G. Sur, L. C. Aux, and . Fig, 11 ? a) Spectre de temps de vol d'agrégats de cobalt. b) Zoom et indexation des premiers pics du spectre complet en a)

G. Sur, L. C. Propriétés-magnétiques-d-'un-agrégat, . De, . Unique, . Modèle et al., 3 ? Surfaces d'énergies d'anisotropie de surface et magnéto-cristalline d'un agrégat de huit couches possédant 0

A. De, . Posés, and . Coo, Pour l'autre moitié des agrégats, appartenant tous au même micro-SQUID D, on constate que les directions du champ de décalage ne sont pas colinéaires au champ H FC (?40°< ? E < 0°) De plus, le signe de ce décalage est positif comme pour l'agrégat D-1. Comme nous l

. Si, 30, la direction du champ de décalage est aléatoire, selon la rugosité et l'anisotropie locale de la couche AF, bien que pour un même micro-SQUID presque tous les champs de décalages soient positifs

. Les-champs-d, échange mesurés dans cette géométrie ? agrégats/CoO ? sont très faibles (en moyenne 15 Oe) Cependant, ils ne sont pas en contradiction avec les mesures macroscopiques si 4. PROPRIÉTÉS MAGNÉTIQUES D'UN AGRÉGAT DE COBALT UNIQUE sont mises en évidence par des flèches pleines lorsqu'il s'agit de la direction réelle, et en tirets lorsqu'il s'agit d'une projection dans le plan de mesure XY (µSQ)

. Dans-les-deux-représentations, nous avons reporté les axes d'anisotropie magnétique (EA) et d'anisotropie d'échange (HB), ainsi que la procédure appliquée lors du refroidissement de l'échantillon (ZFC ou FC) Dans le cas FC, nous avons aussi indiqué par une flèche la direction

. La-forme-de, on mesure est symétrique arrondie et décalée. D'après la règle n°3 (en fin de section 4.5), cela signifie que soit le champ de décalage est dans le plan de mesure et l'axe d'anisotropie de l'agrégat est en dehors de ce plan (hypothèse 1)

7. Anisotropie-d-'échange-d-'un-agrégat, . De, . Oxydé, and . Fig, 36 ? Mesures des champs de retournement de l'agrégat E-1. Le champ H FC est appliqué le long de l'axe X positif

P. Magnétiques-d-'un-agrégat, . De, . Unique, and . Fig, 39 ? Mesures des champs de retournement de l'agrégat E-1. Le champ H FC est appliqué le long de l'axe Y négatif (FC5)

P. Magnétiques-d-'un-agrégat, . De, and . Unique-enfin, en ce qui concerne l'interprétation des résultats de la procédure ZFC, on a le choix entre deux hypothèses. Dans l'hypothèse 1 le champ de décalage est dans le plan de mesure et l'axe d'anisotropie de la particule en dehors de ce plan. Le fait que le champ d'échange et la direction d'anisotropie magnétique soient les mêmes que pour les procédures FC suivantes est un argument en faveur de cette hypothèse. Par contre le champ d'anisotropie est plus faible que pour toutes les autres mesures. Cette dernière remarque nous incite plutôt à choisir la seconde hypothèse

P. Dans-ce-cas, . Magnétiques-d-'un-agrégat, . De, . Unique, and . Fig, astroïde n'est pas symétrique, cela signifie d'après la règle n°2 (fin de la section 4.5), que le champ de décalage possède une composante perpendiculaire au plan de mesure. On constate que l'ajustement de cette astroïde avec le modèle de Meiklejohn et Bean n'est pas parfait. Cela est dû au fait que l'on ne tient pas compte des termes d'anisotropie 4

P. Magnétiques-d-'un-agrégat, . De, . Unique, and . Fig, 45 ? Mesures des champs de retournement de l'agrégat E-2. Le champ H FC est appliqué le long de l'axe Y positif (FC4)

. Dans-le-plan-de-mesure, lorsque le champ H FC est appliqué selon l'axe X le signe de la projection du champ de décalage est négatif, lorsque H FC est appliqué selon l'axe Y , il est positif. Nous avons attribué cette différence à l'amplitude du champ H FC qui est différente selon X

. La-forme-de-l, astroïde de l'agrégat E-4 est très aplatie, ce qui indique une anisotropie fortement uniaxiale

. Enfin, agrégat F-1 est majoritairement d'anisotropie cubique. L'astroïde mesurée n'est pas complète. Elle ne représente qu'une partie de la distribution des champs de retournement à 2D

M. Gruyters and D. , oxidation, Journal of Applied Physics, vol.88, issue.11, pp.6610-6613, 2000.
DOI : 10.1063/1.1321782

V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord et al., Beating the superparamagnetic limit with exchange bias, Nature, vol.423, issue.6942, pp.850-124, 2003.
DOI : 10.1038/nature01687

B. D. Cullity, Introduction to Magnetic Material, p.16, 1972.
DOI : 10.1002/9780470386323

W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy, Physical Review, vol.102, issue.5, pp.1413-1414, 1956.
DOI : 10.1103/PhysRev.102.1413

J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach et al., Exchange bias in nanostructures, Physics Reports, vol.422, issue.3, pp.65-117, 2005.
DOI : 10.1016/j.physrep.2005.08.004

W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy, Physical Review, vol.105, issue.3, pp.904-913, 1957.
DOI : 10.1103/PhysRev.105.904

J. Nogués and I. K. Schuller, Exchange bias, Journal of Magnetism and Magnetic Materials, vol.192, issue.2, pp.203-232, 1999.
DOI : 10.1016/S0304-8853(98)00266-2

D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate, Journal of Applied Physics, vol.62, issue.7, pp.3047-3060, 1987.
DOI : 10.1063/1.339367

A. P. Malozemoff, Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Physical Review B, vol.35, issue.7, pp.3679-3682, 1987.
DOI : 10.1103/PhysRevB.35.3679

K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Bilayers, Physical Review Letters, vol.79, issue.6, pp.1130-1133, 1997.
DOI : 10.1103/PhysRevLett.79.1130

K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers (invited), Journal of Applied Physics, vol.83, issue.11, pp.6888-6892, 1998.
DOI : 10.1063/1.367721

E. Fulcomer and S. H. Charap, Thermal fluctuation aftereffect model for some systems with ferromagnetic???antiferromagnetic coupling, Journal of Applied Physics, vol.43, issue.10, pp.4190-4199, 1972.
DOI : 10.1063/1.1660894

N. C. Koon, Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces, Physical Review Letters, vol.78, issue.25, pp.4865-4868, 1997.
DOI : 10.1103/PhysRevLett.78.4865

T. C. Schulthess and W. H. Butler, Consequences of Spin-Flop Coupling in Exchange Biased Films, Physical Review Letters, vol.81, issue.20, pp.4516-4529, 1998.
DOI : 10.1103/PhysRevLett.81.4516

R. Skomski, Nanomagnetics, Journal of Physics: Condensed Matter, vol.15, issue.20, pp.841-896, 2003.
DOI : 10.1088/0953-8984/15/20/202

E. Stoner and E. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.240, issue.826, pp.599-642, 1948.
DOI : 10.1098/rsta.1948.0007

P. Tannenwald and R. Weber, Exchange Integral in Cobalt from Spin-Wave Resonance, Physical Review, vol.121, issue.3, pp.715-731, 1961.
DOI : 10.1103/PhysRev.121.715

M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Mélinon et al., Magnetic anisotropy in single clusters, Physical Review B, vol.69, issue.2, pp.24401-131, 2004.
DOI : 10.1103/PhysRevB.69.024401

A. J. Sievers, I. , and M. Tinkham, Far Infrared Antiferromagnetic Resonance in MnO and NiO, Physical Review, vol.129, issue.4, pp.1566-1571, 1963.
DOI : 10.1103/PhysRev.129.1566

J. I. Kaplan, Magnetic Dipolar Interactions in MnO and in Ferrites, The Journal of Chemical Physics, vol.22, issue.10, pp.1709-1727, 1954.
DOI : 10.1063/1.1739881

M. T. Hutchings and E. J. Samuelsen, Measurement of Spin-Wave Dispersion in NiO by Inelastic Neutron Scattering and Its Relation to Magnetic Properties, Physical Review B, vol.6, issue.9, pp.3447-3461, 1972.
DOI : 10.1103/PhysRevB.6.3447

W. L. Roth, Neutron and Optical Studies of Domains in NiO, Journal of Applied Physics, vol.31, issue.11, pp.2000-2011, 1960.
DOI : 10.1063/1.1735486

W. L. Roth, Magnetic Structures of MnO, FeO, CoO, and NiO, Physical Review, vol.110, issue.6, pp.1333-1341, 1958.
DOI : 10.1103/PhysRev.110.1333

G. A. Slack, Crystallography and Domain Walls in Antiferromagnetic NiO Crystals, Journal of Applied Physics, vol.31, issue.9, pp.1571-1582, 1960.
DOI : 10.1063/1.1735895

T. Ambrose and C. L. Chien, Finite-Size Effects and Uncompensated Magnetization in Thin Antiferromagnetic CoO Layers, Physical Review Letters, vol.76, issue.10, pp.1743-1746, 1996.
DOI : 10.1103/PhysRevLett.76.1743

Y. J. Tang, D. J. Smith, B. L. Zink, F. Hellman, and A. E. Berkowitz, Finite size effects on the moment and ordering temperature in antiferromagnetic CoO layers, Physical Review B, vol.67, issue.5, pp.54408-54426, 2003.
DOI : 10.1103/PhysRevB.67.054408

M. J. Carey, A. E. Berkowitz, J. A. Borchers, and R. W. Erwin, Strong interlayer coupling in CoO/NiO antiferromagnetic superlattices, Physical Review B, vol.47, issue.15, pp.9952-9955, 1993.
DOI : 10.1103/PhysRevB.47.9952

V. L. Safonov and H. N. Bertram, Collective thermal fluctuations in nominally "independent" granular recording media: application to thermal decay, IEEE Transactions on Magnetics, vol.37, issue.4, pp.1550-1553, 2001.
DOI : 10.1109/20.950897

P. J. Jensen, Magnetic recording medium with improved temporal stability, Applied Physics Letters, vol.78, issue.15, pp.2190-2192, 2001.
DOI : 10.1063/1.1362282

J. Mejía-lópez, D. Altbir, and I. K. Schuller, Relaxation times in exchange-biased nanostructures, Applied Physics Letters, vol.83, issue.2, pp.332-334, 2003.
DOI : 10.1063/1.1592637

E. Eftaxias and K. N. Trohidou, Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology, Physical Review B, vol.71, issue.13, pp.134406-134425, 2005.
DOI : 10.1103/PhysRevB.71.134406

X. Zianni and K. N. Trohidou, Monte Carlo simulations on the coercive behaviour of oxide coated ferromagnetic particles, Journal of Physics: Condensed Matter, vol.10, issue.33, pp.7475-7483, 1998.
DOI : 10.1088/0953-8984/10/33/016

O. Iglesias, X. Batlle, and A. Labarta, Microscopic origin of exchange bias in core/shell nanoparticles, Physical Review B, vol.72, issue.21, pp.212401-212420, 2005.
DOI : 10.1103/PhysRevB.72.212401

D. Givord, V. Skumryev, and J. Nogués, Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix, Journal of Magnetism and Magnetic Materials, vol.294, issue.2, pp.111-116, 2005.
DOI : 10.1016/j.jmmm.2005.03.022

URL : https://hal.archives-ouvertes.fr/hal-00102531

W. A. De-heer, The physics of simple metal clusters: experimental aspects and simple models, Reviews of Modern Physics, vol.65, issue.3, pp.611-676, 1993.
DOI : 10.1103/RevModPhys.65.611

H. Haberland, M. Karrais, M. Mall, and Y. Thurner, Thin films from energetic cluster impact: A feasibility study, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, issue.5, pp.3266-3271, 1992.
DOI : 10.1116/1.577853

R. Morel, A. Brenac, P. Bayle-guillemaud, C. Portemont, and F. L. Rizza, Growth and properties of cobalt clusters made by sputtering gas-aggregation, The European Physical Journal D - Atomic, Molecular and Optical Physics, vol.24, issue.1-3, pp.287-290, 2003.
DOI : 10.1140/epjd/e2003-00158-9

H. Hettema and J. S. Mcfeaters, The direct Monte Carlo method applied to the homogeneous nucleation problem, The Journal of Chemical Physics, vol.105, issue.7, pp.2816-2827, 1996.
DOI : 10.1063/1.472144

J. L. Rodríguez-lópez, F. Aguilera-granja, K. Michaelian, and A. Vega, Structure and magnetism of cobalt clusters, Physical Review B, vol.67, issue.17, pp.174413-174440, 2003.
DOI : 10.1103/PhysRevB.67.174413

M. Pellarin, B. Baguenard, J. L. Vialle, M. Broyer, J. Miller et al., Evidence for icosahedral atomic shell structure in nickel and cobalt clusters. Comparison with iron clusters, Chemical Physics Letters, vol.217, issue.4, pp.349-376, 1994.
DOI : 10.1016/0009-2614(93)E1474-U

L. B. Kiss, J. Söderlund, G. A. Niklasson, and C. G. Granqvist, New approach to the origin of lognormal size distributions of nanoparticles, Nanotechnology, vol.10, issue.1, pp.25-28, 1999.
DOI : 10.1088/0957-4484/10/1/006

M. J. Mackenzie, A. J. Moore, and J. F. Nicholas, Bonds broken at atomically flat crystal surfaces???I, Journal of Physics and Chemistry of Solids, vol.23, issue.3, pp.185-218, 1962.
DOI : 10.1016/0022-3697(62)90001-X

T. Wang, C. Lee, and L. D. Schmidt, Shape and orientation of supported Pt particles, Surface Science, vol.163, issue.1, pp.181-215, 1985.
DOI : 10.1016/0039-6028(85)90857-X

M. Flueli and J. P. , Surface energy anisotropy measurements on a small cuboctahedron of gold observed by high resolution electron microscopy (HREM), Journal of Crystal Growth, vol.91, issue.1-2, pp.67-101, 1988.
DOI : 10.1016/0022-0248(88)90368-5

L. D. Marks and P. M. Ajayan, Equilibrium shape of a buoyant particle, Journal of Materials Research, vol.49, issue.07, pp.1496-1530, 1990.
DOI : 10.1016/0304-3991(86)90172-5

S. Ino, Epitaxial Growth of Metals on Rocksalt Faces Cleaved in Vacuum. II. Orientation and Structure of Gold Particles Formed in Ultrahigh Vacuum, Journal of the Physical Society of Japan, vol.21, issue.2, pp.346-380, 1966.
DOI : 10.1143/JPSJ.21.346

S. Ino and S. Ogawa, Multiply Twinned Particles at Earlier Stages of Gold Film Formation on Alkalihalide Crystals, Journal of the Physical Society of Japan, vol.22, issue.6, pp.1365-1399, 1967.
DOI : 10.1143/JPSJ.22.1365

S. Ino, Stability of Multiply-Twinned Particles, Journal of the Physical Society of Japan, vol.27, issue.4, pp.941-53, 1969.
DOI : 10.1143/JPSJ.27.941

L. D. Marks, Imaging small particles, Ultramicroscopy, vol.18, issue.1-4, pp.445-452, 1985.
DOI : 10.1016/0304-3991(85)90164-0

C. Mottet, G. Tréglia, and B. Legrand, New magic numbers in metallic clusters: an unexpected metal dependence, Surface Science, vol.383, issue.1, pp.719-727, 1997.
DOI : 10.1016/S0039-6028(97)00226-4

M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas et al., Surface effects on the magnetic properties of ultrafine cobalt particles, Physical Review B, vol.57, issue.5, pp.2925-2935, 1998.
DOI : 10.1103/PhysRevB.57.2925

V. Dureuil, C. Ricolleau, M. Gandais, and C. Grigis, Phase transitions in Co nanoclusters grown by pulsed laser deposition, The European Physical Journal D, vol.14, issue.1, pp.83-88, 2001.
DOI : 10.1007/s100530170238

M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis et al., Magnetic Anisotropy of a Single Cobalt Nanocluster, Physical Review Letters, vol.86, issue.20, pp.4676-4713, 2001.
DOI : 10.1103/PhysRevLett.86.4676

J. P. Chen, C. M. Sorensen, K. J. Klabunde, and G. C. Hadjipanayis, Magnetic properties of nanophase cobalt particles synthesized in inversed micelles, Journal of Applied Physics, vol.76, issue.10, pp.6316-6318, 1994.
DOI : 10.1063/1.358280

O. Kitakami, H. Sato, Y. Shimada, F. Sato, and M. Tanaka, Size effect on the crystal phase of cobalt fine particles, Physical Review B, vol.56, issue.21, pp.13849-13854, 1997.
DOI : 10.1103/PhysRevB.56.13849

S. A. Koch, G. Palasantzas, T. Vystavel, J. M. Th, C. De-hosson et al., Magnetic and structural properties of Co nanocluster thin films, Physical Review B, vol.71, issue.8, pp.85410-60, 2005.
DOI : 10.1103/PhysRevB.71.085410

T. P. Martin, T. Bergmann, H. Göhlich, and T. Lange, Shell structure of clusters, The Journal of Physical Chemistry, vol.95, issue.17, pp.6421-6429, 1991.
DOI : 10.1021/j100170a009

C. L. Cleveland and U. Landman, The energetics and structure of nickel clusters: Size dependence, The Journal of Chemical Physics, vol.94, issue.11, pp.7376-7396, 1991.
DOI : 10.1063/1.460169

T. Deutsch, P. Bayle, F. Lançon, and J. Thibault, Computer simulation of Au(001)/Ni multilayers: comparison with experiments, Journal of Physics: Condensed Matter, vol.7, issue.32, pp.6407-6421, 1995.
DOI : 10.1088/0953-8984/7/32/007

L. D. Marks, Experimental studies of small particle structures, Reports on Progress in Physics, vol.57, issue.6, pp.603-642, 1994.
DOI : 10.1088/0034-4885/57/6/002

D. Reinhard, B. D. Hall, D. Ugarte, and R. Monot, Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: An electron diffraction study of clusters produced by inert-gas aggregation, Physical Review B, vol.55, issue.12, pp.7868-7881, 1997.
DOI : 10.1103/PhysRevB.55.7868

H. Haberland, Z. Insepov, and M. Moseler, Molecular-dynamics simulation of thin-film growth by energetic cluster impact, Physical Review B, vol.51, issue.16, pp.11061-11067, 1995.
DOI : 10.1103/PhysRevB.51.11061

P. Mélinon, V. Paillard, V. Dupuis, A. Perez, P. Jensen et al., FROM FREE CLUSTERS TO CLUSTER-ASSEMBLED MATERIALS, International Journal of Modern Physics B, vol.09, issue.04n05, pp.339-378, 1995.
DOI : 10.1142/S021797929500015X

L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, and B. Cabaud, Experimental Observation of Fast Diffusion of Large Antimony Clusters on Graphite Surfaces, Physical Review Letters, vol.74, issue.23, pp.4694-4697, 1995.
DOI : 10.1103/PhysRevLett.74.4694

J. Morniroli, École thématique : Microscopie des défauts cristallins, p.46, 2001.

M. Flüeli, Observation des structures anormales de petites particules d'or et d'argent par microscopie électronique à haute resolution et diffraction d'électrons par un jet d'agrégats d'argent, p.45, 1989.

D. L. Peng, K. Sumiyama, T. J. Konno, T. Hihara, and S. Yamamuro, Characteristic transport properties of CoO-coated monodispersive Co cluster assemblies, Physical Review B, vol.60, issue.3, pp.2093-2100, 1999.
DOI : 10.1103/PhysRevB.60.2093

H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedure for polycristalline and Amorphous Materials, p.66, 1968.

C. N. Wagner, Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering), Journal of Non-Crystalline Solids, vol.31, issue.1-2, pp.1-40, 1978.
DOI : 10.1016/0022-3093(78)90097-2

A. Cervellino, C. Giannini, and A. Guagliardi, Determination of nanoparticle structure type, size and strain distribution from X-ray data for monatomic f.c.c.-derived non-crystallographic nanoclusters, Journal of Applied Crystallography, vol.36, issue.5, pp.1148-1158, 2003.
DOI : 10.1107/S0021889803013542/ks0165sup1.pdf

R. H. Kodama and A. S. Edelstein, Synthesis and characterization of magnetic nanocomposite films, Journal of Applied Physics, vol.85, issue.8, pp.4316-4318, 1999.
DOI : 10.1063/1.370354

T. Seto, H. Akinaga, F. Takano, K. Koga, T. Orii et al., Magnetic Properties of Monodispersed Ni/NiO Core???Shell Nanoparticles, The Journal of Physical Chemistry B, vol.109, issue.28, pp.13403-13405, 2005.
DOI : 10.1021/jp052084+

S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, Exchange anisotropy in oxide passivated Co fine particles, Journal of Applied Physics, vol.73, issue.10, pp.6964-6966, 1993.
DOI : 10.1063/1.352398

J. F. Löffler, J. P. Meier, B. Doudin, J. Ansermet, and W. Wagner, Random and exchange anisotropy in consolidated nanostructured Fe and Ni: Role of grain size and trace oxides on the magnetic properties, Physical Review B, vol.57, issue.5, pp.2915-2924, 1998.
DOI : 10.1103/PhysRevB.57.2915

D. L. Peng, K. Sumiyama, T. Hihara, S. Yamamuro, and T. J. Konno, Magnetic properties of monodispersed Co/CoO clusters, Physical Review B, vol.61, issue.4, pp.3103-3109, 2000.
DOI : 10.1103/PhysRevB.61.3103

A. N. Dobrynin, D. N. Ievlev, K. Temst, P. Lievensa, J. Margueritat et al., Critical size for exchange bias in ferromagnetic-antiferromagnetic particles, Applied Physics Letters, vol.87, issue.1, pp.12501-97, 2005.
DOI : 10.1063/1.1978977

J. B. Tracy, D. N. Weiss, D. P. Dinega, and M. G. Bawendi, Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles, Physical Review B, vol.72, issue.6, p.64404, 2005.
DOI : 10.1103/PhysRevB.72.064404

I. M. Billas, A. Châtelain, and W. A. De-heer, Magnetism of Fe, Co and Ni clusters in molecular beams, Journal of Magnetism and Magnetic Materials, vol.168, issue.1-2, pp.64-84, 1997.
DOI : 10.1016/S0304-8853(96)00694-4

S. Chikazumi, Physics of Magnetism, p.130, 1999.

J. P. Chen, C. M. Sorensen, K. J. Kablunde, and G. C. Hadjipanayis, Enhanced magnetization of nanoscale colloidal cobalt particles, Physical Review B, vol.51, issue.17, pp.11527-11533, 1995.
DOI : 10.1103/PhysRevB.51.11527

M. Jamet, V. Dupuis, P. Mélinon, G. Guiraud, A. Pérez et al., Structure and magnetism of well defined cobalt nanoparticles embedded in a niobium matrix, Physical Review B, vol.62, issue.1, pp.493-499, 2000.
DOI : 10.1103/PhysRevB.62.493

F. Bodker, S. Morup, and S. Linderoth, Surface effects in metallic iron nanoparticles, Physical Review Letters, vol.72, issue.2, pp.282-285, 1994.
DOI : 10.1103/PhysRevLett.72.282

N. Cabrera and N. F. Mott, Theory of the oxidation of metals, Reports on Progress in Physics, vol.12, issue.1, pp.163-184, 1949.
DOI : 10.1088/0034-4885/12/1/308

D. M. Wood, Classical Size Dependence of the Work Function of Small Metallic Spheres, Physical Review Letters, vol.46, issue.11, pp.749-102, 1981.
DOI : 10.1103/PhysRevLett.46.749

M. E. Bridge and R. M. Lambert, Oxygen chemisorption, surface oxidation, and the oxidation of carbon monoxide on cobalt (0001), Surface Science, vol.82, issue.2, pp.413-424, 1979.
DOI : 10.1016/0039-6028(79)90199-7

N. L. Wang, U. Kaiser, O. Ganschow, L. Wiedmann, and A. Benninghoven, Oxidation of cobalt at room temperature, studied by combined static SIMS, static AES, XPS and work function investigations, Surface Science, vol.124, issue.1, pp.51-67, 1983.
DOI : 10.1016/0039-6028(83)90335-7

C. Leighton, H. Suhl, M. J. Pechan, R. Compton, J. Nogués et al., Coercivity enhancement above the N??el temperature of an antiferromagnet/ferromagnet bilayer, Journal of Applied Physics, vol.92, issue.3, pp.1483-1488, 2002.
DOI : 10.1063/1.1491277

M. Grimsditch, A. Hoffmann, P. Vavassori, H. Shi, and D. Lederman, Exchange-Induced Anisotropies at Ferromagnetic-Antiferromagnetic Interfaces above and below the N??el Temperature, Physical Review Letters, vol.90, issue.25, pp.257201-104, 2003.
DOI : 10.1103/PhysRevLett.90.257201

M. Carey and A. Berkowitz, (invited), Journal of Applied Physics, vol.73, issue.10, pp.6892-115, 1993.
DOI : 10.1063/1.352426

N. J. Gökemeijer, T. Ambrose, and C. L. Chien, Long-Range Exchange Bias across a Spacer Layer, Physical Review Letters, vol.79, issue.21, pp.4270-4273, 1997.
DOI : 10.1103/PhysRevLett.79.4270

C. Binns, M. J. Maher, Q. A. Pankhurst, D. Kechrakos, and K. N. Trohidou, Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag, Physical Review B, vol.66, issue.18, pp.184413-116, 2002.
DOI : 10.1103/PhysRevB.66.184413

P. Allia, M. Coisson, M. Knobel, P. Tiberto, and F. Vinai, Magnetic hysteresis based on dipolar interactions in granular magnetic systems, Physical Review B, vol.60, issue.17, pp.12207-116, 1999.
DOI : 10.1103/PhysRevB.60.12207

C. Chappert, K. L. Dang, P. Beauvillain, H. Hurdequint, and D. Renard, Ferromagnetic resonance studies of very thin cobalt films on a gold substrate, Physical Review B, vol.34, issue.5, pp.3192-3197, 1986.
DOI : 10.1103/PhysRevB.34.3192

P. Bruno, Magnetic surface anisotropy of cobalt and surface roughness effects within Neel's model, Journal of Physics F: Metal Physics, vol.18, issue.6, pp.1291-1298, 1988.
DOI : 10.1088/0305-4608/18/6/029

R. Wu and A. Freeman, First principles determinations of magnetostriction in transition metals (invited), Journal of Applied Physics, vol.79, issue.8, pp.6209-130, 1996.
DOI : 10.1063/1.362073

I. Billas, A. Châtelain, and W. De-heer, Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters, Science, vol.265, issue.5179, pp.1682-131, 1994.
DOI : 10.1126/science.265.5179.1682

D. Chuang, C. Ballentine, and R. O. Handley, Surface and step magnetic anisotropy, Physical Review B, vol.49, issue.21, pp.15084-131, 1994.
DOI : 10.1103/PhysRevB.49.15084

B. Hillebrands, J. Fassbender, R. Jungblut, G. Guentherodt, D. Roberts et al., Suppression of the magnetocrystalline bulk anisotropy in thin epitaxial Co(110) films on Cu(110), Physical Review B, vol.53, issue.16, pp.10548-131, 1996.
DOI : 10.1103/PhysRevB.53.R10548

G. Bochi, O. Song, and R. O. Handley, Surface magnetoelastic coupling coefficients of single-crystal fcc Co thin films, Physical Review B, vol.50, issue.3, pp.2043-131, 1994.
DOI : 10.1103/PhysRevB.50.2043

D. Dimitrov and G. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy, Physical Review B, vol.51, issue.17, pp.11947-131, 1995.
DOI : 10.1103/PhysRevB.51.11947

H. Kachkachi and M. Dimian, Hysteretic properties of a magnetic particle with strong surface anisotropy, Physical Review B, vol.66, issue.17, pp.174419-131, 2002.
DOI : 10.1103/PhysRevB.66.174419

T. Kingetsu and K. Sakai, Perpendicular magnetic anisotropy and structures of epitaxial Co/Ag and Co/Au metallic superlattices, Journal of Applied Physics, vol.73, issue.11, pp.7622-134, 1993.
DOI : 10.1063/1.353959

F. Den-broeder, W. Hoving, and P. Bloemen, Magnetic anisotropy of multilayers, Journal of Magnetism and Magnetic Materials, vol.93, pp.562-134, 1991.
DOI : 10.1016/0304-8853(91)90404-X

P. W. Anderson, Radio-Frequency Effects in Superconducting Thin Film Bridges, Physical Review Letters, vol.13, issue.6, pp.195-135, 1963.
DOI : 10.1103/PhysRevLett.13.195

M. Jamet, Caractérisations structurale et magnétique d'agrégats de cobalt, fer et mixtes cobalt-argent noyés en matrice de niobium. Étude des propriétés magnétiques d'un agrégat unique par magnétométrie à micro-SQUID, p.141, 2001.

W. Wernsdorfer, Magnétométrie à micro-SQUID pour l'étude de particules ferromagnétiques isolées aux échelles sub-micronique, p.142, 1996.

A. Thiaville, Coherent rotation of magnetization in three dimensions: A geometrical approach, Physical Review B, vol.61, issue.18, pp.12221-12232, 2000.
DOI : 10.1103/PhysRevB.61.12221

R. Morel, A. Brenac, and C. Portemont, Exchange bias and coercivity in oxygen-exposed cobalt clusters, Journal of Applied Physics, vol.95, issue.7, pp.3757-3760, 2004.
DOI : 10.1063/1.1649818

C. Portemont, R. Morel, A. Brenac, and L. Notin, Exchange bias between cobalt clusters and oxide thin films, Journal of Applied Physics, vol.100, issue.3, p.33907, 2006.
DOI : 10.1063/1.2221523

R. Morel, A. Brenac, C. Portemont, T. Deutsch, and L. Notin, Magnetic anisotropy in icosahedral cobalt clusters, Journal of Magnetism and Magnetic Materials, vol.308, issue.2, pp.296-304, 2007.
DOI : 10.1016/j.jmmm.2006.06.004

. Autres, Domain state and exchange coupling in MnPt with Co clusters, Phys. Rev. Lett, vol.97, p.127203, 2006.