MODELISATION DE L’ECOULEMENT DE LA GLACE POLAIRE ANISOTROPE ET PREMIERES APPLICATIONS AU FORAGE DE DOME C

Fabien Gillet-Chaulet

To cite this version:

HAL Id: tel-00125476
https://tel.archives-ouvertes.fr/tel-00125476
Submitted on 19 Jan 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modélisation de l’écoulement de la glace polaire anisotrope et premières applications au forage de Dôme C

Fabien Gillet-Chaulet

Thèse de doctorat de l’Université Joseph Fourier (Grenoble 1)
(Arrêtés ministériels du 5 juillet 1984 et 30 mars 1992)

Spécialité Mécanique : Conception, Géomécanique, Matériaux

Date de Soutenance :
1 Décembre 2006

Composition du jury :
M. Denis Favier Président
M. Yvan Chastel Rapporteur
M. Richard Hindmarsh Rapporteur
Mme Andréa Tommasi Examinatrice
M. Olivier Gagliardini Directeur de thèse
M. Jacques Meyssonnier Directeur de Thèse
Merci !

Merci à Olivier Gagliardini et Jacques Meyssonnier de m’avoir encadré durant ces années au LGGE, et d’avoir permis que cette thèse se déroule dans les meilleures conditions.

Merci à Richard Hindmarsh et à Yvan Chastel et Roland Logé d’avoir accepté d’être rap-портёurs de ce manuscrit.

Merci à Andréa Tommasi et Denis Favier pour leur participation à mon jury d’examen.

Merci à Juha Ruokolainen et Thomas Zwinger du CSC pour l’aide apportée sur Elmer.

Merci à tout le personnel du LGGE pour ces moments de discussion et les coups de main occasionnels.

Merci à l’AFFRST d’avoir financé mes deux séjours à Helsinki. Merci à Olivier et sa famille de m’avoir si bien accueilli pendant ces moments.

Merci à ma famille qui m’a soutenu jusqu’au bout, et aux amis présents pour la soutenance.

Merci à tous les thésards pour les moments de détente autour d’un café ou ailleurs... Clins d’œil aux compagnons du bureau 216, Laura, Pierre et Juliette, et à votre bonne humeur. Merci à Nico, Hélène, Xav et les autres pour toutes ces girafes au No Name et ces sorties en montagne. Bon courage pour la suite. Merci aussi aux anciens, Gilles, Gael, Martin...

Merci à tous ceux qui m’ont accompagné durant ces années. Pensées pour Fab, Val, Lea-titia, Olivier, Bast...

Merci Lettie, à la simplicité et au voyage...

Merci à la team A.blok (Barn’s, Hugo et Bullet) pour toutes ces heures passées agréablement à la salle.
Résumé

Le cristal de glace est l’un des matériaux naturels les plus anisotropes. L’analyse des glaces polaires indique que les cristaux s’orientent selon des directions privilégiées très marquées et que la fabrique (distribution des orientations cristallines des grains) du polycristal de glace est le résultat de l’histoire des déformations que ce polycristal a subi. Le comportement macroscopique du polycristal dépend de la fabrique et peut lui aussi être fortement anisotrope. Il a été montré que cette anisotropie est propice à créer des perturbations de la stratigraphie et qu’elle influence fortement l’écoulement de la calotte.

L’objectif de cette étude est de construire un modèle d’écoulement pour la glace polaire anisotrope et l’évolution de sa fabrique.

Dans ce but, nous modélisons le monocristal de glace comme un matériau continu orthotrope de révolution autour de son axe c et nous le comparons à un modèle de grain à plans de glissement. La fabrique est décrite de manière continue par le tenseur d’orientation d’ordre 2 et une fonction de fermeture pour le tenseur d’orientation d’ordre 4. Par homogénéisation, en supposant des contraintes ou des vitesses de déformation uniformes, nous obtenons des solutions analytiques pour le comportement du polycristal et l’évolution de sa fabrique. À partir de ces solutions, nous adoptons une loi de comportement orthotrope linéaire pour le polycristal et une équation d’évolution pour le tenseur d’orientation du second ordre. Ces équations permettent de bien reproduire les résultats du modèle auto-cohérent utilisant une description discrète de la fabrique, avec un gain important au niveau du temps de calcul et du nombre de variables nécessaires pour décrire la fabrique.

Ces équations sont implantées ensuite dans un code aux éléments finis utilisé pour simuler l’écoulement d’une calotte polaire présentant une anisotropie induite évolutive. Par des tests synthétiques, nous montrons l’influence de l’anisotropie sur l’écoulement de la calotte. Enfin, nous présentons une analyse des données de fabrique du forage de Dôme C à la lumière de notre modèle.
Abstract

The ice crystal is one of the most anisotropic natural materials. Observations of polar ice show that the crystals are oriented along very marked privileged directions and that the fabric of the ice polycrystal is the result of the strain history that the polycrystal has undergone. The macroscopic polycrystal behaviour depends on the fabric and can be strongly anisotropic. It has been shown that anisotropy can introduce the occurrence of stratigraphy disturbances and influences strongly the flow of the ice sheet.

The aim of this work is to build an ice flow model for anisotropic ice and the evolution of its fabric.

To this end, we model the ice monocrystal as a transversely isotropic continuous medium around its c-axis and we compare it with a slip-planes grain model. The ice fabric is described in a continuous way by the second order orientation tensor and a closure approximation for the fourth order orientation tensor. By homogenization, assuming uniform stresses or strain-rates, we obtain analytical solutions for the polycrystal behaviour and the evolution of its fabric. From these solutions, we derive a linear orthotropic flow law for the ice polycrystal and an equation for the evolution of the second order orientation tensor. These equations are able to reproduce the results of the self-consistent model using a discrete fabric description, with an important improvement as regards the of computing time and the number of variables necessary to describe the fabric.

These equations are then implemented in a finite element code, used for simulating the flow of an ice sheet with strain-induced evolving anisotropy. By performing synthetic tests, we show the influence of anisotropy on the ice flow. Finally, through our model results, we propose an interpretation of the Dome-C ice-core fabric data.
Table des matières

<table>
<thead>
<tr>
<th>Remerciements</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résumé</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>Notations</td>
<td>xi</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Mécanismes de déformation dans les calottes polaires et modèles aux différentes échelles</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Mécanismes de déformation dans les calottes polaires</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1 Comportement du monocristal de glace</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Développement des textures dans les calottes polaires</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 Comportement du polycristal de glace</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Modèles de comportement de la glace polaire</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Le monocristal de glace</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 La fabrique</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3 Le polycristal de glace</td>
<td>12</td>
</tr>
<tr>
<td>1.4 Modèles d’écoulement des calottes polaires</td>
<td>14</td>
</tr>
<tr>
<td>1.4.1 L’approximation de la couche mince</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2 Les modèles d’ordre supérieur</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Conclusion</td>
<td>16</td>
</tr>
<tr>
<td>2 Modélisation du monocristal de glace</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Définitions</td>
<td>17</td>
</tr>
<tr>
<td>2.3 Loi de comportement</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1 Loi linéaire</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2 Loi non-linéaire</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Rotation de l’axe ε</td>
<td>21</td>
</tr>
<tr>
<td>2.4.1 Equation d’évolution de ε</td>
<td>21</td>
</tr>
<tr>
<td>2.4.2 Expression de la vitesse de rotation ωW</td>
<td>22</td>
</tr>
<tr>
<td>2.4.3 Orientation d’un grain en fonction du tenseur gradient de transformation</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Comparaison avec un modèle à plans de glissement</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1 Comportement</td>
<td>25</td>
</tr>
</tbody>
</table>
2.5.2 Rotation de l’axe c .. 25
2.6 Etude de stabilité des grains 26
2.6.1 Compression/traction ... 26
2.6.2 Cisaillement pur ... 27
2.6.3 Cisaillement simple ... 28
2.7 Conclusion .. 31

3 Modèles de descriptions de la fabrique 33
3.1 Introduction ... 33
3.2 Description discrète .. 33
3.3 Fonction de distribution des orientations 34
3.3.1 Définition .. 34
3.3.2 L’ODF paramétrée de Gagliardini (1999) 35
3.4 Décomposition de l’ODF en série de Fourier 35
3.4.1 Décomposition en harmoniques sphériques 35
3.4.2 Décomposition tensorielle 36
3.5 Les tenseurs d’orientation 38
3.5.1 Définition .. 38
3.5.2 Tenseurs d’ordre 2 et 4 39
3.5.3 Commentaires ... 42
3.5.4 Fonctions de fermeture 43
3.6 Passage description continue-description discrète 47
3.6.1 Construction de fabriques discrètes 47
3.6.2 Calcul des paramètres de l’ODF (3.6) à partir d’une fabrique discrète 49
3.7 Conclusion .. 50

4 Modélisation du polycristal de glace 51
4.1 Introduction ... 51
4.2 Modèles d’homogénéisation utilisés 51
4.2.1 Modèle à vitesses de déformation uniformes 51
4.2.2 Modèle à contraintes uniformes 53
4.2.3 Modèle auto-cohérent 1 site 55
4.3 Loi de comportement pour le polycristal (GOLF) 56
4.3.1 Forme générale de la loi 56
4.3.2 Calcul des viscosités adimensionnelles 57
4.3.3 Tabulation de la loi .. 58
4.4 Validation et application à la rhéologie des glaces de GRIP et Vostok 59
4.4.1 Forage de GRIP ... 60
4.4.2 Forage de Vostok ... 66
4.5 Comportement d’un polycristal à un maximum et instabilités 72
4.5.1 Compression uniaxiale 72
4.5.2 Cisaillement pur ... 72
4.6 Conclusion .. 75

5 Evolution couplée de la fabrique et du comportement du polycristal 77
5.1 Introduction ... 77
5.2 Rotation de l’axe c ... 77
5.2.1 Modèle de Taylor ... 77
5.2.2 Modèle Statique ... 77
6 Modélisation de l’écoulement de glace anisotrope et applications 109
6.1 Introduction .. 109
6.2 Equations .. 109
 6.2.1 Equations de Stokes 109
 6.2.2 Evolution de la fabrique 110
 6.2.3 Surface libre ... 110
 6.2.4 Equation de la chaleur 110
 6.2.5 Age .. 110
 6.2.6 Gradient de transformation 110
6.3 Formulations variationnelles et méthodes numériques 111
 6.3.1 Equations de Stokes 111
 6.3.2 Evolution de la fabrique 111
 6.3.3 Surface libre ... 112
 6.3.4 Equation de la chaleur 112
 6.3.5 Age et gradient de transformation 113
 6.3.6 Couplage des équations 113
6.4 Applications théoriques 113
 6.4.1 Conditions aux limites 114
 6.4.2 Conditions initiales 116
 6.4.3 Maillage .. 117
 6.4.4 Ecoulement sur un socle plat 119
 6.4.5 Ecoulement sur un socle sinusoidal 139
6.5 Conclusion .. 149
7 Interprétation des données du forage de Dôme C 151
7.1 Introduction .. 151
7.2 Données disponibles ... 151
 7.2.1 Topographie ... 151
 7.2.2 Données dans le forage 155
7.3 Etude de la rhéologie des glaces du forage de Dôme C 161
 7.3.1 Evolution générale 161
 7.3.2 Transition MIS5-MIS6 161
7.4 Modélisation unidimensionnelle de l’évolution de la fabrique dans le forage de Dôme C 165
7.5 Effet d’une variation de la fluidité initiale de la glace 171
7.5.1 Conditions du test ... 171
7.5.2 Résultats ... 171
7.6 Modélisation 3D de l’écoulement au voisinage de Dôme C 175
 7.6.1 Vitesses horizontales en surface 175
 7.6.2 Vitesses verticales en surface 181
 7.6.3 Résultats dans le forage de Dôme C 186
7.7 Conclusion ... 189

Conclusion ... 191

A Inversion de la loi de comportement du grain (2.8) 195

B Modèle de grain à plans de glissement 197

C Coefficients des fermetures ORF et IBOF 199
 C.1 Fermeture ORF ... 199
 C.2 Fermeture IBOF ... 199

D Expression de la loi de comportement (4.4) en fonction des tenseurs de
 structure ... 201

E Vers une loi non linéaire .. 203
 E.1 Extension non-linéaire 1 .. 203
 E.2 Extension non-linéaire 2 .. 204
 E.3 Comportement non linéaire homogénéisé avec le modèle Statique 205

F Calculs de l’évolution de la fabrique ... 207
 F.1 Définitions mathématiques ... 207
 F.2 ODF analytique pour le modèle de Taylor 208
 F.3 Vérification de l’équivalence de (5.15) et (5.16) 209

G Expression des coefficients pour l’équation d’évolution de $a^{(2)}$ (6.12) 211

Bibliographie .. 213
Notations

Référentiels :

Dans la suite, nous utilisons principalement trois référentiels :

$\{R\}$: un repère de référence lié à la Terre,
$\{^oR\}$: un repère d’orthotropie lié au polycristal de glace, dans lequel sont décrites ses symétries,
$\{^gR\}$: un repère lié au grain, dans lequel sont décrites les symétries du monocristal.

Une quantité x (vectorielle ou tensorielle) est notée x, $^o x$, $^g x$ selon qu’elle est exprimée dans le repère de référence $\{R\}$, dans le repère d’orthotropie $\{^oR\}$ ou dans le repère du grain $\{^gR\}$.

Tenseur, vecteur et scalaire :

A, a, α grandeur scalaires,
a, c vecteurs a_i, c_i,
A tenseur A_{ij} ou A_{ijkl},
$a \otimes b = C$ produit tensoriel $a_i b_j = C_{ij}$,
$A.B = C$ simple contraction $A_{ik} B_{kj} = C_{ij}$,
$A : B = C$ double contraction $A_{ij} B_{ji} = C$,
$A :: B = C$ quadruple contraction $A_{ijkl} B_{jkl} = C$,
$A^D = A - \frac{1}{3} \text{tr} (A) I$ partie déviatoire du tenseur A,
A^T transposé de A, $A^T_{ij} = A_{ji}$.

Les quantités relatives au polycristal ou à la calotte sont notées avec une barre supérieure. Par exemple, le tenseur des contraintes déviatoires macroscopique est noté \tilde{S}.

Les quantités relatives au grain sont sans annotation particulière. Par exemple, le tenseur des vitesses de déformation dans un grain est noté D.

xi
Acronymes :

EBOF Eigenvalue Based Optimal Fitting closure approximation,
GOLF General Orthotropic Linear Flow law,
GRIP GReenland Ice Core Project,
HEM Homogeneous Equivalent Medium,
IBOF Invariant Based Optimal Fitting closure approximation,
ODF Orientation Distribution Function,
ORF ORthotropic Fitted closure approximation,
VPSC ViscoPlastic Self-Consistent,
\(\mu-M \) micro-macro.

Quantités utilisées dans le manuscrit :

\(\bar{a}^{(2)} \), \(\bar{a}^{(4)} \) Tenseurs d'orientation du 2ème et 4ème ordre,
\(a_1, a_2, a_3 \) Valeurs propres de \(\bar{a}^{(2)} \),
\(B_n \) Fluidité de la glace polycristalline isotrope,
\(D \) Tenseur des vitesses de déformation,
\(F \) Tenseur gradient de transformation,
\(f(\theta, \varphi) \) Fonction de distribution des orientations cristallines (ODF),
\(f_k \) Fraction volumique du grain \(k \),
\(I \) Tenseur identité,
\(k_1, k_2, k_3 \) Paramètres de l'ODF paramétrée,
\(L \) Tenseur gradient de vitesse,
\(M_r \) Tenseurs de structure liés au polycristal pour \(r=1,2,3 \),
\(M_3 \) Tenseur de structure lié au monocristal,
\(N_g \) Nombre de grains du polycristal (description discrète),
\(n \) Exposant des contraintes pour une loi de comportement non linéaire,
\(R \) Matrice de passage de \(\{^0 R\} \) à \(\{R\} \),
\(S \) Tenseur des contraintes déviatoires,
\(T \) Température,
\(u \) Vecteur vitesse,
\(W \) Tenseur vitesse de rotation,
\(c \) Vecteur unitaire dirigé selon l’axe \(c \) du grain (monocristal),
\(\alpha \) Paramètre d’interaction,
\(\alpha_{opt} \) Paramètre d’interaction optimal,
\(\beta \) Paramètre rhéologique du grain,
\(\gamma \) Paramètre rhéologique du grain,
\(\eta = 1/\psi_1 \) Viscosité en cisaillement parallèlement au plan de base du grain,
\(\eta_c \) Viscosité en compression suivant l’axe \(c \) du grain,
\(\bar{\eta}_r \) Viscosités sans dimension de la loi du polycristal,
\(\bar{\eta}_0 = 1/B_1 \) Viscosité de la glace polycristalline isotrope \((n = 1) \),
\(\theta \) Angle définissant l’orientation de l’axe \(c \) du grain par rapport à \(\{R\} \) : colatitude,
\(\sigma \) Tenseur des contraintes,
\(\tau_a, \tau_b, \tau_c \) Contraintes de référence des familles basale, prismatique et pyramidaire respectivement (monocristal),
\(\Phi^{(n)} \) Potentiel de dissipation,
\(\varphi \) Angle définissant l’orientation de l’axe \(c \) du grain par rapport à \(\{R\} \) : longitude,
\(\psi_n \) Fluidité en cisaillement parallèlement au plan de base du grain.
Introduction

Les calottes polaires sont une des composantes essentielles du système climatique terrestre, c’est ce qui motive les efforts entrepris depuis plusieurs décennies pour modéliser leur écoulement.

L’objectif de cette modélisation est d’une part de comprendre et prédire les variations globales des calottes polaires (Groenland et Antarctique) en fonction des conditions climatiques, et d’autre part de permettre l’interprétation des enregistrements climatiques préservés dans la glace.

L’objectif de cette thèse est de développer un modèle d’écoulement local de la glace polaire afin de mieux prendre en compte les modes de déformation de la glace dans les conditions in-situ et d’améliorer l’interprétation des forages en calculant l’âge et l’origine de la glace.

Dans les calottes polaires, la glace se forme par densification de la neige déposée en surface puis s’écoule du centre vers les bords de la calotte par déformation viscoplastique sous l’effet de la gravité. L’étude des textures des glaces polaires (orientation, taille et forme des cristaux de glace) a montré que, au cours de l’écoulement, les cristaux de glace s’orientent selon des directions privilégiées en fonction des conditions d’écoulement in-situ. Les études de laboratoire et les mesures de déformation in-situ ont montré que ces glaces texturées ont un comportement fortement anisotrope, c’est à dire que leur déformation dépend fortement de la direction de la sollicitation. L’orientation préférentielle des grains est, en grande partie, contrôlée par la déformation de la glace. La texture, et donc l’anisotropie du comportement de la glace, évoluent au cours du temps en fonction de l’histoire de déformation que subit la glace.

De nombreux modèles de comportement de la glace anisotrope et d’évolution de sa fabrique (orientation des grains) ont été développés. Les conditions de vitesse de déformation et de température caractéristiques des calottes polaires sont impossibles à reproduire en laboratoire et les essais réalisés à plus hautes vitesses et/ou températures font intervenir des processus physiques différents. Afin de valider ces modèles, il faut donc les implantner dans des modèles d’écoulement aussi réalistes que possible et comparer les résultats aux mesures de terrain disponibles. Typiquement, les modèles d’écoulement comportent plusieurs dizaines de milliers de nœuds. C’est pourquoi les modèles de comportement anisotrope sont, malheureusement, trop complexes et coûteux en temps de calcul pour être implantés tels quels. C’est pourquoi l’anisotropie évolutive de la glace polaire est encore peu prise en compte dans les modèles d’écoulement actuels : ceux-ci utilisent en général une loi isotrope pour décrire le comportement de la glace polaire.

ainsi en question les résultats obtenus avec des modèles isotropes.

Une des spécificités de la modélisation de l’écoulement de la glace anisotrope est la
variété des échelles auxquelles il faut s’intéresser : le cristal de glace (de quelques millimètres
des centimètres de diamètre), le polycristal (quelques centaines de cristaux, de
l’ordre du décimètre), et la calotte polaire (plusieurs centaines de kilomètres).

Notre travail est dans la continuité de celui de Gagliardini (1999). Dans ce dernier, le
comportement de la glace et l’évolution de la fabrique ont été obtenus à partir de solutions
analytiques calculées en supposant un état de contraintes homogènes dans tous les grains
qui composent le polycristal. Ce modèle ne permet pas de reproduire de manière satisfaisante
les données disponibles. Ici, à partir de solutions analytiques, nous adoptons des modèles
phénoménologiques de comportement et d’évolution de la fabrique. Nous identifions
les résultats de ces modèles avec ceux donné par le modèle auto-cohérent (Castelnaud, 1996;
Meyssonier et Philip, 1996) qui est plus réaliste que le modèle à contraintes homogènes.
Enfin, l’ensemble de ces équations, comportement anisotrope et éclusion de la fabrique
associée, sont implantées dans un code aux éléments finis afin de modéliser l’écoulement à
l’échelle de la calotte polaire.

Les Chapitres de ce manuscrit décrivent les équations que nous utilisons à chaque échelle
de notre modèle et les applications qui en découlent.

Nous commençons par situer le contexte de cette étude et présenter les particularités
des mécanismes de déformation dans les calottes polaires au Chapitre 1.

Au Chapitre 2, nous donnons les équations utilisées pour décrire le comportement et
la rotation du cristal de glace.

Au Chapitre 3, nous rappelons les différentes possibilités pour décrire la fabrique. Nous
les comparons et discutons leurs avantages et inconvénients respectifs.

Dans le Chapitre 4, nous étudions différentes hypothèses pour calculer le comportement
du polycristal de glace et nous obtenons des solutions analytiques avec les modèles les
plus simples. Nous donnons la forme générale de la loi de comportement adoptée. Nous
identifions les paramètres libres de cette loi de comportement, qui décrivent l’anisotropie
du polycristal de glace, par comparaison avec le modèle auto-cohérent. Nous validons cette
loi de comportement en étudiant la rhéologie des glaces de deux forages distincts.

Les équations décrivant l’évolution de la fabrique sont présentées au Chapitre 5. Sur des
tests simples, nous validons ces équations par comparaison avec le modèle auto-cohérent
utilisant une fabrique discrète. Nous proposons des pistes pour la prise en compte de la
recristallisation.

Les équations macroscopiques pour le comportement anisotrope de la glace et l’évolution
de sa fabrique sont implantées dans un modèle d’écoulement basé sur la méthode des
éléments finis au Chapitre 6. Pour des géométries de calottes synthétiques, nous étudions
l’influence de l’anisotropie induite sur l’écoulement global de calottes théoriques.

Enfin, au Chapitre 7, nous aidons à l’interprétation des mesures de texture dans le
forage de Dôme C et proposons des simulations de l’écoulement de la glace au voisinage
de ce site de forage.
Chapitre 1

Mécanismes de déformation dans les calottes polaires et modèles aux différentes échelles

1.1 Introduction

Dans ce chapitre, nous commençons par discuter les particularités des modes de déformation rencontrés dans les calottes polaires, du comportement du cristal de glace au comportement du polycristal, en passant par le développement des textures.

Nous présentons ensuite une rapide étude bibliographique des modèles couramment utilisés dans la littérature pour modéliser l’anisotropie évolutive du polycristal.

Nous finissons en décrivant les différents modèles d’écoulement des calottes polaires utilisés actuellement.

1.2 Mécanismes de déformation dans les calottes polaires

1.2.1 Comportement du monocristal de glace

Dans les conditions naturelles de pression et de température terrestres, le monocristal de glace présente une structure hexagonale (glace I_h). Le plan de base est le plan qui présente la plus forte densité d’atomes d’oxygène (Fig. 1.1). L’axe de symétrie hexagonale, perpendiculaire à ce plan est appelé l’axe c (Petrenko et Whitworth, 1999). Le monocristal de glace est un matériau birefringent : son axe optique est confondu avec l’axe c. Cette propriété de birefringence permet, à l’aide de polariseurs croisés, de repérer l’orientation de l’axe c.

La déformation viscoplastique du monocristal de glace résulte essentiellement du glissement des dislocations dans les plans de base. En conséquence, le monocristal de glace est l’un des matériaux naturels le plus anisotrope. Pour une même contrainte équivalente, la vitesse de déformation en cisaillement parallèlement aux plans de base est entre trois et quatre ordres de grandeur supérieure à celle en compression perpendiculairement aux plans de base (Duval et al., 1983).

La synthèse des essais expérimentaux donnée par Duval et al. (1983) (Figure 1.2), montre que le fluage secondaire d’un monocristal de glace qui se déforme par glissement basal est bien représenté par une loi puissance avec un exposant des contraintes n = 2 et une énergie d’activation de 63kJ.mol⁻¹. De plus, Kamb (1961) a montré que pour un
exposant des contraintes $n = 1$ ou $n = 3$, il n'y a pas de direction privilégiée de glissement dans le plan de base. Pour un exposant des contraintes situé entre ces deux valeurs, l'écart entre la direction du glissement dans le plan de base et la cission résolue sur ce plan n'excède pas 2°. Le plan de base peut donc être considéré comme isotrope pour $1 \leq n \leq 3$.

![Diagram](image.png)

Fig. 1.1: Représentation de la structure cristallographique hexagonale de la glace terrestre (Ih).
Fig. 1.2: Synthèse des résultats expérimentaux sur la relation entre la vitesse de déformation équivalente et la contrainte équivalente pour la glace isotrope et le monocrystal déformé par glissement basal et non basal, donnée par Duval et al. (1983)
Fig. 1.3: Représentation 2D de la rotation de l’axe c d’un grain soumis à une traction uniaxiale, de son orientation initiale c_i à son orientation finale c_f.

1.2.2 Développement des textures dans les calottes polaires

Du fait de la très forte anisotropie du monocristal, durant la déformation, son axe c a tendance à s'orienter parallèlement à l’axe de compression et perpendiculairement à l’axe de traction, comme illustré sur la Figure 1.3.

En conséquence, la distribution des axes c des grains monocristallins) constituant un polycristal, appelée fabrique dans la suite, est le résultat de l’histoire des vitesses de déformation que la glace a subie durant son trajet depuis la surface de la calotte jusqu’à sa position actuelle (Alley, 1988).

Ainsi, les fabriques mesurées dans les forages dépendent des conditions d’écoulement : sous les dômes, la glace est supposée se déformer principalement par compression uniaxiale et les fabriques mesurées présentent une orientation privilégiée très marquée des axes c suivant une direction proche de la verticale (voir par exemple Thorsteinsson et al. (1997) pour GRIP au Groenland, Azuma et al. (1999) pour Dôme F en Antarctique et Wang et al. (2003) pour Dôme C en Antarctique) ; à Vostok, les axes c sont distribués aléatoirement dans un plan et ces fabriques sont vraisemblablement formées en traction perpendiculairement à ce plan (Lipenkov et al., 1989). Des exemples de fabriques en projection de Schmidt, mesurées dans les forages de Vostok et GRIP, sont montrées sur la Figure 1.4.

Plusieurs mécanismes de recristallisation affectent par ailleurs le développement des textures dans les glaces polaires (Alley, 1992) :

- la partie supérieure (entre 100 et 1000m de profondeur) des régions centrales des calottes polaires est une région de croissance normale des grains. L’aire moyenne des grains croît linéairement avec le temps, sous l’effet de la diminution de l’énergie des joints de grains. Il n’y a pas création de nouveaux grains, et la fabrique est majoritairement contrôlée par la réorientation des grains sous l’effet de la déformation. La croissance normale des grains peut être ralentie ou stoppée par les impuretés et les particules contenues dans la glace : la taille des grains mesurée dans les forages présente alors des variations corrélées avec les périodes climatiques (Durand, 2005).

- la partie intermédiaire des calottes polaires est une zone de croissance normale des grains et de recristallisation par rotation (ou recristallisation continue). Du fait des
incompatibilités de déformation intra-granulaires dans le polycristal, les champs de vitesses de déformation et de contraintes sont hétérogènes ; les dislocations se regroupent alors en murs à l’intérieur du grain conduisant à la formation de sous-joints puis finalement de joints de grain. La désorientation entre les grains ainsi formés est faible et ce processus pourrait ralentir la concentration de la fabrique en compression (Castelnau et al., 1996a). La recristallisation par rotation, par la division des grains, est responsable de l’arrêt de l’augmentation de la taille des grains à partir de 400m dans le forage de Byrd (Gow et Williamson, 1976) et à partir de 650m dans le forage de GRIP (Thorsteinsson et al., 1997). Par contre, cet effet est insuffisant pour contrebalancer l’augmentation de la taille des grains due à la croissance normale à Dôme C (Durand et al., 2006a).

– la partie inférieure des calottes, près du socle, où la température et les vitesses de déformation augmentent, est caractérisée par le régime de recristallisation par migration (ou recristallisation discontinue). De nouveaux grains, mieux orientés pour la déformation apparaissent. Des fabriques à plusieurs maxima et de brusques déconcentrations de la fabrique sont caractéristiques de ces zones (Gow et Williamson, 1976; Thorsteinsson et al., 1997). On observe généralement une augmentation importante de la taille des grains et les grains s’interpénètrent. La fabrique est alors essentiellement contrôlée par l’état de contrainte.

Du fait de la forte anisotropie du monocristal et du développement de fabriques très marquées dans les zones de croissance normale et de recristallisation par rotation, le polycristal de glace présente un comportement fortement anisotrope, fonction de sa fabrique (Pimenta, 1987). Dans la zone de recristallisation par migration, comme la fabrique s’adapte presque instantanément à l’état de contrainte, la glace peut être supposée isotrope mais avec une fluidité plus importante (Lliboutry et Duval, 1985).
Fig. 1.4: Exemples de fabriques observées dans les forages de (a) Vostok (Antarctique) aux profondeurs de 104.5 m, 879 m, 915 m et 978 m (Lipenkov et al., 1989) et (b) GRIP (Groenland) aux profondeurs de 1790 m, 1899 m et 1982 m (Thorsteinsson et al., 1997). La projection des intersections des axes c avec la demi-sphère unité est faite dans le plan horizontal in-situ.
Fig. 1.5: Représentation schématique des différents modes de fluage de la glace polycristalline.

1.2.3 Comportement du polycristal de glace

1.2.3.1 Polycristal isotrope

La glace polycristalline se déforme essentiellement par glissement des dislocations. D’après Duval et al. (1983), le fluage par diffusion reste marginal dans le cas de la glace, d’une part à cause des très faibles valeurs de ses coefficients de diffusion et d’autre par à cause de la taille importante des cristaux dans les glaces naturelles et artificielles. De même, la déformation par glissement aux joints de grains n’est pas un mécanisme de déformation dominant dans les calottes polaires puisqu’il ne permet pas d’expliquer le développement des fabriques observé dans les calottes (Meyssonnier et al., 2001).

La courbe de fluage de la glace isotrope se décompose en trois parties distinctes, comme illustré par la Figure 1.5 :

- Le fluage primaire

Au début d’un essai de fluage, la vitesse de déformation commence par diminuer, c’est le fluage primaire. L’écrasissage du matériau résulte de la forte anisotropie du monocristal de glace. Du fait de l’hétérogénéité du polycristal, des contraintes internes, liées à l’accumulation des dislocations près des joints de grains, se développent et conduisent au durcissement du matériau (Duval et al., 1983).

- Le fluage secondaire

Le fluage secondaire ou fluage stationnaire correspond à la phase où le matériau se déforme à vitesse constante. Dans la glace, cette phase est très courte et le fluage secondaire est défini comme le minimum de la vitesse de déformation. Ce minimum est en général atteint pour des déformations proches de 1%.

La relation entre le minimum de la vitesse de déformation \bar{D} et la contrainte \bar{S} est bien décrite par une loi puissance de type Norton-Hoff, appelée loi de Glen en Glaciologie :

$$\bar{D} = \frac{1}{2} B_n(T) \tau^{n-1} \bar{S},$$ (1.1)
où \(\tau^2 = \mathbf{S} \cdot \mathbf{S} / 2 \) est le deuxième invariant de \(\mathbf{S} \) et \(n \) l’exposant de sensibilité à la contrainte. La fluidité \(B_n \) dépend de la température \(T \) selon une loi d’Arrhénius :

\[
B_n(T) = B_n(T_0) e^{\frac{Q}{R} \left(\frac{1}{T_0} - \frac{1}{T} \right)},
\]

où \(B_n(T_0) \) est la fluidité de référence à la température \(T_0 \), \(R = 8.314 \) est la constante des gaz parfaits et \(Q \) est l’énergie d’activation.

Dans les conditions de pression et de température utilisées en laboratoire, l’exposant des contraintes \(n \) est proche de 3, comme indiqué sur la Figure 1.2 (Duval et al., 1983). La valeur de la fluidité de référence est de l’ordre de \(B_3 \approx 20 \text{MPa}^{-3} \text{a}^{-1} \) à \(-10^\circ\text{C}\) (Duval, 1981). Dans les conditions rencontrées couramment dans les calottes polaires, la valeur de l’exposant \(n \) est incertaine et varie certainement en fonction des conditions de contrainte et de température rencontrées, et donc avec la profondeur. A partir de données d’inclinométrie dans des trous de forage en Antarctique, une valeur inférieure à 2, et possiblement proche de 1, a été trouvée par Doake et Wolff (1985) et Lliboutry et Duval (1985). A partir de l’étude de la densification des bulles dans le forage de Vostok, Lipenkov et al. (1997) trouvent une valeur \(n = 1 \) et \(B_1 = 0.16 \pm 0.07 \text{MPa}^{-1} \text{a}^{-1} \) à \(-10^\circ\text{C}\).

De même, il existe une incertitude assez importante sur la valeur de l’énergie d’activation \(Q \) dans (1.2). Les valeurs de \(Q \) données dans les revues de Budd et Jacka (1989) et Lliboutry et Duval (1985) vont de 60kJ.mol\(^{-1}\) à quelques centaines pour des températures proches du point de fusion. Pour les conditions de contraintes et de température \((\approx -10^\circ\text{C})\) des essais de laboratoire, on trouve généralement une valeur proche de 78kJ.mol\(^{-1}\). C’est la valeur que nous utilisons dans ce manuscrit. Pour Lliboutry et Duval (1985), l’augmentation de cette valeur pour des températures proches du point de fusion, masquerait le fait que la recristallisation par migration commencerait avant l’apparition du fluage secondaire, et le minimum de la vitesse de déformation augmenterait progressivement vers la vitesse de déformation du fluage tertiaire.

Notons que pour Paterson (1991), la valeur de la fluidité de référence de la glace pourrait être affectée par la teneur en impuretés et en poussières de la glace. La glace des périodes glaciaires ayant des teneurs en impuretés et en poussières plus importantes que la glace des périodes interglaciaires (EPICA Community members, 2004) serait plus fluide. Pour Cuffey et al. (2000), cet effet sur la fluidité serait en fait contrôlé directement par la taille des grains, la taille des grains étant elle-même contrôlée par la teneur en impuretés et en poussières.

La loi de Glen (1.1), avec un exposant des contraintes \(n = 3 \), est la loi de comportement la plus couramment utilisée pour la modélisation de l’écoulement de la glace dans les calottes polaires. Pettit et Waddington (2003) utilisent une loi de comportement polynomial avec \(n = 1 \) et \(n = 3 \) du type

\[
\mathbf{D} = (\bar{B}_1 + \bar{B}_3 \tau^2) \mathbf{S},
\]

où \(\bar{B}_1 \) et \(\bar{B}_3 \) sont des fluidités correspondant au terme \(n = 1 \) et \(n = 3 \), respectivement. Selon le rapport de ces deux fluidités, le terme linéaire est plus ou moins important, ce qui conduit à des écoulements différents.

Le fluage tertiaire

Après avoir atteint le minimum de vitesse de déformation, la vitesse de déformation augmente pour se stabiliser en fin d’essai, c’est le fluage tertiaire. Cette phase commence avec l’apparition de la recristallisation par migration (Lliboutry et Duval, 1985). Cette phase peut encore être décrite par la loi de Glen (1.1) mais avec une fluidité \(B_n \) trois à quatre fois supérieure à celle utilisée pour le fluage secondaire.
1.3. Modèles de comportement de la glace polaire

1.3.1 Le monocristal de glace

Il existe essentiellement deux types de modèles de grain utilisés dans la littérature.

1.3.1.1 Modèles de grain à plans de glissement

Dans ces modèles, la déformation du grain provient du glissement dans différents plans cristallographiques. La vitesse de déformation en cisaillement parallèlement à ces plans est alors fonction de la cission résolue sur ces plans et de la dureté de chaque plan. Dans le cas du monocristal de glace, la plupart des auteurs supposent qu’il y a du glissement uniquement dans les plans de base (Lliboutry, 1993; Azuma et Goto-Azuma, 1996; Svendsen et Hutter, 1996; Gødert et Hutter, 1998; Thorsteinsson, 2001). L’inconvénient de cette modélisation est que le grain ne peut pas se déformer suivant toutes les directions.

Pour remédier à ce problème, Castelnau et al. (1996b) considèrent du glissement dans les plans basaux, prismatiques et pyramidaux. Les plans prismatiques et pyramidaux sont au moins 70 fois plus durs à activer que les plans basaux.

La réorientation du grain sous l’effet de la déformation est alors donnée par la rotation de chacun de ses plans au cours de la déformation.

1.3.1.2 Modèle de grain continu

Meyssonnier et Philip (1996) adoptent un modèle de grain continu orthotrope de révolution pour le monocristal de glace. La loi de comportement qui relie les vitesses de déformation \(D \) aux contraintes déviatoires \(S \), supposée linéaire, est construite à partir des théorèmes de représentation des fonctions tensorielles objectives de Boehler (1978). L’anisotropie du monocristal est fonction de deux paramètres scalaires. La réorientation du grain sous l’effet de la déformation est alors obtenue en supposant que le grain se déforme principalement par glissement basal. Une extension non linéaire de cette loi de comportement a été proposée par Gagliardini (1999).

Dans ce manuscrit, nous utilisons le modèle de grain continu de Meyssonnier et Philip (1996) et nous le comparons au modèle de grain à plans de glissement de Castelnau.
et al. (1996b) dans le Chapitre 2. Ces deux modèles conduisent à un comportement identique dans le cas linéaire mais nous montrons que, par contre, les vitesses de rotation de l’axe c sont différentes.

1.3.2 La fabrique

Il existe deux types de descriptions possibles pour la fabrique. Une description discrète où la fabrique est décrite avec un nombre fini N_g de grains, chacun des grains ayant une orientation et une fraction volumique propre. Avec cette description, les vitesses de déformation et contraintes sont calculées dans chaque grain, ce qui conduit à des temps de calcul et à un nombre de variables considérable.

Pour remédier à cet inconvénient, il existe des descriptions continues de la fabrique, basées sur le concept de fonction de distribution des orientations cristallines (ODF pour Orientation Distribution Function) ou sur le concept des tenseurs d’orientation. Ces descriptions ont l’avantage de réduire considérablement le nombre de variables nécessaires pour décrire la fabrique et permettent, dans certains cas, d’obtenir des solutions analytiques.

Ces descriptions sont étudiées en détail au Chapitre 3.

1.3.3 Le polycristal de glace

Il existe essentiellement trois types de modèles de comportement de la glace polycristalline anisotrope.

Nous rappelons que la plupart des modèles d’écoulement des calottes polaires utilisent la loi isotrope de Glen (1.1). Cette loi n’est plus appropriée pour décrire le comportement d’un polycristal texturé. Afin de prendre en compte l’effet de l’anisotropie, plusieurs auteurs adoptent le concept de facteur d’amplification ("enhancement factor") de Lile (1978), i.e., ils multiplient la fluidité B_o dans (1.1) par un scalaire plus grand que 1. Mais ce paramètre scalaire ne change pas la nature isotrope de la relation (1.1), et les effets directionnels de l’anisotropie ne sont donc pas pris en compte.

1.3.3.1 Modèles phénoménologiques

L’approche la plus simple consiste à adopter une forme de loi anisotrope macroscopique pour le comportement du polycristal (Boehler, 1978) et d’identifier les paramètres de cette loi, soit à partir d’essais mécaniques (Le Gac, 1980; Pimienta et al., 1987), soit par comparaison avec les modèles pour le comportement anisotope (Gillet-Chaulet et al., 2005) (cf 1.3.3.2 et Chapitre 4). De la même manière, Gillet-Chaulet et al. (2006) adoptent une loi macroscopique pour l’évolution de la fabrique et la comparent aux modèles ci-dessous (voir Chapitre 5).

Dans le modèle phénoménologique de Morland et Staroszczyk (1998), le comportement macroscopique anisotrope de la glace est décrit par une fonction tensorielle objective (Boehler, 1978) qui dépend de la vitesse de déformation, de la déformation et de trois tenseurs de structure. L’anisotropie est alors décrite par des fonctions phénoménologiques de la déformation.

Notons que ces modèles se restreignent en général à une classe d’anisotropie particulière : l’orthotropie de révolution ou l’orthotropie.

Dans les modèles phénoménologiques, on peut aussi citer le modèle de Placidi et Hutter (2005). Ce modèle dérive de solutions analytiques obtenues pour certaines fabriques particulières en supposant des contraintes homogènes dans le polycristal. L’hypothèse la
plus importante de ce modèle est que les contraintes et vitesses de déformations sont colinéaires. La fluidité est alors une fonction de la fabrique et du chargement. Nous montrerons au Chapitre 4 que la non colinéarité des vitesses de déformation et contraintes est sans doute un des effets les plus importants de l’anisotropie et que cette non colinéarité peut être à l’origine d’instabilités du comportement et perturber la stratigraphie.

1.3.3.2 Modèles d’homogénéisation

Pour les modèles d’homogénéisation ou modèles micro-macro (μ-M), le comportement macroscopique du polycristal est déduit du comportement microscopique de ses constituants. Ces modèles sont basés sur des formules d’interaction entre chaque grain et le polycristal. Il existe plusieurs types d’interaction. Tous ces modèles sont basés sur l’hypothèse que les contraintes et les vitesses de déformation à l’intérieur d’un grain sont homogènes. Mais ces contraintes et vitesses de déformation peuvent être interprétées comme les valeurs moyennes des champs de contraintes et vitesses de déformation réels à l’intérieur du grain.

Nous décrivons de manière précise ces modèles au Chapitre 4 pour la partie calcul du comportement et au Chapitre 5 pour l’évolution de la fabrique.

- Le modèle de Taylor suppose des vitesses de déformation homogènes dans chaque grain et égales aux vitesses de déformation macroscopiques.
- Le modèle Statique suppose des contraintes homogènes dans chaque grain et égales aux contraintes macroscopiques
- Les modèles de type auto-cohérent introduisent une équation d’interaction entre le grain et le milieu homogène équivalent (HEM). Ils conduisent à un comportement intermédiaire entre les deux bornes que sont les modèles de Taylor et Statique.

Récemment, Faria (2006a); Faria et al. (2006); Faria (2006b) et Placidi et Hutter (2006) ont adapté la théorie des mélanges à la glace polycristalline, avec une approche continue de la diversité des constituant. L’approche continue ne considère pas un nombre fini de constituants discrets, mais une représentation continue de la densité de diversité sur l’ensemble des diversités possibles. Dans leur approche, la diversité est à la fois l’orientation et la taille des grains. Cette théorie, fort ambitieuse dans sa volonté d’intégrer un maximum de processus de déformation et de recristallisation, n’a pas encore été appliqué et il est difficile aujourd’hui de la juger. A ce stade, cette théorie propose un nouveau formaliste mathématique que réellement des méthodes pratiques permettant de prendre en compte l’anisotropie induite des glaces polaires. Concernant le comportement, Faria (2006b) montre que la théorie des mélanges à diversité continue peut conduire à des formes de lois identiques à celles obtenues par les modèles Statique et/ou Taylor, sans réellement préciser la dépendance entre les paramètres rhéologiques à la texture.
1.3.3.3 Modèles complets

1.4 Modèles d’écoulement des calottes polaires

Nous pouvons identifier deux objectifs différents pour la modélisation de l’écoulement de la glace dans les calottes polaires. Le premier type de modèle a pour objectif de modéliser entièrement l’évolution des calottes polaires (Groenland et Antarctique) afin de comprendre leur évolution dans le passé et de prédire leur évolution dans le futur. Compte tenu des échelles d’espace et de temps mises en jeu, ces modèles doivent être simplifiés afin de ne pas conduire à des temps de calcul trop élevés. Ils sont tous basés sur l’approximation de la couche mince à l’ordre zéro. Le second type de modèles a pour objectif de mieux comprendre l’écoulement de la glace au voisinage des sites de forages. Ces modèles résolvent en général toutes les équations qui gouvernent l’écoulement de la glace.

1.4.1 L’approximation de la couche mince

Les équations qui gouvernent l’écoulement de la glace sont développées en fonction du rapport d’aspect de la calotte polaire $\epsilon = H/L$, où H est la hauteur caractéristique de la calotte et L sa longueur caractéristique. Le paramètre ϵ est en général très petit, de l’ordre de 10^{-3}, ce qui permet d’obtenir un système simplifié des équations qui régissent l’écoulement (Hutter, 1983). La plupart des modèles utilisent l’approximation à l’ordre 0 en ϵ avec un comportement de la glace isotrope. Avec cette approximation, les contraintes longitudinales sont négligées devant les termes de cisaillement et l’écoulement est gouverné uniquement par la pente locale de la surface. Cette approximation est valide loin des dômes et tant que les variations horizontales de la géométrie (surface et sol) sont petites par rapport à l’épaisseur de glace. On pourra trouver un inventaire détaillé des modèles utilisant cette approximation dans Fabre (1997).

1.4.2 Les modèles d’ordre supérieur

La plupart des modèles qui résolvent l’ensemble des équations qui gouvernent l’écoulement de la glace sont basés sur la méthode des éléments finis. Parmi les autres méthodes de résolution possibles, on notera le modèle de Deponti et al. (2006) avec la méthode des volumes finis, et Mangeney (1996) qui propose une méthode de résolution par différences finies.

On peut aussi faire rentrer dans la catégorie des modèles d’ordre supérieur le modèle de Pattyn (2003), bien qu’il utilise certaines hypothèses simplificatrices : la contrainte
longitudinale suivant la verticale est assimilée à la pression hydrostatique et les gradients horizontaux de la vitesse verticale sont supposés petits devant le gradient vertical de la vitesse horizontale.

La plupart de ces modèles ont été appliqués sur des tests synthétiques afin de mettre en évidence l’effet des contraintes longitudinales sur l’écoulement dans les régions où l’approximation de la couche mine n’est pas valide, notamment près des dômes (par exemple : Mangeney et al. (1996); Schott Hvidberg (1996); Pettit et Waddington (2003)).

Plusieurs applications ont été menées sur la ligne de courant reliant les forages de GRIP et GISP2 au Groenland (Mangeney, 1996; Schott Hvidberg et al., 1997; Gagliardini et Meyssonnier, 2000). Ces simulations montrent les limites de la modélisation unidirectionnelle utilisée pour dater le forage de GRIP (Dahl-Jensen et al., 1993). Martín et al. (2006) comparent les arches de Raymond (Raymond, 1983) qu’ils obtiennent avec leur modèle thermomécanique utilisant une rhéologie isotrope (1.1), à celles mesurées sous la crête de Roosevelt Island. L’amplitude des bosses mesurées ne peut être reproduite qu’avec un exposant des contraintes élevé ($n = 4$ dans (1.1)), mais notons que Pettit (2003) montre que l’anisotropie peut jouer un rôle sur l’amplitude des arches de Raymond.

On peut citer plusieurs applications en dehors de la Glaciologie, où des modèles micro-macro avec une description discrète de la fabrique, ont été implantés dans un code éléments finis. Dans Chastel et al. (1993), la fabrique, à partir d’une condition limite où elle est connue, est calculée le long des lignes de courant qui correspondent aux trajectoires dans le cas stationnaire. Dans Habraken et Duchène (2004), une fabrique discrète est définie en chacun des points d’intégration, et la résolution est lagrangienne, i.e., le maillage se déforme au cours de la simulation. Notons que nous ne pouvons pas appliquer ces méthodes ici puisque, par essence, elles sont limitées à des simulations stationnaires ou à résolutions lagrangiennes. En effet, l’apport constant en surface de nouveau matériau (accumulation), et les très grandes déformations qui ont lieu dans les calottes polaires, sont des conditions rédhibitoires pour un traitement lagrangiens de leur écoulement.
1.5 Conclusion

Nous avons présenté dans ce chapitre les particularités des mécanismes de déformation de la glace polaire. Nous avons montré l’intérêt d’étudier le comportement de la glace aux différentes échelles de nos modèles : le cristal de glace, le développement des textures et le comportement anisotrope du polycristal. Les essais de laboratoire ne pouvant pas reproduire les conditions de déformation in-situ, la validation des modèles de comportement de la glace et d’évolution de sa fabrique nécessite forcément des simulations de l’écoulement au voisinage des sites de forage aussi réalistes que possible. Cette contrainte entraîne que les modèles utilisés doivent être aussi peu coûteux en temps de calcul et en nombre de variables que possible.

Chapitre 2

Modélisation du monocristal de glace

2.1 Introduction

Dans ce chapitre nous présentons les équations constitutives adoptées pour décrire le comportement et la rotation du plus petit constituant de nos modèles : le monocristal de glace.

Ces équations constitutives sont comparées au modèle de grain utilisé par Castelnau (1996). Nous rappelons que ces deux modèles conduisent à un comportement de grain identique dans le cas linéaire, mais nous montrons que pour la rotation des grains sous l’effet de la déformation, les deux approches donnent des résultats différents.

Ces différences sont discutées en étudiant la stabilité d’un grain sous l’effet de différentes conditions de déformation.

2.2 Définitions

Dans la suite, nous caractérisons les orientations cristallographiques des grains uniquement par la distribution de leurs axes \(c \). Cette hypothèse est justifiée par le fait que \((i) \) le glissement basal conduit à un comportement pratiquement orthotrope de révolution autour de l’axe \(c \) (Kamb (1961)) et \((ii) \) en pratique l’orientation des axes \(a \) est rarement mesurée.

L’axe \(c \) d’un grain est repéré par rapport au repère de référence \(\{ R \} \) par deux angles d’Euler : la colatitude \(\theta \) et la longitude \(\varphi \), définis sur la Figure 2.1. Le vecteur unitaire dirigé selon l’axe \(c \) du grain est noté \(\mathbf{c} \).

Comme il n’y a pas de raison physique de donner une orientation à l’axe \(c \), mais que seule sa direction est importante, alors \(c \) et \(-c \) (soit \((\theta, \varphi) \) et \((\pi - \theta, \varphi + \pi) \)) représentent un seul et même grain, et l’ensemble des orientations possibles est donc défini par \(\theta \in [0, \pi/2] \) et \(\varphi \in [0, 2\pi] \).

Les vecteurs de base du repère attaché au grain \(\{^gR\} \) sont donnés dans \(\{ R \} \) par :

\[
\begin{align*}
\mathbf{e}_\theta & = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta)^T \\
\mathbf{e}_\varphi & = (-\sin \varphi, \cos \varphi, 0)^T \\
\mathbf{e}_3 & = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^T = \mathbf{c}
\end{align*}
\]

où la notation \((.)^T\) définit le transposé de \((.)\).

Le vecteur unité dirigé selon l’axe \(c \) du grain est donné par \(\mathbf{c} = (0, 0, 1)^T \) dans \(\{^gR\} \), et par \(c = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)^T \) dans le repère de référence \(\{ R \} \). Ces deux expressions sont reliées par :

\[
\mathbf{c} = \mathbf{R}.^g\mathbf{c} \quad \text{et} \quad ^g\mathbf{c} = \mathbf{R}^T.\mathbf{c},
\]

(2.2)
Fig. 2.1: Orientation du repère \{^gR\}, attaché au grain, par rapport au repère de référence \{R\} et définition de la colatitude \(\theta\) et de la longitude \(\varphi\) de l’axe \(c\).

où \(R\) est la matrice de passage du repère \{^gR\} au repère \{R\} :

\[
R = \begin{pmatrix}
\cos \theta \cos \varphi & -\sin \varphi & \sin \theta \cos \varphi \\
\cos \theta \sin \varphi & \cos \varphi & \sin \theta \sin \varphi \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}.
\]

(2.3)

2.3 Loi de comportement

Comme Meyssonier et Philip (1996) et Gagliardini (1999), nous modélisons le cristal de glace comme un matériau continu et homogène avec un comportement viscoplastique linéaire orthotrope de révolution autour de son axe \(c\). L’hypothèse d’orthotropie de révolution est en accord avec les résultats de Kamb (1961) selon lesquels le plan de base est isotope pour un exposant des contraintes \(n = 1\) ou \(n = 3\). Ce modèle continu pour le grain présente l’avantage de permettre des calculs analytiques.

2.3.1 Loi linéaire

L’expression de la loi de comportement linéaire du grain utilisée ici est une fonction tensorielle objective qui dérive de l’expression la plus générale pour un milieu linéaire orthotrope de révolution données par Boehler (1987).

Le comportement du grain dépend de trois paramètres rhéologiques \(\eta, \beta\) et \(\gamma\) :
- \(\eta\) est la viscosité en cisaillement parallèlement au plan de base du grain, définie comme

\[
^gS_{13} = 2\eta^gD_{13} \quad \text{et} \quad ^gS_{23} = 2\eta^gD_{23},
\]

(2.4)

où \(^gS\) et \(^gD\) sont les tenseurs des contraintes déviatoires et des vitesses de déformation, respectivement, exprimés dans le repère \{^gR\} (cf figure 2.1). Par convenance,
selon le sens dans lequel on exprime la loi de comportement, plutôt que la viscosité \(\eta \) on utilisera parfois son inverse, soit la fluidité \(\psi_1 \) définie comme

\[
\psi_1 = 1/\eta ,
\]

(2.5)

- \(\beta \) est le rapport de la viscosité en cisaillement parallèlement au plan de base, \(\eta \), à la viscosité en cisaillement dans le plan de base, défini par

\[
\beta \, ^gS_{12} = 2\eta \, ^gD_{12} ,
\]

(2.6)

- \(\gamma \) est le rapport de la viscosité en compression ou en traction suivant l’axe \(c \) du grain, notée \(\eta_c \), à celle dans le plan de base. Soient une compression (ou traction) uniaxiale selon la direction de l’axe \(c \) et une compression (ou traction) uniaxiale selon une direction \(^c e_r \) contenue dans le plan de base, alors

\[
^gS_{33} = 2\eta_c \, ^gD_{33} \quad \text{et} \quad \gamma \, ^gS_{rr} = 2\eta_c \, ^gD_{rr} .
\]

(2.7)

Avec ces notations, la loi de comportement linéaire du grain est donnée par (Gagliardini, 1999)

\[
D = \frac{\psi_1}{2} \left(\beta S + 2\left(\frac{\gamma + 2}{4\gamma - 1} - 1 \right) \text{tr}(M_3.\mathbf{S})M_3^D + (1 - \beta)(\mathbf{S}.M_3 + M_3.\mathbf{S})^D \right) ,
\]

(2.8)

où \(M_3 = c \otimes c \) est le tenseur de structure décrivant l’orthotropie de révolution autour de l’axe \(c \) du grain et \((.)^D \) dénote la partie déviatoire de \((.) \).

La forme inverse de l’équation (2.8) est donnée par

\[
\mathbf{S} = 2\eta \left(\frac{1}{\beta} D + 2\left(\frac{\gamma}{\beta} - 1 \right) \text{tr}(M_3.\mathbf{D})M_3^D + (1 - \frac{1}{\beta})(\mathbf{D}.M_3 + M_3.\mathbf{D})^D \right) .
\]

(2.9)

Le détail des calculs pour l’inversion de la loi (2.8) est donné en Annexe A. D’après les équations (2.8) et (2.9), la viscosité en compression ou traction suivant l’axe \(c \) du grain est donnée par

\[
\eta_c = \eta \frac{4\gamma - 1}{3\beta} .
\]

(2.10)

Le potentiel de dissipation \(\phi^{(1)} \) associé aux équations (2.8) et (2.9), qui par définition obéit à

\[
\mathbf{S} = \frac{\partial \phi^{(1)}}{\partial \mathbf{D}} \quad \text{et} \quad \mathbf{D} = \frac{\partial \phi^{(1)}}{\partial \sigma} = \left(\frac{\partial \phi^{(1)}}{\partial \mathbf{S}} \right)^D ,
\]

(2.11)

est proportionnel à la puissance dissipée \(W \), comme

\[
\phi^{(1)} = \frac{1}{2} W = \frac{1}{2} \mathbf{S} : \mathbf{D} .
\]

(2.12)

Exprimé en fonction des contraintes déviatoires, il s’écrit (Gagliardini, 1999)

\[
\phi_S^{(1)} = \frac{\psi_1}{2} \left(\frac{\beta}{2} \text{tr}(\mathbf{S}^2) + \left(\frac{\beta}{4\gamma - 1} + 1 \right) \text{tr}(M_3.\mathbf{S})^2 + (1 - \beta) \text{tr}(M_3.\mathbf{S}^2) \right) ,
\]

(2.13)
et en fonction des vitesses de déformation

\[\phi_D^{(1)} = 2\eta \left(\frac{1}{2\beta} \text{tr}(D^2) + \left(\frac{\gamma}{\beta} - 1 \right) \text{tr}(M_3.D)^2 + (1 - \frac{1}{\beta}) \text{tr}(M_3.D^2) \right). \]

(2.14)

La condition \(\phi^{(1)} > 0 \) entraîne les inégalités suivantes pour \(\beta \) et \(\gamma \) (Gagliardini, 1999)

\[
\begin{align*}
\beta &> 0 \\
\gamma &> \frac{1}{4}
\end{align*}
\]

(2.15)

Selon Duval (1981), le monocristal de glace se déforme essentiellement en cisaillement parallèlement aux plans de base donc \(\beta \) doit être choisi tel que \(\beta << 1 \). Par contre il n'y a pas d'évidence que la compression ou traction soit plus facile dans la direction de l'axe c que dans une direction contenue dans le plan de base, en conséquence \(\gamma \) doit être proche de 1.

Cependant, nous montrerons que tous les modèles d'homogénéisation utilisés dans ce mémoire pour décrire le comportement du polycristal conduisent, dans le cas extrême où tous les grains sont alignés suivant une même direction, à un comportement identique à celui d'un monocristal isolé. Donc, pour prendre en compte le comportement d'un grain inclus dans un polycristal, il vaut mieux tenir compte de tests effectués sur des polycristaux avec des fabriques à un seul maximum très marqué que d'essais mécaniques sur des monocristaux isolés. D'après les résultats de Pimienta et al. (1987), pour le même niveau de contrainte appliqué, un polycristal avec une fabrique présentant des axes c alignés se déforme 10 fois plus vite en cisaillement parallèlement aux plans de base qu'une glace isotrope (i.e., avec des grains orientés aléatoirement), et 100 fois plus vite qu'en cisaillement dans les plans de base. En conséquence, en notant \(\eta_0 = 1/B_1 \) la viscosité de la glace isotrope, où \(B_1 \) est donné par (1.2), alors \(\eta_0/\eta \approx 10 \) et \(\beta \approx 10^{-2} \).

Dans la suite les trois rapports \(\beta \), \(\gamma \) et \(\eta_0/\eta \) seront supposés être indépendants de la température, de telle manière que la viscosité \(\eta \) sera uniquement fonction de la viscosité de la glace isotrope \(\eta_0 \) et du modèle micro-macro utilisé.

2.3.2 Loi non-linéaire

D'après Gagliardini (1999), une loi non-linéaire orthotrope de révolution pour le monocristal est obtenue en généralisant le potentiel de dissipation obtenu dans le cas linéaire (2.13) comme :

\[
\phi_S^{(n)} = \frac{\psi_n}{(n+1)} \left(\frac{\beta}{2} \text{tr}(S^2) + (\beta \frac{\gamma + 2}{4\gamma - 1} - 1) \text{tr}(M_3.S)^2 + (1 - \beta) \text{tr}(M_3.S^2) \right)^{(n+1)/2},
\]

(2.16)

où \(\psi_n \) est la fluidité en cisaillement parallèlement au plan de base du grain pour un comportement non linéaire, avec un exposant des contraintes \(n \). Cette généralisation non-linéaire présente l'avantage de ne dépendre toujours que de trois paramètres \(\psi_n, \beta \) et \(\gamma \) pour décrire la rhéologie du monocristal de glace, alors que, d'après Bohler (1978), le potentiel viscoplastique d'un matériau orthotrope de révolution avec un exposant des contraintes \(n = 3 \) dépend de 7 paramètres indépendants. Avec cette généralisation, nous supposons que les paramètres d'anisotropie du monocristal \(\beta \) et \(\gamma \) ne dépendent pas de l'exposant des contraintes \(n \). Par contre, nous montrerons dans le Chapitre 4 qu'avec les modèles \(\mu-M \) utilisés ici, le rapport \(\eta_{n0}/\eta_n \) de la viscosité d'un polycristal isotrope non-linéaire à
la viscosité en cisaillement parallèlement aux plans de base d’un polycristal avec tous ses axes c alignés, dépend lui de l’exposant n.

2.4 Rotation de l’axe c

Nous nous intéressons dans cette partie à la rotation des axes cristallographiques d’un grain due à sa déformation. L’hétérogénéité de la déformation à l’intérieur d’un grain n’étant pas prise en compte par les lois de comportement données ici, la formation de sous-joints amenant à la polygonisation du grain n’est pas modélisée à l’échelle du grain mais sera traitée d’un point de vue macroscopique dans le Chapitre 5.

2.4.1 Équation d’évolution de c

Considérons un vecteur infinitésimal arbitraire joignant deux points matériels dans un grain, noté v dans $\{R\}$ et $\frac{\partial v}{\partial \xi}$ dans $\{\xi\}$. Sous l’effet d’un gradient de vitesse L exprimé dans $\{R\}$ ($\frac{\partial L}{\partial \xi}$ dans $\{\xi\}$), le vecteur v, pendant un incrément de temps dt, se transforme en $v + dv$ dans $\{R\}$ ($\frac{\partial v}{\partial \xi} + dv$ dans $\{\xi\}$) tel que

$$
\frac{dv}{dt} = L.v dt , \quad \frac{d\frac{\partial v}{\partial \xi}}{dt} = L_{\xi} \frac{\partial v}{\partial \xi} dt ,
$$

par définition du tenseur gradient de vitesse.

Les vecteurs v et $\frac{\partial v}{\partial \xi}$ sont reliés par $v = R_{\xi} v$, où R est la matrice de rotation (2.3). La différentielle de cette relation par rapport au temps conduit à

$$
\frac{dv}{dt} = \dot{R}_{\xi} v dt + R_{\xi} \frac{\partial L}{\partial \xi} \frac{\partial v}{\partial \xi} dt .
$$

L’égalité des équations (2.17) et (2.18) conduit à

$$
\dot{R}_{\xi} v + R_{\xi} \frac{\partial L}{\partial \xi} \frac{\partial v}{\partial \xi} = L.v = L_{\xi} v .
$$

La relation (2.19) étant vraie pour tout vecteur $\frac{\partial v}{\partial \xi}$, nous obtenons la formule de transformation pour le tenseur gradient de vitesse :

$$
L = \dot{R}_{\xi} R^T + R_{\xi} L_{\xi} R^T .
$$

Le gradient de vitesse L se décompose en sa partie symétrique, le tenseur des vitesses de déformation D, et en sa partie antisymétrique, le tenseur des taux de rotation W, respectivement. Le tenseur vitesses de déformation étant un tenseur objectif, il se transforme de $\{\xi\}$ à $\{R\}$ comme

$$
D = R_{\xi} D_{\xi} R^T ,
$$

et d’après (2.20) nous obtenons donc la formule de transformation pour le tenseur antisymétrique W comme

$$
W = \dot{R}_{\xi} R^T + R_{\xi} W_{\xi} R^T .
$$

L’axe c du grain restant fixe dans le repère $\{\xi\}$, la dérivation de (2.21) conduit à

$$
\dot{c} = \dot{R}_{\xi} c .
$$

En utilisant (2.22) et (2.23), le vecteur vitesse de rotation \dot{c} de l’axe c du grain est donc donné par

$$
\dot{c} = W.c - R_{\xi} W_{\xi} c .
$$
Fig. 2.2: Représentation 2D de la rotation de l’axe c du cristal de glace sous l’effet d’un cisaillement simple parallèlement aux plans de base \(L_{13} = g_{L_{13}} > 0 \). En (a) le cristal n’est pas déformé, (b) illustre la rotation \(R.W.c \) due à la déformation du grain et (c) illustre la rotation solide \(W.c \) de l’axe c par rapport à \(\{R\} \). Au total \(\dot{e} = 0 \).

Cette relation exprime que la vitesse de rotation totale de l’axe c d’un grain par rapport au repère de référence \(\{R\} \) (i.e., le terme \(W.c \)) se décompose en la somme d’une rotation viscoplastique \((R.W.c) \) due à la déformation et qui correspond à la vitesse de rotation de l’axe c par rapport au repère \(\{gR\} \), et de la rotation du repère du grain \(\{gR\} \) par rapport au repère de référence \(\{R\} \) (i.e., le terme \(\dot{e} \)), comme illustré par la Figure 2.2.

2.4.2 Expression de la vitesse de rotation \(^gW \)

Comme Meyssonnier et Philip (1996), nous faisons l’hypothèse que la composante de la vitesse selon l’axe c du grain (i.e., \(\dot{e}_3 \)) est seulement une fonction de \(^g x_3 \), ce qui implique

\[
^g W_{13} = ^g D_{13} \quad \text{et} \quad ^g W_{23} = ^g D_{23},
\]

ou, en terme de contraintes, en utilisant (2.8)

\[
^g W_{13} = \frac{\dot{\psi}_1}{2} ^g S_{13} \quad \text{et} \quad ^g W_{23} = \frac{\dot{\psi}_1}{2} ^g S_{23}.
\]

Cette hypothèse revient à supposer que la réorientation de l’axe c est principalement due à la déformation par glissement des dislocations dans les plans de base, en négligeant les contributions des plans pyramidaux et prismatiques. Cette hypothèse est bien justifiée dans le cas de la glace polaire, puisque le cristal de glace se déforme principalement par glissement basal, et elle est utilisée dans la plupart des modèles existants (Lliboutry, 1993; Azuma et Goto-Azuma, 1996; Svendsen et Hutter, 1996; Gödert et Hutter, 1998; Thorsteinsson, 2001). Nous discuterons cette hypothèse par comparaison avec les résultats donnés par un modèle de grain discret à plans de glissement dans la section suivante.

Avec cette hypothèse (2.25), le produit \(^gW.c \) dans (2.24) est réécrit en fonction de \(^g D \) comme

\[
^g W.c = ^g D.c - (c.D.c)^g c.
\]

En remplaçant \(^gW.c \) dans (2.24) par (2.27) et en utilisant les formules de changement de repère (2.2), on obtient l’expression du vecteur vitesse de rotation de l’axe c dans le repère de référence

\[
\dot{c} = W.c - D.c + (c.D.c)c.
\]
De manière similaire, en utilisant (2.26)

\[g\mathbf{W} \cdot \mathbf{c} = \frac{\psi_1}{2} \left(g\mathbf{S} \cdot \mathbf{c} - \langle \mathbf{c}^T \cdot g\mathbf{S} \rangle \cdot \mathbf{c} \right), \] (2.29)

et le vecteur vitesse de rotation de l’axe \(c \) est donné en fonction des contraintes par

\[\dot{\mathbf{c}} = \mathbf{W} \cdot \mathbf{c} - \frac{\psi_1}{2} \left(\mathbf{S} \cdot \mathbf{c} - \langle \mathbf{c}^T \cdot \mathbf{S} \rangle \cdot \mathbf{c} \right). \] (2.30)

Pour un grain inclus dans un polycrystal, les expressions de \(\mathbf{W}, \mathbf{D} \) et \(\mathbf{S} \) dépendent du comportement du grain et du modèle d’homogénéisation utilisé. Nous discuterons ces relations dans le Chapitre 5.

2.4.3 Orientation d’un grain en fonction du tenseur gradient de transformation

Nous montrons ici, à partir de l’équation (2.28), que l’orientation d’un grain dépend uniquement de son orientation initiale et du tenseur gradient de transformation qu’il a subi.

\[F_{ij}^o = \frac{\partial x_i}{\partial x_j} \quad \text{et} \quad \dot{\mathbf{F}} = \mathbf{L} \cdot \mathbf{F}, \] (2.31)

où \(x_i \) et \(x_i^0 \) sont les coordonnées aux temps \(t \) et \(t^0 \) respectivement.

L’équation (2.28) peut se réécrire

\[\dot{\mathbf{c}} = -\mathbf{L}^T \cdot \mathbf{c} + (\mathbf{c}^T \cdot \mathbf{L}^T) \cdot \mathbf{c}. \] (2.32)

Suivant Dinh et Armstrong (1984), on peut vérifier que

\[\mathbf{c} = \frac{\mathbf{F}^{-T} \cdot \mathbf{c}_o}{(\mathbf{c}_o^T \cdot \mathbf{F}^{-1} \cdot \mathbf{F}^{-T} \cdot \mathbf{c}_o)^{1/2}}, \] (2.33)

est solution de l’équation (2.32), où \(\mathbf{c}_o \) est l’orientation du grain au temps \(t^0 \), en remarquant que la dérivation de \(\mathbf{F} \cdot \mathbf{F}^{-1} = \mathbf{I} \), où \(\mathbf{I} \) est le tenseur identité, entraîne

\[\dot{\mathbf{F}}^{-1} = -\mathbf{F}^{-1} \cdot \dot{\mathbf{F}} \cdot \mathbf{F}^{-1} = -\mathbf{F}^{-1} \cdot \mathbf{L} \quad \text{d’après} \,(2.31). \] (2.34)

En conclusion, si le gradient de transformation du grain est connu, alors son orientation, en fonction de son orientation initiale, est donnée par (2.33).

2.5 Comparaison avec un modèle à plans de glissement

Le modèle de grain adopté par Castelnau et al. (1996b) tient compte du glissement des dislocations sur différents systèmes de glissement. La déformation du grain est donc la somme des cisaillements simples parallèlement aux différents plans de glissement adoptés. Cette approche est classique pour la modélisation de la viscoplasticité cristalline (Kocks et al., 1998).

\[\text{Dinh et Armstrong (1984) dérivent ce type d’équation pour des fibres très étirées dans un solvant newtonien, l’équation que nous donnons ici diffère par le signe et par le fait que le transposé de } \mathbf{L} \text{ apparaîsse dans l'équation.} \]
La dépendance de la vitesse de déformation en cisaillement \(\dot{\gamma}^s \) du système de glissement (s) à la contrainte de cisson résolue \(\tau^s \) agissant sur (s) est décrite par une loi puissance de la forme

\[
\dot{\gamma}^s = \dot{\varepsilon}_0 \left| \frac{\tau^s}{\tau_c^s} \right|^{n^s-1} \frac{\tau^s}{\tau_c^s},
\]

où \(\dot{\varepsilon}_0 \) est une vitesse de déformation de référence, et \(\tau_c^s \) et \(n^s \) caractérisent, la résistance en cisaillement et l’exposant de sensibilité à la contrainte du système de glissement (s), respectivement.

La contrainte de cisaillement est donnée par

\[
\tau^s = r^S : S,
\]

où le tenseur de Schmid \(r^S \) est défini à partir des vecteurs unitaires normal au plan de glissement \((n^S) \) et parallèle au vecteur de Burgers \((b^S) \) comme :

\[
r^S = \frac{1}{2} (b^S \otimes n^S + n^S \otimes b^S).
\]

Dans le cas linéaire (i.e., \(n = 1 \)), le tenseur gradient de vitesse est donné par

\[
L = \dot{\varepsilon}_0 \sum_{i=1}^{S} \frac{r^i}{\tau_c^i} b^i \otimes n^i.
\]

Le tenseur vitesse de déformation, partie symétrique de \(L \), est obtenu comme

\[
D = \dot{\varepsilon}_0 \sum_{i=1}^{S} \frac{r^i}{\tau_c^i} r^i,
\]

et le tenseur taux de rotation, partie antisymétrique de \(L \), comme

\[
W = \dot{\varepsilon}_0 \sum_{i=1}^{S} \frac{r^i}{\tau_c^i} S \frac{1}{2} (b^i \otimes n^i - n^i \otimes b^i).
\]

Castelnau et al. (1996b) utilisent les douze systèmes de glissement illustrés sur la Figure 2.3 :

- 3 dans les plans de base : \(\{0001\} < 11\overline{2}0> \),
- 3 dans les plans prismatiques : \(\{0110\} < 21\overline{1}0> \),
- 6 dans les plans pyramidaux : \(\{1\overline{1}22\} < 11\overline{2}3> \).

L’expression des tenseurs gradient de vitesse, vitesse de déformation et taux de rotation est donnée en Annexe B, en fonction du tenseur des contraintes dans le repère \(\{\mathcal{B}\} \) et des résistances au cisaillement de chacun des plans.

Dans un premier temps, comme Meyssonnier et Philip (2000) et Gagliardini (1999), nous rappelons que dans le cas linéaire ce modèle conduit à une loi de comportement identique à la formulation continue (2.8). Ensuite, nous montrons que la prise en compte du glissement sur les plans pyramidaux conduit à une expression du vecteur vitesse de rotation de l’axe \(c \) différente de celle adoptée et donnée par l’équation (2.28).
2.5. Comparaison avec un modèle à plans de glissement

Fig. 2.3: Plans de glissement adoptés par Castelnau (1996) : (a) plan de base, (b) plan prismatique et (c) plan pyramidal.

2.5.1 Comportement

Dans le cas linéaire, la loi de comportement (2.39) avec les plans de glissement adoptés par Castelnau et al. (1996b) est orthotrope de révolution et identique à la formulation continue (2.8). Les contraintes de références τ_a, τ_b et τ_c des familles basales, prismatiques et pyramidales (respectivement) peuvent être reliées aux paramètres d’anisotropie du grain ψ_1, β et γ comme (Meyssonnier et Philip, 2000)

\[
\begin{align*}
\frac{1}{\tau_a} & = \frac{\psi_1}{3} \left(2 - \frac{\chi_2}{\chi_1} \frac{\beta}{4\gamma - 1} \right) \\
\frac{1}{\tau_b} & = \frac{\beta \psi_1}{3} \frac{8\gamma - 3}{4\gamma - 1} \\
\frac{1}{\tau_c} & = \frac{\psi_1}{6\chi_1} \frac{\beta}{4\gamma - 1}
\end{align*}
\]

où les constantes χ_1 et χ_2 sont définies en fonction des dimensions caractéristiques du réseau cristallographique de la glace par

\[
\begin{align*}
\chi_1 & = \left(\frac{ac}{a^2 + c^2} \right)^2 \\
\chi_2 & = \chi_1 \left(\frac{a}{c} - \frac{c}{a} \right)^2
\end{align*}
\]

avec $c/a = 1.629$ pour la glace.

Dans le cas non linéaire, avec un exposant des contraintes $n = 3$, ce modèle ne conduit pas à un comportement du grain orthotrope de révolution autour de l’axe c et ne peut donc pas se mettre sous une forme continue telle que (2.16).

2.5.2 Rotation de l’axe c

A partir de l’expression (2.40) et des relations (2.41), le produit $\mathbf{\partial W}.\mathbf{\partial c}$ peut se réécrire en fonction de la déformation $\mathbf{\partial D}$, des paramètres d’anisotropie du grain β et γ et des
paramètres du réseau cristallographique de la glace comme (voir Annexe B)

\[gW_{c} = \lambda \left(gD_{c} - (c.D_{c})c \right) \]

(2.43)

avec

\[\lambda = 1 - \frac{\beta}{4\gamma - 1} \left(\frac{c}{a} \right)^{2} - 1 \].

(2.44)

A partir des conditions sur \(\beta \) et \(\gamma \) (2.15) et de la valeur du rapport \(c/a = 1.629 \), il vient

\[\lambda \leq 1 \forall (\beta, \gamma) \].

(2.45)

D’après (2.24), la vitesse de rotation de l’axe \(c \) est donc donnée par

\[\dot{c} = W.c - \lambda \left[D.c - (c.D.c)c \right] \].

(2.46)

Dans la suite, nous appellerons "modèle de grain continu", le modèle dans lequel la rotation de l’axe \(c \) est donnée par (2.28) ou (2.30). Nous appellerons "modèle de grain à plans de glissement", le modèle dans lequel la rotation de l’axe \(c \) est donnée par (2.46). Nous rappelons encore une fois que ces deux modèles conduisent au même comportement du grain, défini par les paramètres d’anisotropie \(\eta, \beta \) et \(\gamma \), et ne diffèrent que par l’équation utilisée pour la rotation d’un grain. Implicitement, sauf indication contraire, nous utilisons toujours le modèle de grain continu.

On peut noter que le modèle de grain continu (2.28) utilisé dans la section 2.4.2 est obtenu avec \(\lambda = 1 \) dans (2.46). Avec les plans de glissement adoptés par Castelnau (1996), \(\lambda \) donné par (2.44) tend vers 1 lorsque \(\beta \) tend vers 0, ce qui correspond à un grain qui ne se déforme que par glissement sur les plans de base. Si \(\lambda \neq 1 \), l’équation (2.46) diffère donc aussi de l’équation (2.28) par le fait que, dans le cas d’une vitesse de déformation \(gD \) imposée, la vitesse de rotation de l’axe \(c \) dépend des paramètres d’anisotropie du grain alors qu’avec le modèle de grain continu, elle en est indépendante.

Nous montrons dans la section suivante qu’en traction et compression, le modèle de grain à plans de glissement (2.46) conduit à une vitesse de rotation de l’axe \(c \) plus faible que le modèle de grain continu (2.28) et qu’aussi le modèle à plans de glissement, un grain subissant un cisaillement simple parallèlement à ses plans de base n’est pas dans une position d’équilibre.

On peut remarquer qu’en choisissant des plans pyramidaux orientés à 45° par rapport à l’axe \(c \), au lieu des 58.5° adoptés par Castelnau (1996) comme définis sur la Figure 2.3c, on retrouve le même comportement et la même vitesse de rotation que pour le modèle de grain continu. Il suffit simplement de modifier les équations (2.41) et (2.44) en remplaçant le rapport \(c/a \) par 1. Physiquement, ces plans pyramidaux ont une densité d’atomes beaucoup plus faible que celle des plans définis sur la Figure 2.3c, et ont donc peu de chance d’être activés, mais ils nous permettent de comparer le modèle continu au modèle discret. Nous présentons les résultats obtenus avec ces deux modèles au Chapitre 5.

L’équation (2.46) est similaire, aux signes près, à l’équation de Jeffery (1922) donnant la vitesse de rotation d’un ellipsoïde rigide immergé dans un fluide Newtonien. Le cas \(\lambda = 1 \) correspond à une fibre très élongée (\(i.e., \) beaucoup plus longue que large). Cette équation est très utilisée pour prédire l’état d’orientation des fibres dans les matériaux composites (\(e.g., \) Advani et Tucker III (1987); Chung et Kwon (2002)).
2.6 Étude de stabilité des grains

Nous rappelons ici que les expressions (2.28) et (2.30) dépendent respectivement des vitesses de déformation et contraintes subies par un grain et que dans le cas d’un grain inclus dans un polycristal, ces vitesses de déformation et contraintes dépendent des vitesses de déformations et contraintes macroscopiques subies par le polycristal, de manière plus ou moins complexe selon le modèle d’homogénéisation utilisé.

L’objet de cette section est d’étudier les points stables d’un grain isolé pour quatre modes de déformation simples (compression, traction, cisaillement pur et cisaillement simple). Les implications en terme de stabilité des fabriques selon les modèles μ-M utilisés seront discutées au Chapitre 5.

Nous rappelons qu’une position \((\theta_0, \varphi_0)\) est une position d’équilibre de l’axe \(c\) si :

\[
\begin{align*}
\dot{\theta}(\theta_0, \varphi_0) &= 0, \\
\dot{\varphi}(\theta_0, \varphi_0) &= 0,
\end{align*}
\] (2.47)

et qu’elle est stable si une des trois conditions suivantes est vérifiée (Gagliardini, 1999) :

\[
\left. \frac{\partial \dot{\theta}}{\partial \theta} \right|_0 < 0 \text{ ou } \left. \frac{\partial \dot{\varphi}}{\partial \varphi} \right|_0 < 0 , \text{ et } 4 \left. \frac{\partial \dot{\theta}}{\partial \theta} \right|_0 \left. \frac{\partial \dot{\varphi}}{\partial \varphi} \right|_0 > \left(\left. \frac{\partial \dot{\theta}}{\partial \varphi} \right|_0 + \left. \frac{\partial \dot{\varphi}}{\partial \theta} \right|_0 \right)^2 ,
\] (2.48)

ou

\[
\left. \frac{\partial \dot{\varphi}}{\partial \varphi} \right|_0 = 0 , \text{ et } \left. \frac{\partial \dot{\theta}}{\partial \theta} \right|_0 + \left. \frac{\partial \dot{\varphi}}{\partial \theta} \right|_0 = 0 , \text{ et } \left. \frac{\partial \dot{\theta}}{\partial \varphi} \right|_0 < 0 ,
\] (2.49)

ou

\[
\left. \frac{\partial \dot{\theta}}{\partial \theta} \right|_0 = 0 , \text{ et } \left. \frac{\partial \dot{\theta}}{\partial \theta} \right|_0 + \left. \frac{\partial \dot{\varphi}}{\partial \varphi} \right|_0 = 0 , \text{ et } \left. \frac{\partial \dot{\varphi}}{\partial \varphi} \right|_0 < 0 .
\] (2.50)

En différentiant \(c\) (2.13) et en identifiant avec les équations (2.28) et (2.46), les vitesses angulaires \(\dot{\theta}\) et \(\dot{\varphi}\) sont données par

\[
\dot{\theta} = -\lambda \left[\frac{1}{2} \sin 2\theta \left(D_{11}(1 + \cos^2 \varphi) + D_{22}(1 + \sin^2 \varphi) + D_{12} \sin 2\varphi \right) - \\
\cos 2\theta \left(D_{13} \cos \varphi + D_{23} \sin \varphi \right) \right] + W_{13} \cos \varphi + W_{23} \sin \varphi ,
\]

\[
\dot{\varphi} \sin \theta = \lambda \left[\frac{1}{2} \sin \theta \left((D_{11} - D_{22}) \sin 2\varphi - 2D_{12} \cos 2\varphi \right) + \\
\cos \theta \left(D_{13} \sin \varphi - D_{23} \cos \varphi \right) \right] - \\
W_{12} \sin \theta - (W_{13} \sin \varphi - W_{23} \cos \varphi) \cos \theta ,
\] (2.51)

avec \(\lambda = 1\) pour le modèle de grain continu et \(\lambda\) donné par l’équation (2.44) pour le modèle de grain à plans de glissement.

Une expression similaire est obtenue en fonction des contraintes en remplaçant les \(D_{ij}\) par \(\psi_{i}S_{ij}/2\). Les études de stabilité suivantes sont faites pour des vitesses de déformation imposées, mais dans le cas de la traction, de la compression et du cisaillement pur, les résultats restent valides pour des contraintes imposées.

Pour illustrer le comportement du modèle à plans de glissement, nous utilisons \(\beta = 0.04\) et \(\gamma = 1\), ce qui donne \(\lambda = 0.978\). Nous montrons au Chapitre 4 que ce jeu de paramètres conduit à un rapport \(\dot{\eta}_0/\eta = 10\) avec le modèle auto-cohérent.
2.6.1 Compression/traction

Pour un état de traction ou compression uniaxiale suivant la direction e_1, défini comme
$D_{11} = -2D_{22} = -2D_{33}$ et $W = 0$, les équations (2.51) se réduisent à

$$
\begin{align*}
\dot{\theta} &= -\lambda \frac{3}{4} D_{11} \cos^2 \varphi \sin 2\theta \\
\dot{\varphi} &= \lambda \frac{3}{4} D_{11} \sin 2\varphi
\end{align*}
\tag{2.52}
$$

Les positions d'équilibre sont données par

$$
\varphi = \pm \frac{\pi}{2} \forall \theta \text{ et } \left\{ \begin{array}{l}
\varphi = m\pi, m = 0, 1 \\
\theta = n\frac{\pi}{2}, n = 0, 1
\end{array} \right.
\tag{2.53}
$$

Pour une traction selon e_1 (i.e., $D_{11} > 0$), les positions stables sont $(\forall \theta, \varphi = \pm \frac{\pi}{2})$, et toute position dans le plan perpendiculaire à l'axe de traction est donc une position stable.

En compression selon e_1, les positions stables sont $(\pi/2, 0)$ et $(\pi/2, \pi)$ et correspondent en fait à la même orientation de grain, parallèle à la direction de compression.

Ces différentes positions ainsi que la trajectoire de l'axe c d'un grain sur la demi-sphère des orientations sont illustrées sur les Figures 2.4b et 2.4c. On remarque que, quelle que soit la valeur de λ, les trajectoires sont identiques. Par contre, pour $\lambda < 1$, la vitesse de rotation vers les positions d'équilibre est plus faible que pour $\lambda = 1$.

2.6.2 Cisaillement pur

Pour un cisaillement pur D_{13} (toutes les autres composantes de D étant nulles et $W = 0$), les équations (2.51) donnent

$$
\begin{align*}
\dot{\theta} &= -\lambda D_{13} \cos \varphi \cos 2\theta \\
\dot{\varphi} &= \lambda D_{13} \sin \varphi \cos \theta
\end{align*}
\tag{2.54}
$$

Les quatre positions d'équilibre (θ_0, φ_0) sont $(\pi/2, \pi/2), (\pi/2, -\pi/2), (\pi/4, 0)$ et $(\pi/4, \pi)$. La seule position stable est la position $(\pi/4, \pi)$ si $D_{13} > 0$ ou $(\pi/4, 0)$ si $D_{13} < 0$.

Ces différentes positions ainsi que la trajectoire de l'axe c d'un grain sont illustrées par la Figure 2.4d. Comme pour la traction/compression, les trajectoires sont identiques quelle que soit la valeur de λ, et $\lambda < 1$ conduit à une vitesse de rotation plus faible.

2.6.3 Cisaillement simple

Pour un cisaillement simple défini par $D_{13} = W_{13}$ (toutes les autres composantes de D et W étant nulles), alors les équations (2.51) donnent

$$
\begin{align*}
\dot{\theta} &= (1 - \lambda \cos 2\theta)D_{13} \cos \varphi \\
\dot{\varphi} &= (\lambda - 1)D_{13} \cos \theta \sin \varphi
\end{align*}
\tag{2.55}
$$

Pour $\lambda = 1$, $\dot{\varphi} = 0 \forall \theta$ et $\forall \varphi$. Les positions d'équilibre sont donc les positions où $\dot{\theta} = 0$, soient $(0, \varphi)$ et $(\theta, \pm\pi/2)$, mais aucune de ces positions n'est stable. Ces positions sont représentées sur la Figure 2.5a. On remarque que tous les grains (hormis ceux initialement en $\varphi = \pm\pi/2$) tournent vers la position d'équilibre $(0, \varphi)$. Comme cette position n'est
pas stable, pour une perturbation $d\theta > 0$ le grain va tourner vers la direction d’équilibre opposée $(\theta + \pi, \varphi)$, qui correspond à la même orientation du grain.

Pour $\lambda < 1$, il y a une seule position d’équilibre en $(\pi/2, \pm\pi/2)$, mais les grains n’ont pas tendance à se diriger vers cette position. On remarque sur la Figure 2.5b que les grains tendent vers la position $(0, \varphi)$ mais ne peuvent jamais l’atteindre. De plus, les axes c des grains ont des trajectoires périodiques, c’est-à-dire qu’ils repassent par leur orientation de départ. C’est ici une limite du modèle à plans de glissement puisque, si un grain est en position $(0, \varphi)$, alors il devrait se déformer uniquement en cisaillement simple parallèlement au plan de base. Parce que ce modèle impose une composante constante de glissement pyramidal (dépendant du rapport τ_c/τ_a), il n’y a pas de position d’équilibre possible en cisaillement simple.
Fig. 2.4: (a) Espace des orientations en projection équiaxéale de Schmidt sur le plan (e_1, e_2). Les angles θ et φ sont définis sur la Figure 2.1. Zones où (•) $\theta = 0$, (○) $\varphi = 0$, (●) $\theta = 0$ et $\varphi = 0$ pour (b) une compression selon e_1, (c) une traction selon e_1 et (d) un cisaillement pur $D_{13} > 0$. Les flèches pointillées représentent le sens de rotation selon θ et les flèches en tirets celui selon φ. Les positions d’équilibre stables sont représentées par un rond noir dans un carré. La trajectoire de l’axe c d’un grain est représentée par des croix noires pour $\lambda = 1$ et des croix rouges pour $\lambda = 0.978$. La position de départ est représentée par un carré, l’intervalle de temps entre deux croix est constant mais varie entre les Figures (b), (c) et (d).
2.7. Conclusion

Dans ce Chapitre, nous avons adopté une loi de comportement linéaire et orthotrope de révolution pour le monocristal de glace. Cette loi de comportement dépend d’une fluidité dimensionnelle \(\psi_1 \) et de deux paramètres \(\beta \) et \(\gamma \) caractérisant l’anisotropie du monocristal de glace. Nous avons présenté une extension non-linéaire possible pour cette loi de comportement, en conservant les paramètres d’anisotropie constants.

Nous avons donné l’expression de la vitesse de rotation de l’axe \(c \) d’un grain en fonction du gradient de transformation qu’il subit. Nous avons fait l’hypothèse que la réorientation de l’axe \(c \) d’un grain est principalement due à l’effet du glissement parallèlement aux plans de base.

Nous avons comparé ces résultats avec un modèle de grain à plans de glissement. Ce modèle conduit à une loi de comportement rigoureusement identique à celle que nous avons adoptée dans le cas linéaire. Par contre, l’hypothèse que nous avons faite sur la rotation du grain n’est pas vérifiée avec ce modèle. Les deux modèles sont identiques uniquement pour des plans pyramidaux orientés à 45° par rapport à l’axe \(c \), ce qui est physiquement peu réaliste.

Nous avons comparé les résultats des deux modèles pour différents tests de chargements. Nous avons montré que ces deux modèles conduisent à des positions stables identiques en compression, traction et cisaillement pur, et que les trajectoires des axes \(c \) sur la sphère des orientations sont identiques. Le modèle à plans de glissement implique une vitesse de rotation un peu plus faible que le modèle continu et la différence diminue quand le grain se déforme principalement par glissement basal, i.e., lorsque \(\beta \) tend vers 0. Nous avons montré qu’en cisaillement simple les deux modèles n’ont pas de position stable, mais que notre modèle continu a une position d’équilibre lorsque le grain a ses plans de base parallèles à la direction de cisaillement, alors que le modèle à plans de glissement n’a pas de position d’équilibre et conduit à des trajectoires périodiques des axes \(c \) sur la sphère.

Fig. 2.5: Zones où (\(\circ \)) \(\dot{\theta} = 0 \), (\(\circ \)) \(\dot{\phi} = 0 \), (\(\bullet \)) \(\ddot{\theta} = 0 \) et \(\ddot{\phi} = 0 \) pour un cisaillement simple \(L_{13} > 0 \) avec (a) \(\lambda = 1 \) et (b) \(\lambda = 0.978 \). La trajectoire de l’axe \(c \) d’un grain est représentée par des croix noires pour \(\lambda = 1 \) et des croix rouges pour \(\lambda = 0.978 \), et le sens de rotation est donné par les flèches rouges. La position de départ est représentée par un carré et l’intervalle de temps entre deux croix est constant.
des orientations.

La loi de comportement du grain (2.8) sera utilisée au Chapitre 4 pour mettre en place la loi de comportement du polycristal et la loi d'évolution de l'axe c du grain (2.28) sera utilisée au Chapitre 5 pour dériver les équations d'évolution de la fabrique.
Chapitre 3

Modèles de descriptions de la fabrique

3.1 Introduction

Dans le Chapitre 2, nous avons présenté les équations adoptées pour décrire le comportement et la rotation du monocristal de glace. Dans cette partie, nous traitons des méthodes utilisées habituellement pour décrire l’assemblage des grains dans le polycristal, i.e., la fabrique. Dans un premier temps, nous rappelons ce qu’est la “description discrète” de la fabrique, puis nous présentons deux représentations continues : soit par une fonction de distribution des orientations, soit par les tenseurs d’orientations. Ensuite, nous proposons des méthodes permettant de passer d’une description à l’autre afin de pouvoir comparer les modèles entre eux.

Avec les modèles μ-M que nous utilisons, un certain nombre de grandeurs données à l’échelle du polycristal (contraintes, vitesses de déformation, par exemple) sont calculées par homogénéisation de ces mêmes grandeurs définies à l’échelle de chaque cristal. Nous donnons dans ce chapitre les formules d’homogénéisation associées à chacune des descriptions de la fabrique présentées ici.

3.2 Description discrète

La “description discrète” est la méthode de représentation de la fabrique la plus naturelle et la plus répandue pour la plupart des modèles μ-M (Azuma, 1994; Van der Veen et Whillans, 1994; Castelnau et al., 1996b; Thorsteinsson, 2002). Le polycristal est représenté par un nombre fini N_g de grains, chaque grain ayant une orientation (θ_k, φ_k) et une fraction volumique f_k ($k = 1, \cdots, N_g$). Dans cette représentation deux grains différents peuvent donc avoir la même orientation (θ_k, φ_k) mais représenter des volumes différents. Ces valeurs discrètes d’orientation et de fraction volumiques proviennent directement des mesures effectuées sur les lames minces prélevées dans les carottes de glace. En effet, gagliardini et al. (2004) montrent que la fraction volumique peut être approximée par l’aire de la section du grain. La représentation discrète des fabriques en projection de Schmidt équiaréale reste encore une représentation privilégiée pour décrire les fabriques mesurées dans les carottes (Lipenkov et al., 1989; Thorsteinsson et al., 1997; Wang et al., 2003; Azuma et al., 1999; Diprinzio et al., 2005).

La moyenne pondérée d’une quantité i^Y (scalaire, vectorielle ou tensorielle) sur tous
les grains composant le polycristal est alors donnée par

$$ Y = \langle kY \rangle = \sum_{k=1}^{N_g} f_k kY. \quad (3.1) $$

Pour décrire correctement la fabrique, plusieurs centaines, voire milliers de grains, sont en général nécessaires. Pour calculer l'évolution de la fabrique, les contraintes et les vitesses de déformation doivent être déterminées sur chaque grain, en fonction des contraintes et vitesses de déformation macroscopiques. Les modèles μ-M basés sur ce type de description sont donc très coûteux en termes de temps de calcul et de nombre d’inconnues.

Cependant un gros avantage de la description discrète est de permettre l’utilisation de modèles μ-M plus complexes qu'avec les descriptions continues présentées ci-dessous.

3.3 Fonction de distribution des orientations

3.3.1 Définition

La fabrique peut être représentée de manière statistique par une fonction continue et positive de distribution des orientations (Orientation Distribution Function ou ODF), notée f.

Pour un grain repéré uniquement par son axe c, l’ODF est fonction des deux angles d'Euler θ et φ.

Comme il n’est pas possible de distinguer un grain dont l’orientation est c d’un grain d’orientation $-c$, la fonction f est centrosymétrique :

$$ f(c) = f(-c) \quad \text{soit} \quad f(\theta, \varphi) = f(\pi - \theta, \varphi + \pi), \quad (3.2) $$

et, comme noté dans le Chapitre 2, l’ensemble des orientations possibles est alors la surface d’une demi-sphère unité (cf Figure 2.1).

Avec cette représentation, deux grains de même orientation (θ, φ) sont indiscernables. La probabilité p_k de trouver des grains dans l'intervalle $([\theta_k, \theta_k + d\theta], [\varphi_k, \varphi_k + d\varphi])$, exprimant la fraction volumique des grains dont l'orientation est c_k à c près, est alors donnée par :

$$ p_k = \frac{1}{2\pi} f(\theta_k, \varphi_k) \sin \theta_k d\theta d\varphi \quad \text{soit} \quad p_k = \frac{1}{2\pi} f(c_k) dc. \quad (3.3) $$

Par définition l'ODF satisfait la condition de conservation du volume de grains, soit

$$ \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\pi/2} f(\theta, \varphi) \sin \theta d\theta d\varphi = \frac{1}{2\pi} \int_{S/2} f(c) dc = 1, \quad (3.4) $$

où $S/2$ représente la surface de la demi-sphère unité.

La moyenne pondérée d’une quantité $Y(\theta, \varphi)$ (scalaire, vectorielle ou tensorielle) sur tout le polycristal est alors donnée par

$$ \langle Y(\theta, \varphi) \rangle = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\pi/2} f(\theta, \varphi) Y(\theta, \varphi) \sin \theta d\theta d\varphi = \frac{1}{2\pi} \int_{S/2} f(c) Y(c) dc. \quad (3.5) $$

L’avantage d’une telle représentation est, en général, de réduire le nombre de variables nécessaires pour décrire la fabrique et de permettre des résultats analytiques. Plusieurs ODF ont été proposées pour décrire les fabriques dans le cas de la glace polaire : comme

3.3.2 L’ODF paramétrée de Gagliardini (1999)

Gagliardini (1999) propose d’adopter une ODF orthotrope dépendant de deux paramètres. Cette ODF est adaptée de solutions analytiques obtenues avec les modèles à contraintes et vitesses de déformation uniformes dans le cas de chargements simples préservant les conditions d’orthotropie (Gagliardini et Meyssonnier, 1999).

Dans le repère d’orthotropie \(^oR \), elle est donnée par

\[
 f(\theta, \varphi, k_1, k_2, k_3) = \frac{1}{[\sin^2 \theta (k_1^2 \cos^2 \varphi + k_2^2 \sin^2 \varphi) + k_3^2 \cos^2 \theta]^{3/2}}.
\]

(3.6)

La condition de continuité (3.4) entraîne :

\[
k_1 k_2 k_3 = 1 ,
\]

(3.7)

et donc seuls 2 des trois paramètres \(k_i \) sont indépendants.

Cette hypothèse d’orthotropie permet de bien reproduire les différents types de fabriques observées dans les forages :

- \(k_1 = k_2 = k_3 = 1 \) représente une fabrique où la répartition des grains est uniforme à la surface de la demi-sphère unité, i.e., une fabrique isotrope,
- \(k_1 << k_2 = k_3 \) représente une fabrique à un seul maximum selon la direction \(^o\epsilon_1 \),
- \(k_1 = k_2 << k_3 \) représente une fabrique de type couronne, i.e., isotrope dans le plan \((^o\epsilon_1, ^o\epsilon_2) \), et
- \(k_1 < k_2 < k_3 \) représente une fabrique orthotrope avec plus de grains dans la direction \(^o\epsilon_1 \) que dans les deux autres directions.

3.4 Décomposition de l’ODF en série de Fourier

L’utilisation d’une ODF est classique en science des matériaux pour la représentation et l’exploitation des mesures d’orientation (Kocks et al., 1998). Une approche classique consiste à décomposer l’ODF en série de Fourier.

3.4.1 Décomposition en harmoniques sphériques

La décomposition la plus courante est la décomposition en harmoniques sphériques introduite par Bunge (1982) :

\[
f(\mathbf{e}) = \sum_{l=0}^{\infty} \sum_{\mu=1}^{M(l)} \sum_{\nu=1}^{N(l)} C_l^{\mu\nu} T_l^{\mu\nu}(\mathbf{e}) ,
\]

(3.8)
où $C_{l}^{\mu \nu}$ sont les coefficients de Fourier, $T_{l}^{\mu \nu}$ sont des harmoniques sphériques généralisées symétrisées en fonction des symétries du cristal et de la fabrique, et $M(l)$ et $N(l)$ énumèrent les symétries associées aux indices μ et ν respectivement.

Cette décomposition est surtout utilisée pour reconstruire les ODF à partir des mesures de fabrique et plus particulièrement des figures de pôles (Kocks et al., 1998; Wenk et Van Houtte, 2004). Plus l’ordre des coefficients de Fourier sera élevé, plus la reconstruction de la fabrique sera précise ; mais il n’est pas nécessaire en général de reconstruire parfaitement l’ODF pour connaître les propriétés mécaniques du polycristal.

Ces coefficients de Fourier peuvent être utilisés comme variables d’état pour décrire le comportement mécanique du polycristal en fonction de sa fabrique : par exemple, pour un polycristal orthotrope et des cristaux cubiques à faces centrées (fcc), l’influence des termes d’ordre $l > 4$ sur les propriétés élastiques du polycristal est négligeable. Dans le cas linéaire, seuls les coefficients de Fourier d’ordre $l < 4$ interviennent comme variables d’état dans les lois de comportement macroscopiques obtenues avec les modèles à contraintes et vitesses de déformation uniformes (Li et al., 2005). Ainsi, Li et al. (2005) proposent des équations d’évolution des quatre premiers coefficients en fonction de la déformation et comparent leurs résultats avec un modèle utilisant une description discrète de la fabrique.

L’inconvénient d’une telle décomposition est qu’elle est dépendante du repère de référence. Les variables d’état tensorielles sont plus appropriées pour décrire la fabrique, et c’est pourquoi des décompositions tensorielles de l’ODF ont été développées.

3.4.2 Décomposition tensorielle

L’anisotropie de fabrique est commune en science des matériaux et la description de la fabrique par des variables d’état tensorielles, pouvant directement être utilisées dans les lois de comportement macroscopiques, est maintenant assez courante. Par exemple, ce type de représentation est adopté pour décrire l’orientation de vides dans des matériaux (Onat, 1984), l’orientation des fibres dans les matériaux composites (Advani et Tucker III, 1987; Cinar et Tucker III, 1995; Chung et Kwon, 2002; Dumont, 2003), la fabrique de cristaux cubiques à faces centrées fcc (Böhle et Bertram, 2001a; Böhle et al., 2003), ou pour caractériser l’orientation des contacts dans les milieux granulaires et leur évolution (Zhu et al., 2006).

Ainsi pour une ODF centrosymétrique, la décomposition tensorielle donne (Zheng et Zou, 2001)

$$f(c) = 1 + \sum_{n=1}^{\infty} \frac{(4n + 1)!}{4^n (2n)!^2} a^{(2n)} \cdot c^{\otimes 2n} 1,$$

(3.9)
3.4. Décomposition de l’ODF en série de Fourier

où

\[c^{\otimes m} = c \otimes c \otimes \cdots c, \]

le symbole \(\otimes \) représente la contraction sur tous les indices et \(\wedge a^{(2n)} \) représente la partie irréductible du tenseur d’orientation \(a^{(2n)} \) (discuté en détail dans la section suivante) :

\[
\wedge a^{(2n)} = \frac{1}{2\pi} \int_{S/2} f(c)c^{\otimes 2n} dc ,
\]

(3.11)

la partie irréductible du tenseur \(c^{\otimes 2n} \) étant obtenue comme

\[
\wedge c^{\otimes 2n} = \sum_{r=0}^{n} (-1)^r \alpha_{2n}(r)(I^{\otimes r} \otimes c^{\otimes 2(n-r)})^\text{sym} ,
\]

(3.12)

avec

\[
\alpha_{2n}(r) = \prod_{k=1}^{r} \frac{1}{4n - 2k + 1}, \text{ et } \alpha_n(0) = 1 ,
\]

(3.13)

et \((.)^\text{sym}\) étant la symérisation du tenseur \((.)\) par rapport à tous ses indices (somme des composantes obtenues avec le minimum de permutations nécessaires pour rendre le tenseur symétrique).

Ce qui donne pour les 2 premiers termes de (3.9)

\[
f(c) = 1 + \frac{15}{2} \wedge a^{(2)} : (c \otimes c) + \frac{315}{8} \wedge a^{(4)} : (c \otimes c \otimes c \otimes c) ,
\]

(3.14)

avec

\[
\wedge a^{(2)} = a^{(2)} - \frac{1}{3} \delta_{ij} \\
\wedge a^{(4)} = a^{(4)} - \frac{1}{I} (\delta_{ij}a_{kl}^{(2)} + \delta_{ik}a_{jl}^{(2)} + \delta_{il}a_{jk}^{(2)} + \delta_{jk}a_{il}^{(2)}) + \delta_{ij}a_{kl}^{(2)} + \frac{1}{35} (\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})
\]

(3.15)

Augmenter le nombre de termes dans l’équation (3.9) revient à augmenter la précision de l’ODF ainsi construite.

Sur la Figure 3.1, nous comparons, pour des fabriques orthotropes de révolution, l’ODF paramétrée (3.6) avec l’ODF reconstruite à partir des équations (3.14) et (3.11) en utilisant (3.6). Pour des fabriques très peu concentrées, l’ODF paramétrée est bien reproduite avec uniquement les termes d’ordre 2 et 4. Par contre, pour des fabriques plus marquées, les termes d’ordre 2 et 4 sont insuffisants pour une reconstruction réaliste de l’ODF puisqu’ils conduisent à des valeurs de \(f \) négatives, ce qui est physiquement impossible. Cependant, nous montrerons dans la suite que les tenseurs d’ordre 2 et 4 sont suffisants pour décrire le comportement du polycristal de glace linéaire, même si ils ne permettent pas de reconstruire précisément la fabrique.

\[\text{On peut noter que, dans leur formulation, Onat et Leckie (1988) prennent la partie irréductible des fonctions de base tensorielles } c^{\otimes 2n} \text{ dans l’équation (3.9). Mais on peut montrer que les termes supplémentaires s’annulent et donc l’équation (3.9) est complètement identique à la formulation donnée par Onat et Leckie (1988).} \]
Fig. 3.1: Comparaison de l’ODF paramétrée (3.6) (courbes seules) avec l’ODF reconstruite à partir des tenseurs d’orientations d’ordre 2 et 4 (3.14) (courbes et symboles) en fonction de l’angle θ pour des fabriques orthotrope de révolution autour de l’axe $\theta_3 : (a)$ de type couronne $k_1 = k_2 = 0.9$ (trait continu et trait continu et carré ; les courbes sont superposées), $k_1 = k_2 = 0.8$ (pointillés et pointillés et triangles), $k_1 = k_2 = 0.6$ (tirets et tirets et croix) ; (b) de type 1 maximum $k_1 = k_2 = 1.2$ (trait continu et trait continu et carré), $k_1 = k_2 = 1.4$ (pointillés et pointillés et triangles), $k_1 = k_2 = 1.6$ (tirets et tirets et croix) ; la valeur pour $\theta = 0$ vaut $f(0) = 16.8$.

3.5 Les tenseurs d’orientation

3.5.1 Définition

La fabrique peut donc aussi être décrite de manière condensée, sous forme tensorielle, par les différents moments de l’ODF (3.11). On peut noter ici une analogie entre les tenseurs d’orientation et les produits d’inertie caractérisant la répartition des masses sur une sphère creuse : ainsi les tenseurs d’orientation caractérisent la répartition des intersections des directions des axes c avec la sphère des orientations.

Comme donné par (3.11), le tenseur d’orientation d’ordre n, noté $a^{(n)}$ est défini comme

$$a^{(n)} = \langle c^{\otimes n} \rangle = \langle c \otimes c \otimes \cdots \otimes c \rangle,$$

où la moyenne pondérée $\langle . \rangle$ peut-être obtenue de manière discrète par (3.1) ou de manière continue par (3.5). Ces tenseurs sont donc un bon outil statistique pour comparer des fabriques décrites de manière discrète (par un nombre fini de grains) ou de manière continue (par une ODF).
Böhlke et Bertram (2001b) utilisent cette description tensorielle pour créer des fabriques isotropes discrètes de cristaux fcc. La méthode a été généralisée par Gillet-Chaulet et al. (2005, 2006) au cas de cristaux orthotropes de révolution pour construire des fabriques discrètes associées à une description par l'ODF paramétrée (3.6) ou à une description par les tenseurs d'orientation, comme rappelé dans la section suivante.

Comme f est une fonction centrosymétrique, par définition les tenseurs d'orientation d'ordre impair sont nuls. La fabrique est donc représentée par la suite infinie des tenseurs d'orientation d'ordre pair. Advani et Tucker III (1987) ont montré que pour un milieu où il n'y a pas d'interaction entre les grains, les tenseurs d'ordre 2 et 4 suffisent à décrire le comportement macroscopique d'un assemblage de composants dont le comportement est orthotrope linéaire.

3.5.2 Tenseurs d'ordre 2 et 4

Avec le comportement linéaire orthotrope de révolution que nous avons adopté pour le monocristal, nous vérifions analytiquement au Chapitre 4 que le comportement du polycristal déduit des modèles de Taylor et Statique2, ne dépend que de $a^{(2)}$ et $a^{(4)}$. Le modèle auto-cohérent n'introduit qu'une interaction moyenne entre les grains, et nous avons vérifié numériquement que les termes d'ordre supérieur à 4, n'interviennent pas dans le comportement du polycristal linéaire.

Ainsi, dans la suite, nos fabriques seront définies uniquement par les tenseurs d'ordre 2 et 4

$$ a^{(2)} = \langle c \otimes c \rangle \quad \text{et} \quad a^{(4)} = \langle c \otimes c \otimes c \otimes c \rangle, \quad (3.17) $$

respectivement.

D'après leur définition, ces deux tenseurs sont symétriques, et on note avec des accolades la série des coefficients indépendants de l'ordre des indices

$$ a^{(2)}_{ij} = \{ a^{(2)}_{ij} = a^{(2)}_{ji} \} $$

$$ a^{(4)}_{ijkl} = \{ a^{(4)}_{ijkl} = a^{(4)}_{kili} = a^{(4)}_{ijik} = a^{(4)}_{klij} = a^{(4)}_{iljk} = a^{(4)}_{ijkl} = a^{(4)}_{ikjl} = a^{(4)}_{iklj} \} $$

Le tenseur d'orientation d'ordre 2, exprimé dans son repère propre, a deux composantes non-nulles indépendantes car la condition de normalisation (3.4) entraîne $\text{tr}(a^{(2)}) = 1$.

Il faut noter que toutes les informations contenues dans $a^{(2)}$ se retrouvent dans $a^{(4)}$ grâce aux relations du type

$$ a^{(4)}_{ijkl} = a^{(2)}_{ij} (\text{sommet sur } k). \quad (3.19) $$

En revanche, deux fabriques de même tenseur d'ordre 2 peuvent avoir des tenseurs d'ordre 4 différents et donc un comportement macroscopique différent, comme on peut s'en douter en regardant la Figure 3.2.

Les valeurs propres du tenseur d'orientation d'ordre 2 commencent à être utilisées pour décrire les fabriques mesurées dans les glaces polaires (Thorsteinsson et al., 1997; Wang et al., 2003; Durand et al., 2006b). Elles sont plus pertinentes que les valeurs scalaires parfois utilisées, par exemple le degré d'orientation R (Thorsteinsson et al., 1997; Wang et al., 2003) ou l'inclinaison médiane (Azuma et al., 1999).

2modèles qui n'introduisent pas d'interaction entre les grains
Fig. 3.2: Différentes fabriques en projection de Schmidt et tenseur d’orientation $\mathbf{a}^{(2)}$ associé : (a) fabrique à 1 maximum dans la direction 3, (b) fabrique plane isotrope dans le plan (2,3) et fabrique à deux maxima dans les directions 2 et 3, (c) fabrique à 3 maxima dans les directions 1,2 et 3 et fabrique isotrope. Toutes ces fabriques ont des tenseurs d’ordre 4 différents.

3.5.2.1 Fabrique orthotrope

Afin de réduire encore le nombre de variables pour décrire la fabrique, nous limitons notre étude à des fabriques orthotropes, mais comme montré par Gagliardini (1999) c’est un bon compromis pour la description des fabriques dans les calottes polaires.

Pour une fabrique orthotrope (décrète par exemple par l’ODF paramétrée (3.6)), le tenseur d’orientation du second ordre exprimé dans le repère d’orthotropie $\{^oR\}$, compte tenu de (3.16) et des symétries (3.181), n’a que trois composantes non-nulles, dont seulement deux sont indépendantes

$$
\begin{align*}
& a_{11}^{(2)} = J_{30} - J_{32}, \\
& a_{22}^{(2)} = J_{32}, \\
& a_{33}^{(2)} = 1 - a_{11}^{(2)} - a_{22}^{(2)}.
\end{align*}
$$

Le tenseur d’ordre 4, exprimé dans le repère d’orthotropie $\{^oR\}$, n’a que vingt et une composantes non nulles dont seulement trois sont indépendantes compte tenu des symétries (3.182) et de la condition de continuité sur $\mathbf{a}^{(4)}$ (3.19) :

$$
\begin{align*}
& a_{1111}^{(4)} = J_{52} - J_{54}, \\
& a_{1111}^{(4)} = J_{30} - J_{32} - J_{50} + J_{52}, \\
& a_{2222}^{(4)} = J_{32} - J_{52}, \\
& a_{1111}^{(4)} = a_{11}^{(2)} - a_{1112}^{(4)} - a_{1133}^{(4)}, \\
& a_{2222}^{(4)} = a_{22}^{(2)} - a_{2211}^{(4)} - a_{2233}^{(4)}, \\
& a_{3333}^{(4)} = a_{33}^{(2)} - a_{3311}^{(4)} - a_{3322}^{(4)},
\end{align*}
$$

où les cinq moments $(J_{30}, J_{32}, J_{50}, J_{52}, J_{54})$ de l’ODF orthotrope sont donnés par

$$
J_{pq} = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} f(\theta, \varphi) \sin^p \theta \sin^q \phi \, d\theta \, d\varphi,
$$

d’après (3.17) et (2.13).
3.5.2.2 Fabrique orthotrope de révolution

Pour une fabrique orthotrope de révolution autour de l’axe \(e_3 \), la fonction de distribution ne dépend plus de \(\varphi \) et on obtient les conditions suivantes pour les moments de l’ODF (3.22)

\[
J_{32} = \frac{J_{30}}{2}, \quad J_{52} = \frac{J_{50}}{2}, \quad J_{54} = \frac{3J_{50}}{8} \quad (3.23)
\]

Ainsi, sur les trois composantes non-nulles du tenseur d’orientation d’ordre 2, une seule est indépendante

\[
\begin{align*}
\hat{a}_{11}^{(2)} &= \hat{a}_{22}^{(2)} = \frac{J_{30}}{2}, \\
\hat{a}_{33}^{(2)} &= 1 - \hat{a}_{11}^{(2)} - \hat{a}_{22}^{(2)} = 1 - 2\hat{a}_{11}^{(2)} = 1 - 2\hat{a}_{22}^{(2)},
\end{align*}
\quad (3.24)
\]

et sur les vingt et une composantes non-nulles du tenseur d’ordre 4, une seule est indépendante

\[
\begin{align*}
\hat{a}_{(1122)}^{(4)} &= \frac{J_{50}}{8}, \\
\hat{a}_{(1133)}^{(4)} &= \hat{a}_{(2233)}^{(4)} = \hat{a}_{(1122)}^{(2)} - 4\hat{a}_{(1122)}^{(4)} = \hat{a}_{22}^{(2)} - 4\hat{a}_{(1122)}^{(4)} = \frac{J_{30}}{2} - \frac{J_{50}}{2}, \\
\hat{a}_{1111}^{(4)} &= \hat{a}_{2222}^{(4)} = 3\hat{a}_{(1122)}^{(4)}, \\
\hat{a}_{3333}^{(4)} &= 1 + 4(2\hat{a}_{(1122)}^{(4)} - \hat{a}_{11}^{(2)}),
\end{align*}
\quad (3.25)
\]

3.5.2.3 Fabrique à 1 maximum

Pour le cas limite d’une fabrique dont tous les grains sont alignés suivant la direction \(\varphi e_3 \), alors les seules composantes non nulles des tenseurs d’orientation sont

\[
\begin{align*}
\hat{a}_{33}^{(2)} &= 1 \quad \text{et} \quad \hat{a}_{3333}^{(4)} &= 1.
\end{align*}
\quad (3.26)
\]

3.5.2.4 Fabrique plane isotrope

Pour le cas limite d’une fabrique dont tous les grains sont répartis aléatoirement dans le plan \(\langle e_1, e_2 \rangle \) alors \(J_{30} = J_{50} = 1 \) et les seules composantes non-nulles sont

\[
\hat{a}_{11} = \hat{a}_{22} = \frac{1}{2},
\quad (3.27)
\]

et

\[
\hat{a}_{(1122)} = \frac{1}{8},
\quad (3.28)
\]

Par comparaison, pour une fabrique à deux maxima suivant les directions \(\varphi e_1 \) et \(\varphi e_2 \) (cf Figure 3.2b), les seules composantes non-nulles du tenseur d’ordre 4 sont \(a_{1111} = a_{2222} = 1/2. \)
3.5.2.5 Fabrique isotrope

Pour une fabrique isotrope définie par \(f \equiv 1 \), alors \(J_{30} = 2/3 \) et \(J_{50} = 8/15 \) et

\[
a_{11}^{(2)} = a_{22}^{(2)} = a_{33}^{(2)} = \frac{1}{3} ,
\]

et

\[
a_{1122}^{(4)} = a_{2233}^{(4)} = a_{1133}^{(4)} = \frac{1}{15} ,
\]

\[
a_{1111}^{(4)} = a_{2222}^{(4)} = a_{3333}^{(4)} = \frac{1}{5} .
\]

soit

\[
a_{ij}^{(2)} = \frac{1}{3} \delta_{ij} \quad \text{et} \quad a_{ijkl}^{(4)} = \frac{1}{15} (\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) , \quad (i, j, k, l = 1, 2, 3) ,
\]

et d’une manière générale

\[
a^{(2n)} = \frac{1}{\prod_{r=0}^{n} 2r + 1} (I^{\otimes n})^{\text{sym}} .
\]

Par comparaison, pour une fabrique à 3 maxima suivant les directions 1, 2 et 3 (cf Figure 3.2c), les seules composantes non-nulles du tenseur d’ordre 4 sont \(a_{1111} = a_{2222} = a_{3333} = 1/3 \).

3.5.3 Commentaires

Nous montrerons au Chapitre 5 que l’équation d’évolution de \(a^{(2)} \) dépend de \(a^{(4)} \) et en général l’équation d’évolution de tout tenseur d’orientation \(a^{(n)} \) dépend du tenseur d’ordre \(n+2 \). En règle générale, le tenseur d’ordre \(n+2 \) est indépendant du tenseur d’ordre \(n \). En pratique, il est donc nécessaire de s’arrêter à un ordre donné et d’exprimer à l’aide d’une fonction de fermeture le tenseur d’ordre \(n+2 \) en fonction du tenseur d’ordre \(n \).

Il existe dans la littérature plusieurs fonctions de fermeture qui donnent une approximation de \(a^{(4)} \) en fonction de \(a^{(2)} \). Ces fonctions de fermeture ont été développées pour la modélisation de l’évolution de l’orientation de fibres rigides lors de la mise en forme des polymères composites. La plupart de ces fonctions de fermeture sont adaptées à des écoulements particuliers.

Notons qu’adopter une forme particulière d’ODF pour décrire la fabrique (e.g. l’ODF paramétrée (3.6)) revient à se donner implicitement une fonction de fermeture, puisqu’avec une ODF donnée, tous les tenseurs d’orientation sont fixés. Donc, en principe, décrire la fabrique avec les trois paramètres \(k_1, k_2 \) et \(k_3 \) de l’ODF paramétrée (3.6) comme Gagliardi (1999), est équivalent à décrire la fabrique avec les trois valeurs propres de \(a^{(2)} \) et une fonction de fermeture appropriée pour \(a^{(4)} \). Nous montrerons aussi que choisir une fonction de fermeture pour \(a^{(4)} \) revient à faire l’hypothèse d’orthotropie, et comme \(a^{(2)} \) donne les symétries principales de la fabrique, alors son repère propre est le meilleur candidat pour être le repère d’orthotropie.

Nous détaillerons ici des fonctions de fermeture et nous comparerons les principales au Chapitre 5.
3.5.4 Fonctions de fermeture

3.5.4.1 Fermetures quadratique, linéaire et hybride

Une première solution de fermeture est la fermeture quadratique
\[
\tilde{a}^{(4)} = a^{(2)} \otimes a^{(2)} .
\] (3.33)

Notons que cette fermeture n’assure pas toutes les symétries de \(a^{(4)} \). Cette fermeture est exacte seulement dans le cas où tous les grains ont la même orientation.

Une autre approche pour créer une fermeture est d’utiliser tous les produits de \(a^{(2)} \) et du tenseur identité \(\mathbf{I} \). Pour respecter les symétries de \(a^{(4)} \) (3.18) et la condition de normalisation (3.19), seuls les termes linéaires sont utilisés et cette fermeture est appelée fermeture linéaire \(\tilde{a}^{(4)} \):
\[
\tilde{a}^{(4)}_{ijkl} = -\frac{1}{35} (\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) \\
+ \frac{1}{7} (a_{ij}^{(2)} \delta_{kl} + a_{ik}^{(2)} \delta_{jl} + a_{il}^{(2)} \delta_{jk} + a_{kl}^{(2)} \delta_{ij} + a_{jl}^{(2)} \delta_{ik} + a_{jk}^{(2)} \delta_{il}) .
\] (3.34)

Cette expression est exacte seulement pour une fabrique isotrope.

Advani et Tucker III (1987) ont proposé une fermeture hybride qui utilise les deux fermetures précédentes:
\[
a^{(4)} = (1 - \alpha_f) \tilde{a}^{(4)} + \alpha_f \tilde{a}^{(4)} ,
\] (3.35)
 où \(\alpha_f = 3/2(a^{(2)} : a^{(2)}) - 1/2 \). Comme \(\alpha_f = 1 \) pour une fabrique à 1 maximum et \(\alpha_f = 0 \) pour une fabrique isotrope, la fermeture hybride est exacte à la fois pour une fabrique isotrope et pour une fabrique à un maximum. Cette fermeture a été utilisée pour la glace par Gödert (2003).

3.5.4.2 Fermetures orthotropes

Récemment de nouvelles fermetures plus générales et plus précises pour une large gamme d’écoulements ont été développées. Elles sont basées sur le fait que toute approximation de \(a^{(4)} \) a le même repère principal que \(a^{(2)} \). Les fabrices décrites par ces deux tenseurs d’orientation sont donc orthotropes (Cintra et Tucker III, 1995).Exprimé dans le repère d’orthotropie, du fait de toutes les symétries, le tenseur d’orientation d’ordre 4, a seulement trois coefficients indépendants non nuls (cf 3.5.2.1).

Nous détaillons dans la suite les fermetures basées sur ce principe.

- Fermetures EBOF

Pour cette première famille de fermetures (Eigenvalue Based Optimal Fitting), les 3 coefficients indépendants de \(a^{(4)} \) sont des fonctions des valeurs propres de \(a^{(2)} \) : \(a_1, a_2 \) et \(a_3 \). La surface donnée par \((a_1, a_2) = ([0, 1], [0, 1]) \) avec \(a_3 = 1 - a_1 - a_2 > 0 \) décrit l’ensemble des fabrices représentées par \(a^{(2)} \) (cf Figure 3.3). Cette surface est découpée en six zones où l’ordre des valeurs propres est constant. Si les valeurs propres sont triées dans l’ordre décroissant, i.e. \(a_1 > a_2 > a_3 \), alors l’ensemble des fabrices est représenté par la zone sombre de la figure. Dans la suite, nous nous restreignons à cette zone. Tous les résultats peuvent être obtenus dans les cinq autres zones par permutation des indices suivant l’ordre des valeurs propres.

Cintra et Tucker III (1995) choisissent de prendre comme coefficients indépendants de \(a^{(4)} \) les trois coefficients \(a_{iii}^{(4)} \) (sans sommation sur \(i = 1, 2, 3 \)).
Fig. 3.3: Espace de toutes les orientations possibles décrites par le tenseur \(a^{(2)} \) où \(a_1, a_2 \) et \(a_3 \) sont les trois valeurs propres de \(a^{(2)} \). En I, fabrique isotrope ou triaxiale : \(a_1 = a_2 = a_3 = 1/3 \) (cf Figure 3.2c) ; en \(M_i \) (\(i = 1, 2, 3 \)) fabrique à un maximum suivant la direction \(i \); en \(C_i \) (\(i = 1, 2, 3 \)) fabrique plane isotrope ou biaxiale dans le plan \((k, j) \) (\(k \neq j \neq i \)) (cf Figure 3.2b).

Pour certains types de fabriques, les valeurs du tenseur d’ordre 4 sont connues. C’est le cas pour les points I, \(C_i \) et \(M_i \) (\(i = 1, 2, 3 \)) de la Figure 3.3. Comme illustré par la Figure 3.2, ces points peuvent représenter chacun plusieurs fabriques différentes. Choisir une fermeture revient à fixer ces points : pour le point I nous choisissons une fabrique isotrope (i.e., \(a^{(4)} \) donné par (3.31)) et pour les points \(C_i \) des fabriques planes isotropes (\(a^{(4)} \) donné par (3.28)).

La première fermeture proposée par Cintra et Tucker III (1995) est simplement une interpolation linéaire entre les trois points I, \(M_1 \) et \(C_3 \). Ainsi, dans la zone \(a_1 > a_2 > a_3 \)

\[
\begin{bmatrix}
 a_{1111}^{(4)} \\
 a_{2222}^{(4)} \\
 a_{3333}^{(4)}
\end{bmatrix} =
\begin{bmatrix}
 -0.15 & 1.15 & -0.10 \\
 -0.15 & 0.15 & 0.90 \\
 0.60 & -0.60 & -0.60
\end{bmatrix}
\begin{bmatrix}
 1 \\
 a_1 \\
 a_2
\end{bmatrix}
\]
(3.36)

La seconde fermeture de Cintra et Tucker III (1995) est la fermeture ORF (ORthotropic Fitted). Les coefficients indépendants de \(a^{(4)} \) sont des polynômes complets du deuxième degré en \(a_1 \) et \(a_2 \).

\[
\begin{bmatrix}
 a_{1111}^{(4)} \\
 a_{2222}^{(4)} \\
 a_{3333}^{(4)}
\end{bmatrix} =
\begin{bmatrix}
 C_1 & C_2 & C_3 & C_4 & C_5 & C_6 \\
 C_1 & C_2 & C_3 & C_4 & C_5 & C_6 \\
 C_1 & C_2 & C_3 & C_4 & C_5 & C_6
\end{bmatrix}
\begin{bmatrix}
 1 \\
 a_1 \\
 a_1a_1 \\
 a_2 \\
 a_2a_2 \\
 a_1a_2
\end{bmatrix}
\]
(3.37)

Les dix-huit coefficients \(C_i^j \) sont alors ajustés pour que les tenseurs d’orientation d’ordre 4 ainsi calculés soient le plus proche possible des tenseurs d’orientation d’ordre 4 calculés en
résolvant l’équation d’évolution de l’ODF (donnée au Chapitre 5) pour certains écoulements particuliers.

Nous montrerons au Chapitre 5 que l’ODF paramétrée (3.6) est la solution analytique de l’équation d’évolution de l’ODF pour des écoulements conservant l’orthotropie. Donc, par analogie avec Cintra et Tucker III (1995), nous calculons les coefficients C_I par comparaison avec les tenseurs d’orientation d’ordre 4 calculés à partir de l’ODF paramétrée (3.6) pour un nombre donné de valeurs des paramètres k_i. Par analogie avec la Figure 3.3, la zone $k_1 \leq k_2 \leq k_3$ permet de représenter toutes les fabriques que l’on peut décrire avec l’ODF paramétrée (3.6). Cette zone est discrétisée avec une grille régulière et en chaque point on calcule, en utilisant (3.5) et (3.17), les tenseurs d’orientation d’ordre 2 et 4, $a^{(n)}_{ODF}$ ($n = 2, 4$), correspondant à l’ODF paramétrée (3.6). Le tenseur d’orientation d’ordre 4 correspondant à la fermeture ORF, $a^{(4)}_{ORF}$, est calculé avec (3.37) en utilisant $a^{(2)}_{ODF}$. Les coefficients C_I^j ($i = 1, 2, 3; j = 1, 2, \cdots, 6$) pour la fermeture ORF (3.37) sont alors obtenus en minimisant

$$U(C_I^j) = \Delta^{(4)} :: \Delta^{(4)} ,$$

La minimisation de (3.38) est faite une seule fois et peut être utilisée quelles que soient les conditions d’écoulement.

- Fermetures IBOF

Les fermetures IBOF (Invariant-Based Optimal fitting) (Chung et Kwon, 2002) sont basées sur le même principe mais l’équation de base de ces fermetures est donnée dans le repère de référence. L’avantage par rapport aux fermetures EBOF est qu’elles sont plus efficaces numériquement puisqu’elles ne nécessitent pas de passer du repère de référence au repère d’orthotropie.

Les fermetures IBOF partent de l’expression la plus générale d’un tenseur symétrique du quatrième ordre, fonction de $a^{(2)}$ et I

$$a^{(4)} = \beta_1 S(I \otimes I) + \beta_2 S(I \otimes a^{(2)}) + \beta_3 S(a^{(2)} \otimes a^{(2)}) + \beta_4 S(I \otimes a^{(2)}, a^{(2)})$$

$$\beta_5 S(a^{(2)} \otimes a^{(2)}, a^{(2)}) + \beta_6 S(a^{(2)}, a^{(2)} \otimes a^{(2)}, a^{(2)}) ,$$

où l’opérateur S désigne la partie symétrique de son argument.\(^3\)

$$S(T_{ijkl}) = \frac{1}{24} (T_{ijkl} + T_{ijkl} + T_{ijlk} + T_{jilk} + T_{kl ij} + T_{klij} + T_{lkij} + T_{lkji} + T_{ikjl} + T_{iklj} + T_{iktj} + T_{kitj} + T_{jilk} + T_{jikl} + T_{jilk} + T_{jkl i} + T_{jkl i} + T_{i jlk} + T_{i jkl} + T_{i klj} + T_{i klj} + T_{i ktl} + T_{i ktl} + T_{ikt l} + T_{ikt l}) .$$

En introduisant l’équation (3.40) dans l’expression (3.39), on obtient l’expression de $a^{(4)}$

\(^3\)l’opérateur S est différent de l’opérateur $()^{\text{sym}}$
suivante :

\[
a_{ijkl}^{(4)} = \beta_1 (\delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})/3
+ \beta_2 (\delta_{ij} a_{kl}^{(2)} + \delta_{ik} a_{jl}^{(2)} + \delta_{il} a_{jk}^{(2)} + \delta_{il} a_{jk}^{(2)} + \delta_{jl} a_{ik}^{(2)} + \delta_{jk} a_{il}^{(2)})/6
+ \beta_3 (a_{ij}^{(2)} a_{kl} + a_{ik}^{(2)} a_{jl}^{(2)} + a_{il}^{(2)} a_{jk}^{(2)})/3
+ \beta_4 (\delta_{ij} b_{kl}^{(2)} + \delta_{ik} b_{jl}^{(2)} + \delta_{il} b_{jk}^{(2)} + \delta_{il} b_{jk}^{(2)} + \delta_{jl} b_{ik}^{(2)} + \delta_{jk} b_{il}^{(2)})/6
+ \beta_5 (a_{ij}^{(2)} b_{kl}^{(2)} + a_{ik}^{(2)} b_{jl}^{(2)} + a_{il}^{(2)} b_{jk}^{(2)} + a_{il}^{(2)} b_{jk}^{(2)} + a_{jl}^{(2)} b_{ik}^{(2)} + a_{jk}^{(2)} b_{il}^{(2)})/6
+ \beta_6 (b_{ij}^{(2)} b_{kl}^{(2)} + b_{ik}^{(2)} b_{jl}^{(2)} + b_{il}^{(2)} b_{jk}^{(2)})/3
\]

(3.41)

où le tenseur du second ordre \(b \) est défini comme \(b = a^{(2)} a^{(2)} \).

Sur les six coefficients \(\beta_i \), seuls trois sont indépendants. Il n'y a pas, à priori, de raison de privilégier certains coefficients plutôt que d'autres. Pour des raisons de convergence lors de la procédure d'identification des coefficients, Chung et Kwon (2002) recommandent de choisir les coefficients 3, 4 et 6. En utilisant les conditions de symétries (3.18) et de normalisation (3.19), les trois autres coefficients sont donnés par :

\[
\beta_1 = \frac{3}{5} \left[-\frac{1}{7} + \frac{1}{5} \beta_3 \left(\frac{7}{15} II + \frac{8}{3} III \right) - \beta_4 \left(\frac{1}{5} - \frac{8}{5} II - \frac{14}{15} III \right) \right] - \beta_6 \left(\frac{1}{35} - \frac{24}{105} III - \frac{4}{35} II + \frac{16}{15} II III + \frac{8}{35} II^2 \right)
\]

\[
\beta_2 = \frac{6}{7} \left[1 - \frac{1}{5} \beta_3 (1 + 4II) + \frac{7}{5} \beta_4 \left(\frac{1}{6} - II \right) \right] - \beta_6 \left(-\frac{1}{5} + \frac{2}{3} III + \frac{4}{5} II - \frac{8}{5} II^2 \right)
\]

\[
\beta_5 = -\frac{4}{5} \beta_3 - \frac{7}{5} \beta_4 - \frac{6}{5} \beta_6 \left(1 - \frac{4}{3} II \right)
\]

(3.42)

où les deux invariants de \(a^{(2)} \), \(II \) et \(III \), sont donnés par

\[
II = \frac{1}{2} (1 - a_{ij}^{(2)} a_{ji}^{(2)}) \quad \text{et} \quad III = \det(a^{(2)}) .
\]

(3.43)

Les trois coefficients indépendants sont supposés dépendre des invariants \(II \) et \(III \) de \(a^{(2)} \). Chung et Kwon (2002) adoptent un polynôme complet de degré 5

\[
\beta_i = C_i^1 + C_i^2 II + C_i^3 II^2 + C_i^4 III + C_i^5 II^2 III + C_i^7 II^2 III^2
+ C_i^8 II III^2 + C_i^9 II^3 + C_i^{10} III^3 + C_i^{11} II^3 III + C_i^{12} II^3 III^2
+ C_i^{13} III^3 + C_i^{14} II^4 + C_i^{15} III^4 + C_i^{16} II^4 III + C_i^{17} II^3 III^2
+ C_i^{18} II^2 III^3 + C_i^{19} II III^4 + C_i^{20} II^5 + C_i^{21} III^5 \quad (i = 3, 4, 6) .
\]

(3.44)

De manière similaire à la fermeture ORF, Chung et Kwon (2002) calculent les coefficients \(C_i^j \) du polynôme en minimisant l'écart avec les tenseurs d'orientation du quatrième ordre calculés en résolvant l'équation d'évolution de l'ODF pour plusieurs écoulements particuliers.

Comme pour la fermeture ORF (voir paragraphe précédent), nous utilisons l'ODF paramétrée (3.6) pour optimiser cette fermeture. Les coefficients \(C_i^j \) sont donc obtenus en minimisant

\[
U(C_i^j) = \Delta^{(4)} :: \Delta^{(4)} ,
\]

(3.45)
où, ici, \(\Delta^{(4)} = a^{(4)}_{ODF} - a^{(4)}_{IBOF} \), \(a^{(4)}_{ODF} \) est calculé avec (3.6) et \(a^{(4)}_{IBOF} \) est le tenseur d’orientation d’ordre 4 calculé avec la fermeture IBOF (3.39), sur tout l’espace des fabriques possibles. Les coefficients ainsi calculés sont donnés en Annexe C. Les coefficients des petites puissances de II et III sont peu différents de ceux donnés par Chung et Kwon (2002).

Comme la fermeture IBOF ne nécessite pas de passer du repère propre de \(a^{(2)} \) au repère de référence, Chung et Kwon (2002) évaluent un gain en temps de calcul de 30 à 40 % par rapport à la fermeture ORF (pour des polynômes de même degré).

C’est cette fermeture que nous utiliserons pour modéliser l’évolution de la fabrique dans les applications aux calottes polaires.

3.6 Passage description continue-description discrète

3.6.1 Construction de fabriques discrètes

Le but de cette partie est de donner une méthode de construction de fabriques discrètes ayant "exactement" les tenseurs d’orientation d’ordre 2 et 4, \(a^{(n)\text{cont}} (n = 2, 4) \), désirés. Ces tenseurs d’orientation sont donnés soit directement, si on adopte une représentation tensorielle de la fabrique (éventuellement en passant par une fonction de fermeture si elle est seulement représentée par le tenseur d’ordre 2), soit calculés par (3.16) en utilisant (3.5) si la fabrique est représentée par une ODF.

La fabrique discrète est une distribution discrète de \(N_g \) grains repérés par leur axe \(c \), \(\{\hat{c}\} \), et ayant tous une même fraction volumique \(f_k = 1/N_g, k = 1, \ldots, N_g \). On note \(a^{(n)\text{disc}} (n = 2, 4) \) les tenseurs d’orientation de la fabrique discrète calculés par (3.16) en utilisant (3.1). La fabrique discrète, associée aux tenseurs \(a^{(n)\text{cont}} (n = 2, 4) \) désirés, minimise

\[
U(\{\hat{c}, \hat{c}, \cdots, \hat{c}\}) = \Delta^{(2)} : \Delta^{(2)} + \Delta^{(4)} : \Delta^{(4)},
\]

où, ici, \(\Delta^{(n)} = a^{(n)\text{disc}} - a^{(n)\text{cont}} \) avec \(n = 2, 4 \).

La minimisation de \(U \) par rapport à toutes les orientations possibles \(\hat{c} \) est faite par la méthode du gradient conjugué. Pour un nombre de grains donné, \(N_g \), la solution n’est pas unique puisque deux fabriques peuvent avoir les mêmes tenseurs d’orientation d’ordre 2 et 4 mais des tenseurs d’orientation d’ordre supérieurs différents. Mais si le nombre de grains est suffisant, alors la méthode converge vers une fabrique qui a "exactement" les tenseurs d’ordre 2 et 4 désirés, mais qui dépend de la fabrique initiale.

En termes de convergence et de temps de calcul, l’initialisation la plus efficace pour créer des fabriques discrètes associées à l’ODF paramétrée (3.6) est obtenue en discrétisant la surface de la demi-sphère unité en \(N_g \) éléments de même surface, délimités par des méridiens et des parallèles, et en assignant à chaque \(\hat{c} \), l’orientation \((\theta, \varphi) \) du centre de l’élément (Gillet-Chauvet et al., 2005). Une telle fabrique est pratiquement isotrope et elle est par construction déjà orthotrope.

Nous avons utilisé cette méthode pour construire des fabriques discrètes à partir de leur description par l’ODF paramétrée (3.6). Certaines de ces fabriques, correspondant à différentes valeurs des paramètres \(k_1, k_2 \) et \(k_3 \) sont représentées sur la Figure 3.4 (Gillet-Chauvet et al., 2005). Contrairement à une idée souvent exprimée, il faut un faible nombre de grains pour construire des fabriques peu concentrées ; par contre, il faut un nombre important de grains pour construire des fabriques très concentrées.
Fig. 3.4: Diagrammes de Schmidt de certaines fabriques discrètes, sur les bords du domaine triangulaire défini par $10^{-3} < k_1 < k_2 < k_3$, obtenues en minimisant l'équation (3.46) avec N_g grains : (a) fabrique isotrope ($k_1 = k_2 = k_3 = 1$, $N_g = 196$); (b) et (c) fabriques à 1 maximum ($k_2 = k_3$), ($k_1 = 5.10^{-2}$, $N_g = 900$) et ($k_1 = 1.10^{-3}$, $N_g = 4900$), respectivement; (d) fabrique intermédiaire ($k_1 = 10^{-3}$, $k_2 = 2.10^{-1}$, $k_3 = 5.10^{3}$, $N_g = 4900$); (e) et (f) fabriques orthotropes de révolution de type couronne ($k_1 = k_2 = 10^{-3}$ et 5.10^{-2}, respectivement, $N_g = 196$).
Ci-dessous, nous donnons le nombre minimum de grains nécessaires pour construire des fabriques isotrope parfaitement isotrope et plane isotrope au sens des tenseurs d’orientation d’ordre 2 et 4. Pour une fabrique à un seul maximum, il est évident qu’un seul grain est suffisant, mais un grand nombre de grains est nécessaire dès lors que la fabrique n’a pas exactement l’ensemble des grains dans la même direction.

3.6.1.1 Fabrique isotrope

Pour une fabrique isotrope, afin de satisfaire les équations (3.29) et (3.30), on peut montrer que le nombre minimal de grains est douze. Soient les trois orientations

\[c^1 = (a, b, a), \quad c^2 = (a, a, b) \quad \text{et} \quad c^3 = (b, a, a) \]

(3.47)

où \(a = \sqrt{(1 - \sqrt{2}/5)/3} \) et \(b = \sqrt{(1 + 2\sqrt{2}/5)/3} \).

Les neuf autres vecteurs nécessaires pour obtenir une fabrique isotrope sont obtenus en prenant les trois vecteurs symétriques des trois premiers (3.47) par rapport au plan \((e_1, e_3) \), puis en prenant les symétriques de ces six vecteurs par rapport au plan \((e_2, e_3) \).

Tout jeu de douze vecteurs obtenu par rotation de ce premier jeu de vecteurs est aussi une fabrique isotrope au sens des tenseurs d’orientation d’ordre 2 et 4. On remarque ainsi que tout repère est un repère propre de \(a^{(2)} \) et \(a^{(4)} \), mais tout repère ne définit pas obligatoirement des plans de symétrie pour la fabrique.

3.6.1.2 Fabrique plane isotrope

Pour une fabrique isotrope dans le plan \((e_1, e_2) \), afin de satisfaire les équations (3.27) et (3.28), on peut montrer que quatre grains au minimum sont nécessaires. Par exemple

\[c^1 = (1, 0, 0), \quad c^2 = (0, 1, 0) \]

\[c^3 = (\sqrt{2}/2, \sqrt{2}/2, 0), \quad c^4 = (-\sqrt{2}/2, \sqrt{2}/2, 0) \]

(3.48)

et bien sûr toute rotation de ces quatre vecteurs autour de \(e_3 \) est aussi solution.

3.6.2 Calcul des paramètres de l’ODF (3.6) à partir d’une fabrique discrète

Pour utiliser un modèle avec une description continue de la fabrique, e.g., l’ODF paramétrée (3.6), il faut pouvoir passer de la description discrète de la fabrique, par exemple obtenue à partir d’une mesure sur une lame mince, à la description continue, i.e., les paramètres de l’ODF paramétrée.

Les tenseurs d’orientations d’ordre 2 et 4 pour la fabrique discrète sont calculés par (3.16) en utilisant (3.1). Comme l’ODF paramétrée est restrictive, au sens où elle ne permet de représenter qu’une classe particulière de fabriques orthotropes, alors il n’existe pas en général de couple de paramètres \((k_1, k_2) \) qui conduise exactement aux mêmes tenseurs d’orientations continus. Seul le tenseur d’orientation du second ordre est utilisé pour reconstruire les paramètres de l’ODF paramétrée. Comme nous avons vu que le tenseur du second ordre donne la meilleure approximation orthotrope de l’ODF alors c’est le meilleur candidat et son repère propre sera identifié comme le repère d’orthotropie \(\{sR\} \). Les deux paramètres \(k_1 \) et \(k_2 \) sont ensuite calculés à partir du système d’équations non-linéaire, obtenu à partir de (3.20) :

\[
\begin{align*}
J_{30}(k_1, k_2) - a_1^{\text{disc}} - a_2^{\text{disc}} & = 0 \\
J_{32}(k_1, k_2) - a_2^{\text{disc}} & = 0
\end{align*}
\]

(3.49)
où par commodité pour le calcul numérique, a_1^{dis} et a_2^{dis} sont choisis comme les deux plus grandes valeurs propres indépendantes du tenseur d’orientation du second ordre et les deux moments de l’ODF J_{30} et J_{32} sont donnés par (3.22). Le système est résolu par la méthode de Newton. Pour des fabriques orthotropes de révolution, les solutions sont analytiques (Gagliardini et Meyssonnier, 1999).

La capacité de l’ODF à décrire la fabrique mesurée peut être évaluée par :

$$\frac{\|\Delta^{(4)}\|}{\|A^{(4)}\|} = \left(\frac{\Delta^{(4)} :: \Delta^{(4)}}{A^{(4)\text{dis}} :: A^{(4)\text{dis}}} \right)^{1/2},$$

 où $\Delta^{(4)} = a^{(4)\text{cont}} - a^{(4)\text{dis}}$, et $a^{(4)\text{dis}}$ est le tenseur du quatrième ordre calculé pour la fabrique mesurée (3.16) en utilisant (3.1) et $a^{(4)\text{cont}}$ est le tenseur du quatrième ordre calculé avec (3.16) et (3.5) à partir des valeurs de k_1 et k_2, solutions de (3.49).

Cette erreur (3.50) peut aussi être utilisée pour quantifier la capacité de la fermeture de $a^{(4)}$ à reproduire la fabrique discrète.

3.7 Conclusion

Dans ce Chapitre, nous avons présenté les différentes représentations de la fabrique habituellement utilisées dans les modèles micro-macro

- la description discrète par un nombre fini de grains
- la description continue par une ODF
- et la description continue par les tenseurs d’orientations.

Les tenseurs d’orientation sont les coefficients de l’ODF décomposée en série de Fourier. Nous avons donné les expressions analytiques de ces tenseurs d’orientation pour certaines classes de fabriques particulières.

Afin de réduire le nombre de paramètres nécessaires pour décrire la fabrique, nous nous restreignons à des fabriques orthotropes et postulons une forme particulière pour ces fabriques orthotropes en adoptant une fonction de fermeture qui donne l’expression du tenseur d’orientation du quatrième ordre $a^{(4)}$ en fonction du tenseur du second ordre $a^{(2)}$. Nous avons présenté plusieurs fonctions de fermeture existantes dans la littérature. Dans la suite de ce travail, nous utiliserons la fermeture IBOF (3.39) que nous avons tabulée avec l’ODF paramétrée (3.6). La capacité de cette fermeture à représenter les fabriques mesurées dans les forages de GRIP et Vostok sera discutée au Chapitre 4. Nous comparerons les résultats obtenus avec ces différentes fonctions de fermeture, en terme d’évolution de la fabrique, au Chapitre 5.

Enfin, nous avons proposé des méthodes pour passer de la description discrète de la fabrique à une description continue et vice-versa, par la comparaison des tenseurs d’orientation. Ces méthodes nous permettront de comparer les résultats obtenus avec des modèles micro-macro utilisant une description discrète de la fabrique aux résultats de modèles utilisant une description continue.
Chapitre 4

Modélisation du polycristal de glace

4.1 Introduction

Dans ce chapitre, nous commençons par présenter différents modèles d'homogénéisation que nous utilisons pour calculer le comportement du polycristal de glace, puis nous donnons la forme générale orthotrope linéaire de la loi de comportement adoptée et la manière dont sont calculés, en fonction de la fabrique, les six paramètres de cette loi.

Nous validons la loi de comportement par le calcul de la rhéologie des glaces de GRIP et Vostok à partir des mesures de fabriques effectuées sur les carottes.

Enfin, nous illustrons les instabilités qui peuvent provenir de la fabrique en étudiant le comportement d'un polycristal à un maximum en compression et en cisaillement.

4.2 Modèles d'homogénéisation utilisés

Pour tous les modèles d'homogénéisation utilisés dans ce travail, les contraintes déviatoires et les vitesses de déformation macroscopiques sont les moyennes des contraintes déviatoires et des vitesses de déformation microscopiques :

\[\bar{S} = \langle S \rangle \quad et \quad \bar{D} = \langle D \rangle . \] \hspace{1cm} (4.1)

4.2.1 Modèle à vitesses de déformation uniformes

Le modèle à vitesses de déformation uniformes ou modèle de Taylor suppose des vitesses de déformation identiques dans tous les grains composant le polycristal, i.e.,

\[D = \bar{D} . \] \hspace{1cm} (4.2)

Ce modèle n’est pas adapté à la glace à cause du manque de systèmes de glissement dans le monocristal (Castelnau et al., 1996b). Mais, pour un état de vitesses de déformation macroscopiques imposé, ce modèle donne une borne supérieure pour le potentiel de dissipation. C’est pourquoi il est beaucoup utilisé comme référence. De plus, il permet d’obtenir un certain nombre de résultats analytiques.

4.2.1.1 Fabrique quelconque

La relation entre les contraintes macroscopiques \(\bar{S} \) et les vitesses de déformation macroscopiques \(\bar{D} \) est obtenue à partir de la loi de comportement du grain (2.9) et de la
relation (4.2), en utilisant la formule d’homogénéisation (3.5). A partir des définitions des tenseurs d’orientation d’ordre 2 et 4 (3.17) et des relations générales

\[M^D_3 = M_3 - \frac{1}{3} I , \]

\[(D.M_3 + M_3.D)^D = D.M_3 + M_3.D - \frac{2}{3} \text{tr}(M_3D)I , \]

le modèle de Taylor conduit à

\[\tilde{S} = \langle S \rangle = \frac{2\eta}{\beta} \left(\tilde{D} + \mu_1 {a^{(4)}} + \mu_2 (\tilde{D} \cdot a^{(2)} + a^{(2)} \cdot \tilde{D}) + \mu_3 (a^{(2)} \cdot \tilde{D})I \right) , \]

où

\[\mu_1 = 2(\gamma - \beta) , \quad \mu_2 = (\beta - 1) , \quad \mu_3 = -\frac{1}{3}(\mu_1 + 2\mu_2) . \]

On remarque que la loi de comportement obtenue ne dépend que des tenseurs d’orientation d’ordre 2 et 4.

4.2.1.2 Fabrique orthotrope

Dans le cas d’une fabrique orthotrope, la loi de comportement (4.4) peut se réécrire en fonction des cinq valeurs non nulles indépendantes des tenseurs d’orientation d’ordre 2 et 4 dans le repère d’orthotropie (cf équations (3.20) et (3.21)) et des trois tenseurs de structure \(\tilde{M}_r = \rho e_r \otimes e_r (r = 1, 2, 3) \), où les vecteurs \(\rho e_r \) sont les vecteurs de base du repère d’orthotropie exprimés dans le repère de référence, comme (Boehler, 1987)

\[\tilde{S} = \frac{2\eta}{\beta} \sum_{r=1}^{3} \left[\tilde{\eta}_r \text{tr}((\tilde{M}_r \cdot D)\tilde{M}_r^D + \tilde{\eta}_{r+3}(D \cdot \tilde{M}_r + \tilde{M}_r \cdot D)^D) \right] , \]

où

\[
\left\{\begin{array}{l}
\tilde{\eta}_r = \mu_1 (\rho_{rr}^{(4)} - 4\rho_{rrk}^{(4)} - 4\rho_{rrll}^{(4)} + 3\rho_{kkll}^{(4)}) \\
\tilde{\eta}_{r+3} = \frac{1}{2} + \mu_1 (\rho_{rrk}^{(4)} + \rho_{rrll}^{(4)} - \rho_{kkll}^{(4)}) + \mu_2 \rho_{rr}^{(2)} , (r, k, l) = (1, 2, 3), (2, 3, 1), (3, 1, 2) .
\end{array}\right.
\]

La démarche pour passer de (4.4) à (4.6) est donnée en Annexe D.

4.2.1.3 Fabrique orthotrope de révolution

Pour une fabrique orthotrope de révolution autour de l’axe \(\rho e_3 \), compte tenu des relations sur les coefficients des tenseurs d’orientation (3.24) et (3.25), les viscosités de la loi (4.6) s’expriment comme

\[
\left\{\begin{array}{l}
\tilde{\eta}_1 = \tilde{\eta}_2 = 0 \\
\tilde{\eta}_3 = \mu_1 (1 - 10\rho_{11}^{(2)} + 35\rho_{1122}) \\
\tilde{\eta}_4 = \tilde{\eta}_5 = \frac{1}{2} + \mu_1 \rho_{1122}^{(4)} + \mu_2 \rho_{11}^{(2)} \\
\tilde{\eta}_6 = \frac{1}{2} + \mu_1 (2\rho_{11}^{(2)} - 9\rho_{1122}^{(4)}) + \mu_2 (1 - 2\rho_{11}^{(2)}) .
\end{array}\right.
\]
La loi de comportement (4.6) peut alors se mettre sous la forme

\[S = \frac{2\eta}{\beta} \left[2\tilde{\eta}_1 D + \tilde{\eta}_3 \text{tr}(\tilde{M}_3 \dot{D}) \tilde{M}_3^D + (\tilde{\eta}_6 - \tilde{\eta}_4)(\dot{\tilde{M}}_3 + \tilde{M}_3 \dot{D})^D \right], \quad (4.9) \]

où \(\tilde{M}_3 = \tilde{\eta}_3 \otimes \tilde{\eta}_3 \).

4.2.1.4 Fabrique isotrope

Pour un polycristal isotrope, i.e., avec des tenseurs d'orientation donnés par (3.31), les viscosités de la loi (4.6) deviennent

\[
\begin{cases}
\tilde{\eta}_1 = \tilde{\eta}_2 = \tilde{\eta}_3 = 0 \\
\tilde{\eta}_4 = \tilde{\eta}_5 = \tilde{\eta}_6 = \frac{5/2 + 3\beta + 2\gamma}{15} .
\end{cases} \quad (4.10)
\]

D'après (4.9) et compte tenu des relations (4.10), dans le cas isotrope, la loi de comportement donnée par le modèle de Taylor correspond à la loi de Glen (1.1) avec \(n = 1 \) et \(\eta_0 = 1/B_1 \). Le rapport de la viscosité d'un polycristal isotrope, \(\tilde{\eta}_0 = 2\tilde{\eta}_4/\beta \), à la viscosité \(\eta \) d'un grain en cisaillement simple parallèlement à ses plans de base est donné par

\[
\frac{\tilde{\eta}_0}{\eta} = \frac{5 + 6\beta + 4\gamma}{15\beta} . \quad (4.11)
\]

Ce rapport tend vers l’infini quand le grain ne se déforme que par glissement basal (i.e., \(\beta = 0 \)).

4.2.2 Modèle à contraintes uniformes

Le modèle à contraintes uniformes ou modèle Statique suppose les contraintes identiques dans tous les grains et égales à la contrainte macroscopique

\[S = \tilde{S} . \quad (4.12) \]

C'est le modèle qui a été le plus utilisé dans le cas de la glace à la fois avec des descriptions discrètes de la fabrique et avec des descriptions continues (Lilloboutry, 1993; Castelnau et Duval, 1994; Svendsen et Hutter, 1996; Gödert et Hutter, 1998; Gagliardini, 1999; Thorsteinsson, 2001). Ce modèle donne la borne inférieure du potentiel de dissipation pour un état de vitesses de déformation imposé.

4.2.2.1 Fabrique quelconque

La loi de comportement est obtenue à partir de la loi de comportement du grain (2.8) en utilisant (4.12) et la formule d'homogénéisation (3.5) comme

\[
D = \langle D \rangle = \frac{\beta}{2\eta} \left(\tilde{S} + \lambda_1 a^{(4)}; \tilde{S} + \lambda_2 (\tilde{S} a^{(2)} + a^{(2)} \tilde{S}) + \lambda_3 (a^{(2)}; \tilde{S}) I \right) , \quad (4.13)
\]

où

\[
\lambda_1 = 2\left(\frac{\gamma + 2}{4\gamma - 1} \right) , \quad \lambda_2 = \left(\frac{1}{\beta} - 1 \right) , \quad \lambda_3 = -\frac{1}{3}(\lambda_1 + 2\lambda_2) . \quad (4.14)
\]

Ici aussi la loi de comportement obtenue ne dépend que des tenseurs d'orientation d'ordre 2 et 4.
4.2.2.2 Fabrique orthotrope

De manière similaire à ce qui a été fait pour le modèle de Taylor, dans le cas d’une fabrique orthotrope, la loi de comportement (4.13) peut se réécrire en fonction des cinq valeurs non nulles indépendantes des tenseurs d’orientation d’ordre 2 et 4 dans le repère d’orthotropie (cf équations (3.20) et (3.21)) et des trois tenseurs de structure \(\bar{M}_r = \mathbf{e}_r \otimes \mathbf{e}_r \) \((r = 1, 2, 3)\) (Boehler, 1987),

\[
\bar{D} = \frac{\beta}{2\eta} \sum_{r=1}^{3} \left[\bar{\alpha}_r \text{tr}(\bar{M}_r \bar{S}) \bar{M}_r^D + \bar{\alpha}_{r+3}(\bar{S} \bar{M}_r + \bar{M}_r \bar{S})^D \right], \tag{4.15}
\]

où les six fluidités \(\bar{\alpha}_i \) sont données par

\[
\begin{align*}
\bar{\alpha}_r &= \lambda_1 (a_{rr}^{(2)} - 4a_{rrk}^{(4)} - 4a_{rll}^{(4)} + 3a_{klkll}^{(4)}) \\
\bar{\alpha}_{r+3} &= \frac{1}{2} + \lambda_1 (a_{kk}^{(4)} + a_{ll}^{(4)} - a_{klkll}^{(4)}) + \lambda_2 a_{rr}^{(2)} \quad (r, k, l) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \\
\end{align*}
\]

La loi (4.15) peut s’inverser et la loi inverse est de la même forme que l’équation (4.6) ; les six viscosités \(\bar{\eta}_i \) de la loi (4.6) sont alors fonctions des six fluidités \(\bar{\alpha}_i \) (Gagliardini, 1999).

4.2.2.3 Fabrique orthotrope de révolution

Pour une fabrique orthotrope de révolution autour de l’axe \(\mathbf{e}_3 \), compte tenu des relations sur les coefficients des tenseurs d’orientation (3.24) et (3.25), les fluidités de la loi (4.15) sont obtenues comme

\[
\begin{align*}
\bar{\alpha}_1 &= \bar{\alpha}_2 = 0 \\
\bar{\alpha}_3 &= \lambda_1 (1 - 10a_{11}^{(2)} + 35a_{1122}^{(4)}) \\
\bar{\alpha}_4 &= \bar{\alpha}_5 = \frac{1}{2} + \lambda_1 a_{1122}^{(4)} + \lambda_2 a_{11}^{(2)} \\
\bar{\alpha}_6 &= \frac{1}{2} + \lambda_1 (2a_{11}^{(2)} - 9a_{1122}^{(4)}) + \lambda_2 (1 - 2a_{11}^{(2)}) \\
\end{align*} \tag{4.17}
\]

La loi de comportement (4.15) peut alors se mettre sous la forme

\[
\bar{D} = \frac{\beta}{2\eta} \left[2\bar{\alpha}_4 \bar{S} + \bar{\alpha}_3 \text{tr}((\bar{M}_3 \bar{S}) \bar{M}_3^D + (\bar{\alpha}_6 - \bar{\alpha}_4)(\bar{S} \bar{M}_3 + \bar{M}_3 \bar{S})^D) \right]. \tag{4.18}
\]

4.2.2.4 Fabrique isotrope

Pour un polycristal isotrope, i.e., avec des tenseurs d’orientation donnés par (3.31), les fluidités de la loi (4.6) deviennent

\[
\begin{align*}
\bar{\alpha}_1 &= \bar{\alpha}_2 = \bar{\alpha}_3 = 0 \\
\bar{\alpha}_4 &= \bar{\alpha}_5 = \bar{\alpha}_6 = \frac{1}{5\beta} + \frac{1}{5} \left(1 + \frac{1}{2} \frac{3}{4\gamma - 1} \right) \tag{4.19}
\end{align*}
\]

Pour un polycristal isotrope, le rapport de la viscosité \(\eta \) à la viscosité \(\bar{\eta}_0 = \eta/(2\beta\bar{\alpha}_4) \) est alors obtenu comme

\[
\frac{\eta}{\bar{\eta}_0} = \frac{2}{5} + \frac{\beta}{5} \left(2 + \frac{3}{4\gamma - 1} \right). \tag{4.20}
\]
4.2. Modèles d'homogénéisation utilisés

Au maximum le rapport $\bar{\eta}_0/\eta$ est égal à 2.5 quand $\beta = 0$, ce qui sous-estime d’un facteur 4 la valeur de 10 obtenue expérimentalement par Pimienta et al. (1987). C’est l’inconvénient majeur à l’utilisation du modèle Statique pour la modélisation de l’écoulement des calottes de glace.

4.2.3 Modèle auto-cohérent 1 site

Le modèle auto-cohérent 1 site est plus complexe que les deux précédents puisqu’il tient compte de l’influence du voisinage moyen de chaque grain en considérant chaque grain comme une inclusion ellipsoïdale contenue dans un milieu homogène équivalent (HEM). Ce modèle conduit à un potentiel de dissipation intermédiaire entre celui calculé par le modèle de Taylor et celui calculé par le modèle Statique.

L’homogénéisation est basée sur la formule d’interaction locale qui donne une relation entre les vitesses de déformation et les contraintes microscopiques, constantes dans chaque grain ellipsoïdal, et les vitesses de déformation et contraintes macroscopiques à l’échelle du polycristal. Cette relation s’écrit

$$ D - D = -\bar{M} : (S - S), $$

où le tenseur d’interaction \bar{M} est une fonction du grain et des propriétés (inconnues) du HEM (voir Castelnau (1996) et Castelnau et al. (1996b) pour l’expression de \bar{M} et la méthode de résolution). Par construction, l’exposant de sensibilité à la contrainte n est identique pour le grain et le polycristal. Le comportement macroscopique est obtenu en résolvant l’équation $\bar{D} = <D>$ (totalement équivalente à $S = <S>$ dans le cas linéaire) et en utilisant la formule d’interaction (4.21).

Notons que, dans le cas linéaire, il n’y a qu’un seul modèle auto-cohérent puisqu’il n’est pas nécessaire de lineariser le comportement du grain. De plus, même si le modèle est basé sur une hypothèse de vitesses de déformation et de contraintes constantes dans chaque grain, comme souligné par Gagliardini et al. (2001), ces vitesses de déformation et ces contraintes peuvent être interprétées comme les moyennes des vitesses de déformation et contraintes agissant dans chaque grain et qui dans la réalité ne sont pas constantes. Brenner et al. (2001) ont développé un modèle auto-cohérent en thermoélasticité dans lequel ils caractérisent l’hétérogénéité des contraintes et déformations microscopiques. Ils prennent alors en compte ces hétérogénéités pour le calcul du comportement macroscopique.

Le rapport $\bar{\eta}_0/\eta$ n’est en général pas analytique et doit être calculé numériquement pour différentes valeurs de β et γ, comme donné par la Figure 4.1. Ce rapport dépend fortement de β, mais par contre γ a une faible influence. Dans le cas $\gamma = 1$, Meyssonnier et Philip (1996) obtiennent une solution analytique

$$ \frac{\bar{\eta}_0}{\eta} = \frac{1 + \sqrt{1 + 24\beta}}{6\beta}. $$

(4.22)

La valeur de 10 donnée par Pimienta et al. (1987) est obtenue pour $\gamma = 1$ et $\beta = 0.04$, mais peut aussi être obtenue d’après la figure 4.1 pour d’autres couples de valeurs.
Fig. 4.1: Isovaleurs du rapport $\tilde{\eta}_0/\eta$ calculées avec la modèle auto-cohérent, en fonction des paramètres d’anisotropie du grain β et γ. La ligne épaisse donne l’isovaleur $\tilde{\eta}_0/\eta = 10$.

4.3 Loi de comportement pour le polycristal (GOLF)

A partir des résultats analytiques obtenus dans la section précédente avec les modèles Statique et Taylor, nous formulons la loi de comportement générale adoptée. Nous nous restreignons à un comportement orthotrope ce qui permet d’obtenir une loi de comportement à la forme assez simple, et parce que c’est un bon compromis pour représenter tous les types de fabriques observées dans les forages. Nous détaillons ensuite la manière dont la loi est tabulée afin de reproduire au mieux les résultats de n’importe quel modèle micro-macro.

4.3.1 Forme générale de la loi

La loi de comportement adoptée pour la glace polycristalline orthotrope est la loi GOLF (General Orthotropic Linear Flow law, Gillet-Chaulet et al. (2005)). Elle est de la même forme que celles obtenues analytiquement avec les modèles de Taylor et Statique. C’est la forme de loi la plus générale pour un matériau viscoplastique orthotrope linéaire (Boehler, 1987):

$$\bar{S} = \tilde{\eta}_0 \sum_{r=1}^{3} \left[\tilde{\eta}_r \text{tr}(\bar{M}_r \cdot \bar{D}) \bar{M}_r^D + \tilde{\eta}_{r+3}(\bar{D} \cdot \bar{M}_r + \bar{M}_r \cdot \bar{D})^D \right],$$ \hspace{1cm} (4.23)

où $\tilde{\eta}_0$ est une viscosité de référence et les six paramètres de loi $\tilde{\eta}_r$ ($i = 1, \cdots, 6$) sont des viscosités adimensionnées, qui dépendent de la fabrique et du modèle micro-macro utilisé. La forme matricielle de l’équation (4.23), dans le repère d’orthotropie, est donnée dans Gillet-Chaulet et al. (2005).
4.3. Loi de comportement pour le polycristal (GOLF)

Pour un comportement isotrope, cette loi de comportement conduit à

$$\bar{S} = 2\bar{\eta}_0 \bar{D}. \quad (4.24)$$

La viscosité de référence est donc choisie comme $\bar{\eta}_0 = 1/B_1$, où B_1 est la fluidité (dépendante de la température (1.2)) de la loi de Glen (1.1) dans le cas linéaire.

Pour les modèles de Taylor et Statique, les viscosités adimensionnées sont obtenues analytiquement en fonction des tenseurs d'orientation et des paramètres rhéologiques du grain. Pour des modèles plus complexes, mais aussi plus réalistes, comme le modèle auto-cohérent, il n’est pas possible en général de les obtenir analytiquement. Comme ces modèles sont en général coûteux numériquement, nous mettons en place une procédure de tabulation de la loi de comportement (4.23). Cette procédure peut, à priori, être utilisée avec n’importe quel modèle micro-macro de polycristal.

4.3.2 Calcul des viscosités adimensionnelles

A partir d’un modèle de polycristal donné, qui reste pour le moment volontairement non précisé, les paramètres de la loi de comportement $\bar{\eta}_k$ doivent être calculés afin que la loi (4.23) reproduise au mieux les résultats du modèle de polycristal quelque soit la fabrique.

Pour calculer ces viscosités, nous utilisons le potentiel de dissipation, $\bar{\phi}^{(1)}$, associé à la loi (4.23), qui par définition obéit à $\bar{S} = \partial \bar{\phi}^{(1)}/\partial \bar{D}$. Pour un comportement linéaire donné par (4.23), le potentiel de dissipation s’écrit comme

$$\bar{\phi}^{(1)} = \frac{1}{2} \bar{S} : \bar{D} = \bar{\phi}^{(1)}(\bar{\eta}_0, \bar{\eta}_i, \bar{D}) . \quad (4.25)$$

Pour une fabrique donnée, un modèle μ-M de polycristal donne la réponse \bar{S} pour une vitesse de déformation prescrite \bar{D}. Le modèle de polycristal est utilisé N fois pour N différentes valeurs de vitesses de déformation $\lambda \bar{D}$ ($k = 1, 2, \ldots , N$) en gardant la fabrique fixe. Nous obtenons ainsi N valeurs du potentiel de dissipation $k \bar{\phi}^{(1)} (k = 1, 2, \ldots , N)$. Les paramètres optimaux de la loi de comportement $\bar{\eta}_k$ sont alors obtenus en minimisant

$$U(\bar{\eta}_k) = \sum_{k=1}^{N} \left(k \bar{\phi}^{(1)} - \bar{\phi}^{(1)}(\bar{\eta}_0, \bar{\eta}_i, k \bar{D}) \right)^2 , \quad (i = 1, \ldots , 6) . \quad (4.26)$$

La minimisation est faite par une méthode de moindres carrés.

Cette méthode a été appliquée avec le modèle auto-cohérent. Elle pourrait à priori être utilisée avec tout modèle de polycristal (éléments finis (Mansuy, 2001), auto-cohérent FFT (Montagnat Rentier, 2001)). Notons tout de même qu’il peut-être intéressant de vérifier la forme des surfaces équipuissances obtenues avec le modèle de comportement du polycristal utilisé afin de vérifier la pertinence de l’identification des viscosités. Ainsi, on peut facilement montrer que les modèles Statique et de Taylor satisfont la condition de non-corrélation

$$\bar{S} : \bar{D} = <S> : <D> = <S : D> , \quad (4.27)$$

alors, comme le comportement du grain dérive d’un potentiel qui est proportionnel à la puissance dissipée $2\bar{\phi}(1) = W = \bar{S} : \bar{D}$ (2.12), ces deux modèles conduisent à un comportement macroscopique qui dérive d’un potentiel proportionnel à la puissance macroscopique $2\bar{\phi}(1) = W = \bar{S} : \bar{D}$.

En général, pour les modèles intermédiaires, cette condition n’est pas vérifiée et le comportement macroscopique ne dérive pas forcément d’un potentiel proportionnel à la
puissance dissipée macroscopique. Castelnau (1996) a montré que le comportement macroscopique non linéaire du modèle VPSC ne satisfait pas la règle de normalité par rapport aux surfaces équipuissances. Pour un grain linéaire, nous n’avons pas rencontré de tels problèmes avec le modèle VPSC, mais nous avons montré que le modèle extrémal hétérogène (Gagliardini et al., 2000, 2001) pouvait conduire à des équipuissances concaves ce qui compromet son utilisation pour tabuler la loi GOLF (Gillet-Chaulet, 2003).

4.3.3 Tabulation de la loi

La minimisation de l’équation (4.26) nous donne les six paramètres \(\bar{\eta}_i \) de la loi de comportement pour une fabrique donnée. Mais, pour une fabrique qui évolue, il faut connaître ces six paramètres pour n’importe quelle fabrique orthotrope. De plus, comme cette loi de comportement doit être implantée dans un modèle d’écoulement de calotte, le calcul de ces six paramètres doit être aussi efficace (en termes de temps de calcul et de ressource mémoire) que possible. Ces six paramètres sont donc calculés pour un jeu prédéfini de fabriques.

Compte tenu des symétries d’orthotropie, pour une fabrique décrite par le tenseur d’orientation d’ordre 2 avec une fermeture appropriée pour celui d’ordre 4, les six paramètres ne dépendent que des deux valeurs propres indépendantes de \(a^{(2)}_1 \) et \(a_2 \). De plus, les six paramètres \(\bar{\eta}_i \) n’ont besoin d’être calculés que dans la zone \(a_1 \leq a_2 \leq a_3 \). Comme chaque \(\bar{\eta}_r \) et \(\bar{\eta}_{r+3} \) est associé au tenseur de structure correspondant \(M_r = \alpha e_r \otimes e_r \) pour \(r = 1, 2, 3 \) et comme chaque \(a_r \) caractérise la concentration de la fabrique autour de la direction \(\alpha e_r \), alors les valeurs des six viscosités relatives dans chacune des cinq autres zones du plan \((a_1, a_2) \) sont déduites par permutation à partir des valeurs de la zone \(a_1 \leq a_2 \leq a_3 \) (voir Figure 3.3).

Ce résultat est formalisé en utilisant le vecteur permutation \(p(a_1, a_2, a_3) \) défini en triant les trois valeurs propres dans l’ordre croissant :

\[
a_1 \leq a_j \leq a_m \Rightarrow p(a_1, a_2, a_3) = [i, j, m] \quad (i \neq j \neq m = 1, 2, 3), \tag{4.28}
\]

En notant \(\bar{\eta}_r \) et \(\bar{\eta}_{r+3}^* \) \((r=1,2,3) \), les six viscosités calculées pour un jeu \(\{a^{*}_1, a^{*}_2, a^{*}_3\} \) arrêté dans l’ordre croissant, les viscosités correspondant au même jeu de paramètres de fabrique dans un ordre différent sont données par

\[
\bar{\eta}_{p_r} = \bar{\eta}_r^* \quad \text{et} \quad \bar{\eta}_{p_{r+3}} = \bar{\eta}_{r+3}^*, \quad (r = 1, 2, 3), \tag{4.29}
\]

où \(p_r \) est la composante \(r \) du vecteur \(p \).

Il n’est pas possible, à priori, d’obtenir une approximation analytique de ces viscosités sur la plage \(a_1 \leq a_2 \leq a_3 \), c’est pourquoi cette zone est discrétisée avec une grille régulière. Les six viscosités sont calculées en chacun des points de la grille pour un modèle micro-macro et un comportement de grain donné. Cette étape de tabulation est faite une seule fois, ensuite les valeurs en chaque point de grille sont stockées. Au cours d’un calcul d’écoulement par exemple, pour un couple de paramètres de fabrique quelconque \((a_1, a_2) \), les valeurs des six viscosités sont calculées par interpolation quadratique à partir des valeurs calculées aux points de grille. Une fois le calcul fait sur la grille, le calcul du comportement ne nécessite plus qu’un calcul d’interpolation, ce qui en fait une loi de comportement facilement implantable dans un modèle d’écoulement de glace polaire.

Dans l’Annexe E, nous proposons des extensions non linéaires à la loi de comportement (4.23). Nous comparons ces extensions à l’homogénéisation conduite avec le modèle Staticque dans le cas d’un exposant des contraintes \(n = 3 \).
4.4 Validation et application à la rhéologie des glaces de GRIP et Vostok

Pour valider notre loi de comportement (4.23), nous l’appliquons au calcul des propriétés rhéologiques des glaces extraites des forages de GRIP (Groenland) et de Vostok (Antarctique), sur la base des fabriques mesurées sur les carottes.

L’objectif de cette partie est double :
- comparer la loi GOLF tabulée sur le VPSC au modèle VPSC discret afin de valider les différentes hypothèses du modèle (orthotropie, fonction de fermeture et tabulation),
- discuter la rhéologie des glaces de ces forages.

Dans un premier temps, à partir des mesures discrètes de fabriques, nous calculons les tenseurs d’orientation du second et quatrième ordre. Les valeurs et directions propres sont déterminées par le calcul du repère propre de \(a^{(2)} \).

Les paramètres de l’ODF paramétrée (3.6) sont calculés en résolvant le système non-linéaire (3.49). La capacité de l’ODF paramétrée (3.6) à représenter les fabriques discrètes est estimée par le calcul de l’erreur (3.50). Nous calculons aussi le tenseur du quatrième ordre donné par la fermeture IBOF (3.39) à partir des valeurs discrètes de \(a^{(2)} \) et nous estimons l’erreur commise de la même manière.

Pour l’étude de la rhéologie de ces glaces, nous effectuons des tests simples (cisaillement pur, compression et traction uniaxiale) dans le repère principal de \(a^{(2)} \) où les trois valeurs propres sont triées dans l’ordre croissant \(a_1 < a_2 < a_3 \). La loi de comportement GOLF (4.23) est tabulée avec le modèle VPSC pour un comportement de grain donné par (2.8) où \(\beta = 0.04 \) et \(\gamma = 1 \). Ces valeurs conduisent à la valeur expérimentale de 10 donnée par Pimienta et al. (1987) pour le rapport entre la fluidité en cisaillement parallèlement aux plans de base d’un polycristal dont tous les axes \(c \) sont alignés et la fluidité de la glace isotrope.

Pour un cisaillement pur perpendiculairement à la direction propre 3, \(D_{3k} (k = 1, 2) \), la loi de comportement (4.23) conduit à

\[
\bar{S}_{3k} = 2\eta_0 \frac{1}{E_{kk}^{\text{cis}}} \bar{D}_{3k} ,
\]

(4.30)

où la fluidité adimensionnelle \(E_{kk}^{\text{cis}} \) est donnée par

\[
E_{kk}^{\text{cis}} = \frac{2}{\eta_0 + \eta_{k+3}} \quad (k = 1, 2) .
\]

(4.31)

Cette fluidité adimensionnelle peut être interprétée comme un facteur d’amplification de la fluidité directionnelle de la glace ("enhancement factor"), dû à la fabrique, par rapport au cas isotrope. La fluidité adimensionnelle est égale à 1 pour une glace isotrope et à 10 pour une glace avec tous ses axes \(c \) dans la direction 3.

Pour une compression uniaxiale selon la direction propre 3, \(\bar{D}_{33} = -2\bar{D}_{11} = -2\bar{D}_{22}, \bar{D}_{33} < 0 \), la loi de comportement (4.23) conduit à

\[
\bar{S}_{33} = 2\eta_0 \frac{1}{E_{33}^{\text{co}}} \bar{D}_{33} ,
\]

(4.32)

où la fluidité adimensionnelle en compression est donnée par

\[
E_{33}^{\text{co}} = \frac{3}{\eta_3 + 0.25(\eta_1 + \eta_2) + 2\eta_6 + 0.5(\eta_4 + \eta_5)} .
\]

(4.33)
Cette fluidité vaut 1 pour une glace isotrope et 2/5 pour une glace dont tous les axes c sont alignés dans la direction 3 (d’après les équations (2.10) et (4.22)). Cette valeur de 2/5 correspond à la valeur expérimentale donnée par Pimenta et al. (1987).

Enfin, pour les études des fabriques de Vostok nous effectuons aussi un test de traction uniaxiale selon la direction propre 1, $D_{11} = -2D_{22} = -2D_{33}$, $D_{11} > 0$. La loi (4.23) donne

$$\bar{S}_{11} = \frac{1}{E^r} \bar{D}_{11},$$

où la fluidité adimensionnelle en traction est donnée par

$$E^r = \frac{3}{\bar{\eta}_1 + 0.25(\bar{\eta}_2 + \bar{\eta}_3) + 2\bar{\eta}_4 + 0.5(\bar{\eta}_5 + \bar{\eta}_6)}.$$ \hspace{1cm} (4.35)

Comme $\gamma = 1$, cette fluidité vaut 1 pour une glace isotrope et 2/5 pour une fabrique dont tous les axes c sont contenus dans le plan (c_2, c_3) ou pour une fabrique dont tous les axes c sont alignés suivant la direction principale 1.

Pour comparaison, les mêmes tests sont effectués avec le modèle VPSC en utilisant la description discrète de la fabrique. Ceci permet de quantifier les différentes hypothèses de notre modèle continu. L’erreur relative entre une fluidité adimensionnée obtenue avec le modèle continu E^cont et la même fluidité obtenue avec le modèle discret E^disc est donnée par

$$\text{erreur} = \frac{|E^\text{cont} - E^\text{disc}|}{E^\text{disc}}.$$ \hspace{1cm} (4.36)

Cette erreur peut avoir deux origines :
- une erreur provenant de la tabulation de la loi, i.e., le calcul des viscosités à partir du modèle discret lors de la minimisation de (4.26), et l’interpolation des viscosités à partir des valeurs stockées.
- une erreur provenant de la description de la fabrique. En effet, le modèle continu a été tabulé en supposant que les fabriques sont orthotropes et que le tenseur d’orientation d’ordre 4 est donné à partir de $a^{(2)}$ par la fermeture IBOF (3.39). Ainsi, à partir de fabriques mesurées, deux polycristaux ayant le même $a^{(2)}$ et un $a^{(4)}$ différent ont le même comportement avec le modèle continu mais un comportement différent avec le modèle discret.

Afin de différencier l’erreur provenant de la tabulation de la loi de l’erreur provenant de la description de la fabrique, nous construisons des fabriques discrètes ayant le même $a^{(2)}$ que les fabriques mesurées et un $a^{(4)}$ donné par la fermeture IBOF, en utilisant (3.46). Nous initialisons nos fabriques avec les fabriques mesurées, ainsi les fabriques mesurées et les fabriques construites ont le même nombre de grains. Nous appliquons les mêmes tests sur ces nouvelles fabriques et comparons les résultats du modèle discret aux résultats du modèle continu. Pour le modèle continu, les résultats obtenus pour les fabriques mesurées et les fabriques construites sont rigoureusement identiques. Si la méthode de construction des fabriques (3.46) converge parfaitement alors l’erreur pourra être attribuée uniquement à la tabulation de la loi de comportement.

4.4.1 Forage de GRIP

Le forage de GRIP (72°35′N, 37°38′W) est localisé à 3km à l’Ouest du sommet actuel du Groenland. Le forage a atteint le lit rocheux et l’épaisseur de glace est de 3029m. L’accumulation annuelle est d’environ 23cm a$^{-1}$ (équivalent glace), et la température moyenne
en surface est de $-31.75^\circ C$. La vitesse de déformation typique dans le forage, estimée par le rapport de l'accumulation à l'épaisseur de glace, est d'environ $10^{-4} a^{-1}$.

Les mesures de fabriques ont été effectuées par Thorsteinsson et al. (1997). Une sélection de fabriques en projection de Schmidt dans le plan horizontal in-situ est donnée sur la Figure 4.2e. Les tenseurs d'orientation du second ordre, $a^{(2)}$, ont été calculés à partir des mesures discrètes avec les équations (3.17) et (3.1). Pour chaque fabrique, nous avons déterminé les valeurs et directions propres. Les valeurs propres triées dans l'ordre croissant $a_1 < a_2 < a_3$ sont données par la Figure 4.2c et l'angle entre la direction propre 3 et la verticale in-situ est donnée par la Figure 4.2a. Les paramètres de l'ODF paramétrée (3.6) sont donnés par la Figure 4.2d.

Les résultats obtenus sont ceux attendus en général pour un dôme où la glace est supposée être principalement soumise à de la compression uniaxiale suivant l'axe vertical (Alley, 1988). Les grains se concentrent progressivement vers la direction verticale de manière à peu près axisymétrique autour de la verticale. Près de la surface, les fabriques sont peu concentrées $a_1 \sim a_2 \sim a_3 (k_1 \sim k_2 \sim k_3)$, puis la plus grande valeur propre tend vers 1 avec les deux plus petites quasiment égales $a_3 > a_1 \sim a_2 (k_3 < k_1 \sim k_2)$. Les brusques variations en dessous de 2800m sont attribuées aux effets de la recristallisation par migration. Notons que le profil de la taille des grains mesuré dans le forage de GRIP (Thorsteinsson et al., 1997) présente une zone entre 650m et 1625m (transition climatique Holocène-Wisconsin) où la taille des grains est constante. Ce phénomène résulterait de la compétition entre la croissance normale des grains et la recristallisation par rotation (Castelnau et al., 1996a).

Nous rappelons que les carottes ne sont en général pas orientées dans le plan horizontal in-situ. De plus, il existe une incertitude sur l'orientation par rapport à la verticale due au fait que l'axe de la carotte ne correspond, en général, pas exactement à la direction verticale in-situ, et une deuxième incertitude porte sur l'orientation de la lame mince par rapport à l'axe de la carotte. Ces incertitudes peuvent expliquer les oscillations de θ_0 avec la profondeur, mais le fait que θ_0 semble décroître de manière continue avec la profondeur jusqu'à 2000m peut sans doute être attribué aux conditions d'écoulement in-situ.

Les erreurs entre le tenseur du quatrième ordre, $a^{(4)}$, calculé à partir des mesures discrètes, et le tenseur du quatrième ordre obtenu avec la fermeture IBOF d'une part, et le tenseur du quatrième ordre obtenu par l'ODF paramétrée d'autre part, sont données sur la Figure 4.2b. Comme la fermeture IBOF a été tabulée avec l'ODF paramétrée, les erreurs sont quasiment identiques, ce qui montre la capacité de la fermeture IBOF à reproduire les résultats de l'ODF paramétrée. L'erreur relative est de l'ordre de 10% sur l'ensemble du forage avec un minimum de 2% et un maximum de 20%. Nous rappelons que les informations du premier ordre sur la fabrique sont données par $a^{(2)}$ et que ce tenseur est conservé tel quel lorsqu'on utilise la loi GOLF.

Les fluidités obtenues en cisaillement et compression avec le modèle continu et le modèle discret sont données par les Figures 4.3a et 4.3b. Les erreurs relatives sur ces fluidités sont données par les Figures 4.3c et 4.3d. Comme attendu, la glace est de plus en plus facile à cisaillement en profondeur, avec une fluidité relative maximale égale à 8 vers 2600m. Comme les fabriques ne sont pas exactement axisymétriques avec $a_1 < a_2$ alors $E_{31}^{\text{cis}} > E_{32}^{\text{cis}}$. Par contre la glace devient de plus en plus difficile à comprimer avec un rapport minimum inférieur à 0.5. Dans la partie supérieure, la glace est légèrement plus facile à comprimer que la glace isotrope avec un rapport un peu supérieur à 1.

Les évolutions avec la profondeur données par le modèle VPSC discret sont assez bien reproduites par la loi GOLF. Les erreurs relatives sur les fluidités en cisaillement sont de l'ordre de 20% sur presque l'ensemble du forage avec un maximum d'erreur proche de 45% vers 2000m. De même, l'erreur sur la fluidité en compression est de l'ordre de 15
à 20% dans la majeure partie du forage. De manière générale, la loi GOLF surestime la fluidité en cisaillement et sous-estime celle en compression par rapport au modèle discret. Les variations des différentes erreurs sont en phase avec l’erreur commise sur le tenseur d’orientation d’ordre 4, notamment lorsque la fabrique est concentrée. Pour les premiers 600m où la fabrique est peu concentrée, les erreurs augmentent assez nettement alors que l’erreur sur $a^{(4)}$ est quasi-ment constante. Lorsque la fabrique est peu concentrée, le comportement macroscopique est moins sensible à l’erreur faite sur $a^{(4)}$.

Sur la Figure 4.4a, nous représentons l’erreur sur $a^{(4)}$, entre le tenseur $a^{(4)}$ donné par la fermeture IBOF et le tenseur $a^{(4)}$ de la fabrique discrète construite en utilisant (3.46), à partir des valeurs mesurées de $a^{(2)}$ et en utilisant la fermeture IBOF. Pour la majorité du forage, la méthode du gradient conjugué que nous utilisons pour minimiser (3.46), converge très bien et l’erreur est négligeable. Pour certaines fabriques vers le fond, nous obtenons des erreurs de l’ordre de 1%. Ces erreurs sont attribuées au fait que nous initialisons nos fabriques avec les fabriques mesurées et que, vers le fond, certaines fabriques ont un faible nombre de grains et sont très concentrées. Le nombre de grains est alors insuffisant pour créer une fabrique discrète ayant exactement le tenseur $a^{(4)}$ donné par la fermeture IBOF, et la minimisation de (3.46) converge mal. Sur la Figure 4.4b, nous donnons les erreurs entre les fluidités adimensionnelles obtenues avec le modèle continu et celles obtenues avec le modèle discret en utilisant les fabriques discrètes ainsi reconstruites. Pour toutes les fabriques pour lesquelles la méthode de minimisation a bien convergé, l’erreur sur les fluidités, qui peut être attribuée au calcul des viscosités (4.26) et à l’interpolation, est toujours inférieure à 1%. Nous obtenons des erreurs plus importantes et corrélées avec l’erreur sur $a^{(4)}$ pour les fabriques qui n’ont pas été parfaitement construites. La quasi-totalité des erreurs tracées sur les Figures 4.3c et 4.3d, peuvent donc être attribuées aux hypothèses que nous avons faites sur l’orthotropie et le type de fabrique que nous pouvons décrire (i.e., la fonction de fermeture).

Pour illustrer ceci, nous traçons, sur la Figure 4.5a, la fabrique mesurée à 1982m en projection de Schmidt, dans le repère propre de $a^{(2)}$. Sur la Figure 4.5b, nous traçons la fabrique discrète ayant le même tenseur $a^{(2)}$, mais dont le tenseur $a^{(4)}$ est donné par la fermeture IBOF. Elle est obtenue en résolvant (3.46), et en initialisant la fabrique avec la fabrique mesurée représentée sur la Figure 4.5a. Pour la fabrique ainsi créée, les grains sont beaucoup plus concentrés autour de la direction propre \hat{e}_3 que pour la fabrique mesurée. Nous verrons au Chapitre 5 que l’ODF paramétrée (3.6) que nous avons utilisée pour tabuler la fermeture IBOF est la solution analytique de l’équation d’évolution de la fabrique en compression. Comme nous l’avons vu au Chapitre 2, en compression les grains ont tendance à venir se concentrer selon la direction de compression. A GRIP, les fabriques sont des fabriques principalement formées par compression, mais cette dispersion autour de la direction propre \hat{e}_3 peut sans doute s’expliquer par le phénomène de recristallisation par rotation (Castelnau et al., 1996a). Notre description de la fabrique n’est donc pas tout à fait appropriée pour décrire de telles fabriques, ce qui explique l’écart entre le modèle discret et le modèle continu. Ce problème pourra être résolu à l’avenir en tabulant la fermeture IBOF par comparaison avec les résultats d’un modèle micro-macro qui prendrait en compte ce phénomène de recristallisation.
Fig. 4.2: Forage de GRIP. Distribution avec la profondeur de : (a) θ_0, l’angle entre la direction propre 3 de $a^{(2)}$ et la verticale in-situ ; (b) l’erreur relative sur $a^{(4)}$, entre $a^{(4)}$ calculé par la fermeture IBOF et le $a^{(4)}$ discret (courbe), et entre $a^{(4)}$ calculé par l’ODF paramétrée (3.6) et le $a^{(4)}$ discret (symboles) ; (c) valeurs propres de $a^{(2)}$ dans l’ordre croissant ; (d) paramètres k_i de l’ODF paramétrée (3.6) dans l’ordre décroissant ; et (e) représentation en projection de Schmidt dans le plan horizontal in-situ de quelques fabriques.
Fig. 4.3: Forage de GRIP. Distribution avec la profondeur : (a) des fluidités relatives en cisaillement E_{31}^{cis} (4.30) calculées avec la loi GOLF (tirets) et le VPSC discret (*), E_{32}^{cis} (4.30) calculées avec la loi GOLF (trait continu) et le VPSC discret (×); (b) de la fluidité relative en compression E^∞ (4.32) calculée avec la loi GOLF (trait continu) et le VPSC discret (×); (c) de l’erreur relative sur les fluidités E_{31}^{cis} (tirets) et E_{32}^{cis} (trait continu) et (d) de l’erreur relative sur la fluidité E^∞.

Notes:
- **Fig. 4.3:** GRIP borehole. Distribution with depth: (a) in shear E_{31}^{cis} (4.30) calculated with the GOLF law (dashes) and VPSC discrete (*); E_{32}^{cis} (4.30) calculated with the GOLF law (solid line) and VPSC discrete (×); (b) of the relative fluidity in compression E^∞ (4.32) calculated with the GOLF law (solid line) and VPSC discrete (×); (c) of the relative error on the fluidities E_{31}^{cis} (dashes) and E_{32}^{cis} (solid line) and (d) of the relative error on the fluidity E^∞.

Keys:
- **E_{31}^{cis}** and **E_{32}^{cis}**
- **E^∞**
Fig. 4.4: Forage de GRIP. Distribution avec la profondeur de : (a) l’erreur relative entre le $a^{(4)}$ donné par la fermeture IBOF et le $a^{(4)}$ de la fabrique discrète construite à partir de (3.46) et (b) les erreurs relatives entre les viscosités adimensionnelles E_{31}^{cis} (trait continu), E_{32}^{cis} (pointillés) et E^{co} (ti rects), calculées avec le modèle VPSC discret et avec la loi GOLF sur les fabriques reconstruites pour avoir le $a^{(4)}$ vérifiant la fermeture IBOF.

Fig. 4.5: Forage de GRIP. Représentation en projection de Schmidt dans le plan $(\theta e_1, \theta e_2)$ du repère propre de $a^{(2)}$ de : (a) la fabrique mesurée à 1982m et (b) une fabrique discrète reconstruite ayant le même $a^{(2)}$ que la fabrique mesurée mais un $a^{(4)}$ donné par la fermeture IBOF (3.39). Le nombre de grain est égal à 175 dans les deux cas.
4.4.2 Forage de Vostok

Le site de forage de Vostok se situe en Antarctique de l’Est (78°28’S, 106°48’E), à une altitude de 3488m. L’épaisseur de glace estimée est d’environ 3750m. L’accumulation annuelle est d’environ 2.3cm a\(^{-1}\) (équivalent glace), et la température moyenne en surface est de \(-55^\circ\)C. Le site de forage est situé au dessus du lac de Vostok, sur une ligne de courant venant de ridge B, et la glace au fond du forage a été déposée plusieurs dizaines de kilomètres en amont (Parrenin et al., 2004).

Nous étudions ici les fabriques mesurées entre 3310m et 3430m dans le forage de Vostok [M. Montagnat, P. Duval et V. Lipenkov; communication personnelle]. Les fabriques en projection de Schmidt sont données par la Figure 4.6. Les valeurs propres du tenseur d’orientation du second ordre \(a^{(2)}\) triées dans l’ordre croissant sont données par la Figure 4.7c, et les paramètres de l’ODF paramétrée par la Figure 4.7d. L’angle entre la direction propre 3 et la verticale est donné par la Figure 4.7a. Les erreurs entre le tenseur du quatrième ordre \(a^{(4)}\) calculé à partir des mesures discrètes, et le tenseur du quatrième ordre donné par la fermeture IBOF d’une part, et le tenseur du quatrième ordre donné par l’ODF paramétrée d’autre part, sont données sur la Figure 4.7b.

Les fabriques de Vostok, à cette profondeur, présentent de brusques variations en relation avec les périodes climatiques :

- pour les périodes froides, par exemple à la profondeur 3320m, la glace présente des petits grains avec une fabrique très concentrée vers la verticale \(a_3 > a_1 \sim a_2\) \((a_3 < k_1 \sim k_2)\). L’angle \(\theta_0\) de la direction propre \(\epsilon_3\) avec la verticale est proche de 5°. Ces fabriques ont été vraisemblablement formées en cisaillement simple.

- pour les périodes chaudes, par exemple à la profondeur 3342m, la glace présente des grains plus gros avec des fabriques en couronne, où la répartition des grains dans le plan propre \((\epsilon_2, \epsilon_3)\) est presque isotrope \(a_3 \sim a_2 \sim 0.5 > a_1\) \((k_3 \sim k_2 < 1 < k_1)\). En général, la désorientation par rapport à la verticale \(\theta_0\) est plus importante pour ces glaces. Ces fabriques ont été vraisemblablement formées par de la traction suivant la direction propre 1.

À la fois l’ODF paramétrée et la fermeture IBOF conduisent à des erreurs sur le tenseur du quatrième ordre de l’ordre de 10\%. Les fabriques à 1 maximum (erreurs de l’ordre de 5\%) sont mieux représentées que les fabriques de type couronne (erreurs entre 10 et 15\%).

Les fluidités relatives en cisaillement et compression sont données par les Figures 4.8a et 4.8b, respectivement, et les erreurs relatives par les Figures 4.8d et 4.8e. Nous portons la fluidité relative en traction (4.34) et l’erreur relative sur les Figures 4.8c et 4.8f. Du fait des variations de fabriques, nous observons aussi des variations très importantes sur les fluidités relatives. Les zones présentant des fabriques à 1 maximum sont très faciles à cisaillement, jusqu’à un facteur sept par rapport à la glace isotrope, et plus difficiles à comprimer avec une valeur minimum inférieure à 0.5. Par contre, les zones présentant des fabriques de type couronne ne sont pas plus faciles à cisaillement que de la glace isotrope (les fluidités relatives en cisaillement sont de l’ordre de l’unité), de même pour la compression. Pour la traction nous sommes proche de la valeur limite 0.4 obtenue si tous les grains sont contenus dans le plan propre \((\epsilon_2, \epsilon_3)\), et il y a moins de variations entre les différentes couches.

Ces hétérogénéités de fluidité, très fortes sur quelques dizaines de mètres (une variation de 1 à 7 en cisaillement et de 0.5 à 1 en compression), rendent certainement à la fois l’état de contrainte et de vitesse de déformation in-situ très compliqué. Il est pourtant impossible de prédire l’impact de ces fluidités sur les vitesses de déformation in-situ puisque les champs de contrainte et de vitesse de déformation sont interdépendants et doivent satisfaire les relations d’équilibre et de conservation de la masse. Nous verrons au Chapitre 7 qu’une
4.4. Validation et application à la rhéologie des glaces de GRIP et Vostok 67

discontinuité de la fluidité de la glace entraîne une discontinuité uniquement sur certaines composantes des tenseurs des contraintes déviatoires et des vitesses de déformation.

Les résultats obtenus avec le modèle VPSC discret sont bien reproduits avec la loi GOLF. Comme pour le forage de GRIP, la fluidité en cisaillement est surestimée et celle en compression sous-estimée en comparaison avec le modèle discret. Les erreurs relatives en cisaillement sont comprises entre quelques % et 50% pour la fluidité \(E_{31}^{\text{cis}} \) à 3425m. L’erreur sur la fluidité \(E_{32}^{\text{cis}} \) est en général inférieure à l’erreur sur \(E_{32}^{\text{cis}} \). On remarque dans la partie supérieure que les erreurs sur les fluidités en cisaillement sont plus importantes pour les fabriques à 1 maximum que pour les fabriques de type couronne, alors que l’erreur sur \(a^{(4)} \) varie inversement. Par contre, à partir de 3400m où les couronnes sont moins prononcées, l’erreur sur \(E_{32}^{\text{cis}} \) varie en phase avec l’erreur sur \(a^{(4)} \). L’erreur sur la fluidité en compression varie entre quelques % et 20%. Elle présente les mêmes variations que la fluidité en cisaillement \(E_{32}^{\text{cis}} \). Pour la fluidité en traction, l’erreur est moins importante et varie entre 1% et 8%.

Comme pour GRIP, à partir des fabriques mesurées, nous construisons des fabriques discrètes ayant le même \(a^{(2)} \) mais dont le \(a^{(4)} \) est donné par la fermeture IBOF, et nous comparons les résultats du modèle continu et du modèle discret appliqué à ces textures. Les résultats obtenus sont représentés sur la Figure 4.9. Comme pour GRIP, si le nombre de grains est suffisant, alors les fabriques sont très bien reconstituées et les différences entre le modèle continu et le modèle discret sont inférieures à 1%, indiquant ici aussi que la majorité de l’erreur totale est introduite par l’hypothèse d’orthotropie et la fonction de fermeture adoptée.
Fig. 4.6: Forage de Vostok. Représentation en projection de Schmidt dans le plan horizontal \((x, y)\) in-situ de fabriques mesurées sur la carotte de Vostok (profondeur et nombre de grains sont en légende). Les directions \(x\) et \(y\) ne peuvent pas être reliées aux directions horizontales in-situ et sont donc arbitraires, tandis que la direction \(z\) correspond à la verticale in-situ.
Fig. 4.7: Forage de Vostok. Distribution avec la profondeur de : (a) θ_0, l’angle entre la direction propre e_3 de $a^{(2)}$ et la verticale in-situ ; (b) l’erreur relative sur $a^{(4)}$ entre $a^{(4)}$ calculé par la fermeture IBOF et $a^{(4)}$ discret (courbe), et entre $a^{(4)}$ calculé par l’ODF paramétrée (3.6) et $a^{(4)}$ discret (symboles) ; (c) valeurs propres de $a^{(2)}$ dans l’ordre croissant ; et (d) paramètres de l’ODF paramétrée dans l’ordre décroissant. Les cercles représentent les points de mesure.
Fig. 4.8: Forage de Vostok. Distribution avec la profondeur : (a) des fluidités relatives en cisaillement E_{31}^{cis} (4.30) calculées avec la loi GOLF (tiets) et le VPSC discret (*), E_{32}^{cis} (4.30) calculées avec la loi GOLF (trait continu) et le VPSC discret (×); (b) de la fluidité relative en compression E^{co} (4.32) calculée avec la loi GOLF (trait continu) et le VPSC discret (×); (c) de la fluidité relative en traction E^{tr} (4.34) calculée avec la loi GOLF (trait continu) et le VPSC discret (×); (d) des erreurs relatives sur E_{31}^{cis} (tiets) et E_{32}^{cis} (trait continu); (e) de l’erreur relative sur E^{co} et (f) de l’erreur relative sur E^{tr}.
Fig. 4.9: Forage de Vostok. Distribution avec la profondeur : (a) de l’erreur relative entre $a^{(4)}$ calculé par la fermeture IBOF et $a^{(4)}$ de la fabrique discrète construite à partir de (3.46) et (b) des erreurs relatives entre les viscosités adimensionnelles E_3^{3f} (trait continu), E_3^{3is} (pointillés), E^{co} (tierts) et E^{3r} (tierts et pointillés), calculées avec le modèle VPSC discret et avec la loi GOLF sur les fabriques reconstruites.
4.5 Comportement d’un polycristal à un maximum et instabilités

Afin d’illustrer les possibles instabilités de comportement dues à l’anisotropie, nous étudions le comportement d’un polycristal à un seul maximum soumis à des états de contrainte de compression uniaxiale et de cisaillement pur. D’après Castelnau et al. (1998), ces instabilités du comportement mécanique de la glace pourraient être à l’origine des perturbations de la stratigraphie observées dans le fond de différents forages et en particulier celui de GRIP. Ces instabilités sont causées par la non colinéarité des contraintes et vitesses de déformation induites par l’anisotropie et ne peuvent pas être obtenues avec des lois de comportement isotropes ou basées sur l’hypothèse de colinéarité comme la loi proposée par Placidi et Hutter (2005).

Nous rappelons que pour un polycristal dont tous les grains ont la même orientation, les modèles micro-macro étudiés dans ce manuscrit conduisent au même comportement que celui d’un monocristal isolé. Le comportement du grain adopté est donné par (2.8) avec $\beta = 0.04$ et $\gamma = 1$.

4.5.1 Compression uniaxiale

Comme Castelnau et al. (1996b), nous montrons que, sous un dôme, l’anisotropie peut rendre le comportement mécanique très instable. Sous un dôme, la glace est supposée être principalement soumise à des états de contrainte et de vitesse de déformation de compression uniaxiale suivant la verticale. Si nous imposons un état de contrainte de compression uniaxiale à une glace isotrope, nous obtenons un état de vitesse de déformation de compression uniaxiale. Par contre, si la glace est anisotrope, la réponse du polycristal dépend de l’orientation de la fabrique par rapport au chargement. Nous illustrons ce phénomène par la réponse à une compression uniaxiale $\bar{S}_{33} = -2S_{11} = -2S_{22}$ d’un polycristal à un maximum dont l’orientation forme un angle θ avec e_3. Les vitesses de déformation obtenues sont données par la Figure 4.10. Dès que le polycristal n’est plus aligné avec l’axe de compression, la vitesse de déformation en cisaillement \bar{D}_{13} devient non-nulle, augmente très rapidement et devient même supérieure à la vitesse de déformation axiale \bar{D}_{33} à partir d’un angle θ supérieur à environ 6°. Les vitesses de déformation \bar{D}_{33} et \bar{D}_{11} dépendent aussi fortement de l’angle θ.

En conséquence, sous un dôme, de faibles variations de l’orientation de la fabrique vont pouvoir créer d’importantes variations des viscosités directionnelles de la glace qui seront propices à activer du cisaillement et à créer des perturbations de la stratigraphie.

4.5.2 Cisaillement pur

Près du socle, la glace est supposée être principalement soumise à un état de contrainte de cisaillement pur S_{13}. Avec une glace isotrope, la seule vitesse de déformation non nulle obtenue est la composante \bar{D}_{13}. Les vitesses de déformation obtenues avec un polycristal à un maximum, contenu dans le plan (e_1, e_3), et dont l’orientation est θ par rapport à e_3, sont données sur la Figure 4.11. Les vitesses de déformation longitudinales \bar{D}_{11} et \bar{D}_{33} ne sont nulles que lorsque les plans de base des grains composant le polycristal sont parallèles à la direction de cisaillement, i.e., $\theta = 0^\circ$. En dehors de cette orientation particulière, ces vitesses de déformation ne sont pas nulles et leur signe dépend de l’orientation du polycristal. Comme mentionné par Azuma et Goto-Azuma (1996) et Thorsteinsson et Waddington (2002), une couche anisotrope soumise à une contrainte de cisaillement pur, pourra alors
s’amincir ou s’épaissir en fonction de l’orientation de sa fabrique. De plus, une variation horizontale de l’orientation de la fabrique à l’intérieur même d’une couche pourrait être à l’origine du phénomène de boudinage.

Notons que ces deux applications supposent un état de contrainte donné et que dans la réalité, contraintes et vitesses de déformation sont simultanément influencés par l’inclinaison de la fabrique afin de vérifier la conservation de la masse et les équations d’équilibre.

![Graphique](image)

Fig. 4.10: Evolution en fonction de l’inclinaison du maximum de la fabrique $\tilde{\theta}$, des vitesses de déformation relatives $100 \times 2D_{ij}/(\psi S_{33})$ obtenues pour un polycristal à un maximum soumis à une compression uniaxiale suivant la direction e_3 et pour un comportement du grain donné par (2.8) avec $\beta = 0.04$ et $\gamma = 1$.

Fig. 4.11: Evolution en fonction de l’inclinaison du grain $\bar{\theta}$, des vitesses de déformation relatives $2D_{ij}/(\psi S_{ij})$ obtenues pour un polycristal à un maximum soumis à un cisaillement pur $S_{13} > 0$ et pour un comportement du grain donné par (2.8) avec $\beta = 0.04$ et $\gamma = 1$.
4.6 Conclusion

Dans ce chapitre, nous avons donné les expressions analytiques de la loi de comportement, correspondant aux modèles Statique et de Taylor, dans le cas d’une fabrique quelconque et pour différentes symétries de la fabrique.

A partir de ces solutions analytiques, nous adoptons une forme de loi orthotrope et linéaire pour le comportement du polycristal. Cette loi dépend de six viscosités adimensionnelles, uniquement fonctions des deux valeurs propres indépendantes de $a^{(2)}$, en supposant la fermeture IBOF pour le tenseur d’orientation d’ordre 4.

En utilisant la méthode présentée au Chapitre 3 pour passer d’une description discrète de la fabrique à une description continue, les résultats de notre loi de comportement peuvent être comparés aux résultats donnés par un modèle micro-macro utilisant une description discrète de la fabrique, ce qui permet de tabuler notre loi de comportement.

Nous avons tabulé notre loi de comportement avec le modèle auto-cohérent. Les résultats de cette loi de comportement dépendent donc :
- du comportement du grain adopté (2.8),
- du modèle micro-macro utilisé pour la tabuler,
- de la capacité de notre loi à reproduire les résultats du modèle micro-macro (4.26),
- de la procédure d’interpolation des viscosités,
- et du type de fabriques que nous pouvons décrire : orthotropie et relation entre $a^{(4)}$ et $a^{(2)}$ donnée par la fermeture IBOF.

Afin de quantifier l’influence de ces différents paramètres, nous avons comparé les résultats obtenus avec notre loi de comportement à ceux obtenus avec le modèle discret correspondant, pour des fabriques mesurées dans les forages de GRIP et Vostok. Nous avons montré que les variations de viscosité avec la profondeur étaient bien reproduites avec notre modèle continu et que la procédure d’identification des viscosités pour tabuler la loi et celle d’interpolation entraînent des différences entre le modèle continu et le modèle discret, inférieures à 1%. Nous avons aussi montré que notre fonction de fermeture n’est pas tout à fait adaptée pour représenter les fabriques mesurées et que, d’une manière générale, notre loi de comportement surestime les fluidités en cisaillement et sousestime celles en compression et traction avec des erreurs autour de 10 à 20%. Nous verrons au Chapitre suivant que toutes les fonctions de fermeture que nous avons présentées au Chapitre 3, conduisent à des résultats similaires et que la fermeture IBOF est la plus adaptée pour reproduire les résultats d’évolution de la fabrique des modèles μ-M dont nous disposons. La fonction de fermeture ne pourra donc être améliorée qu’en continuant à développer des modèles micro-macro qui prennent en compte la recristallisation et les hétérogénéités intra-cristallines, à l’origine des fabriques mesurées.

Nous avons montré que les propriétés rhéologiques des glaces de GRIP et Vostok évoluent fortement en fonction de la fabrique, et qu’il peut y avoir des changements de viscosité très importants en l’espace de seulement quelques mètres de profondeur. Ces changements de propriétés rhéologiques influencent certainement l’écoulement in-situ, mais il est impossible de prédire dans quel sens sans une modélisation réaliste de l’écoulement au voisinage de ces forages. Cette influence sera discutée plus en détail pour le forage de Dôme C dans le Chapitre 7.

Nous avons montré que le comportement mécanique d’un polycristal à un seul maximum dépend fortement de son orientation par rapport au chargement et que ces instabilités sont propices à créer des perturbations de la stratigraphie, notamment sous un dôme.

Dans l’Annexe E, nous avons proposé des pistes pour introduire des termes non-linéaires dans notre loi de comportement, et comparé les solutions obtenues avec le modèle Statique
et un comportement de grain non-linéaire.
Chapitre 5

Evolution couplée de la fabrique et du comportement du polycristal

5.1 Introduction

5.2 Rotation de l’axe c

5.2.1 Modèle de Taylor

Pour calculer l’évolution de la fabrique, le modèle de Taylor suppose un gradient de vitesse uniforme dans tout le polycristal, i.e., $L = \mathbf{L}$. En conséquence l’équation d’évolution de l’axe c du grain pour le modèle de Taylor est obtenue en remplaçant \mathbf{W} et \mathbf{D} dans (2.46) par le taux de rotation macroscopique \mathbf{W} et la vitesse de déformation macroscopique \mathbf{D}, respectivement,

$$\dot{c} = \mathbf{W} \cdot \mathbf{c} - \lambda \left[\mathbf{D} \cdot \mathbf{c} - (\mathbf{c} \cdot \mathbf{D} \cdot \mathbf{c}) \right].$$ \hspace{1cm} (5.1)

5.2.2 Modèle Statique

Par essence, le modèle Statique qui suppose des contraintes homogènes dans tout le polycristal, i.e., $\mathbf{S} = \mathbf{S}$, ne donne pas de condition sur le gradient de vitesse. Le modèle Statique est souvent utilisé en adoptant une hypothèse de type Taylor pour le taux de rotation, i.e.,

$$\mathbf{W} = \dot{\mathbf{W}}$$ \hspace{1cm} (5.2)

(e.g., Castelnau et al. (1996b); Gödert et Hutter (1998); Gagliardini et Meyssonier (2002)). Avec cette hypothèse supplémentaire et d’après (2.30), dans le cas du modèle Statique
l'équation d'évolution du grain est donnée par

\[\dot{c} = W.c - \lambda \frac{\psi}{2} \left[S.c - (c^T.S.c)c \right]. \tag{5.3} \]

5.2.3 Modèle Intermédiaire

Dans le cas du modèle auto-cohérent, il n'est pas possible d'obtenir une relation analytique entre le gradient de vitesse microscopique \(L \) et le gradient de vitesse macroscopique \(\dot{L} \). Le modèle VPSC, pour la même déformation équivalente, conduit à un développement de la fabrique intermédiaire entre les modèles de Taylor et Statique. Comme Gödert (2003) nous proposons donc une équation d'évolution de l'axe \(c \) intermédiaire entre les équations (5.1) et (5.3). Ceci est fait en introduisant un tenseur intermédiaire \(C \) homogène à une vitesse de déformation tel que

\[\dot{c} = W.c - \lambda \left[C.c - (c^T.C.c)c \right], \tag{5.4} \]

et défini comme

\[C = (1 - \alpha)\dot{D} + \alpha S \psi/2, \tag{5.5} \]

où \(\alpha \) est un scalaire que nous appellerons paramètre d'interaction et qui varie entre 0 (hypothèse de type Taylor) et 1 (hypothèse de type Statique).

D'après Gödert (2003), l'utilisation d'un tel paramètre d'interaction peut être justifiée pour prendre en compte les effets de processus tels que la recristallisation par rotation et la montée des dislocations.

Notons que contrairement à Gödert (2003), nous supposons seulement que les taux de rotation \(\omega W_{13} \) et \(\omega W_{23} \) sont intermédiaires entre ceux donnés par le modèle de Taylor et ceux donnés par le modèle Statique\(^1\). Ainsi, aucune hypothèse n'est faite sur le comportement macroscopique, i.e., sur la relation entre \(\dot{D} \) et \(S \). Nous supposerons donc que cette équation d'évolution peut-être utilisée avec la loi de comportement GOLF (4.23) et ce, quel que soit le modèle micro-macro utilisé pour tabuler la loi. Nous montrerons ainsi qu'un paramètre d'interaction \(\alpha \) constant permet de bien reproduire les résultats donnés par le modèle VPSC discret.

5.3 Évolution de la fabrique

Nous donnons ici les équations d'évolution de l'ODF et des tenseurs d'orientation. Pour une fabrique discrète, la rotation de chaque grain est simplement obtenue en résolvant (2.46) connaissant \(L \).

5.3.1 Évolution de l'ODF

L'équation d'évolution de l'ODF dérive de l'équation de continuité (3.4) : le flux des grains qui entrent ou sortent de l'intervalle \((c; c + dc) \) pendant une unité de temps, est égal à la variation du nombre de grains dans cet intervalle. En supposant que l'évolution de la

\(^1\) Gödert (2003) suppose que le tenseur vitesse de déformation subi par le grain est donné par \(D = (1 - \alpha') \dot{D} + \alpha' \dot{D} \) où \(\dot{D} \) est l'expression de \(\dot{D} \) d'après (2.8) avec \(S = \dot{S} \). La procédure d'homogénéisation \(D = < \dot{D} > \) conduit donc à \(\dot{D} = < \dot{D} > \) et le comportement macroscopique est indépendant de \(\alpha' \) et est identique à celui donné par le modèle Statique.
5.3. Evolution de la fabrique

La rotation des grains sous l’effet de la déformation, selon l’équation de conservation de l’ODF s’écrit (Meyssonier et Philip, 1996)

\[
\frac{Df}{Dt} = \dot{j} = -\frac{\partial (f\dot{c})}{\partial c} = e_0 \frac{\partial (f\dot{c})}{\partial \theta} + \frac{1}{\sin \theta} e_\varphi \frac{\partial (f\dot{c})}{\partial \varphi},
\]

(5.6)

où \(\frac{Df}{Dt} \) représente la dérivée matérielle de \(f \) dans l’espace \(\{R\} \), et le symbole \(\partial / \partial c \) est défini dans l’Annexe F.1.

En remplaçant \(f \) par l’ODF paramétrée (3.6) dans l’équation (5.6), Gagliardini et Meyssonier (2002) obtiennent, pour des conditions d’écoulement 2D, un système unique de trois équations pour les deux paramètres indépendants \(k_i \) et l’angle \(\varphi_0 \) qui définit l’orientation du repère d’orthotropie par rapport au repère de référence dans le plan de l’écoulement. Ce système est obtenu en choisissant trois directions d’orientation particulières dans l’équation (5.6). Pour des cas 3D, cette méthode semble plus difficile à mettre en place.

5.3.1.1 Solution analytique pour le modèle de Taylor

Nous avons montré au Chapitre 2 (Equation (2.33)) que l’orientation d’un grain avec le modèle de grain continu (\(\lambda = 1 \) dans (5.1)) est uniquement fonction de l’orientation initiale du grain et du tenseur gradient de transformation qu’il a subi.

Par définition, avec le modèle de Taylor, chaque grain subit le même gradient de transformation qui est le gradient de transformation macroscopique \(\hat{F} \) défini par

\[
\hat{F}_{ij} = \frac{\partial \tilde{x}_i}{\partial \tilde{x}_j^0} \quad \text{et} \quad \hat{F} = \bar{L} \cdot \tilde{F},
\]

(5.7)

où \(\tilde{x}_i \) et \(\tilde{x}_i^0 \) sont les coordonnées aux temps \(t \) et \(t^0 \) respectivement.

D’après Dinh et Armstrong (1984), si la fabrique est isotrope à \(t^0 \), i.e., \(f \equiv 1 \), alors on peut vérifier que

\[
f(c) = \frac{1}{(e^T \cdot F \cdot F^T \cdot c)^{3/2}},
\]

(5.8)

est solution de l’équation (5.6) pour le modèle de Taylor avec le modèle de grain continu (voir Annexe F.2 pour la démonstration).

L’ODF est donc seulement fonction du gradient de transformation \(\bar{F} \), lui même solution de l’équation linéaire (5.7), et pour lequel il existe des solutions analytiques pour certains types de chargements.

- **Compression/traction**

 Pour une compression (ou traction) uniaxiale suivant la direction 3, définie par \(\bar{D}_{11} = \bar{D}_{22} = -\bar{D}_{33}/2 \), le tenseur gradient de transformation a pour expression

 \[
 F = \left(\begin{array}{ccc}
 e^{-A_3} & 0 & 0 \\
 0 & e^{-A_3} & 0 \\
 0 & 0 & e^{2A_3}
 \end{array} \right), \quad \text{où} \quad A_3 = \int_0^t \bar{D}_{33} \, dt,
 \]

 (5.9)
et d’après (5.8) l’ODF a pour expression
\[
f = \frac{e^{-3A_3}}{(\cos^2 \theta + e^{-3A_3} \sin^2 \theta)^{3/2}} . \tag{5.10}
\]

- **Cisaillement pur**

Pour un cisaillement pur dans les directions principales \(\varepsilon_1 \) et \(\varepsilon_2 \), défini par \(D_{22} = -D_{11} \), le tenseur gradient de transformation a pour expression
\[
\bar{F} = \begin{pmatrix}
 e^{A_1} & 0 & 0 \\
 0 & e^{-A_1} & 0 \\
 0 & 0 & 1
\end{pmatrix}, \quad \text{où} \quad A_1 = \int_0^t \dot{D}_{11} \, dt , \tag{5.11}
\]
et d’après (5.8) l’ODF a pour expression
\[
f = \frac{1}{(\cos^2 \theta + \sin^2 \theta(\cos^2 \varphi e^{2A_1} + \sin^2 \varphi e^{-2A_1}))^{3/2}} . \tag{5.12}
\]

- **Cisaillement simple**

Pour un cisaillement simple défini par \(L_{12} \neq 0 \), le tenseur gradient de transformation a pour expression
\[
\bar{F} = \begin{pmatrix}
 1 & \kappa & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{pmatrix}, \quad \text{où} \quad \kappa = \int_0^t \dot{L}_{12} \, dt , \tag{5.13}
\]
et d’après (5.8) l’ODF a pour expression
\[
f = \frac{1}{(\cos^2 \theta + \sin^2 \theta(\cos^2 \varphi + (\sin \varphi + \kappa \cos \varphi)^2))^{3/2}} . \tag{5.14}
\]

On peut remarquer ici que l’ODF analytique, en cisaillement simple, ne présente pas de symétrie d’orthotropie. Cependant, la forme des fabriques obtenues en cisaillement simple avec les modèles de Taylor, VPSC et Statiques reste en pratique très proche de l’orthotropie (Castelnau *et al.*, 1996b; Gagliardini, 1999).

5.3.1.2 Solutions analytiques pour les autres modèles

Il n’existe pas, à priori, de solution analytique aussi générale que (5.8) avec le modèle de grain à plans de glissement (i.e., \(\lambda \neq 1 \)), ou lorsque la rotation de l’axe \(c \) est donnée par le modèle Statique (5.3), ou par le modèle intermédiaire (5.4). Mais pour tout ces cas là, on peut se ramener à une solution pour l’ODF du type (5.8) si \(\bar{W} = 0 \) et en remplaçant dans \(\bar{F} \) les vitesses de déformation \(D_{ij} \) par \(\lambda D_{ij} \), \(\lambda \psi S_{ij}/2 \), ou \(\lambda[(1 - \alpha) D_{ij} + \alpha \psi S_{ij}/2] \), respectivement. Ainsi en compression (ou traction) uniaxiale ou en cisaillement pur, l’ODF obtenue avec ces modèles a la même forme que (5.10) et (5.12), respectivement.

L’ODF paramétrée (3.6) proposée par Gagliardini (1999) est issue de ces solutions analytiques (Gagliardini et Meyssonnier, 1999).

5.3.2 Évolution du tenseur d’orientation du second ordre

L’équation d’évolution de \(\alpha^{(2)} \) est obtenue en différentiant (3.16) (dans laquelle la moyenne est définie par (3.5)) par rapport à l’orientation \(c \)
\[
\dot{\alpha}^{(2)} = \oint_{S/2} f \dot{c} \otimes c \, dc + \oint_{S/2} f c \otimes \dot{c} \, dc , \tag{5.15}
\]
5.4. Applications

Dans cette section nous commençons par comparer les différentes fermetures de $a^{(4)}$ proposées au Chapitre 3. Nous comparons ensuite les résultats du modèle continu à ceux obtenus avec une description discrète de la fabrique.

Pour le modèle continu, l’évolution de la fabrique est donnée par (5.17). Nous parlons de modèle de Taylor si la loi GOLF (4.23) a été tabulée avec le modèle de Taylor et si le paramètre d’interaction α dans l’expression de C (5.5) est $\alpha = 0$. De même nous parlons de modèle continu Statique pour la loi GOLF tabulée avec le modèle Statique et $\alpha = 1$ dans (5.5). Pour le modèle VPSC nous essayons plusieurs valeurs de α et nous montrons qu’une valeur constante de α permet de bien reproduire les résultats du modèle VPSC discret en compression, traction et cisaillement simple.

Nous discutons aussi dans cette partie de l’influence des hypothèses faites pour la rotation du grain (Equations (modèle de grain continu 2.25) et modèle de grain à plans de glissement (2.43)). Implicitement, nous utilisons toujours le modèle de grain continu (2.25) à la fois avec le modèle continu et avec les modèles discrets sauf quand nous le précisons autrement.

L’objectif de cette partie est donc double, à la fois discuter l’influence des différentes hypothèses de notre modèle sur l’évolution de la fabrique, et comparer les résultats du modèle continu à ceux donnés par le modèle VPSC discret.

5.4.1 Comparaison des fonctions de fermeture

Nous étudions ici l’évolution du tenseur d’orientation d’ordre 2 calculée par (5.17) en utilisant les différentes fonctions de fermetures détaillées au Chapitre 3, dans le cas du modèle de Taylor. Ces évolutions sont comparées à celles des tenseurs d’ordre 2 obtenus à partir de l’équation (3.17) et des solutions analytiques pour l’ODF (Equations (5.10), (5.12) et (5.14)).

L’intérêt d’utiliser ici le modèle de Taylor est que ces solutions ne dépendent pas du comportement du monocristal ni de celui du polycristal, et nous pouvons donc ainsi étudier uniquement l’influence de la fonction de fermeture.
Sur les Figures 5.1, nous donnons l’évolution de $a^{(2)}$ pour une compression uniaxiale selon la direction e_3, une traction uniaxiale selon la direction e_3 et un cisaillement pur donné par $\tilde{D}_{11} = -\tilde{D}_{22}$ ($\tilde{D}_{11} > 0$).

D’une manière générale, la fermeture hybride (3.35) conduit à des développements de la fabrique trop rapides par rapport à la solution analytique. De plus comme la fermeture hybride n’est pas correcte pour une une fabrique plane isotrope obtenue en traction, elle conduit à des valeurs de a_3 négatives ce qui est physiquement impossible. De même en cisaillement pur, la valeur propre a_1 devient négative.

La fermeture EBOF avec interpolation linéaire (3.36), qui est correcte pour les fabriques à 1 maximum, isotropes et planes isotropes conduit quant à elle à un développement de la fabrique trop lent. Par contre elle ne conduit pas à des valeurs propres négatives.

La fermeture ORF (3.37) avec les coefficients donnés par Cintra et Tucker III (1995) permet de bien reproduire les évolutions de la fabrique pour des fabriques peu concentrées. Par contre, on peut vérifier que les coefficients donnés par Cintra et Tucker III (1995) conduisent à un tenseur d’ordre 4 différent de celui donné par les solutions analytiques pour des fabriques à 1 maximum et planes isotropes. Par conséquent, ces coefficients conduisent à des valeurs propres de $a^{(2)}$ supérieures à 1 et inférieures à 0.

Les fermetures ORF (3.37) et IBOF (3.39) dont les coefficients ont été calculés par comparaison avec l’ODF paramétrée (3.6) (cf Annexe C) permettent de très bien reproduire les évolutions de $a^{(2)}$ en compression, traction et cisaillement pur. Nous rappelons ici que l’ODF paramétrée est de la même forme que les ODF analytiques obtenues en compression, traction et cisaillement pur avec les modèles de Taylor et Statique. Nous rappelons aussi que les coefficients pour la fermeture IBOF (cf Annexe C.2) sont tels que la fermeture est correcte pour des fabrique isotropes, planes isotropes et à 1 maximum. Les résultats obtenus avec les coefficients données par Chung et Kwon (2002) sont très proches de ceux obtenus avec nos coefficients, et ne sont pas reproduits ici.

Dans la suite de ce travail nous n’utiliserons plus que la fermeture IBOF avec les coefficients obtenus par comparaison avec l’ODF paramétrée. Nous préférons la fermeture IBOF à la fermeture ORF pour des raisons d’efficacité numérique puisque la fermeture IBOF ne nécessite pas de passer du repère d’orthotropie au repère de référence.

Sur la Figure 5.2, nous donnons les valeurs propres de $a^{(2)}$ et le déphasage du repère propre de $a^{(2)}$ par rapport au repère de référence, obtenus en cisaillement simple avec le modèle de Taylor. Les solutions obtenues à partir de l’équation (3.17) et de la solution analytique pour l’ODF (5.14) sont en traits continus et les solutions obtenues avec la fermeture IBOF sont représentées par les symboles. L’évolution de la fabrique est très bien reproduite avec la fermeture IBOF, même si l’ODF analytique (5.14) ne présente pas de symétrie d’orthotropie pour ce chargement.
Fig. 5.1: Evolution en fonction de la déformation équivalente des valeurs propres de $\alpha^{(2)}$ avec le modèle de Taylor pour : (a) une compression uniaxiale selon la direction \vec{e}_3, (b) une traction uniaxiale selon la direction \vec{e}_3, (c) un cisaillement pur défini par $\tilde{D}_{11} = -\tilde{D}_{22} > 0$. Les solutions analytiques sont données par les traits continus et sont comparées aux résultats du modèle continu avec la fermeture hybride (3.35) (pointillés), la fermeture EBOF avec interpolation linéaire (3.36) (tierts), la fermeture ORF (3.37) avec les coefficients donnés par Cintra et Tucker III (1995) (tierts et pointillés), la fermeture ORF (3.37) avec les coefficients obtenus par comparaison avec l’ODF paramétrée (Annexe C.1) (triangles) et la fermeture IBOF (3.39) avec les coefficients obtenus par comparaison avec l’ODF paramétrée (Annexe C.2) (+).
Fig. 5.2: Evolution en fonction de la déformation équivalente en cisaillement simple : (a) des valeurs propres de $\mathbf{a}^{(2)}$, (b) du déphasage du repère propre de $\mathbf{a}^{(2)}$ par rapport au repère de référence $\{R\}$. La solution analytique (5.14) (traits continus) est comparée au modèle continu avec la fermeture IBOF (3.39) avec les coefficients obtenus par comparaison avec l'ODF paramétrée (Annexe C.2) (+).
5.4.2 Essais de traction et compression

Nous étudions ici les résultats obtenus pour des compressions et des tractions uniaxiales selon la direction e_3. Nous discutons d’abord l’influence du paramètre d’anisotropie du grain β sur les résultats, puis nous étudions l’influence de l’hypothèse faite pour la rotation du grain, et enfin nous comparons les modèles de Taylor, Statiques et VPSC.

Si la fabrique est initialement isotrope, les fabriques qui se développent en compression et en traction selon la direction e_3 présentent une orthotropie de révolution autour de l’axe e_3. De manière analogue à ce que nous avons fait avec le monocristal dans le Chapitre 2, nous décrivons l’anisotropie du polycristal en définissant des paramètres d’anisotropie adimensionnels macroscopiques :

- β est le rapport de la viscosité en cisaillement parallèlement au plan (e_1, e_2) à la viscosité en cisaillement dans ce plan.
- $\tilde{\gamma}$ est le rapport de la viscosité du polycristal en compression (ou traction) suivant l’axe e_3 ($\tilde{\eta}$) à celle suivant une direction perpendiculaire à e_3.
- $\tilde{\eta}_{e_3} / \eta_3$ est le rapport de la viscosité en compression (ou traction) du polycristal ($\tilde{\eta}_{e_3}$) suivant l’axe \tilde{e}_3, à la viscosité en compression (ou traction) du monocristal suivant son axe c (η_c (2.10)).

Nous avons vu au Chapitre 2 que la position stable pour un grain soumis à une compression est la direction parallèle à l’axe de compression, donc, en compression, des fabriques à un maximum se forment suivant la direction de compression. En traction toutes les orientations perpendiculaires à l’axe de traction sont des positions stables, donc nous allons obtenir des fabriques isotropes dans le plan perpendiculaire à l’axe de traction.

5.4.2.1 Influence du paramètre microscopique β

Sur la Figure 5.3, nous comparons le modèle VPSC discret et le modèle continu pour $\beta = 0.1$ et $\beta = 0.04$. Le paramètre γ vaut 1 dans les deux cas.

En compression, comme attendu, la valeur propre a_3 tend vers 1 et les deux autres vers 0 et le comportement du polycristal tend vers celui du monocristal, i.e., $\tilde{\gamma} = \gamma = 1$, $\beta = \beta$ et $\tilde{\eta} = \eta_3$. Plus la fabrique se concentre et plus la glace devient facile à cisaillement parallèlement au plan (e_1, e_2), i.e., β décroît continûment. La viscosité en compression $\tilde{\eta}_{e_3}$ commence par diminuer puis augmente jusqu’à la valeur η_3. Plus le grain est anisotrope et plus la glace isotrope est facile à déformer comparativement à une compression suivant l’axe c d’un grain. Le paramètre $\tilde{\gamma}$ commence par diminuer, donc la glace devient plus facile à comprimer suivant l’axe e_3 que suivant une direction contenue dans le plan $(\tilde{e}_1, \tilde{e}_2)$. Ensuite, $\tilde{\gamma}$ augmente jusqu’à la valeur γ.

Pour une traction, les valeurs propres a_1 et a_2 tendent vers la valeur 0.5 et a_3 tend vers 0, ce qui correspond à une fabrique plane isotrope dans le plan $(\tilde{e}_1, \tilde{e}_2)$. Le paramètre $\tilde{\gamma}$ croît continûment et est supérieur à 1, donc le polycristal devient plus facile à comprimer suivant une direction contenue dans le plan $(\tilde{e}_1, \tilde{e}_2)$ que suivant la direction e_3. De même, la viscosité $\tilde{\eta}$ croit continûment donc la glace devient de plus en plus difficile à comprimer suivant l’axe e_3. Par contre, β commence par augmenter puis diminue mais il est toujours supérieur à 1, donc le polycristal est plus facile à cisaillement dans le plan $(\tilde{e}_1, \tilde{e}_2)$ que parallèlement à ce plan.

Plus le grain est anisotrope, i.e., plus β est petit, et plus la concentration de la fabrique est rapide à la fois en compression et en traction.

Les résultats obtenus avec le modèle discret sont très bien reproduits à la fois en compression et en traction avec le modèle continu pour une valeur du paramètre d’interaction α constant et égal à $\alpha = 6.15 \times 10^{-2}$ pour $\beta = 0.04$ et $\alpha = 0.1202$ pour $\beta = 0.1$.

85
5.4.2.2 Influence de l’hypothèse sur la rotation du grain

Sur la Figure 5.4 nous comparons les résultats obtenus avec le modèle VPSC pour \(\beta = 0.1 \) et \(\gamma = 1 \), en utilisant soit l’hypothèse de grain continu (2.25), soit l’hypothèse de grain à plans de glissement (2.43), pour décrire la rotation du grain.

Comme nous l’avons vu au Chapitre 2, le fait de prendre en compte la contribution des plans pyramidaux pour la rotation des grains conduit à ralentir la rotation des grains vers les positions stables de compression et traction. Lorsqu’on prend en compte cette contribution, la concentration des fabriques est donc moins rapide. Plus le grain est anisotrope, i.e., plus il se déforme par glissement basal, plus la différence est faible, ainsi pour \(\beta = 0.04 \) les courbes seraient quasiment superposées. Pour les paramètres d’anisotropie du polycristal, les évolutions sont semblables, seule la vitesse change.

Le modèle continu permet de très bien reproduire les résultats du modèle discret avec un paramètre d’interaction constant. La valeur du paramètre d’interaction varie très peu en passant d’une hypothèse à l’autre.

5.4.2.3 Comparaison des modèles \(\mu \)–M

Sur la Figure 5.5, nous comparons les modèles continus Statique, VPSC et de Taylor pour \(\beta = 0.04 \) et \(\gamma = 1 \).

Pour une même déformation équivalente, en compression et en traction, la fabrique est plus concentrée avec le modèle Statique et moins concentrée avec le modèle de Taylor. La fabrique donnée par le modèle VPSC est intermédiaire entre les deux.

En compression, les trois modèles conduisent à un polycristal à un maximum qui a les paramètres d’anisotropie du monocristal. Le modèle VPSC conduit à un rapport de la viscosité du polycristal isotope sur la viscosité \(\eta_3 \) intermédiaire entre ceux donnés par les modèles Statique et de Taylor. Avec le modèle Statique la viscosité \(\eta \) ne diminue quasiment pas au début de la déformation. Par contre la diminution de \(\gamma \) en début de déformation est plus importante avec le modèle Statique. De même, en traction, le modèle Statique conduit à la valeur de \(\gamma \) la plus élevée.
Fig. 5.3: Evolution en fonction de la déformation équivalente des valeurs propres de $\alpha^{(2)}$ et des paramètres d'anisotropie $\tilde{\beta}$, $\bar{\gamma}$ et $\tilde{\eta}_{e3}/\eta_c$ du polycristal orthotrope de révolution pour : (a) et (b) une compression uniaxiale selon la direction \tilde{e}_3, (c) et (d) une traction uniaxiale selon la direction \tilde{e}_3.Les solutions obtenues avec le modèle continu pour $\beta = 0.1$ (trait continu) et $\beta = 0.04$ (pointillées) sont comparées aux solutions obtenues avec le modèle VPSC discret (+ et □, respectivement). Pour le modèle continu, α est constant et vaut $\alpha = 0.1202$ pour $\beta = 0.1$ et 6.15×10^{-2} pour $\beta = 0.04$.
Fig. 5.4: Evolution en fonction de la déformation équivalente des valeurs propres de $a^{(2)}$ et des paramètres d’anisotropie β, γ et $\tilde{\eta}_{e_3}/\eta_c$ du polycristal orthotrope de révolution pour $\beta = 0.1$: (a) et (b) une compression uniaxiale selon la direction \bar{e}_3, (c) et (d) une traction uniaxiale selon la direction \bar{e}_3. Les solutions obtenues avec le modèle continu pour le modèle de grain continu (2.25) (traits continus) et pour le modèle de grain à plans de glissement (2.43) (tirets) sont comparées avec les résultats obtenus avec le modèle VPSC discret équivalent (+ et Δ, respectivement). Pour le modèle continu, α est constant et vaut $\alpha = 0.1202$ avec le modèle de grain continu (2.25) et $\alpha = 0.1204$ avec le modèle de grain à plans de glissement (2.43).
Fig. 5.5: Evolution en fonction de la déformation équivalente des valeurs propres de $\alpha^{(2)}$ et des paramètres d’anisotropie β, $\bar{\gamma}$ et η_{α}/η_c du polycristal orthotrope de révolution obtenus avec le modèle continu pour $\beta = 0.04$: (a) et (b) compression uniaxiale selon la direction \bar{e}_3, (c) et (d) traction uniaxiale selon la direction \bar{e}_3. Les solutions obtenues avec le modèle Statique sont représentées par les pointillés, celles obtenues avec le modèle de Taylor sont données par les tirets et celles obtenues avec le modèle VPSC et $\alpha = 6.15 \times 10^{-2}$ sont en traits continus. Les paramètres $\bar{\gamma}$ sont donnés par les courbes et symboles (\triangleright), les paramètres β sont donnés par les courbes et symboles (\circ) et les paramètres η_{α}/η_c par les courbes et symboles ($+$). Avec le modèle Statique $\bar{\gamma} = 10$ pour une fabrique plane isotrope.
5.4.3 Essais de cisaillement simple

Nous donnons ici les évolutions des fabriques pour un cisaillement simple défini par \(\bar{L}_{12} > 0 \). Nous donnons les évolutions obtenues avec les modèles de Taylor, Statique et VPSC sur les Figures 5.6, 5.7 et 5.8, respectivement. Nous donnons les solutions obtenues avec \(\gamma = 1 \) et pour deux valeurs différentes de \(\beta (\beta = 0.1 \) et \(\beta = 0.04 \)). Nous étudions l’influence de l’hypothèse sur la rotation des grains (modèle de grain continu ou modèle de grain à plans de glissement).

5.4.3.1 Modèle de Taylor

Avec le modèle de grain continu (2.25), comme nous l’avons déjà vu, l’évolution de la fabrique ne dépend pas du comportement du monocrystal ni de celui du polycristal. Comme noté par Castelnau (1996) et Gagliardini (1999), en cisaillement simple, les grains commencent par se rassembler autour d’un plan II perpendiculaire au plan \((\bar{e}_1, \bar{e}_2) \) dans lequel ils se concentrent et le plan tourne vers la position \(\Phi = 0 \) avec une vitesse décroissante, pour tendre vers une fabrique à un maximum selon la direction \(\bar{e}_2 \). Les résultats du modèle discret sont très bien reproduits par le modèle continu.

Avec le modèle de grain à plans de glissement (2.43), l’évolution de la fabrique obtenue est différente. D’après les résultats vus au Chapitre 2, la direction \(\bar{e}_2 \) n’est pas une position stable pour un cisaillement \(\bar{L}_{12} \) et les grains ont des trajectoires périodiques sur la sphère des orientations. Les fabriques commencent par se concentrer comme dans le cas de l’hypothèse (2.25) mais la vitesse de rotation du plan II ne tend pas vers 0. Quand l’orientation du plan II devient négative la fabrique se déconcentre pour repasser par une fabrique isotrope avec le modèle continu et presque isotrope avec le modèle discret (nous ne savons pas si le fait que la fabrique ne soit pas totalement isotrope avec le modèle discret provient d’un artefact numérique ou pas). L’évolution de la fabrique obtenue avec le modèle continu est donc périodique et la période dépend des paramètres d’anisotropie du grain.

L’évolution de la fabrique est très bien reproduite par le modèle continu pour les deux hypothèses sur la rotation du grain.

5.4.3.2 Modèle Statique

Avec le modèle de grain continu (2.25), la concentration des grains dans le plan II est plus rapide pour le modèle Statique que pour le modèle de Taylor ; par contre la vitesse de rotation du plan est très similaire à celle obtenue avec le modèle de Taylor. Le modèle discret est très bien reproduit par le modèle continu.

Avec le modèle de grain à plans de glissement (2.43), la déconcentration de la fabrique est moins importante qu’avec le modèle de Taylor. Plus le grain est anisotrope et moins la fabrique se déconcentre. Le modèle continu surestime la déconcentration de la fabrique et cette déconcentration n’est pas tout à fait en phase avec celle du modèle discret. L’amplitude de la rotation du plan II est aussi surestimée avec le modèle continu.

5.4.3.3 Modèle VPSC

Les valeurs du paramètre d’interaction \(\alpha \) dans (5.5) sont identiques à celles données en compression et traction dans la section précédente.

Dans le cas de l’hypothèse (2.25), le modèle continu surestime un peu la concentration de la fabrique et la vitesse de rotation du plan II par rapport au modèle discret. Avec le modèle discret le déphasage du plan II semble tendre vers une valeur différente de 0.
Dans le cas de l’hypothèse (2.43) les résultats obtenus avec le modèle continu sont très différents de ceux obtenus avec le modèle discret. Avec le modèle continu, la fabrique se déconcentre totalement pour repasser par une fabrique isotrope comme dans le cas du modèle de Taylor. Avec le modèle discret la déconcentration de la fabrique est beaucoup moins importante.

On peut noter aussi que les résultats obtenus avec les modèles discrets sont assez sensibles au nombre de grains utilisés pour décrire la fabrique. Les résultats présentés ici sont obtenus pour des fabriques discrètes comportant 4900 grains.

Sur la figure 5.9, nous comparons encore les évolutions de la fabrique obtenues pour \(\beta = 0.04 \) et \(\gamma = 1 \), avec le modèle continu et le modèle de grain à plans de glissement (2.43) et le modèle discret et les deux hypothèse pour la rotation du grain. Nous donnons aussi les évolutions en terme de contraintes.

Sur la Figure 5.9c, nous donnons l’évolution de la fluidité relative \(2\bar{\eta}_0 \bar{D}_{12}/\bar{S}_{12} \). Avec le modèle continu ce rapport tend vers le rapport \(\bar{\eta}_0/\eta \) (4.22) qui vaut 10 pour les valeurs de \(\beta \) et \(\gamma \) utilisées ici. Avec le modèle discret et le modèle de grain continu, ce rapport tend vers 8 du fait que la rotation du plan II et la concentration des grains est moins importante qu’avec le modèle continu. Avec le modèle de grain à plans de glissement (2.43) ce rapport augmente plus rapidement au début mais oscille du fait de la déconcentration de la fabrique.

Sur la figure 5.9d, nous donnons les évolutions des rapports entre les contraintes axiales \(\bar{S}_{11}^2 \), \(\bar{S}_{11} \) et \(\bar{S}_{33} \) et la contrainte de cisaillement initiale \(\bar{S}_{12}(0) = 2\bar{\eta}_0 \bar{D}_{12} \). Avec le modèle continu les contraintes axiales tendent vers 0, ce qui n’est pas le cas avec les modèles discrets. Avec le modèle de grain à plans de glissement (2.43), la contrainte \(\bar{S}_{11} \) devient négative lorsque l’orientation du plan II devient négative.

D’après Castelnau (1996), en cisaillement simple, on obtient une très forte activité des systèmes de glissement non-basaux, ce qui est en contradiction avec les observations expérimentales des dislocations dans la glace.

En conclusion, en cisaillement simple nous obtenons des résultats différents avec le modèle de grain continu et le modèle de grain à plans de glissement. Avec le modèle de grain continu, nous obtenons des fabriques à maximum qui se stabilisent dans une position où les axes \(c \) des grains sont parallèles au cisaillement, et la déformation est donc facilitée. Avec ce modèle, plus \(\beta \) est petit, plus la fabrique se concentre vite. Par contre \(\beta \) a une faible influence sur la vitesse de rotation du plan II. Il n’existe pas d’étude satisfaisante sur le développement des fabriques en cisaillement simple mais les résultats obtenus avec le modèle continu et le modèle de grain continu (2.25) nous semblent réalistes. Dans la suite de ce travail, nous n’utilisons plus que l’hypothèse de grain continu (2.25).
Fig. 5.6: Évolution en fonction de la déformation équivalente en cisaillement simple, des valeurs propres de $a^{(2)}$ et du déphasage du repère propre de $a^{(2)}$ par rapport au repère de référence $\{R\}$, calculés avec le modèle de Taylor pour : (a) et (b) $\beta = 0.1$ et $\gamma = 1$, (c) et (d) $\beta = 0.04$ et $\gamma = 1$. Les solutions obtenues avec le modèle continu pour le modèle de grain continu (2.25) (traits continus), et le modèle de grain à plans de glissement (2.43) (tirets) sont comparées avec les résultats obtenus avec le modèle discret équivalent (+ pour l’hypothèse (2.25) et pointillés et \triangle pour l’hypothèse (2.43)).
Fig. 5.7: Evolution en fonction de la déformation équivalente en cisaillement simple, des valeurs propres de $\alpha^{(2)}$ et du déphasage du repère propre de $\alpha^{(2)}$ par rapport au repère de référence $\{R\}$, calculés avec le modèle Statique pour : (a) et (b) $\beta = 0.1$ et $\gamma = 1$, (c) et (d) $\beta = 0.04$ et $\gamma = 1$. Les solutions obtenues avec le modèle continu pour le modèle de grain continu (2.25) (traits continus), et le modèle de grain à plans de glissement (2.43) (tirets) sont comparées avec les résultats obtenus avec le modèle discret équivalent (+ pour l’hypothèse (2.25) et pointillés et \triangle pour l’hypothèse (2.43)).
Fig. 5.8: Evolution en fonction de la déformation équivalente en cisaillement simple, des valeurs propres de $a^{(2)}$ et du déphasage du repère propre de $a^{(2)}$ par rapport au repère de référence $\{R\}$, calculés avec le modèle **VPSC** pour : (a) et (b) $\beta = 0.1$ et $\gamma = 1$, (c) et (d) $\beta = 0.04$ et $\gamma = 1$. Les solutions obtenues avec le modèle continu pour le modèle de grain continu (2.25) (traits continus), et le modèle de grain à plans de glissement (2.43) (tirets) sont comparées avec les résultats obtenus avec le modèle discret équivalent (+ pour l'hypothèse (2.25) et pointillés et \triangle pour l'hypothèse (2.43)).
Fig. 5.9: Évolution en fonction de la déformation équivalente en cisaillement simple : (a) des valeurs propres de $a^{(2)}$, (b) du déphasage du repère propre de $a^{(2)}$ par rapport au repère de référence $\{R\}$, (c) de la fluidité relative $2\eta_0 D_{12}/\bar{S}_{12}$ et (d) du rapport des contraintes déviatoires axiales à la contrainte de cisaillement à $t = 0$, $\bar{S}_{ii}/\bar{S}_{12}(0)$, calculés avec le modèle VPSC, pour $\beta = 0.04$ et $\gamma = 1$. Les traits continus sont les résultats obtenus avec le modèle continu pour le modèle de grain continu, les tirets sont ceux obtenus avec le modèle discret pour le modèle de grain continu (2.25) et les pointillés sont ceux obtenus avec le modèle discret pour le modèle de grain à plans de glissement (2.43).
5.4.4 Calcul du paramètre d’interaction optimal

Nous avons vu dans les applications précédentes que, pour un comportement de grain donné, un seul et même paramètre d’interaction α permet de bien reproduire les évolutions de fabrique données par le modèle VPSC en compression, traction et cisaillement simple.

Nous pouvons donc définir un paramètre d’interaction optimal α_{opt}, comme le paramètre d’interaction qui permet de reproduire au mieux l’évolution de la fabrique calculée avec le modèle VPSC discret. D’un point de vue pratique, α_{opt} est déterminé à partir d’un essai de compression uniaxiale, en minimisant

$$
\chi^2(\alpha) = \sum_{k=1}^{N} \left(a^{(2)}_{\text{cont}}(t_k) - a^{(2)}_{\text{VPSC}}(t_k) \right) : \left(a^{(2)}_{\text{cont}}(t_k) - a^{(2)}_{\text{VPSC}}(t_k) \right)
$$

(5.18)

où $a^{(2)}_{\text{cont}}(t_k)$ est le tenseur de second ordre calculé à N temps différents t_k avec le modèle continu et $a^{(2)}_{\text{VPSC}}(t_k)$ est le tenseur du second ordre calculé avec le modèle VPSC discret, aux mêmes temps t_k, au cours de l’essai numérique de compression uniaxiale. La minimisation par rapport à α est faite par la méthode du gradient conjugué.

Les isovaleurs du paramètre α calculées avec le modèle de grain continu (2.25) sont représentées sur la Figure 5.10. La même procédure appliquée avec le modèle de grain à plans de glissement (2.43) conduit à des valeurs α différentes de moins de 0.5%.

![Figure 5.10](image)

Fig. 5.10: Isovaleurs du paramètre d’interaction optimal en fonction des paramètres d’anisotropie du grain β et γ. La croix indique la valeur $\alpha = 6.15 \times 10^{-2}$ obtenue pour $\beta = 0.04$ et $\gamma = 1$.

5.5 Vers une prise en compte de la recristallisation

Nous présentons ici quelques possibilités pour prendre en compte la recristallisation dans notre modèle continu et nous discutons l’influence de la recristallisation sur le développement des fabriques en compression, traction et cisaillement simple.

Nous discutons d’abord la recristallisation par rotation puis la recristallisation par migration.
5.5.1 Recristallisation par rotation

La recristallisation par rotation résulte de la formation de sous-joints de grains par polygonisation. Pour Gödert (2003), cette fragmentation affecte majoritairement les grains qui ne sont pas bien orientés pour le glissement des dislocations, appelés "grains durs". Les sous-grains ainsi formés tendent à être plus "mous". La recristallisation par rotation peut alors être modélisée par un flux d’orientations, des configurations "dures" vers les configurations "molles", soit
\[
q = -\kappa \frac{\partial H}{\partial c},
\]
(5.19)
où la fonction scalaire \(H\) représente la dureté et \(\kappa\) est un coefficient adimensionnel, fonction uniquement de grandeurs macroscopiques. La dureté est alors supposée être une fonction de l’orientation \(c\) et du chargement \((D, S)\).

L’équation de conservation de l’ODF (5.6) devient alors
\[
\dot{f} = -\frac{\partial}{\partial c}(f \dot{c} + q).
\]
(5.20)

Remarques :
- on peut aussi interpréter \(\dot{c}_{diff} = q/f\) comme une partie diffusive rajoutée au terme de déformation de la vitesse de rotation (5.4). Nous décomposons donc l’équation d’évolution de l’ODF (5.20) en une partie due à la déformation et en une partie due à la diffusion. Nous donnons dans la suite, les termes diffusifs à ajouter à l’équation d’évolution de \(a(2)\) (Eq. 5.17) pour prendre en compte la recristallisation par rotation.

5.5.1.1 Dureté assimilée à l’ODF

Pour une compression uniaxiale, les grains s’orientent suivant la direction de compression, qui correspond aussi à la direction de "dureté" maximale. La dureté peut être assimilée à l’ODF, \(H \approx f\), soit
\[
q = -\kappa \frac{\partial f}{\partial c}.
\]
(5.21)

La partie diffusive de l’équation d’évolution de \(a(2)\) devient, d’après (5.15),
\[
\dot{a}_{ij}^2 = -\kappa \left[\int_{S/2} \frac{\partial f}{\partial c_i} c_j \, dc + \int_{S/2} \frac{\partial f}{\partial c_j} c_i \, dc \right].
\]
(5.22)

En utilisant les équations (F.5) et (F.4b), il vient
\[
\int_{S/2} \frac{\partial f}{\partial c_i} c_j \, dc = \int_{S/2} \frac{\partial (f c_j)}{\partial c_i} \, dc - \int_{S/2} f \frac{\partial (c_j)}{\partial c_i} \, dc
= d \int_{S/2} f c_i c_j \, dc - \int_{S/2} f (\delta_{ij} - c_i c_j) \, dc
= (d + 1) \int_{S/2} f c_j c_i \, dc - \int_{S/2} f \delta_{ij} \, dc
\]
(5.23)
On obtient alors
\[
\dot{a}^{(2)} = 2\kappa(I - 3a^{(2)}) \text{ pour des orientations 3D} ;
\]
\[
\dot{a}^{(2)} = 2\kappa(I - 2a^{(2)}) \text{ pour des orientations planes.}
\]

Notons que cette expression est utilisée pour les milieux à fibres afin de prendre en compte les interactions entre les fibres (Advani et Tucker III, 1987).

Il semble raisonnable de faire dépendre l'intensité κ du flux de la vitesse de déformation : plus la vitesse de déformation est élevée plus la recristallisation va être rapide. Nous étudions l'influence de ce terme de diffusion sur le développement des fabriques en compression, traction et cisaillement simple en rajoutant à l'équation (5.17) le terme
\[
\dot{a}^{(2)} = \kappa_d \bar{D}_{eq}(I - 3a^{(2)}) ,
\]

où $\bar{D}_{eq} = \sqrt{2D : \overline{D}/3}$ est la vitesse de déformation équivalente.

Sur les Figures 5.11 et 5.12, nous traçons l'évolution de la fabrique obtenue avec le modèle continu VPSC pour $\beta = 0.04$ et $\gamma = 1$. Nous comparons les évolutions obtenues pour différentes valeurs de κ_d.

En compression et en traction, ce terme de diffusion rajouté à l'équation d'évolution de $a^{(2)}$ a pour effet de ralentir la concentration de la fabrique et conduit à des fabriques stables en compression et en traction moins concentrées que celles obtenues uniquement avec la rotation due à la déformation. Les fabriques ainsi obtenues correspondent bien au processus mentionné par Castelnau et al. (1996a) pour expliquer l'effet de la recristallisation par rotation à GRIP.

En cisaillement simple, le terme de diffusion a pour effet, à la fois de limiter les valeurs propres de $a^{(2)}$, mais aussi de bloquer la rotation du plan II à une valeur Φ dépendante de κ_d. Il n'existe pas d'étude convaincante sur l'effet de la recristallisation par rotation en cisaillement simple. Pour Paterson (1991), en cisaillement simple, la recristallisation devrait favoriser le glissement basal et donc conduire à des fabriques avec un maximum autour de la direction 2 pour un cisaillement simple L_{12}.
Fig. 5.11: Évolution en fonction de la déformation équivalente des valeurs propres de $a^{(2)}$ et des paramètres d’anisotropie $\bar{\beta}$, $\bar{\gamma}$ et $\bar{\eta_{e3}}/\eta_{c}$ du polycristal orthotrope de révolution obtenus avec le modèle continu pour $\beta = 0.04$ et $\gamma = 1$: (a) et (b) pour une compression uniaxiale selon la direction \bar{e}_3, (c) et (d) pour une traction uniaxiale selon la direction \bar{e}_3. Les solutions obtenues avec $\kappa_a = 0.05$ sont en traits continus, celles pour $\kappa_a = 0.1$ sont en pointillés et celles pour $\kappa_a = 0.5$ sont représentées par les tirets.
Fig. 5.12: Evolution en cisaillement simple en fonction de la déformation équivalente :
(a) des valeurs propres de $\alpha^{(2)}$, (b) du déphasage du repère propre de $\alpha^{(2)}$ par rapport au repère de référence $\{R\}$, (c) du rapport des contraintes déviatoires axiales à la contrainte de cisaillement à $t = 0$, $S_{ii}/S_{12}(0)$ et (d) de la fluidité relative $2\eta_0 D_{12}/S_{12}$. Les solutions obtenues avec $\kappa_0 = 0.05$ sont en traits continus, celles pour $\kappa_0 = 0.1$ sont en pointillés et celles pour $\kappa_0 = 0.5$ sont représentées par les tirets.
5.5.1.2 Dureté reliée à la direction du chargement

D’après Gödert (2003), la "dureté" du cristal de glace est reliée à l’orientation du plan de base par rapport au chargement. Gödert (2003) fait dépendre H des invariants $I_{N X^i} = N : X^i$ avec $N = c \otimes c$ et X^i représente un chargement macroscopique (D ou S) à la puissance i (i.e., i simples contractions de X avec lui-même). Si on suppose que H est une fonction de degré 2 en X alors

$$H = \sum_{n=1}^{2} h_n I_{N X^i}^{3-n},$$

où les h_n sont des coefficients dépendants du chargement macroscopique. De plus Gödert (2003) suppose que l’intensité du flux d’orientation, i.e., κ dans (5.19), dépend de l’orientation et on pose donc $\kappa = f_{\kappa b}$.

La partie diffuse de la vitesse de rotation de l’axe-c, avec la définition de la dureté (5.26), s’écrit alors

$$\dot{c}_i = -\kappa_b \frac{\partial}{\partial c_i} \left[\sum_{n=1}^{2} h_n (c_k c_l X_{ik}^n)^{3-n} \right] = -\kappa_b h_n (3-n) (c_k c_l X_{ik}^n)^{2-n} \frac{\partial}{\partial c_i} (c_k c_l X_{ik}^n)$$

En utilisant (5.27) dans (5.15) et en remarquant que

$$\frac{\partial}{\partial c_i} (c_k c_l X_{ik}^n)_c j = \bar{X}_{ik}^{n} \left[(\delta_{ik} - c_l c_k) c_l + c_k (\delta_{il} - c_l c_i) \right] c_j$$

$$= \left[\bar{X}_{ik}^{n} c_l c_k c_l + \bar{X}_{ik}^{n} c_l - c_l c_k c_l \right] c_j$$

$$= 2 \left[\bar{X}_{ik}^{n} c_l c_j - (\bar{X}_{ik}^{n} c_l c_j) c_j \right]$$

on obtient

$$\dot{a}^{(2)} = -2\kappa_b \sum_{n=1}^{2} h_n (3-n) I_{N X^i}^{2-n} (\bar{X}_{ik}^{n} a^{(2)} + a^{(2)} \bar{X}_{ik}^{n} - 2a^{(4)} : \bar{X}^{n}) .$$

En se limitant aux termes homogènes à l’ordre 1 en \bar{X}, i.e., $n = 2$ et $h_2 = I_{X}^{-0.5} = \bar{X}^{-0.5}$, on obtient

$$\dot{a}^{(2)} = -2\kappa_b (\bar{X} : \bar{X})^{-0.5} (\bar{X}^{2} a^{(2)} + a^{(2)} \bar{X}^{2} - 2a^{(4)} : \bar{X}^{2}) .$$

Les termes obtenus sont similaires à ceux de l’équation (5.17). Les différences par rapport à (5.17) sont que le tenseur \bar{X} est élevé au carré et que son invariant intervient en facteur. Dans la suite nous identifions \bar{X} à \bar{C} (5.5).

Sur les Figures 5.13 et 5.14, nous traçons les évolutions de la fabrique obtenues avec le modèle continu VPSC en compression, traction et cisaillement simple pour $\beta = 0.04$ et $\gamma = 1$ et en rajoutant à l’équation (5.17) le terme

$$\dot{a}^{(2)} = -2\kappa_b (\bar{C} : \bar{C})^{-0.5} (\bar{C}^{2} a^{(2)} + a^{(2)} \bar{C}^{2} - 2a^{(4)} : \bar{C}^{2}) .$$

Nous comparons les évolutions obtenues pour différentes valeurs de κ_b.

Ce terme de diffusion a pour effet de ralentir la concentration de la fabrique en compression et de l’accélérer en traction. Par contre contrairement à l’équation (5.25), il ne limite pas les valeurs propres de $\alpha^{(2)}$ et les fabriques stables formées sont les mêmes que celle obtenues en prenant en compte uniquement l’évolution de la fabrique sous l’effet de la déformation.

En cisaillement simple, ce terme de diffusion a pour effet de ralentir la rotation du plan Π mais aussi de changer l’évolution des valeurs propres de $\alpha^{(2)}$.
Fig. 5.13: Evolution en fonction de la déformation équivalente des valeurs propres de $a^{(2)}$ et des paramètres d’anisotropie $\bar{\beta}$, $\bar{\gamma}$ et η_{e_3}/η_c du poly cristal orthotrope de révolution obtenus avec le modèle continu pour $\beta = 0.04$ et $\gamma = 1$: (a) et (b) pour une compression uniaxiale selon la direction e_3, (c) et (d) pour une traction uniaxiale selon la direction e_3. Les solutions obtenues avec $\kappa_b = 0.05$ sont en traits continus, celles pour $\kappa_b = 0.1$ sont en pointillés et celles pour $\kappa_b = 0.5$ sont représentées par les tirets.
Fig. 5.14: Evolution en cisaillement simple en fonction de la déformation équivalente : (a) des valeurs propres de $\alpha^{(2)}$, (b) du déphasage du repère propre de $\alpha^{(2)}$ par rapport au repère de référence $\{R\}$, (c) du rapport des contraintes déviatoires axiales à la contrainte de cisaillement à $t = 0$, $\bar{S}_{ii}/\bar{S}_{12}(0)$ et (d) de la fluidité relative $2\bar{\eta}_0\bar{D}_{12}/\bar{S}_{12}$. Les solutions obtenues avec $\kappa_b = 0.05$ sont en traits continus, celles pour $\kappa_b = 0.1$ sont en pointillés et celles pour $\kappa_b = 0.5$ sont représentées par les tirets.
5.5.2 Recristallisation par migration

Les fabriques formées par recristallisation par migration sont, en général, complexes et comportent plusieurs maxima qui dépendent de l’état de contrainte. Il est admis que lorsque la recristallisation par migration est active, la fabrique s’adapte presque instantanément à l’état de contrainte rendant le comportement macroscopiquement isotope. La recristallisation par migration est active pour des températures et des niveaux de contraintes et de vitesses de déformation élevés. L’idée de cette section n’est donc pas de modéliser les fabriques obtenues par recristallisation par migration mais plutôt de modéliser la recristallisation par migration comme un retour à l’isotropie.

Morland et Staroszczyk (1998) et Staroszczyk et Morland (2001) utilisent une loi anisotrope phénoménologique où l’anisotropie dépend des directions et valeurs propres du tenseur de déformation de Cauchy-Green \mathbf{B}. Le comportement est isotope lorsque le matériau n’est pas déformé, i.e., $\mathbf{B} = \mathbf{I}$. Staroszczyk et Morland (2001) modélisent la recristallisation dynamique par un retour continu à un comportement isotope. Pour cela ils remplacent \mathbf{B} par $\hat{\mathbf{B}} = \mathbf{I} + f(I_D)(\mathbf{B} - \mathbf{I})$ où f est une fonction d’un invariant 2I_D de \mathbf{D}, continûment décroissante entre 1 si il n’y a pas de recristallisation dynamique et 0 si tout a recristallisé (i.e., comportement isotope).

Afin de modéliser la recristallisation dynamique, nous utilisons une équation de la même forme que (5.25)

$$\dot{\mathbf{a}}^{(2)} = \kappa_d (\mathbf{I} - 3\mathbf{a}^{(2)}) \quad (5.34)$$

Cette équation permet de retourner à une fabrique isotope puisqu’elle donne $\dot{a}^{(2)}_{ij} = 0$ seulement si $a^{(2)}_{ij} = \delta_{ij}/3$.

Comme exemple d’application, nous utilisons l’équation d’évolution de $\mathbf{a}^{(2)}$ (5.17) seule jusqu’à une certaine valeur critique de la déformation équivalente ε_{eq} puis nous utilisons l’équation de diffusion (5.34) seule pour retourner à une fabrique isotope. Les applications présentées sur les Figures 5.15 et 5.16 sont faites avec le modèle continu VPSC pour $\beta = 0.04$ et $\gamma = 1$. La déformation équivalente est donnée par $\varepsilon_{eq} = \int_0^t |D_{33}| \, dt$ en compression et traction uniaxiale et par $\varepsilon_{eq} = \int_0^t |L_{12}| \, dt$ en cisaillement simple. Pour κ_d dans (5.34), nous utilisons une fonction croissante de la déformation et qui vaut 0 tant que $\varepsilon_{eq} \leq \varepsilon_{eq}^\Gamma$. Pour les applications montrées ici, on adopte $\kappa_d = 10(1 - e^{-0.1(\varepsilon_{eq} - \varepsilon_{eq}^\Gamma)^2})$ pour $\varepsilon_{eq} > \varepsilon_{eq}^\Gamma$, ce qui permet un retour progressif vers des fabriques isotropes.

On peut remarquer que, lors de ce retour vers l’isotropie, le repère propre de $\mathbf{a}^{(2)}$ reste fixe (en notant que lorsque la fabrique est isotope tout repère est un repère propre de $\mathbf{a}^{(2)}$). On remarque aussi que, lors du retour à l’isotropie les paramètres d’anisotropie du polycristal en traction et compression ont une évolution pratiquement symétrique de celle qu’ils avaient eu jusqu’à la déformation critique. Les évolutions que nous obtenons ici sont très similaires à celles données par Staroszczyk et Morland (2001).
Fig. 5.15: Evolution en fonction de la déformation équivalente des valeurs propres de \(a^{(2)} \) et des paramètres d’anisotropie \(\beta, \gamma \) et \(\tilde{\eta}_{e3}/\eta_c \) du polycristal orthotrope de révolution obtenus avec le modèle continu pour \(\beta = 0.04 \) et \(\gamma = 1 \): (a) et (b) pour une compression uniaxiale selon la direction \(\mathbf{e}_3 \), (c) et (d) pour une traction uniaxiale selon la direction \(\mathbf{e}_3 \). Les paramètres \(\beta \) sont donnés par les courbes et symboles (○), les paramètres \(\tilde{\eta}_{e3}/\eta_c \) par les courbes et symboles (+) et les paramètres \(\gamma \) par les courbes seules. Les solutions sans recristallisation sont données par les courbes en traits continus, pour les pointillés \(\tilde{\varepsilon}_{eq} = 0.5 \), pour les tirets \(\tilde{\varepsilon}_{eq} = 1.5 \) et pour les tirets et pointillés \(\tilde{\varepsilon}_{eq} = 2.5 \).
Fig. 5.16: Evolution en fonction de la déformation équivalente en cisaillement simple : (a) des valeurs propres de $\mathbf{a}^{(2)}$, (b) du déphasage du repère propre de $\mathbf{a}^{(2)}$ par rapport au repère de référence $\{R\}$, (c) du rapport des contraintes déviatoires axiales à la contrainte de cisaillement à $t = 0$, $S_{ii}/S_{12}(0)$ et (d) de la fluidité relative $2\eta_0 D_{12}/S_{12}$. Les solutions sans recristallisation sont données par les courbes en traits continus, pour les pointillés $\varepsilon_{eq} = 5$, pour les tirets $\varepsilon_{eq} = 15$ et pour les tirets et pointillés $\varepsilon_{eq} = 25$.
5.6 Conclusion

Dans ce chapitre, nous avons donné l’équation d’évolution du tenseur d’orientation d’ordre 2, utilisée pour calculer l’évolution de la fabrique.

Nous avons comparé les différentes fonctions de fermeture pour $a^{(4)}$. La fermeture IBOF (3.39) permet de bien reproduire l’évolution de la fabrique donnée par les modèles utilisant une description discrète de la fabrique. Nous avons étudié l’influence du paramètre d’anisotropie du monocristal β et du type de modèle de comportement, sur l’évolution de la fabrique pour des tests de compression, traction et cisaillement simple. Plus le grain est anisotrope et plus la fabrique se concentre vite. Le modèle auto-cohérent, pour une déformation équivalente égale, conduit à une concentration de la fabrique intermédiaire entre celles calculées par le modèle de Taylor et par le modèle Statique. Nous avons montré que, grâce à un paramètre d’interaction qui ne dépend que des paramètres d’anisotropie du monocristal, notre équation d’évolution de $a^{(2)}$ permet de bien reproduire les résultats du modèle auto-cohérent.

Enfin, nous avons proposé quelques pistes pour prendre en compte les phénomènes de recristallisation par rotation et par migration. Nous obtenons des résultats prometteurs mais ils devront être validés à partir des résultats de modèles micro-macro incluant la modélisation de ces phénomènes à l’échelle du grain.
Chapitre 6

Modélisation de l’écoulement de glace anisotrope et applications

6.1 Introduction

Dans cette partie nous commençons par présenter les équations macroscopiques gouvernant l’écoulement de glace anisotrope et les méthodes numériques utilisées pour les résoudre.

Nous présentons ensuite des applications théoriques d’écoulement pour des géométries simplifiées, afin d’étudier l’influence du comportement anisotrope de la glace sur l’écoulement d’une calotte.

6.2 Equations

Dans la suite, la composante d’un vecteur dans la direction verticale est notée avec l’indice 3 et les composantes horizontales avec les indices 1 et 2 ou de manière générale par \perp. Le temps est donné par la variable t.

6.2.1 Équations de Stokes

Pour l’écoulement de la glace sous l’effet de la gravité, les effets inertiels sont négligeables devant les effets visqueux et nous résolvons les équations de Stokes :

- la conservation de la masse pour la glace supposée incompressible, s’écrit

\[\bar{u}_{i,j} = 0 \quad , \]

(6.1)

- et l’équation d’équilibre quasi-statique est donnée par

\[\bar{\sigma}_{ij,j} + \rho g_i = 0 \quad , \]

(6.2)

où \bar{u} est le vecteur vitesse, g est le vecteur accélération de la gravité, ρ est la densité de la glace et $\bar{\sigma}$ le tenseur des contraintes. La pression isotrope p est définie par

\[\bar{\sigma} = \bar{\mathbf{S}} + p \mathbf{I} \quad . \]

(6.3)

La relation constitutive pour la glace est donnée par la loi GOLF (4.23).
6.2.2 Evolution de la fabrique

L’équation d’évolution de la fabrique est l’équation d’évolution du tenseur d’orientation du second ordre \(a^{(2)}\) (5.17) dans laquelle on pose \(\lambda = 1\) (modèle de grain continu), avec la fermeture IBOF (3.39) pour \(a^{(4)}\). En introduisant la dérivée Eulerienne on a :

\[
\dot{a}^{(2)} = \frac{\partial a^{(2)}}{\partial t} + \bar{u}^T \nabla a^{(2)} = \dot{W} a^{(2)} - a^{(2)} \dot{W} - (\dot{C} a^{(2)} + a^{(2)} \dot{C}) + 2a^{(4)} : \dot{C} \quad (6.4)
\]

6.2.3 Surface libre

L’équation d’évolution de la surface libre de la calotte, décrite par \(x_3 = E(x_1, x_2, t)\), est donnée par

\[
\frac{DE}{Dt} = \frac{\partial E}{\partial t} + \bar{u}_1 E, + \bar{u}_2 E, - \bar{u}_3 = a ,
\]

(6.5)

où \(a\) est un flux vertical (accumulation si positif ou ablation si négatif).

6.2.4 Equation de la chaleur

L’équation de la chaleur, pour la glace incompressible, s’écrit

\[
\rho c \left(\frac{\partial T}{\partial t} + \bar{u}^T \nabla T \right) - \nabla (k \nabla T) = \bar{S} : \bar{D} \quad ,
\]

(6.6)

où \(T\) est la température, \(c\) la capacité thermique et \(k\) la conductivité thermique de la glace. Le terme \(\bar{S} : \bar{D}\) correspond à la production de chaleur due à la déformation. Les coefficients \(c\) et \(k\) dépendent de la température, ce qui rend cette équation non linéaire. On pourra voir (Ritz et al. 1997), par exemple, pour trouver les valeurs usuelles. Dans ce manuscrit nous utiliserons les valeurs constantes \(c = 2009 \text{J.kg}^{-1}.\text{K}^{-1}\) et \(k = 2.1 \text{W.m}^{-1}.\text{K}^{-1}\) adoptées pour les tests d’intercomparaison de modèles EISMINT (European Ice Sheet Modelling INitiative ; voir Fabre (1997) par exemple).

6.2.5 Age

L’équation d’évolution de l’âge \(Ag\) d’une particule de glace, est donnée par

\[
\frac{D Ag}{Dt} = \frac{\partial Ag}{\partial t} + \bar{u}_1 Ag, + \bar{u}_2 Ag, + \bar{u}_3 Ag, = 1 \quad .
\]

(6.7)

Cette équation est linéaire.

6.2.6 Gradient de transformation

L’équation d’évolution du tenseur gradient de transformation est donnée par

\[
\frac{D \tilde{F}}{Dt} = \frac{\partial \tilde{F}}{\partial t} + \bar{u}^T \nabla \tilde{F} = \tilde{L} \tilde{F} .
\]

(6.8)

Cette équation est linéaire. Elle peut être utile pour calculer l’amincissement d’une couche \(th\) donné par

\[
th = \frac{1}{\varepsilon_3 \tilde{F}^{-T} \cdot \varepsilon_3} .
\]

(6.9)
L’amincissement est le rapport de l’épaisseur d’une couche annuelle à une profondeur donnée à l’épaisseur de cette couche annuelle lorsqu’elle était en surface. Il vaut 1 en surface et tend vers 0 près du socle, où les couches annuelles deviennent infiniment minces.

6.3 Formulations variationnelles et méthodes numériques

Ces équations sont résolues par la méthode des éléments finis avec le code Elmer (Center for Scientific Computing (CSC), Finlande, URL : http://www.csc.fi/elmer).

6.3.1 Équations de Stokes

La formulation variationnelle discrète des équations (6.1) et (6.2) est obtenue par intégration par partie, en utilisant les fonctions test Φ (scalaire) et Φ_i (vecteur) :

\[
\int_V \tilde{u}_{i,i} \Phi \, dV = 0,
\]

\[
\int_V \left(\tilde{S}_{ij} + p \delta_{ij} \right) \Phi_{i,j} \, dV = - \int_{\partial V} \left(\tilde{S}_{ij} + p \delta_{ij} \right) n_j \Phi_i \, dA + \rho \int_V g_i \Phi_i \, dV,
\]

où V est le domaine occupé par la glace et ∂V la frontière de ce domaine.

Les variables inconnues \tilde{u} et p sont discrétisées par les fonctions d’interpolation Ψ_i :

\[
\tilde{u} = \Psi_i \tilde{u}^i \quad \text{and} \quad p = \Psi_i p^i,
\]

où \tilde{u}^i et p^i sont les valeurs nodales de la vitesse et de la pression, respectivement, au noeud i du maillage éléments finis.

Les inconnues \tilde{u} sont contenues implicitement dans (6.10) par l’intermédiaire de la relation constitutive GOLF (4.23).

Pour un champ de fabrique donné, la solution de (6.10) est obtenue par la méthode des bulles résiduelles (Baiocchi et al., 1993). La méthode des bulles résiduelles est une méthode de stabilisation dans laquelle on ajoute des noeuds et des fonctions d’interpolation virtuels pour les variables de vitesse, afin de respecter la règle générale qui veut que la pression soit interpolée avec des polynômes de moindre degré que ceux utilisés pour la vitesse.

Les conditions aux limites sur les bords du domaine peuvent être de type Dirichlet (conditions aux limites en vitesses ou pression isotrope) ou de type Neumann (conditions aux limites en contraintes).

6.3.2 Évolution de la fabrique

En introduisant la notation vectorielle $A = (a_1, a_2, a_3, a_4, a_5, a_6)$ pour le tenseur d’orientation du second ordre, l’équation d’évolution de $A^{(2)}$ (6.4) se réécrit comme

\[
\frac{\partial A_i}{\partial t} + \tilde{u}^T \text{grad} A_i + \kappa_i A_i = f_i \quad (i = 1, \ldots, 5).
\]

L’expression des termes κ_i et f_i est donnée en Annexe G.

Ces équations, de type hyperbolique du premier ordre, sont non-linéaires puisque f dépend du tenseur d’orientation du quatrième ordre $A^{(4)}$ qui est une fonction non-linéaire de $A^{(2)}$ (3.39). Les cinq équations sont aussi couplées puisque chaque équation contient les cinq inconnues $a_{ij}^{(2)}$.
La résolution de cette équation de transport, dans laquelle il n’y a pas de diffusion, nécessite une approche différente de la méthode de Galerkin habituelle. Nous utilisons une méthode de Galerkin discontinue (Brezzi et al., 2004). Les non-linéarités sont résolus par des itérations de type Picard : à l’itération $n+1$ pour la résolution de l’équation (6.12), les composantes de $\mathbf{a}^{(4)}$ sont calculées à partir de $\mathbf{a}^{(2)}$ à l’itération n.

Pour cette équation de transport, il est nécessaire d’imposer une condition limite de type Dirichlet aux frontières où la vitesse est entrante dans le domaine.

6.3.3 Surface libre

L’élévation de la surface libre E est discrétisée comme

$$E(x, y, t) = \Psi_i(x, y)E_i(t),$$

(6.13)

où E_i est la valeur de E au noeud i de la surface de la calotte, et les Ψ_i sont les fonctions d’interpolation.

La formulation variationnelle discrète de l’équation (6.5) est obtenue par intégration sur la surface de la calotte, en utilisant la fonction test Φ :

$$\frac{\partial E_i}{\partial t} \int_E \Psi_i \Phi dE + E_i \int_E \bar{u}_\perp \nabla\perp \Psi_i \Phi dE = \int_E (\bar{u}_3 + a) \Phi dE,$$

(6.14)

où $\nabla\perp = (\partial / \partial x_1, \partial / \partial x_2, 0)$ est l’opérateur gradient horizontal et $\bar{u}_\perp = (\bar{u}_1, \bar{u}_2, 0)$ et \bar{u}_3 sont les vitesses solutions du problème de Stokes.

A cause de la nature hyperbolique de l’équation (6.14), la méthode standard de Galerkin ne s’applique pas. La stabilisation est obtenue soit en appliquant la méthode des bulles résiduelles (Baiocchi et al., 1993), soit par une méthode de stabilisation (Franca et al., 1992; Franca et Frey, 1992).

Ce problème est 1D dans le cas d’un écoulement bidimensionnel et 2D dans le cas d’un écoulement tridimensionnel. Nous imposons comme condition à la limite, la fonction d’accumulation sur la surface libre.

A chaque pas de temps, pour éviter une distorsion du maillage, tous les noeuds sont redistribués en résolvant un problème fictif d’élasticité : le domaine, auquel on attribue des propriétés élastique, est déformé en prescrivant à la surface un déplacement qui correspond au mouvement de la surface libre.

6.3.4 Équation de la chaleur

La température T est discrétisée comme

$$T(x, y, z, t) = \Psi_j(x, y, z)T_j(t),$$

(6.15)

où T_i est la valeur de T au noeud i du maillage éléments finis et Ψ_i sont les fonctions d’interpolation.

La formulation variationnelle discrète de l’équation (6.6) est obtenue par intégration, en utilisant la fonction d’interpolation Φ, comme

$$\rho c \frac{\partial T_j}{\partial t} \int_V \Psi_j \Phi dV + T_j \int_V \left(\rho c \bar{u}_i \Psi_{j,i} \Phi + k \Psi_{j,i} \Phi_{,i} \right) dV = T_j \int_{\partial V} k \Psi_{j,i} \Phi n_i dA$$

$$+ \int_V D : \bar{S} \Phi dV.$$

(6.16)
Cette équation n’est pas stable en général si la convection est dominante, et la solution est obtenue en appliquant la méthode des bulles résiduelles (Baiocchi et al., 1993) ou une méthode de stabilisation (Franca et al., 1992; Franca et Frey, 1992).

Les conditions limites sont de type Dirichlet (température imposée en surface) et de type Neumann (flux de chaleur au niveau du socle).

6.3.5 Age et gradient de transformation

Comme pour l’équation d’évolution de la fabrique, ces deux équations sont des équations de convection pure et sont résolues par la méthode de Galerkin discontinue (Brezzi et al., 2004). Les conditions limites sont de type Dirichlet sur les frontières où la vitesse est entrante dans le domaine.

6.3.6 Couplage des équations

Chacune des équations qui gouverne l’écoulement (Stokes, fabrique, surface libre et équation de la chaleur) dépend des solutions des autres équations. Toutes ces équations doivent donc être résolues de manière couplée. Ceci est fait par des itérations de type Picard à l’intérieur d’un pas de temps. L’algorithme est le suivant :

1. au temps t, l’élévation de la surface libre et les champs de vitesse, pression, température et fabrique sont connus ;
2. on calcule une estimation de la solution pour \tilde{u} et p au temps $t + \Delta t$, en supposant T, E et $a^{(2)}$ fixes ;
3. on calcule une estimation de la solution pour E au temps $t + \Delta t$, en supposant les autres variables fixes ;
4. on calcule une estimation de la solution pour $a^{(2)}$ au temps $t + \Delta t$, en supposant les autres variables fixes. Cette solution nécessite une procédure itérative puisque l’équation (6.12) est non-linéaire ;
5. on calcule une estimation de la solution pour T au temps $t + \Delta t$, en supposant les autres variables fixes (cette solution nécessite une procédure itérative si k et c dépendent de T, ce qui n’est pas supposé ici) ;
6. on répète les pas (1) à (5) jusqu’à la convergence pour \tilde{u}, $a^{(2)}$, T et E ;
7. on incrémentle le temps t à $t = t + \Delta t$.

Le critère de convergence adopté pour un vecteur solution \vec{q} à l’itération n, est de la forme

$$\|\vec{q}_n - \vec{q}_{n-1}\| < \epsilon \|\vec{q}_n\| \quad (6.17)$$

Ce critère est utilisé pour les itérations non linéaires à l’intérieur d’un solveur et pour les itérations couplées à l’intérieur du pas de temps. $\|\vec{q}\|$ est la norme ℓ^2 définie comme

$$\|\vec{q}\| = \left(\sum_{i=1}^{N} (q^i)^2 \right)^{1/2} \quad (6.18)$$

où q^i est la valeur de \vec{q} au noeud i et N est le nombre total de noeuds du maillage. ϵ est de l’ordre de 10^{-8} pour les itérations non linéaires à l’intérieur d’un solveur et de l’ordre de 10^{-6} pour les itérations couplées à l’intérieur du pas de temps.

6.4 Applications théoriques

Nous proposons ici quelques simulations théoriques d’un écoulement bidimensionnel de glace présentant une anisotropie induite évolutive afin d’étudier l’influence de l’anisotropie
sur l’écoulement. Pour toutes les simulations présentées ici, le paramètre d’interaction \(\alpha \) qui intervient dans l’équation d’évolution de \(a^{(2)} \) (5.17) d’après la relation (5.5) est choisi égal au paramètre d’interaction optimal \(\alpha = \alpha_{\text{opt}} \). Pour les simulations avec un modèle de comportement anisotrope, nous calculons toujours le champ de fabrique.

Pour comparaison, on pourra trouver des simulations bidimensionnelles analogues dans différents travaux :

Les simulations présentées ici sont les premières qui intègrent à la fois le calcul de la fabrique, l’évolution de la surface libre et le calcul de la température.

Nous commençons par présenter les conditions aux limites et initiales appliquées ainsi que le maillage utilisé pour nos simulations. Nous étudions ensuite l’influence de l’anisotropie pour des calottes théoriques s’écoulant sur des socles plats et sinusoïdaux.

Dans toutes les simulations présentées ici, les fluidités de référence à la température \(T = -10^\circ C \) sont prises égales à \(B_1(-10^\circ C) = 0.1 \text{ MPa}^{-1} \text{ a}^{-1} \) et \(B_3(-10^\circ C) = 20 \text{ MPa}^{-3} \text{ a}^{-1} \), pour \(n = 1 \) et \(n = 3 \), respectivement. Les simulations isothermes sont effectuées pour une température \(T = -10^\circ C \).

6.4.1 Conditions aux limites

Pour ces tests bidimensionnels, nous notons \(x \) et \(y \) les directions horizontale et verticale, respectivement. Les composantes du vecteur vitesse sont notées \(u \) et \(v \) suivant l’horizontale et la verticale, respectivement.

6.4.1.1 Surface libre

Les contraintes à la surface sont telles que

\[
\sigma \cdot n = \sigma^0 n ,
\]

où \(\sigma^0 \) est la pression atmosphérique et \(n \) est la normale extérieure unitaire à la surface libre.

L’accumulation \(a(x) \) est prescrite sur toute la surface libre.
Pour les équations de transport, nous devons définir des conditions aux limites uniquement aux frontières où les trajectoires sont entrentes au domaine, donc uniquement au niveau de la surface libre pour les simulations présentées ici :

- la fabrique est supposée isotope

\[a^{(2)}(x, E(x)) = \frac{1}{3} I, \]

(6.20)

- l’âge en surface est nul

\[A_\gamma(x, E(x)) = 0, \]

(6.21)

- la glace n’est pas déformée en surface

\[F(x, E(x)) = I. \]

(6.22)

- la température \(T(x, E(x)) \) est prescrite.

6.4.1.2 Socle

Pour le socle, défini par \(y = B(x) \), nous prescrivons des conditions aux limites pour le calcul des champs de vitesse et de température.

Nous supposerons dans nos tests qu’il n’y a pas de glissement, i.e., \(u(x, B(x)) = 0 \). Par commodité, nous prescrivons une vitesse verticale \(v(x, B(x)) \) non nulle mais très petite pour ne pas obtenir un âge infini et un amincissement nul au socle.

Pour le calcul de la température, nous prescrivons le flux de chaleur (flux géothermique) au niveau du socle \(G_f = -k \partial T/\partial n_B \), où \(n_B \) est la normale extérieure unitaire au socle.

6.4.1.3 Bords du domaine en 2D

Comme plusieurs auteurs (Mangeney et al., 1996; Gagliardini et Meyssonnier, 2002; Pettit et Waddington, 2003), nous restreignons nos domaines d’étude aux parties centrales des calottes. Les conditions limites sur les bords latéraux du domaine sont :

- pour l’axe de symétrie en \(x = x_D \), représentant un dôme, la condition de vitesse est

\[u(x_D, y) = 0, \]

(6.23)

et la condition sur le flux de température est

\[G_D = 0. \]

(6.24)

- pour le bord latéral en \(x = x_L \), qui est une frontière fictive de la calotte et qui n’est pas un axe de symétrie, nous prescrivons le profil de vitesse normale au bord. Nous nous restreignons à des bords latéraux verticaux, donc nous imposons uniquement le profil de vitesse horizontale. Comme discuté par les auteurs précédemment cités, l’écoulement de la glace est insensible au détail de ce profil de vitesse dans les zone éloignées de plus de 10 épaisseurs de glace de la limite latérale. Dans Mangeney et al. (1996) et Pettit et Waddington (2003), le profil de vitesse correspond au profil obtenu pour un écoulement laminaire avec une glace isotope et isotherme. Gagliardini et Meyssonnier (2002) prescrivent des conditions limites en vitesse obtenues à partir des solutions calculées dans le cadre de l’approximation de la couche mince à l’ordre zéro pour une glace orthotrope. En écrivant la loi de comportement (4.23) sous forme condensée

\[\tilde{S} = \tilde{M} \tilde{D}, \]

(6.25)
la dérivée de la vitesse horizontale est alors obtenue comme (Gagliardini et Meyssonnier, 2002)

$$\frac{\partial u}{\partial y} = \frac{\rho g}{M_{xyy}} \frac{dE}{dx} (y - B(x_L)). \tag{6.26}$$

Le profil de la vitesse horizontale, en fonction de y, est obtenu par intégration de (6.26)

$$u(x_1, y) = \rho g \frac{dE}{dx} \int_{y}^{y} \frac{\xi - B(x_L)}{M_{xyy}} d\xi . \tag{6.27}$$

Cette équation (6.27) peut être appliquée directement pour une simulation où la surface libre n’évolue pas. Pour une simulation où la surface libre évolue, afin d’obtenir un état stationnaire, nous imposons un profil de vitesse qui satisfait la conservation de la masse. Le profil de vitesse horizontal (6.27) est alors donné par

$$u(x_1, y) = C \int_{y}^{y} \frac{\xi - B(x_L)}{M_{xyy}} d\xi . \tag{6.28}$$

La relation entre le paramètre C d’une part, et l’accumulation a en surface et la fusion au socle d’autre part, est obtenue en exprimant la conservation de la masse totale dans l’hypothèse d’une calotte stationnaire : le flux de masse entrant par la surface libre sous forme d’accumulation entre $x = 0$ et $x = x_L$ doit être égal à la somme du flux de masse sortant par le bord latéral et du flux sortant dû à la fusion basale :

$$\int_{0}^{x_L} \left(a(\zeta, E(\zeta)) + v(\zeta, B(\zeta))\right) d\zeta = \int_{B(x_L)}^{x_L} u(x_L, \xi) d\xi. \tag{6.29}$$

D’après les équations (6.28) et (6.29), nous obtenons

$$C = \left(\int_{0}^{x_L} a(\zeta, E(\zeta)) + v(\zeta, B(\zeta)) d\zeta \right) \left[\int_{B(x_L)}^{x_L} \left(\int_{B(x_L)}^{x_L} \frac{\xi - B(x_L)}{M_{xyy}} d\xi \right) d\zeta \right]^{-1}. \tag{6.30}$$

6.4.2 Conditions initiales

L’état initial de la calotte est obtenu en adoptant une géométrie simplifiée pour la surface et une première estimation pour le champ de fabrique.

Pour la surface de la calotte, nous adoptons un profil de Vialov\(^1\) (Vialov, 1958)

$$E(x) = E_0 \left(1 - \frac{x}{L}\right)^2 \right)^{1/4}, \tag{6.31}$$

où L est la longueur de la calotte et $E_0 = E(0)$. Pour les simulations présentées ici, nous prenons $L = 100E_0$ et $E_0 = 3000m$. Notons que, compte tenu du profil de vitesse que nous adoptons pour le bord latéral (6.30), par construction le volume de glace est constant, et les résultats dépendent donc de cette initialisation.

\(^1\)Le profil de Vialov est obtenu analytiquement en utilisant l’approximation de la couche mince pour une glace isotope isotherme s’écoulant sur un socle plat et une accumulation constante
Nous initialisons le champ de fabrique, soit en prenant une fabrique isotrope, i.e.,
\[a^{(2)} = 1/3 I, \]
soit en prenant une approximation polynomiale des fabriques du forage de
GRIP
\[
\begin{align*}
a_2 &= \frac{1}{3} + 2.143\xi - 5.607\xi^2 + 7.669\xi^3 - 3.602\xi^4, \\
a_1 &= a_3 = \frac{1 - a_2}{2},
\end{align*}
\]
(6.32)
où \(\xi = (E(x) - y)/H(x) \) est la hauteur réduite, avec \(H(x) = E(x) - B(x) \) l'épaisseur de
glace. La glace, orthotrope de révolution autour de la verticale, est isotrope en surface et
présente une fabrique de plus en plus concentrée autour de la verticale en profondeur, avec
\(a_2 = 0.936 \) au niveau du socle en \(\xi = 1 \). Comme nous le verrons au Chapitre suivant en
comparant les fabriques de GRIP à celles des forages de Dôme C et Dôme F, le profil de
fabrique de GRIP est typique des fabriques qui se développent sous un dôme.

6.4.3 Maillage

Nous utilisons des éléments quadrilatères à quatre noeuds avec une interpolation bili-
néaire. Nous utilisons des maillages réguliers de type bandes avec \(N_x \) éléments suivant la
direction horizontale et \(N_y \) éléments suivant la direction horizontale. Le maillage est plus
raffiné près du dôme et près du socle où les gradients sont plus importants. Un exemple de
maillage est donné par la Figure 6.1.
Fig. 6.1: Exemple de maillage avec 60 éléments suivant la direction horizontale et 25 éléments suivant la direction verticale. L'échelle verticale est dilatée d'un facteur 30 par rapport à l'échelle horizontale.
6.4.4 Écoulement sur un socle plat

6.4.4.1 Validation des méthodes numériques

Nous étudions ici l’influence du maillage et validons les méthodes numériques utilisées pour résoudre l’évolution de la fabrique. Nous comparons les solutions stationnaires obtenues pour une calotte isotherme en équilibre avec un taux d’accumulation en surface de \(a = 20 \text{cm.a}^{-1} \).

La définition des simulations présentées ici est donnée par le tableau 6.1. Toutes les simulations sont faites avec le modèle VPSC pour des paramètres d’anisotropie du grain
\[\beta = 0.04 \text{ et } \gamma = 1. \]

<table>
<thead>
<tr>
<th>nom de la simulation</th>
<th>maillage (N_x/N_y)</th>
<th>fabrique initiale</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPSC_GRIP_m1</td>
<td>60/25</td>
<td>GRIP (6.32)</td>
</tr>
<tr>
<td>VPSC_GRIP_m2</td>
<td>60/35</td>
<td>GRIP (6.32)</td>
</tr>
<tr>
<td>VPSC_isotropic_m2</td>
<td>60/35</td>
<td>isotrope</td>
</tr>
<tr>
<td>VPSC_GRIP_m2</td>
<td>60/35</td>
<td>GRIP (6.32)</td>
</tr>
</tbody>
</table>

Tab. 6.1: Définition des simulations pour la validation des méthodes numériques

Sur la Figure 6.2, nous comparons les solutions en surface obtenues avec le modèle VPSC pour un maillage présentant \(N_y = 25 \) éléments suivant la verticale, et un maillage avec \(N_y = 35 \) éléments. La discrétisation horizontale avec \(N_x = 60 \) éléments est identique pour les deux maillages. Nous comparons aussi les solutions calculées en initialisant la fabrique avec le profil paramétré (6.32) et avec une fabrique isotrope. Sur la Figure 6.3, nous donnons les profils de vitesse et de fabrique obtenus dans un forage situé en \(x = 30 \text{km} \). Les solutions en surface sont très similaires. Les profils de la vitesse verticale et du déphasage \(\varphi \) entre \(a^{(2)} \) et le repère de référence présentent une petite sensibilité à la discrétisation verticale du maillage. Les résultats restent tout de même très proches. Les résultats obtenus avec les deux initialisations différentes du champ de fabrique sont presque identiques. Les tests effectués nous montrent que la solution est très peu sensible à la discrétisation horizontale du maillage, les gradients suivant cette direction restant très faibles.
Fig. 6.2: Comparaison en surface des résultats des simulations VPSC_GRIP_m1 (traits continus), VPSC_GRIP_m2 (+) et VPSC_isotrope_m2 (o) : (a) élévation de la surface libre, (b) vitesse horizontale u et (c) vitesse verticale v.
Fig. 6.3: Comparaison des profils obtenus dans un forage situé en $x = 30$ km avec les simulations VPSC_GRIP_m1 (traits continus), VPSC_GRIP_m2 (+) et VPSC_isotrope_m2 (o) : (a) vitesse horizontale u, (b) vitesse verticale v, (c) valeurs propres de $\mathbf{a}^{(2)}$ et (d) déphasage φ entre le repère propre de $\mathbf{a}^{(2)}$ et le repère de référence.
Sur la Figure 6.4, nous traçons la ligne de courant qui part de la surface en $x = 5km$. Nous donnons les composantes du tenseur vitesses de déformation et vitesses de rotation le long de cette ligne de courant. Afin de valider la méthode numérique utilisée pour résoudre l’évolution de la fabrique par la méthode des éléments finis, nous comparons l’évolution de la fabrique le long de cette ligne de courant calculée par le modèle éléments finis (calcul couplé) aux évolution calculées directement par le modèle VPSC discret et par l’équation d’évolution de la fabrique (5.17) en utilisant l’histoire de vitesses de déformation et de rotation, solutions du problème éléments finis (voir Figure 6.5). Les évolutions calculées ainsi sont identiques jusqu’à un âge d’environ 20ka. C’est à partir de cet âge que la vitesse de déformation en cisaillement D_{12} devient prédominante par rapport aux composantes diagonales. Pour des âges supérieurs, on observe des différences sur le déphasage φ. Avec le modèle discret φ se stabilise vers 3.5 degrés. On note quelques oscillations pour la solution calculée avec le modèle éléments finis et le déphasage φ se stabilise autour de 1.75 degrés alors qu’en résolvant directement l’équation d’évolution de $a^{(2)}$ (5.17), φ tend vers 0. Nous rappelons que pour le modèle éléments finis et le modèle VPSC continu nous utilisons exactement les mêmes équations, ainsi les différences proviennent uniquement de la méthode numérique utilisée pour les résoudre. Les différences entre le modèle VPSC continu et le modèle VPSC discret proviennent en grande partie des hypothèses que nous avons faites pour décrire l’évolution de la fabrique avec le modèle continu (orthotropie et fonction de fermeture IBOF (3.39)). Malgré ces petites différences, les résultats restent très proches ce qui valide notre équation d’évolution continue (5.17) pour modéliser le développement de la fabrique et sa résolution par la méthode des éléments finis.

L’amincissement peut être obtenu de deux manières différentes, soit à partir du tenseur gradient de transformation, d’après (6.9), comme

$$th = 1/F_{11},$$

soit à partir de l’âge comme

$$th = (\partial y/\partial A_g)/a,$$

où le terme $(\partial y/\partial A_g)$ donne l’épaisseur d’une couche annuelle à l’altitude y et l’accumulation a (constante dans le temps et l’espace) est l’épaisseur de cette couche annuelle en surface. Sur la Figure 6.6, nous donnons les profils d’amincissement et de fabrique obtenus à l’axe de symétrie en $x = 0$. Les amincissements calculés par (6.33) et par (6.34) sont bien identiques; nous rappelons tout de même que le calcul de l’âge et du tenseur gradient de transformation sont résolus par la même méthode numérique. Lorsque le cisaillement est nul, comme à l’axe de symétrie, alors, pour un modèle de comportement donné, la fabrique ne dépend que de la déformation cumulée

$$\bar{\varepsilon}_c = e^{\int_0^t \bar{D}_{yy} dt} - 1,$$

qui est reliée à l’amincissement th par

$$\bar{\varepsilon}_c = th - 1.$$

Nous comparons sur la Figure 6.6a, les évolutions, en fonction de l’amincissement, des fabriques obtenues au dôme par la modélisation éléments finis d’une part, et en résolvant l’équation d’évolution de $a^{(2)}$ (5.17) pour une compression biaxiale d’autre part. Les résultats obtenus sont identiques.
Fig. 6.4: Résultats de la simulation VPSC_GRIP_m1 : (a) socle et surface libre (traits continus) et ligne de courant partant en $x = 5\text{km}$ (tirets et + ; deux + successifs sont séparés de 2000 ans), (b) évolution des vitesses de déformation \bar{D}_{ii} sur la ligne de courant en fonction de l'âge et (c) évolution de la vitesse de déformation \bar{D}_{12} (trait continu) et de la vitesse de rotation \bar{W}_{12} (+) sur la ligne de courant en fonction de l'âge.
Fig. 6.5: Evolution le long de la ligne de courant présentée sur la Figure 6.4 : (a) des valeurs propres de \(a^{(2)} \) et (b) du déphasage \(\bar{\varphi} \) entre le repère propre \(a^{(2)} \) et le repère de référence. Les traits continus sont les résultats de la simulation VPSC_GRIP_m1, les tirets sont obtenus en résolvant l’équation d’évolution de \(a^{(2)} \) (6.12) avec l’histoire des vitesses de déformation et de rotation obtenue le long de la ligne de courant et les pointillés sont obtenus avec le modèle discret pour une fabrique de 4900 grains et la même histoire des vitesses de déformation et de rotation.
Fig. 6.6: Evolution, en fonction de l’amincissement, dans un forage situé à l’axe de symétrie en $x = 0$ km : (a) des valeurs propres de $a^{(2)}$ solutions de la simulation VPSC GRIP m1 (traits continus) et en résolvant l’équation d’évolution de $a^{(2)}$ (5.17) (+), et (b) comparaison de l’amincissement calculé dans le forage comme $th = 1/F_{11}$ (6.33) (trait continu) et $th = (\partial y/\partial Ag)/a$ (6.34) (○).
6.4.4.2 Comparaison des modèles μ-M

Nous comparons ici différents modèles de comportement de la glace et étudions leur influence sur l’écoulement d’une calotte isotherme sur un socle plat. L’accumulation en surface est la même que pour les tests précédents. La définition des simulations présentées ici est donnée dans le tableau 6.2.

<table>
<thead>
<tr>
<th>nom de la simulation</th>
<th>comportement</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPSC1</td>
<td>VPSC ; β = 0.04, γ = 1</td>
</tr>
<tr>
<td>VPSC2</td>
<td>VPSC ; β = 0.1, γ = 1</td>
</tr>
<tr>
<td>Stat</td>
<td>Statique ; β = 0.04, γ = 1</td>
</tr>
<tr>
<td>isotrope</td>
<td>isotrope n = 1</td>
</tr>
<tr>
<td>isotropenl</td>
<td>isotrope n = 3</td>
</tr>
</tbody>
</table>

Tab. 6.2: Définition des simulations pour la comparaison de modèles μ-M.

Sur la Figure 6.7, nous comparons les résultats obtenus en surface. Les surfaces calculées avec les modèles de comportement anisotropes sont plus plates que celle obtenue avec un comportement isotrope. D’une manière générale, les fabriques qui se développent présentent un fort maximum suivant une direction proche de la verticale, comme illustré par la Figure 6.8, rendant ainsi la glace plus fluide en cisaillement. Le modèle VPSC conduit à une fluidité en cisaillement pour une fabrique à un maximum plus importante que celle obtenue avec le modèle Statique. Les vitesses horizontales sont sensiblement identiques, alors qu’il y a une assez nette différence sur les vitesses verticales. Plus la pente de surface est forte, plus la valeur absolue de la vitesse verticale en surface augmente avec l’abscisse. Le fait que la surface obtenue avec un comportement isotrope non linéaire soit moins plate que celle obtenue avec un comportement linéaire vient des valeurs choisies pour les fluidités de références.

Sur la Figure 6.9, nous comparons les profils de vitesse verticale et de vitesses de déformation à l’axe de symétrie. Plus le modèle conduit à une fluidité importante en cisaillement pour les fabriques à un maximum, plus les profils de vitesse verticale se rapprochent d’un profil linéaire. On obtient ainsi des vitesses de déformation moins importantes en surface avec le modèle VPSC et elles restent constantes sur une épaisseur plus importante. Les profils de vitesses de déformation calculés dans le cas linéaire sont assez semblables que soit le modèle de comportement, par contre ils diffèrent sensiblement de celui obtenu avec le comportement isotrope non linéaire. A cause de la non linéarité, la glace devient de plus en plus visqueuse sous le dôme et le profil de vitesse verticale est fortement non linéaire.

Sur la Figure 6.10, nous comparons les profils de vitesses et de vitesses de déformation obtenus dans un forage situé en $x = 30\text{km}$. Pour les profils de vitesse verticale, dans le cas linéaire, nous pouvons faire les mêmes observations que pour les profils obtenus au dôme. Par contre dans le cas non linéaire, la glace devient beaucoup plus fluide vers le fond et le profil de vitesse vertical se rapproche d’un profil linéaire. Ce changement de profil de vitesse verticale entre le dôme et les flancs de la calotte, dans le cas non linéaire, est à l’origine des arches de Raymond (Raymond, 1983) que l’on observe sur les courbes isochrones sous le dôme, comme illustré sur la Figure 6.11. Pettit et Waddigon (2003) étudient cet effet avec une loi de comportement isotrope polynomiale avec $n = 1$ et $n = 3$, dans différentes configurations. Avec les modèles ayant une rhéologie linéaire, les profils de vitesse verticale ne changent pas entre le dôme et les flancs, et les couches isochrones sont plates, comme
illustré avec la simulation VPSC1 sur la Figure 6.11.

Les profils des termes diagonaux de \mathbf{D} calculés avec les différents modèles sont assez semblables, alors que les profils de vitesse de déformation en cisaillement \bar{D}_{12} sont assez différents. Plus la glace est fluide en cisaillement au fond, du fait de l’anisotropie ou de la non linéarité, plus la vitesse de déformation en cisaillement est importante au fond et plus elle est faible vers le haut. Notons que nous sommes ici dans des conditions où l’approximation de la couche mince reste valide. Cette approximation prévoit que la contrainte déviatoire de cisaillement \bar{S}_{12} augmente linéairement avec la profondeur, proportionnellement à la pente en surface. Dans le cas isotherme et isotrope linéaire, la vitesse de déformation augmente ainsi linéairement avec la profondeur proportionnellement à la pente de surface et à la fluidité de la glace.

Les profils de fabrique et d’amincissement obtenus avec les modèles anisotropes dans un forage situé en $x = 30\text{km}$ sont donnés par la Figure 6.12. La fabrique se développe beaucoup plus vite avec le modèle Statique. Contrairement à ce qui pourrait être intuitif aux vues des évolutions de la fabrique, en compression et en cisaillement simple, présentées au Chapitre 5, la fabrique se concentre plus vite avec le modèle VPSC pour $\beta = 0.1$ que pour $\beta = 0.04$. Ce résultat vient du fait que l’amincissement diminue plus vite dans le forage et que le cisaillement est plus important dans la partie supérieure de la calotte pour $\beta = 0.1$. Ce résultat montre l’importance de réaliser un calcul couplé de l’écoulement et de l’évolution de la fabrique pour valider les modèles μ-M et interpréter les forages.

Avec les trois modèles, du fait de la présence de cisaillement apparaissant rapidement sous la surface dans le cas isotherme, le déphasage φ commence par augmenter puis diminue.
Fig. 6.7: Cas isotherme. Comparaison, en surface, des résultats des simulations VPSC1 (traits continus), VPSC2 (tirets et pointillés), Stat (traits continus et □), isotrope (tirets) et isotropenl (pointillés) : (a) élévation de la surface libre, (b) vitesse horizontale u et (c) vitesse verticale v.
Fig. 6.8: Cas isotherme. Isovaleurs de la plus grande valeur propre de $a^{(2)}$ pour la simulation VPSC1. L'échelle verticale est dilatée d'un facteur 30 par rapport à l'échelle horizontale.
Fig. 6.9: Cas isotherme. Comparaison, dans un forage situé à l’axe de symétrie en $x = 0$ km, des profils calculés avec les simulations VPSC1 (traits continus), VPSC2 (tiérets et pointillés), Stat (traits continus et □), isotrope (tiérets) et isotrope11 (pointillés) : (a) vitesse verticale v et (b) vitesses de déformation \bar{D}_{ii}.
Fig. 6.10: Cas isotherme. Comparaison, dans un forage situé en $x = 30$ km, des profils des simulations VPSCI (traits continus), VPSC2 (tirets et pointillés), Stat (traits continus et □), isotope (tirets) et isotrope (pointillés) : (a) vitesse horizontale u, (b) vitesse verticale v, (c) vitesses de déformation \tilde{D}_{ii} et (d) vitesse de déformation \tilde{D}_{12}.
Fig. 6.11: Cas isotherme. Isovandes de l’âge obtenues avec le modèle VPSC1 (à gauche) et avec le modèle isotropeni (à droite). L’échelle verticale est dilatée d’un facteur 30 par rapport à l’échelle horizontale.
Fig. 6.12: Cas isotherme. Comparaison, dans un forage situé en $x = 30$ km, des profils de fabriques calculés avec les simulations VPSC1 (traits continus), VPSC2 (tirets et pointillés) et Stat (traits continus et □) : (a) valeurs propres de $a^{(2)}$, (b) déphasage φ et (c) amincissement.
6.4.4.3 Influence de la température

Nous comparons, pour une calotte non isotherme, les résultats obtenus avec le modèle VPSC pour $\beta = 0.04$ et $\gamma = 1$ à ceux obtenus avec un comportement isotrope, ces deux calculs étant couplés à celui du champ de température. L'accumulation en surface est constante et vaut 8cm a^{-1}. La température en surface est égale à -40°C et le flux géothermique à la base vaut 40mW m^{-2}.

Sur la Figure 6.13, nous donnons les résultats obtenus en surface. Comme dans le cas isotherme, la calotte est plus plate dans le cas anisotrope que dans le cas isotrope. Sur la Figure 6.14, nous donnons les profils de vitesses et de vitesses de déformation obtenus dans un forage en $x = 30\text{km}$. Du fait de la tempéraure, la glace devient plus fluide vers le fond, ainsi le cisaillement est négligeable dans la partie supérieure du forage mais devient très important au niveau du socle. Des isovaleurs de la plus grande valeur propre de $a^{(2)}$ sont tracées sur la Figure 6.15. Comme le cisaillement est concentré vers le fond, ces isovaleurs sont beaucoup plus plates et plus profondes que dans le cas isotherme (voir Figure 6.8). Les profils de température, d'amoncissement et de fabrique sont donnés sur la Figure 6.16. L'amoncissement est plus rapide dans le cas isotrope que dans le cas anisotrope. Du fait d'une advection plus rapide de glace froide venant de la surface, la température augmente moins vite avec la profondeur dans le cas anisotrope. Mais cet effet est insuffisant pour rendre la glace isotrope plus fluide en cisaillement que la glace anisotrope. La fabrique augmente moins vite dans le forage par rapport au cas isotherme, et le déphasage φ est quasiment nul près de la surface puisqu'il n'y a pas de cisaillement, mais il augmente avec la profondeur.
Fig. 6.13: Cas non isotherme. Comparaison en surface des résultats des simulations VPSC (traits continus) et isotope (tirets) avec calcul du champ de température : (a) élévation de la surface libre, (b) vitesse horizontale u et (c) vitesse verticale v.
Fig. 6.14: Cas non isotherme. Comparaison, dans un forage situé en $x = 30$ km, des profils calculés avec les simulations VPSC (traits continus) et isotope (tirets) : (a) vitesse horizontale u, (b) vitesse verticale v, (c) vitesses de déformation \bar{D}_{ii} et (d) vitesse de déformation \bar{D}_{12}.
Fig. 6.15: Cas non isotherme. Isovaleurs de la plus grande valeur propre de $a^{(2)}$ pour le modèle VPSC avec calcul du champ de température. L'échelle verticale est dilatée d'un facteur 30 par rapport à l'échelle horizontale.
Fig. 6.16: Cas non isotherme. Comparaison, dans un forage situé en $x = 30$ km, des profils calculés avec les simulations VPSC (traits continus) et isotope (tirets) : (a) température, (b) amincissement, (c) valeurs propres de $a^{(2)}$ et (d) déphasage φ.
6.4.5 Écoulement sur un socle sinusoïdal

Nous étudions l’écoulement bidimensionnel de la glace sur un socle sinusoïdal d’équation

\[
B(x) = \begin{cases}
A(1 + \cos \frac{2\pi T x}{70}) & \text{pour } 0 \text{km} \leq x \leq 70 \text{km} \\
0 & \text{pour } 70 \text{km} < x \leq x_L
\end{cases}
\]

(6.37)

où \(A \) est l’amplitude et \(T \) le nombre de périodes. Nous présentons ici les résultats obtenus avec trois socles différents. Les amplitudes et les valeurs de \(T \) utilisées, sont données dans le tableau 6.3.

<table>
<thead>
<tr>
<th>nom de la simulation</th>
<th>(A) (m)</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>socle1</td>
<td>400</td>
<td>2.5</td>
</tr>
<tr>
<td>socle2</td>
<td>400</td>
<td>3.5</td>
</tr>
<tr>
<td>socle3</td>
<td>300</td>
<td>3.5</td>
</tr>
</tbody>
</table>

TAB. 6.3: Définition des simulations pour la comparaison de l’influence de la topographie du socle.

Nous appelons simulation VPSC les résultats calculés avec le modèle VPSC pour \(\beta = 0.04 \) et \(\gamma = 1 \) et une anisotropie évolutive, simulation VPSC_GeIP les résultats calculés avec le modèle VPSC pour \(\beta = 0.04 \) et \(\gamma = 1 \) et une anisotropie fixe et donnée par le profil de fabrique (6.32). Nous comparons ces résultats à ceux obtenus pour un comportement isotrope.

6.4.5.1 Calotte isotherme

Dans le cas d’une calotte isotherme, nous donnons les résultats en surface pour les simulations socle1, socle2 et socle3, sur les Figures 6.17 et 6.18. Comme pour les simulations sur socle plat, les surfaces du cas anisotrope sont plus plates que celles du cas isotrope. Les ondulations du socle sont transmises en surface avec un déphasage. L’amplitude des ondulations est plus importante dans le cas isotherme que dans le cas du modèle VPSC. Avec une anisotropie fixe, les ondulations sont moins importantes qu’avec une anisotropie évolutive. Nous obtenons des ondulations sur les vitesses horizontales et verticales en surface qui sont en phase avec les ondulations de la pente de surface. L’amplitude des ondulations sur la vitesse horizontale est plus importante avec le modèle VPSC et moins importante dans le cas isotherme, et c’est l’inverse pour la vitesse verticale. Les ondulations sur les vitesses en surface sont moins importantes avec une anisotropie fixe qu’avec une anisotropie évolutive. Notons que les déphasages entre les ondulations du socle et les ondulations en surface sont différents dans les cas anisotrope et isotrope. Pour les simulations avec les socles 2 et 3, qui ont le même nombre de périodes mais des amplitudes différentes, les ondulations en surface sont en phase et seule les amplitudes changent. Notons que la transmission des conditions basales (ondulations du socle et glissement) à la surface a fait l’objet de plusieurs recherches (voir par exemple Gudmundsson (2003) et la bibliographie associée), mais tous ces travaux considèrent une glace isotrope. Nous montrons ici que la rhéologie de la glace affecte cette transmission, ainsi une bonne connaissance de cette rhéologie est nécessaire à l’interprétation des données de surface pour reconstruire les conditions basales souvent inconnues.

Sur la Figure 6.19, nous tracons des lignes de courant obtenues avec les simulations socle1 et socle2 pour le modèle VPSC, le modèle VPSC_GeIP et le cas isotrope. Avec
une anisotropie fixe, comme pour Mangeney (1996), les lignes de courant présentent des amplitudes moins importantes dans le cas anisotrope que dans le cas isotope. Par contre ces amplitudes sont beaucoup plus importantes, notamment au niveau du premier creux lorsque nous calculons les fabriques. Les fabriques qui se développent facilitent la déformation et la glace descend plus profondément dans les creux et remonte plus haut au dessus des bosses. Des isovalues de la plus grande valeur propre de $a^{(2)}$ sont représentées sur la Figure 6.20. La fabrique présente une forte variabilité.

![Figure 6.17](url)

Fig. 6.17: Cas isotherme. Résultats en surface de la simulation socle1 pour le modèle VPSC (traits continus), le modèle VPSC_GRIP (pointillés) et dans le cas isotope (tirets) : (a) élévation de la surface libre, (b) pente de la surface, (c) vitesse horizontale et (d) vitesse verticale.
Fig. 6.18: Cas isotherme. Résultats en surface des simulations socle2 (traits continus) et socle3 (tirets) pour le modèle VPSC (courbes sèules) et dans le cas isotope (courbes et symboles) : (a) élévation de la surface libre, (b) pente de la surface, (c) vitesse horizontale et (d) vitesse verticale.
Fig. 6.19: Cas isotherme. Lignes de courant et surface libre obtenues avec le modèle VPSC (trait continu), le modèle VPSC_GRP (pointillés) et dans le cas isotrope (tirets) pour : (a) la simulation socle1, et (b) la simulation socle2. La topographie du socle est représentée en traits continus épais.
Fig. 6.20: Cas isotherme. Douze isovaleurs de la plus grande valeur propre de $a^{(2)}$ du modèle VPSC pour la simulation socle1, entre $1/3$ et 1 du plus foncé au plus clair respectivement. L'échelle verticale est dilatée d'un facteur 30 par rapport à l'échelle horizontale.
6.4.5.2 Effets de la température

Comme pour les simulations sur socle plat, nous étudions ici l’influence de la température sur l’écoulement et comparons les résultats obtenus avec le modèle VPSC et le cas isotrope. L’accumulation en surface est constante et vaut 8cm a⁻¹; la température en surface est égale à -40°C et le flux géothermique à la base vaut 40mW m⁻².

Les résultats obtenus en surface pour la simulation socle1 sont présentés sur la Figure 6.21. Comme pour le cas isotherme, la surface est plus plate dans le cas anisotrope que dans le cas isotrope. Les amplitudes des ondulations de la pente de surface sont plus importantes que dans le cas isotherme. Contrairement au cas isotherme, l’amplitude des ondulations sur la vitesse horizontale est plus importante dans le cas anisotrope que dans le cas isotrope.

Sur la Figure 6.22, nous donnons deux lignes de courants obtenues dans le cas anisotrope et dans le cas isotrope. Contrairement au cas isotherme, l’amplitude des ondulations des lignes de courant est plus importante dans le cas isotrope.

Sur la Figure 6.23, nous comparons les iso-temps de la température calculées dans le cas isotrope et dans le cas anisotrope. La température est plus élevée au fond des creux et plus basse au dessus des bosses dans le cas anisotrope comparé au cas isotrope.

Des iso-temps de la plus grande valeur propre de $a^{(2)}$ sont présentées sur la Figure 6.24. La fabrique présente une variabilité moins importante que dans le cas isotherme car avec la température, la déformation de cisaillement est plus concentrée vers le fond du fait de l’élévation de la température.
Fig. 6.21: Cas non isotherme. Résultats obtenus en surface avec la simulation socle1 pour le modèle VPSC (traits continus) et le cas isotope (tirets) : (a) élévation de la surface libre, (b) pente de la surface, (c) vitesse horizontale et (d) vitesse verticale.
Fig. 6.22: Cas non isotherme. Lignes de courant et surface libre obtenues avec le modèle VPSC (trait continu) et le cas isotrope (pointillés) pour la simulation socle1. Les tirets représentent le socle.
Fig. 6.23: Cas non isotherme. Isovaleurs de température (°C) obtenues avec le modèle VPSC (à gauche) et pour le cas isotrope (à droite) pour la simulation socle1. L’échelle verticale est dilatée d’un facteur 30 par rapport à l’échelle horizontale.
Fig. 6.24; Cas non isotherme. Douze isovaleurs de la plus grande valeur propre de $a^{(2)}$, entre 1/3 et 1 du plus foncé au plus clair respectivement. L'échelle verticale est dilatée d'un facteur 30 par rapport à l'échelle horizontale.
6.5 Conclusion

Dans ce chapitre, nous avons présenté les équations qui gouvernent l’écoulement d’une glace anisotrope et donné les méthodes numériques utilisées pour les résoudre.

Par quelques tests théoriques, nous avons montré l’influence de l’anisotropie sur l’écoulement d’une calotte. Les fabriques qui se développent ont tendance à faciliter la déformation en cisaillement. Ainsi, la fluidité de la glace en cisaillement devient plus importante avec la profondeur; les calottes obtenues dans le cas anisotrope sont alors plus plates que dans le cas isotrope. Le cisaillement se concentre plus près du socle et est plus faible près de la surface.

Sur un socle plat, la glace est plus froide au fond dans le cas anisotrope mais cet effet est trop faible pour compenser la différence de fluidité induite par l’anisotropie.

Pour un socle sinusoidal, nous obtenons des résultats différents entre un écoulement isotherme et un écoulement avec le calcul couplé de la température. Dans le cas isotherme, les lignes de courant du cas anisotrope descendent plus profondément dans les creux que celles du cas isotrope alors que c’est l’inverse quand on prend en compte la température. Ceci a pour conséquence qu’une glace anisotrope est plus chaude dans les creux et plus froide au-dessus des bosses que celle du cas isotrope. Nous avons mis en évidence, dans le cas isotherme, l’importance du calcul de la fabrique. La fabrique calculée présente de fortes variations et les résultats obtenus avec une anisotropie fixe et une anisotropie évolutive, par comparaison avec le cas isotrope, sont différents. Nous avons montré que la rhéologie influence fortement la transmission des conditions basales à la surface.

Ces tests théoriques montrent que l’anisotropie influe sur l’écoulement de la calotte, et une prise en compte correct de ces effets est donc nécessaire pour améliorer les modèles d’écoulement et l’interprétation des forages. Notons tout de même que, dès que nous sortons des conditions où l’approximation de la couche mince est valide, alors l’écoulement n’est plus uniquement géré par la géométrie locale du socle et de la surface. Ainsi, il est impossible de prédire de manière générale quels seront les effets de l’anisotropie. Il est alors nécessaire, au cas par cas, de modéliser l’écoulement de la glace de la manière la plus précise possible aux voisinages des sites de forage que l’on souhaite étudier.
Chapitre 7

Interprétation des données du forage de Dôme C

7.1 Introduction

7.2 Données disponibles

7.2.1 Topographie

Le site de forage de Dôme C se situe en Antarctique de l’Est (75°06’S, 123°21’E). L’épaisseur de glace est estimée à 3309m. La température moyenne annuelle est de −54.5°C et l’accumulation annuelle est d’environ 2.3 cm a−1 (équivalent glace) au niveau du site de forage (EPICA Community members, 2004). La vitesse de déformation typique dans le forage, estimée par le rapport de l’accumulation à l’épaisseur de glace, est d’environ 10−5 a−1. Le site de forage est situé à environ 1.4 km à l’Ouest du dôme topographique de Dôme C (Vittuari et al., 2004). La topographie de la surface dans la région de Dôme C, issue de la compilation des données Bedmap (http://www.antarctica.ac.uk/aedc/bedmap/), est représentée sur la Figure 7.1. Le dôme est localisé sur une crête démarCHANT dans la région de Vostok au Sud-Ouest.

Une revue complète des mesures d’altitude de la surface et du socle est donnée par Rémy et Tabacco (2000). Sur la Figure 7.2, nous traçons les altitudes du socle et de la surface issues des mesures au voisinage du forage représenté par un trait vertical rouge sur la figure. Le socle présente de fortes variations d’altitude au voisinage de Dôme C, avec notamment la présence d’une profonde vallée située à une quarantaine de kilomètres au Nord-Est du dôme.

En projection horizontale, le dôme présente une forme elliptique dont le grand axe est orienté suivant la direction SW-NE. D’après la théorie de Nye (1991) sur la topologie des dômes, la forme du dôme suggère que les vitesses de déformation horizontales suivant le
petit axe du dôme sont 2.5 à 3 fois supérieures aux vitesses de déformation suivant le grand axe (Rémy et Tabacco, 2000).

Des relevés radars des couches internes de la calotte au voisinage du dôme sont présentés par Hodgkins et al. (2000) et Siegert et al. (2001). Ces auteurs concluent de ces données que la glace en dessous de 1000m de profondeur est soumise à du cisaillement et que, en dessous de 1000 à 2000m de profondeur, l’écoulement est en grande partie gouverné par la topographie basale et peut-être par des conditions anciennes d’écoulement.

Nous comparerons les mesures de fabrique de Dôme C à celles de GRIP et Dôme Fuji, puisque ces trois forages sont situés à proximité de dômes géographiques. Nous avons présenté le forage de GRIP au chapitre 4. Le forage de Dôme Fuji (appelé Dôme F dans la suite) est lui aussi situé en Antarctique de l’Est (77°19’S, 39°42’E), et connaît des conditions de température et de vitesses de déformation similaires à celles du forage de Dôme C. A Dôme F, la température moyenne annuelle est de −58°C, avec une accumulation d’environ 3cm a⁻¹ (Dome-F Deep Coring Group, 1998).
Fig. 7.1: Topographie de la surface au voisinage de Dôme C, d’après les données de Bedmap. Les courbes de niveau sont tous les 10 m. L’étoile indique la position du forage.
Fig. 7.2: Topographie du socle et de la surface au voisinage du forage de Dôme C, d’après les données de Rémy et Tabacco (2000). Les courbes de niveau sont espacées de 2.5m et de 20m pour la surface et le socle, respectivement. Le forage est représenté par la ligne verticale rouge.
7.2.2 Données dans le forage

Les mesures de fabriques présentées ici sont une compilation des mesures effectuées par Wang et al. (2003) pour les premiers 1500m et par G. Durand [communication personnelle] pour la partie inférieure (1500m à 3000m) avec une résolution de 11m, complétée par quelques nouveaux points de mesures pour la partie supérieure (voir Durand et al. (2006b) pour les techniques de mesure des microstructures).

Les variations de composition isotopique de la glace δD, classiquement utilisées comme indicateur des variations de températures passées sont représentées sur la Figure 7.3b. Les valeurs élevées indiquent des périodes interglaciaires (entre 0 et 400m, et 1500 et 1750m par exemple) alors que les valeurs basses sont des indicateurs des périodes glaciaires (par exemple le dernier maximum glaciaire (LGM) se trouve vers 500m).

Les valeurs propres de $\mathbf{a}^{(2)}$ mesurées sont représentées sur la Figure 7.3a. Nous pouvons noter que pour la première fois les valeurs propres sont données avec une barre d'erreur (toutes ne sont pas représentées sur la figure). Les paramètres de l'ODF paramétrée (3.6) calculés à partir de ces valeurs propres sont donnés sur la Figure 7.3e. Comme pour le forage de GRIP, les variations globales des valeurs propres sont celles attendues sous un dôme, les deux plus petites valeurs propres sont quasiment identiques et tendent vers 0, alors que la plus grande valeur propre tend vers 1. Les périodes chaudes (valeurs élevées de δD) semblent être caractérisées par des décroissances de la plus grande valeur propre (à 1750m, 2100m et 2300m). La transition à 1750m est discutée plus en détail dans la section suivante. Les périodes glaciaires (faibles valeurs de δD) sont, quant à elles, caractérisées par des diminutions de la taille des grains, principalement dues à l'effet d'épandage des joints de grains par des particules (Durand et al., 2006a). En effet, à cause de l'augmentation de l'aridité, la glace des périodes froides en Antarctique présente une forte teneur en impuretés insolubles et en poussières (EPICA Community members, 2004).

Les brusques variations de la fabrique en dessous de 2800m sont très similaires à celles observées dans le forage de GRIP. Mais contrairement à GRIP, les signes de la recristallisation dynamique ne sont pas présents à Dôme C : les grains ne s'interpénètrent pas. (G. Durand, communication personnelle) et la taille des grains donnée par la Figure 7.3c ne montre pas de brusque augmentation.

L'angle θ_0 du vecteur propre 3 de $\mathbf{a}^{(2)}$ par rapport à la verticale in-situ est donné sur la Figure 7.3d. Cet angle est compris entre 0 et 5 degrés dans la plus grande partie du forage et présente une augmentation assez importante à partir de 2800m.

L'erreur entre le tenseur d'orientation d'ordre 4 discret et le tenseur d'orientation d'ordre 4 calculé par la fermeture IBOF, et celle entre le tenseur d'orientation d'ordre 4 discret et le tenseur d'orientation d'ordre 4 calculé avec l'ODF paramétrée sont données par la Figure 7.3f. Ces deux erreurs sont quasiment identiques et comprises entre 5% et 10% pour toute la partie supérieure du forage, avec une augmentation jusqu'à 25% pour les fabriques du fond. Comme nous l'avons déjà discuté au Chapitre 4, cette erreur reflète le fait que la fermeture IBOF (3.39) pour $\mathbf{a}^{(4)}$ ne permet pas de bien représenter les fabriques lorsque la recristallisation par rotation est active.
Fig. 7.3: Evolution en fonction de la profondeur dans le forage de Dôme C de : (a) valeurs propres de $a^{(2)}$ dans l’ordre croissant (Wang et al. (2003) pour les premiers 1500m et G. Durand [communication personnelle] pour les nouvelles mesures de la partie supérieure (+) et celles de la partie inférieure) ; (b) Deuterium excess (EPICA Community members, 2004) ; (c) rayon moyen des grains (G. Durand, communication personnelle) ; (d) angle θ_0 entre la direction propre 3 de $a^{(2)}$ et la verticale in-situ ; (e) paramètres de l’ODF paramétrée dans l’ordre décroissant ; et (f) erreur relative sur $a^{(4)}$ entre $a^{(4)}$ donné par la fermeture IBOF et le $a^{(4)}$ discret (courbe), et entre $a^{(4)}$ donné par l’ODF paramétrée et $a^{(4)}$ discret (symboles).
Les forages de Dôme C, GRIP et Dôme F sont tous les trois situés sous des dômes géographiques. Sous un dôme, la glace est généralement supposée se déformer uniquement par compression suivant l’axe vertical. Les fabriques mesurées dans les trois forages (Wang et al., 2003; Thorsteinsson et al., 1997; Azuma et al., 1999), pour lesquelles les grains se concentrent progressivement autour d’une direction proche de la verticale de manière presque axisymétrique, sont compatibles avec ce mode de déformation.

Pour un chargement où seules les composantes diagonales de \mathbf{D} sont non nulles et coincent avec les axes d’orthotropie de la fabrique, si le rapport entre les composantes de \mathbf{D} est constant au cours du temps, la fabrique calculée avec notre modèle ne dépend que des paramètres d’anisotropie du monocristal, du modèle utilisé pour tabuler la loi GOLF et de la déformation cumulée

$$\bar{\varepsilon}_c = e^{\int_0^t \bar{D}_{33} \, dt} - 1.$$ \hspace{1cm} (7.1)

Elle ne dépend ni de la température, ni de l’histoire des vitesses de déformation. Cette déformation cumulée est reliée à l’amincissement a/a_0 d’une couche d’épaisseur a relativement à son épaisseur a_0 lorsqu’elle était en surface par

$$\bar{\varepsilon}_c = a/a_0 - 1.$$ \hspace{1cm} (7.2)

Afin de valider l’hypothèse d’un écoulement uniaxial et de quantifier l’influence de la re-cristallisation sur le développement des fabriques, nous pouvons donc comparer l’évolution des fabriques dans les forages de Dôme C, GRIP et Dôme F en fonction de l’amincissement.

Pour GRIP, comme Castelnau et al. (1996a) et Gagliardini (1999), nous utilisons la fonction d’amincissement donnée par Dahl-Jensen et al. (1993). Le modèle de Dahl-Jensen et al. (1993) est basé sur un modèle de Dansgaard et Johnsen (1969) : les hypothèses de ce modèle sont que la vitesse de déformation \bar{D}_{33} est constante jusqu’à une profondeur h, puis décroit linéairement pour s’annuler au fond et que les altitudes du socle et de la surface sont constantes au cours du temps. La valeur de la vitesse de déformation \bar{D}_{33} en surface et la profondeur h sont calculées afin de reproduire au mieux les datations connues (par comptage des couches annuelles, et en localisant les signaux des éruptions volcaniques connues et datées). La courbe de l’amincissement dans le forage de GRIP donnée par Dahl-Jensen et al. (1993) est tracée sur la Figure 7.4a.

Les courbes d’amincissement pour les forages de Dôme C et Dôme F sont données sur la Figure 7.4a (F. Parrenin, communication personnelle). Ces courbes d’amincissement sont aussi basées sur un modèle d’écoulement uniaxial (EPICA Community members, 2004). La forme du profil de vitesse verticale en fonction de la hauteur réduite est prescrite par une équation paramétrée, et est supposée fixe au cours temps. Les changements d’épaisseur de glace au cours du temps sont imposés à partir des résultats obtenus avec un modèle grande échelle d’écoulement de la calotte antarctique (Ritz, 1992). Les paramètres du profil de vitesse et la fusion basale sont déduits en minimisant l’écart entre les résultats du modèle de datation EPICA et les âges de certains événements datés. Nous rappelons ici que l’âge de la glace dépend à la fois de l’amincissement et de l’accumulation au moment de son dépôt, elle aussi calculée par le modèle de datation ; ainsi un âge correct à une certaine profondeur ne garantit pas avec certitude un amincissement correct. Les différentes bosses sur les courbes d’amincissement, par exemple au dessus de 1750m pour Dôme C, sont dues aux changements d’altitude de la calotte au cours des périodes interglaciaires.Localement, la fonction d’amincissement est même croissante avec la profondeur ce qui implique que certaines couches sont moins minces que des couches moins profondes.

L’évolution des fabriques dans les forages de GRIP, Dôme C et Dôme F en fonction de l’amincissement est donnée sur la Figure 7.4b. Les évolutions générales des valeurs propres
de $a^{(2)}$, dans les trois forages en fonction de l’amincissement sont très similaires jusqu’à un amincissement d’environ 30%, ce qui correspond à une profondeur d’environ 1600m à GRIP, 1700m à Dôme F et 1800m à Dôme C. En dessous, la concentration de la fabrique est plus rapide à Dôme C alors qu’elle est très similaire pour les forages de GRIP et Dôme F. On peut noter que la transition climatique Holocène-Wisconsin (terminaison I) à GRIP (11.5 ka BP\(^1\)) se situe à 1623 m (Højsen et al., 1992), et la terminaison II (135 ka BP) se situe à la profondeur 1750m à Dôme C et à la profondeur 1800m à Dôme F.

L’arrêt de la croissance de la taille des grains en dessous de 650m à GRIP est attribuable à l’apparition du régime de recrystallisation par rotation (Thorsteinsson et al., 1997). Castelnau et al. (1996a) estiment que pour contrebalancer la croissance normale des grains et stopper l’augmentation de leur taille moyenne, il faut que chaque grain se divise en deux tout les 2000 ans. Ils concluent que la concentration trop rapide de la fabrique qu’ils obtiennent avec le modèle VPSC non linéaire en dessous de cette profondeur est due au ralentissement de la concentration de la fabrique par ce régime de recrystallisation. D’après Durand et al. (2006a), le régime de recrystallisation par rotation commence à apparaître dans certaines couches à Dôme C à partir de 610m et est généralisé à partir de 700m, par contre il n’est pas assez actif pour contrebalancer la croissance normale. Durand et al. (2006a) estiment qu’il faut entre 12 000 et 20 000 ans pour que chaque grain se divise en 2. La parfaite superposition des évolutions des valeurs propres de $a^{(2)}$ pour des amincissements supérieurs à 30-35% dans les trois forages, alors que les températures, les vitesses de déformation et les échelles de temps sont complètement différentes entre les sites de forage, indique donc que l’évolution de la fabrique, dans cette partie, reste uniquement fonction de la déformation cumulée même si le régime de recrystallisation par rotation est actif.

Plusieurs hypothèses peuvent être envisagées pour expliquer les différences pour des amincissements inférieurs à 30% :

- La recrystallisation par rotation est plus active à GRIP et Dôme F, ce qui ralentit l’évolution de la fabrique qui n’est plus uniquement fonction de la déformation cumulée.

- L’amincissement à Dôme C est sous-estimé et l’évolution de la fabrique devrait toujours être fonction uniquement de la déformation cumulée et devrait être semblable aux évolutions dans les forages de GRIP et Dôme F. Cette hypothèse peut être supportée par le fait que les évolutions des fabriques dans les trois forages commencent à diverger au niveau d’une transition climatique dans chacun des forages. Des changements d’écoulement (altitude de la surface à GRIP, variations de la forme du profil de vitesse à Dôme C et Dôme F, par exemple), non pris en compte par les modèles d’amincissement, pourraient alors être à l’origine d’erreurs sur la fonction d’amincissement.

- Plus on s’approche du socle et plus l’état de contrainte et de vitesses de déformation s’éloigne d’un état de compression. La fabrique n’est alors plus uniquement fonction de la déformation cumulée, mais bien de l’histoire des vitesses de déformation et des contraintes. En effet, compte tenu de la topographie de la calotte (surface et socle), un dôme géographique n’est jamais exactement un axe de symétrie. Ainsi le centre de l’écoulement, défini comme le lieu où la vitesse horizontale est nulle, n’est pas obligatoirement localisé au dôme géographique et sa position peut varier avec la profondeur (van der Veen et Whillans, 1992); le cisaillement peut alors devenir prépondérant dans la partie inférieure du forage. Comme Castelnau (1996), nous avons aussi montré dans le Chapitre 4 que l’anisotropie pouvait rendre le comporte-

\(^1\)Before Present
ment du polycristal instable sous un dôme en fonction de l’orientation de la fabrique. Eventuellement, ces différences pourraient aussi être le signe de changements des conditions d’écoulement (migration du Dôme et changement de la forme du dôme, par exemple) lors des transitions climatiques dans chacun des forages.

- Le régime de recristallisation par migration, qui semble être responsable des brusques variations de fabrique en dessous de 2800 m dans le forage de GRIP, est trop peu actif au dessus de cette profondeur pour raisonnablement être invoqué.

Dans le détail, les trois forages montrent aussi des évolutions différentes : à GRIP, Thorsteinsson et al. (1997) ne notent pas de changement de la courbe d’évolution de la fabrique au niveau de la terminaison I, à Dôme C les fabriques sont plus concentrés dans la glace des périodes froides et moins concentrées dans la glace des périodes chaudes, alors que c’est l’inverse à Dôme F (Azuma et al., 1999). Pour expliquer la déconcentration des fabriques des glaces des périodes froides à Dôme F, Azuma et al. (1999) proposent deux hypothèses : (i) sous de faibles températures et de faibles niveaux de contraintes, le fluage par diffusion qui ne contribue pas à la rotation des grains devient du même ordre de grandeur que le fluage par mouvement des dislocations, (ii) la recristallisation par rotation est plus active dans les glaces des périodes froides et ralentit la concentration de la fabrique. Ces hypothèses sont donc remises en question pour expliquer les variations observées à Dôme C.
Fig. 7.4: (a) Evolution de l’amincissement en fonction de la profondeur dans les forages de Dôme C (trait continu), Dôme F (pointillés) [F. Parrenin, communication personnelle] et GRIP (tirets) (Dahl-Jensen et al., 1993); (b) Evolution des trois valeurs propres de $a^{(2)}$ triées dans l’ordre croissant en fonction de l’amincissement dans les forages de Dôme C (trait continu), Dôme F (pointillés) et GRIP (tirets).
7.3 Étude de la rhéologie des glaces du forage de Dôme C

Comme nous l’avons fait au Chapitre 4 pour les forages de GRIP et Vostok, nous appliquons la loi de comportement GOLF (4.23) au calcul des propriétés rhéologiques des glaces extraites du forage de Dôme C.

Dans un premier temps nous présentons l’évolution générale le long de toute la carotte de Dôme C puis, nous nous intéressons à la transition climatique entre les stades MIS 5 et MIS 6 (Marine Isotope Stage) vers 1750m (terminaison I).

7.3.1 Évolution générale

Les fluidités en cisaillement et compression obtenues avec la loi GOLF et avec le modèle VPSC discret sont représentées sur les Figures 7.5a, b et c et les erreurs correspondantes sont données sur les Figures 7.5d, e et f. Les variations sont similaires à celles obtenues pour le forage de GRIP. La glace est de plus en plus facile à cisailler avec la profondeur (excepté pour le fond) avec des fluidités relatives autour de 8. La glace est aussi de plus en plus difficile à comprimer. Les évolutions obtenues avec le modèle discret sont bien reproduites par la loi GOLF. Comme pour GRIP, la loi GOLF surestime les fluidités en cisaillement et sous-estime celles en compression. Les erreurs sont aussi similaires à celles obtenues pour GRIP : autour de 20% d’erreur sur les fluidités en cisaillement et autour de 15 à 20% pour celle en compression. Comme pour GRIP, ces erreurs sont dues à l’hypothèse d’orthotropie et à la fermeture IBOF (3.39) pour $a^{(4)}$.

7.3.2 Transition MIS5-MIS6

Nous nous intéressons ici plus en détail à la transition climatique MIS5-MIS6 au voisinage de la profondeur 1750m.

Un zoom sur les variations de la composition isotopique de la glace δD, la plus grande valeur propre de $a^{(2)}$ et le rayon moyen des grains est représenté sur la Figure 7.6. La glace au dessus de 1750m est une glace d’interglaciaire alors que la glace plus profonde est une glace de période glaciaire. Nous observons une décroissance significative de a_3 au niveau du maximum de δD et une augmentation brusque au niveau du minimum de δD correspondant au maximum glaciaire. En phase avec la courbe de composition isotopique, nous observons aussi une forte décroissance du rayon moyen des grains, passant de 3.4mm à 1725m à 2.7mm vers 1800m, due à l’effet d’épinglage des joints de grains par les particules insolubles.

Notons que le fait d’avoir des fabriques plus concentrées dans les périodes glaciaires à déjà été observé dans d’autres sites de forages : Camp Century (Herron et Langway, 1982), Byrd (Gow et Williamson, 1976), Dye3 (Langway et al., 1988), GISP2 (Gow et al., 1997) et Law Dome (Wang et al., 2002). Cette caractéristique est, en général, attribuée à une plus grande fluidité de la glace de période glaciaire et donc à un cisaillement plus important dans ces couches conduisant à une fabrique plus concentrée. La variation de fluidité entre glaciaire et interglaciaire, hormis les effets de fabrique, est attribuée par Paterson (1991) à la variation de la teneur en impuretés et poussières. Cuffey et al. (2000) attribuent plutôt ces variations à un contrôle de la fluidité par la taille des grains (la taille des grains étant elle même contrôlée par les teneurs en impuretés et poussières). Nous rappelons que des variations opposées, i.e., fabriques moins concentrées en phase avec des petits cristaux, sont observées à Dôme F (Azuma et al., 1999), alors que les conditions de température et d’écoulement semblent très similaires à celles de Dôme C.
Nous essayons de quantifier ici les différences de fluidité dues à la fabrique et à la taille des grains

- **effets de la fabrique** :
 Sur les Figures 7.6a et 7.6b nous donnons les fluidités adimensionnelles en compression et en cisaillement (Eqs. (4.32) et (4.30)) obtenues avec la loi continue. Comme attendu, la glace dont les fabriques sont plus concentrées est plus facile à cisailler et plus difficile à comprimer. La discontinuité sur les fabriques à 1750m entraîne une discontinuité sur les fluidités, et la glace de période glaciaire est à peu près 1.7 à 1.8 fois plus facile à cisailler que la glace d’interglaciaire juste au dessus. En compression la glace d’interglaciaire est à peu près 1.2 fois plus fluide que celle de glaciaire.

- **effets de la taille des grains** :
 D’après Cuffey *et al.* (2000), le rapport de la fluidité E_1 d’une couche avec une taille de grain D_1 à la fluidité E_2 d’une couche avec une taille de grain D_2 est compris entre les deux valeurs limites

$$ \frac{E_1}{E_2} = \left[\frac{D_2}{D_1} \right]^{0.6} \quad \text{et} \quad \frac{E_1}{E_2} = \frac{1 + 0.2D_1^{-1.8}}{1 + 0.2D_2^{-1.8}}$$

(7.3)

En prenant les valeurs $D_1 = 2.7\text{mm}$ à 1800m et $D_2 = 3.4\text{mm}$ à 1725m, nous obtenons que la glace glaciaire en dessous de 1750m est à peu près 1.01 à 1.15 fois plus fluide que la glace d’interglaciaire par l’effet de la taille des cristaux. Notons que, raisonnablement, cet effet de taille de grains peut-être considéré comme isotrope puisque la croissance normale des grains empêche généralement d’avoir des grains de forme très allongée.

En conclusion, comme les effets de la fabrique et de taille de grain sur la fluidité sont cumulatifs, on peut estimer que la glace de la période glaciaire est à peu près 1.7 à 2.1 fois plus facile à cisailler et 1 à 1.2 fois plus difficile à comprimer que la glace de l’interglaciaire. Notons que ces valeurs ne tiennent pas compte de l’effet des teneurs en poussières et impuretés dont le rôle est encore mal connu. Mais il est sans doute raisonnable de penser que la plus forte concentration en impuretés pendant le glaciaire augmente la fluidité, augmentant donc encore le rapport de fluidité entre glaciaire et interglaciaire.

Par comparaison, nous estimons aussi les changements de fluidité dus à la variation de température. Les mesures préliminaires de température dans le forage de Dôme C indiquent que la température est voisine de -35°C à 1700m et -33°C à 1800m. Ce changement de température d’après (1.2), implique une variation de fluidité d’environ 1.4. A cette échelle, l’effet de variation de la fabrique est donc plus important pour la fluidité en cisaillement que la variation de température et les deux effets sont aussi cumulatifs ici, amplifiant encore la différence de fluidité des glaces entre les périodes climatiques.

Les effets possibles d’un changement de la fluidité de la glace entre les différentes périodes climatiques sur l’écoulement sont illustrés dans la section 7.5.
Fig. 7.5: Distribution avec la profondeur dans le forage de Dôme C : (a) des fluidités relatives en cisaillement E_{32}^{cis} (4.30) calculées avec la loi GOLF (trait continu) et le VPSC discret (+) ; (b) des fluidités relatives en cisaillement E_{31}^{cis} (4.30) calculées avec la loi GOLF (trait continu) et le VPSC discret (+) ; (c) de la fluidité relative en compression E^c (4.32) calculée avec la loi GOLF (trait continu) et le VPSC discret (+) ; (d) de l’erreur relative sur la fluidité E_{32}^{cis} ; (e) de l’erreur relative sur la fluidité E_{31}^{cis} et (f) de l’erreur relative sur la fluidité E^c.
Fig. 7.6: Distribution avec la profondeur dans le forage de Dôme C : (a) de la fluidité relative en compression E^c_∞ (4.32); (c) des fluidités relatives en cisaillement $E^{\delta c}_{51}$ (4.30) (trait continu) et $E^{\delta c}_{51}$ (4.30) (tirets); (c) du rayon moyen des grains $< R >$ et (d) de la plus grande valeur propre α_3 de $\mathbf{a}^{(2)}$ (courbe continue, échelle de gauche) et du Deuterium excess δD (tirets, échelle de droite).
7.4 Modélisation unidimensionnelle de l'évolution de la fabrique dans le forage de Dôme C

Dans cette section, nous comparons l'évolution de la fabrique dans le forage de Dôme C aux résultats de notre modèle en supposant un écoulement unidimensionnel, comme le font Castelnau et al. (1996a) et Gagliardini (1999) pour le forage de GRIP.

Sur les Figures 7.7, 7.8 et 7.9, nous comparons, en fonction de la déformation cumulée, les fabriques mesurées à celles issues du modèle pour une compression uniaxiale $D_{33} = -2D_{11} = -2D_{22}$.

Pour les résultats de la Figure 7.7, les fabriques initiales sont isotropes, et nous donnons les évolutions de la fabrique calculées avec les modèles continus de Taylor, Statique et VPSC pour $\beta = 0.04$ et $\gamma = 1$. Les courbes 1, 6 et 7 sont les résultats obtenus avec le modèle VPSC continu pour différentes valeurs du paramètre d'interaction α dans (15). Les courbes 4 et 5 sont obtenues avec le modèle VPSC continu pour $\gamma = 1$ avec $\beta = 0.1$ et $\beta = 0.01$, respectivement.

Pour le modèle VPSC on voit que la valeur de β a une faible influence sur le développement de la fabrique. Plus β est petit et plus la fabrique se concentre vite. Lorsque β varie, le comportement macroscopique varie aussi, ce qui impliquerait des répartitions des contraintes dans le forage, obtenues avec ces trois valeurs de β, assez nettement différentes.

Par contre la valeur du paramètre α permet d'obtenir des vitesses de développement de la fabrique très différentes : de la limite inférieure donnée par le modèle de Taylor si $\alpha = 0$ à des concentrations de la fabrique plus rapides que celle obtenue avec le modèle Statique si α est suffisamment grand. L'évolution de la fabrique en dessous de 1000m est assez bien reproduite avec le modèle VPSC pour une valeur de α un peu inférieure à la valeur α_{opt}. Pour les premiers 600m, l'évolution de la fabrique est assez bien reproduite par le modèle Statique et par le modèle VPSC avec une grande valeur de α, mais en dessous les fabriques obtenues sont trop concentrées. De manière similaire, Castelnau et al. (1996a) avec le modèle VPSC non-linéaire, obtiennent une concentration de la fabrique à GRIP trop rapide en dessous de 650m et expliquent ces différences par le ralentissement de la concentration de la fabrique avec l'apparition du régime de recristallisation par rotation.

Sur la Figure 7.8, nous donnons les évolutions de la fabrique obtenues avec le modèle VPSC pour $\beta = 0.04$, $\gamma = 1$ et $\alpha = \alpha_{opt} = 6.15 \times 10^{-2}$ mais en partant de fabriques initiales différentes. En effet, les premières fabriques mesurées à Dôme C, vers 100m de profondeur, sont déjà un peu concentrées, avec la plus grande valeur propre autour de 0.4. On notera aussi que les fabriques mesurées dans le forage de Siple Dome (Antarctique) ne sont pas isotropes et sont déjà assez concentrées près de la surface (Diprino et al., 2005) : la première fabrique mesurée à 22m dans le névé a déjà une plus grande valeur propre de $\alpha^{(2)}$ entre 0.4 et 0.5. Nos résultats ainsi obtenus sont très sensibles à la fabrique initiale et le développement de la fabrique à Dôme C peut être bien reproduit par le modèle VPSC et $\alpha = \alpha_{opt}$ jusqu'à une profondeur d'environ 1000m, à condition de choisir la bonne fabrique initiale. Notons que cette hypothèse est encore spéculative et les phénomènes à l'origine de la concentration de la fabrique en surface de la calotte devront être étudiés dans le futur. Ainsi, pour les premières centaines de mètres où il est constaté que la recristallisation par rotation est présente (à partir de 700m à Dôme C (Durand et al., 2006a)), l'effet de la recristallisation par rotation sur le développement de la fabrique ne peut pas être mis en évidence par notre modèle tant que la fabrique est peu concentrée. A partir du moment où la fabrique devient plus concentrée, le ralentissement de la concentration de la fabrique par la recristallisation par rotation pourrait jouer un rôle et doit expliquer en partie les différences obtenues entre le modèle et les mesures.
Sur la Figure 7.9, nous portons l’évolution de la fabrique obtenue avec le modèle VPSC pour une valeur de $\alpha = 1 \times 10^{-2}$ inférieure à $\alpha_{opt} = 6.15 \times 10^{-2}$, et celle pour $\alpha = 2 \times 10^{-2}$ et en adoptant le modèle (5.25) pour modéliser la recristallisation par rotation. L’évolution de la fabrique dans le forage de Dôme C est très bien reproduite avec nos modèles jusqu’au moment où la fabrique se déconcentre brusquement à 2800 m, à condition de partir avec une fabrique déjà un peu concentrée en surface.

En conclusion, le paramètre d’interaction α qui intervient dans la vitesse de rotation des grains permet d’obtenir une large gamme de vitesses de développement de la fabrique, et nous permet ainsi de prendre en compte de manière phénoménologique l’effet de la recristallisation par rotation sur le développement de la fabrique.

Afin d’illustrer l’influence de la forme du dôme sur le développement de la fabrique, nous calculons l’évolution de la fabrique obtenue avec le modèle continu VPSC pour $\beta = 0.04$, $\gamma = 1$ et $\alpha = 0.01$ pour :
- une compression uniaxiale définie par $\bar{D}_{11} < 0$ avec $\bar{D}_{33} = \bar{D}_{22} = -0.5 \bar{D}_{11}$, où les indices correspondent aux indices des valeurs propres de $a^{(2)}$ triées dans l’ordre décroissant,
- une compression définie par $\bar{D}_{11} < 0$ avec $\bar{D}_{33} = -0.72 \bar{D}_{11}$ et $\bar{D}_{22} = -0.28 \bar{D}_{11}$. Le rapport $\bar{D}_{33}/\bar{D}_{22} \approx 2.57$ est en accord avec la forme du dôme (Rémy et Tabacco, 2000);
- une compression définie par $\bar{D}_{11} < 0$ avec $\bar{D}_{33} = -0.85 \bar{D}_{11}$ et $\bar{D}_{22} = -0.15 \bar{D}_{11}$, ce qui donne un rapport $\bar{D}_{33}/\bar{D}_{22} \approx 5.67$.

Le triplet initial des valeurs propres de $a^{(2)}$ triées dans l’ordre décroissant est égal à ($0.45, 0.30, 0.25$). Les résultats obtenus sont tracés sur la Figure 7.10 et comparés à ceux obtenus pour une compression uniaxiale. L’évolution de la plus grande valeur propre de $a^{(2)}$ est peu sensible au rapport $\bar{D}_{33}/\bar{D}_{22}$. L’évolution des deux plus petites valeurs propres de $a^{(2)}$ est la mieux reproduite pour le rapport $\bar{D}_{33}/\bar{D}_{22} \approx 2.57$, mais l’écart avec les résultats obtenus pour le rapport $\bar{D}_{33}/\bar{D}_{22} \approx 5.67$ est peu important. Il est donc difficile de conclure à la stabilité de la topographie du dôme avec ces tests. Cependant, une partie des variations de la fabrique avec la profondeur peut sans doute être expliquée par une variation de ce rapport en fonction de la profondeur mais aussi au cours du temps, i.e., dû à un changement de forme du dôme.
Fig. 7.7: Modèle 1D. Evolution des trois valeurs propres de $a^{(2)}$ triées dans l’ordre croissant en fonction de la déformation cumulée ξ_e et de la profondeur dans le forage de Dôme C : mesurées dans le forage de Dôme C (traits continus), calculées avec le modèle continu de Taylor (1), calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = \alpha_{opt} = 6.15 \times 10^{-2}$ (2), calculées avec le modèle continu Statique pour $\beta = 0.04$ (3), calculées avec le modèle continu VPSC pour $\beta = 0.1$ et $\alpha = \alpha_{opt} = 0.1202$ (4), calculées avec le modèle continu VPSC pour $\beta = 0.01$ et $\alpha = \alpha_{opt} = 1.8 \times 10^{-2}$ (5), calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = 0.02$ (6) et calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = 0.2$ (7).
Fig. 7.8: Modèle 1D. Evolution des trois valeurs propres de $\alpha^{(2)}$ triées dans l’ordre croissant en fonction de la déformation cumulée \bar{c}_c et de la profondeur dans le forage de Dôme C : mesurées dans le forage de Dôme C (traits continus) et calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = \alpha_{opt} = 6.15 \times 10^{-2}$, avec 4 conditions initiales différentes pour la fabrique. La solution en pointillés correspond à celle obtenue avec une fabrique initiale isotrope.
Fig. 7.9: Modèle 1D. Evolution des trois valeurs propres de $a^{(2)}$ triées dans l’ordre croissant en fonction de la déformation cumulée $\tilde{\varepsilon}_c$ et de la profondeur dans le forage de Dôme C : mesurées dans le forage de Dôme C (traits continus), calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = 0.01$ (pointillés) et calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = 0.02$ et $\kappa_a = 0.02$ (tirets).
Fig. 7.10: Modèle 1D. Evolution des trois valeurs propres de $\alpha^{(2)}$ triées dans l’ordre croissant en fonction de la déformation cumulée ϵ_c et de la profondeur dans le forage de Dôme C : mesurées dans le forage de Dôme C (traits continus), calculées avec le modèle continu VPSC pour $\beta = 0.04$ et $\alpha = 0.01$ pour une compression uniaxiale (tirets et pointillés), des compressions définies par $D_{11} < 0$ avec $D_{33} = -0.72D_{11}$ et $D_{22} = -0.28D_{11}$ (tirets) et avec $D_{33} = -0.85D_{11}$ et $D_{22} = -0.15D_{11}$ (pointillés).
7.5 Effet d’une variation de la fluidité initiale de la glace

Dans cette partie nous étudions les effets d’une variation de la fluidité de la glace au moment de son dépôt. Nous restreignons notre étude à un écoulement bidimensionnel en déformation plane d’une calotte isotherme sur un socle plat. L’indice 1 correspond à la direction horizontale et l’indice 2 à la direction verticale.

Les objectifs de ce test sont de mettre en évidence les effets sur l’écoulement d’une variation de fluidité de la glace en fonction de la période climatique durant laquelle elle s’est déposée et les conséquences sur l’évolution de la fabrique.

7.5.1 Conditions du test

Le domaine étudié s’étend de l’axe de symétrie en $x_1 = 0$ jusqu’au bord latéral en $x_1 = 120$ km. Le maillage régulier est composé de 7500 éléments linéaires avec 100 éléments suivant la direction horizontale et 75 éléments suivant la direction verticale. Le maillage est plus raffiné vers le dôme et vers le socle.

La loi de comportement est tabulée avec le modèle VPSC pour des paramètres d’anisotropie du grain $\beta = 0.04$ et $\gamma = 1$. Le paramètre d’interaction α est égal au paramètre d’interaction optimal $\alpha_{opt} = 6.15 \times 10^{-2}$.

La fabrique en surface est isotrope. L’accumulation sur la surface libre est constante et égale à 8cm/a. La vitesse verticale au niveau du socle est égale à -0.1mm. Au niveau de l’axe de symétrie la vitesse horizontale est nulle. Sur le bord latéral en $x_1 = 120$ km nous prescrivons le profil de vitesse horizontale qui satisfait la conservation de la masse (voir Chapitre 6).

La surface libre initiale est une surface de Vialov (6.31), où la hauteur au dôme $E(0)$ est égale à 3000m et la longueur L est égale à 100$E(0)$.

Nous calculons l’état stationnaire pour les champs de vitesse et de fabrique et pour l’altitude de la surface, qui correspond à ces conditions avec une fluidité de la glace constante et égale à $B_1 = 0.0245\text{MPa.a}^{-1}$.

À partir de cet état stationnaire, nous effectuons une simulation transitoire où la fluidité de la glace dépend du temps auquel la glace était en surface. La glace déposée entre 0 et 20ka a une fluidité égale à $B_1 = 0.042\text{MPa.a}^{-1}$, la glace déposée entre 20 et 30ka a une fluidité égale à $B_1 = 0.014\text{MPa.a}^{-1}$, et ainsi de suite tout les 20ka et 10ka. Le rapport des viscosités entre deux couches successives est donc de 3.06. Cette différence de fluidité tend à représenter les effets de la taille de grains et de la teneur en impureté sur la fluidité de la glace entre la glace de période glaciaire supposé plus fluide et la glace de période interglaciaire supposé moins fluide. Notons que ce rapport de fluidité est constant, alors que dans la réalité si la fluidité de la glace est en partie contrôlée par la taille des grains, il devrait évoluer. Cette valeur est volontairement surestimée à cause de la diffusion numérique qui peut se produire au moment de l’interpolation de la fluidité de la glace aux points d’intégration, puisque la fluidité est définie aux nœuds du maillage. De même, les durées mises en jeu ici ne correspondent pas aux durées réelles des périodes climatiques afin d’avoir des temps de calcul raisonnables. Nous présentons les résultats obtenus à $t = 72.2$ka.

7.5.2 Résultats

Nous présentons les résultats obtenus dans un forage situé à 30km du dôme soit environ 10 épaisseurs de glace, afin d’avoir un cisaillement horizontal non négligeable par rapport aux vitesses de déformation longitudinales.
Sur la Figure 7.11, nous traçons les vitesses, vitesses de déformation et contraintes déviatoires correspondant à la simulation stationnaire et à la simulation transitoire à \(t = 72.2 \) ka.

La discontinuité de la fluidité entre deux couches successives entraîne une discontinuité au niveau de la vitesse de déformation en cisaillement \(D_{12} \) : les couches les plus fluides subissent des vitesses de déformation en cisaillement plus importantes que les couches moins fluides. Pour la vitesse de déformation \(D_{22} \) il n'y a pas de discontinuité, i.e., pas d'extrusion, par contre il y a une discontinuité sur la pente de \(D_{22} \) : la pente est plus grande dans les couches les plus fluides. Notons que les vitesses de déformation subies par une couche influence l'ensemble de la calotte, ainsi le champ des vitesses de déformation varie en fonction de la position et des propriétés rhéologiques de chaque couche. Ces effets sur les vitesses de déformation se traduisent sur les profils de vitesses qui eux aussi varient au cours du temps. Nous rappelons ici que le modèle utilisé pour dater le forage de dôme C suppose que la forme du profil de vitesse verticale reste fixe au cours du temps. Nous avons montré que cette hypothèse n'est pas respectée si les propriétés rhéologiques de la glace varient au cours du temps. Notons aussi que, au dôme, le profil de vitesse de déformation \(D_{22} \) (non tracé ici) présente les mêmes variations qu'à 30 km. Pour les contraintes déviatoires, la discontinuité sur la fluidité entraîne une discontinuité sur les contraintes longitudinales \(S_{ii} \). Pour la contrainte de cisaillement \(S_{12} \), les brusques variations observées sur les noeuds au niveau des transitions entre les couches sont des artefacts numériques et la contrainte de cisaillement évolue linéairement de la surface au socle proportionnellement à la pente de la surface, comme prédit par l'approximation de la couche mince.

Les profils de fabrique, en fonction de l'amincissement calculé, sont donnés sur la Figure 7.12. En pointillés nous donnons la solution obtenue en supposant uniquement une compression biaxiale. Cette solution correspond à celle obtenue au dôme. Les fabrîques dans les couches les plus fluides sont toujours plus concentrées puisque la glace a subie des vitesses de déformation plus importantes. Dans les couches les moins fluides les fabrîques sont moins concentrées. Les profils restent tout de même très similaires, c'est pourquoi il est difficile de dire si la glace a subie du cisaillement en se basant uniquement sur les mesures de fabrîques dans un forage. Nous observons aussi une différence assez nette sur l'orientation du repère propre de \(a^{(2)} \). Dans les couches les plus fluides, le déphasage est toujours plus important.

Les résultats obtenus au dôme ne sont pas représentés ici mais nous pouvons noter que le profil de fabrique, tracé en fonction de l'amincissement, est toujours identique quel que soit le temps puisqu'il n'y a pas du tout de cisaillement. Par contre le profil d'amincissement varie au cours du temps.

En conclusion, le profil des valeurs propres de \(a^{(2)} \) calculé est assez similaire à celui mesuré dans le forage de dôme C : les couches les moins fluides ont des fabrîques moins concentrées et les couches les plus fluides des fabrîques plus concentrées. Notons que ce résultat entraîne une rétroaction positive comme suggéré par Paterson (1991) : la fabrique se concentre plus vite dans les couches plus fluides qui deviennent ainsi encore plus faciles à déformer en cisaillement et ainsi de suite. Ce résultat semble donc indiquer que le cisaillement dans la partie basse du forage de Dôme C n'est pas négligeable, ce qui explique pourquoi la fabrique, tracée en fonction de l'amincissement, est plus concentrée dans le fond de Dôme C que dans les deux autres forages. Notons que cette conclusion contredit certaines des hypothèses utilisées pour la datation du forage.
7.5. Effet d’une variation de la fluidité initiale de la glace

Fig. 7.11: Effet de la viscosité initiale. Distribution dans un forage situé en $x = 30$ km de : (a) la vitesse horizontale u, (b) la vitesse verticale v, (c) la vitesse de déformation longitudinale \tilde{D}_{22}, (d) la vitesse de déformation en cisaillement \tilde{D}_{12}, (e) les contraintes déviatoires longitudinales \tilde{S}_{ii} et (f) la contrainte déviateoire en cisaillement \tilde{S}_{12}. Les solutions pour la simulation stationnaire sont représentées par les courbes en traits continus et les solutions pour la simulation transitoire à $t = 72.2$ ka sont représentées par les courbes en tirets. Les positions des couches à $t = 72.2$ ka ans sont données par les pointillés horizontaux.
Fig. 7.12: **Effet de la visclosité initiale.** Distribution en fonction de l’amincissement dans un forage situé en $x = 30\text{km}$: (a) des valeurs propres de $a^{(2)}$ et (b) du déphasage φ. Les solutions pour la simulation stationnaire sont représentées par les courbes en traits continus et les solutions pour la simulation transitoire après 72 200 ans sont représentées par les courbes en tirets. Les pointillés sont les solutions obtenues en supposant uniquement une compression biaxiale, et correspondent donc aux solutions au dôme, quel que soit le temps. Les positions des couches au temps $t = 72.2\text{ka}$ sont données par les traits continus horizontaux.
7.6 Modélisation 3D de l’écoulement au voisinage de Dôme C

Dans cette partie nous modélisons l’écoulement tridimensionnel au voisinage du forage de dôme C. Notons que pour des simulations 3D, le nombre de noeuds du maillage et les temps de calcul deviennent rapidement considérables, c’est pourquoi nous calculons uniquement le champ de vitesse correspondant à la topographie actuelle au voisinage du forage et pour une rhéologie de la glace fixée.

Nous notons \(x \) et \(y \) les directions horizontales et \(z \) la direction verticale. Les vitesses horizontales sont notées \(u, v \), ou plus généralement \(u_\perp \), et la vitesse verticale est notée \(w \).

Pour créer le maillage, nous utilisons les données topographiques du socle \(B(x, y) \) et de la surface \(E(x, y) \) fournies par Bedmap. Nous utilisons des éléments quadrilatéraux avec une interpolation linéaire. Le maillage est régulier avec des éléments de 10km de côté suivant les directions horizontales et nous utilisons 20 éléments pour la verticale. Nous comparons les résultats obtenus sur un domaine de \(320 \times 320 \)km à ceux obtenus sur un domaine de \(640 \times 640 \)km.

Le profil de température, en fonction de la hauteur réduite est fixe et correspond à celui mesuré dans le forage de Dôme C. Au niveau du socle nous supposons qu’il n’y a ni fusion ni glissement.

Nous utilisons deux types de conditions aux limites pour les bords latéraux :
- des conditions aux limites en vitesses obtenues à partir de l’approximation de la couche mince à l’ordre 0

\[
\frac{\partial \bar{u}_n}{\partial x_n} = \frac{\rho g}{M_{nznz}} \frac{dE}{dx_n}(z - B),
\]

où \(\bar{u}_n \) est la vitesse horizontale normale au bord latéral considéré, \(x_n \) est la direction horizontale normale au bord latéral considéré et \(M_{nznz} \) est la composante \(nznz \) de la loi de comportement écrite sous forme condensée (6.25),
- des conditions aux limites en contraintes, correspondant à la pression hydrostatique

\[
\bar{\sigma} \cdot n_L = \rho g (E - z),
\]

où \(n_L \) est le vecteur unitaire normal au bord latéral considéré.

Afin de comparer les résultats entre eux, nous ajustons la valeur de référence de la fluidité \(B_n(-10^5 \circ C) \) pour obtenir une vitesse verticale de -2.3cm a\(^{-1}\) en surface au niveau du forage de Dôme C, qui correspond à l’accumulation mesurée in-situ. Pour les simulations avec le modèle VPSC, la loi de comportement est tabulée avec des paramètres d’anisotropie du grain donnés par \(\beta = 0.04 \) et \(\gamma = 1 \) et le profil de fabric en fonction de la profondeur réduite est fixe et est donné par (6.32). La définition des simulations effectuées est donnée dans le tableau 7.1.

7.6.1 Vitesses horizontales en surface

Sur la Figure 7.13 nous comparons les vitesses horizontales obtenues avec les simulations iso_bcu_320 et iso_bcllim_320 afin de tester l’influence de la condition au bord. Les vitesses obtenues sur l’ensemble du domaine sont assez proches entre les deux simulations. Les différences les plus importantes se situent près des limites où les pentes sont assez faibles. Il y a un très bon accord entre les deux simulations dans le coin gauche en bas, là où les pentes sont les plus importantes, et où l’approximation de la couche mince est sans
Tab. 7.1: Définition des simulations 3D. B_n est la fluidité de référence (1.2), et C. L. le type de condition à la limite.

<table>
<thead>
<tr>
<th>nom de la simulation</th>
<th>comportement</th>
<th>$B_n(-10^\circ\text{C})$ MPa$^{-n}$a$^{-1}$</th>
<th>C. L.</th>
<th>maillage (km2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iso_bcu_320</td>
<td>isotrope $n = 1$</td>
<td>$B_1 = 0.0204$</td>
<td>(7.4)</td>
<td>320×320</td>
</tr>
<tr>
<td>iso_bcplim_320</td>
<td>isotrope $n = 1$</td>
<td>$B_1 = 0.0217$</td>
<td>(7.5)</td>
<td>320×320</td>
</tr>
<tr>
<td>iso_bcplim_640</td>
<td>isotrope $n = 1$</td>
<td>$B_1 = 0.0209$</td>
<td>(7.5)</td>
<td>640×640</td>
</tr>
<tr>
<td>VPSC_bcplim_320</td>
<td>VPSC</td>
<td>$B_1 = 0.01067$</td>
<td>(7.5)</td>
<td>320×320</td>
</tr>
<tr>
<td>VPSC_bcplim_640</td>
<td>VPSC</td>
<td>$B_1 = 0.00817$</td>
<td>(7.5)</td>
<td>640×640</td>
</tr>
<tr>
<td>isonl_bcplim_640</td>
<td>isotrope $n = 3$</td>
<td>$B_3 = 52.916$</td>
<td>(7.5)</td>
<td>640×640</td>
</tr>
</tbody>
</table>

doute la plus valide. Globalement les vitesses sont perpendiculaires aux courbes de niveau, comme mesuré in-situ (Vittuari et al., 2004). Au niveau du dôme, la direction des vitesses change entre les deux simulations mais la norme est très similaire. De plus, on remarque que les fluidités de référence des deux simulations sont très proches, mais nettement inférieures à la valeur de $B_1 = 0.16 \pm 0.07$ MPa$^{-n}$a$^{-1}$ donnée par Lipenkov et al. (1997).

Sur la Figure 7.14 nous comparons les vitesses obtenues avec les simulations iso_bcplim_320 et iso_bcplim_640 afin d’étudier l’influence de la position des bords du domaine. Il y a un très bon accord entre les deux résultats, même au niveau des limites latérales pour la simulation iso_bcplim_320. Notons que l’intérieur du domaine est très peu affecté. La direction des vitesses varie légèrement au niveau du dôme où la pente de surface est très faible.

En conclusion, les résultats obtenus au voisinage du forage avec une glace isotrope linéaire sont peu sensibles au type de conditions aux limites et à la position des limites latérales par rapport au site de forage.

Sur la Figure 7.15 nous comparons les résultats des simulations VPSC_bcplim_320 et VPSC_bcplim_640. Les vitesses obtenues en surface sont différentes de celles obtenues dans le cas isotrope, et ne semblent pas être guidées par la pente de surface. On note aussi une très grande sensibilité du résultat aux conditions aux limites jusqu’au centre du domaine.

Sur la figure 7.16 nous comparons les résultats des simulations iso_bcplim_640 et isonl_bcplim_640. Nous vérifions que, comme pour le cas isotrope linéaire, les solutions au centre du domaine dans le cas non linéaire sont peu sensibles à l’éloignement des conditions aux limites. Les vitesses horizontales obtenues avec le comportement non linéaire sont plus importantes que celles obtenues dans le cas linéaire, mais les directions sont similaires et sont majoritairement perpendiculaires aux courbes de niveau.

En conclusion, pour une glace isotrope linéaire ou non linéaire, les résultats sont moins sensibles aux conditions aux limites que pour une glace anisotrope. Ce résultat vient du fait que avec le type d’anisotropie que nous avons adopté, la déformation est plus localisée vers le fond et la partie supérieure de la calotte se déforme très peu et se comporte un peu comme une plaque rigide, ce qui permet aux conditions aux limites de se propager plus loin à l’intérieur du domaine. Notons aussi que nous avons adopté un champ de fabrique typique d’un dôme, alors que ce champ doit certainement varier, influençant l’écoulement, comme nous l’avons montré au Chapitre 6. Dans le futur, pour améliorer ces simulations il faudra calculer le champ de fabrique et prendre en compte l’effet de la glace basale recristallisée.
Fig. 7.13: Modèle 3D. Comparaison des vitesses horizontales de surface obtenues avec les simulations iso_bcu_320 (vecteurs rouges) et iso_bclim_320 (vecteurs bleus). Les courbes de niveau sont tous les 5 m.
Fig. 7.14: Modèle 3D. Comparaison des vitesses horizontales de surface obtenues avec les simulations iso_bcplim_640 (vecteurs rouges) et iso_bcplim_320 (vecteurs bleus). Les courbes de niveau sont tous les 5m.
Fig. 7.15: Modèle 3D. Comparaison des vitesses horizontales de surface obtenues avec les simulations VPSC_bcplim_640 (vecteurs rouges) et VPSC_bcplim_320 (vecteurs bleus). Les courbes de niveau sont tous les 5m.
Fig. 7.16: Modèle 3D. Comparaison des vitesses horizontales de surface obtenues avec les simulations iso_bcplim_640 (vecteurs rouges) et isonl_bcplim_640 (vecteurs bleus). Les courbes de niveau sont tous les 5m.
7.6.2 Vitesses verticales en surface

Sur la Figure 7.17 nous donnons la topographie du socle et les vitesses horizontales en surface calculées avec la simulation iso_bcplim_640. Les vitesses horizontales en surface sont perpendiculaires aux courbes de niveau et ne semblent pas être affectées par la topographie du socle, notamment la profonde vallée située au Nord-Est du dôme. Notons que le dôme est plus allongé suivant la direction SW-NE, mais que l’axe de la crête au Nord-Est du dôme, s’oriente plutôt vers le N-NE, parallèlement à la profonde vallée. Ainsi la localisation actuelle du dôme et sa forme semblent être en partie affectées par la topographie locale du socle, et notamment la présence de cette profonde vallée au N-E.

Les vitesses verticales obtenues avec la simulation iso_bcplim_640 sont représentées sur la Figure 7.18. La valeur absolue de la vitesse verticale diminue avec l’épaisseur de glace.

La carte de l’accumulation nécessaire pour que la surface actuelle soit en équilibre avec la simulation iso_bcplim_640 est donnée par la Figure 7.19. Cette accumulation est relativement constante au voisinage du dôme. On note tout de même une augmentation de cette accumulation le long de la crête au N-NE du dôme, au dessus de la vallée. Urbini et al. (unpublished data) observent un gradient d’accumulation d’environ 0.073 mm.a⁻¹.km⁻¹ le long du grand axe du dôme en allant vers le N-E. Les accumulations nécessaires pour que la surface actuelle soit dans un état stationnaire, calculées avec les simulations iso_bcplim_640, VPSC_bcplim_640 et isonl_bcplim_640, le long du transect bleu de la Figure 7.19, sont données sur la Figure 7.20. Avec les simulations iso_bcplim_640 et VPSC_bcplim_640 nous obtenons un gradient d’accumulation vers le NE plus important que celui mesuré in-situ, ce qui signifie qu’il y aurait un déficit d’accumulation vers le NE. Par contre avec la simulation isonl_bcplim_640 nous obtenons un gradient moins important. Notons qu’à priori ce résultat est sans doute assez sensible aux conditions d’écoulement qui sont mal maîtrisées (fusion/glissement basal, rhéologie exacte de la glace ...), ainsi il semble très difficile de conclure par de telles simulations à la stabilité ou non de la topographie actuelle.
Fig. 7.17: Modèle 3D. Vitesses horizontales de surface obtenues avec la simulation iso_bcplim_640 et topographie du socle. Les courbes de niveau sont tous les 2m.
Fig. 7.18: Modèle 3D. Carte de vitesse verticale de surface obtenue avec la simulation iso_bcplim_640. Les courbes de niveau sont tous les 2m.
Fig. 7.19: Modèle 3D. Carte d’accumulation nécessaire pour que la surface soit dans un état stationnaire, obtenue avec la simulation iso_bcplim_640. En bleu est représenté un transect le long de la crête. Les courbes de niveau sont tous les 2m.
Fig. 7.20: Modèle 3D. Profils d’accumulation nécessaire pour que la surface soit dans un état stationnaire, le long du transect bleu de la Figure 7.19, obtenus avec les simulations iso_bcplim_640 (trait continu), VPSC_bcplim_640 (pointillés) et isonl_bcplim_640 (tirets). En tirets et pointillés est représentée une droite de pente 0.073 mm a⁻¹ km⁻¹ correspondant au gradient observé (Urbini et al.).
7.6.3 Résultats dans le forage de Dôme C

Nous présentons ici les profils obtenus dans le forage de Dôme C. Les résultats sont tracés en fonction de la hauteur réduite

\[\zeta = (z - B)/(E - B). \] (7.6)

Sur la Figure 7.21, nous représentons la vitesse horizontale, sa direction et le profil de vitesse verticale adimensionnée avec la vitesse verticale en surface \(w_E, \bar{w} = w/w_E \). Vittuari et al. (2004) estiment une vitesse horizontale au niveau du forage de Dôme C de 1.5 cm a\(^{-1}\) suivant la direction N-NW, de plus les vitesses horizontales mesurées en surface sont presque parfaitement alignées avec la ligne de plus grande pente. Nous obtenons le bon ordre de grandeur de vitesse horizontale avec les simulations iso_bcplim_640 et isonl_bcplim_640. Pour la simulation VPSC_bcplim_640 nous obtenons une vitesse horizontale en surface de 25 cm a\(^{-1}\) et, comme nous l’avons dit, les vitesses ne sont pas dirigées suivant la ligne de plus grande pente et sont très sensibles aux conditions aux limites. Pour les simulations iso_bcplim_640 et isonl_bcplim_640, les vitesses en surface sont dirigées vers le N et le N-E respectivement. Du fait des très faibles pentes, ces directions sont sensibles aux conditions aux limites et à la bonne description de la topographie locale. Il n’est donc pas surprenant avec des éléments de 10km de côté d’obtenir des directions différentes de celles mesurées in situ. Cette direction est assez stable avec la profondeur pour les simulations VPSC_bcplim_640 et isonl_bcplim_640, par contre elle varie de plus de 15° entre la surface et le socle pour la simulation iso_bcplim_640.

Les trois profils de vitesse verticale obtenus avec les simulations sont assez nettement différents de celui utilisé pour la datation du forage. Nous rappelons que le profil utilisé pour la datation est fixe au cours du temps, alors que nous avons montré qu’il peut varier en fonction des propriétés rhéologiques de la glace. De plus, des tests non présentés dans ce manuscrit montrent aussi que ce profil de vitesse peut varier si la topographie de la surface varie (épaisseur de glace, pentes de surface) dans des conditions où l’approximation de la couche mince n’est pas valide. Le profil utilisé pour la datation représente donc sans doute un profil de vitesse moyen. La différence entre ce profil et les simulations peut sans doute aussi être mis sur le compte d’effets de la topographie du socle plus locaux qui ne peuvent pas être capturés avec des éléments de 10km de côté.

Sur la Figure 7.22, nous donnons les profils de vitesses de déformation obtenus dans le forage. Le tenseur vitesses de déformation \(D \) est exprimé dans le repère dont l’une des directions horizontales est parallèle au grand axe du dôme i.e., parallèle au transect bleu de la Figure 7.19, et l’autre lui est perpendiculaire. Les rapports de la vitesse de déformation longitudinal suivant le petit axe du dôme, notée \(\bar{D}_{pp} \), à la vitesse de déformation longitudinal suivant le grand axe du dôme, notée \(\bar{D}_{lt} \), sont compris entre 2 et 3 comme prédit par la théorie de Nye (1991) et la forme du dôme (Rémy et Tabacco, 2000). Ces rapports sont constants sur les 80% supérieurs de la hauteur du forage. Les vitesses de déformation en cisaillement sont négligeables dans les 60% supérieurs de la hauteur du forage et commencent à augmenter seulement en dessous de 40%. Ce résultat contredit l’hypothèse d’un cisaillement non négligeable que nous avons faite pour expliquer les fabriques mesurées, mais les simulations présentées ici sont préliminaires et il n’est pas inenvisageable que les conditions d’écoulement aient pu varier dans le passé.
Fig. 7.21: Modèle 3D. Profils en fonction de la hauteur réduite obtenus dans le forage de Dôme C : (a) de vitesse horizontale, (b) d’orientation de la vitesse horizontale par rapport au nord et (c) de vitesse verticale adimensionnée. Les traits continus sont les solutions obtenues avec la simulation iso_bcplim_640, les pointillés avec la simulation VPSC_bcplim_640 et les tirets avec la simulation isonl_bcplim_640. Les tirets et pointillés pour la vitesse verticale représentent le profil utilisé pour la datation EDC3.
Fig. 7.22: Modèle 3D. Profils de vitesses de déformations en fonction de la hauteur réduite obtenus dans le forage de Dôme C. Le tenseur \mathbf{D} est exprimé dans un repère lié au Dôme. L’indice p correspond à la direction horizontale suivant le petit axe du dôme et l’indice l à la direction horizontale suivant le grand axe du dôme. (a) vitesses de déformation longitudinales, (b) rapport entre les vitesses de déformation longitudinales suivant le petit axe du dôme et le grand axe du dôme, (c) vitesses de déformation en cisaillement et (d) vitesse de déformation en cisaillement \bar{D}_{pl}. Les traits continus sont les solutions obtenues avec la simulation iso_bcplim_640, les pointillés avec la simulation VPSC_bcplim_640 et les tirets avec la simulation isonl_bcplim_640.
7.7 Conclusion

Dans ce Chapitre, nous avons montré que les différences de fabriques entre les périodes glaciaires et interglaciaires pouvaient être expliquées par une différence de fluidité de la glace entre ces périodes climatiques et par un cisaillement non négligeable le long de la carotte. Nous avons vu que ces différences de fabriques entraînent des différences de viscosité de la glace assez importantes ce qui rend l’état de contrainte et de vitesses de déformation in-situ relativement compliqué.

Nous avons comparé les mesures de fabrique aux résultats de notre modèle dans le cas unidimensionnel. Nous avons montré que la fabrique initiale en surface joue un rôle important sur le résultat. Le paramètre d’interaction α nous permet d’obtenir une large gamme de résultats, et de reproduire presque parfaitement les mesures. Nous rappelons tout de même que cette modélisation unidimensionnelle est limitée et n’apporte pas de confirmation quand à la validité du modèle et aux propriétés rhéologiques de la glace. Seul un calcul d’écoulement couplé permettra de valider les différentes hypothèses.

Nous avons donné les résultats préliminaires de modélisations tridimensionnelles de l’écoulement au voisinage du site de forage. Les résultats sont très sensibles aux conditions aux limites surtout si on fixe le champ de fabrique. Notons qu’un des objectifs d’un modèle local d’écoulement est de pouvoir être couplé avec un modèle grande échelle, basé sur l’approximation de la couche mince, et avec une résolution plus faible. Cette grande sensibilité aux conditions aux limites est donc un handicap pour un tel objectif, puisque les modèles à grande échelle ont du mal à reproduire la topographie observée autour de Dôme C, et notamment la localisation du dôme [C. Ritz, communication personnelle]. La question du type de conditions aux limites à imposer au modèle local pour réaliser un tel couplage reste donc posée.

Dans le cas isotrope les vitesses horizontales en surface sont majoritairement perpendiculaires aux courbes de niveau. Aucune des simulations présentées ne reproduit le profil de vitesse utilisé pour dater le forage. Afin d’améliorer ces simulations dans le futur il faudra prendre en compte les conditions de glissement et de fusion basale, ceci devra passer par le calcul du champ de température dans le domaine étudié.
Conclusion

Dans ce manuscrit, nous avons mis en place toutes les étapes nécessaires à l’élaboration d’un modèle d’écoulement d’une calotte polaire présentant une anisotropie induite évolutive.

Au Chapitre 2, nous avons adopté le modèle de grain continu linéaire, orthotrope de révolution autour de son axe c, de Meyssonnier et Philip (1996). Le comportement du monocristal dépend de deux paramètres qui décrivent son anisotropie. Nous avons formulé l’équation qui gouverne la rotation de l’axe c du grain en fonction du gradient de vitesse qu’il subit. Nous avons supposé que cette rotation est principalement due au glissement des plans de base. Nous avons comparé le modèle de grain continu au modèle de grain à plans de glissement de Castelnau (1996). Ces deux modèles conduisent à un comportement parfaitement identique mais nous avons montré qu’ils impliquent des vitesses de rotation de l’axe c différentes. Avec le modèle à plans de glissement, un grain qui subit un cisaillement simple parallèlement à ses plans de base n’est pas dans une position d’équilibre.

Au Chapitre 3, nous avons présenté, en détail, différentes descriptions de la fabrique : la description discrète par un nombre fini de grain et les descriptions continues par une ODF ou par les tenseurs d’orientation. Nous avons choisi de décrire la fabrique avec le tenseur d’orientation du second ordre en adoptant une fonction de fermeture pour le tenseur d’orientation du quatrième ordre. Nous avons proposé des méthodes pour passer d’une description discrète à une description continue, afin de pouvoir comparer les modèles utilisant l’une ou l’autre des descriptions.

Au Chapitre 4, nous avons présenté plusieurs modèles d’homogénéisation et donné les solutions analytiques pour le comportement du polycristal obtenues avec le modèle de Taylor et Statique. A partir de ces solutions analytiques, nous avons adopté une loi de comportement linéaire orthotrope. Cette loi dépend de six paramètres adimensionnels pour décrire l’anisotropie du polycristal. Ces paramètres dépendent de la fabrique et du modèle d’homogénéisation utilisé. Cette loi peut être tabulée avec tout modèle d’homogénéisation disponible. Les six paramètres adimensionnels sont calculés pour un jeu prédéfini de fabriques, ensuite, au cours du calcul d’écoulement, pour une fabrique quelconque, les six paramètres sont évalués par interpolation. La loi a été tabulée avec le modèle auto-cohérént. Nous avons validé cette loi de comportement et la procédure de tabulation et d’interpolation, par l’étude de la rhéologie des glaces de GRIP et Vostok. La fonction de fermeture adoptée ne permet pas de décrire précisément les fabriques de ces forages, et la loi GOLF surestime les fluidités en cisaillement et sous-estime celles en compression par rapport aux modèles utilisant une description discrète de la fabrique. Nous avons proposé plusieurs extensions possibles pour prendre en compte un comportement non linéaire avec un exposant des contraintes $n = 3$ dans l’Annexe E.

Au Chapitre 5, nous avons formulé l’équation d’évolution du tenseur d’orientation du second ordre. Nous avons comparé les différentes fonctions de fermeture détaillées au Chapitre 3. La fermeture IBOF donne de très bons résultats par comparaison avec la description
discrète de la fabrique. Nous avons montré qu’un unique paramètre d’interaction, qui ne dépend que de l’anisotropie du monocristal, permet de très bien reproduire avec le modèle continu les résultats du modèle auto-cohérent discret. Nous obtenons des résultats différents avec le modèle de grain continu et le modèle de grain discret en cisaillement simple : le modèle de grain continu conduit à des fabriques à un maximum stables alors que le modèle de grain à plans de glissement conduit à des fabriques qui se déconcentrent périodiquement. Nous avons proposé des pistes pour prendre en compte la recristallisation par rotation et par migration, mais il faudra comparer les résultats obtenus à ceux de modèles μ-M plus physiques afin de les valider.

Au Chapitre 6, nous avons mis en place les équations qui gouvernent l’écoulement de la calotte et les méthodes numériques utilisées pour les résoudre. Par des tests synthétiques nous avons mis en évidence certains effets de l’anisotropie sur l’écoulement. Sur un socle plat, les fabriques qui se développent ont tendance à favoriser la déformation en cisaillement, et les calotttes obtenues sont plus plates que dans le cas isotope. Avec le calcul couplé de la température, la glace est plus froide près du socle comparée au cas isotope, mais la différence de température est insuffisante pour compenser la différence de fluidité en cisaillement provoquée par l’anisotropie. Sur un socle sinusoïdal, nous avons montré que, dans le cas isotherme, la glace présentant une anisotropie induite évolutive descend plus profond dans les creux et remonte plus haut au dessus des bosses comparé au cas isotope. Nous avons montré que c’est l’inverse si on utilise un champ de fabrique fixe comme Mangeney et Califano (1998). De même, nous obtenons des résultats inverses avec le calcul couplé de la température. Dans le cas anisotope, la glace est plus chaude au fond des creux.

Au Chapitre 7, nous avons étudié les mesures des fabriques du forage de Dôme C. Nous avons observé que les valeurs propres de \(a^{(2)} \) présentent des discontinuités et que les glaces des périodes glaciaires présentent des fabriques plus concentrées que les glaces des périodes interglaciaires, notamment au niveau de la terminaison II. Nous avons montré que ces différences de fabrique entraînent des différences de fluidité entre les couches. Par une modélisation 1D de l’évolution de la fabrique dans le forage de Dôme C, nous avons montré que les résultats sont très sensibles à la fabrique initiale en surface. Nous avons montré que le modèle continu permet de bien reproduire l’évolution des trois valeurs propres de \(a^{(2)} \) en prenant une valeur du paramètre d’interaction plus faible que la valeur optimale. Ce résultat est attribué à l’effet de la recristallisation par rotation sur le développement de la fabrique. Nous avons montré qu’une différence de fluidité initiale de la glace au moment du dépôt, en fonction de la taille des grains ou de la teneur en impuretés, pouvait expliquer les variations de fabrique observées à Dôme C, dans l’hypothèse d’un cisaillement assez important. Enfin nous avons donné les résultats de simulations préliminaires de l’écoulement 3D au voisinage du site de forage. Avec une glace isotope, les vitesses horizontales en surface sont principalement perpendiculaires aux courbes de niveau et sont peu sensibles aux conditions aux limites. Par contre avec un champ de fabrique fixe, les résultats varient fortement en fonction des conditions aux limites et sont difficilement interprétables. Nous avons montré qu’aucune de nos simulations ne pouvait reproduire le profil de vitesse verticale utilisé à ce jour pour dater le forage.

En conclusion de ce travail nous pouvons proposer plusieurs pistes pour des développements ultérieurs :

- au niveau du modèle de comportement, il faudra valider les équations proposées pour prendre en compte un comportement non linéaire et les implanter dans le code de calcul éléments finis.
- au niveau du modèle d’évolution de la fabrique, deux développements devront être
envisagés simultanément : améliorer la fonction de fermeture afin qu’elle reproduise mieux les fabriques mesurées et valider les méthodes proposées pour prendre en compte la recristallisation. La fermeture pourra être améliorée à la fois en la comparant aux fabriques mesurées dans différents forages et en prenant en compte les résultats de modèles micro-macro intégrant la recristallisation.

– au niveau du modèle d’écoulement, la résolution de toutes les équations en 3D reste encore trop lourde numériquement, mais de petits tests synthétiques doivent pouvoir être menés. Enfin des tests devront être menés en vu d’un couplage avec un modèle grande échelle, pour servir de conditions aux limites au modèle local.
Annexe A

Inversion de la loi de comportement du grain (2.8)

La relation générale pour un matériau orthotrope de révolution, donnée par (2.8), est réécrite comme

\[D = \alpha_1 S + \alpha_2 \text{tr}(M_3.S)M_3^D + \alpha_3(S.M_3 + M_3.S)^D , \]

(A.1)

 où

\[\alpha_1 = \beta/2\eta, \quad \alpha_2 = \frac{2}{2\eta}(\beta \frac{\gamma + 2}{4\gamma - 1} - 1), \quad \text{et} \quad \alpha_3 = \frac{1}{2\eta}(1 - \beta) . \]

(A.2)

En utilisant les relations générales

\[\text{tr}(M_3) = 1, \quad M_3^D = M_3 - \frac{1}{3}I, \quad M_3.M_3 = M_3 , \]

\[M_3.M_3^D = M_3^D.M_3 = \frac{2}{3}M_3 , \]

\[\text{tr}(M_3.S) = \text{tr}(S.M_3), \quad M_3.S.M_3 = \text{tr}(M_3.S)M_3 , \]

\[(S.M_3 + M_3.S)^D = S.M_3 + M_3.S - \frac{2}{3}\text{tr}(S.M_3)I , \]

(A.3)

et l’équation (A.1), on peut exprimer \(M_3.D \) comme

\[M_3.D = \alpha_1 M_3.S + \frac{2}{3}\alpha_2 \text{tr}(M_3.S)M_3 + \alpha_3\left(\text{tr}(M_3.S)M_3 + M_3.S - \frac{2}{3}\alpha_2 \text{tr}(M_3.S)M_3 \right) \]

\[= (\alpha_1 + \alpha_3)M_3.S + \frac{1}{3}(2\alpha_2 + \alpha_3)\text{tr}(M_3.S)M_3 , \]

(A.4)

et, de manière similaire

\[D.M_3 = \alpha_1 S.M_3 + \frac{2}{3}\alpha_2 \text{tr}(M_3.S)M_3 + \alpha_3\left(S.M_3 + \text{tr}(M_3.S)M_3 - \frac{2}{3}\alpha_2 \text{tr}(M_3.S)M_3 \right) \]

\[= (\alpha_1 + \alpha_3)S.M_3 + \frac{1}{3}(2\alpha_2 + \alpha_3)\text{tr}(M_3.S)M_3 . \]

(A.5)
On peut donc écrire \(\text{tr}(M_3.D) \) en fonction de \(M_3 \) et \(S \) comme :

\[
\text{tr}(M_3.D) = \text{tr}(D.M_3) = (\alpha_1 + \frac{2}{3} \alpha_2 + \frac{4}{3} \alpha_3) \text{tr}(M_3.S) ,
\]
(A.6)

et comme

\[
(D.M_3 + M_3.D)^D = D.M_3 + M_3.D - \frac{2}{3} \text{tr}(D.M_3)I ,
\]
(A.7)

alors en utilisant (A.5), (A.4) et (A.6), nous obtenons

\[
(D.M_3 + M_3.D)^D = (\alpha_1 + \alpha_3)(S.M_3 + M_3.S)^D + \frac{2}{3}(2\alpha_2 + \alpha_3) \text{tr}(M_3.S)M_3^D .
\]
(A.8)

D’après (A.8)

\[
(S.M_3 + M_3.S)^D = \frac{1}{\alpha_1 + \alpha_3} (D.M_3 + M_3.D)^D - \frac{2}{3} \frac{2\alpha_2 + \alpha_3}{\alpha_1 + \alpha_3} \text{tr}(M_3.S)M_3^D ,
\]
(A.9)

et d’après (A.6)

\[
\text{tr}(M_3.S) = \text{tr}(S.M_3) = \frac{3}{3\alpha_1 + 2\alpha_2 + 4\alpha_3} \text{tr}(M_3.D) .
\]
(A.10)

En remplaçant \(\text{tr}(M_3.S) \) donné par (A.10) et \((S.M_3 + M_3.S)^D \) donné par (A.9) (et (A.10)) dans l’équation (A.1), nous obtenons

\[
\alpha_1 S = D + \frac{2\alpha_3(2\alpha_2 + \alpha_3) - 3\alpha_2(\alpha_1 + \alpha_3)}{(\alpha_1 + \alpha_3)(3\alpha_1 + 2\alpha_2 + 4\alpha_3)} \text{tr}(M_3.D)M_3^D - \frac{\alpha_3}{\alpha_1 + \alpha_3} (D.M_3 + M_3.D)^D .
\]
(A.11)

En utilisant (A.2)

\[
2\alpha_3(2\alpha_2 + \alpha_3) - 3\alpha_2(\alpha_1 + \alpha_3) = \left(\frac{1}{4\eta^2} \right) \frac{18\beta(\gamma - \beta)}{4\gamma - 1} ,
\]

\[
(\alpha_1 + \alpha_3)(3\alpha_1 + 2\alpha_2 + 4\alpha_3) = \left(\frac{1}{4\eta^2} \right) \frac{9\beta}{4\gamma - 1} ,
\]
(A.12)

\[
\frac{\alpha_3}{\alpha_1 + \alpha_3} = 1 - \beta ,
\]

ainsi l’équation (A.11) s’écrit

\[
S = 2\eta \left(\frac{1}{\beta} D + 2\left(\frac{\gamma}{\beta} - 1 \right) \text{tr}(M_3.D)M_3^D + (1 - \frac{1}{\beta})(D.M_3 + M_3.D)^D \right) ,
\]
(A.13)

qui est l’équation (2.9) inverse de (2.8) et (A.1).
Annexe B

Modèle de grain à plans de glissement

En développant les équations (2.38), (2.39) et (2.40) dans \(\{gR\} \), nous obtenons les tenseurs gradient de vitesse, vitesse de déformation et taux de rotation pour le modèle de grain à plans de glissement et les plans de glissement adoptés par Castelnau et al. (1996b). Les contraintes de références des familles basales, prismatiques et pyramidales sont notées \(\tau_a, \tau_b \) et \(\tau_c \), respectivement.

Pour le tenseur gradient de vitesse (2.38) nous obtenons

\[
\mathbf{gL} = 3 \begin{pmatrix}
\frac{gS_{11} - gS_{22}}{8\tau_b} + \frac{1}{4\tau_c} \left(\frac{1}{2\tau_c} + \frac{\chi_1}{2\tau_c} \right) gS_{12} + \frac{\chi_4}{\tau_c} gS_{13} \\
\frac{1}{4\tau_b} + \frac{\chi_1}{2\tau_c} \frac{gS_{12}}{8\tau_b} - \frac{1}{4\tau_b} \left(\frac{1}{2\tau_c} + \frac{\chi_1}{2\tau_c} \right) gS_{12} + \frac{\chi_4}{\tau_c} gS_{13} \\
\frac{1}{2\tau_a} + \frac{\chi_3}{\tau_c} gS_{13} \\
\frac{1}{2\tau_a} + \frac{\chi_3}{\tau_c} gS_{23} \\
\frac{3}{2\tau_a} + \frac{\chi_3}{\tau_c} gS_{33}
\end{pmatrix}
\]

où

\[
\chi_1 = \left(\frac{ac}{a^2 + c^2} \right)^2
\]

\[
\chi_2 = \chi_1 \left(\frac{a}{c} - \frac{c}{a} \right)^2 = \chi_3 + \chi_4
\]

\[
\chi_3 = \frac{a^4 - a^2 c^2}{(a^2 + c^2)^2}
\]

\[
\chi_4 = \frac{a^4 - c^2 a^2}{(a^2 + c^2)^2}
\]

Le tenseur vitesses de déformation est obtenu comme

\[
\mathbf{gD} = 3 \begin{pmatrix}
\frac{gS_{11} - gS_{22}}{8\tau_b} + \frac{1}{4\tau_c} \left(\frac{1}{2\tau_c} + \frac{\chi_1}{2\tau_c} \right) gS_{12} + \frac{\chi_4}{\tau_c} gS_{13} \\
\frac{1}{4\tau_b} + \frac{\chi_1}{2\tau_c} \frac{gS_{12}}{8\tau_b} - \frac{1}{4\tau_b} \left(\frac{1}{2\tau_c} + \frac{\chi_1}{2\tau_c} \right) gS_{12} + \frac{\chi_4}{\tau_c} gS_{13} \\
\frac{1}{2\tau_a} + \frac{\chi_3}{\tau_c} gS_{13} \\
\frac{1}{2\tau_a} + \frac{\chi_2}{\tau_c} gS_{23} \\
\frac{3}{2\tau_a} + \frac{\chi_3}{\tau_c} gS_{33}
\end{pmatrix}
\]

et par identification avec la loi de comportement continue, nous retrouvons les relations (2.41) entre \((\tau_a, \tau_b, \tau_c) \) et \((\psi, \beta, \gamma) \).
Pour le tenseur des taux de rotation, nous obtenons

\[
\mathbf{\omega} = \frac{3}{2} \begin{pmatrix}
0 & 0 & \left(\frac{1}{2\tau_a} + \frac{1}{\tau_c} \frac{a^2 - c^2}{a^2 + c^2}\right)gS_{13} \\
0 & 0 & \left(\frac{1}{2\tau_a} + \frac{1}{\tau_c} \frac{a^2 - c^2}{a^2 + c^2}\right)gS_{23} \\
-\left(\frac{1}{2\tau_a} + \frac{1}{\tau_c} \frac{a^2 - c^2}{a^2 + c^2}\right)gS_{13} & -\left(\frac{1}{2\tau_a} + \frac{1}{\tau_c} \frac{a^2 - c^2}{a^2 + c^2}\right)gS_{13} & 0
\end{pmatrix}.
\]

Compte tenu des relations (2.41), nous obtenons

\[
\mathbf{\omega}_{i3} = \left[1 - \frac{\beta}{4\gamma - 1} \left(\left(\frac{c}{a}\right)^2 - 1\right)\right] \frac{\psi}{2} gS_{i3}, \quad i = 1, 2,
\]

et en utilisant

\[
\frac{\psi}{2} gS_{13} = gD_{13},
\]

alors le produit \(\mathbf{\omega} \cdot \mathbf{c}\) peut se réécrire (Équation (2.43))

\[
\mathbf{\omega} \cdot \mathbf{c} = \lambda \left(gD \cdot \mathbf{c} - (\mathbf{c} \cdot gD \cdot \mathbf{c}) \mathbf{c}\right).
\]

avec

\[
\lambda = 1 - \frac{\beta}{4\gamma - 1} \left[\left(\frac{c}{a}\right)^2 - 1\right].
\]
Annexe C

Coefficients des fermetures ORF et IBOF

C.1 Fermeture ORF

Coefficients obtenus pour la fermeture ORF, par identification avec les tenseurs d’ordre 4 donnés par l’ODF paramétrée (3.6), en minimisant (3.38).

<table>
<thead>
<tr>
<th>j</th>
<th>C_1^j</th>
<th>C_2^j</th>
<th>C_3^j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.59428335058936 E-02</td>
<td>0.124059107759144</td>
<td>1.25375234622374</td>
</tr>
<tr>
<td>2</td>
<td>0.342183479871856</td>
<td>-0.407516135450961</td>
<td>-2.16712653158051</td>
</tr>
<tr>
<td>3</td>
<td>0.591900893605153</td>
<td>0.283457529967463</td>
<td>0.913375918564793</td>
</tr>
<tr>
<td>4</td>
<td>-0.387095153674354</td>
<td>9.36688946361343 E-02</td>
<td>-2.29609257279602</td>
</tr>
<tr>
<td>5</td>
<td>0.321026318051183</td>
<td>0.783615341832693</td>
<td>1.04331506064895</td>
</tr>
<tr>
<td>6</td>
<td>0.412894308759358</td>
<td>0.564509434210560</td>
<td>1.95445911756495</td>
</tr>
</tbody>
</table>

C.2 Fermeture IBOF

Coefficients obtenus pour la fermeture IBOF, par identification avec les tenseurs d’ordre 4 donnés par l’ODF paramétrée (3.6), en minimisant (3.45).
<table>
<thead>
<tr>
<th></th>
<th>C_1^j</th>
<th>C_2^j</th>
<th>C_3^j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2177745090788 E+02</td>
<td>-5.14850598717222 E+00</td>
<td>0.20381405171994 E+02</td>
</tr>
<tr>
<td>2</td>
<td>-2.97570854171128 E+03</td>
<td>0.213316362570669 E+02</td>
<td>-2.83958093739548 E+03</td>
</tr>
<tr>
<td>3</td>
<td>0.188686077307885 E+04</td>
<td>-3.0286564916568 E+03</td>
<td>0.173908241235198 E+04</td>
</tr>
<tr>
<td>4</td>
<td>-2.72941724578513 E+04</td>
<td>-1.98569416607029 E+04</td>
<td>-1.95566197110461 E+04</td>
</tr>
<tr>
<td>5</td>
<td>0.41714843642195 E+04</td>
<td>-4.6030675911640 E+02</td>
<td>-1.3801294339611 E+03</td>
</tr>
<tr>
<td>6</td>
<td>0.15203818241196 E+04</td>
<td>0.270825710321281 E+01</td>
<td>.523629892715050 E+03</td>
</tr>
<tr>
<td>7</td>
<td>-2.66096234984017 E+04</td>
<td>0.27706505460850 E+03</td>
<td>0.89580760829066 E+01</td>
</tr>
<tr>
<td>8</td>
<td>.196278098216953 E+04</td>
<td>0.56811705198608 E+02</td>
<td>-.782994158054881 E+02</td>
</tr>
<tr>
<td>9</td>
<td>-0.50526963499819 E+04</td>
<td>0.428921546783467 E+03</td>
<td>-0.437214580089117 E+02</td>
</tr>
<tr>
<td>10</td>
<td>-1.10483041928547 E+04</td>
<td>0.142494945404341 E+03</td>
<td>0.112996386047623 E+01</td>
</tr>
<tr>
<td>11</td>
<td>0.43048819375876 E+04</td>
<td>-0.54194522849881 E+04</td>
<td>0.401746416262936 E+04</td>
</tr>
<tr>
<td>12</td>
<td>-1.39197970442470 E+04</td>
<td>0.23335189912768 E+02</td>
<td>0.104927789918320 E+01</td>
</tr>
<tr>
<td>13</td>
<td>-1.44351781922013 E+04</td>
<td>0.10418328154671 E+04</td>
<td>-0.139341542878117 E+03</td>
</tr>
<tr>
<td>14</td>
<td>-2.6570130173249 E+04</td>
<td>0.331489412844667 E+03</td>
<td>-0.17095948015951 E+02</td>
</tr>
<tr>
<td>15</td>
<td>-4.28821699139210 E+04</td>
<td>0.660002154209991 E+02</td>
<td>0.545784716783902 E+00</td>
</tr>
<tr>
<td>16</td>
<td>-4.43236656693991 E+04</td>
<td>0.997500770521877 E+01</td>
<td>0.97126767581517 E+00</td>
</tr>
<tr>
<td>17</td>
<td>0.309742340203200 E+04</td>
<td>0.560508628472486 E+04</td>
<td>0.14190951297882 E+04</td>
</tr>
<tr>
<td>18</td>
<td>0.386473912295113 E+00</td>
<td>0.209909225990756 E+01</td>
<td>0.994142892628410 E+00</td>
</tr>
</tbody>
</table>
Annexe D

Expression de la loi de comportement (4.4) en fonction des tenseurs de structure

Dans cette annexe, nous montrons que les lois de comportement pour le polycristal obtenues avec les modèles de Taylor et Statique (Eqs. (4.4) et (4.13)) et écrites en fonction des tenseurs d’orientation \(\mathbf{a}^{(2)} \) et \(\mathbf{a}^{(4)} \), peuvent s’écrit sous une forme générale à l’aide des tenseurs de structure \(\tilde{\mathbf{M}}_i \) (\(i = 1, 2, 3 \)) (Boehler, 1987) dans le cas orthotrope (Eqs. (4.6) et (4.15))

Exprimés dans le repère d’orthotropie \(\{\mathbf{oR}\} \), les tenseurs d’orientation d’ordre 2 et 4 n’ont que 24 composantes non-nulles (cf (3.20) et (3.21)) dont seulement 5 sont indépendantes, par exemple

\[
q_{a_{11}}, q_{a_{22}}, q_{a_{1122}}, q_{a_{1133}} \text{ et } q_{a_{2233}} \quad (D.1)
\]

La matrice de passage \(\mathbf{R} \) du repère d’orthotropie \(\{\mathbf{oR}\} \) au repère de référence \(\{\mathbf{R}\} \) s’écrit, dans le repère de référence

\[
\mathbf{R} = \sum_{r=1}^{3} \circ \mathbf{e}_r \otimes \mathbf{e}_r , \quad (D.2)
\]

où \(\circ \mathbf{e}_r \) sont les vecteurs de base de \(\{\mathbf{oR}\} \) et \(\mathbf{e}_r \) les vecteurs de base de \(\{\mathbf{R}\} \), \(i.e., \)

\[
\begin{align*}
\mathbf{e}_1 &= (1, 0, 0)^T, \\
\mathbf{e}_2 &= (0, 1, 0)^T, \\
\mathbf{e}_3 &= (0, 0, 1)^T.
\end{align*} \quad (D.3)
\]

Nous rappelons ici la loi de comportement obtenue avec le modèle de Taylor

\[
\bar{\mathbf{S}} = \frac{2\eta}{\beta} \left(\mathbf{D} + \mu_1 \mathbf{a}^{(4)} \mathbf{D} + \mu_2 (\mathbf{D}, \mathbf{a}^{(2)} + \mathbf{a}^{(2)}, \mathbf{D}) + \mu_3 (\mathbf{a}^{(2)}, \mathbf{D}), \mathbf{I} \right), \quad (D.4)
\]

où

\[
\begin{align*}
\mu_1 &= 2(\gamma - \beta), \\
\mu_2 &= \beta - 1, \\
\mu_3 &= \frac{1}{3} (\mu_1 + 2\mu_2). \quad (D.5)
\end{align*}
\]

Le terme \(\mathbf{D} \) dans (D.4) est remplacé par la relation générale

\[
2 \mathbf{D} = \sum_{r=1}^{3} (\mathbf{D}, \mathbf{M}_r + \mathbf{M}_r, \mathbf{D})^D. \quad (D.6)
\]

201
Le tenseur d’orientation d’ordre 2 dans le repère général est exprimé en fonction de la matrice de passage R et de du tenseur d’orientation d’ordre 2 exprimé dans le repère d’orthotropie $a^{(2)}$, comme

$$a^{(2)} = R \cdot a^{(2)} \cdot R^T.$$

(4.4)

En utilisant (D.2) et compte tenu des valeurs propres non-nulles de $a^{(2)}$ (3.20), l’équation (D.7) se réécrit

$$a^{(2)} = \sum_{r=1}^{3} q_{rr} M_r,$$

(4.5)

et donc dans (D.4)

$$\mu_2\left(\bar{D} a^{(2)} + a^{(2)} \bar{D} - \frac{2}{3} (a^{(2)} \cdot \bar{D}) I \right) = \left(\bar{D} a^{(2)} + a^{(2)} \bar{D} \right)^D,$$

(4.6)

$$= \sum_{r=1}^{3} \mu_2(q_{rr} (\bar{D} M_r + D M_r)^D).$$

Le terme $\mu_1(a^{(2)} \cdot \bar{D}) I/3$ s’exprime comme

$$\frac{1}{3} \mu_1(a^{(2)} \cdot \bar{D}) I = \frac{1}{3} \mu_1 \sum_{r=1}^{3} q_{rr} (M_r \cdot \bar{D}) I.$$

(4.7)

Le produit $a^{(4)} \cdot \bar{D}$ est réécrit en fonction de R et $a^{(4)}$ comme

$$a_{ijkl} \bar{D}_{lk} = R_{im} R_{jn} R_{ko} R_{lp} q_{mnop} D_{lk}.$$

(4.8)

Compte tenu des valeurs propres non-nulles de $a^{(4)}$ et des relations entre elles et celles de $a^{(2)}$ (3.21), et en utilisant les relations

$$\sum_{r=1}^{3} M_r = I, \quad \sum_{r=1}^{3} \text{tr}(M_r \bar{D}) = \text{tr}(\bar{D}) = 0,$$

(4.9)

et en remarquant que

$$M_p \bar{D} M_q + M_q \bar{D} M_p = - \bar{D} + (M_p \bar{D} + \bar{D} M_p) + (M_q \bar{D} + \bar{D} M_q) - \text{tr}(M_p \bar{D})(M_p + M_r) - \text{tr}(M_q \bar{D})(M_q + M_r),$$

(4.10)

où $(p, q, r) = (1, 2, 3), (3, 1, 2), (2, 3, 1)$, avec \bar{D} donné par (D.6), alors on peut montrer que

$$(a^{(4)} \cdot \bar{D} - \frac{1}{3}(a^{(2)} \cdot \bar{D}) I) = \sum_{r=1}^{3} (q_{rr}^{(2)} - 4 q_{rr}^{(4)} + 4 a_{[rrll]}^{(4)} - 3 a_{[kkll]}^{(4)}) (\bar{D} M_r + M_r \bar{D})^D +$$

$$(a_{[rrkk]}^{(4)} + a_{[rrll]}^{(4)} - a_{[kkll]}^{(4)}) \text{tr}(M_r \bar{D}) M_r^D,$$

(4.11)

et l’équation (D.4) peut donc se mettre sous la forme (4.6)

$$S = \frac{2n}{\beta} \sum_{r=1}^{3} \left[\bar{\eta}_r \text{tr}(M_r \cdot \bar{D}) M_r^D + \bar{\eta}_{r+3} (D M_r + M_r D^D) \right],$$

(4.12)

où les $\bar{\eta}_i$ sont donnés par (4.7).

La même démarche peut-être utilisée pour passer de l’équation (4.13) obtenue avec le modèle Statique à l’équation (4.15), en remplaçant les \bar{D} par S et les μ_i par les λ_i (4.14).
Annexe E

Vers une loi non linéaire

Dans cette annexe, nous envisageons une loi non-linéaire avec un exposant des contraintes \(n = 3 \) pour le polycristal. La solution la plus simple est d’ajouter un invariant des contraintes à la loi de comportement (4.23) ou au potentiel de dissipation dont dérive cette loi. On peut montrer (Gagliardini, 1999) que la loi inverse de GOLF (4.23) s’écrit

\[
\bar{D} = B_1 \sum_{r=1}^{3} \left[\tilde{\alpha}_r \operatorname{tr}(M_r \tilde{S}) \bar{M}_r^D + \tilde{\alpha}_{r+3}(\tilde{S}M_r + M_r \tilde{S})^D \right],
\]

où \(B_1 = 1/\bar{\eta}_0 \) et les six paramètres \(\tilde{\alpha}_i \) sont des fluidités adimensionnelles, fonctions des six viscosités \(\bar{\eta}_i \). Le potentiel de dissipation, exprimé en fonction des contraintes, associé à la loi (E.1) s’écrit alors

\[
\phi_s^{(1)} = \frac{B_1}{2} \sum_{r=1}^{3} \left[\tilde{\alpha}_r \left(\frac{\operatorname{tr}(M_r \tilde{S})}{2} \right)^2 + 2\tilde{\alpha}_{r+3} \operatorname{tr}(M_r \tilde{S}^2) \right].
\]

Nous envisageons dans la suite deux extensions non-linéaires pour la loi GOLF en ajoutant deux invariants différents. Nous comparons les résultats ainsi obtenus à ceux dérivés de l’homogénéisation avec le modèle Statique à partir du potentiel non-linéaire pour le grain (2.16).

E.1 Extension non-linéaire 1

Pettit (2003) propose un comportement non-linéaire anisotrope simplement en ajoutant le second invariant des contraintes \(\operatorname{tr}(\tilde{S}^2) / 2 \) en facteur de l’expression analytique obtenue avec le modèle de Thorsteinsson (2001)\(^1\) dans le cas linéaire.

De manière similaire, nous proposons une extension non linéaire de la loi GOLF comme

\[
\tilde{D} = \frac{B_3}{2} \operatorname{tr}(\tilde{S}^2) \sum_{r=1}^{3} \left[\tilde{\alpha}_r \operatorname{tr}(\bar{M}_r \tilde{S}) \bar{M}_r^D + \tilde{\alpha}_{r+3}(\til{S}M_r + M_r \til{S})^D \right].
\]

La relation (E.3) est obtenue analytiquement avec le modèle Statique en considérant une extension non linéaire de la loi de comportement du monocristal obtenue en ajoutant

\(^1\)Ce modèle est basé sur le modèle Statique
l’invariant $\text{tr}(S^2)/2$ en facteur dans (2.8) :

$$
D = \frac{\psi_3}{4} \text{tr}(S^2) \left(\beta S + 2(\beta \frac{\gamma + 2}{4\gamma - 1} - 1) \text{tr}(M_3 S) M_3^D + (1 - \beta)(S M_3 + M_3 S)^D \right).
$$

(L.4)

L’homogénéisation avec le modèle Statique conduit donc à

$$
\bar{D} = < D > = \frac{\psi_3}{4} \text{tr}(S^2) \left(\beta S + 2(\beta \frac{\gamma + 2}{4\gamma - 1} - 1) a^{(4)} : \bar{S} + (1 - \beta)(S a^{(2)} + a^{(2)} : \bar{S}) + 2\beta \frac{\gamma - 1}{4\gamma - 1} (a^{(2)} : \bar{S}) I \right).
$$

(E.5)

Dans le cas orthotrope, l’équation (E.5) peut se mettre sous la forme (E.3). Le rapport de la fluidité en cisaillement parallèlement aux plans de base du grain non linéaire à la fluidité de la glace isotrope, ψ_3/B_3, ainsi obtenu est égal à B_1/ψ_1. Cette extension est simple et a le mérite de conserver les rapports d’anisotropie du monocristal et le rapport B_n/ψ_n quand on passe de $n = 1$ à $n = 3$. Par contre l’homogénéisation conduite à partir des modèles de Taylor et VPSC avec le comportement du grain (E.4) n’aboutirait pas à une loi macroscopique de la forme (E.3).

E.2 Extension non-linéaire 2

Comme pour le potentiel du monocristal (2.16), on peut envisager une extension non linéaire à partir du potentiel linéaire du polycristal (E.2), de la forme (pour $n = 3$) :

$$
\bar{\phi}^{(3)}_S = \frac{B_3}{4} \sum_{r=1}^{3} \bar{\alpha}_r \left[\text{tr}(\bar{M}_r \bar{S}) \right]^2 + 2\bar{\alpha}_{r+3} \text{tr}(\bar{M}_r \bar{S}^2) \right]^2.
$$

(E.6)

Nous développons ci-dessous l’extension non linéaire (E.6) obtenue dans le cas du modèle Statique. Avec le modèle Statique, le potentiel de la loi macroscopique obtenue dans le cas linéaire (4.13) s’écrit

$$
\bar{\phi}^{(1)}_S = \frac{\psi_1}{2} \left[\lambda_1 \bar{S}_{ij} \bar{S}_{ji} + \lambda_2 a^{(4)}_{ijkl} \bar{S}_{ij} \bar{S}_{kl} + \lambda_3 a^{(2)}_{ij} S_{jk} S_{ki} \right],
$$

(E.7)

où

$$
\lambda_1 = \frac{\beta}{2}, \quad \lambda_2 = \beta \frac{\gamma + 2}{4\gamma - 1} - 1 \quad \text{et} \quad \lambda_3 = 1 - \beta.
$$

(E.8)

L’extension non-linéaire donne

$$
\bar{\phi}^{(3)}_S = \frac{\psi_3}{4} \left[\lambda_1 \bar{S}_{ij} \bar{S}_{ji} + \lambda_2 a^{(4)}_{ijkl} \bar{S}_{ij} \bar{S}_{kl} + \lambda_3 a^{(2)}_{ij} S_{jk} S_{ki} \right]^2
data
$$

$$
\bar{\phi}^{(3)}_S = \frac{\psi_3}{4} \left[\lambda_1^2 \bar{S}_{ij} \bar{S}_{ji} \bar{S}_{mm} \bar{S}_{nm} + \lambda_2^2 a^{(4)}_{ijkl} a^{(4)}_{mnop} \bar{S}_{ij} \bar{S}_{kl} \bar{S}_{mn} \bar{S}_{op} + \lambda_3^2 a^{(2)}_{ij} a^{(2)}_{mn} \bar{S}_{jk} \bar{S}_{ki} \bar{S}_{no} \bar{S}_{om} + 2\lambda_1 \lambda_2 a^{(4)}_{ijkl} a^{(4)}_{mnop} \bar{S}_{ij} \bar{S}_{kl} \bar{S}_{mn} \bar{S}_{op} + 2\lambda_1 \lambda_3 a^{(4)}_{ij} a^{(2)}_{mn} \bar{S}_{jk} \bar{S}_{ki} \bar{S}_{no} \bar{S}_{om} \right]
$$

(E.9)
Ici ψ_3 n’a plus la signification d’une fluidité sur le plan de base d’un monocristal non linéaire puisque l’équation (E.9) n’a pas été obtenue par homogénéisation. Il n’existe donc sans doute pas de comportement de monocristal qui conduirait à ce comportement macroscopique par homogénéisation. Mais il a toujours la signification de la fluidité en cisaillement parallèlement aux plans de base d’un polycristal à un maximum.

Dans ce cas, le ratio B_3/ψ_3 est le carré du ratio B_1/ψ_1 (4.20)

$$\frac{B_3}{\psi_3} = \left(\frac{B_1}{\psi_1} \right)^2 = 4\left(\lambda_1 + \frac{2}{15} \lambda_2 + \frac{1}{3} \lambda_3\right)^2$$ \hspace{1cm} (E.10)

E.3 Comportement non linéaire homogénéisé avec le modèle Statique

Comme le modèle Statique satisfait la condition de non-corrélation (4.27), l’homogénéisation peut se faire directement sur le potentiel de dissipation.

A partir du développement du potentiel pour un grain non-linéaire obtenu par extension du cas linéaire (2.16), exprimé comme

$$\phi^{(3)}_S = \frac{\psi_3}{4} \left[\lambda_1 S_{ij} S_{ji} + \lambda_2 c_i c_j S_{ij} c_k c_l S_{kl} + \lambda_3 c_i c_j S_{jk} S_{ki} \right]^2$$ \hspace{1cm} (E.11)

le modèle Statique conduit, pour $n = 3$, à

$$\bar{\phi}^{(3)}_S = < \phi^{(3)}_S >$$

$$\bar{\phi}^{(3)}_S = \frac{\psi_3}{4} \left[\lambda_1^2 S_{ij} S_{ji} \bar{S}_{mn} \bar{S}_{nm} + \lambda_2^2 a_{ijklmnop} \bar{S}_{ij} \bar{S}_{kl} \bar{S}_{mn} \bar{S}_{op} + \lambda_3^2 a_{ijklmnop} \bar{S}_{jk} \bar{S}_{ki} \bar{S}_{no} \bar{S}_{om}
+ 2 \lambda_1 \lambda_2 a_{ijklmnop} \bar{S}_{ij} \bar{S}_{kl} \bar{S}_{mn} \bar{S}_{op} + 2 \lambda_1 \lambda_3 a_{ijklmnop} \bar{S}_{jk} \bar{S}_{ki} \bar{S}_{no} \bar{S}_{om}
+ 2 \lambda_2 \lambda_3 a_{ijklmnop} \bar{S}_{ij} \bar{S}_{kl} \bar{S}_{no} \bar{S}_{om} \right]$$ \hspace{1cm} (E.12)

D’après Gagliardini (1999), le comportement ainsi homogénéisé avec un polycristal orthotrope dépend de quinze coefficients indépendants. Pour avoir la même démarche que dans le cas linéaire, il faudrait identifier ces quinze coefficients et montrer que la loi de comportement peut se mettre sous la même forme dans le cas du modèle de Taylor et du modèle auto-cohérent.

Dans le cas isotope, à partir des expressions des tenseurs d’orientations (3.32), et en remarquant d’après le théorème de Cayley-Hamilton que $\text{tr}(S^4) = \text{tr}(S^2)^2/2$, (E.12) peut être écrit comme

$$\bar{\phi}^{(3)}_S = \frac{\psi_3}{4} \left[\lambda_1^2 + \frac{4}{105} \lambda_2^2 + \frac{2}{15} \lambda_3^2 + \frac{4}{15} \lambda_1 \lambda_2 + \frac{2}{3} \lambda_1 \lambda_3 + \frac{12}{105} \lambda_2 \lambda_3 \right] \text{tr}(S^2)^2$$ \hspace{1cm} (E.13)

et le rapport B_3/ψ_3 est alors obtenu comme

$$\frac{B_3}{\psi_3} = \frac{(16\gamma^2 - 16\gamma + 23)\beta^2 + (16\gamma^2 - 16\gamma - 4)\beta + 8(4\gamma - 1)^2}{35(4\gamma - 1)^2}$$ \hspace{1cm} (E.14)
On remarque que les potentiels (E.12) et (E.9) ont la même forme à part un $a^{(8)}$ qui se transforme en $a^{(4)} \otimes a^{(4)}$, $a^{(4)}$ qui se transforme en $a^{(2)} \otimes a^{(2)}$ et un $a^{(6)}$ qui se transforme en $a^{(4)} \otimes a^{(2)}$. On peut noter que ces "fermetures" sont exactes seulement pour un polycristal à un seul maximum, i.e., un grain, et on retrouve le comportement du monocristal non linéaire.

Sur la Figure E.1, nous comparons la valeur des rapports ψ_3/B_3 (Equations (E.14) et (E.10)). La dépendance de ce rapport aux paramètres β et γ est similaire dans les deux cas. Par contre, avec l'extension non-linéaire du comportement, ce rapport est plus élevé que celui obtenu en faisant l'homogénéisation à partir du potentiel non-linéaire pour le grain. Plus le grain est anisotrope et plus cette différence est importante. Ce rapport tend vers $35/8 = 4.375$ quand β tend vers 0 avec le comportement homogénéisé et il tend vers $25/4 = 6.25$ avec l'extension non-linéaire (E.9) dans l'hypothèse du modèle Statique.

Fig. E.1: Isovales du ratio ψ_3/B_3 avec le modèle Statique. En traits continus le calcul homogénéisé (E.14), en tirets extension non linéaire à partir de la loi linéaire (E.10).
Annexe F

Calculs de l’évolution de la fabrique

Dans cette annexe, nous donnons quelques définitions mathématiques. Nous vérifions ensuite que l’ODF (5.8) est bien solution de l’équation de l’évolution de l’ODF (5.6) pour le modèle de Taylor et enfin nous vérifions que les équations (5.15) et (5.16) sont bien identiques.

F.1 Définitions mathématiques

On définit le symbole $\frac{\partial \nu}{\partial c}$ sur la surface de la sphère unité comme

$$\frac{\partial \nu}{\partial c} = \nu_\theta \frac{\partial \nu}{\partial \theta} + \frac{1}{\sin \theta} \nu_\varphi \frac{\partial \nu}{\partial \varphi},$$ \hspace{1cm} (F.1)$$

où ν est un vecteur quelconque, ν_θ et ν_φ sont les deux vecteurs de base du repère $\{\nu R\}$ (2.1) et \circ est un opérateur : produit scalaire \circ ou produit tensoriel \otimes.

Le vecteur unité c dirigé selon l’axe-c du grain est le vecteur de base e_3 de $\{\nu R\}$. D’après (2.1)

$$\frac{\partial c}{\partial \theta} = e_\theta \quad \text{et} \quad \frac{1}{\sin \theta} \frac{\partial c}{\partial \varphi} = e_\varphi,$$ \hspace{1cm} (F.2)$$

d’où

$$\frac{\partial^\square c}{\partial c} = 2 \quad \text{et} \quad \frac{\partial^\otimes c}{\partial c} = I - c \otimes c.$$ \hspace{1cm} (F.4)$$

Le théorème de Green-Ostrogradsky à la surface de la sphère unité donne (Gödert, 2003)

$$\oint_{S/2} \frac{\partial \Phi}{\partial c} dc = d \oint_{S/2} c \circ \Phi dc,$$ \hspace{1cm} (F.5)$$

où d vaut 2 si la fabrique est 3D, 1 si les axes c sont coplanaires et Φ est une variable scalaire ou tensorielle.
F.2 ODF analytique pour le modèle de Taylor

Nous vérifions ici que l’ODF analytique pour le modèle de Taylor (5.8)

\[f(c) = \frac{1}{(c^T \mathbf{F} \mathbf{F}^T c)^{3/2}} \tag{F.6} \]

est bien solution de l’équation d’évolution de l’ODF (5.6).
A partir de (F.6) on montre que

\[\frac{\partial f}{\partial t} = -3 \left(c^T \mathbf{F} \mathbf{F}^T c \right)^{-5/2} \left(c^T \mathbf{F} \mathbf{L} \mathbf{F}^T c + c^T \mathbf{F} \mathbf{F} \mathbf{L}^T \mathbf{c} \right) \]
\[= -3 \left(c^T \mathbf{F} \mathbf{F}^T c \right)^{-5/2} \left(c^T \mathbf{L} \mathbf{L}^T c + c^T \mathbf{F} \mathbf{F} \mathbf{L}^T \mathbf{c} \right) \tag{F.7} \]

D’autre part l’équation d’évolution de l’ODF s’écrit

\[\frac{\partial f}{\partial t} = -\partial \frac{f(c)}{c} \frac{\partial f}{\partial c} = -c \frac{\partial f}{\partial c} - f \frac{\partial c}{\partial c} \tag{F.8} \]

En utilisant le fait que

\[\mathbf{I} = c \otimes c + e_\theta \otimes e_\theta + e_\varphi \otimes e_\varphi \tag{F.9} \]

alors la rotation des grains pour le modèle de Taylor avec \(\lambda = 1 \) (5.1) peut se réécrire

\[\dot{c} = \mathbf{I} \dot{c} = \mathbf{I} \left(-\mathbf{L}^T c + (c^T \mathbf{L}^T c) c \right) \]
\[= - (e_\theta^T \mathbf{L}^T c) e_\theta - (e_\varphi^T \mathbf{L}^T c) e_\varphi \tag{F.10} \]

D’après (F.1) et (F.10) alors

\[\dot{c} \frac{\partial f}{\partial c} = \left[- (e_\theta^T \mathbf{L}^T c) e_\theta - (e_\varphi^T \mathbf{L}^T c) e_\varphi \right] \left(\frac{\partial f}{\partial \theta} e_\theta + \frac{1}{\sin \theta} \frac{\partial f}{\partial \varphi} e_\varphi \right) \]
\[= - (e_\theta^T \mathbf{L}^T c) \frac{\partial f}{\partial \theta} - (e_\varphi^T \mathbf{L}^T c) \frac{1}{\sin \theta} \frac{\partial f}{\partial \varphi} \tag{F.11} \]

En utilisant les relations générales

\[\frac{\partial c}{\partial \theta} = e_\theta \ , \ \frac{\partial e_\theta}{\partial \theta} = -c \ , \ \frac{\partial e_\varphi}{\partial \theta} = 0 \ , \]
\[\frac{\partial c}{\partial \varphi} = e_\varphi \sin \theta \ , \ \frac{\partial e_\theta}{\partial \varphi} = e_\varphi \cos \theta \ , \ \frac{\partial e_\varphi}{\partial \varphi} = -c \sin \theta - e_\theta \cos \theta \tag{F.12} \]

on trouve en utilisant (F.6)

\[\frac{\partial f}{\partial \theta} = - \frac{3}{2} \left(c^T \mathbf{F} \mathbf{F}^T c \right)^{-5/2} \left(\frac{\partial c^T}{\partial \theta} \mathbf{F} \mathbf{F}^T c + c^T \mathbf{F} \mathbf{F} \mathbf{F}^T \frac{\partial c}{\partial \theta} \right) \]
\[= -3 \left(c^T \mathbf{F} \mathbf{F}^T c \right)^{-5/2} \left(c^T \mathbf{F} \mathbf{F}^T c \right) \tag{F.13} \]
et

\[\frac{1}{\sin \theta} \frac{\partial f}{\partial \theta} = -\frac{1}{\sin \theta} \frac{3}{2} \left(c^T \tilde{F} \tilde{F}^T . c \right)^{-5/2} \left(\frac{\partial c^T}{\partial \varphi} \tilde{F} \tilde{F}^T . c + c \tilde{F} \tilde{F}^T . \frac{\partial c}{\partial \varphi} \right) . \]

(F.14)

\[= -3 \left(c^T \tilde{F} \tilde{F}^T . c \right)^{-5/2} \left(c^T \tilde{F} \tilde{F}^T . e_\varphi \right) . \]

Pour le terme

\[\frac{\partial \dot{c}}{\partial c} = e_\theta \frac{\partial \dot{c}}{\partial \theta} + \frac{1}{\sin \theta} e_\varphi \frac{\partial \dot{c}}{\partial \varphi} , \]

(F.15)

on trouve

\[e_\theta \frac{\partial \dot{c}}{\partial \theta} = -e_\theta ^T \tilde{L}^T . e_\theta + c^T \tilde{L}^T . c , \]

(F.16)

e et

\[\frac{1}{\sin \theta} e_\varphi \frac{\partial \dot{c}}{\partial \theta} = -e_\varphi ^T \tilde{L}^T . e_\varphi + c^T \tilde{L}^T . c . \]

(F.17)

En réutilisant (F.9) et en remarquant que \(I : \tilde{L} = \text{tr}(\tilde{L}) = 0 \), alors

\[\frac{\partial \dot{c}}{\partial c} = 3c^T \tilde{L}^T . c , \]

(F.18)

Finalement

\[- \frac{\partial (\dot{f} \dot{c})}{\partial c} = -3 \left(c^T \tilde{F} \tilde{F}^T . c \right)^{-5/2} \left[(c^T \tilde{F} \tilde{F}^T . c)(e_\theta ^T \tilde{L}^T . c) + (c^T \tilde{F} \tilde{F}^T . e_\varphi)(e_\theta ^T \tilde{L}^T . c) \right] \]

\[+ (c^T \tilde{F} \tilde{F}^T . e_\varphi)(e_\theta ^T \tilde{L}^T . c) \]

\[= -3 \left(c^T \tilde{F} \tilde{F}^T . c \right)^{-5/2} \left(c^T \tilde{F} \tilde{F}^T . \tilde{L}^T . c \right) \]

(F.19)

et par l’égalité de (F.7) et (F.19), nous vérifions que l’ODF analytique pour le modèle de Taylor (5.8) est bien solution de l’équation d’évolution de l’ODF (5.6).

F.3 Vérification de l’équivalence de (5.15) et (5.16)

En remplaçant \(\dot{f} \) par son expression (5.6) dans (5.16), on obtient

\[\ddot{a}_{ij} = \int_{S/2} \frac{\partial (\dot{f} \dot{c})}{\partial c} c_i c_j \, dc \]

\[= - \int_{S/2} \frac{\partial (\dot{f} \dot{c})}{\partial c} \, dc + \int_{S/2} \dot{f} \dot{c}_k (c_i \frac{\partial c_j}{\partial c_k} + \frac{\partial c_i}{\partial c_k} c_j) \, dc \]

(F.20)

D’après (F.5), et en remarquant que par construction \(\dot{c}_k c_k = 0 \), la première intégrale du membre de droite est nulle

\[\int_{S/2} \frac{\partial (\dot{f} \dot{c})}{\partial c} \, dc = d \int_{S/2} f \dot{c}_k c_i c_j \, dc = 0 . \]

(F.21)
D’après (F.4b), la deuxième intégrale du second membre donne
\[
\int_{S/2} f \dot{c}_k (c_i \frac{\partial c_j}{\partial c_k} + \frac{\partial c_i}{\partial c_k} c_j) \, dc = \int_{S/2} f \dot{c}_k (c_i (\delta_{jk} - c_j c_k) + (\delta_{ik} - c_i c_k)c_j) \, dc
\]
\[
= \int_{S/2} f c_i \dot{c}_j \, dc + \int_{S/2} f \dot{c}_i c_j \, dc \quad \text{(F.22)}
\]

Les équations (5.15) et (5.16) sont donc équivalentes.
Annexe G

Expression des coefficients pour l’équation d’évolution de $a^{(2)}$ (6.12)

Le tenseur $a^{(4)}$ est calculé en fonction de $a^{(2)}$ à partir de la fonction de fermeture IBOF. Seulement neuf composantes de $a^{(4)}$ sont indépendantes. Si on choisit a_{1111}, a_{2222}, $a_{1122}, a_{1123}, a_{2231}, a_{1112}, a_{2223}$ et a_{2212}, alors les autres composantes sont données par

$$a_{i j k l} = a_{i j} - a_{i j l} - a_{i j m n} \quad (i, j, k, l, m = 1, 2, 3; \ k \neq l \neq m).$$

(G.1)

Les termes κ_i dans l’équation (6.12) sont donnés par

$$\kappa_1 = 2(\bar{C}_{11} - \bar{C}_{33}) , \quad \kappa_2 = 2(\bar{C}_{22} - \bar{C}_{33}) , \quad \kappa_3 = \bar{C}_{33} , \quad \kappa_4 = \bar{C}_{22} - \bar{C}_{33} , \quad \kappa_5 = \bar{C}_{11} - \bar{C}_{33} ,$$

(G.2)

où les $\bar{C}_{i j}$ sont donnés par (5.5), et les composantes de f sont données par

$$f_1 = 2(\bar{W}_{12}a_{12} - \bar{W}_{31}a_{31}) +
2(\bar{C}_{12}(2a_{1112} - a_{12}) + \bar{C}_{31}(2a_{1113} - a_{31})) +
a_{1111}\bar{C}_{11} + a_{1112}\bar{C}_{22} - (a_{1111} + a_{1112})\bar{C}_{33} + 2a_{1112}\bar{C}_{23} ,$$

$$f_2 = 2(-\bar{W}_{12}a_{12} - \bar{W}_{23}a_{23}) +
2(\bar{C}_{12}(2a_{2212} - a_{12}) + \bar{C}_{23}(2a_{2223} - a_{23})) +
a_{2211}\bar{C}_{11} + a_{2222}\bar{C}_{22} - (a_{2211} + a_{2222})\bar{C}_{33} + 2a_{2231}\bar{C}_{31} ,$$

$$f_3 = \bar{W}_{12}(a_{32} - a_{11}) - \bar{W}_{31}a_{23} + \bar{W}_{23}a_{31} +
\bar{C}_{12}(4a_{1122} - (a_{11} + a_{22})) + \bar{C}_{13}(4a_{1213} - a_{23}) + \bar{C}_{23}(4a_{1223} - a_{13}) +
2(a_{1211}\bar{C}_{11} + a_{1222}\bar{C}_{22} - (a_{1211} + a_{1222})\bar{C}_{33} ,$$

$$f_4 = \bar{W}_{23}(a_{33} - a_{22}) + \bar{W}_{31}a_{12} - \bar{W}_{12}a_{31} +
\bar{C}_{12}(4a_{1223} - a_{31}) + \bar{C}_{23}(3a_{22} - a_{33} - 4(a_{2222} + a_{1122})) + \bar{C}_{31}(3a_{12} - 4(a_{1211} + a_{1222})) +
2(a_{2311}\bar{C}_{11} + a_{2322}\bar{C}_{22} - (a_{2311} + a_{2322})\bar{C}_{33} ,$$

$$f_5 = \bar{W}_{31}(a_{11} - a_{33}) + \bar{W}_{12}a_{23} - \bar{W}_{23}a_{12} +
\bar{C}_{12}(4a_{1312} - a_{23}) + \bar{C}_{31}(3a_{11} - a_{33} - 4(a_{1111} + a_{1122})) + \bar{C}_{23}(4a_{1323} + a_{12}) +
2(a_{1311}\bar{C}_{11} + a_{1322}\bar{C}_{22} - (a_{1311} + a_{1322})\bar{C}_{33} .$$

(G.3)
Bibliographie

