C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s, Electronics Letters, vol.36, issue.4, pp.327-328, 2000.
DOI : 10.1049/el:20000286

M. Shirane, Y. Hashimoto, H. Kurita, H. Yamada, and H. Yokoyama, Optical sampling measurement with all-optical clock recovery using mode-locked diode lasers, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171), pp.2-3, 2001.
DOI : 10.1109/OFC.2001.927850

C. Bornholdt, J. Slovak, and B. Sartorius, Semiconductor-based all-optical 3R regenerator demonstrated at 40???Gbit???s, Electronics Letters, vol.40, issue.3, pp.192-193, 2004.
DOI : 10.1049/el:20040131

O. Leclerc, Optical vs Electronic in-line Signal Processing in Optical Communication Systems : An Exciting Challenge for Optical Devices, 11th European Conference on Integrated OpticsPrague), pp.2-4, 2003.

F. Seguineau, Etude de dispositifs de régénération tout optique du signal à ultra haut débit (>40 Gbit/s) pour des applications de transmission par fibre optique, 2005.

L. Lucek and K. Smith, All-optical signal regenerator, Optics Letters, vol.18, issue.15, pp.1226-1228, 1993.
DOI : 10.1364/OL.18.001226

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, All-Optical Regeneration and Demultiplexing for 160-Gb/s Transmission Systems Using a NOLM-Based Three-Stage Scheme, IEEE Journal of Selected Topics in Quantum Electronics, vol.10, issue.1, pp.192-196, 2004.
DOI : 10.1109/JSTQE.2003.822920

P. V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398), pp.475-476, 2000.
DOI : 10.1109/ECOC.1998.732666

P. Johannisson and M. Karlsson, Characterization of a self-phase-Modulation-based all-optical regeneration system, IEEE Photonics Technology Letters, vol.17, issue.12, pp.2667-2669, 2005.
DOI : 10.1109/LPT.2005.859160

N. J. Doran and D. Wood, Nonlinear-optical loop mirror, Optics Letters, vol.13, issue.1, pp.56-58, 1988.
DOI : 10.1364/OL.13.000056

T. Inoue, T. Yagi, and S. Namiki, Highly nonlinear fiber devices for optical networks, 2005 IEEE LEOS Annual Meeting Conference Proceedings, 2005.
DOI : 10.1109/LEOS.2005.1547926

C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, and C. Lin, Widely Tunable Wavelength Conversion with Extinction Ratio Enhancement Using PCF Based NOLM, ECOC'2005, 2005.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot et al., 40???Gbit???s transmission and cascaded all-optical wavelength conversion over 1???000???000???km, Electronics Letters, vol.38, issue.16, pp.890-892, 2002.
DOI : 10.1049/el:20020595

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.6078

B. Cuenot, A. D. Ellis, and D. J. Richardson, Optical regeneration using self-phase modulation and quasi-continuous filtering, IEEE Photonics Technology Letters, vol.18, issue.12, pp.1350-1352, 2006.
DOI : 10.1109/LPT.2006.877003

L. Fu, M. Rochette, V. Tá-'eed, I. Littler, D. Moss et al., Low power all-optical signal regeneration in single mode AS/sub 2/Se/sub 3/ chalcogenide glass fiber, 2005 IEEE LEOS Annual Meeting Conference Proceedings, 2005.
DOI : 10.1109/LEOS.2005.1548260

F. Parmigiani, S. Asimakis, N. Sugimoto, F. Koizumi, P. Petropoulos et al., 2R regenerator based on a 2-m-long highly nonlinear bismuth oxide fiber, Optics Express, vol.14, issue.12, pp.5038-5044, 2006.
DOI : 10.1364/OE.14.005038

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann et al., Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.5, pp.1131-1145, 1997.
DOI : 10.1109/2944.658587

B. Glance, J. M. Wiesenfeld, U. Koren, A. H. Gnauck, H. M. Presby et al., High performance optical wavelength shifter, Electronics Letters, vol.28, issue.18, pp.1717-1715, 1992.
DOI : 10.1049/el:19921089

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. Pedersen, and K. E. Stubkjaer, All optical wavelength conversion by SOA's in a Mach-Zehnder configuration, IEEE Photonics Technology Letters, vol.6, issue.1, pp.53-55, 1994.
DOI : 10.1109/68.265887

M. Eiselt, W. Pieper, and H. G. Weber, SLALOM: semiconductor laser amplifier in a loop mirror, Journal of Lightwave Technology, vol.13, issue.10, pp.2099-2112, 1995.
DOI : 10.1109/50.469721

C. Joergensen, S. L. Danielsen, T. Durhuus, B. Mikkelsen, K. E. Stubkjaer et al., Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer, IEEE Photonics Technology Letters, vol.8, issue.4, pp.521-523, 1996.
DOI : 10.1109/68.491213

M. Schilling, W. Idler, G. Laube, K. Daub, K. Dtütting et al., 10 Gbit/s monolithic MQW-based wavelength converter in michelsoninterferometer configuration, OFC'96, 1996.

J. Leuthold, L. Möller, J. Jaques, S. Cabot, L. Zhang et al., 160 Gbit/s SOA alloptical wavelength converter and assessment of its regenerative properties, Electron. Lett, vol.40, issue.9, pp.1091-1093, 2004.

M. Funabashi, Z. Zhu, Z. Pan, S. J. Yoo, and L. Paraschis, All-optical 3R regeneration in monolithic SOA-MZI to achieve 0.4 million km fiber transmission, 2005 IEEE LEOS Annual Meeting Conference Proceedings, pp.137-138
DOI : 10.1109/LEOS.2005.1547916

B. Lavigne, P. Guerber, P. Brindel, E. Balmefrezol, and B. Dagens, Cascade of 100 optical 3R regenerators at 40 Gbit/s based on all-active Mach Zehnder interferometers, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551), 2001.
DOI : 10.1109/ECOC.2001.989632

M. Whitehead and G. Parry, High-contrast reflection modulation at normal incidence in asymmetric multiple quantum well Fabry-Perot structure, Electronics Letters, vol.25, issue.9, pp.566-568, 1989.
DOI : 10.1049/el:19890386

D. Atkinson, W. H. Loh, V. V. Afanasjev, A. B. Grudinin, A. J. Seeds et al., Increased amplifier spacing in a soliton system with quantum-well saturable absorbers and spectral filtering, Optics Letters, vol.19, issue.19, pp.1514-1516, 1994.
DOI : 10.1364/OL.19.001514

J. Mangeney, G. Aubin, J. L. Oudar, J. C. Harmand, G. Patriarche et al., All-optical discrimination at 1.5 [micro sign]m using an ultrafast saturable absorber vertical cavity device, Electronics Letters, vol.36, issue.17, p.1486, 2000.
DOI : 10.1049/el:20001056

M. Gicquel-guézo, S. Loualiche, J. Even, C. Labbé, O. Dehaese et al., 290fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55??m range, Applied Physics Letters, vol.85, issue.24, pp.5926-5928, 2004.
DOI : 10.1063/1.1804239

J. Mangeney, S. Barré, G. Aubin, J. L. Oudar, and O. Leclerc, System application of 1.5 [micro sign]m ultrafast saturable absorber in 10 Gbit/s long-haul transmission, Electronics Letters, vol.36, issue.20, pp.1725-1727, 2000.
DOI : 10.1049/el:20001196

M. Pantouvaki, M. J. Fice, R. Feced, E. P. Burr, R. Gwilliam et al., 10-Gb/s All-Optical 2R Regeneration Using an MQW Fabry???P??rot Saturable Absorber and a Nonlinear Fiber, IEEE Photonics Technology Letters, vol.16, issue.2, pp.617-619, 2004.
DOI : 10.1109/LPT.2003.823132

F. Seguineau, D. Rouvillain, H. Choumane, G. Aubin, J. L. Oudar et al., Regeneration capabilities of passive saturable absorber-based optical 2R in 20???Gbit???s RZ DWDM long-haul transmissions, CLEO'2003, pp.1838-1839, 2003.
DOI : 10.1049/el:20030549

D. Massoubre, J. Fatome, S. Pitois, J. Decobert, J. Landreau et al., All-optical extinction ratio enhancement of a 160-GHz pulse train using a saturable absorber vertical microcavity, 31st European Conference on Optical Communications (ECOC 2005), pp.537-539, 2006.
DOI : 10.1049/cp:20050597

J. Fatome, S. Pitois, A. Kamagate, D. Massoubre, G. Millot et al., Alloptical reshaping based on a passive saturable absorber microcavity device for future 160-Gbit/s applications, 2006.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, All-optical switches on a silicon chip realized using photonic crystal nanocavities, Applied Physics Letters, vol.87, issue.15, p.151112, 2005.
DOI : 10.1063/1.2089185

P. S. Cho, D. Mahgerefteh, and J. Goldhar, All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator, IEEE Photonics Technology Letters, vol.11, issue.12, pp.1662-1664, 1999.
DOI : 10.1109/68.806880

L. Huo, Y. Yang, Y. Nan, C. Lou, and Y. Gao, A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator, Journal of Lightwave Technology, vol.24, issue.8, pp.3035-3044, 2006.
DOI : 10.1109/JLT.2006.878054

H. Kawaguchi, Bistable laser diodes and their applications: state of the art, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.5, pp.1254-1270, 1997.
DOI : 10.1109/2944.658606

H. Chien, C. Lee, and S. Chi, An all-optical 2R regenerator using a compact self-seeded Fabry-Pe/spl acute/rot laser diode incorporated in a bidirectional EDFA, IEEE Photonics Technology Letters, vol.18, issue.12, pp.1344-1346, 2006.
DOI : 10.1109/LPT.2006.877010

Y. Onishi, N. Nishiyama, C. Caneau, F. Koyama, and C. Zah, All-Optical Regeneration Using Transverse Mode Switching in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers, Japanese Journal of Applied Physics, vol.45, issue.No. 17, pp.467-468, 2006.
DOI : 10.1143/JJAP.45.L467

P. Likamwa and A. M. Kan, Ultrafast all-optical switching in multiple-quantum-well Y-junction waveguides at the band gap resonance, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.3, pp.655-660, 1996.
DOI : 10.1109/2944.571765

V. G. Ta-'eed, M. Shokooh-saremi, L. Fu, I. C. Littler, D. J. Moss et al., Self-Phase Modulation-Based Integrated Optical Regeneration in Chalcogenide Waveguides, IEEE J. Select. Topics Quantum Electron, vol.12, issue.3, pp.360-370, 2006.

M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino et al., Polymer saturable absorber materials in the 1.5 µm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser, Opt. Lett, vol.37, issue.7, pp.915-917, 2006.

Y. Sakakibara, A. G. Rozhin, H. Kataura, Y. Achiba, and M. Tokumoto, Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors, Japanese Journal of Applied Physics, vol.44, issue.4A
DOI : 10.1143/JJAP.44.1621

S. M. Sze, Physics of Semiconductor Devices, second edition, 1981.

D. S. Chemla and D. A. Miller, Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures, Journal of the Optical Society of America B, vol.2, issue.7, pp.1155-1173, 1985.
DOI : 10.1364/JOSAB.2.001155

I. Vurgaftmana, J. R. Meyer, and L. R. Ram-mohan, Band parameters for III???V compound semiconductors and their alloys, Journal of Applied Physics, vol.89, issue.11, pp.5815-5875, 2001.
DOI : 10.1063/1.1368156

M. D. Sturge, Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV, Physical Review, vol.127, issue.3, pp.768-773, 1962.
DOI : 10.1103/PhysRev.127.768

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, Excitonic transitions and exciton damping processes in InGaAs/InP, Journal of Applied Physics, vol.59, issue.6, pp.2196-2204, 1986.
DOI : 10.1063/1.336358

J. Singh, Electronic and Optoelectronic properties of semiconductors, 2003.

D. A. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossars et al., As multiple quantum well structures, Applied Physics Letters, vol.41, issue.8, pp.679-681, 1982.
DOI : 10.1063/1.93648

A. M. Fox, A. C. Maciel, M. G. Shorthose, J. F. Ryan, M. D. Scott et al., Nonlinear excitonic optical absorption in GaInAs/InP quantum wells, Applied Physics Letters, vol.51, issue.1, pp.30-32, 1987.
DOI : 10.1063/1.98876

R. N. Zitter, SATURATED OPTICAL ABSORPTION THROUGH BAND FILLING IN SEMICONDUCTORS, Applied Physics Letters, vol.14, issue.2, pp.73-74, 1969.
DOI : 10.1063/1.1652718

H. A. Haus and Y. Silbergerg, Theory of mode locking of a laser diode with a multiple-quantum-well structure, Journal of the Optical Society of America B, vol.2, issue.7, pp.1237-1243, 1985.
DOI : 10.1364/JOSAB.2.001237

T. Okunoa, Y. Masumoto, M. Ito, and H. Okamoto, Large optical nonlinearity and fast response time in low-temperature grown GaAs/AlAs multiple quantum wells, Applied Physics Letters, vol.77, issue.1, pp.58-60, 2000.
DOI : 10.1063/1.126876

D. S. Chemla, D. A. Miller, P. W. Smith, A. C. Gossard, and W. Wiegmann, Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures, IEEE Journal of Quantum Electronics, vol.20, issue.3, pp.265-275, 1984.
DOI : 10.1109/JQE.1984.1072393

M. Gicquel-guézo, S. Loualiche, J. Even, C. Labbé, O. Dehaese et al., 290fs switching time of Fe-doped quantum well saturable absorbers in a microcavity in 1.55??m range, Applied Physics Letters, vol.85, issue.24, pp.5926-5928, 2004.
DOI : 10.1063/1.1804239

L. Qian, S. D. Benjamin, P. W. Smith, B. J. Robinson, and D. A. Thompson, Subpicosecond carrier lifetime in beryllium-doped InGaAsP grown by He-plasma-assisted molecular beam epitaxy, Applied Physics Letters, vol.71, issue.11, pp.1513-1515, 1997.
DOI : 10.1063/1.119952

S. Suomalainen, A. Vainionpä, O. Tengvall, T. Hakulinen, S. Karirinne et al., Long-wavelength fast semiconductor saturable absorber mirrors using metamorphic growth on GaAs substrates, Applied Physics Letters, vol.87, issue.12, p.121106, 2005.
DOI : 10.1063/1.2053364

M. L. Dû, J. C. Harmand, K. Meunier, G. Patriarche, and J. L. Oudar, Growth of GaN x As 1?x atomic monolayers and their insertion in the vicinity of GaInAs quantum wells, IEE Proc.-Optoelectron, vol.151, issue.5, p.254, 2004.

M. L. Dû, J. C. Harmand, O. Mauguin, L. Largeau, L. Travers et al., Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate, Appl. Phys. Lett, vol.88, p.201110, 2006.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. , bombarded InP, Applied Physics Letters, vol.59, issue.8, pp.926-928, 1991.
DOI : 10.1063/1.106303

J. Mangeney, H. Choumane, G. Patriarche, G. Leroux, G. Aubin et al., Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers, Applied Physics Letters, vol.79, issue.17, pp.2722-2724, 2001.
DOI : 10.1063/1.1408602

J. Mangeney, N. Stelmakh, A. Shen, J. Lourtioz, A. Alexandrou et al., Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au+ ions into bulk GaAs, MeV) irradiation of Au + ions into bulk GaAs, pp.818-820, 1998.
DOI : 10.1049/el:19980319

URL : https://hal.archives-ouvertes.fr/in2p3-00003088

E. Lugagne-delpon, J. L. Oudar, N. Bouche, R. Raj, A. Shen et al., Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells, Applied Physics Letters, vol.72, issue.7, pp.759-761, 1998.
DOI : 10.1063/1.120885

L. Joulaud, J. Mangeney, J. M. Lourtioz, P. Crozat, and G. Patriarche, Thermal stability of ion-irradiated InGaAs with (sub-) picosecond carrier lifetime, Applied Physics Letters, vol.82, issue.6, pp.856-858, 2003.
DOI : 10.1063/1.1543231

J. C. Oudar, G. Aubin, J. Mangeney, S. Loualiche, J. C. Simon et al., Ultra-fast quantum-well saturable absorber devices and their application to alloptical regeneration of telecommunication optical signals, Annals of telecommunications, vol.5812, issue.11, pp.1667-1707, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00148296

J. W. Pan and J. I. Chyi, Theoretical Study of the Temperature Dependence of 1.3 µm AlGaInAs-InP Multiple-Quantum-Well Lasers, IEEE J. Quantum Electron, vol.32, issue.12, pp.2133-2138, 1996.

J. Y. Law and G. P. , Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.2, pp.353-358, 1997.
DOI : 10.1109/2944.605678

U. Olin, Model for optical bistability in GaAs/AlGaAs Fabry???Perot ??talons including diffraction, carrier diffusion, and heat conduction, Journal of the Optical Society of America B, vol.7, issue.1, pp.35-42, 1990.
DOI : 10.1364/JOSAB.7.000035

A. Hirano, H. T. Tsuda, K. Hagimoto, R. Takahashi, Y. Kawamura et al., 10 ps pulse all-optical discrimination using a high-speed saturable absorber optical gate, Electronics Letters, vol.31, issue.9, p.736, 1995.
DOI : 10.1049/el:19950501

M. Whitehead and G. Parry, High-contrast reflection modulation at normal incidence in asymmetric multiple quantum well Fabry-Perot structure, Electronics Letters, vol.25, issue.9, pp.566-568, 1989.
DOI : 10.1049/el:19890386

M. Pantouvaki, M. J. Fice, R. Feced, E. P. Burr, R. Gwilliam et al., 10-Gb/s All-Optical 2R Regeneration Using an MQW Fabry???P??rot Saturable Absorber and a Nonlinear Fiber, IEEE Photonics Technology Letters, vol.16, issue.2, pp.617-619, 2004.
DOI : 10.1109/LPT.2003.823132

R. Takahashi, Y. Kawamura, and H. Iwamura, Ultrafast 1.55 ??m all???optical switching using low???temperature???grown multiple quantum wells, Applied Physics Letters, vol.68, issue.2, pp.153-155, 1996.
DOI : 10.1063/1.116131

C. Porzi, A. Isomäki, M. Guina, and O. G. Okhotnikov, Impedance-Detuned High- Contrast Vertical Cavity Semidonductor Switch, OFC'2005, 2005.

J. Mangeney, J. L. Oudar, J. C. Harmand, C. Mériadec, G. Patriarche et al., Ultrafast saturable absorption at 1.55 ??m in heavy-ion-irradiated quantum-well vertical cavity, Applied Physics Letters, vol.76, issue.11, pp.1371-1373, 2000.
DOI : 10.1063/1.126035

A. Isomäki, A. M. Vainionpää, J. Lyytikäinen, and O. G. Okhotnikov, Semiconductor mirror for optical noise suppression and dynamic dispersion compensation, IEEE Journal of Quantum Electronics, vol.39, issue.11, pp.1481-1485, 2003.
DOI : 10.1109/JQE.2003.818285

J. M. Vaughan, The Fabry?Perot Interferometer, 1989.

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

J. C. Simon, L. Bramerie, F. Ginovart, V. Roncin, M. Gay et al., All-optical regeneration techniques, Annals of telecommunications, vol.5812, issue.11, pp.1708-1724, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00148321

H. Macleod, Thin-Film Optical Filters -Second Edition, 1986.

E. Abraham and J. M. Halley, Some calculations of temperature profiles in thin films with laser heating, Applied Physics A Solids and Surfaces, vol.11, issue.4, pp.279-285, 1987.
DOI : 10.1007/BF00616563

E. Abraham and I. J. Ogilvy, Heat flow in interference filters, Applied Physics B Photophysics and Laser Chemistry, vol.27, issue.1, pp.31-34, 1987.
DOI : 10.1007/BF00694770

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

T. E. Sale, Vertical cavity surface emitting lasers, 1995.

C. Symonds, J. Dion, I. Sagnes, M. Dainese, M. Strassner et al., High performance 1.55???[micro sign]m vertical external cavity surface emitting laser with broadband integrated dielectric-metal mirror, Electronics Letters, vol.40, issue.12, pp.734-735, 2004.
DOI : 10.1049/el:20040535

T. Nguyen, C. Shen, X. Wu, T. Pinnington, J. Krogen et al., Design and fabrication of 1.3-μm vertical-cavity surface-emitting lasers using dielectric reflectors, IEEE Photonics Technology Letters, vol.15, issue.11, pp.1498-1500, 2003.
DOI : 10.1109/LPT.2003.818672

T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga, Continuous Wave GaInAsP/InP Surface Emitting Lasers with a Thermally Conductive MgO/Si Mirror, Japanese Journal of Applied Physics, vol.33, issue.Part 1, No. 4A, pp.1905-1909, 1999.
DOI : 10.1143/JJAP.33.1905

Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, Self-starting mode-locked Cr^4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror, Optics Letters, vol.24, issue.23, pp.1768-1770, 1999.
DOI : 10.1364/OL.24.001768

P. Martin, E. M. Skouri, L. Chusseau, and C. Alibert, Accurate refractive index measurements of doped and undoped InP by a grating coupling technique, Applied Physics Letters, vol.67, issue.7, pp.881-883, 1995.
DOI : 10.1063/1.114723

S. Tiwari, Compound Semiconductor Device Physics, 1991.

M. J. Mondry, D. Babic, J. E. Bowers, and L. A. Coldren, Refractive indexes of (Al,Ga,In)As epilayers on InP for optoelectronic applications, IEEE Photonics Technology Letters, vol.4, issue.6, pp.627-630, 1992.
DOI : 10.1109/68.141990

Y. Kim, M. Rodwell, and A. Gossard, Thermal characteristics of InP, InAlAs, and AlGaAsSb metamorphic buffer layers used in In0.52Al0.48As/In0.53Ga0.47As heterojunction bipolar transistors grown on GaAs substrates, Journal of Electronic Materials, vol.11, issue.3, pp.196-199, 2002.
DOI : 10.1007/s11664-002-0206-4

. Adachi, Refractive indices of III???V compounds: Key properties of InGaAsP relevant to device design, Journal of Applied Physics, vol.53, issue.8, pp.5863-1845, 1982.
DOI : 10.1063/1.331425

M. Guden and J. Piprek, Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength, Modelling and Simulation in Materials Science and Engineering, vol.4, issue.4, pp.349-357, 1996.
DOI : 10.1088/0965-0393/4/4/002

J. P. Debray, E. Lugagne-delpon, G. L. Roux, J. L. Oudar, and M. Quillec, Low threshold InGaAlAs monolithic vertical cavity bistable device at 1.5 ??m wavelength, Applied Physics Letters, vol.70, issue.21, pp.2858-2860, 1997.
DOI : 10.1063/1.119024

I. Garcés, F. Villuendas, J. A. Vallés, C. Dominguez, and M. Moreno, Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides, Journal of Lightwave Technology, vol.14, issue.5, pp.798-805, 1996.
DOI : 10.1109/50.495160

S. Uchiyama, N. Yokouchi, and T. Ninomiya, Continuous-wave operation up to 36/spl deg/C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers, IEEE Photonics Technology Letters, vol.9, issue.2, pp.141-142, 1997.
DOI : 10.1109/68.553065

W. J. Coleman, Evolution of Optical Thin Films by Sputtering, Applied Optics, vol.13, issue.4, pp.946-951, 1974.
DOI : 10.1364/AO.13.000946

S. M. Lee, D. G. Cahill, and T. H. Allen, Thermal conductivity of sputtered oxide films, Physical Review B, vol.52, issue.1, pp.253-257, 1995.
DOI : 10.1103/PhysRevB.52.253

A. D. Raki´craki´c, A. B. Djurisi´cdjurisi´c, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied Optics, vol.37, issue.22, pp.5271-5283, 1998.
DOI : 10.1364/AO.37.005271

M. S. Ünlü and S. Strite, Resonant cavity enhanced photonic devices, Journal of Applied Physics, vol.78, issue.2, pp.607-639, 1995.
DOI : 10.1063/1.360322

S. Corzine, R. S. Geels, J. Scott, R. Yan, and L. A. Coldren, Design of Fabry-Perot surface-emitting lasers with a periodic gain structure, IEEE Journal of Quantum Electronics, vol.25, issue.6, pp.1513-1524, 1989.
DOI : 10.1109/3.29288

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Terahertz quantum-cascade laser at ?????100?????m using metal waveguide for mode confinement, Applied Physics Letters, vol.83, issue.11, pp.2124-2126, 2003.
DOI : 10.1063/1.1611642

. Adachi, . Gaas, A. X. Alas, and . Ga, As: Material parameters for use in research and device applications, Journal of Applied Physics, vol.58, issue.3, pp.1-29, 1985.
DOI : 10.1063/1.336070

G. A. Slack, Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond, Journal of Applied Physics, vol.35, issue.12, pp.3460-3466, 1964.
DOI : 10.1063/1.1713251

G. A. Slack, The intrinsic thermal conductivity of AIN, Journal of Physics and Chemistry of Solids, vol.48, issue.7, p.641, 1987.
DOI : 10.1016/0022-3697(87)90153-3

J. Mangeney, Composant à absorbant saturable rapide à base de semi-conducteurs irradiés par des ions et applications à la régénération des signaux télécoms, 2000.

M. H. Macdougal, J. G. Lin, A. E. Bond, and P. D. Dapkus, Thermal Impedance of VCSEL's with AlO x /GaAs DBR's, volume = 10, year =, IEEE Photon. Technol. Lett, issue.1, pp.15-17, 1998.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith et al., Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach, IEEE Journal of Quantum Electronics, vol.41, issue.2, pp.128-155, 2005.
DOI : 10.1109/JQE.2004.839706

D. Massoubre, J. Dion, J. Landreau, J. Decobert, A. Shen et al., <title>Low insertion loss and switching energy all-optical gate for 40 Gbit/s WDM networks</title>, SPIE Photonics, Devices and Systems III, vol.6180, pp.351-356, 2006.
DOI : 10.1117/12.675742

G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy : Theory and Practice, 1989.

J. Mangeney, H. Choumane, G. Patriarche, G. Leroux, G. Aubin et al., Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers, Applied Physics Letters, vol.79, issue.17, pp.2722-2724, 2001.
DOI : 10.1063/1.1408602

J. Mangeney, N. Stelmakh, A. Shen, J. Lourtioz, A. Alexandrou et al., Sub-picosecond wideband efficient saturable absorber created by high energy (200 MeV) irradiation of Au+ ions into bulk GaAs, MeV) irradiation of Au + ions into bulk GaAs, pp.818-820, 1998.
DOI : 10.1049/el:19980319

URL : https://hal.archives-ouvertes.fr/in2p3-00003088

O. Pluchery, Y. J. Chabal, and R. L. Opila, infrared spectroscopy, Journal of Applied Physics, vol.94, issue.4, pp.2707-2715, 2003.
DOI : 10.1063/1.1596719

URL : https://hal.archives-ouvertes.fr/hal-01238975

B. G. Yacobi, S. Martin, K. Davis, A. Hudson, and M. Hubert, Adhesive bonding in microelectronics and photonics, Journal of Applied Physics, vol.91, issue.10, pp.6227-6262, 2002.
DOI : 10.1063/1.1467950

F. Niklaus, G. Stemme, J. Q. Lu, and R. J. Gutmann, Adhesive wafer bonding, Journal of Applied Physics, vol.99, issue.3, pp.1-28, 2006.
DOI : 10.1063/1.2168512

L. Bernshtein, Semiconductor Joining by the Solid-Liquid-Interdiffusion (SLID) Process, Journal of The Electrochemical Society, vol.113, issue.12, pp.1282-1288, 1966.
DOI : 10.1149/1.2423806

C. C. Lee, C. Y. Wang, and G. Matijasevic, Au-In bonding below the eutectic temperature, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.16, issue.3, pp.311-316, 1993.
DOI : 10.1109/33.232058

T. B. Wang, Z. Z. Shen, R. Q. Ye, X. M. Xie, F. Stubhan et al., Die bonding with Au/In isothermal solidification technique, Die Bonding with Au, p.443, 2000.
DOI : 10.1007/s11664-000-0158-5

C. Nelep, Développement de diodes électroluminescentes à microcavité à miroirs métalliques pour le contrôle de l'émission spontanée, 2002.

J. Shelton and J. Armstrong, Measurement of the relaxation time of the Eastman 9740 bleachable dye, IEEE Journal of Quantum Electronics, vol.3, issue.12, pp.696-697, 1967.
DOI : 10.1109/JQE.1967.1074437

T. Fuji, T. Yoda, T. Hattori, and H. Nakatsuka, Phase Sensitive Pump-Probe Spectroscopy Using a Michelson-Type Interferometer, Japanese Journal of Applied Physics, vol.39, issue.Part 1, No. 4A, pp.1738-1742, 2000.
DOI : 10.1143/JJAP.39.1738

W. L. Smith, J. H. Bechtel, and N. Bloembergen, Dielectric-breakdown threshold and nonlinear-refractive-index measurements with picosecond laser pulses, Physical Review B, vol.12, issue.2, pp.706-714, 1975.
DOI : 10.1103/PhysRevB.12.706

D. Cotter, C. N. Ironside, B. J. Ainslie, and H. P. Girdlestone, Picosecond pump???probe interferometric measurement of optical nonlinearity in semiconductor-doped fibers, Optics Letters, vol.14, issue.6, pp.317-319, 1989.
DOI : 10.1364/OL.14.000317

R. Trebino, Frequency-Resolved Optical Gating : The Measurement of Ultrashort Laser Pulses, 2000.
DOI : 10.1007/978-1-4615-1181-6

D. S. Chemla and D. A. Miller, Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures, Journal of the Optical Society of America B, vol.2, issue.7, pp.1155-1173, 1985.
DOI : 10.1364/JOSAB.2.001155

H. A. Haus and Y. Silbergerg, Theory of mode locking of a laser diode with a multiple-quantum-well structure, Journal of the Optical Society of America B, vol.2, issue.7, pp.1237-1243, 1985.
DOI : 10.1364/JOSAB.2.001237

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

S. Corzine, R. S. Geels, J. Scott, R. Yan, and L. A. Coldren, Design of Fabry-Perot surface-emitting lasers with a periodic gain structure, IEEE Journal of Quantum Electronics, vol.25, issue.6, pp.1513-1524, 1989.
DOI : 10.1109/3.29288

P. Kolodner, H. S. Kwok, J. , G. Black, and E. Yablonovitch, Exact decomposition of a Gaussian-averaged nonlinear function, Optics Letters, vol.4, issue.1, p.38, 1979.
DOI : 10.1364/OL.4.000038

R. Jin, K. Okada, G. Khitrova, H. M. Gibbs, M. Pereira et al., Optical nonlinearities in strained???layer InGaAs/GaAs multiple quantum wells, Applied Physics Letters, vol.61, issue.15, pp.1745-1747, 1992.
DOI : 10.1063/1.108414

R. Mottahedeh, D. Prescottand, S. K. Haywood, D. A. Pattison, P. N. Kean et al., Carrier lifetime and exciton saturation in a strain-balanced InGaAs/InAsP multiple quantum well, Journal of Applied Physics, vol.83, issue.1, pp.306-309, 1997.
DOI : 10.1063/1.366684

M. H. Moloney, J. Hegarty, L. Buydens, and P. Demeester, Very low saturation densities in strained InGaAs/AlGaAs multiple quantum wells, Applied Physics Letters, vol.64, issue.8, pp.997-999, 1993.
DOI : 10.1063/1.110930

J. Marzin, J. Gérard, P. Voisin, and J. , Chapter 3 Optical Studies of Strained III-V Heterolayers, Brum Semicond. and semimetals, vol.32, p.55, 1990.
DOI : 10.1016/S0080-8784(08)62643-5

J. M. Luttinger, Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory, Physical Review, vol.102, issue.4, pp.1030-1041, 1956.
DOI : 10.1103/PhysRev.102.1030

E. Burr, M. Pantouvaki, M. Fice, R. Gwilliam, A. Krysa et al., Signal stability in periodically amplified fiber transmission systems using multiple quantum well saturable absorbers for regeneration, Journal of Lightwave Technology, vol.24, issue.2, pp.747-754, 2006.
DOI : 10.1109/JLT.2005.861924

J. Mangeney, J. L. Oudar, J. C. Harmand, C. Mériadec, G. Patriarche et al., Ultrafast saturable absorption at 1.55 ??m in heavy-ion-irradiated quantum-well vertical cavity, Applied Physics Letters, vol.76, issue.11, pp.1371-1373, 2000.
DOI : 10.1063/1.126035

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T. Chiu et al., Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators, IEEE Journal of Quantum Electronics, vol.30, issue.2, pp.399-407, 1994.
DOI : 10.1109/3.283787

J. Y. Law and G. P. , Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.2, pp.353-358, 1997.
DOI : 10.1109/2944.605678

J. Mangeney, H. Choumane, G. Patriarche, G. Leroux, G. Aubin et al., Comparison of light- and heavy-ion-irradiated quantum-wells for use as ultrafast saturable absorbers, Applied Physics Letters, vol.79, issue.17, pp.2722-2724, 2001.
DOI : 10.1063/1.1408602

D. Massoubre, J. Dion, J. C. Harmand, A. Shen, J. Decobert et al., Scaling of the saturation energy in microcavity saturable absorber devices, Applied Physics Letters, vol.88, issue.15, p.153513, 2006.
DOI : 10.1063/1.2193990

J. Mangeney, J. Lopez, N. Stelmakh, J. M. Lourtioz, J. L. Oudar et al., Subgap optical absorption and recombination center efficiency in bulk GaAs irradiated by light or heavy ions, Applied Physics Letters, vol.76, issue.1, pp.40-42, 2000.
DOI : 10.1063/1.125649

URL : https://hal.archives-ouvertes.fr/in2p3-00003944

S. Rapp, J. Piprek, K. Streubel, J. André, and J. Wallin, Temperature Sensitivity of 1.54 µm Vertical-Cavity Lasers with an InP-Based Bragg Reflector, J. Appl. Phys, vol.33, issue.10, pp.1839-1845, 1997.

M. Takahashi, N. Egami, T. Mukaihara, F. Koyama, and K. Iga, Lasing characteristics of GaAs(311)A substrate based InGaAs-GaAs vertical-cavity surface-emitting lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol.3, issue.2, pp.372-378, 1997.
DOI : 10.1109/2944.605681

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, Excitonic transitions and exciton damping processes in InGaAs/InP, Journal of Applied Physics, vol.59, issue.6, pp.2196-2204, 1986.
DOI : 10.1063/1.336358

Z. Hand, D. Yan, F. H. Pollak, G. D. Pettit, and J. W. Woodall, Temperature dependence of the direct band gap of In x Ga 1?x As, Phys. Rev. B, vol.44, issue.19, pp.10546-10550, 1991.

M. H. Macdougal, J. G. Lin, A. E. Bond, and P. D. Dapkus, Thermal Impedance of VCSEL's with AlO x /GaAs DBR's, volume = 10, year =, IEEE Photon. Technol. Lett, issue.1, pp.15-17, 1998.

M. Kondow, T. Kitatani, K. Nakahara, and T. Tanaka, Temperature dependence of lasing wavelength in a GaInNAs laser diode, IEEE Photonics Technology Letters, vol.12, issue.7, pp.777-779, 2000.
DOI : 10.1109/68.853497

W. Nakwaski, Thermal conductivity of binary, ternary, and quaternary III???V compounds, Journal of Applied Physics, vol.64, issue.1, pp.159-166, 1988.
DOI : 10.1063/1.341449

S. M. Lee, D. G. Cahill, and T. H. Allen, Thermal conductivity of sputtered oxide films, Physical Review B, vol.52, issue.1, pp.253-257, 1995.
DOI : 10.1103/PhysRevB.52.253

W. Nakwaski and M. Osinski, Thermal resistance of top-surface-emitting vertical-cavity semiconductor lasers and monolithic two-dimensional arrays, Electronics Letters, vol.28, issue.6, pp.572-574, 1992.
DOI : 10.1049/el:19920361

M. Osinski and W. Nakwaski, Effective thermal conductivity analysis of 1.55 ??m InGaAsP/InP vertical-cavity top-surface-emitting microlasers, Electronics Letters, vol.29, issue.11, pp.1015-1016, 1993.
DOI : 10.1049/el:19930677

A. N. Al-omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang et al., Low thermal resistance high-speed top-emitting 980-nm VCSELs, IEEE Photonics Technology Letters, vol.18, issue.11, pp.1225-1227, 2006.
DOI : 10.1109/LPT.2006.875059

G. A. Slack, Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond, Journal of Applied Physics, vol.35, issue.12, pp.3460-3466, 1964.
DOI : 10.1063/1.1713251

G. A. Slack, The intrinsic thermal conductivity of AIN, Journal of Physics and Chemistry of Solids, vol.48, issue.7, p.641, 1987.
DOI : 10.1016/0022-3697(87)90153-3

M. Born and E. Wolf, Principles of Optics, 1980.
DOI : 10.1017/CBO9781139644181

D. S. Chemla and D. A. Miller, Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures, Journal of the Optical Society of America B, vol.2, issue.7, pp.1155-1173, 1985.
DOI : 10.1364/JOSAB.2.001155

H. Haug and S. Schmitt-rink, Basic mechanisms of the optical nonlinearities of semiconductors near the band edge, Journal of the Optical Society of America B, vol.2, issue.7, pp.1135-1142, 1985.
DOI : 10.1364/JOSAB.2.001135

D. Campi, P. J. Bradley, R. Calvani, and R. Caponi, Modeling of nonlinear absorption and refraction in quantum-well structures for all optical switching, IEEE Journal of Quantum Electronics, vol.29, issue.4, pp.1144-1157, 1993.
DOI : 10.1109/3.214500

M. Guezo, Absorbant saturable ultre-rapide à multipuits quantiques pour le traitement tout-optique du signal, 2004.

S. H. Park, J. F. Morhange, A. D. Jeffery, R. A. Morgan, A. Chavez-pirson et al., Measurements of room???temperature band???gap???resonant optical nonlinearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs, Applied Physics Letters, vol.52, issue.15, pp.1201-1203, 1988.
DOI : 10.1063/1.99157

A. M. Fox, A. C. Maciel, M. G. Shorthose, J. F. Ryan, M. D. Scott et al., Nonlinear excitonic optical absorption in GaInAs/InP quantum wells, Applied Physics Letters, vol.51, issue.1, pp.30-32, 1987.
DOI : 10.1063/1.98876

H. A. Haus and Y. Silbergerg, Theory of mode locking of a laser diode with a multiple-quantum-well structure, Journal of the Optical Society of America B, vol.2, issue.7, pp.1237-1243, 1985.
DOI : 10.1364/JOSAB.2.001237

S. Corzine, R. S. Geels, J. Scott, R. Yan, and L. A. Coldren, Design of Fabry-Perot surface-emitting lasers with a periodic gain structure, IEEE Journal of Quantum Electronics, vol.25, issue.6, pp.1513-1524, 1989.
DOI : 10.1109/3.29288

Y. P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, vol.34, issue.1, p.149, 1967.
DOI : 10.1016/0031-8914(67)90062-6

D. K. Gaskill, N. Bottka, L. Aina, and M. Mattingly, Band???gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP, Applied Physics Letters, vol.56, issue.13, pp.1269-1271, 1990.
DOI : 10.1063/1.102533

P. K. Chan, K. P. Pipe, Z. Mi, J. Yang, P. Bhattacharya et al., Thermal relaxation time and heat distribution in pulsed InGaAs quantum dot lasers, Applied Physics Letters, vol.89, issue.1, pp.11110-11113, 2006.
DOI : 10.1063/1.2219721

E. L. Cren, Etude de composants absorbants saturables à semiconducteurs à multipuits quantiques dopés au fer pour la régénération de signaux optiques à très hauts débits d'information, 2004.

D. Massoubre, J. L. Oudar, A. O-'hare, M. Gay, L. Bramerie et al., Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates, Journal of Lightwave Technology, vol.24, issue.9, pp.3400-3408, 2006.
DOI : 10.1109/JLT.2006.879502

J. Fatome, Propagation d'impulsions ultra-courtes à 160-Gb/s dans des lignes de fibres optiques gérées en dispersion, 2004.

S. Pitois, J. Fatome, and G. Millot, Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal, Optics Letters, vol.27, issue.19, pp.1729-1731, 2002.
DOI : 10.1364/OL.27.001729

URL : https://hal.archives-ouvertes.fr/hal-00475084

G. Steinmeyer, A review of ultrafast optics and optoelectronics, Journal of Optics A: Pure and Applied Optics, vol.5, issue.1, pp.1-15, 2003.
DOI : 10.1088/1464-4258/5/1/201

R. Trebino, Frequency-Resolved Optical Gating : The Measurement of Ultrashort Laser Pulses, 2000.
DOI : 10.1007/978-1-4615-1181-6

C. Dorrer, High-speed measurements for optical telecommunication systems, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.4, pp.843-858, 2006.
DOI : 10.1109/JSTQE.2006.876304

D. Massoubre, J. Fatome, S. Pitois, J. Decobert, J. Landreau et al., All-optical extinction ratio enhancement of a 160-GHz pulse train using a saturable absorber vertical microcavity, 31st European Conference on Optical Communications (ECOC 2005), pp.537-539, 2006.
DOI : 10.1049/cp:20050597

J. Fatome, S. Pitois, and G. Millot, 320???640???GHz high-quality pulse sources based on multiple four-wave mixing in highly nonlinear optical fibre, Electronics Letters, vol.41, issue.25, pp.1391-1392, 2005.
DOI : 10.1049/el:20053575

URL : https://hal.archives-ouvertes.fr/hal-00437617

D. Massoubre, J. L. Oudar, A. O-'hare, M. Gay, L. Bramerie et al., Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates, Journal of Lightwave Technology, vol.24, issue.9, pp.3400-3408, 2006.
DOI : 10.1109/JLT.2006.879502

J. Fatome, S. Pitois, A. Kamagate, D. Massoubre, G. Millot et al., Alloptical reshaping based on a passive saturable absorber microcavity device for future 160-Gbit/s applications, 2006.

A. M. Clarke, P. M. Anandarajah, L. Bramerie, C. Guignard, D. Massoubre et al., Enhancement of System Performance in 80 Gb/s OTDM systems by using a Vertical Microcavity based Saturable Absorber, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00148920

M. Gay, Etudes théorique et expérimentale de l'impact de la régénération 2 R dans un système de transmission optique haut-débit, 2006.

J. Mangeney, S. Barré, G. Aubin, J. L. Oudar, and O. Leclerc, System application of 1.5 [micro sign]m ultrafast saturable absorber in 10 Gbit/s long-haul transmission, Electronics Letters, vol.36, issue.20, pp.1725-1727, 2000.
DOI : 10.1049/el:20001196

M. Pantouvaki, M. J. Fice, R. Feced, E. P. Burr, R. Gwilliam et al., 10-Gb/s All-Optical 2R Regeneration Using an MQW Fabry???P??rot Saturable Absorber and a Nonlinear Fiber, IEEE Photonics Technology Letters, vol.16, issue.2, pp.617-619, 2004.
DOI : 10.1109/LPT.2003.823132

O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre et al., Optical regeneration at 40 Gb/s and beyond, Journal of Lightwave Technology, vol.21, issue.11, pp.2779-2790, 2003.
DOI : 10.1109/JLT.2003.819148

K. E. Stubkjaer, Semiconductor optical amplifier-based all-optical gates for high-speed optical processing, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.6, pp.1428-1435, 2000.
DOI : 10.1109/2944.902198

M. Usami, M. Tsurusawa, and Y. Matsushima, Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier, Applied Physics Letters, vol.72, issue.21, pp.2657-2656, 1998.
DOI : 10.1063/1.121089

M. Gay, L. Bramerie, G. Girault, V. Roncin, and J. C. Simon, Experimental Study of Reshaping Retiming Gates for 3R Regeneration, Optical Networks and Technologies Conf. OpNeTec, pp.545-551, 2004.
DOI : 10.1007/0-387-23178-1_70

URL : https://hal.archives-ouvertes.fr/hal-00149451

M. Gay, L. Bramerie, D. Massoubre, A. O. Hare, A. Shen et al., Cascadability assessment of a 2R regenerator based on a saturable absorber and a semiconductor optical amplifier in a path switchable recirculating loop, IEEE Photonics Technology Letters, vol.18, issue.11, pp.1273-1275, 2006.
DOI : 10.1109/LPT.2006.875324

URL : https://hal.archives-ouvertes.fr/hal-00145871

D. Lorenser, Picosecond VECSELs with repetition rates up to 50 GHz, 2006.

V. M. Zhukov and . Ustinov, Fast Quantum-Dot Saturable Absorber for Passive Mode- Locking of Solid-State Lasers, IEEE Photon. Technol. Lett, vol.16, issue.11, pp.2439-2441, 2004.

A. Mcwilliam, A. A. Lagatsky, C. T. Brown, W. Sibbett, A. E. Zhukov et al., Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser, Optics Letters, vol.31, issue.10, pp.1444-1516, 2006.
DOI : 10.1364/OL.31.001444

T. Baba, Y. Yogo, K. Suzuki, F. Koyama, and K. Iga, Continuous Wave GaInAsP/InP Surface Emitting Lasers with a Thermally Conductive MgO/Si Mirror, Japanese Journal of Applied Physics, vol.33, issue.Part 1, No. 4A, pp.1905-1909, 1999.
DOI : 10.1143/JJAP.33.1905

T. H. Kim, M. M. Howlader, T. Itoh, and T. Suga, Room temperature Cu???Cu direct bonding using surface activated bonding method, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.2, pp.449-453, 2003.
DOI : 10.1116/1.1537716

A. Harkonen, M. Guina, O. Okhotnikov, K. Roner, M. Hummer et al., 1-W antimonide-based vertical external cavity surface emitting laser operating at 2-??m, Optics Express, vol.14, issue.14, pp.6479-6484, 2006.
DOI : 10.1364/OE.14.006479

P. J. Maguire, K. Bondarczuk, A. M. Clarke, L. P. Barry, L. Bramerie et al., Reduction of Cross-Correlation Noise in Optical Thresholding in an OCDMA Networks Utilising a Saturable Absorber and Two-Photon Absorption, 2006.

. Oudar, Régime multi-impulsionel dans un laser à fibre dopée erbium contenant un absorbant saturable, " submitted to JNOG, 2006.

D. Massoubre, J. Fatome, S. Pitois, J. Decobert, J. Landreau et al., All-optical extinction ratio enhancement of a 160 GHz pulse train using a saturable absorber vertical microcavity Saturable Absorber Based Micro- Cavity for Broadband Wavelength Conversion All-Optical Seed Pulse Extraction for Packet Synchronization Based on Self-Induced Effects in a Vertical-Cavity Semiconductor Gate Quantum-well saturable absorber at 1.55 µm on GaAs substrate with a fast recombination rate Thin-Film Optical Filters -Second Edition, Integrated Photonics Research Recherche sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. applications aux couches minces, pp.537-539, 1950.

E. Abraham and J. M. Halley, Some calculations of temperature profiles in thin films with laser heating, Applied Physics A Solids and Surfaces, vol.11, issue.4, pp.279-285, 1987.
DOI : 10.1007/BF00616563

E. Abraham, I. J. Ogilvy, P. M. Clarke, L. Anandarajah, C. Bramerie et al., Heat flow in interference filters, Applied Physics B Photophysics and Laser Chemistry, vol.27, issue.1, pp.31-34, 1987.
DOI : 10.1007/BF00694770

J. Fatome, S. Pitois, A. Kamagate, D. Massoubre, G. Millot et al., All-optical reshaping at 160-Gbit/s using a passive saturable absorber-based microcavity device, 2006 European Conference on Optical Communications, 2006.
DOI : 10.1109/ECOC.2006.4800938

M. Gay, L. Bramerie, D. Massoubre, A. O. Hare, A. Shen et al., Experimental Investigation of a Cascaded Optical 2R Regenerator in an Optical Fibre Link, 2006 European Conference on Optical Communications, 2006.
DOI : 10.1109/ECOC.2006.4801033

URL : https://hal.archives-ouvertes.fr/hal-00148913

M. Gay, L. Bramerie, J. Simon, A. O-'hare, D. Massoubre et al., Cascadability and wavelength tunability assessment of a 2R regeneration device based on saturable absorber and semiconductor optical amplifier, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, 2006.
DOI : 10.1109/OFC.2006.215684

URL : https://hal.archives-ouvertes.fr/hal-00080253

D. Massoubre, J. Fatome, S. Pitois, G. Millot, J. Decobert et al., Alloptical extinction ratio enhancement of a 160 GHz pulse train using a saturable absorber vertical microcavity, ECOC 2005, We4.P.018, 2005.

D. Massoubre, J. Oudar, A. Shen, J. Decobert, A. O-'hare et al., Investigation of speed and thermal limitations in microcavity saturable absorber all-optical regenerator device, CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005., 2005.
DOI : 10.1109/CLEOE.2005.1568045

D. Massoubre, J. Dion, A. Shen, J. Decobert, J. Landreau et al., <title>Low insertion loss and switching energy all-optical gate for 40 Gbit/s WDM networks</title>, Photonics Prague, 2005.
DOI : 10.1117/12.675742

D. Massoubre, J. Oudar, H. Choumane, G. Aubin, J. Harmand et al., Low Switching Energy Saturable Absorber Device for 40 Gbit/s Networks, Integrated Photonics Research, vol.2, 2004.

A. Shen, D. Massoubre, J. Decobert, J. Landreau, O. L. Legouezigou et al., Saturable Absorber Based Micro-Cavity for Broadband Wavelength Conversion 28 Variation de la transmission en fonction de l'angle de polarisation observé à 1, Integrated Photonics Research, vol.5, 2004.
DOI : 10.1364/ipr.2004.iwc5

A. Réponse-temporelle-normalisée-caractéristique-du-composant, ? cav est le temps de réponse du composant AS déterminé à 1/e du maximum de la variation de réflectivité

A. Principe-d-'utilisation-du-composant and W. Dans-un-environnement, Chaque longueur d'onde est démultiplexée spatialement grâce à un réseau puis focalisée sur le composant. Les longueurs d'onde sont traitées individuellement par l'absorbant saturable, puis elles sont remultiplexées dans la fibre optique, p.67

. Schéma-de-principe, onde pour la réalisation d'un miroir de Bragg et b) spectres de réflectivité d'un miroir de Bragg InGaAlAs/InP (?n = 0,33) ayant respectivement 10 (noir), 20 (rouge) et 30 (bleu) périodes. R max est le maximum de réflectivité d'un miroir de Bragg pour un nombre de période donné. n s est l'indice du substrat, est l'indice du milieu incident, n h et n b sont les indices des milieux de haut et bas indice respectivement. . . . . . . . . . . . . . . . . . . . . . . 73

T. Réflectance-du-miroir-arrière-r-b-en-fonction-de-la-résistance-thermique-effective-r-th-calculée-avec, Les simulations thermiques ont été réalisées avec un waist à 1/e 2 de 2 µm et une absorption à 100 % dans la couche active, p.86

.. Schéma-de-la-pré-structure-hd7-réalisée-par-Épitaxie-epvominalas, La structure a été réalisée à « l'envers » afin d'anticiper l'étape du report de substrat . b) Spectre de photoluminescence mesuré sur une pré-structure à 7 puits quantiques InGaAs

.. Coupe-transverse-d-'un-miroir-hybride-ag, Al 2 O 3 prise au microscope électronique à balayage. L'image a été prise sur la structure HD3-(M3) reportée sur Si par brasure Au-In. La position des puits quantiques est représentée par les deux lignes blanches en pointillé

. Diagramme-de-phase-du-système-au-in, La zone colorée montre l'alliage formé par la brasure SLID. Le trait en pointillé bleu montre la composition massique en indium que nous avons utilisé pour réaliser la brasure SLID

S. Résultats, intensités et phases du train d'impulsions à 160 GHz en entrée de l'échantillon MD7-(G4) (référence miroir d'argent en traits pointillés) et en sortie (trait continu) pour une puissance moyenne incidente de 20,3 dBm. b) Amélioration du contraste de la fonction d'autocorrélation en fonction de la longueur d'onde (graphe supérieur) et puissance moyenne optimale à l'entrée du composant en fonction de la longueur d'onde du laser (graphe inférieur), p.167

M. Réponse-non-linéaire-de-la-structure, G4) montrant le rapport d'énergie E r en sortie en fonction de sa valeur en entrée du composant. b) Position de la longueur d'onde de résonance en fonction de la longueur des mots constituant le signal à 160 Gbits, p.170

.. Schéma-de-la-bouche-courte-de-recirculation, Le régénérateur 2 R est composé d'un composant à absorbants saturables et d'une fibre de compression associée à un filtre passe-bande, p.176