A. Åberg, P. Nordlund, and H. Eklund, Unusual clustering of carboxyl side chains in the core of iron-free ribonucleotide reductase, Nature, vol.361, issue.6409, pp.276-284, 1993.
DOI : 10.1038/361276a0

M. E. Andersson, M. Högbom, A. Rinaldo-matthis, K. K. Andersson, B. Sjöberg et al., The Crystal Structure of an Azide Complex of the Diferrous R2 Subunit of Ribonucleotide Reductase Displays a Novel Carboxylate Shift with Important Mechanistic Implications for Diiron-Catalyzed Oxygen Activation, Journal of the American Chemical Society, vol.121, issue.11, 1999.
DOI : 10.1021/ja982280c

J. Andersson, M. Westman, M. Sahlin, and B. M. Sjöberg, Cysteines Involved in Radical Generation and Catalysis of Class III Anaerobic Ribonucleotide Reductase. A PROTEIN ENGINEERING STUDY OF BACTERIOPHAGE T4 NrdD, Journal of Biological Chemistry, vol.275, issue.26, pp.19449-55, 2000.
DOI : 10.1074/jbc.M001278200

J. Andersson, S. Bodevin, M. Westman, M. Sahlin, and B. M. Sjöberg, Two Active Site Asparagines Are Essential for the Reaction Mechanism of the Class III Anaerobic Ribonucleotide Reductase from Bacteriophage T4, Journal of Biological Chemistry, vol.276, issue.44, pp.40457-63, 2001.
DOI : 10.1074/jbc.M106863200

F. H. Arnold and J. H. Zhang, Metal-mediated protein stabilization, Trends in Biotechnology, vol.12, issue.5, pp.189-92, 1994.
DOI : 10.1016/0167-7799(94)90081-7

A. Atanassova and D. B. Zamble, Escherichia coli HypA Is a Zinc Metalloprotein with a Weak Affinity for Nickel, Journal of Bacteriology, vol.187, issue.14, pp.4689-97, 2005.
DOI : 10.1128/JB.187.14.4689-4697.2005

J. B. Bae, J. H. Park, M. Y. Hahn, M. S. Kim, and J. H. Roe, Redox-dependent Changes in RsrA, an Anti-sigma Factor in Streptomyces coelicolor: Zinc Release and Disulfide Bond Formation, Journal of Molecular Biology, vol.335, issue.2, pp.425-460, 2004.
DOI : 10.1016/j.jmb.2003.10.065

J. Baldwin, C. Krebs, B. A. Ley, D. E. Edmondson, B. H. Huynh et al., Mechanism of Rapid Electron Transfer during Oxygen Activation in the R2 Subunit of Escherichia coli Ribonucleotide Reductase. 1. Evidence for a Transient Tryptophan Radical, J. Am. Chem. Soc, issue.49, pp.122-12195, 2000.

J. Barber, Photosystem II: the engine of life, Quarterly Reviews of Biophysics, vol.36, issue.1, pp.71-89, 2003.
DOI : 10.1017/S0033583502003839

B. A. Barry and G. T. Babcock, Tyrosine radicals are involved in the photosynthetic oxygen-evolving system., Proceedings of the National Academy of Sciences, vol.84, issue.20, pp.7099-103, 1987.
DOI : 10.1073/pnas.84.20.7099

A. Becker, K. Fritz-wolf, W. Kabsch, J. Knappe, S. Schultz et al., Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase, Nat Struct Biol, vol.6, issue.10, pp.969-75, 1999.

H. R. Beller and A. M. Spormann, sp. strain T, FEMS Microbiology Letters, vol.178, issue.1, pp.147-53, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13771.x

F. Berkovitch, Y. Nicolet, J. T. Wan, J. T. Jarrett, and C. L. Drennan, Crystal Structure of Biotin Synthase, an S-Adenosylmethionine-Dependent Radical Enzyme, Science, vol.303, issue.5654, pp.76-85, 2004.
DOI : 10.1126/science.1088493

M. B. Berry, G. N. Phillips, and . Jr, Crystal structures ofBacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+, Proteins: Structure, Function, and Genetics, vol.5, issue.3, pp.276-88, 1998.
DOI : 10.1002/(SICI)1097-0134(19980815)32:3<276::AID-PROT3>3.0.CO;2-G

V. Bianchi, R. Eliasson, M. Fontecave, E. Mulliez, D. M. Hoover et al., Flavodoxin Is Required for the Activation of the Anaerobic Ribonucleotide Reductase, Biochemical and Biophysical Research Communications, vol.197, issue.2, pp.792-799, 1993.
DOI : 10.1006/bbrc.1993.2548

V. Bianchi, E. Haggard-ljungquist, E. Pontis, and P. Reichard, Interruption of the ferredoxin (flavodoxin) NADP+ oxidoreductase gene of Escherichia coli does not affect anaerobic growth but increases sensitivity to paraquat., Journal of Bacteriology, vol.177, issue.15, pp.4528-4559, 1995.
DOI : 10.1128/jb.177.15.4528-4531.1995

S. Björklund, S. Skog, B. Tribukait, and L. Thelander, S-Phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs, Biochemistry, vol.29, issue.23, pp.5452-5460, 1990.
DOI : 10.1021/bi00475a007

J. M. Bollinger, . Jr, D. E. Edmondson, B. H. Huynh, J. Filley et al., Mechanism of assembly of the tyrosyl radical-dinuclear iron cluster cofactor of ribonucleotide reductase, Science, vol.253, issue.5017, pp.292-300, 1991.
DOI : 10.1126/science.1650033

J. M. Bollinger, . Jr, C. Krebs, A. Vicol, S. Chen et al., , the Putative Peroxodiiron(III) Complex from the Methane Monooxygenase Catalytic Cycle, Journal of the American Chemical Society, vol.120, issue.5, pp.1094-1095, 1998.
DOI : 10.1021/ja973651c

A. Boussac and A. L. Etienne, Midpoint potential of signal II (slow) in Tris-washed photosystem-II particles, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.766, issue.3, pp.576-581, 1984.
DOI : 10.1016/0005-2728(84)90117-8

W. Buckel and B. T. Golding, Radical species in the catalytic pathways of enzymes from anaerobes, FEMS Microbiology Reviews, vol.22, issue.5, pp.523-541, 1998.
DOI : 10.1111/j.1574-6976.1998.tb00385.x

D. Chen, C. Walsby, B. M. Hoffman, and P. A. Frey, Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S, J Am Chem Soc, vol.2, issue.12539, pp.3-11788, 2003.

K. Cho, F. Himo, A. Graslund, and P. E. Siegbahn, The Substrate Reaction Mechanism of Class III Anaerobic Ribonucleotide Reductase, The Journal of Physical Chemistry B, vol.105, issue.27, pp.6445-6452, 2001.
DOI : 10.1021/jp0107614

J. F. Collet, J. C. Souza, U. Jakob, and J. C. Bardwell, Thioredoxin 2, an Oxidative Stress-induced Protein, Contains a High Affinity Zinc Binding Site, Journal of Biological Chemistry, vol.278, issue.46, pp.45325-45357, 2003.
DOI : 10.1074/jbc.M307818200

P. W. Coschigano, T. S. Wehrman, and L. Y. Young, Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of a glycine free radical, Appl Environ Microbiol, vol.64, issue.5, pp.1650-1656, 1998.

M. M. Cosper, G. N. Jameson, R. Davydov, M. K. Eidsness, B. M. Hoffman et al., -methionine, Journal of the American Chemical Society, vol.124, issue.47, pp.14006-14013, 2002.
DOI : 10.1021/ja0283044

J. Coves, J. P. Laulhere, and M. Fontecave, The role of exogenous iron in the activation of ribonucleotide reductase from Escherichia coli, Journal of Biological Inorganic Chemistry, vol.2, issue.4, pp.418-426, 1997.
DOI : 10.1007/s007750050152

Z. Dauter, K. S. Wilson, L. C. Sieker, J. M. Moulis, and J. Meyer, Zinc-and ironrubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein, Proc Natl Acad Sci, issue.17, pp.93-8836, 1996.

C. Duboc-toia, A. K. Hassan, E. Mulliez, S. Ollagnier-de-choudens, M. Fontecave et al., Very High-Field EPR Study of Glycyl Radical Enzymes, Journal of the American Chemical Society, vol.125, issue.1, pp.38-47, 2003.
DOI : 10.1021/ja026690j

H. Eklund and M. Fontecave, Glycyl radical enzymes: a conservative structural basis for radicals, Structure, vol.7, issue.11, pp.257-62, 1999.
DOI : 10.1016/S0969-2126(00)80019-2

H. Eklund, U. Uhlin, M. Farnegardh, D. T. Logan, and P. Nordlund, Structure and function of the radical enzyme ribonucleotide reductase, Progress in Biophysics and Molecular Biology, vol.77, issue.3, pp.177-268, 2001.
DOI : 10.1016/S0079-6107(01)00014-1

R. Eliasson, M. Fontecave, H. Jornvall, M. Krook, E. Pontis et al., The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor., Proceedings of the National Academy of Sciences, vol.87, issue.9, pp.3314-3322, 1990.
DOI : 10.1073/pnas.87.9.3314

R. Eliasson, E. Pontis, M. Fontecave, C. Gerez, J. Harder et al., Characterization of components of the anaerobic ribonucleotide reductase system from Escherichia coli, J Biol Chem, vol.267, issue.35, pp.25541-25548, 1992.

R. Eliasson, E. Pontis, F. Eckstein, and P. Reichard, Interactions of 2'-modified azidoand haloanalogs of deoxycytidine 5'-triphosphate with the anaerobic ribonucleotide reductase of Escherichia coli, J Biol Chem, vol.269, issue.42, pp.26116-26136, 1994.

R. Eliasson, P. Reichard, E. Mulliez, S. Ollagnier, M. Fontecave et al., The Mechanism of the Anaerobic Escherichia coli Ribonucleotide Reductase Investigated with Nuclear Magnetic Resonance Spectroscopy, Biochemical and Biophysical Research Communications, vol.214, issue.1, pp.28-35, 1995.
DOI : 10.1006/bbrc.1995.2252

M. Eriksson, U. Uhlin, S. Ramaswamy, M. Ekberg, K. Regnstrom et al., Binding of allosteric effectors to ribonucleotide reductase protein R1: reduction of active-site cysteines promotes substrate binding, Structure, vol.5, issue.8, pp.1077-92, 1997.
DOI : 10.1016/S0969-2126(97)00259-1

R. G. Finke and B. P. Hay, ChemInform Abstract: THERMOLYSIS OF ADENOSYLCOBALAMIN: A PRODUCT, KINETIC, AND COBALT-CARBON (C5???) BOND DISSOCIATION ENERGY STUDY, Chemischer Informationsdienst, vol.23, issue.2, pp.3041-3043, 1984.
DOI : 10.1002/chin.198502308

R. G. Finke and B. D. Martin, Coenzyme AdoB12 vs AdoB12.-homolytic Co-C cleavage following electron transfer: a rate enhancement greater than or equal, J Inorg Biochem, vol.10, issue.401, pp.19-22, 1990.

S. J. Firbank, M. S. Rogers, C. M. Wilmot, D. M. Dooley, M. A. Halcrow et al., Crystal structure of the precursor of galactose oxidase: An unusual self-processing enzyme, Proceedings of the National Academy of Sciences, vol.37, issue.20, pp.98-12932, 2001.
DOI : 10.1021/bi980022m

M. Fontecave, R. Eliasson, and P. Reichard, Oxygen-sensitive ribonucleoside triphosphate reductase is present in anaerobic Escherichia coli., Proceedings of the National Academy of Sciences, vol.86, issue.7, pp.2147-51, 1989.
DOI : 10.1073/pnas.86.7.2147

M. Fontecave, E. Mulliez, and D. T. Logan, Deoxyribonucleotide synthesis in anaerobic microorganisms: The class III ribonucleotide reductase, Prog Nucleic Acid Res Mol Biol, vol.72, pp.95-127, 2002.
DOI : 10.1016/S0079-6603(02)72068-0

A. D. Frankel, J. M. Berg, and C. O. Pabo, Metal-dependent folding of a single zinc finger from transcription factor IIIA., Proceedings of the National Academy of Sciences, vol.84, issue.14, pp.4841-4846, 1987.
DOI : 10.1073/pnas.84.14.4841

P. A. Frey, Importance of organic radicals in enzymic cleavage of unactivated carbon-hydrogen bonds, Chemical Reviews, vol.90, issue.7, pp.1343-1357, 1990.
DOI : 10.1021/cr00105a014

M. Frey, M. Rothe, A. F. Wagner, and J. Knappe, Adenosylmethionine-dependent synthesis of the glycyl radical in pyruvate formate-lyase by abstraction of the glycine C-2 pro-S hydrogen atom. Studies of [2H]glycine-substituted enzyme and peptides homologous to the glycine 734 site, J Biol Chem, vol.269, issue.17, pp.12432-12439, 1994.

P. A. Frey and S. J. Booker, Radical mechanisms of S-adenosylmethionine-dependent enzymes, Adv Protein Chem, vol.58, pp.1-45, 2001.
DOI : 10.1016/S0065-3233(01)58001-8

P. A. Frey, Radical Mechanisms of Enzymatic Catalysis, Annual Review of Biochemistry, vol.70, issue.1, pp.121-169, 2001.
DOI : 10.1146/annurev.biochem.70.1.121

S. Gambarelli, F. Luttringer, D. Padovani, E. Mulliez, and M. Fontecave, Activation of the Anaerobic Ribonucleotide Reductase by S-Adenosylmethionine, ChemBioChem, vol.100, issue.11, pp.1960-1962, 2005.
DOI : 10.1002/cbic.200500182

URL : https://hal.archives-ouvertes.fr/hal-00379330

G. J. Gerfen, S. Licht, J. Willems, B. M. Hoffman, and J. Stubbe, Electron Paramagnetic Resonance Investigations of a Kinetically Competent Intermediate Formed in Ribonucleotide Reduction: Evidence for a Thiyl Radical-Cob(II)alamin Interaction, Journal of the American Chemical Society, vol.118, issue.35, pp.8192-8197, 1996.
DOI : 10.1021/ja960363s

M. L. Gilchrist, . Jr, J. A. Ball, D. W. Randall, and R. D. Britt, Proximity of the manganese cluster of photosystem II to the redox-active tyrosine YZ., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.92-9545, 1995.
DOI : 10.1073/pnas.92.21.9545

F. X. Gomis-ruth, W. Stocker, R. Huber, R. Zwilling, and W. Bode, Refined 1??8 ?? X-ray Crystal Structure of Astacin, a Zinc-endopeptidase from the Crayfish Astacus astacus L., Journal of Molecular Biology, vol.229, issue.4, pp.945-68, 1993.
DOI : 10.1006/jmbi.1993.1098

M. Good and M. Vasak, Spectroscopic properties of the cobalt(II)-substituted .alpha.-fragment of rabbit liver metallothionein, Biochemistry, vol.25, issue.11, pp.3328-3362, 1986.
DOI : 10.1021/bi00359a036

J. Halpern, S. H. Kim, and T. W. Leung, Cobalt-carbon bond dissociation energy of coenzyme B12, Journal of the American Chemical Society, vol.106, issue.26, pp.8317-8319, 1984.
DOI : 10.1021/ja00338a065

J. S. Hanas, D. J. Hazuda, D. F. Bogenhagen, F. Y. Wu, and C. W. Wu, Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene, J Biol Chem, vol.258, issue.23, pp.14120-14125, 1983.

P. Hänzelmann and H. Schindelin, Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans, Proceedings of the National Academy of Sciences, vol.7, issue.11, pp.12870-12875, 2004.
DOI : 10.1016/S0968-0004(00)89105-7

T. F. Henshaw, J. Cheek, and J. B. Broderick, Cluster of Pyruvate Formate-Lyase Activating Enzyme Generates the Glycyl Radical on Pyruvate Formate-Lyase:?? EPR-Detected Single Turnover, Journal of the American Chemical Society, vol.122, issue.34, pp.8331-8332, 2000.
DOI : 10.1021/ja002012q

F. Himo and L. A. Eriksson, Catalytic Mechanism of Pyruvate Formate-Lyase (PFL). A Theoretical Study, Journal of the American Chemical Society, vol.120, issue.44, pp.11449-11455, 1998.
DOI : 10.1021/ja9820947

M. Högbom, M. Galander, M. Andersson, M. Kolberg, W. Hofbauer et al., Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-A x-ray data, Proceedings of the National Academy of Sciences, vol.6, issue.3, pp.3209-3223, 2003.
DOI : 10.1007/s007750000205

J. B. Hunt, S. H. Neece, and A. Ginsburg, The use of 4-(2-pyridylazo)resorcinol in studies of zinc release from Escherichia coli aspartate transcarbamoylase, Analytical Biochemistry, vol.146, issue.1, pp.150-157, 1985.
DOI : 10.1016/0003-2697(85)90409-9

N. Ito, S. E. Phillips, C. Stevens, Z. B. Ogel, M. J. Mcpherson et al., Novel thioether bond revealed by a 1.7 ??? crystal structure of galactose oxidase, Nature, vol.350, issue.6313, pp.87-90, 1991.
DOI : 10.1038/350087a0

U. Jakob, M. Eser, and J. C. Bardwell, Redox Switch of Hsp33 Has a Novel Zinc-binding Motif, Journal of Biological Chemistry, vol.275, issue.49, pp.38302-38312, 2000.
DOI : 10.1074/jbc.M005957200

J. M. Johnson, H. B. Halsall, and W. R. Heineman, Redox activation of galactose oxidase: thin-layer electrochemical study, Biochemistry, vol.24, issue.7, pp.1579-1585, 1985.
DOI : 10.1021/bi00328a001

A. Jordan and P. Reichard, RIBONUCLEOTIDE REDUCTASES, Annual Review of Biochemistry, vol.67, issue.1, pp.71-98, 1998.
DOI : 10.1146/annurev.biochem.67.1.71

R. Karthein, R. Dietz, W. Nastainczyk, and H. H. Ruf, Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction, European Journal of Biochemistry, vol.26, issue.1-2, pp.313-333, 1988.
DOI : 10.1016/0003-2697(85)90442-7

D. S. King and P. Reichard, Mass Spectrometric Determination of the Radical Scission Site in the Anaerobic Ribonucleotide Reductase of Escherichia coli, Biochemical and Biophysical Research Communications, vol.206, issue.2, pp.731-736, 1995.
DOI : 10.1006/bbrc.1995.1103

A. Klug and J. W. Schwabe, Protein motifs 5. Zinc fingers, Faseb J, vol.9, issue.8, pp.597-604, 1995.

J. Knappe and A. F. Wagner, Stable glycyl radical from pyruvate formate-lyase and ribonucleotide reductase (III), Adv Protein Chem, vol.58, pp.277-315, 2001.
DOI : 10.1016/S0065-3233(01)58007-9

C. Krebs, W. E. Broderick, T. F. Henshaw, J. B. Broderick, and B. H. Huynh, Coordination of Adenosylmethionine to a Unique Iron Site of the [4Fe-4S] of Pyruvate Formate-Lyase Activating Enzyme:?? A M??ssbauer Spectroscopic Study, Journal of the American Chemical Society, vol.124, issue.6, pp.912-915, 2002.
DOI : 10.1021/ja017562i

C. J. Krieger, W. Roseboom, S. P. Albracht, and A. M. Spormann, A Stable Organic Free Radical in Anaerobic Benzylsuccinate Synthase of Azoarcus sp. Strain T, Journal of Biological Chemistry, vol.276, issue.16, pp.12924-12931, 2001.
DOI : 10.1074/jbc.M009453200

S. S. Krishna, I. Majumdar, and N. V. Grishin, Structural classification of zinc fingers: SURVEY AND SUMMARY, Nucleic Acids Research, vol.31, issue.2, pp.532-550, 2003.
DOI : 10.1093/nar/gkg161

J. A. Landro and P. Schimmel, Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold., Proceedings of the National Academy of Sciences, vol.90, issue.6, pp.2261-2266, 1993.
DOI : 10.1073/pnas.90.6.2261

G. Layer, J. Moser, D. W. Heinz, D. Jahn, and W. D. Schubert, Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes, The EMBO Journal, vol.6, issue.23, 2003.
DOI : 10.1093/emboj/cdg598

G. Layer, D. W. Heinz, D. Jahn, and W. D. Schubert, Structure and function of radical SAM enzymes, Current Opinion in Chemical Biology, vol.8, issue.5, pp.468-476, 2004.
DOI : 10.1016/j.cbpa.2004.08.001

L. Lehtio, J. G. Grossmann, B. Kokona, R. Fairman, and A. Goldman, Crystal Structure of a Glycyl Radical Enzyme from Archaeoglobus fulgidus, Journal of Molecular Biology, vol.357, issue.1, pp.221-256, 2006.
DOI : 10.1016/j.jmb.2005.12.049

B. W. Lepore, F. J. Ruzicka, P. A. Frey, and D. Ringe, The x-ray crystal structure of lysine-2,3-aminomutase from Clostridium subterminale, Proceedings of the National Academy of Sciences, vol.91, issue.8, pp.13819-13843, 2005.
DOI : 10.1073/pnas.91.8.3127

B. Leuthner and J. Heider, A two-component system involved in regulation of anaerobic toluene metabolism in Thauera aromatica, FEMS Microbiology Letters, vol.166, issue.1, pp.35-41, 1998.
DOI : 10.1111/j.1574-6968.1998.tb13180.x

C. Leutwein and J. Heider, Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and ??-oxidation of the first intermediate, (R)-(+)-benzylsuccinate, Microbiology, vol.145, issue.11, pp.3265-71, 1999.
DOI : 10.1099/00221287-145-11-3265

S. Licht, G. J. Gerfen, and J. Stubbe, Thiyl Radicals in Ribonucleotide Reductases, Science, vol.271, issue.5248, pp.477-81, 1996.
DOI : 10.1126/science.271.5248.477

D. T. Logan, J. Andersson, B. M. Sjoberg, and P. Nordlund, A Glycyl Radical Site in the Crystal Structure of a Class III Ribonucleotide Reductase, Science, vol.283, issue.5407, pp.1499-504, 1999.
DOI : 10.1126/science.283.5407.1499

D. T. Logan, E. Mulliez, K. M. Larsson, S. Bodevin, M. Atta et al., A metal-binding site in the catalytic subunit of anaerobic ribonucleotide reductase, Proceedings of the National Academy of Sciences, vol.55, issue.Pt 4, pp.3826-3857, 2003.
DOI : 10.1107/S0907444998017363

V. L. Macmurdo, H. Zheng, L. Que, and . Jr, Model for the Cofactor Formation Reaction of E. Coli Ribonucleotide Reductase. From a Diiron(II) Precursor to an FeIIIFeIV Species via a Peroxo Intermediate, Inorg. Chem, issue.11, pp.39-2254, 2000.

J. M. Matthews and M. Sunde, Zinc Fingers--Folds for Many Occasions, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), vol.54, issue.6, pp.351-356, 2002.
DOI : 10.1080/15216540216035

S. W. May and J. Y. Kuo, Preparation and properties of cobalt(II) rubredoxin, Biochemistry, vol.17, issue.16, pp.3333-3341, 1978.
DOI : 10.1021/bi00609a025

K. A. Mccall, C. Huang, and C. A. Fierke, Function and mechanism of zinc metalloenzymes, J Nutr, vol.130, pp.1437-1483, 2000.

L. Mciver, C. Leadbeater, D. J. Campopiano, D. Alexeev, and R. L. Baxter, An investigation of flavoprotein redox partners, Biochemical Society Transactions, vol.26, issue.3, p.271, 1998.
DOI : 10.1042/bst026s271

J. Miller, A. D. Mclachlan, and A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes, Embo J, vol.4, issue.6, pp.1609-1623, 1985.

E. Mulliez, M. Fontecave, J. Gaillard, and P. Reichard, An iron-sulfur center and a free radical in the active anaerobic ribonucleotide reductase of Escherichia coli, J Biol Chem, vol.268, issue.4, pp.2296-2305, 1993.

E. Mulliez, S. Ollagnier, M. Fontecave, R. Eliasson, and P. Reichard, Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli., Proceedings of the National Academy of Sciences, vol.92, issue.19, pp.92-8759, 1995.
DOI : 10.1073/pnas.92.19.8759

E. Mulliez, S. Ollagnier-de-choudens, C. Meier, M. Cremonini, C. Luchinat et al., Iron-sulfur interconversions in the anaerobic ribonucleotide reductase from Escherichia coli, Journal of Biological Inorganic Chemistry, vol.4, issue.5, pp.614-634, 1999.
DOI : 10.1007/s007750050385

E. Mulliez, D. Padovani, M. Atta, C. Alcouffe, and M. Fontecave, Activation of Class III Ribonucleotide Reductase by Flavodoxin:?? A Protein Radical-Driven Electron Transfer to the Iron???Sulfur Center, Biochemistry, vol.40, issue.12, pp.3730-3736, 2001.
DOI : 10.1021/bi001746c

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-576, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

L. C. Myers, M. P. Terranova, H. M. Nash, M. A. Markus, and G. L. Verdine, Zinc binding by the methylation signaling domain of the Escherichia coli Ada protein, Biochemistry, vol.31, issue.19, pp.4541-4548, 1992.
DOI : 10.1021/bi00134a002

L. C. Myers, M. P. Terranova, A. E. Ferentz, G. Wagner, and G. L. Verdine, Repair of DNA methylphosphotriesters through a metalloactivated cysteine nucleophile, Science, vol.261, issue.5125, pp.1164-1171, 1993.
DOI : 10.1126/science.8395079

P. Nordlund, B. M. Sjoberg, and H. Eklund, Three-dimensional structure of the free radical protein of ribonucleotide reductase, Nature, vol.345, issue.6276, pp.593-601, 1990.
DOI : 10.1038/345593a0

P. Nordlund and H. Eklund, Structure and Function of the Escherichia coli Ribonucleotide Reductase Protein R2, Journal of Molecular Biology, vol.232, issue.1, pp.123-64, 1993.
DOI : 10.1006/jmbi.1993.1374

M. C. Olcott, J. Andersson, and B. M. Sjoberg, Localization and Characterization of Two Nucleotide-binding Sites on the Anaerobic Ribonucleotide Reductase from Bacteriophage T4, Journal of Biological Chemistry, vol.273, issue.38, pp.24853-60, 1998.
DOI : 10.1074/jbc.273.38.24853

S. Ollagnier, E. Mulliez, J. Gaillard, R. Eliasson, M. Fontecave et al., The anaerobic Escherichia coli ribonucleotide reductase. Subunit structure and iron sulfur center, J Biol Chem, vol.271, issue.16, pp.9410-9416, 1996.

S. Ollagnier, E. Mulliez, P. P. Schmidt, R. Eliasson, J. Gaillard et al., Activation of the Anaerobic Ribonucleotide Reductase fromEscherichia coli: THE ESSENTIAL ROLE OF THE IRON-SULFUR CENTER FORS-ADENOSYLMETHIONINE REDUCTION, Journal of Biological Chemistry, vol.272, issue.39, pp.24216-24239, 1997.
DOI : 10.1074/jbc.272.39.24216

D. Padovani, E. Mulliez, and M. Fontecave, Activation of Class III Ribonucleotide Reductase by Thioredoxin, Journal of Biological Chemistry, vol.276, issue.13, pp.9587-9596, 2001.
DOI : 10.1074/jbc.C000895200

D. Padovani, Centres FeS et catalyse rédox -Activation de la ribonucléotide réductase anaérobie en protéine radicalaire, Thèse de l'Université Joseph Fourier, 2002.

Y. Pétillot, E. Forest, I. Mathieu, J. Meyer, and J. M. Moulis, rubredoxin, Biochemical Journal, vol.296, issue.3, pp.657-61, 1993.
DOI : 10.1042/bj2960657

L. Que and Y. Dong, Modeling the Oxygen Activation Chemistry of Methane Monooxygenase and Ribonucleotide Reductase, Accounts of Chemical Research, vol.29, issue.4, pp.190-196, 1996.
DOI : 10.1021/ar950146g

C. Raynaud, P. Sarcabal, I. Meynial-salles, C. Croux, and P. Soucaille, Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum, Proceedings of the National Academy of Sciences, vol.29, issue.4, pp.5010-5015, 2003.
DOI : 10.1046/j.1365-2958.1998.00941.x

S. G. Reddy, K. K. Wong, C. V. Parast, J. Peisach, R. S. Magliozzo et al., Dioxygen Inactivation of Pyruvate Formate-Lyase:?? EPR Evidence for the Formation of Protein-Based Sulfinyl and Peroxyl Radicals, Biochemistry, vol.37, issue.2, pp.558-63, 1998.
DOI : 10.1021/bi972086n

P. Reichard and A. Ehrenberg, Ribonucleotide reductase--a radical enzyme, Science, vol.221, issue.4610, pp.514-523, 1983.
DOI : 10.1126/science.6306767

P. Reichard, The anaerobic ribonucleotide reductase from Escherichia coli, J Biol Chem, vol.268, issue.12, pp.8383-8389, 1993.

M. S. Rogers and D. M. Dooley, Posttranslationally modified tyrosines from galactose oxidase and cytochrome C oxidase, Adv Protein Chem, vol.58, pp.387-436, 2001.
DOI : 10.1016/S0065-3233(01)58009-2

M. Sahlin, B. M. Sjoberg, G. Backes, T. Loehr, and J. Sanders-loehr, Activation of the iron-containing B2 protein of ribonucleotide reductase by hydrogen peroxide, Biochemical and Biophysical Research Communications, vol.167, issue.2, 1990.
DOI : 10.1016/0006-291X(90)92098-K

R. Sankaranarayanan, A. C. Dock-bregeon, B. Rees, M. Bovee, J. Caillet et al., Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase, Nat Struct Biol, vol.7, issue.6, pp.461-466, 2000.

T. Selmer and P. I. Andrei, Clostridium difficile, European Journal of Biochemistry, vol.55, issue.Suppl. C, pp.1363-72, 2001.
DOI : 10.1046/j.1432-1327.2001.02001.x

T. Selmer, A. J. Pierik, and J. Heider, New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria, Biological Chemistry, vol.386, issue.10, pp.981-989, 2005.
DOI : 10.1515/BC.2005.114

A. Siedow, R. Cramm, R. A. Siddiqui, and B. Friedrich, A megaplasmid-borne anaerobic ribonucleotide reductase in Alcaligenes eutrophus H16, J Bacteriol, vol.181, issue.16, pp.4919-4947, 1999.

M. Sivaraja, D. B. Goodin, . Smith, and B. M. Hoffman, Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES, Science, vol.245, issue.4919, pp.738-778, 1989.
DOI : 10.1126/science.2549632

B. M. Sjoberg and P. Reichard, Nature of the free radical in ribonucleotide reductase from Escherichia coli, J Biol Chem, vol.252, issue.2, pp.536-577, 1977.

B. M. Sjoberg, M. Karlsson, and H. Jornvall, Half-site reactivity of the tyrosyl radical of ribonucleotide reductase from Escherichia coli, J Biol Chem, vol.262, issue.20, pp.9736-9743, 1987.

H. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-spindola, and N. E. Miller, Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods, Nucleic Acids Research, vol.29, issue.5, pp.1097-106, 2001.
DOI : 10.1093/nar/29.5.1097

E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S. K. Lee et al., Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes, Chemical Reviews, vol.100, issue.1, pp.235-350, 2000.
DOI : 10.1021/cr9900275

J. Stubbe, Ribonucleotide Reductases, J Biol Chem, vol.262, issue.10, pp.5329-5361, 1990.
DOI : 10.1002/9780470123096.ch6

J. Stubbe and W. A. Van-der-donk, Protein Radicals in Enzyme Catalysis, Chemical Reviews, vol.98, issue.2, pp.705-762, 1998.
DOI : 10.1021/cr9400875

J. Stubbe and P. Riggs-gelasco, Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase, Trends in Biochemical Sciences, vol.23, issue.11, pp.438-481, 1998.
DOI : 10.1016/S0968-0004(98)01296-1

J. Stubbe, D. G. Nocera, C. S. Yee, and M. C. Chang, Radical Initiation in the Class I Ribonucleotide Reductase: Long-Range Proton-Coupled Electron Transfer?, ChemInform, vol.103, issue.32, pp.2167-201, 2003.
DOI : 10.1002/chin.200332275

X. Sun, J. Harder, M. Krook, H. Jornvall, B. M. Sjoberg et al., A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene., Proceedings of the National Academy of Sciences, vol.90, issue.2, pp.577-81, 1993.
DOI : 10.1073/pnas.90.2.577

X. Sun, R. Eliasson, E. Pontis, J. Andersson, G. Buist et al., Generation of the Glycyl Radical of the Anaerobic Escherichia coli Ribonucleotide Reductase Requires a Specific Activating Enzyme, Journal of Biological Chemistry, vol.270, issue.6, pp.2443-2449, 1995.
DOI : 10.1074/jbc.270.6.2443

X. Sun, S. Ollagnier, P. P. Schmidt, M. Atta, E. Mulliez et al., The free radical of the anaerobic ribonucleotide reductase from Escherichia coli is at glycine 681, J Biol Chem, vol.271, issue.12, pp.6827-6858, 1996.

J. Tamarit, E. Mulliez, C. Meier, A. Trautwein, and M. Fontecave, The Anaerobic Ribonucleotide Reductase from Escherichia coli: THE SMALL PROTEIN IS AN ACTIVATING ENZYME CONTAINING A [4Fe-4S]2+ CENTER, Journal of Biological Chemistry, vol.274, issue.44, pp.31291-31297, 1999.
DOI : 10.1074/jbc.274.44.31291

M. Tanaka, S. Funahashi, and K. Shirai, Kinetics of the ligand substitution reaction of the zinc(II)-4-(2-pyridylazo)resorcinol complex with (ethylene glycol)bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid, Inorganic Chemistry, vol.7, issue.3, pp.573-578, 1968.
DOI : 10.1021/ic50061a038

E. Torrents, R. Eliasson, H. Wolpher, A. Graslund, and P. Reichard, The Anaerobic Ribonucleotide Reductase from Lactococcus lactis: INTERACTIONS BETWEEN THE TWO PROTEINS NrdD AND NrdG, Journal of Biological Chemistry, vol.276, issue.36, pp.33488-94, 2001.
DOI : 10.1074/jbc.M103743200

V. Unkrig, F. A. Neugebauer, and J. Knappe, The free radical of pyruvate formate-lyase. Characterization by EPR spectroscopy and involvement in catalysis as studied with the substrate-analogue hypopthosphite, European Journal of Biochemistry, vol.27, issue.3, pp.723-731, 1989.
DOI : 10.1016/0003-9861(84)90054-7

M. Uppsten, M. Farnegardh, V. Domkin, and U. Uhlin, The First Holocomplex Structure of Ribonucleotide Reductase Gives New Insight into its Mechanism of Action, Journal of Molecular Biology, vol.359, issue.2, pp.365-377, 2006.
DOI : 10.1016/j.jmb.2006.03.035

B. L. Vallee and D. S. Auld, Active-site zinc ligands and activated H2O of zinc enzymes., Proceedings of the National Academy of Sciences, vol.87, issue.1, pp.220-224, 1990.
DOI : 10.1073/pnas.87.1.220

B. L. Vallee and D. S. Auld, Zinc coordination, function, and structure of zinc enzymes and other proteins, Biochemistry, vol.29, issue.24, pp.5647-59, 1990.
DOI : 10.1021/bi00476a001

B. L. Vallee and D. S. Auld, New perspective on zinc biochemistry: Cocatalytic sites in multi-zinc enzymes, Biochemistry, vol.32, issue.26, pp.6493-500, 1993.
DOI : 10.1021/bi00077a001

R. A. Van-der-meer, J. A. Jongejan, and J. A. Duine, Pyrroloquinoline quinone as cofactor in galactose oxidase, J Biol Chem, vol.264, issue.14, pp.7792-7796, 1989.

I. Vass and S. Styring, pH-Dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials, Biochemistry, vol.30, issue.3, pp.830-839, 1991.
DOI : 10.1021/bi00217a037

K. Verfurth, A. J. Pierik, C. Leutwein, S. Zorn, and J. Heider, Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m -xylene metabolism, Archives of Microbiology, vol.181, issue.2, pp.155-62, 2004.
DOI : 10.1007/s00203-003-0642-4

A. F. Wagner, M. Frey, F. A. Neugebauer, W. Schafer, and J. Knappe, The free radical in pyruvate formate-lyase is located on glycine-734., Proceedings of the National Academy of Sciences, vol.89, issue.3, pp.996-1000, 1992.
DOI : 10.1073/pnas.89.3.996

A. F. Wagner, J. Demand, G. Schilling, T. Pils, and J. Knappe, A Dehydroalanyl Residue Can Capture the 5???-Deoxyadenosyl Radical Generated fromS-Adenosylmethionine by Pyruvate Formate-Lyase-Activating Enzyme, Biochemical and Biophysical Research Communications, vol.254, issue.2, pp.306-316, 1999.
DOI : 10.1006/bbrc.1998.9931

B. J. Wallar and J. D. Lipscomb, Dioxygen Activation by Enzymes Containing Binuclear Non-Heme Iron Clusters, Chemical Reviews, vol.96, issue.7, pp.2625-2658, 1996.
DOI : 10.1021/cr9500489

C. J. Walsby, W. Hong, W. E. Broderick, J. Cheek, D. Ortillo et al., Cluster of Pyruvate Formate-Lyase Activating Enzyme, Journal of the American Chemical Society, vol.124, issue.12, pp.3143-51, 2002.
DOI : 10.1021/ja012034s

C. J. Walsby, D. Ortillo, W. E. Broderick, J. B. Broderick, and B. M. Hoffman, An Anchoring Role for FeS Clusters:?? Chelation of the Amino Acid Moiety of S-Adenosylmethionine to the Unique Iron Site of the [4Fe???4S] Cluster of Pyruvate Formate-Lyase Activating Enzyme, Journal of the American Chemical Society, vol.124, issue.38, pp.11270-11271, 2002.
DOI : 10.1021/ja027078v

M. M. Whittaker and J. W. Whittaker, The active site of galactose oxidase, J Biol Chem, vol.263, issue.13, pp.6074-80, 1988.

M. M. Whittaker, V. L. Devito, S. A. Asher, and J. W. Whittaker, Resonance Raman evidence for tyrosine involvement in the radical site of galactose oxidase, J Biol Chem, vol.264, issue.13, pp.7104-7110, 1989.

M. M. Whittaker and J. W. Whittaker, A tyrosine-derived free radical in apogalactose oxidase, J Biol Chem, vol.265, issue.17, pp.9610-9613, 1990.

M. M. Whittaker and J. W. Whittaker, Ligand interactions with galactose oxidase: mechanistic insights, Biophysical Journal, vol.64, issue.3, pp.762-72, 1993.
DOI : 10.1016/S0006-3495(93)81437-1

J. W. Whittaker, The radical chemistry of galactose oxidase, Archives of Biochemistry and Biophysics, vol.433, issue.1, pp.227-266, 2005.
DOI : 10.1016/j.abb.2004.08.034

D. K. Wilson and F. A. Quiocho, A pre-transition-state mimic of an enzyme: x-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water, Biochemistry, vol.32, issue.7, pp.1689-94, 1993.
DOI : 10.1021/bi00058a001

R. Yamada, Y. Tamao, and R. L. Blakley, Cobamides and ribonucleotide reduction. Degradation of 5'-deoxyadenosylcobalamin by ribonucleoside triphosphate reductase and binding of degradation products to the active center, Biochemistry, vol.10, issue.21, pp.3959-68, 1971.
DOI : 10.1021/bi00797a025

P. Young, J. Andersson, M. Sahlin, and B. M. Sjoberg, Bacteriophage T4 Anaerobic Ribonucleotide Reductase Contains a Stable Glycyl Radical at Position 580, Journal of Biological Chemistry, vol.271, issue.34, pp.20770-20775, 1996.
DOI : 10.1074/jbc.271.34.20770