 0.
By virtue of the uniqueness of solution of the direct problem u — u; = 0.

Let us show now the stability estimate (VI.11).

Indeed, if we envisage the relation between ¢ and f, then we can notice that

T
”90H%2(0,T) :/0 e

> 8N fI12,0.1)-

Since ||Ag|| < m||p]|| for all ¢ € Ly(0,T), i.e.,

2
[ eyt gpdsdy| \rofar >
Q

[Al[ = m,
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and o — Ap = X/, we obtain that

(1 =m)[[ellzoo,r) = X | 2o0,1)

from where it follows (VI.11). This completes the proof of the theorem 27.0]

We note that if we suppose in assumptions of the theorem 27 the additional regularity on
(x,y) we obtain the following theorem.

Theorem 28 Suppose that for s > [§] + 1

os—1

we H 2N H (),

x € HY(0,7), x(0) = 0 and, let h(z,t) be a function such that h € (Ly((0,T); H¥2(Qyy)),
|~(- -, t)] He-2(Q,,) S bounded on [0,T] and

(h(@.5,1),w(.9)) 20,y = 6 > 0

for almost allt € [0,T]. Then there ezists a unique solution of the problem (VI.1), (VI.7),
(or (VI.8)) and

(u(z,y,t), w(2,y)) gs—2(00y) = X(t), (VI.22)

which 1s equivalent, thanks to the smoothness of w, to

/ u(z, y, ) A?Dw(z, y)dedy = x(t),
Q

z,Y

and then the stability estimate holds:

0 HfHLQ(o,T) < HX/HLQ(O,T) /(1 —m),

where

m = Cl (ﬁ”wmm|

Hs—Z(sz) -+ *y||a,;1Ayw| HS*2(sz))

(a+2/C2(Q))2

Cy > 0 such that

||h(7 ) t)| HS*Q(sz)
(h, W)Hs—2(ﬂwy)

S Cla

C(R) is a constant of Poincaré-Friedrichs, (or it is the periodicity constant C(L)) a > 0
s chosen from the condition m < 1.

Remark 30 To prove the theorem it is sufficient to replace the norm in Lo(S2) in theo-
rem 27 by || - ez = A5+ ||
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V1.3 The difficulty on the way to the controllability for
nonlinear KZK equation

We consider now the inverse problem in the domain (0,7") x Q with Sr = 0Q x [0, T7:
Uy — Uty — By — y0; ' Ayu = F(x,y,t), (VI.23)
uli—o =0, wuls, =0, /Ludx—O (if Sp = 0 then
u(z+ L,y,t) = u(x,y, t))? (VI.24)
(w, w(z,y)) e = x(1), (VL.25)

with F from (VL.9).

Having the result of previous section for linear part of KZK in the form of the theorem 28,
we would like to use the method of two times application of inverse function theorem
demonstrated in the chapters IV and V.

Remark 31 Unfortunately we cannot use the result of the theorem 27 because a simple
reason: for construction of the space of solutions H for linear direct problem for (VI.1)
we need an isomorphism Lu = F € Ly(Qr), but we have it only for u € Wz%l which is
insufficient to control the nonlinearity ||uu,||,.

From [8, p. 100] we have the estimate
o n
1R 1at0) = el o) < Clullip gy forue HY, s> [F]+1,

which requests to have the solutions more regular on (x,y).
So the idea is to use the theorem 28.

We can introduce now the operator
L=20,— B3 —~0,'A,, (V1.26)
and the space of the solutions of linear direct problem

H={ve H((0,T); H2(Q))|3F € Ly((0,T); H*(2)) : v is a solution of problem
(VL1), (VL) with ug = 0} (VL.27)

with the norm ”UHH = HL/U”[Q((O’T);HS(Q)). Then

L:H — Ly((0,7); H(2)) is an isometric isomorphism of H on Ls((0,7"); H*(2))
(VI.28)

by virtue of the a priori estimate (VI.5) and that for all F'(z,y,t) € Lo((0,7); H*(2))
(ug = 0) there exists unique solution of (VI.1) u € W;BZI(QT).

Note that H = {v € H'((0,T); H2(Q))|v|t=0 = 0, v|g, = 0}, and || - || is equivalent to
|| : ||W25762’1(QT)‘

This implies that (H, ||-||;;) is complete, the embedding H C W;g” (Qr) is continuous.



162 Chapter VI. Controllability for KZK Equation

Since from theorem 28 (and 27) the control f (and also ¢) is from Ly(0,7), then for
applying the known technique we need that the operator defined as

O(u) = wuy, @ : H'((0,T); H2(Q)) — La((0,T); H(2))

was strictly differentiable, which, it is seems, is impossible to prove.
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Résumé :

Ce travail se compose de deux parties. Dans la premiere, nous considérons 1’équation
de Khokhlov-Zabolotskaya-Kuznetsov (KZK) (u; — vy, — Bugy)r — yAyu = 0 dans les
espaces de Sobolev des fonctions périodiques sur x de valeur moyenne nulle. La dérivation
de I'équation KZK a partir des équations de Navier-Stokes isentropiques non linéaires
et de l'approximation de leurs solutions (pour les cas visqueux et non visqueux), les
résultats de I'existence, de 'unicité, de la stabilité et du blow-up de la solution de KZK
sont obtenus ainsi qu'un résultat sur 'existence d’une solution réguliere du systeme de
Navier-Stokes dans le demi espace avec conditions aux limites périodiques en temps et
de valeur moyenne nulle. Dans la deuxieme partie, nous prouvons la controlabilité locale
des moments de deux systemes décrits par une équation non-linéaire d’evolution dans un
espace de Banach et par une équation non-linéaire de la chaleur quand le controle est un
multiplicateur du membre de droite. Pour les deux systemes avec une surdétermination
intégrale nous obtenons des conditions suffisantes sur la taille du voisinage duquel nous
pouvons prendre la fonction de la condition de surdétermination de sorte que le probleme
inverse ait une solution unique. Nous prouvons également le résultat de controlabilité pour
I’équation KZK linéarisée.

Mots-clés : équation KZK, faisceaux sonors non-linéaires, périodicité, valeur moyenne
nulle, approximation, demi espace, méthode des pas fractionnaires, systemes de Navier-
Stokes et d’Euler isentropiques, équation d’évolution non linéaire, équation de la chaleur,
probleme de controlabilité des moments, surdétermination intégrale, probleme de Cauchy;,
dérivée de Fréchet

Abstract:

This work consists of two parts. In the first part we consider the Khokhlov-Zabolotskaya-
Kuznetsov (KZK) equation (u; — ut, — By, ), — yAyu = 0 in Sobolev spaces of functions
periodic on x and with mean value zero. The derivation of KZK from the nonlinear
isentropic Navier Stokes equations and approximation their solutions (for viscous and non
viscous cases), the results of the existence, uniqueness, stability and blow-up of solution of
KZK equation are obtained, also a result of existence of a smooth solution of Navier-Stokes
system in the half space with periodic in time mean value zero boundary conditions. In
the second part we prove the local controllability of moments for two systems described by
a nonlinear evolution equation in Banach space and by a nonlinear heat equation when
the control is a multiplier on the right-hand side. For this two systems with integral
overdetermination we obtain sufficient conditions on the size of the neighborhood from
which we can take the function from the overdetermination condition so that the inverse
problem is uniquely solvable. We also prove the controllability result for linearized KZK
equation.

Key words: KZK equation, nonlinear sound beams, periodic, mean value zero, approx-
imation, half space, fractional step method, Navier-Stokes and Euler isentropic systems,
nonlinear evolution equation, heat equation, controllability problem of moments, integral
overdetermination, Cauchy problem, Fréchet derivative
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AnHorarusg :

Pabora cocrout m3 aByx dacreii. B mepBoii actu paccMaTpuBaeTCsl ypaBHEHHE XOXJIOBa-
Babomorckoii-Kysnernosa (X3K) (u; — uu, — Bugy), — 7A u = 0 B npocrpancrsax Cobo-
JIeBa TIEPUOJNYECKNX M0 & (PYHKIIUN U CO CPEJIHUM 3HaYeHneM HOJIb. [IpoBesieHbl BBIBO/L
ypasuenns X3K u3 mesmneiinoro usentponnoii cucrembl Habe-Crokca n anmpokcuma-
sl UX pereHuii (Jyisi BA3KOro U HEBSI3KOT'O CJIyYaeB), JIOKA3aHbI PE3y/IbTaThl CyIIECTBO-
BaHUsl, € IMHCTBEHHOCTH, YCTONYIMBOCTU U CYIIECTBOBAHUS Y/IAPHOI BOJIHBI JIJISI PEITeHUsT
ypasaerns X3K. Takxke mosryueH pesysibTar CyImecTBOBAHUST TJIAKOTO PEIIEHNsT CUCTEMbI
Hasbe-CTokca B OJIyIIPOCTPAHCTBE € MEPUOIMIECKUMHU 110 BPEMEHU U HYJIEBBIM CPETHIM
[0 II€PUOJIy 3HAYEHWIO I'PAHUYHBIMU YCJIOBUSAMHU. BO BTOPOIl YacTH IMOJYYEeH Pe3y/IbTAT
JIOKAJTbHOM YIIPABJISIEMOCTH JIJIs JABYX CUCTEM OINUCHIBAEMbBIX HEJTUHEHHBIM a0CTPAKTHBIM
9BOJTIOIIMOHHBIM yPaBHEHIEM B OAHAXOBOM IIPOCTPAHCTBE U HEJIMHEHHBIM yPABHEHUEM Tell-
JIOTIPOBOJTHOCTH KOTJIa yIIPABJIEHHEM SIBJISIeTCS MHOMKHUTEIb B TpaBoit dactu. s stmx
JIBYX CUCTEM C MHTerpajbHBIM Iepeorpejie/leHrneM ObLIN MOJYyYeHbl JOCTATOYHBIE YCJIO-
BHs HA pasMep OKPECTHOCTHU, U3 KOTOPOIl MOXKHO OparTh (DYHKIUIO U3 YCJIOBUS IIePeoIpe-
JieJieHusi, ¢ TeM 9TOObI oOpaTHas 3a/a4da OblLIa OJHO3HAYHO paspernMa. Takxke JJ0Ka3aHa
YIPABJISEMOCTD JIJIsl JTuHeapu30BaHHOTO ypaBHeHus X3K.

KiroueBbie ciioBa : ypasuenne X3K, menuHeiiHble aKyCcTHIecKne ITy9IKH, TEPUOINAT-
HOCTB, HYJIEBOE CpejiHee 3HAUeHNe, allllPOKCUMAIIS, TOIYIIPOCTPAHCTBO, METO JPOOHBIX
I1aroB, U3EHTPOITHBIE cucTeMbl Ditiepa n Hapbe-CToKca, HeTmHETHOE 9BOIOIMOHHOE YPaB-
HEHUE, YpaBHEHUE TEILIONPOBOJHOCTH, 3a/lada YIIPAB/IIeMOCTH, HHTEIPAJIbHOE TIepeorpe-
nenenne, 3aja4da Komm, muddepentmpyemocts o Operrre



