F. Annexe, Méthodes expérimentales Dans cette annexe, les différentes techniques expérimentales qui ontétéontété utilisées dans cette thèse sont présentées Nous aborderons la caractérisation structurale deséchantillonsdeséchantillons avant et après traitements thermiques (DSC, diffraction des rayons X, microscopié electronique) puis, dans undeuxì eme temps, les essais mécaniques utilisés pour caractériser le comportement mécanique (essais de compressionàcompressionà froid etàetà chaud, mesures de frottement intérieur et essais de nanoindentation)

. La-calorimétrie-différentiellè-a-balayage, référence inerte (dans notre cas il s'agissait d'un porté echantillon vide) et unéchantillonàunéchantillonunéchantillonà caractériser qui subit des transformations avec une signature thermique (réactions exo-ou endothermiques) Une DSC est donc constituée de deux fours placés l'unàunà côté de l'autre dans un environnement identique. On impose alors la même consigne aux deux fours (vitesse de montée en température ou isotherme) et la différence de puissancè a apporter entre les deux enceintes est duè a la présence de l'´ echantillon

. La-microscopié-electronique, ´ etat amorphe et surtout partiellement cristallisé après traitements thermiques Cette technique de caractérisation permet d'avoir accèsaccèsà la forme des cristaux, ` a leur taille et donne une idée de l'homogénéité de la cristallisation. En outre, elle est beaucoup plus sensible

L. Fonctionnement and D. Met-est-le-suivant, ´ electrons et laccéì ere pour l'envoyer sur l'´ echantillon (voir schéma F.2) La lame observée fait environ 100nm d'´ epaisseur et le faisceaú electronique la traverse, soit en ligne droite (faisceau transmis), soit dévié d'un certain angle (faisceau diffracté) On observe alors sur l'´ ecran une tache centrale avec un cercle autour : le cliché de diffraction. Si l'on décide d'observer le faisceau central (observation en champ clair), on observe alors des zones sombres correspondant aux objets qui ont déviés le faisceau (les cristaux dans notre cas) Si on sélectionne une partie du faisceau diffracté (observation en champ sombre, onéclaireonéclaire une partie des cristaux qui ont diffractés. Il est important de noter qu'une observation en champ clair fait appara??treappara??tre tous les cristaux mais avec un contraste souvent insuffisant et, 2003.

. Au-contraire, le champ sombre montre une partie des cristaux avec un très bon contraste. Il est cependant difficile de déterminer la fraction de cristaux en fonction du nombre de points lumineux observés

. Afin-de-repérer-la, essai est effectué une dizaine de fois. La fréquence affichée le plus souvent est sélectionnée puis rentrée dans le logiciel Emod qui calcule directement le module d'Young (la masse et les dimensions de l'´ echantillon ontétéontété préalablement indiquées) Le coefficient de Poisson a ´ eté priségaìpriségaì a 0, 2003.

. Bibliographie, Abaqus 6.5 analysis user's manual, 2004.

K. S. Argon, H. Y. Argon, and . Kuo, Free energy spectra for inelastic deformation of five metallic glass alloys, Journal of Non-Crystalline Solids, vol.37, issue.2, pp.241-266, 1980.
DOI : 10.1016/0022-3093(80)90155-6

S. S. Argon, M. Argon, and . Salma, The mechanism of fracture in glassy materials capable of some inelastic deformation, Materials Science and Engineering, vol.23, issue.2-3, pp.219-230, 1976.
DOI : 10.1016/0025-5416(76)90198-1

S. Argon, L. Argon, and . Shi, Analysis of plastic flow in an amorphous soap bubble raft by the use of an inter-bubble potential, Philosophical Magazine A, vol.77, issue.2, pp.275-294, 1982.
DOI : 10.1080/01418618208239919

S. S. Argon, L. T. Argon, and . Shi, Development of visco-plastic deformation in metallic glasses, Acta Metallurgica, vol.31, issue.4, 1983.
DOI : 10.1016/0001-6160(83)90038-X

]. A. Argon, Plastic deformation in metallic glasses, Acta Metallurgica, vol.27, issue.1, pp.47-58, 1979.
DOI : 10.1016/0001-6160(79)90055-5

D. G. Bagley, F. J. Bagley, and . Disalvo, Amorphous Magnetism, 1973.

. Barbe, Microstructure and viscosity of semi-solid mixtures, Journal of Physics: Condensed Matter, vol.12, issue.12, 2000.
DOI : 10.1088/0953-8984/12/12/301

. Basu, Microstructure and mechanical properties of a partially crystallized La-based bulk metallic glass, Philosophical Magazine, vol.43, issue.15, pp.1747-1760, 2003.
DOI : 10.1080/01418619908210349

. Bian, Microstructure and mechanical properties of as-cast Zr52.5Cu17.9Ni14.6 Al10Ti5 bulky glass alloy, Scripta Materialia, vol.43, issue.11, pp.1003-1008, 2000.
DOI : 10.1016/S1359-6462(00)00524-8

. Bian, Microstructure and ductile???brittle transition of as-cast Zr-based bulk glass alloys under compressive testing, Materials Science and Engineering: A, vol.316, issue.1-2, pp.135-144, 2001.
DOI : 10.1016/S0921-5093(01)01260-6

. Biswas, Crystallization kinetics of amorphous Fe67Co9.5Nd3Dy0.5B20, Journal of Alloys and Compounds, vol.397, issue.1-2, pp.104-109, 2005.
DOI : 10.1016/j.jallcom.2005.01.023

. Bletry, Homogeneous deformation of Zr???Ti???Al???Cu???Ni bulk metallic glasses, Intermetallics, vol.12, issue.10-11, pp.1051-1055, 2004.
DOI : 10.1016/j.intermet.2004.04.019

. Busch, Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr 41.2 T i 13, Journal of Applied Physics, issue.8, pp.774039-4043, 1995.

. Busch, melts, Applied Physics Letters, vol.67, issue.11, p.1544, 1995.
DOI : 10.1063/1.114487

. Busch, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy, Acta Materialia, vol.46, issue.13, pp.4725-4732, 1998.
DOI : 10.1016/S1359-6454(98)00122-0

]. E. Bibliographie and . Chabert, Propriétés mécaniques de nanocompositesànanocompositesà matrice polymère : approche expérimentale et modélisation, 2002.

]. L. Charleux, Micromécanique de l'essai d'indentation : Experiences et simulations, 2006.

]. H. Chen, Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metallurgica, vol.22, issue.12, p.1505, 1974.
DOI : 10.1016/0001-6160(74)90112-6

T. M. Cohen, D. Cohen, and . Turnbull, Molecular Transport in Liquids and Glasses, The Journal of Chemical Physics, vol.31, issue.5, pp.1164-1169, 1959.
DOI : 10.1063/1.1730566

. Daniel, Thermal relaxation and high temperature creep of Zr-Cu-Al-Ni bulk metallic glass, Mechanics of Time-Dependent Materials, vol.6, issue.2, pp.193-206, 2002.
DOI : 10.1023/A:1015045324786

. De-biasi, Crystallization of the metallic glass metglas 2605s-3a: comparative study between ferromagnetic resonance and electrical resistivity measurements, Materials Research Bulletin, vol.34, issue.12-13, pp.341845-1849, 1999.
DOI : 10.1016/S0025-5408(99)00213-5

. De-hey, Creation of free volume in amorphous Pd-Ni-P during high temperature deformation, Materials Science and Engineering, pp.226-228336, 1997.

. De-hey, Structural disordering in amorphous Pd40Ni40P20 induced by high temperature deformation, Acta Materialia, vol.46, issue.16, pp.5873-5882, 1998.
DOI : 10.1016/S1359-6454(98)00234-1

. De-kruif, Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction, The Journal of Chemical Physics, vol.83, issue.9, p.4717, 1985.
DOI : 10.1063/1.448997

A. Deng, A. Deng, and . Argon, Analysis of the effect of aging on distributed relaxations, hardness, and embrittlement in Cu 59 Zr 41 and F e 80 B 20 glasses, Acta-Metallurgica, issue.10, p.342025, 1986.

. Deng, Creep and structural relaxation in Pd40Ni40P20 glass, Acta Metallurgica et Materialia, vol.41, issue.4, pp.1089-1107, 1993.
DOI : 10.1016/0956-7151(93)90158-O

. Donovan, A yield criterion for Pd40Ni40P20 metallic glass, Acta Metallurgica, vol.37, issue.2, pp.445-456, 1989.
DOI : 10.1016/0001-6160(89)90228-9

. Duine, Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data, Acta Metallurgica et Materialia, vol.40, issue.4, pp.743-751, 1992.
DOI : 10.1016/0956-7151(92)90016-8

. Eckert, Bulk nanostructured Zr-based multiphase alloys with high strength and good ductility, Scripta Materialia, vol.44, issue.8-9, pp.1587-1590, 2001.
DOI : 10.1016/S1359-6462(01)00779-5

. Ehmler, Isotope effect of diffusion in the supercooled liquid state of bulk metallic glasses, Journal of Non-Crystalline Solids, vol.250, issue.252, pp.250-252684, 1999.
DOI : 10.1016/S0022-3093(99)00160-X

. Fan, Nanocrystalline composites with high strength obtained in Zr???Ti???Ni???Cu???Al bulk amorphous alloys, Applied Physics Letters, vol.75, issue.3, pp.75340-342, 1999.
DOI : 10.1063/1.124254

. Fan, Nanocrystal composites in Zr???Nb???Cu???Al metallic glasses, Journal of Non-Crystalline Solids, vol.270, issue.1-3, pp.28-33, 2000.
DOI : 10.1016/S0022-3093(00)00078-8

. Fan, Metallic glass matrix composite with precipitated ductile reinforcement, Applied Physics Letters, vol.81, issue.6, pp.1020-1022, 2002.
DOI : 10.1063/1.1498864

. Faupel, Diffusion in metallic glasses and supercooled melts. Review of Modern Physics, pp.237-280, 2003.

. Fielitz, Diffusion in Zr Ti Cu Ni Be bulk glasses at temperatures around the glass transition, Journal of Non-Crystalline Solids, pp.250-252674, 1999.

]. K. Flores, Structural changes and stress state effects during inhomogeneous flow of metallic glasses, Scripta Materialia, vol.54, issue.3, pp.327-332, 2006.
DOI : 10.1016/j.scriptamat.2005.04.049

. Gangopadhyay, The effect of phase separation on subsequent crystallization in Al88Gd6La2Ni4, Acta Materialia, vol.48, issue.16, pp.4035-4043, 2000.
DOI : 10.1016/S1359-6454(00)00196-8

. Gao, Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region, Materials Letters, vol.57, issue.13-14, pp.1894-1898, 2003.
DOI : 10.1016/S0167-577X(02)01096-0

. Geyer, Small Atom Diffusion and Breakdown on Stokes-Einstein Relation in the Supercooled Liquid State of Zr-Ti-Cu-Ni-Be Alloys, MRS Proceedings, vol.34, pp.2492-2494, 1996.
DOI : 10.1103/PhysRevLett.75.2364

. Gilbert, Light emission during fracture of a Zr???Ti???Ni???Cu???Be bulk metallic glass, Applied Physics Letters, vol.74, issue.25, pp.743809-3811, 1999.
DOI : 10.1063/1.124187

]. L. Greer, Through a glass, lightly, Nature, vol.402, issue.6758, pp.132-133, 1999.
DOI : 10.1038/45946

. Harms, Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20, Journal of Non-Crystalline Solids, vol.317, issue.1-2, pp.200-205, 2003.
DOI : 10.1016/S0022-3093(02)02010-0

. He, Structures and properties of a Zr-based bulk glass alloy after annealing, Materials Science and Engineering: A, vol.270, issue.2, pp.291-298, 1999.
DOI : 10.1016/S0921-5093(99)00203-8

. Heggen, Creation and annihilation of free volume during homogeneous flow of a metallic glass, Journal of Applied Physics, vol.97, issue.3, p.33506, 2005.
DOI : 10.1063/1.1827344

. Hoell, Composition fluctuations in the demixed supercooled liquid state of Zr41Ti14Cu12.5Ni10Be22.5: a combined ASAXS and SANS study, Scripta Materialia, vol.44, issue.8-9, pp.2335-2339, 2001.
DOI : 10.1016/S1359-6462(01)00770-9

. Hufnagel, Controlling shear band behavior in metallic glasses through microstructural design, Intermetallics, vol.10, issue.11-12, pp.1163-1166, 2002.
DOI : 10.1016/S0966-9795(02)00157-7

A. Fe and . Co, Ni or Cu) alloys, Materials Science and Engineering A, pp.226-228393, 1997.

. Inoue, New Amorphous Mg-Ce-Ni Alloys with High Strength and Good Ductility, Japanese Journal of Applied Physics, vol.27, issue.Part 2, No. 12, pp.2248-2251, 1988.
DOI : 10.1143/JJAP.27.L2248

. Inoue, Zr–Al–Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region, Materials Transactions, JIM, vol.31, issue.3, p.31177, 1990.
DOI : 10.2320/matertrans1989.31.177

. Inoue, Preparation and Thermal Stability of Bulk Amorphous Pd<SUB>40</SUB>Cu<SUB>30</SUB>Ni<SUB>10</SUB>P<SUB>20</SUB> Alloy Cylinder of 72 mm in Diameter, Materials Transactions, JIM, vol.38, issue.2, p.179, 1997.
DOI : 10.2320/matertrans1989.38.179

. Inoue, New Fe&ndash;Co&ndash;Ni&ndash;Zr&ndash;B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties, Materials Transactions, JIM, vol.38, issue.4, p.359, 1997.
DOI : 10.2320/matertrans1989.38.359

]. A. Inoue, Mechanical properties of Zr-based bulk glassy alloys containing nanoscale compound particles, Intermetallics, vol.8, issue.5-6, pp.455-468, 2000.
DOI : 10.1016/S0966-9795(99)00150-8

]. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, vol.48, issue.1, pp.279-306, 2000.
DOI : 10.1016/S1359-6454(99)00300-6

. Johnson, Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids???a self consistent dynamic free volume model, Intermetallics, vol.10, issue.11-12, pp.1039-1046, 2002.
DOI : 10.1016/S0966-9795(02)00160-7

]. K. Johnson, Contact Mechanics, 1985.

. Bibliographie and . Kanungo, Characterization of free volume changes associated with shear band formation in Zr-and Cu-based bulk metallic glasses, Intermetallics, vol.12, pp.1073-1080, 2004.

. Kawamura, Stress Overshoot in Stress-Strain Curves of Zr<SUB>65</SUB>Al<SUB>10</SUB>Ni<SUB>10</SUB>Cu<SUB>15</SUB> Metallic Glass, Materials Transactions, JIM, vol.40, issue.4, pp.335-342, 1999.
DOI : 10.2320/matertrans1989.40.335

. Kawamura, Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses, Materials Science and Engineering: A, vol.304, issue.306, pp.306674-678, 2001.
DOI : 10.1016/S0921-5093(00)01562-8

S. F. Kelton, F. Kelton, and . Spaepen, A study of the devitrification of P d 80 Si 18 over a wide temperature range, pp.455-464, 1985.

. Khonik, The role of structural relaxation in the plastic flow of metallic glasses, Journal of Applied Physics, vol.83, issue.11, 1998.
DOI : 10.1063/1.367428

. Kim, Nanocrystallisation during nanoindentation of a bulk amorphous metal alloy at room temperature, Science, vol.295, pp.654-657, 2002.

. Kim, Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region, Scripta Materialia, vol.49, issue.11, pp.1067-1073, 2003.
DOI : 10.1016/j.scriptamat.2003.08.014

]. H. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, vol.29, issue.11, pp.1702-1706, 1957.
DOI : 10.1021/ac60131a045

. Klement, Non-crystalline Structure in Solidified Gold???Silicon Alloys, Nature, vol.31, issue.4740, p.869, 1960.
DOI : 10.1107/S0365110X55001321

. Koebrugge, Structural relaxation in amorphous Pd40Ni40P20, Acta Metallurgica et Materialia, vol.40, issue.4, pp.753-760, 1992.
DOI : 10.1016/0956-7151(92)90017-9

. Kristiakova, ]. K. Svec, P. Kristiakova, and . Svec, Higher order analysis of the distribution of crystallization processes in metallic glasses, Materials Science and Engineering: A, vol.304, issue.306, pp.304-306343, 2001.
DOI : 10.1016/S0921-5093(00)01526-4

. Lee, High temperature deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass, Journal of Non-Crystalline Solids, vol.317, issue.1-2, pp.193-199, 2003.
DOI : 10.1016/S0022-3093(02)01998-1

G. J. Lewandowski, A. L. Lewandowski, and . Greer, Temperature rise at shear bands in metallic glasses, Nature Materials, vol.85, issue.1, pp.15-18, 2006.
DOI : 10.1016/S1359-6454(03)00229-5

. Lewandowski, Intrinsic plasticity or brittleness of metallic glasses, Philosophical Magazine Letters, vol.754, issue.2, pp.77-87, 2005.
DOI : 10.1557/JMR.2002.0206

. Liu, Crystallization and Phase Separation of Amorphous Cu12.5Ni10Zr41Ti14Be22.5 around the Crystallization Point as Investigated by SANS, physica status solidi (b), vol.199, issue.2, p.379, 1997.
DOI : 10.1002/1521-3951(199702)199:2<379::AID-PSSB379>3.0.CO;2-A

J. F. Loffler, W. L. Loffler, and . Johnson, Model for decomposition and nanocrystallization of deeply undercooled Zr 41.2 T i 13, Applied Physics Letters, issue.23, p.76, 2000.

. Lowhaphandu, Effects of superimposed hydrostatic pressure on flow and fracture of a Zr-Ti-Ni-Cu-Be bulk amorphous alloy, Scripta Materialia, vol.41, issue.1, pp.19-24, 1999.
DOI : 10.1016/S1359-6462(99)00128-1

R. Lu, G. Lu, and . Ravichandran, Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass, Journal of Materials Research, vol.46, issue.09, pp.2039-2049, 2003.
DOI : 10.2320/matertrans.42.642

. Lu, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Materialia, vol.51, issue.12, pp.3429-3443, 2003.
DOI : 10.1016/S1359-6454(03)00164-2

. Lund, ]. A. Schuh, C. A. Lund, and . Schuh, The Mohr???Coulomb criterion from unit shear processes in metallic glass, Intermetallics, vol.12, issue.10-11, pp.1159-1165, 2004.
DOI : 10.1016/j.intermet.2004.07.001

. Lund, ]. A. Schuh, C. A. Lund, and . Schuh, Strength asymmetry in nanocrystalline metals under multiaxial loading, Acta Materialia, vol.53, issue.11, pp.3193-3205, 2005.
DOI : 10.1016/j.actamat.2005.03.023

. Mao, X-ray-diffraction study of structural relaxation in metallic glasses, Physical Review B, vol.51, issue.5, pp.2798-2804, 1995.
DOI : 10.1103/PhysRevB.51.2798

. Martin, Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 metallic glass, Acta Materialia, vol.52, issue.15, pp.4427-4435, 2004.
DOI : 10.1016/j.actamat.2004.05.038

. Martinez-vega-andrivì-ere,-]-j-j, A. Martinez-vega, and . Rivì-ere, Mesure de frottement intérieur

. Moser, Observation of instabilities during plastic deformation by in-situ SEM indentation experinments, Advanced Eng. Mat, vol.7, issue.5, pp.389-392, 2005.

. Nieh, Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region, Acta Materialia, vol.49, issue.15, pp.2887-2896, 2001.
DOI : 10.1016/S1359-6454(01)00218-X

P. C. Oliver, G. M. Oliver, and . Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, vol.522, issue.01, pp.3-20, 2004.
DOI : 10.1557/JMR.1992.0618

. Park, Shear band formation and mechanical properties of cold-rolled bulk metallic glass and metallic glass matrix composite, Journal of Materials Science, vol.25, issue.8, pp.1937-1941, 2005.
DOI : 10.1007/s10853-005-1214-6

. Patnaik, Spherical indentation response of metallic glasses, Acta Materialia, vol.52, issue.11, pp.3335-3345, 2004.
DOI : 10.1016/j.actamat.2004.03.028

J. L. Peker, W. L. Peker, and . Johnson, A highly processable metallic glass, 1993.

. Pelletier, ]. J. De-moortele, B. Pelletier, and . Van-de-moortele, Phase separation and crystallization in the Zr41.2???Ti13.8???Cu12.5???Ni10???Be22.5 bulk metallic glass determined by physical measurements and electron microscopy, Journal of Non-Crystalline Solids, vol.325, issue.1-3, pp.133-141, 2003.
DOI : 10.1016/S0022-3093(03)00322-3

]. J. Pelletier, Dynamic mechanical properties in a Zr46.8Ti13.8Cu12.5Ni10Be27.5 bulk metallic glass, Journal of Alloys and Compounds, vol.393, issue.1-2, pp.223-230, 2005.
DOI : 10.1016/j.jallcom.2004.08.098

T. N. Perera, A. P. Perera, and . Tsai, Thermal and viscoelastic properties of a strong bulk metallic glass former, Journal of Physics D: Applied Physics, vol.33, issue.16, pp.1937-1946, 2000.
DOI : 10.1088/0022-3727/33/16/301

. Perez, Computer simulation of the microstructure and rheology of semi-solid alloys under shear, Acta Materialia, vol.48, issue.14, pp.3773-3782, 2000.
DOI : 10.1016/S1359-6454(00)00161-0

. J. Perez and . Perez, Physique et mécanique des polymères amorphes, Tec et Doc, 1992.

]. Perez, Matériaux non cristallins et science du désordre, Presses Polytechniques et Universitaires Romandes, 2001.

. Puech, High temperature forming of a Mg-Cu-Gd bulk metallic glass : impact of partial crystallization, Journal Alloys and Compounds, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148402

]. D. Quemada, Rheological modelling of complex fluids. I. The concept of effective volume fraction revisited, The European Physical Journal Applied Physics, vol.1, issue.1, pp.119-127, 1998.
DOI : 10.1051/epjap:1998125

]. R. Quinson, Caractérisation et modélisation de la déformation nonélastiquenonélastique des polymères amorphesàamorphesà l'´ etat solide, 1995.

. Bibliographie and . Ramamurty, Embrittlement of a bulk metallic glass due to low-temperature annealing, Scripta Materialia, vol.47, pp.107-111, 2002.

. Ramamurty, Hardness and plastic deformation in a bulk metallic glass, Acta Materialia, vol.53, issue.3, pp.705-717, 2005.
DOI : 10.1016/j.actamat.2004.10.023

. Reger-leonhard, Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys, Scripta Materialia, vol.43, issue.5, pp.459-464, 2000.
DOI : 10.1016/S1359-6462(00)00417-6

]. K. Russew and F. Sommer, Length and density changes of amorphous Pd40Cu30Ni10P20 alloys due to structural relaxation, Journal of Non-Crystalline Solids, vol.319, issue.3, pp.289-296, 2003.
DOI : 10.1016/S0022-3093(03)00006-1

I. Saida, S. Saida, and . Ishihara, Suppression of quasicrystallization by nonlinear viscous flow in Zr???Al???Ni???Cu???Pd glassy alloys, Applied Physics Letters, vol.80, issue.25, p.804708, 2002.
DOI : 10.1063/1.1488689

J. Schneider, W. L. Schneider, and . Johnson, alloy, Applied Physics Letters, vol.68, issue.4, pp.493-495, 1996.
DOI : 10.1063/1.116377

. Schroers, Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid, Physical Review B, vol.60, issue.17, p.6011855, 1999.
DOI : 10.1103/PhysRevB.60.11855

T. G. Schuh and . Nieh, Rate Dependence of Serrated Flow During Nanoindentation of a Bulk Metallic Glass, Journal of Materials Research, vol.44, issue.306, pp.1651-1654, 2002.
DOI : 10.1016/0025-5416(74)90185-2

]. C. Schuh, A. S. Argon, T. G. Nieh, and W. , The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal, Philosophical Magazine, vol.83, issue.22, pp.2585-2597, 2003.
DOI : 10.1080/1478643031000118012

E. Slipenyuk, J. Slipenyuk, and . Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass, Scripta Materialia, vol.50, issue.1, pp.39-44, 2004.
DOI : 10.1016/j.scriptamat.2003.09.038

]. I. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, vol.3, issue.1, pp.47-57, 1965.
DOI : 10.1016/0020-7225(65)90019-4

]. F. Spaepen, On the fracture morphology of metallic glasses, Acta Metallurgica, vol.23, issue.5, pp.615-620, 1975.
DOI : 10.1016/0001-6160(75)90102-9

]. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica, vol.25, issue.4, 1977.
DOI : 10.1016/0001-6160(77)90232-2

]. F. Spaepen, Homogeneous flow of metallic glasses: A free volume perspective, Scripta Materialia, vol.54, issue.3, pp.363-367, 2006.
DOI : 10.1016/j.scriptamat.2005.09.046

. Subhash, Characterization of uniaxial compressive response of bulk amorphous Zr???Ti???Cu???Ni???Be alloy, Materials Science and Engineering: A, vol.334, issue.1-2, pp.33-40, 2002.
DOI : 10.1016/S0921-5093(01)01768-3

D. Suh, R. H. Suh, and . Dauskardt, Effects of open-volume regions on relaxation time scales and fracture behavior of a Zr???Ti???Ni???Cu???Be bulk metallic glass, Journal of Non-Crystalline Solids, vol.317, issue.1-2, pp.181-186, 2003.
DOI : 10.1016/S0022-3093(02)01997-X

F. S. Suiker, N. A. Suiker, and . Fleck, Frictional Collapse of Granular Assemblies, Journal of Applied Mechanics, vol.71, issue.3, pp.350-357, 2004.
DOI : 10.1115/1.1753266

. Tang, Diffusion mechanisms in metallic supercooled liquids and glasses, Nature, vol.402, pp.160-162, 1999.

. Tang, Devitrification of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass studied by XRD, SANS, and NMR, Journal of Non-Crystalline Solids, vol.317, issue.1-2, pp.118-122, 2003.
DOI : 10.1016/S0022-3093(02)01991-9

R. P. Tiwari, R. V. Tiwari, and . Ramanujan, Structural relaxation in metallic glasses, Materials Science and Engineering: A, vol.304, issue.306, pp.304-306499, 2001.
DOI : 10.1016/S0921-5093(00)01503-3

S. Tsao, F. Tsao, and . Spaepen, Structural relaxation of a metallic glass near equilibrium, Acta Metallurgica, vol.33, issue.5, 1985.
DOI : 10.1016/0001-6160(85)90112-9

. Tuinstra, The calorimetric glass transition of amorphous Pd40 Ni40 P20, Acta Metallurgica et Materialia, vol.43, issue.7, pp.2815-2823, 1995.
DOI : 10.1016/0956-7151(94)00450-V

. Vaidyanathan, Study of mechanical deformation in bulk metallic glass through instrumented indentation, Acta Materialia, vol.49, issue.18, pp.3781-3789, 2001.
DOI : 10.1016/S1359-6454(01)00263-4

. Van-aken, Structural relaxation and plastic flow in amorphous La50Al25Ni25, Materials Science and Engineering: A, vol.278, issue.1-2, pp.247-254, 2000.
DOI : 10.1016/S0921-5093(99)00574-2

]. Van-de-moortèle, Etude par spectroscopie mécanique et microscopié electronique de la stabilité thermique de verres métalliques massifs : effets de la décomposition et de la nanocristallisation, 2002.

]. A. Van-den-beukel and J. Sietsma, The glass transition as a free volume related kinetic phenomenon, Acta Metallurgica et Materialia, vol.38, issue.3, pp.383-389, 1990.
DOI : 10.1016/0956-7151(90)90142-4

. Vazquez, Generalization of the Avrami equation for the analysis of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy, Journal of Physics and Chemistry of Solids, vol.61, issue.4, pp.493-500, 2000.
DOI : 10.1016/S0022-3697(99)00260-7

. Wadaa, Enhancement of room-temperature plasticity in a bulk metallic glass by finely dispersed porosity, Applied Physics Letters, vol.86, issue.25, p.86, 2005.
DOI : 10.1063/1.1953884

B. H. Wang, H. Y. Wang, and . Bai, Role of small atoms in the formation and properties of, 1998.

. Wang, Microstructure studies of Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous alloy by electron diffraction intensity analysis, Applied Physics Letters, vol.71, issue.8, p.1053, 1997.
DOI : 10.1063/1.119725

. Wang, Crystallization and nanoindentation behavior of a bulk Zr???Al???Ti???Cu???Ni amorphous alloy, Journal of Materials Research, vol.38, issue.03, p.798, 2000.
DOI : 10.1080/01418639708241119

. Wang, Ultrasonic investigation of P d 39 N i 10 Cu 30 P 21 bulk metallic glass upon crystallization, Applied Physics Letters, issue.8, p.77, 2000.

. Wang, bulk amorphous alloy upon crystallization, Physical Review B, vol.66, issue.10, p.104205, 2002.
DOI : 10.1103/PhysRevB.66.104205

. Wang, Effect of cooling rate on crystallization of metallic Zr???Cu???Ni glass, Journal of Alloys and Compounds, vol.350, issue.1-2, pp.178-183, 2003.
DOI : 10.1016/S0925-8388(02)00970-2

. Wang, Deformation and cristallization of a ZrTiCuNiBe bulk metallic glass in the supercooled liquid region, Mat. Sci. Eng, 2006.

. Waniuk, ]. T. Busch, R. Waniuk, and . Busch, Equilibrium viscosity of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass-forming liquid and viscous flow during relaxation, phase separation, and primary crystallization, Acta Materialia, vol.46, issue.15, pp.5229-5236, 1998.
DOI : 10.1016/S1359-6454(98)00242-0

. Wen, Calorimetric glass transition in bulk metallic glass forming Zr-Ti-Cu-Ni-Be alloys as a free-volume-related kinetic phenomenon, Physical Review B, vol.67, issue.21, p.212201, 2003.
DOI : 10.1103/PhysRevB.67.212201

. Bibliographie and . Wesseling, Quantitative evaluation of a-al nanoparticles in amorphous Al 87 N i 7 Gd 6 : comparison of XRD, DSC, and TEM, Scripta Materialia, vol.48, pp.1537-1541, 2003.

. Wolff, The effect of partial crystallization on elevated temperature flow stress and room temperature hardness of a bulk amorphous Mg60Cu30Y10 alloy, Acta Materialia, vol.52, issue.7, pp.1989-1995, 2004.
DOI : 10.1016/j.actamat.2003.12.038

. Wright, Localized heating during serrated plastic flow in bulk metallic glasses, Materials Science and Engineering: A, vol.319, issue.321, pp.319-321229, 2001.
DOI : 10.1016/S0921-5093(01)01066-8

. Xing, Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties, Materials Science and Engineering: A, vol.241, issue.1-2, pp.216-225, 1998.
DOI : 10.1016/S0921-5093(97)00489-9

. Yoshida, Quantitative evaluation of indentation-induced densification in glass, Journal of Materials Research, vol.5, issue.12, p.3404, 2005.
DOI : 10.1063/1.117458

. Zhang, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Materialia, vol.51, issue.4, pp.1167-1179, 2003.
DOI : 10.1016/S1359-6454(02)00521-9

W. H. Zhuang and . Wang, Effects of relaxation on glass transition and crystallization of ZrTiCuNiBe bulk metallic glass, Journal of Applied Physics, vol.87, issue.11, p.8209, 2000.
DOI : 10.1063/1.373523

. Zumkley, Effect of reversible structural relaxation on diffusion in a ZrTiCuNiBe bulk glass, Scripta Materialia, vol.45, issue.4, pp.471-477, 2001.
DOI : 10.1016/S1359-6462(01)01047-8